R. Vlokh; M. Kostyrko
2006-01-01
Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.
Indian Academy of Sciences (India)
Hussain A Badran; Alaa Y Al-Ahmad; Qusay M Ali Hassan; Chassib A Emshary
2016-01-01
The optical properties of Violet 1-doped polyvinyl alcohol (PVA) have been investigated using Wemble and Didomenico (WD) method. The optical constants such as refractive index , the dispersion energy , the oscillation energy 0, the lattice dielectric constant ∞, light frequency dielectric constant 0 and the ratio of carrier concentration to the effective mass /* have been determined using reflection spectra in the wavelength range 300–900 nm. The singlebeam Z-scan technique was used to determine the nonlinear optical properties of Violet 1:polyvinylalcohol (PVA) thin film. The experiments were performed using continuous wave (cw) laser with a wavelength of 635 nm. The calculated nonlinear refractive index of the film, $n_{2} = -2.79 \\times 10^{-7}$ cm2/Wand nonlinear absorption coefficient, $\\beta = 6.31\\times10^{−3}$ cm/W. Optical limiting characteristics of the dye-doped polymer film was studied. The result reveals that Violet 1 can be a promising material for optical limiting applications.
Energy Technology Data Exchange (ETDEWEB)
Wang Dengshan [CEMA and CIAS, Central Univ. of Finance and Economics, BJ (China); BNLCMP, Inst. of Physics, Chinese Academy of Sciences, BJ (China); Liu Yifang [School of Economics, Central Univ. of Finance and Economics, BJ (China)
2010-01-15
In this paper, with the aid of symbolic computation the bright soliton solutions of two variable-coefficient coupled nonlinear Schroedinger equations are obtained by Hirota's method. Some figures are plotted to illustrate the properties of the obtained solutions. The properties are meaningful for the investigation on the stability of soliton propagation in the optical soliton communications. (orig.)
Measurement of nonlinear coefficient of optical fiber based on small chirped soliton transmission
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
We measure the waveform and phase curves of short optical pulses before and after transmission over different lengths of fibers by use of the pulse analyzer with the frequency-resolved optical gating (FROG),and numerically simulate pulse evolution under the experimental conditions.The nonlinear coefficient of the fiber is given by comparing the experimental results with the numerical ones.Difference between the experiment and numerical simulation is analyzed.
Çakır, Bekir; Yakar, Yusuf; Özmen, Ayhan
2015-02-01
Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s2, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.
Energy Technology Data Exchange (ETDEWEB)
Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus 68100, Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey)
2015-02-01
Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s{sup 2}, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.
Yan, Zhenya
2013-01-01
The higher-order dispersive and nonlinear effects (alias {\\it the perturbation terms}) like the third-order dispersion, the self-steepening, and the self-frequency shift play important roles in the study of the ultra-short optical pulse propagation. We consider optical rogue wave solutions and interactions for the generalized higher-order nonlinear Schr\\"odinger (NLS) equation with space- and time-modulated parameters. A proper transformation is presented to reduce the generalized higher-order NLS equation to the integrable Hirota equation with constant coefficients. This transformation allows us to relate certain class of exact solutions of the generalized higher-order NLS equation to the variety of solutions of the integrable Hirota equation. In particular, we illustrate the approach in terms of two lowest-order rational solutions of the Hirota equation as seeding functions to generate rogue wave solutions localized in time that have complicated evolution in space with or without the differential gain or lo...
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Measurement of the Third-Order Nonlinear Optical Coefficient of ZnO Crystals by Using ICCD-Z-Scan
Institute of Scientific and Technical Information of China (English)
JIA Guang-Ming; ZHANG Gui-Zhong; XIANG Wang-Hua; J.B.Ketterson
2004-01-01
We present an image-intensified charge-coupled-device (ICCD) version of Z-scan by employing an ICCD detector and fixing the sample at the beam waist, and a measurement of the third-order nonlinear optical coefficient of single crystal zinc oxide (ZnO). The X(3) value of -9.1 × 10-15 cm2/W measured is in agreement with the published result. Our Z-scan configuration of placing sample at beam waist and collecting the whole wavefront by an ICCD detector is simple and can be deployed in cryogenic research where the sample cannot be Z-scanned.
Liu, De-Yin; Tian, Bo; Xie, Xi-Yang
2017-03-01
Bound-state vector soliton solutions for the coupled variable-coefficient higher-order nonlinear Schrödinger equations, which describe the simultaneous propagation of nonlinear waves in the inhomogeneous optical fiber, are investigated. Introducing auxiliary functions, we derive the bilinear forms and corresponding constraints on the variable coefficients. Through symbolic computation, we construct the one- and two-soliton solutions. We see that the variable coefficients in the equations affect the soliton structures. With different choices of the variable coefficients, we obtain the cubic, periodic, and parabolic solitons. Bound-state solitons and interactions are analyzed graphically.
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Monica, E-mail: monica.gambhir@yahoo.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar, Manoj [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jha, P.K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Deen Dayal Upadhyaya College, University of Delhi, Delhi 110015 (India); Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)
2013-11-15
The linear and nonlinear optical absorption coefficients and changes in the refractive index in GaAs/AlGaAs quantum disk in the form of a flat cylinder are investigated theoretically in the presence of a static magnetic and a laser field within the framework of the compact-density matrix approach. It is found that the absorption coefficients and the refractive index changes depend not only on the optical wave intensity but also on the strength of the static magnetic field. The intersubband relaxation time, also, has an important influence on the linear and nonlinear optical properties of a quantum disk. -- Highlights: • The study is carried out in a quantum disk having quantum dot geometry. • The linear and non-linear optical properties are studied using density matrix approach. • The study is carried out in the presence of a laser field and a magnetic field. • Influence of incident photon energy and static magnetic field is analyzed. • The optical properties are found to be greatly influenced by the relaxation time.
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang
2017-04-01
Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.
Energy Technology Data Exchange (ETDEWEB)
Nazari, M.; Karimi, M.J., E-mail: karimi@sutech.ac.ir; Keshavarz, A.
2013-11-01
In this study, the linear, the third-order nonlinear and total optical absorption coefficients and refractive index changes of a modulation-doped GaAs/Al{sub x}Ga{sub 1−x}As quantum well are investigated numerically. In the effective-mass approximation, the electronic structure of modulation-doped quantum well is calculated by solving the Schrödinger and Poisson equations self-consistently. Optical properties are obtained using the compact density matrix approach. The effects of structure parameters, the applied magnetic field and the hydrostatic pressure on the optical properties of the modulation-doped quantum well are studied. Results show that the resonant peaks shift toward the higher (lower) energies with the increase in the magnetic field (pressure). The magnitude of the resonant peaks of the optical properties decreases with the increasing magnetic field or pressure.
Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A
2012-09-28
: The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum.
Wang, Lei; Qi, Feng-Hua; Tang, Bing; Shi, Yu-Ying
2016-12-01
Under investigation in this paper is a variable-coefficient AB (vcAB) system, which describes marginally unstable baroclinic wave packets in geophysical fluids and ultra-short pulses in nonlinear optics. The modulation instability analysis of solutions with variable coefficients in the presence of a small perturbation is studied. The modified Darboux transformation (mDT) of the vcAB system is constructed via a gauge transformation. The first-order non-autonomous rogue wave solutions of the vcAB system are presented based on the mDT. It is found that the wave amplitude of B exhibits two types of structures, i.e. the double-peak structure appears if the plane-wave solution parameter ω is equal to zero, while selecting ω≠0 yields a single-peak one. Effects of the variable coefficients on the rogue waves are graphically discussed in detail. The periodic rogue wave and composite rogue wave are obtained with different inhomogeneous parameters. Additionally, the nonlinear tunneling of the rogue waves through a conventional hyperbolic nonlinear well and barrier are investigated.
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Lin Xiao-Gang; Liu Wen-Jun; Lei Ming
2016-03-01
Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
Khoa, Doan Quoc; Phuong, Le Thi Thu; Hoi, Bui Dinh
2017-03-01
A quantum kinetic equation for electrons interacting with confined phonons is used to investigate the nonlinear absorption of an intense electromagnetic wave by electrons in cylindrical GaAs/AlAs quantum wires. The analytic expression for absorption coefficient is calculated for three models of confined optical phonons: the dielectric continuum (DC), hydrodynamic continuum (HC), and Huang-Zhu (HZ) models. The absorption coefficient depends on the square of the electromagnetic wave amplitude. The electrophonon resonance and optically detected electrophonon resonance (ODEPR) are observed through the absorption spectrum. The full width at half maximum (the line-width) of the ODEPR peaks is obtained by a computational method. The line-width is found to increase with increasing temperature and decrease with increasing the quantum wire radius. In particular, numerical results show that the DC and HZ models lead to a similar behaviour of electron - confined phonon interaction whereas the HC model results in a quite different one, especially at small quantum wire radius. For large quantum wire radii, above mentioned phonon models have equivalent contributions to the ODEPR line-width.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A
2013-01-01
We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
1992-02-13
niobate and absolute measurements of nonlinear optical coefficients of six different commonly used nonlinear optical materials. The refractometry data for...applied radiation and is now an established technology for Nd:YAG lasers. Optical parametric oscillation and amplification provide a method of generating...continuously tunable output -3- The relative advantages of nonlinear optical frequency conversion compared to other methods for the generation of near
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Nonlinear effects in optical fibers
Ferreira, Mario F
2011-01-01
Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Fundamentals of nonlinear optics
Powers, Peter E
2011-01-01
Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Escuela de Ingenieria de Antioquia, AA 7516 Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)
2013-02-15
The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: Black-Right-Pointing-Pointer Linear and nonlinear intra-band absorption in quantum rings. Black-Right-Pointing-Pointer Threshold energy strongly depends on the hydrostatic pressure. Black-Right-Pointing-Pointer Threshold energy strongly depends on the stoichiometry and sizes of structure. Black-Right-Pointing-Pointer Optical absorption is affected by the incident optical intensity.
Nonlinear soliton matching between optical fibers
DEFF Research Database (Denmark)
Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.
2011-01-01
In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Comprehensive analysis of the optical Kerr coefficient of graphene
Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo
2016-08-01
We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S -matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. We also present a comparison of our theory with recent experimental and theoretical results.
Remote Atmospheric Nonlinear Optical Magnetometry
2014-04-28
Boyd , Nonlinear Optics (Elsevier, Burlington, MA, 2008). [13] M. Scully and S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--14-9548 Remote Atmospheric Nonlinear Optical Magnetometry PhilliP SPrangle...b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Remote Atmospheric Nonlinear Optical Magnetometry Phillip Sprangle, Luke
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film
Nonlinear Optical Terahertz Technology Project
National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...
General Symmetry Approach to Solve Variable-Coefficient Nonlinear Equations
Institute of Scientific and Technical Information of China (English)
RUAN HangYu; CHEN YiXin; LOU SenYue
2001-01-01
After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations by using the general classical Lie approach. Taking the nonlinear Schrodinger equation as a concrete example, the method is recommended in detail.``
Focus issue introduction: nonlinear optics.
Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori
2011-11-07
It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.
Inverse Coefficient Problems for Nonlinear Elliptic Variational Inequalities
Institute of Scientific and Technical Information of China (English)
Run-sheng Yang; Yun-hua Ou
2011-01-01
This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic variational inequalities. The unknown coefficient of elliptic variational inequalities depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic variational inequalities is unique solvable for the given class of coefficients. The existence of quasisolutions of the inverse problems is obtained.
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia)
2014-01-15
The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption.
Third-Order Nonlinear Optical Susceptibility of Indium Phosphide Nanocrystals
Institute of Scientific and Technical Information of China (English)
WANG Hong-Li; WANG Dong; CHEN Guang-De; LIU Hui
2007-01-01
InP nanocrystals synthesized by refluxing and annealing of organic solvent are determined from XRD measurements to have an average granularity of 25 nm. The nonlinear optical properties of the InP nanocrystals studied by using laser Z-scan technique with 50ps pulses at 532nm are found to reveal strong nonlinear optical properties and two-photon absorption phenomenon. Also, the nonlinear absorption coefficient, the nonlinear refractive index and the third-order nonlinear optical susceptibility are determined by experiments, in which the nonlinear refractive index is three orders of magnitude larger than that of bulk InP.
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Focus issue introduction: nonlinear optics 2013.
Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C
2013-12-16
Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.
Nonlinear Optics: Principles and Applications
DEFF Research Database (Denmark)
Rottwitt, Karsten; Tidemand-Lichtenberg, Peter
As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...... of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Enhanced optical nonlinearities in air-cladding silicon pedestal waveguides
Zhang, Yaojing; Yao, Yifei; Tsang, Hon Ki
2016-01-01
The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated waveguide platform with a high nonlinearity is therefore important for nonlinear integrated photonics. Here, we report the observation of an enhancement in the nonlinearity of an air-cladding silicon pedestal waveguide. We observe enhanced nonlinear spectral broadening compared to a conventional silicon-on-insulator waveguide. At the center wavelength of 1555 nm, the nonlinear-index coefficient of air-cladding silicon pedestal waveguide is measured to be about 5% larger than that of a conventional silicon-on-insulator waveguide. We observe enhanced spectral broadening from self-phase modulation of an optical pulse in the pedestal waveguide. The interaction of light with the confined acoustic phonons in the pedestal structure gives rise to a larger nonlinear-index coeffi...
Eckardt, Robert C.; Byer, Robert L.; Masuda, Hisashi; Fan, Yuan Xuan
1990-01-01
Both absolute and relative nonlinear optical coefficients of six nonlinear materials measured by second-harmonic generation are discussed. A single-mode, injection-seeded, Q-switched Nd:YAG laser with spatially filtered output was used to generate the 1.064-micron fundamental radiation. The following results were obtained: d36(KDP) = 0.38 pm/V, d36(KD/asterisk/P) = 0.37 pm/V, (parallel)d22(BaB2O4)(parallel) = 2.2 pm/V, d31(LiIO3) = -4.1 pm/V, d31(5 percentMgO:MgO LiNbO3) = -4.7 pm/V, and d(eff)(KTP) = 3.2 pm/V. The accuracy of these measurements is estimated to be better than 10 percent.
Some new solutions of nonlinear evolution equations with variable coefficients
Virdi, Jasvinder Singh
2016-05-01
We construct the traveling wave solutions of nonlinear evolution equations (NLEEs) with variable coefficients arising in physics. Some interesting nonlinear evolution equations are investigated by traveling wave solutions which are expressed by the hyperbolic functions, the trigonometric functions and rational functions. The applied method will be used in further works to establish more entirely new solutions for other kinds of such nonlinear evolution equations with variable coefficients arising in physics.
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
Whittam, A J
2001-01-01
susceptibility from 26 pm/V (same film without octadecanoic acid) to 40 pm/V. This increase in the second-order susceptibility occurred even though the amount of NLO-active dye was effectively diluted by the addition of the inactive octadecanoic acid. The wavelength of the absorption maximum ranged from 346-440 nm and there was direct correlation between the susceptibilities and the transparency of the films at the harmonic wavelength. Hemicyanine dyes were synthesised, with the general formulae: - (a) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH-C sub 6 H sub 4] sub x -N(CH sub 3) sub 2 I (b) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH] sub y -C sub 6 H sub 4 -N(CH sub 3) sub 2 I where A sup + is a pyridinium or isoquinolinium acceptor, and x = 1 or 2, and y = 1 or 2. The optically nonlinear dyes were investigated via the Langmuir-Blodgett (LB) technique. The dyes all produced isotherm data, with molecular areas of 22-60 A sup 2 per molecule, which are consistent with the cross-sectional areas of the chromo...
Comparing coefficients of nested nonlinear probability models
DEFF Research Database (Denmark)
Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders
2011-01-01
In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...
Nonlinear optics: the next decade.
Kivshar, Yuri S
2008-12-22
This paper concludes the Focus Serial assembled of invited papers in key areas of nonlinear optics (Editors: J.M. Dudley and R.W. Boyd), and it discusses new directions for future research in this field.
Controllable Optical Solitons in Optical Fiber System with Distributed Coefficients
Institute of Scientific and Technical Information of China (English)
ZHANG Xiao-Fei; HE Wan-Quan; ZHANG Pei; ZHANG Peng
2011-01-01
We present how to control the dynamics of optical solitons in optical fibers under nonlinearity and dispersion management, together with the fiber loss or gain. We obtain a family of exact solutions for the nonlinear Schr(o)dinger equation, which describes the propagation of optical pulses in optical fibers, and investigate the dynamical features of solitons by analyzing the exact analytical solutions in different physical situations. The results show that under the appropriate condition, not only the group velocity dispersion and the nonlinearity, but also the loss/gain can be used to manipulate the light pulse.
Inverse Coefficient Problems for Nonlinear Parabolic Differential Equations
Institute of Scientific and Technical Information of China (English)
Yun Hua OU; Alemdar HASANOV; Zhen Hai LIU
2008-01-01
This paper is devoted to a class of inverse problems for a nonlinear parabolic differential equation.The unknown coefficient of the equation depends on the gradient of the solution and belongs to a set of admissible coefficients.It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence.Based on this result the existence of a quasisolution of the inverse problem is obtained in the appropriate class of admissible coefficients.
Nonlinear optics and organic materials
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1994-07-01
We shall consider an interesting topic relating nonlinear optics and organic materials: how nonlinear optics can be used to study organic materials. One of the main differences between linear and nonlinear responses of a medium to incoming radiation is in their symmetries. It leads to the possibility that some properties of the medium could be more sensitively probed by nonlinear, rather than linear, optical means, or vise versa. A well-known example is that some vibrational modes of a medium could be Raman-active but infrared-inactive, and would be more readily observed by Raman scattering, which is a two-photon transition process. In this paper, we shall discuss, with the help of three examples, how we can use second harmonic generation (SHG) and sum frequency generation (SFG) to obtain unique information about a material. We shall focus on thin films, surfaces, and interfaces.
Photothermal determination of optical coefficients using an optical fibre sensor
Laufer, J
2000-01-01
configuration is more sensitive to the thermal coefficients than the optical coefficients of the target. Pulsed photothermal radiometry was found to have higher sensitivity to the optical coefficients than has the optical fibre sensor in its present form. However, modifications to the configuration of the sensor can produce a performance matching that of pulsed photothermal radiometry. This thesis is concerned with the development of an optical fibre sensor for the photothermal determination of the optical coefficients of tissue. The detection of differences in tissue optical properties might be used for the diagnosis of cancers and other tissue pathologies. The sensor consists of a thin transparent polymer film mounted at the distal end of an optical fibre. The film acts as a Fabry-Perot interferometer. The absorption of short, low energy laser pulses transmitted through the film and into the tissue generates thermal as well as acoustic transients, which propagate into/the film and modulate its thickness. Th...
Nonlinear Optics and Turbulence
1992-10-01
currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
New nonlinear optical materials based on ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
2006-01-01
We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...
Resource Letter NO-1: Nonlinear Optics
Garmire, Elsa
2011-03-01
This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.
Nonlinear Optics of Hexaphenyl Nanofibers
DEFF Research Database (Denmark)
Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf
2003-01-01
measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...
Exact solutions to a nonlinear dispersive model with variable coefficients
Energy Technology Data Exchange (ETDEWEB)
Yin Jun [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China); Lai Shaoyong [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China)], E-mail: laishaoy@swufe.edu.cn; Qing Yin [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China)
2009-05-15
A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.
Rigorous theory of molecular orientational nonlinear optics
Directory of Open Access Journals (Sweden)
Chong Hoon Kwak
2015-01-01
Full Text Available Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1 the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2 the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect, optical Kerr effect (OKE, dc electric field induced second harmonic generation (EFISH, degenerate four wave mixing (DFWM and third harmonic generation (THG. We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR, Pockels effect and difference frequency generation (DFG are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR, dc electric field induced difference frequency generation (EFIDFG and pump-probe transmission are presented.
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Unsymmetrical squaraines for nonlinear optical materials
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient
Directory of Open Access Journals (Sweden)
Zaiyue Yang
2014-01-01
Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.
Non-linear Bayesian update of PCE coefficients
Litvinenko, Alexander
2014-01-06
Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).
Energy Technology Data Exchange (ETDEWEB)
Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.
2008-11-05
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).
Quantum Computation with Nonlinear Optics
Liu, Yang; Zhang, Wen-Hong; Zhang, Cun-Lin; Long, Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.
Quantum Computation with Nonlinear Optics
Institute of Scientific and Technical Information of China (English)
LU Ke; LIU Yang; LIN Zhen-Quan; ZHANG Wen-Hong; SUN Yun-Fei; ZHANG Cun-Lin; LONG Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the courseof the computation; (3) It is resource efficient and conceptually simple.
Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation
1994-02-28
Organosilicon Polymeric Nonlinear Optical Materials for Optical C: F49620-93-C-0039 Switching and Modulation 6. AUTHOR(S) Mr. Sandip K. Sengupta, Dr...D FINAL REPORT for Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation Prepared for: USAF, AFMC (AFOSR) Air Force...34Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation," contract number F49620-93-C-0039. The work has been performed by Dr
Overall mass-transfer coefficients in non-linear chromatography
DEFF Research Database (Denmark)
Mollerup, Jørgen; Hansen, Ernst
1998-01-01
In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationship...... can be applied, the over-all mass-transfer coefficient will be concentration independent. However, in mass-transfer operations, a linear equilibrium relationship is in most cases not a valid approximation wherefore the over-all mass-transfer coefficient becomes strongly concentration dependent...... as shown in this paper. In this case one has to discard the use of over-all mass-transfer coefficients and calculate the rate of mass transfer from the two film theory using the appropriate non-linear relationship to calculate the equilibrium ratio at the interface between the two films....
Nonlinear optical interactions in silicon waveguides
Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.
2017-03-01
The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Institute of Scientific and Technical Information of China (English)
Zhang Jie-Fang; Jin Mei-Zhen; He Ji-Da; Lou Ji-Hui; Dai Chao-Qing
2013-01-01
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr(o)dinger equation with varying coefficients.And then the dynamics of the first-and the second-order optical rogues are investigated.Finally,the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed.By properly choosing the distributed coefficients,we demonstrate analytically that rogue waves can be restrained or even be annihilated,or emerge periodically and sustain forever.We also figure out the center-of-mass motion of the rogue waves.
Graphene - a rather ordinary nonlinear optical material
khurgin, Jacob B
2014-01-01
An analytical expression for the nonlinear refractive index of graphene has been derived and used to obtain the performance metrics of third order nonlinear devices using graphene as a nonlinear medium. None of the metrics is found to be superior to the existing nonlinear optical materials.
Nonlinear optical crystals a complete survey
Nikogosyan, David N
2005-01-01
Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...
Quantum nonlinear optics without photons
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Directory of Open Access Journals (Sweden)
Kilic Bulent
2016-01-01
Full Text Available This paper integrates dispersive optical solitons in special optical metamaterials with a time dependent coefficient. We obtained some optical solitons of the aforementioned equation. It is shown that the examined dependent coefficients are affected by the velocity of the wave. The first integral method (FIM and ansatz method are applied to reach the optical soliton solutions of the one-dimensional nonlinear Schrödinger’s equation (NLSE with time dependent coefficients.
The quantum theory of nonlinear optics
Drummond, Peter D
2014-01-01
Playing a prominent role in communications, quantum science and laser physics, quantum nonlinear optics is an increasingly important field. This book presents a self-contained treatment of field quantization and covers topics such as the canonical formalism for fields, phase-space representations and the encompassing problem of quantization of electrodynamics in linear and nonlinear media. Starting with a summary of classical nonlinear optics, it then explains in detail the calculation techniques for quantum nonlinear optical systems and their applications, quantum and classical noise sources in optical fibers and applications of nonlinear optics to quantum information science. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, this book is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics. A solid foundation in quantum mechanics and classical electrodynamic...
Nonlinear Photonics and Novel Optical Phenomena
Morandotti, Roberto
2012-01-01
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.
Fibre-optic nonlinear optical microscopy and endoscopy.
Fu, L; Gu, M
2007-06-01
Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.
Electrifying photonic metamaterials for tunable nonlinear optics.
Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan
2014-08-11
Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.
Piezo-optic coefficients of CaWO4 crystals
Mytsyk, B. G.; Kost', Ya. P.; Demyanyshyn, N. M.; Andrushchak, A. S.; Solskii, I. M.
2015-01-01
All components of the piezo-optic coefficient matrix of calcium tungstate crystals, belonging to the 4/ m symmetry class, are determined. The reliability of the piezo-optic effect measurements in CaWO4 crystals is achieved by determining each piezo-optic coefficient from several experimental geometries and is also based on the correlation of the absolute piezo-electric coefficients and the path-difference coefficients. The rotation-shear diagonal coefficients π44 and π66 and three principal piezo-optic coefficients π11, π13, and π31 are refined by the polarization-optical method. It is confirmed that both the interferometric and polarization-optical methods should be used to study the piezo-optic effect with high accuracy. The results show that calcium tungstate is a promising material for acousto-optical and photoelastic modulation.
Ageing of the nonlinear optical susceptibility in soft matter
Energy Technology Data Exchange (ETDEWEB)
Ghofraniha, N [SMC-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Conti, C [Research Centre ' Enrico Fermi' , Via Panisperna 89/A, 00184 Rome (Italy); Leonardo, R Di [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruzicka, B [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruocco, G [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy)
2007-05-23
We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Design of Organic Nonlinear Optical Materials
1990-06-01
This project deals with a new approach to designing organic nonlinear optical materials for second harmonic generation based on the use of hydrogen...patterns for even simple organic molecules. For organic nonlinear optical materials this dilemma means that even the most promising organic molecule may
Kyoung, Ho Han; H. J., Shin
2010-12-01
We investigate the Painlevé integrability of nonautonomous nonlinear Schrödinger (NLS) equations with both space- and time-dependent dispersion, nonlinearity, and external potentials. The Painlevé analysis is carried out without using the Kruskal's simplification, which results in more generalized form of inhomogeneous equations. The obtained equations are shown to be reducible to the standard NLS equation by using a point transformation. We also construct the corresponding Lax pair and carry out its Kundu-type reduction to the standard Lax pair. Special cases of equations from choosing limited form of coefficients coincide with the equations from the previous Painlevé analyses and/or become unknown new equations.
Indian Academy of Sciences (India)
S Venugopal Rao; P T Anusha; L Giribabu; Surya P Tewari
2010-11-01
We present our experimental results on the picosecond nonlinear optical (NLO) studies of symmetrical and unsymmetrical phthalocyanines, examined using the Z-scan technique. Both the open-aperture and closed-aperture Z-scan curves for three samples were recorded and the nonlinear coefficients were extracted from the theoretical fits. The nonlinear absorption/refraction contribution from the solvent was also identified. The observed open aperture behaviour for these molecules is understood in terms of the absorption coefficients of these molecules near 800 nm and the peak intensities used. It is established that these phthalocyanines exhibit large optical nonlinearities and, hence, are suitable for optical limiting applications.
Nonlinear optical properties of ultrathin metal layers
DEFF Research Database (Denmark)
Lysenko, Oleg
2016-01-01
. The optical characterization of the plasmonic waveguides is performed using femtosecond and picosecond optical pulses. Two nonlinear optical effects in the strip plasmonic waveguides are experimentally observed and reported. The first effect is the nonlinear power transmission of the plasmonic mode......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...... duration dependence of the third-order nonlinear susceptibility of gold is calculated in the broad range from tens of femtoseconds to tens of picoseconds using the two-temperature model of the free-electron temporal dynamics of gold, and shows the saturation of the thirdorder nonlinear susceptibility...
Laser Induced Nonlinear Optical Properties of Zinc Oxide Thin Film Prepared by Sol-Gel Method
Directory of Open Access Journals (Sweden)
Vinay Kumari
2011-01-01
Full Text Available Optical nonlinearities of spin coated ZnO thin film have been investigated by using single beam Z-Scan technique in the visible region. X- ray diffraction shows that all films are oriented along the c-axis direction of the hexagonal crystal structure. The average optical transmittance of all films is higher than 80 %. The nonlinear optical parameters viz. nonlinear absorption coefficient (β, nonlinear index of refraction (η2, nonlinear susceptibility (χ3, have been estimated using nanosecond laser pulses of second harmonic of Nd:YAG Laser. The value of nonlinear absorption coefficient β is estimated to be greater than the already reported value. The films clearly exhibit a-ve value of nonlinear refraction at 532 nm which is attributed to the two photon absorption and free carrier absorption. The presence of RSA in ZnO thin films inferes that ZnO is a potential material for the development of optical limiter.
Institute of Scientific and Technical Information of China (English)
Liu Xiao-Bei; Li Biao
2011-01-01
We present three families of soliton solutions to the generalized (3+1)-dimensional nonlinear Schr(o)dinger equation with distributed coefficients. We investigate the dynamics of these solitons in nonlinear optics with some selected parameters.Different shapes of bright solitons,a train of bright solitons and dark solitons are observed.The obtained results may raise the possibilities of relevant experiments and potential applications.
Nonlinear optical properties and optical power limiting effect of Giemsa dye
Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen
2016-08-01
The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.
Metamaterials with tailored nonlinear optical response.
Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti
2012-02-08
We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.
All-optical switching in optically induced nonlinear waveguide couplers
Energy Technology Data Exchange (ETDEWEB)
Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2014-06-30
We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.
Development of Organic Nonlinear Optical Materials
1992-10-22
10 SOVRCE Of FUNO#NG NUM#E*S DM J .j PROGRAM PR0jECT TA5. ~ *0. I1I TITLE &Vila* So.Ivety ClaUMC400NJ Development of Organic NonLinear Optical Materials (U...0102-LF-014-6603 UNCLASSIFIED (U) AFOSR Contract: F4962040-C 0097 FINAL REPORT Development of Organic Nonlinear Optical Materials by J. Sounnk IL
Z-scan: A simple technique for determination of third-order optical nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)
2015-08-28
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.
Optical and nonlinear optical properties of orthorhombic BiB3O6
Cherepakhin, A. V.; Zaitsev, A. I.; Aleksandrovsky, A. S.; Zamkov, A. V.
2012-03-01
Dispersion of refraction coefficients of orthorhombic BiB3O6 in the wavelength range between 435.8 and 1060 nm is studied, nonlinear optical coefficients are determined, and phase matching angles, angular and spectral bandwidths for second harmonic generation processes are calculated. δ-BiBO may be suitable for doubling of lasers with a wavelength in the 1.3 μm region as well as the matrix for self-doubling lasing media.
Umezawa, Hirohito; Jackson, Matthew; Lebel, Olivier; Nunzi, Jean-Michel; Sabat, Ribal Georges
2016-10-01
The second-order nonlinear optical coefficients of thin films of mexylaminotriazine-functionalized azobenzene molecular glass derivatives were measured using second harmonic generation. The thin films were poled using a custom corona poling set-up and the second harmonic light from a pulsed 1064-nm laser was detected. Four out of the six tested compounds showed optical nonlinearity and a maximum coefficient of 75 pm/V was obtained. The time dependence of the nonlinear coefficients was studied under ambient light and under dark; the second harmonic generation intensity stayed constant for thiazole-containing derivatives while a significant decay was measured for the other compounds.
Linear and nonlinear optical properties of chalcogenide microstructured optical fibers
Trolès, Johann; Brilland, Laurent; Caillaud, Celine; Renversez, Gilles; Mechin, David; Adam, Jean-Luc
2015-03-01
Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.
Nonlinear optical absorption of photosynthetic pigment molecules in leaves.
Ye, Zi-Piao
2012-04-01
A mathematical formulation of the relationship between optical absorption coefficient of photosynthetic pigment molecules and light intensity was developed. It showed that physical parameters of photosynthetic pigment molecule (i.e., light absorption cross-section of photosynthetic pigment molecule, its average lifetime in the excited state, total photosynthetic pigment molecules, the statistical weight, or degeneracy of energy level of photosynthetic pigment molecules in the ground state and in the excited state) influenced on both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules. Moreover, it also showed that both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules were not constant, they decreased nonlinearly with light intensity increasing. The occupation numbers of photosynthetic pigment molecules in the excited states increased nonlinearly with light intensity increasing.
Measurement of nonlinear coefficient and phase matching characteristics of AgGaS sub 2
Energy Technology Data Exchange (ETDEWEB)
Canarelli, P.; Benko, Z.; Hielscher, A.H.; Curl, R.F.; Tittle, F.K. (Dept. of Electrical and Computer Engineering, Rice Quantum Inst., Rice Univ., Houston, TX (US))
1992-01-01
This paper reports on a nonlinear optical characteristics of AgGaS{sub 2} that were investigated by measuring visible parametric fluorescence with a pump wavelength of 600 nm. A value of d{sub 36}(AgGaS{sub 2}) = 31 {plus minus} 5 10{sup {minus}12} m/V for the nonlinear coefficient was determined. The temperature dependence of phase matching up to 100{degrees}C was studied. A significant temperature effect, although much smaller than the LiNbO{sub 3}, was found and results in a change in the infrared difference frequency generated of {approximately}0.6 cm{sup {minus}1} {center dot} {degrees}C{sup {minus}1}.
Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties
Institute of Scientific and Technical Information of China (English)
LONG Hua; YANG Guang; CHEN Ai-Ping; LI Yu-Hua; LU Pei-Xiang
2008-01-01
We report on the ultrafast third-order optical nonlinearity in multilayer Au/TiO2 composite films fabricated on quartz substrates by pulsed laser deposition technique. The linear optical properties of the films are determined and optical absorption peaks due to surface plasmon resonance of Au particles are observed at about 59Onm.The third-order optical nonlinearities of the films are investigated by z-scan method using a femtosecond laser(50 fs) at the wavelength of 800 nm. The sample showed fast nonlinear optical responses with nonlinear absorption coefficient and nonlinear refractive index being -3.66×10-10 m/W and -2.95×10-17 m2/W, respectively. The results also show that the nonlinear optical effects increase with the increasing Au concentration in the composite films.
Completely integrable models of nonlinear optics
Indian Academy of Sciences (India)
Andrey I Maimistov
2001-11-01
The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modiﬁed Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral ﬁeld equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.
Scale-invariant nonlinear optics in gases
Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L
2015-01-01
Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.
Investigation of Optical Fibers for Nonlinear Optics.
1984-04-17
Northwestern University, 1970. Experience Dr. Harrington has 13 years of research experi- ence in the area of optical properties of solids . Since joining...dynamics, and optical properties of solids . 34 34I ANTONIO C. PASTOR, Member of the Technical Staff, Optical Physics Department, Hughes Research
Nonlinear Integrated Optical Waveguides in Chalcogenide Glasses
Institute of Scientific and Technical Information of China (English)
Yinlan; Ruan; Barry; Luther-Davies; Weitang; Li; Andrei; Rode; Marek; Samoc
2003-01-01
This paper reports on the study and measurement of the third order optical nonlinearity in bulk sulfide-based chalcogenide glasses; The fabrication process of the ultrafast laser deposited As-S-(Se)-based chalcogenide films and optical waveguides using two techniques: wet chemistry etching and plasma etching.
Scaling properties of weakly nonlinear coefficients in the Faraday problem.
Skeldon, A C; Porter, J
2011-07-01
Interesting and exotic surface wave patterns have regularly been observed in the Faraday experiment. Although symmetry arguments provide a qualitative explanation for the selection of some of these patterns (e.g., superlattices), quantitative analysis is hindered by mathematical difficulties inherent in a time-dependent, free-boundary Navier-Stokes problem. More tractable low viscosity approximations are available, but these do not necessarily capture the moderate viscosity regime of the most interesting experiments. Here we focus on weakly nonlinear behavior and compare the scaling results derived from symmetry arguments in the low viscosity limit with the computed coefficients of appropriate amplitude equations using both the full Navier-Stokes equations and a reduced set of partial differential equations due to Zhang and Vinãls. We find the range of viscosities over which one can expect "low viscosity" theories to hold. We also find that there is an optimal viscosity range for locating superlattice patterns experimentally-large enough that the region of parameters giving stable patterns is not impracticably small, yet not so large that crucial resonance effects are washed out. These results help explain some of the discrepancies between theory and experiment.
Nonlinear Optical Parameters of Magnetoactive Semiconductor-Plasmas
Singh, M.; Joseph, D.; Duhan, S.
The nonlinear optical parameters (absorption coefficient and refractive index) of semiconductor-plasmas subjected to a transverse magnetic field have been investigated analytically. By employing the coupled-mode scheme, an expression of third-order optical susceptibility and resultant nonlinear absorption and refractive index of the medium are obtained. The analysis has been applied to both cases, viz., centrosymmetric (β = 0) and noncentrosymmetric (β ≠ 0) in the presence of magnetic field. The numerical estimates are made for InSb crystal at liquid nitrogen temperature duly irradiated by a 10-nanosecond pulsed 10.6 μm CO2 laser. The influence of doping concentration and magnetic field on both the nonlinear absorption and refractive index has been explored, and the results are found to be well in agreement with theory and experiment. Analysis further establishes that absorption coefficient and refractive index can be controlled with precision in semiconductors by the proper selection of doping concentration and an external magnetic field, and hence these media may be used for fabrication of fast cubic nonlinear optical devices under off-resonant transition regime.
Forbidden second order optical nonlinearity of graphene
Cheng, J L; Sipe, J E
2016-01-01
We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllablity of these responses by tuning the chemical potential, where the interband optical transitions play a dominant role.
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
. The combination of a small core size and zero-dispersion wavelength at the operating wavelength of widely available femtosecond Ti:sapphire lasers led to an extensive research in supercontinuum generation and other nonlinear effects in PCFs. It is crucial for the efficiency of many nonlinear mechanisms...... that the pump laser wavelength is close to the zero-dispersion wavelength and that the core size is small. Recently, work in fabricating PCFs from materials other than silica has intensified. One of the advantages of using alternative materials can be a higher inherent material nonlinearity, which...... to accurately obtain a small core size while maintaining small structural variations during fibre drawing. This talk will give a presentation of how the mPOFs are fabricated and the route to obtaining nonlinear effects in them....
Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials
Energy Technology Data Exchange (ETDEWEB)
Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.
1999-11-01
Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.
Nonlinear dynamics in atom optics
Energy Technology Data Exchange (ETDEWEB)
Chen Wenyu; Dyrting, S.; Milburn, G.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Physics
1996-12-31
In this paper theoretical work on classical and quantum nonlinear dynamics of cold atoms is reported. The basic concepts in nonlinear dynamics are reviewed and then applied to the motion of atoms in time-dependent standing waves and to the atomic bouncer. The quantum dynamics for the cases of regular and chaotic classical dynamics is described. The effect of spontaneous emission and external noise is also discussed. 104 refs., 1 tab., 21 figs.
Energy Technology Data Exchange (ETDEWEB)
Belmonte-Beitia, J [Departamento de Matematicas, E T S de Ingenieros Industriales and Instituto de Matematica Aplicada a la Ciencia y la IngenierIa (IMACI), Avda Camilo Jose Cela, 3 Universidad de Castilla-La Mancha 13071 Ciudad Real (Spain); Cuevas, J [Grupo de Fisica No Lineal, Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, C/Virgen de Africa, 7, 41011 Sevilla (Spain)], E-mail: juan.belmonte@uclm.es, E-mail: jcuevas@us.es
2009-04-24
In this paper, we construct, by means of similarity transformations, explicit solutions to the cubic-quintic nonlinear Schroedinger equation with potentials and nonlinearities depending on both time and spatial coordinates. We present the general approach and use it to calculate bright and dark soliton solutions for nonlinearities and potentials of physical interest in applications to Bose-Einstein condensates and nonlinear optics.
Nonlinear optics with stationary pulses of light
Andre, A.; Bajcsy, M.; Zibrov, A. S.; Lukin, M. D.
2004-01-01
We show that the recently demonstrated technique for generating stationary pulses of light [Nature {\\bf 426}, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resul...
Nonlinear optical properties of metal nanoparticle composites for optical applications
Energy Technology Data Exchange (ETDEWEB)
Takeda, Y. E-mail: takeda.yoshihiko@nims.go.jp; Kishimoto, N
2003-05-01
Optical absorption and nonlinear optical response were investigated for nanoparticle composites in amorphous SiO{sub 2} fabricated by negative Ta ion implantation at 60 keV. X-ray photoelectron spectroscopy was used to identify Ta and the oxide formation in the matrix. Optical absorption clearly indicated a surface plasmon peak at 2.2 eV and the peak resulted from formation of nanoparticles embedded in the matrix. The measured absorption was compared with calculated ones, evaluated by Maxwell-Garnett theory. Nonlinear absorption was measured with a pump-probe method using a femtosecond laser system. The pumping laser transiently bleached the surface plasmon band and lead to the nonlinearity. The transient response recovered in several picoseconds and behaved in terms of electron dynamics in metallic nanoparticles. The Ta nanoparticle composite is one of the promising candidates for nonlinear optical materials with good thermal stability.
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
Nonlinear optical properties of semiconductor nanocrystals
Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel
1998-05-01
This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of
Linear and nonlinear properties in soft glass optical fibers for device applications
Kiani, Leily; Munasinghe, Tilanka; Zhang, Wen Qi; Afshar, Shahraam; Sharping, Jay
2012-02-01
Optical fiber technology is predominantly based on silica glass fibers. Non-silica soft glass fibers exhibit substantially different optical properties such as higher refractive index, larger nonlinear coefficient and structural fabrication flexibility. We aim to exploit these novel properties for device applications such as sensing and light generation. We report measurement of linear dispersion and nonlinear coefficient in the range of 1.5 μm in two custom designed soft glass microstructure optical fibers. The fibers are composed of SF57 (Schott) and Bismuth-doped silica (Asahi Glass Co.) respectively with Hexagonal Wagonwheel microstructure design. These fibers are designed to allow phase matching of nonlinear optical processes near 1.6μm. Our measurements indicate nonlinear coefficients 1000 times that of standard silica fiber. Transverse modes in these fibers are difficult to separate leading to a complicated dispersion results. Next steps include observation of parametric generation and Brillouin gain.
Aberration coefficients of curved holographic optical elements
Verboven, P. E.; Lagasse, P. E.
1986-11-01
A general formula is derived that gives all aberration terms of holographic optical elements on substrates of any shape. The spherical substrate shape and the planar substrate shape are treated as important special cases. A numerical example illustrates the need of including higher-order aberrations.
Linear and nonlinear magneto-optical properties of monolayer phosphorene
Nguyen, Chuong V.; Ngoc Hieu, Nguyen; Duque, C. A.; Quoc Khoa, Doan; Van Hieu, Nguyen; Van Tung, Luong; Vinh Phuc, Huynh
2017-01-01
We theoretically study the magneto-optical properties of monolayer phosphorene under a perpendicular magnetic field. We evaluate linear, third-order nonlinear, and total absorption coefficients and relative refractive index changes as functions of the photon energy and the magnetic field, and show that they are strongly influenced by the magnetic field. The magneto-optical absorption coefficients and relative refractive index changes appear in two different regimes: the microwave to THz and the visible frequency. The amplitude of intra-band transition peaks is larger than that of the inter-band transitions. The resonant peaks are blue-shifted with the magnetic field. Our results demonstrate the potential of monolayer phosphorene as a new two-dimensional material for applications in nano-electronic and optical devices as a promising alternative to graphene.
Nonlinear optical model for strip plasmonic waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...
Rotational Doppler effect in nonlinear optics
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
Tunable nanowire nonlinear optical probe
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong
2008-02-18
One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.
Towards multimodal nonlinear optical tomography - experimental methodology
Vogler, N.; Medyukhina, A.; Latka, I.; Kemper, S.; Böhm, M.; Dietzek, B.; Popp, J.
2011-08-01
All-optical microspectroscopic and tomographic tools reveal great potential for clinical dermatologic diagnostics, i.e., investigation of human skin and skin diseases. While optical-coherence tomography has been complemented by two-photon fluorescence tomography and second-harmonic generation tomography, a joint study of various nonlinear optical microspectroscopies, i.e., application of the recently developed multimodal imaging approach, to sizable human-tissue samples has not been evaluated up to now. Here, we present such multimodal approach combining different nonlinear optical contrast mechanisms for imaging, namely two-photon excited fluorescence (TPF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) into a joint microscopic experiment. We show the potential of imaging large skin areas and discuss the information obtained in a case study comparing normal skin and keloid tissue.
Quantum nonlinear optics: nonlinear optics meets the quantum world (Conference Presentation)
Boyd, Robert W.
2016-02-01
This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light.
Recent Issues on Nonlinear Effects in Optical Fibers
Institute of Scientific and Technical Information of China (English)
Takashi; Inoue; Osamu; Aso; Shu; Namiki
2003-01-01
This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Lihong V. Wang
2012-01-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method...
Localized Turing patterns in nonlinear optical cavities
Kozyreff, G.
2012-05-01
The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.
Pandian, Muthu Senthil; Karuppasamy, P.; Ramasamy, P.
2017-05-01
The semi-organic nonlinear optical single crystals of potassium 3,5-dinitrobenzoate (KDNB) were grown by slow evaporation solution technique (SEST). The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. The optical transmittance, cut-off wavelength and band gap of the KDNB crystal were obtained by UV-Vis NIR spectrum analysis. Vickers microhardness analysis was carried out to identify mechanical stability and work hardening co-efficient of the grown crystal. The crystalline perfection of the grown crystal was identified by chemical etching study using water as etchant. The third-order nonlinear optical properties such as nonlinear refractive index (n2), nonlinear absorption co-efficient (β) and third order nonlinear susceptibility (χ(3)) of KDNB crystal were evaluated using Z-scan technique at the wavelength of 632.8 nm.
Infiltrated microstructured fibers as tunable and nonlinear optical devices
DEFF Research Database (Denmark)
Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;
We study the light guiding properties of microstructured optical fibers infiltrated with nonlinear liquids and demonstrate their applicability for spatial beam control in novel type tunable and nonlinear optical devices....
Laser and nonlinear optical materials: SPIE volume 681
Energy Technology Data Exchange (ETDEWEB)
De Shazer, L.G.
1987-01-01
This book contains papers arranged under the following session headings: Nonlinear optical crystals; Laser host crystals; Electro-optic and magneto-optic materials; and Characterization of optical materials.
Nonlinear compression of optical solitons
Indian Academy of Sciences (India)
M N Vinoj; V C Kuriakose
2001-11-01
In this paper, we consider nonlinear Schrödinger (NLS) equations, both in the anomalous and normal dispersive regimes, which govern the propagation of a single ﬁeld in a ﬁber medium with phase modulation and ﬁbre gain (or loss). The integrability conditions are arrived from linear eigen value problem. The variable transformations which connect the integrable form of modiﬁed NLS equations are presented. We succeed in Hirota bilinearzing the equations and on solving, exact bright and dark soliton solutions are obtained. From the results, we show that the soliton is alive, i.e. pulse area can be conserved by the inclusion of gain (or loss) and phase modulation effects.
Yashkir, O. V.; Yashkir, Yu N.
1987-11-01
An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.
MECHANISM OF OPTICAL NONLINEARITY IN “LYOTROPIC LIQUID CRYSTAL — VIOLOGEN” SYSTEM
Directory of Open Access Journals (Sweden)
Hanna Bordyuh
2014-06-01
Full Text Available In the present work we analyze the characteristics of holographic grating recording and consider a mechanism of optical nonlinearity in the lyotropic liquid crystal (LLC — viologen samples. Taking into account structural and electrooptical properties of the admixture molecules it is possible to suggest that the recording is realized due to the change of polarizability of π-electron system of coloured viologen derivatives under the action of laser radiation. The main nonlinear optical parameters such as nonlinear refraction coefficient n2, cubic nonlinear susceptibility χ(3, and hyperpolarizability γ were calculated.
Linear and nonlinear optical properties of SrBi4Ti4O15 thin films
Rambabu, A.; Reddy, E. Sivanagi; Hamad, Syed; Raju, K. C. James; Rao, S. Venugopal
2016-05-01
Polycrystalline SrBi4Ti4O15 thin films with good morphology and layered perovskite structure were fabricated on fused silica substrates using r f magnetron sputtering system at various oxygen mixing percentages (25 and 50). The crystallite sizes of the particles are in 17-28 nm range. The Nonlinear optical properties were investigated by using Z-scan method at a wavelength of 800 nm with 2 ps duration pulses. The films exhibit the fast and giant optical nonlinearities having the two-photon absorption coefficient (β) with magnitude of 10-8-10-9 cm/W and the nonlinear refraction coefficient of ˜10-12 cm2/W. These results indicate SrBi4Ti4O15 thin films are promising candidates for applications in nonlinear optical and optical signal processing devices.
Nonlinear Optical Properties of Novel C60 Derivatives under Picosecond Laser Excitation
Institute of Scientific and Technical Information of China (English)
MAO Yan-Li; CHENG Yong-Guang; LIU Jun-Hui; LIN Bing-chen; HUO Yan-Ping; ZENG He-Ping
2007-01-01
We investigate the third-order nonlinear optical properties of six novel fullerene derivatives under picosecond laser excitation by Z-scan technique.The experimental results reveal that all the derivatives have very large nonlinear absorption coefficient under 532 nm pulses excitation and great third-order nonlinear refraction index under 1064 nm pulses excitation.The molecular second hyperpolarizabilities are obtained from the experimental results.
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Piezo- and elasto-optic coefficients for calcium tungstate crystals.
Mytsyk, B G; Demyanyshyn, N M; Solskii, I M; Sakharuk, O M
2016-11-10
A general equation describing the rotation of an optical indicatrix of tetragonal crystals (4, 4¯, 4/m symmetry classes) around the X3 axis (optical axis) depending on the direction of uniaxial pressure in the plane perpendicular to crystal optical axis is written. Partial cases of the general equation, when pressure is acting along the X1 (X2) axis or along the diagonal between the X1 and X2 axes, are received. The values of piezo-optic coefficients (POCs) π61, π16, and π45 are determined by the conoscopic method on the basis of the appropriate equations. Other POCs πim are determined by the interferometric method. All components of the matrix of elasto-optic coefficients are also determined as pin=πimCmn. These results are being compared to the ones received on the basis of wave-mechanical calculations. Objective pin values are necessary to build indicative surfaces of the elasto-optic effect and to find maximums of these surfaces and appropriate maximum values of acousto-optic quality coefficients.
Nonlinear optical studies of relaxation in semiconductor microstructures
Remillard, Jeffrey Thomas
1990-11-01
Exposing a semiconductor to optical radiation near the fundamental band gap results in the creation of populations or elementary excitations including electrons, holes, and excitons, and also results in the creation of a superposition state between the ground and excited state of the solid. The relaxation of optically generated excitons and carriers in semiconductor microstructures was studied using four wave mixing (FWM) spectroscopy. The systems studied include CdSSe microcrystallite doped glasses and GaA/AlGaAs multiple quantum well structures (MQWS). First, the nonlinear optical response of simple two level systems is examined in order to provide insight into the types of line shapes expected from semiconductors. It is shown that the line shape is strongly dependent on how the system is coupled to the reservoir and the consequences of coupling to a reservoir are examined in a FWM measurement made in atomic sodium. The first semiconductor system studied is CdSSe microcrystallite doped glass. This system is shown to have a very slow component to the nonlinear response which has an optical intensity dependence and temperature dependence which suggests that the FWM response in these materials is trap mediated. Room temperature FWM measurements in GaAs MQWS enables the measurement of the carrier recombination time and the ambipolar diffusion coefficient. Using the technique of correlated optical fields, a slow component to the nonlinear response was measured showing an interference profile which suggests a possible shift of the exciton resonance due to the optically generated carriers. At low temperatures, measurements of the exciton line shape and relaxation time were made and evidence for exciton spectral diffusion was found. The low temperature line shapes can be qualitatively reproduced using Modified Optical Bloch equations which include the effects of spectral diffusion.
Extreme nonlinear optics and laser damage
Maldutis, Evaldas
2010-11-01
The study of laser induced damage threshold caused by series of identical laser pulses (LID-T-N) on gamma radiation resistant glasses and their analogs is performed applying know-how ultra stable laser radiation. The presented results and analysis of earlier received results show that nonlinear optical phenomena in extreme conditions of interaction are different from the traditional nonlinear optical processes, because they depend not only on intensity of electromagnetic field of laser radiation, but also on the pulse number in series of identical laser pulses. This range of laser intensities is not wide; it is different for each material and determines the range of Extreme Nonlinear Optics. The dependence of LID-T-N on pulse number N for different kinds of high quality transparent glasses was observed. The study of dynamics of these processes (i.e. the study of dependence on N) at different intensities in series of incident laser pulses provides new information about properties of the materials useful for studying laser damage fundamentals and their application. The expectation that gamma radiation resistant glasses could give useful information for technology of resistant optics for high power lasers has not proved. The received results well correspond with the earlier proposed model of laser damage.
Variational Problem with Complex Coefficient of a Nonlinear Schrödinger Equation
Indian Academy of Sciences (India)
Nigar Yildirim Aksoy; Bunyamin Yildiz; Hakan Yetiskin
2012-08-01
An optimal control problem governed by a nonlinear Schrödinger equation with complex coefficient is investigated. The paper studies existence, uniqueness and optimality conditions for the control problem.
Institute of Scientific and Technical Information of China (English)
Wei-zhong Dai; Raja Nassar
2000-01-01
A finite difference scheme for the generalized nonlinear Schrodinger equation with variable coefficients is developed. The scheme is shown to satisfy two conser vation laws. Numerical results show that the scheme is accurate and efficient.
Nonlinear Mixing in Optical Multicarrier Systems
Hameed, Mahmood Abdul
Although optical fiber has a vast spectral bandwidth, efficient use of this bandwidth is still important in order to meet the ever increased capacity demand of optical networks. In addition to wavelength division multiplexing, it is possible to partition multiple low-rate subcarriers into each high speed wavelength channel. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to understand the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and high speed optical transmission systems, and experimentally demonstrate techniques to minimize this impact. We also analyze impact of clipping and quantization on multicarrier signals and compare bandwidth efficiency of two popular multiplexing techniques, namely, orthogonal frequency division multiplexing (OFDM) and Nyquist modulation. For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise limit on the RF carrier, realizes the full potential of optical heterodyne-based RF carrier generation, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. For multi-carrier optical transmission, we first experimentally compare performance degradations of coherent optical OFDM and single-carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate SSBI compensation techniques in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be significantly reduced from the data signal when the carrier-to-signal power ratio is sufficiently low.
Influence of nonlinear chemical reactions on the transport coefficients in oscillatory Couette flow
Barik, Swarup; Dalal, D. C.
2016-10-01
A multiple-scale method of averaging is applied to the study of transport of a chemical species in oscillatory Couette flow where the species may undergoes a reversible phase exchange with the boundary wall and nonlinear chemical reactions both within the fluid and at the boundary wall. Analytical expressions are obtained for transport coefficients. The results shows how the transport coefficients are influenced by the reversible phase exchange reaction kinetics and the rate and degree of the nonlinear decay chemical reaction.
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang
2009-01-01
The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L = 0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.
Sousani, Abbas; Motiei, Hamideh; Najafimoghadam, Peyman; Hasanzade, Reza
2017-05-01
In this study new nanocompoites based on polyglycidylmethacrylate grafted 4-[(4-methoxyphenyl) diazenyl] phenol (Azo-PGMA) and Carboxylicacid functionalized multi-walled carbon nanotubes (MWCNT-COOH) were prepared. The nanocomposites structure was characterized by FT-IR, TGA and SEM. The Z-scan technique was applied for measuring the nonlinear parameters of nanocomposites. The samples after solving in AWM solution (equal ratio of acetone, deionized water and methanol) were investigated by using closed aperture Z-scan technique and a diode-pumped laser at the line 532 nm. All the nonlinear refractive index of the samples at three concentrations of carbon nanotubes in three different intensities of the laser beam were investigated and the nonlinear optical response of them are compared under the same condition. Because of high order of nonlinear refractive coefficient and good nonlinearity, these compounds are suitable candidate for optical switching, optical limiting and electro-optical devices.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Optically nonlinear Langmuir Blodgett films
Amiri, M A
2003-01-01
A series of novel amphiphilic molecules plus a new class of chevron-shaped materials, without aliphatic tails, were designed, synthesised and non-centrosymmetrically aligned by the Langmuir-Blodgett technique. Their LB films exhibited optical second-harmonic generation (SHG). The chevron-shaped molecules have a central cationic acceptor and two pi-bridged donor groups with an angle of ca. 120 deg between the charge-transfer axes of the D-pi-(A sup +)-pi-D unit. A monolayer LB film of a representative example, 1-butyl-2,6-bis[2- (4-dibutylaminophenyl)vinyl]pyridinium iodide, has an effective susceptibility, chi sup ( sup 2 sup ) sub e sub f sub f , of 120 pm V sup - sup 1 at 1064 nm, a thickness of 1.16 nm and an area in contact with the substrate of 0.91 nm sup 2 molecule sup - sup 1. The second-harmonic intensity (1.6 x 10 sup - sup 4 versus quartz) is similar to those of the extensively studied conventional amphiphilic hemicyanines but as a result of non-centrosymmetric alignment, without the need for long ...
Time-reversed wave mixing in nonlinear optics.
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-11-19
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.
Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable
du Toit, Stephen H. C.; Cudeck, Robert
2009-01-01
A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…
Making of a nonlinear optical cavity
Martínez-Lorente, R; Esteban-Martín, A; García-Monreal, J; Roldán, E; Silva, F
2016-01-01
In the article we explain in detail how to build a photorefractive oscillator (PRO), which is a laser-pumped nonlinear optical cavity containing a photorefractive crystal. The specific PRO whose construction we describe systematically, is based on a Fabry-Perot optical cavity working in a non-degenerate four wave-mixing configuration. This particular PRO has the property that the generated beam exhibits laser-like phase invariance and, as an application, we show how a suitably modulated injected beam converts the output field from phase-invariant into phase-bistable. While the emphasis is made on the making of the experimental device and on the way measurements are implemented, some introduction to the photorefractive effect as well as to the necessary concepts of nonlinear dynamics are also given, so that the article is reasonably self-contained.
Impact of nonlinearities on fiber optic communications
2011-01-01
This book covers the recent progress in fiber-optic communication systems with a main focus on the impact of fiber nonlinearities on system performance. There has been significant progress in coherent communication systems in the past few years due to the advances in digital signal processing techniques. This has led to renewed interest in fiber linear and nonlinear impairments as well as techniques to mitigate them in the electrical domain. In this book, the reader will find all the important topics of fiber optic communication systems in one place, with in-depth coverage by the experts of each sub-topic. Pioneers from each of the sub-topics have been invited to contribute. Each chapter will have a section on fundamentals as well as reviews of literature and of recent developments. Readers will benefit from this approach since many of the conference proceedings and journal articles mainly focus on the authors’ research, without spending space on preliminaries.
Nonlinear optics of astaxanthin thin films
Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton
1993-02-01
Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.
Nonlinear optical studies of organic monolayers
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1988-02-01
Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs.
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2015-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by the strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by the nonlinear suscepti...
Kirubagaran, R.; Madhavan, J.
2015-02-01
Single crystals of L-alanine DL-malic acid (LADLMA) have been grown from aqueous solution by slow-cooling technique. Powder X-ray diffraction studies reveal the structure of the crystal to be orthorhombic. The nonlinear optical conversion efficiency test was carried out for the grown crystals using the Kurtz powder technique. The third order nonlinear refractive index and the nonlinear absorption coefficient where evaluated by Z-scan measurements. As the material have a negative refractive index it could be used in the protection of optical sensors such as night vision devices.
Nonlinear inversion schemes for fluorescence optical tomography.
Freiberger, Manuel; Egger, Herbert; Scharfetter, Hermann
2010-11-01
Fluorescence optical tomography is a non-invasive imaging modality that employs the absorption and re-emission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution. In this paper we investigate reconstruction methods based on Tikhonov regularization with nonlinear penalty terms, namely total-variation regularization and a levelset-type method using a nonlinear parameterization of the unknown function. Moreover, we use the full threedimensional nonlinear forward model, which arises from the governing system of partial differential equations. We discuss the numerical realization of the regularization schemes by Newtontype iterations, present some details of the discretization by finite element methods, and outline the efficient implementation of sensitivity systems via adjoint methods. As we will demonstrate in numerical tests, the proposed nonlinear methods provide better reconstructions than standard methods based on linearized forward models and linear penalty terms. We will additionally illustrate, that the careful discretization of the methods derived on the continuous level allows to obtain reliable, mesh independent reconstruction algorithms.
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique
Energy Technology Data Exchange (ETDEWEB)
Shanshool, Haider Mohammed, E-mail: haidshan62@gmail.com [Ministry of Science and Technology, Baghdad (Iraq); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, Serdang (Malaysia); Abdullah, Ibtisam Yahya [Department of Physics, College of Science, University of Mosul, Mosul (Iraq)
2015-10-15
The nonlinear optical properties of ZnO nanoparticles dispersed in poly (vinylidene fluoride) (PVDF) polymer are investigated. PVDF/ZnO nanocomposites were prepared by mixing different concentrations of ZnO nanoparticles, as the filler, with PVDF, as the polymer matrix, using casting method. Acetone was used as a solvent for the polymer. FTIR spectra of the samples were analyzed thus confirming the formation of α and β phases. The absorbance spectra of the samples were obtained, thereby showing high absorption in the UV region. The linear absorption coefficient was calculated. The single-beam Z-scan technique was used to measure the nonlinear refractive index and the nonlinear absorption coefficient of the PVDF/ZnO nanocomposite samples. We observed that the nonlinear refractive index is in the order of 10{sup -13} cm{sup 2}/W with the negative sign, whereas the nonlinear absorption coefficient is in the order of 10{sup -8} cm/W. (author)
A modified WTC algorithm for the Painlevé test of nonlinear variable-coefficient PDEs
Zhao, Yin-Long; Liu, Yin-Ping; Li, Zhi-Bin
2009-11-01
A modified WTC algorithm for the Painlevé test of nonlinear PDEs with variable coefficients is proposed. Compared to the Kruskal's simplification algorithm, the modified algorithm further simplifies the computation in the third step of the Painlevé test for variable-coefficient PDEs to some extent. Two examples illustrate the proposed modified algorithm.
Exploring non-linear cosmological matter diffusion coefficients
Velten, Hermano
2014-01-01
Since microscopic velocity diffusion can be incorporated into general relativity in a consistent way, we study cosmological background solutions when the diffusion phenomena takes place in an expanding universe. Our focus here relies on the nature of the diffusion coefficient $\\sigma$ which measures the magnitude of such transport phenomena. We test dynamics where $\\sigma$ has a phenomenological dependence on the scale factor, the matter density, the dark energy and the expansion rate.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Directory of Open Access Journals (Sweden)
Catalina Hurtado Castano
2016-01-01
Full Text Available A detailed procedure is presented to compute analytically the acoustooptic coupling coefficient between copropagating core and lowest-order cladding modes in tapered fiber optics. Based on the effect of the local bending, the linear and nonlinear variations in the refractive index are modeled. A set of equations and parameters are presented in order to calculate the influence of acoustooptic effect in nonlinear pulse propagation. We will show that as the tapered fiber diameter decreases more energy can be transferred to the cladding and the nonlinear phenomena can compensate the coupling coefficients effects.
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
DSP Approach to the Design of Nonlinear Optical Devices
Directory of Open Access Journals (Sweden)
Steve Blair
2005-06-01
Full Text Available Discrete-time signal processing (DSP tools have been used to analyze numerous optical filter configurations in order to optimize their linear response. In this paper, we propose a DSP approach to design nonlinear optical devices by treating the desired nonlinear response in the weak perturbation limit as a discrete-time filter. Optimized discrete-time filters can be designed and then mapped onto a specific optical architecture to obtain the desired nonlinear response. This approach is systematic and intuitive for the design of nonlinear optical devices. We demonstrate this approach by designing autoregressive (AR and autoregressive moving average (ARMA lattice filters to obtain a nonlinear phase shift response.
Anisotropy of Nonlinear-Optical Property of RCOB (R ＝ Gd, Y) Crystal
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Ping; WEI Jing-Qian; CHEN Huan-Chu; SHAO Zong-Shu; LIU Jun-Hai; SONG Ren-Bo; JIANG Huai-Dong; ZHANG Shu-Jun; FU Kun; WANG Chang-Qing; WANG Ji-Yang; LIU Yao-Gang
2001-01-01
The nonlinear-optical coefficients of RCOB (R ＝ Gd, Y) crystals are measured. The spatial distribution of deff (effective nonlinear-optical coefficient) is subsequently determined. Our experiments show that the maximum deff occurs at the second quadrant. The second-harmonic generation efficiency reaches 48% for a 6 mm long, (113.2°,47.4°)-cut GdCOB, and 41.5% for a 5mm long, (113°, 36.5°)-cut YCOB, respectively. The intracavity frequency doubling of GdCOB is reported for the first time.
Evolution of optimal Hill coefficients in nonlinear public goods games.
Archetti, Marco; Scheuring, István
2016-10-07
In evolutionary game theory, the effect of public goods like diffusible molecules has been modelled using linear, concave, sigmoid and step functions. The observation that biological systems are often sigmoid input-output functions, as described by the Hill equation, suggests that a sigmoid function is more realistic. The Michaelis-Menten model of enzyme kinetics, however, predicts a concave function, and while mechanistic explanations of sigmoid kinetics exist, we lack an adaptive explanation: what is the evolutionary advantage of a sigmoid benefit function? We analyse public goods games in which the shape of the benefit function can evolve, in order to determine the optimal and evolutionarily stable Hill coefficients. We find that, while the dynamics depends on whether output is controlled at the level of the individual or the population, intermediate or high Hill coefficients often evolve, leading to sigmoid input-output functions that for some parameters are so steep to resemble a step function (an on-off switch). Our results suggest that, even when the shape of the benefit function is unknown, biological public goods should be modelled using a sigmoid or step function rather than a linear or concave function.
Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)
2015-09-15
Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)
Finding the Next Deep-Ultraviolet Nonlinear Optical Material: NH4B4O6F.
Shi, Guoqiang; Wang, Ying; Zhang, Fangfang; Zhang, Bingbing; Yang, Zhihua; Hou, Xueling; Pan, Shilie; Poeppelmeier, Kenneth R
2017-08-09
Nonlinear optical materials are essential for the development of solid-state lasers. KBe2BO3F2 (KBBF) is a unique nonlinear optical material for generation of deep-ultraviolet coherent light; however, its industrial application is limited. Here, we report a new material NH4B4O6F, which exhibits a wide deep-ultraviolet transparent range and suitable birefringence that enables frequency doubling below 200 nm. NH4B4O6F possesses large nonlinear coefficients about 2.5 times that of KBBF. In addition, it is easy to grow bulk crystals and does not contain toxic elements.
Z-scan technique for investigation of the noninstantaneous optical Kerr nonlinearity.
Gu, Bing; Wang, Hui-Tian; Ji, Wei
2009-09-15
By treating laser-induced optical Kerr nonlinearity as a noninstantaneous decaying process, we present the pulse-duration-dependent Z-scan analytical expressions for an arbitrary aperture and an arbitrary nonlinear magnitude. This theory has the capacity to characterize the third-order nonlinear refraction induced by a laser pulse with its temporal duration being much longer than or comparable to the recovery time of the nonlinear effect. Through Z-scan measurements at different pulse durations, the nonlinear refractive coefficient and the recovery time could be determined unambiguously and simultaneously. Furthermore, the theory can be utilized to confirm whether the measured optical Kerr nonlinearity is instantaneous or noninstantaneous with respect to the given pulse duration.
Progress in nonlinear nano-optics
Lienau, Christoph; Grunwald, Rüdiger
2015-01-01
This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response
Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C
2011-01-01
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.
Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen
2010-11-01
The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.
Institute of Scientific and Technical Information of China (English)
Xiao Li; Zhang Wei; Huang Yi-Dong; Peng Jiang-De
2008-01-01
High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency dctunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift.
Nonlinear optical properties of Au-Ag core-shell nanorods for all-optical switching
Zhang, Luman; Dai, Hongwei; Wang, Xia; Yao, Linhua; Ma, Zongwei; Han, Jun-Bo
2017-09-01
Au-Ag core-shell nanorods with surface plasmon resonance wavelengths of 760-840 nm were prepared. Wavelength-dependent nonlinear absorption coefficients (β) and nonlinear refractive indices (γ) of the nanorods were measured by using Z-scan techniques. The corresponding one-photon and two-photon figures of merit (W and T) were calculated from β and γ. The results show that the requirements of W > 1 and T < 1 for the application of all-optical switching could be achieved for all the samples over a broad wavelength range. These observations make the Au-Ag core-shell nanorods a good candidate for all-optical switching devices.
Directory of Open Access Journals (Sweden)
2007-03-01
Full Text Available Transparent Nonlinear Optical (NLO inorganic/organic (polyimide/silica hybrid composites with covalent links between the inorganic and the organic networks were prepared by the sol-gel method. The silica content in the hybrid films was varied from 0 to 22.5/wt%. The prepared PI hybrids were characterized by IR, UV-Vis, Thermogravimetric analysis (TGA, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. They exhibited fair good optical transparency. The SiO2 phase was well dispersed in the polymer matrix. DSC and TGA results showed that these hybrid materials had excellent thermal stability. The polymer solutions could be spin coated on the indium-tin-oxide (ITO glass to form optical quality thin films. The electro-optic coefficients (γ33 at the wavelength of 832 nm for polymer thin films poled were in the range of 19-27 pm/V.
Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation
2016-05-01
it can be used as an additional glass characterization method . If the SOC of a glass sample is known, the stress state of a glass specimen can be...evaluated through photoelastic methods both qualitatively and quantitatively. Approved for public release; distribution is unlimited. 11 8...ARL-TN-0756 ● MAY 2016 US Army Research Laboratory Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation
Nonlinear Quantum Optics in Artificially Structured Media
Helt, Lukas Gordon
This thesis presents an analysis of photon pairs generated via either spontaneous parametric downconversion or spontaneous four-wave mixing in channel waveguides as well as in microring resonators side-coupled to channel waveguides. The state of photons exiting a particular device is calculated within a general Hamiltonian formalism that simplifies the link between quantum nonlinear optics experiments and classical nonlinear optics experiments. This state contains information regarding photon pair production efficiency as well as modal and spectral correlations between the two photons, characterized by a two-dimensional spectral distribution function called the biphoton wave function. In the limit of a low probability of pair production, photon pair production efficiencies are cast into forms resembling corresponding well-known classical nonlinear optical frequency conversion efficiencies, making it easy to see what plays the role of a classical "seed" field in an un-seeded (quantum) process. This also allows photon pair production efficiencies to be calculated based on the results of classical nonlinear optical experiments. It is further calculated that, unless generated photons are collected over a very narrow frequency range, their generation efficiency does not scale the same way with device length in a channel waveguide, or resonance quality factor in a microring resonator, as might be expected from the corresponding classical frequency conversion efficiency. Although calculations do not include self- or cross-phase modulation, nor two-photon absorption or free-carrier absorption, it is calculated that their neglect is justified in the low pair production probability limit. Linear (scattering) loss is also neglected, though partially addressed in the final chapter of this thesis. Biphoton wave functions are calculated explicitly, such that their shape and orientation, including approximate analytic expressions for their widths, can easily be determined. This
Nonlinear optical properties of induced transmission filters.
Owens, Daniel T; Fuentes-Hernandez, Canek; Hales, Joel M; Perry, Joseph W; Kippelen, Bernard
2010-08-30
The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.
Nonlinear Optics in AlGaAs on Insulator
DEFF Research Database (Denmark)
Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta;
2016-01-01
AlGaAs on insulator is a powerful nonlinear platform sporting a high effective nonlinearity and the possibility to fabricate complex designs. We will present low loss waveguides enabling efficient optical signal processing and Kerr comb generation.......AlGaAs on insulator is a powerful nonlinear platform sporting a high effective nonlinearity and the possibility to fabricate complex designs. We will present low loss waveguides enabling efficient optical signal processing and Kerr comb generation....
Studies on third-order nonlinear optical properties of chalcone derivatives in polymer host
Shettigar, Seetharam; Umesh, G.; Chandrasekharan, K.; Sarojini, B. K.; Narayana, B.
2008-04-01
In this paper we present the experimental study of the third-order nonlinear optical properties of two chalcone derivatives, viz., 1-(4-methoxyphenyl)-3-(4-butyloxyphenyl)-prop-2-en-1-one and 1-(4-methoxyphenyl)-3-(4-propyloxyphenyl)-prop-2-en-1-one in PMMA host, with the prospective of reaching a compromise between good processability and high nonlinear optical properties. The nonlinear optical properties have been investigated by Z-scan technique using 7 ns laser pulses at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, magnitude of third-order susceptibility and the coupling factor have been determined. The values obtained are of the order of 10 -14 cm 2/W, 1 cm/GW, 10 -13 esu and 0.2, respectively. The molecular second hyperpolarizability for the chalcone derivatives in polymer is of the order of 10 -31 esu. Different guest/host concentrations have also been studied. The results suggest that the nonlinear properties of the chalcones have been improved when they are used as dopants in polymer matrix. The nonlinear parameters obtained are comparable with the reported values of II-VI compound semiconductors. Hence, these chalcons are a promising class of nonlinear optical dopant materials for optical device applications.
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
Enhanced Kerr electro-optic nonlinearity through cascaded Pockels effects
Li, Guang-Zhen; Jiang, Hao-Wei; Chen, Xian-Feng
2015-01-01
We demonstrated a large enhancement of Kerr electro-optic nonlinearity through cascaded Pockels effects in a domain inversion ferroelectric crystal. We designed a structure that can implement the cascaded Pockels effects and second-harmonic generation simultaneously. The energy coupling between the fundamental lights of different polarizations led to a large nonlinear phase shift, and thus an effective electro-optic nonlinear refractive index. The effective nonlinearity can be either positive or negative, causing the second-harmonic spectra to move towards the coupling center, which in turn, offered us a way to measure the effective electro-optic nonlinear refractive index. The corresponding enhanced Kerr electro-optic nonlinearity is more than three orders of magnitude higher than the intrinsic value. These results open a door to manipulate the nonlinear phase by applying external electric field instead of light intensity in noncentrosymmetric crystals.
Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film
Energy Technology Data Exchange (ETDEWEB)
Agrawal, Arpana, E-mail: agrawal.arpana01@gmail.com; Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima [Laser Bhawan, School of Physics, Devi Ahilya University, Khandwa Road, Indore-452001 (India); Phase, D. M. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India)
2015-06-24
We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.
Soliton solutions of some nonlinear evolution equations with time-dependent coefficients
Indian Academy of Sciences (India)
Hitender Kumar; Anand Malik; Fakir Chand
2013-02-01
In this paper, we obtain exact soliton solutions of the modified KdV equation, inho-mogeneous nonlinear Schrödinger equation and (, ) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the solitons to exist. Numerical simulations for dark and bright soliton solutions for the mKdV equation are also given.
Ciattoni, Alessandro
2014-01-01
Strong nonlinear optical mechanisms operating in a miniaturized environment have a key role in photonics since they allow complex and versatile light manipulation within subwavelength devices. On the other hand, due to its two-dimensional planar geometry, graphene can easily be embedded within miniaturized structures and has fascinating linear and nonlinear optical properties arising from its relativistic electron dynamics. However, very few light steering graphene-based setups with a strong nonlinear behavior have been proposed since, due to its intrinsic planar localization, graphene nonlinearity has to be exploited through novel schemes not available in standard bulk nonlinear optics. Here we show that an active cavity hosting a graphene sheet, when tuned near its lasing threshold, is able to isolate the spatially localized graphene nonlinearity thus producing a very strong nonlinear device response with multi-valued features. The proposed strategy for exploiting graphene nonlinearity through its baring co...
Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique
Zongo, S.; Sanusi, K.; Britton, J.; Mthunzi, P.; Nyokong, T.; Maaza, M.; Sahraoui, B.
2015-08-01
We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer. The experiments were performed by using single beam Z-scan technique at 532 nm with 10 ns, 10 Hz Nd:YAG laser pulses excitation. From the open-aperture Z-scan data, we derived that the laccaic dye samples exhibit strong two photon absorption (2PA). The nonlinear refractive index was determined through the closed aperture Z-scan data. The estimated absorption coefficient β2, nonlinear refractive index n2 and second order hyperpolarizability γ were found to be of the order of 10-10 m/W, 10-9 esu and 10-32 esu, respectively. The Z-scan study reveals that the natural laccaic acid dye emerges as a promising material for third order nonlinear optical devices application.
Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives
Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian
2008-08-01
The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.
Directory of Open Access Journals (Sweden)
S. P. Tiwari
2013-02-01
Full Text Available An optical model is developed based on the diffuse attenuation coefficient (K_{d} to estimate particulate backscattering coefficients b_{bp}(λ in clear and turbid coastal waters. A large in-situ data set is used to establish robust relationships between b_{bp}(530 and b_{bp}(555 and K_{d}(490 using an efficient nonlinear least square method which uses the Trust-Region algorithm with Bisquare weights scheme to adjust the coefficients. These relationships are obtained with good correlation coefficients (R^{2} = 0.786 and 0.790, low Root Mean Square Error (RMSE = 0.00076 and 0.00072 and 95% confidence bounds. The new model is tested with two independent data sets such as the NOMAD SeaWiFS Match-ups and OOXIX IOP algorithm workshop evaluation data set (Version 2.0w APLHA. Results show that the new model makes good retrievals of b_{bp} at all key wavelengths (from 412–683 nm, with statistically significant improvements over other inversion models. Thus, the new model has the potential to improve our knowledge of particulate matters and their optical variability in both clear and turbid coastal waters.
An optical model for deriving the spectral particulate backscattering coefficients in oceanic waters
Tiwari, S. P.; Shanmugam, P.
2013-11-01
An optical model is developed based on the diffuse attenuation coefficient (Kd) to estimate particulate backscattering coefficients bbp(λ) in oceanic waters. A large in situ data set is used to establish robust relationships between bbp(530) and bbp(555) and Kd(490) using an efficient nonlinear least-square method which uses the trust region algorithm with Bisquare weights scheme to adjust the coefficients. These relationships are obtained with good correlation coefficients (R2 = 0.786 and 0.790), low root mean square error (RMSE = 0.00076 and 0.00072) and 95% confidence bounds. The new model is tested with three independent data sets: the NOMAD SeaWiFS Match ups, OOXIX IOP algorithm workshop evaluation data set (Version 2.0w APLHA), and IOCCG simulated data set. Results show that the new model makes good retrievals of bbp at all key wavelengths (from 412-683 nm), with statistically significant improvements over other inversion models. Thus, the new model has the potential to improve our present knowledge of particulate matter and their optical variability in oceanic waters.
Integrated optic devices based on nonlinear optical polymers
van Tomme, Emmanuel; van Daele, Peter P.; Baets, Roel G.; Lagasse, Paul E.
1991-03-01
An examination is made of the state of the art of nonlinear optical polymeric materials in view of their potential advantages. It is shown that these organic materials have many attractive features compared to LiNbO3 and III-V semiconductors with regard to their use in integrated optic circuits, especially since the level of integration is ever increasing. Considering more specifically electro-optic devices, a description is given of some of the theoretical background and basic properties. These polymers have already demonstrated a very high and extremely fast electro-optic effect compared to LiNbO3. It is also shown how low-loss waveguides can be fabricated by using easy techniques such as direct UV bleaching. The performance of phase modulators, Mach-Zehnder interferometers, and 2 x 2 space switches built with such polymers is already very promising. The results described in this study indicate a rapid rate of progress made by this technology, and one can expect that polymers in general and NLO polymers in particular will play an increasingly important role in integrated optics.
Nonlinear perturbations of systems of partial differential equations with constant coefficients
Directory of Open Access Journals (Sweden)
Carmen J. Vanegas
2000-01-01
Full Text Available In this article, we show the existence of solutions to boundary-value problems, consisting of nonlinear systems of partial differential equations with constant coefficients. For this purpose, we use the right inverse of an associated operator and a fix point argument. As illustrations, we apply this method to Helmholtz equations and to second order systems of elliptic equations.
Demetrashvili, Nino; Van den Heuvel, Edwin R.
This work is motivated by a meta-analysis case study on antipsychotic medications. The Michaelis-Menten curve is employed to model the nonlinear relationship between the dose and D2 receptor occupancy across multiple studies. An intraclass correlation coefficient (ICC) is used to quantify the
Directory of Open Access Journals (Sweden)
Juan Carlos Ceballos V.
2005-10-01
Full Text Available The exact boundary controllability of the higher order nonlinear Schrodinger equation with constant coefficients on a bounded domain with various boundary conditions is studied. We derive the exact boundary controllability for this equation for sufficiently small initial and final states.
Demetrashvili, Nino; Van den Heuvel, Edwin R.
2015-01-01
This work is motivated by a meta-analysis case study on antipsychotic medications. The Michaelis-Menten curve is employed to model the nonlinear relationship between the dose and D2 receptor occupancy across multiple studies. An intraclass correlation coefficient (ICC) is used to quantify the hetero
ESTIMATE ACCURACY OF NONLINEAR COEFFICIENTS OF SQUEEZEFILM DAMPER USING STATE VARIABLE FILTER METHOD
Institute of Scientific and Technical Information of China (English)
1998-01-01
The estimate model for a nonlinear system of squeeze-film damper (SFD) is described.The method of state variable filter (SVF) is used to estimate the coefficients of SFD.The factors which are critical to the estimate accuracy are discussed.
Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles
Pinchuk, A
2003-01-01
Nonlinear composite structures show great promise for use in optical switching, signal processing, etc. We derive an effective nonlinear dielectric permittivity of composite structures where coated ellipsoidal nonlinear particles are imbedded in a linear host medium. The derived expression for the effective dielectric permittivity tensor follows the Clasius-Mossotti approximation. We observe conditions for the existence of the optical bistability effect in a coated ellipsoidal particle with a nonlinear core and a metallic shell. Our numerical results show stronger bistability effects in more dense suspensions of nonlinear heterogeneous ellipsoids.
Composite structures for the enhancement of nonlinear optical materials.
Neeves, A E; Birnboim, M H
1988-12-01
Calculations of the nonlinear optical behavior are developed for model composites consisting of nanospheres with a metallic core and a nonlinear shell suspended in a nonlinear medium. The concept for the enhancement of optical phase conjugation from all these nonlinear regions is that the optical field can be concentrated both inside and in the neighborhood of the metallic core, aided by surface-mediated plasmon resonance. Calculations for gold cores and aluminum cores indicate that phase-conjugate reflectivity enhancements of 10(8) may be possible.
Characterizaticr of Solid State Laser and Nonlinear Optical Materials.
1995-02-02
materials useful in the different methods for obtaining frequency agility: narrow line emitters with multiple lasing channels and nonlinear optical materials . In...codoped with two or more rare earth ions were studied and computers models developed to explain their spectral dynamics. The nonlinear optical materials investigated
A Photonic Basis for Deriving Nonlinear Optical Response
Andrews, David L.; Bradshaw, David S.
2009-01-01
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…
Nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1989-02-01
The nonlinear refractive indices (n2) of a large number of optical crystals have been measured at a wavelength near one micrometer with use of nearly degenerate three-wave mixing. The measurements are compared with the predictions of an empirical formula derived by Boling, Glass, and Owyoung. This formula, which relates n2 to the linear refractive index and its dispersion, is shown to be accurate to within about 30% for materials with nonlinear indices ranging over 3 orders of magnitude. Measurements for a number of binary oxide and fluoride crystals have been analyzed under the assumption that the hyperpolarizability of the anion is much larger than that of the cation. It is found that the hyperpolarizability of oxygen varies by a factor of 10, and that of fluorine varies by a factor of 7, depending on the size of the coordinating cation. This behavior is similar to that of the linear polarizability, although the hyperpolarizability is much more sensitive than the linear polarizability to the identity of the cation. The measured halide ion hyperpolarizabilities for several alkali-halide crystals are in reasonable agreement with recent self-consistent calculations. A semiempirical model was proposed by Wilson and Curtis to account for the dependence of the linear anionic polarizability on the radius of the cation. This model also accounts quite well for the variation of the hyperpolarizability of both fluorine and oxygen, except for cation partners that have filled or unfilled d-electron shells. The nonlinear indices of a number of complex oxides (i.e., those with more than one cation) have been calculated from the partial hyperpolarizabilities deduced from the data for the binary oxides. The calculated and measured values of n2 agree to within an average error of 13%.
High nonlinear optical anisotropy of urea nanofibers
Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.
2010-07-01
Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.
Dehghani, Z.; Vejdani Noghreiyan, A.; Nadafan, M.; Majles Ara, M. H.
2017-08-01
In this research, colloidal gold NPs were synthesized by turkevich method. XRD spectrum after irradiation showed the different peaks but the most important distinctive was related to (111) peaks at (2θ = 38.41°) which give an indication that the structure is cubic. The Raman spectroscopy results indicated that the intensity of peaks with the wave number of 3450 cm-1was increased in the colloidal gold NPs irradiated due to improvement of the crystalline properties of colloidal gold NPs. SEM images showed significant changes in the morphology and size of gamma irradiated colloidal gold NPs. For 10 kGy dose, gamma-ray irradiated crystals, the optical absorption increases compared to that of before irradiation which may be the consequence of the formation of point defects due to gamma-rays. Comparing nonlinear studies, the magnitude of nonlinear refraction index, n2 and nonlinear absorption coefficient, β increase after gamma-ray irradiation. The measurement of mass attenuation coefficients result shows that the gamma-ray irradiation has an influence on radiation absorption coefficients of colloidal gold NPs. It is an evidence which shows that in addition to the atomic mass number of elements, the molecular structure may affect on the attenuation coefficients and nonlinear optical properties.
Optical bistability in a nonlinear-shell-coated metallic nanoparticle
Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei
2016-01-01
We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories. PMID:26907967
Laser And Nonlinear Optical Materials For Laser Remote Sensing
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
Bidirectional all-optical switches based on highly nonlinear optical fibers
Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi
2017-05-01
All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.
Optical limiter based on two-dimensional nonlinear photonic crystals
Belabbas, Amirouche; Lazoul, Mohamed
2016-04-01
The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.
Synthesis, characterization and non-linear optical response of organophilic carbon dots
Bourlinos, Athanasios B.
2013-09-01
For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.
Thankappan, Aparna; Nampoori, V. P. N.; Thomas, Sabu
2016-09-01
In this report, we report the intensity dependant nonlinear absorption properties of bio-inspired hybrid materials (betanin-ZnO) embedded in polymeric matrices through the Z-scan technique using an Nd: YAG laser (532 nm, 7 ns, 10 Hz). We observed a change over in the sign of nonlinearity due to the interplay of exciton bleaching and optical limiting mechanisms. Light confinement effect and ship-in-a bottle effect play crucial roles. Theoretical analysis has been performed using a model based on nonlinear absorption coefficient and saturation intensity. The result of present study gives an additional mechanism for the gain enhancement in dye doped ZnO matrix.
Nonlinear optical properties of laser deposited CuO thin films
Energy Technology Data Exchange (ETDEWEB)
Chen Aiping [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Guang, E-mail: gyang@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Long Hua; Li Fang; Li Yuhua [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Peixiang, E-mail: lupeixiang@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2009-06-01
In this work we investigate the third-order optical nonlinearities in CuO films by Z-scan method using a femtosecond laser (800 nm, 50 fs, 200 Hz). Single-phase CuO thin films have been obtained using pulsed laser deposition technique. The structure properties, surface image, optical transmittance and reflectance of the films were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and UV-vis spectroscopy. The Z-scan results show that laser-deposited CuO films exhibit large nonlinear refractive coefficient, n{sub 2} = - 3.96 x 10{sup -17} m{sup 2}/W, and nonlinear absorption coefficient, {beta} = - 1.69 x 10{sup -10} m/W, respectively.
Institute of Scientific and Technical Information of China (English)
GE Jian-Ya; WANG Rui-Min; DAI Chao-Qing; ZHANG Jie-Fang
2006-01-01
In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schr(o)dinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.
Third-order nonlinear optical properties of acid green 25 dye by Z-scan method
Jeyaram, S.; Geethakrishnan, T.
2017-03-01
Third-order nonlinear optical (NLO) properties of aqueous solutions of an anthraquinone dye (Acid green 25 dye, color index: 61570) have been studied by Z-scan method with a 5 mW continuous wave (CW) diode laser operating at 635 nm. The nonlinear refractive index (n2) and the absorption coefficient (β) have been evaluated respectively from the closed and open aperture Z-scan data and the values of these parameters are found to increase with increase in concentration of the dye solution. The negative sign of the observed nonlinear refractive index (n2) indicates that the aqueous solution of acid green 25 dye exhibits self-defocusing type optical nonlinearity. The mechanism of the observed nonlinear absorption (NLA) and nonlinear refraction (NLR) is attributed respectively to reverse saturable absorption (RSA) and thermal nonlinear effects. The magnitudes of n2 and β are found to be of the order of 10-7 cm2/W and 10-3 cm/W respectively. With these experimental results, the authors suggest that acid green 25 dye may have potential applications in nonlinear optics.
Institute of Scientific and Technical Information of China (English)
张天莉; 严继民
2001-01-01
Quantum-chemical AM1 calculations were performed to study the geometries,the electronic structures and the second nonlinear optical properties of phthalocyanine and some asymmetrically substituted phthalocyanines,which include tert-butyl,amino,dimethylamino,nitro,fluoro,chloro,bromo iodo and nitrile substituents. The relationships of the second nonlinear optical coefficients β with dipole moment μ, and β with the energy-gap differences of frontier orbitals ΔEDA were discussed. Two relationships are regular and all ΔEDA-μ show very good linear relationship.
Institute of Scientific and Technical Information of China (English)
Xiao Huang; Jian Wang; Ling-zhi Zhang; Zhi-gang Cai; Zhao-xi Lianga
2001-01-01
Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H20 and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d33) of 10-?～10-8 esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120°C) indicated that these films exhibit high d33 stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.
Nonlinear super-resolution nano-optics and applications
Wei, Jingsong
2015-01-01
This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.
Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics.
Bhattacharyya, Indrajit; Priyadarshi, Shekhar; Goswami, Debabrata
2009-02-01
We apply ultrafast single beam Z-scan technique to measure saturation absorption coefficients and nonlinear-refraction coefficients of primary alcohols at 1560 nm. The nonlinear effects result from vibronic transitions and cubic nonlinear-refraction. To measure the pure total third-order nonlinear susceptibility, we removed thermal effects with a frequency optimized optical-chopper. Our measurements of thermal-relaxation dynamics of alcohols, from 1560 nm thermal lens pump and 780 nm probe experiments revealed faster and slower thermal-relaxation timescales, respectively, from conduction and convection. The faster timescale accurately predicts thermal-diffusivity, which decreases linearly with alcohol chain-lengths since thermal-relaxation is slower in heavier molecules. The relation between thermal-diffusivity and alcohol chain-length confirms structure-property relationship.
Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films
Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.
2009-04-01
We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.
Plekhanov, A. I.; Basova, T. V.; Parkhomenko, R. G.; Gürek, A. G.
2017-02-01
In this work, the nonlinear optical properties of unsubstituted lutetium (LuPc2) and dysprosium (DyPc2) bisphthalocyanines as well as octasubstituted Lu(PcR8)2 derivative with R=-S(C6H13) were studied at a wavelength of 1550 nm with 10 ns and 300 fs pulses. Based on Z-scan measurements the nonlinear absorption and refraction coefficient as well as the nature of nonlinear optical properties were analyzed for these materials. Open aperture Z-scan indicates strong two-photon absorption in all three bisphthalocyanines in nano- and femtosecond regimes. With good nonlinear optical coefficients, bisphthalocyanines of rare earth elements are expected to be promising materials for the creation of optical limiters.
Improved fiber nonlinearity mitigation in dispersion managed optical OFDM links
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2017-02-01
Fiber nonlinearity is seen as a capacity limiting factor in OFDM based dispersion managed links since the Four Wave Mixing effects become enhanced due to the high PAPR. In this paper, the authors have compared the linear and nonlinear PAPR reduction techniques for fiber nonlinearity mitigation in OFDM based dispersion managed links. In the existing optical systems, linear transform techniques such as SLM and PTS have been implemented to reduce nonlinear effects. In the proposed study, superior performance of the L2-by-3 nonlinear transform technique is demonstrated for PAPR reduction to mitigate fiber nonlinearities. The performance evaluation is carried out by interfacing multiple simulators. The results of both linear and nonlinear transform techniques have been compared and the results show that nonlinear transform technique outperforms the linear transform in terms of nonlinearity mitigation and improved BER performance.
Selvendran, S.; Sivanantharaja, A.; Arivazhagan, S.; Kannan, M.
2016-09-01
We propose an index profiled, highly nonlinear ultraflattened dispersion fibre (HN-UFF) with appreciable values of fibre parameters such as dispersion, dispersion slope, effective area, nonlinearity, bending loss and splice loss. The designed fibre has normal zero flattened dispersion over S, C, L, U bands and extends up to 1.9857 μm. The maximum dispersion variation observed for this fibre is as low as 1.61 ps km-1 nm-1 over the 500-nm optical fibre transmission spectrum. This fibre also has two zero dispersion wavelengths at 1.487 and 1.9857 μm and the respective dispersion slopes are 0.02476 and 0.0068 ps nm-2 km-1. The fibre has a very low ITU-T cutoff wavelength of 1.2613 μm and a virtuous nonlinear coefficient of 9.43 W-1 km-1. The wide spectrum of zero flattened dispersion and a good nonlinear coefficient make the designed fibre very promising for different nonlinear optical signal processing applications.
Nonlinear optical properties of Au/PVP composite thin films
Institute of Scientific and Technical Information of China (English)
Shen Hong; Cheng Bo-Lin; Lu Guo-Wei; Wang Wei-Tian; Guan Dong-Yi; Chen Zheng-Hao; Yang Guo-Zhen
2005-01-01
Colloidal Au and poly(vinylpyrrolidone) (PVP) composite thin films are fabricated by spin-coating method. Linear optical absorption measurements of the Au/PVP composite films indicate an absorption peak around 530 nm due to the surface plasmon resonance of gold nanoparticles. Nonlinear optical properties are studied using standard Z-scan technique, and experimental results show large optical nonlinearities of the Au/PVP composite films. A large value of films.
Noise-driven optical absorption coefficients of impurity doped quantum dots
Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas
2016-01-01
We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.
Dini, Danilo; Calvete, Mário J F; Hanack, Michael
2016-11-23
The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Directory of Open Access Journals (Sweden)
S. Z. Weisz
2005-04-01
Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.
Offrein, B.J.; Offrein, B.J.; van Schoot, J.B.P.; van Schoot, J.B.P.; Driessen, A.; Hoekstra, Hugo; Popma, T.J.A.
1993-01-01
Materials with an intensity dependent index of refraction and absorption coefficient¿third-order optical non-linear (ONL) effects¿offer the possibility of all-optical signal processing. Prism coupling is a well-known tool to investigate the intensity dependent refractive index, however, such experim
Topology optimization of nonlinear optical devices
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2011-01-01
This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...
Stable estimation of two coefficients in a nonlinear Fisher-KPP equation
Cristofol, Michel; Roques, Lionel
2013-09-01
We consider the inverse problem of determining two non-constant coefficients in a nonlinear parabolic equation of the Fisher-Kolmogorov-Petrovsky-Piskunov type. For the equation ut = DΔu + μ(x) u - γ(x)u2 in (0, T) × Ω, which corresponds to a classical model of population dynamics in a bounded heterogeneous environment, our results give a stability inequality between the couple of coefficients (μ, γ) and some observations of the solution u. These observations consist in measurements of u: in the whole domain Ω at two fixed times, in a subset ω⊂⊂Ω during a finite time interval and on the boundary of Ω at all times t ∈ (0, T). The proof relies on parabolic estimates together with the parabolic maximum principle and Hopf’s lemma which enable us to use a Carleman inequality. This work extends previous studies on the stable determination of non-constant coefficients in parabolic equations, as it deals with two coefficients and with a nonlinear term. A consequence of our results is the uniqueness of the couple of coefficients (μ, γ), given the observation of u. This uniqueness result was obtained in a previous paper but in the one-dimensional case only.
Indian Academy of Sciences (India)
BHARDWAJ S B; SINGH RAM MEHAR; SHARMA KUSHAL; MISHRA S C
2016-06-01
Attempts have been made to explore the exact periodic and solitary wave solutions of nonlinear reaction diffusion (RD) equation involving cubic–quintic nonlinearity along with timedependent convection coefficients. Effect of varying model coefficients on the physical parameters of solitary wave solutions is demonstrated. Depending upon the parametric condition, the periodic,double-kink, bell and antikink-type solutions for cubic–quintic nonlinear reaction-diffusion equation are extracted. Such solutions can be used to explain various biological and physical phenomena.
Nonlinear Optical Response of Conjugated Polymer to Electric Field
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-fang; ZHUANG De-xin; CUI Bin
2005-01-01
The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.
Directory of Open Access Journals (Sweden)
Jialin Wang
2013-01-01
Full Text Available This paper is concerned with partial regularity to nonlinear subelliptic systems with Dini continuous coefficients under quadratic controllable growth conditions in the Heisenberg group ℍn. Based on a generalization of the technique of -harmonic approximation introduced by Duzaar and Steffen, partial regularity to the sub-elliptic system is established in the Heisenberg group. Our result is optimal in the sense that in the case of Hölder continuous coefficients we establish the optimal Hölder exponent for the horizontal gradients of the weak solution on its regular set.
Physical, optical and nonlinear properties of InS single crystal
Kushwaha, Pallavi; Patra, Anuradha; Anjali, E.; Surdi, Harshad; Singh, Abhishek; Gurada, C.; Ramakrishnan, S.; Prabhu, S. S.; Gopal, Achanta Venu; Thamizhavel, A.
2014-01-01
Indium Sulphide (InS) single crystals are successfully grown by In flux. Single crystal X-ray diffraction shows orthorhombic structure of Pnnm space group. Ellipsometry measurements performed on the (0 1 0) oriented crystal exhibit low anisotropy in the 300-1000 nm wavelength range and consequently negligible THz transmission is observed. Optical band gap of 2.09 eV is deduced from linear optical measurements. Nonlinear optical properties are studied by single beam Z-scan measurements at 800 nm, where two-photon absorption is present. Nonlinear refractive index and absorption coefficient are estimated to be n2 = 2.3 × 10-11 cm2/W and β = 62.4 cm/GW, respectively for excitation intensity of 0.32 GW/cm2. The origin of nonlinearity in InS crystal is accounted to be due to the third-order anharmonic motion of the bound electrons.
The nonlinear optical rectification of a confined exciton in a quantum dot
Energy Technology Data Exchange (ETDEWEB)
Xie Wenfang, E-mail: xiewf@gzhu.edu.c [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China)
2011-05-15
An exciton in a disc-like quantum dot (QD) with the parabolic confinement, under applied electric field, is studied within the framework of the effective-mass approximation. The nonlinear optical rectification between the ground and the first-excited states has been examined through the computed energies and wave functions in details for the excitons. The results show that the optical rectification susceptibility obtained in a disc-like QD reach the magnitude of 10{sup -2} m/V, which is 3-4 orders of magnitude higher than in one-dimensional QDs. It is found that the second-order nonlinear optical properties of exciton states in a QD are strongly affected by the confinement strength and the electric field. - Research highlights: {yields} The magnitude of the nonlinear optical rectification of the excitons confined in a disc-like quantum dot may reach 10{sup -2} m/V. It is much higher than that of the other low-dimensional semiconductors, e.g., quantum wells, and one-dimensional semiparabolic quantum dots. {yields} The nonlinear optical rectification of the excitons confined in a disc-like quantum dot is strongly dependent on the confinement frequency. In order to obtain the larger optical rectification coefficients in quantum dots, we can change the confinement frequency. {yields} The calculated results also reveal that an applied electric field has a great influence on the nonlinear optical rectification susceptibility. In order to obtain the larger optical rectification coefficients in quantum dots we can induce the electric field.
Nonlinear fiber applications for ultrafast all-optical signal processing
Kravtsov, Konstantin
In the present dissertation different aspects of all-optical signal processing, enabled by the use of nonlinear fibers, are studied. In particular, we focus on applications of a novel heavily GeO2-doped (HD) nonlinear fiber, that appears to be superior to many other types of nonlinear fibers because of its high nonlinearity and suitability for the use in nonlinear optical loop mirrors (NOLMs). Different functions, such as all-optical switching, thresholding, and wavelength conversion, are demonstrated with the HD fibers in the NOLM configuration. These basic functions are later used for realization of ultrafast time-domain demultiplexers, clock recovery, detectors of short pulses in stealth communications, and primitive elements for analog computations. Another important technology that benefits from the use of nonlinear fiber-based signal processing is optical code-division multiple access (CDMA). It is shown in both theory and experiment that all-optical thresholding is a unique way of improving existing detection methods for optical CDMA. Also, it is the way of implementation of true asynchronous optical spread-spectrum networks, which allows full realization of optical CDMA potential. Some aspects of quantum signal processing and manipulation of quantum states are also studied in this work. It is shown that propagation and collisions of Thirring solitons lead to a substantial squeezing of quantum states, which may find applications for generation of squeezed light.
Lu, Qieni; Han, Jinxin; Dai, Haitao; Ge, Baozhen; Zhao, Shuang
2015-08-01
We measure temperature dependence on Kerr coefficient and quadratic polarized optical coefficient of a paraelectric Mn:Fe:KTN crystal simultaneously in this work, based on digital holographic interferometry (DHI). And the spatial distribution of the field-induced refractive index change can also be visualized and estimated by numerically retrieving sequential phase maps of Mn:Fe:KTN crystal from recording digital holograms in different states. The refractive indices decrease with increasing temperature and quadratic polarized optical coefficient is insensitive to temperature. The experimental results suggest that the DHI method presented here is highly applicable in both visualizing the temporal and spatial behavior of the internal electric field and accurately measuring electro-optic coefficient for electrooptical media.
Nonlinear and Dispersive Optical Pulse Propagation
Dijaili, Sol Peter
In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.
Nonlinear optical properties of manganese porphyrin-incorporated PVC film
Directory of Open Access Journals (Sweden)
Jeong-Hyon Ha
2010-12-01
Full Text Available We measured thermally originated solid phase nonlinear optical properties of manganese porphyrin-incorporated PVC polymer film using CW low-power Z-scan and optical power limiting methods. The nonlinear refractive index (n2 of this porphyrin film is estimated to have a negative value of 7.2 ⅹ10-5 cm2/W at 632.8 nm and to be larger than that of ZnTPP in the Nafion film. The photodegradation effect common in the solution phase appears to be minor in this solid phase system. The large nonlinear effect is thought to limit the optical power due to the aperture effect.
Nonlinear optical microscopy for imaging thin films and surfaces
Energy Technology Data Exchange (ETDEWEB)
Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.
1995-03-01
We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.
Advances in chemical physics modern nonlinear optics, pt.1
Rice, Stuart A
2009-01-01
Partial table of contents: Hyper-Rayleigh and Hyper-Raman Rotational and Vibrational Spectroscopy (T. Bancewicz & Z. Ożgo). Polarization Properties of Hyper-Rayleigh and Hyper-Raman Scatterings (M. Kozierowski). Fast Molecular Reorientation in Liquid Crystals Probed by Nonlinear Optics (J. Lalanne, et al.). Nonlinear Propagation of Laser Light of Different Polarizations (G. Rivoire). Nonlinear Magneto-Optics of Magnetically Ordered Crystals (R. Zawodny). Dynamical Questions in Quantum Optics (A. Shumovsky). Quantum Resonance Fluorescence from Mutually Correlated Atoms (Z. Fi
Application of Exp-function method for nonlinear evolution equations with variable coefficients
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A.; Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Faculty of Education for Girls, Physics Department, King Kahlid University, Bisha, Kingdom Saudi Arabia (Saudi Arabia)], E-mail: m_abdou_eg@yahoo.com
2007-09-10
In this Letter, the Exp-function method with the aid of symbolic computational system Maple is used to obtain generalized solitary solutions and periodic solutions of a generalized Zakharov-Kuznetsov equation with variable coefficients. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving other nonlinear evolution equations arising in mathematical physics.
Rogue wave solutions of the nonlinear Schrödinger eqution with variable coefficients
Indian Academy of Sciences (India)
Changfu Liu; Yan Yan Li; Meiping Gao; Zeping Wang; Zhengde Dai; Chuanjian Wang
2015-12-01
In this paper, a unified formula of a series of rogue wave solutions for the standard (1+1)-dimensional nonlinear Schrödinger equation is obtained through exp-function method. Further, by means of an appropriate transformation and previously obtained solutions, rogue wave solutions of the variable coefficient Schrödinger equation are also obtained. Two free functions of time and several arbitrary parameters are involved to generate a large number of wave structures.
A New Variable-Coefficient Riccati Subequation Method for Solving Nonlinear Lattice Equations
Directory of Open Access Journals (Sweden)
Fanwei Meng
2013-01-01
Full Text Available We propose a new variable-coefficient Riccati subequation method to establish new exact solutions for nonlinear differential-difference equations. For illustrating the validity of this method, we apply it to the discrete (2 + 1-dimensional Toda lattice equation. As a result, some new and generalized traveling wave solutions including hyperbolic function solutions, trigonometric function solutions, and rational function solutions are obtained.
Effect of reduction time on third order optical nonlinearity of reduced graphene oxide
Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.
2017-04-01
We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.
Modeling and compensation of transmitter nonlinearity in coherent optical OFDM.
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2015-10-05
We present a comprehensive study of nonlinear distortions from an optical OFDM transmitter. Nonlinearities are introduced by the combination of effects from the digital-to-analog converter (DAC), electrical power amplifier (PA) and optical modulator in the presence of high peak-to-average power ratio (PAPR). We introduce parameters to quantify the transmitter nonlinearity. High input backoff avoids OFDM signal compression from the PA, but incurs high penalties in power efficiency. At low input backoff, common PAPR reduction techniques are not effective in suppressing the PA nonlinear distortion. A bit error distribution investigation shows a technique combining nonlinear predistortion with PAPR mitigation could achieve good power efficiency by allowing low input backoff. We use training symbols to extract the transmitter nonlinear function. We show that piecewise linear interpolation (PLI) leads to an accurate transmitter nonlinearity characterization. We derive a semi-analytical solution for bit error rate (BER) that validates the PLI approximation accurately captures transmitter nonlinearity. The inverse of the PLI estimate of the nonlinear function is used as a predistorter to suppress transmitter nonlinearity. We investigate performance of the proposed scheme by Monte Carlo simulations. Our simulations show that when DAC resolution is more than 4 bits, BER below forward error correction limit of 3.8 × 10(-3) can be achieved by using predistortion with very low input power backoff for electrical PA and optical modulator.
Directory of Open Access Journals (Sweden)
Ćosić Mladen
2015-01-01
Full Text Available The paper deals with methodology developed and presented for analyzing the damage on structures exposed to accidental and seismic actions. The procedure is based on non-linear numerical analysis, taking into account the principles of Performance-Based Seismic Design (PBSD. The stiffness matrix of the effects of vertical action is used as the initial stiffness matrix in non-linear analysis which simulates the collapse of individual ground-floor columns, forming thereby a number of possible scenarios. By the end of the analysis that simulates the collapse of individual columns, the stiffness matrix is used as the initial stiffness matrix for Non-linear Static Pushover Analysis (NSPA of bi-directional seismic action (X and Y directions. Target displacement analyses were conducted using the Capacity Spectrum Method (CSM. The structure's conditions/state was assessed based on the calculated global and inter-storey drifts and the damage coefficient developed. The damage level to the building was established using an integrated approach based on global and inter-storey drifts, so that, depending on the level of displacements for which the drifts are identified, a more reliable answer can be obtained. Applying the damage coefficient, a prompt, reliable and accurate indication can be obtained on the damage level to the entire structure in the capacitive domain, from elastic and non-linear to collapse state.
Chen, Hong; Huang, Xuanqi; Fu, Houqiang; Lu, Zhijian; Zhang, Xiaodong; Montes, Jossue A.; Zhao, Yuji
2017-05-01
We report the basic nonlinear optical properties, namely, two-photon absorption coefficient ( β ), three-photon absorption coefficient ( γ ), and Kerr nonlinear refractive index ( n kerr), of GaN crystals in polar c-plane, nonpolar m-plane, and semipolar ( 20 21 ¯ ) plane orientations. A typical Z-scan technique was used for the measurement with a femtosecond Ti:S laser from wavelengths of 724 nm to 840 nm. For the two-photon absorption coefficient ( β ), similar values were obtained for polar, nonpolar, and semipolar samples, which are characterized to be ˜0.90 cm/GW at 724 nm and ˜0.65 cm/GW at 730 nm for all the three samples. For the Kerr nonlinear refractive index ( n kerr), self-focusing features were observed in this work, which is different from previous reports where self-defocusing features were observed on GaN in the visible and near-UV spectral regions. At 724 nm, n kerr was measured to be ˜2.5 0 × 10 - 14 cm 2 / W for all three samples. Three-photon absorption coefficients ( γ ) were also determined, which were found to be consistent with previous reports. This study provides valuable information on the basic nonlinear optical properties of III-nitride semiconductors, which are vital for a wide range of applications such as integrated photonics and quantum photonics.
Advances in nonlinear optical materials and devices
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
Jouane, Y; Chang, Y-C; Zhang, D; Luo, J; Jen, A K-Y; Enami, Y
2014-11-03
We investigated the electrical properties and optical quality of two layers a titanium dioxide (TiO₂) selective layer and a sol-gel silica cladding layer for use as coating layers for nonlinear optic (NLO) polymers in electro-optic (EO) polymer/TiO₂ multilayer slot waveguide modulators. We used a simple ellipsometric reflective technique developed by Teng and Man to measure the electro-optic (EO) coefficients of poled thin films of an EO polymer in an EO multilayer device. The Pockels coefficient was enhanced up to 226 and 198 pm/V at wavelengths of 1.31 and 1.55 μm, respectively, when optimally poled with TiO₂ and a sol-gel silica cladding.
Nonlinear and quantum optics with whispering gallery resonators
Strekalov, Dmitry V.; Marquardt, Christoph; Matsko, Andrey B.; Schwefel, Harald G. L.; Leuchs, Gerd
2016-12-01
Optical whispering gallery modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Nonlinear and Quantum Optics with Whispering Gallery Resonators
Strekalov, Dmitry V; Matsko, Andrey B; Schwefel, Harald G L; Leuchs, Gerd
2016-01-01
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon was later realized to have a rather general nature, equally applicable to sound and all other waves, but in particular also to electromagnetic waves ranging from radio frequencies to ultraviolet light. Very high quality factors of optical WGM resonators persisting in a wide wavelength range, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Liu, Feng
This dissertation involves the design, synthesis and characterization of second order nonlinear optical chromophores for electro-optic applications. The design concept, that poling efficiency and macroscopic nonlinearities can be improved by modifying a chromophore's shape, has been explored. Chapter 1 gives an introduction into theoretical background of nonlinear optics and electro-optic phenomenon in organic molecules and poled polymers. Chapter 2 involves the design and synthesis of GLD-2 and GLD-3 chromophores, both with bulky substituents on the ring-fused bridge. The optical studies and HRS measurement show that the two alkyl groups on the bridge blueshift the lambdamax in chloroform by 20 nm and decrease the beta values. DSC and TGA thermal analysis show Td of GLD-2 and GLD-3 over 240°C. The maximum achievable r33 of GLD-2/PMMA is 61 pm/V, compared to the 92.4 pm/V of GLD-1/PMMA. But GLD-2/APC shows r33 of 45.2pm/V, higher than GLD-1/APC due to the improved compatibility with APC. The optical loss of 13 wt% GLD-2/PMMA at 1.55mum is 1.4 dB compared to the 2.3 dB of 17 wt% GLD-1/PMMA. Optical loss studies prove that adding two bulky substituents on bridge help attenuate electrostatic interactions. GLD-3 show deteriorated solubility in common used organic solvents, probably due to the combination of two TBDMS and two lengthy alkyl groups. Chapter 3 presents synthesis of thiophene-based chromophores with variously positioned TBDMS groups. The optical studies of these chromophores show one TBDMSO substitution on the thiophene bridge yields little influence on the lambda max in chloroform. FTCDS chromophore with two TBDMS groups, one on donor and one on thiophene bridge, shows to be the best structure with regards the thermal stability and achievable maximum EO coefficient value, 65.9 pm/V, at only 24 wt% loading density at 1.3 mum. Chapter 4 deals with three novel bridges for NLO chromophores. Synthetic methodologies of the diketone precursor of rigidified
Krupych, Oleg; Savaryn, Viktoriya; Vlokh, Rostyslav
2014-04-01
A recently proposed technique representing a combination of digital imaging laser interferometry with a classical four-point bending method is applied to a canonical nonlinear optical crystal, LiNbO₃, to precisely determine a full matrix of its piezo-optic coefficients (POCs). The contribution of a secondary piezo-optic effect to the POCs is investigated experimentally and analyzed theoretically. Based on the POCs thus obtained, a full matrix of strain-optic coefficients (SOCs) is calculated and the appropriate errors are estimated. A comparison of our experimental errors for the POCs and SOCs with the known reference data allows us to claim the present technique as the most precise.
Nonlinear photon-assisted tunneling transport in optical gap antennas.
Stolz, Arnaud; Berthelot, Johann; Mennemanteuil, Marie-Maxime; Colas des Francs, Gérard; Markey, Laurent; Meunier, Vincent; Bouhelier, Alexandre
2014-05-14
We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2015-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952
Extremely nonlocal optical nonlinearities in atoms trapped near a waveguide
Shahmoon, Ephraim; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon
2014-01-01
Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.
Dielectric Optical-Controlled Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Zheng, Yuanlin; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2014-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive index. Recent advancements in nanotechnology enable novel lenses, such as, superlens, hyperlens, Luneburg lens, with sub-wavelength resolution capabilities by specially designing materials' refractive indices with meta-materials and transformation optics. However, these artificially nano/micro engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here we experimentally demonstrate for the first time a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applicat...
Intra-Channel Nonlinear Effect on Optical PPM Pulse Transmission
Institute of Scientific and Technical Information of China (English)
Sun; Linghao; Jarmo; Takala
2003-01-01
PPM encoded Gaussian pulse sequence shows more immunity than non-PPM schemes on optical fiber intra-channel nonlinearity and demonstrated by a numerical study of IXPM and IFWM effects deploying on 100Gb/s single channelsystem.
Optical Nonlinearities in Chalcogenide Glasses and their Applications
Zakery, A
2007-01-01
Photonics, which uses photons for information and image processing, has been labeled the technology of the 21st century, for which non-linear optical processes provide the key functions of frequency conversion and optical switching. Chalcogenide glass fiber is one of the most promising candidates for use as a non-linear optical medium because of its high optical nonlinearity and long interaction length. Since the chalcogenide glass fibers transmit into the IR, there are numerous potential applications in the civil, medical and military areas. One of the most exciting developments in the future is going to be in the area of rare-earth ion doping of chalcogenide fibers for IR fluorescence emission. The IR light sources, lasers and amplifiers developed using this phenomena will be very useful in civil, medical and military applications. Remote IR spectroscopy and imaging using flexible fibers will be realized for applications. Other future research areas which will inevitably be explored includes non-linear opti...
Linear and nonlinear optical properties of Tellurium Vanadate (Te2V2O9)
Sadhu, Sai Pavan Prashanth; Shet, Tukaram; Abhijit, B. K.; Pradhan, Akash; Molli, Muralikrishna; Sai Muthukumar, V.; Varma, K. B. R.
2017-07-01
We report here the structure property correlation of Tellurium Vanadate (Te2V2O9) through various optical and vibrational spectroscopic investigations. Pure phase polycrystalline powder of Te2V2O9 was prepared by solid state reaction technique. Phase purity of the sample was confirmed by Powder X-Ray diffraction and the microstructural investigation was analyzed using Scanning Electron Microscopy. Raman microscopy was employed to validate the molecular structure. Diffused Reflectance and Photoluminescence spectroscopy were employed to study the optical properties. Because of non-centrosymmetry, we also observed second harmonic generation in tellurium vanadate. Subsequently, third order nonlinear optical response of Te2V2O9 was probed using open-aperture Z-scan technique estimating the nonlinear absorption coefficient to be 1e-10 mW-1. The mechanism of nonlinear absorption was deduced to be a two-photon absorption process. This was ascertained through existence of excited states predicted from electronic structure of Te2V2O9 using Density Functional Theory. It is also noteworthy to highlight that Te2V2O9 possess higher nonlinear optical coefficient than other vanadate compounds reported in literature.
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.
Merging Nonlinear Optics and Negative-Index Metamaterials
Popov, Alexander K
2011-01-01
The extraordinary properties of nonlinear optical propagation processes in double-domain positive/negative index metamaterials are reviewed. These processes include second harmonic generation, three- and four-wave frequency mixing, and optical parametric amplification. Striking contrasts with the properties of the counterparts in ordinary materials are shown. We also discuss the possibilities for compensating strong losses inherent to plasmonic metamaterials, which present a major obstacle in numerous exciting applications, and the possibilities for creation of unique ultracompact photonic devices such as data processing chips and nonlinear-optical sensors. Finally, we propose similar extraordinary three-wave mixing processes in crystals based on optical phonons with negative dispersion.
Institute of Scientific and Technical Information of China (English)
TIAN Shun-Qiang; ZHANG Wen-Zhi; LI Hao-Hu; ZHANG Man-Zhou; HOU Jie; ZHOU xue-Mei; LIU Gui-Min
2009-01-01
Phase Ⅰ commissioning of the SSRF storage ring on 3.0 GeV beam energy was started at the end of December 2007.A lot of encouraging results have been obtained so far.In this paper,calibrations of the linear optics during the commissioning are discussed,and some measured results about the nonlinearity given.Calibration procedure emphasizes correcting quadrupole magnetic coefficients with the Linear Optics from Closed Orbit(LOCO)technique.After fitting the closed orbit response matrix,the linear optics of the four test modes is substantially corrected,and the measured physical parameters agree well with the designed ones.
Molecular and crystal design of nonlinear optical organic materials
Energy Technology Data Exchange (ETDEWEB)
Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)
2006-06-30
The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.
Energy Technology Data Exchange (ETDEWEB)
Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India); Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India)
2012-05-15
Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.
Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Lan; PENG Xiao-Niu; YANG Zhong-Jian; LI Min; ZHOU Li
2011-01-01
Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process.The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized.These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region.The linear optical properties of gold nanoplates are also investigated by theoretical calculations.We further investigate the nonlinear opticai properties of the gold nanoplates in solution by Z-scan technique.The nonlinear absorption (NLA )coefficient and nonlinear refraction (NLR) index are measured to be 1.18 × 102 cm/GW and - 1.04 × 10-3 cm2/GW,respectively.%@@ Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process.The morphology,crystal structure and linear optical extinction of the gold nanoplates have been characterized.These gold nanoplates are single-crystalline with triangular,truncated triangular and hexagonal shapes,exhibiting strong surface plasmon resonance(SPR) extinction in the visible and near-infrared(NIR) region.The linear optical properties of gold nanoplates are also investigated by theoretical calculations.We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique.The nonlinear absorption(NLA)coefficient and nonlinear refraction(NLR) index are measured to be 1.18 × 102 cm/GW and - 1.04 × 10-3 cm2/GW,respectively.
Optical computation based on nonlinear total reflectional optical switch at the interface
Indian Academy of Sciences (India)
Jianqi Zhang; Huan Xu
2009-03-01
A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.
Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix
Razzari, Luca; Gnoli, Andrea; Righini, Marcofabio; Dâna, Aykutlu; Aydinli, Atilla
2006-05-01
We use a dedicated Z-scan setup, arranged to account for cumulative effects, to study the nonlinear optical response of Ge nanocrystals embedded in silica matrix. Samples are prepared with plasma-enchanced chemical-vapor deposition and post-thermal annealing. We measure a third-order nonlinear refraction coefficient of γ =1×10-16m2/W. The nonlinear absorption shows an intensity-independent coefficient of β =4×10-10m/W related to fast processes. In addition, we measure a second β component around 10-9m /W with a relaxation time of 300μs that rises linearly with the laser intensity. We associate its origin to the absorption of excited carriers from a surface-defect state with a long depopulation time.
Afzal, S M; Razvi, M A N; Khan, Salman A; Osman, Osman I; Bakry, Ahmed H; Asiri, Abdullah M
2016-01-01
Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration.
Afzal, S. M.; Razvi, M. A. N.; Khan, Salman A.; Osman, Osman I.; Bakry, Ahmed H.; Asiri, Abdullah M.
2016-01-01
Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration. PMID:27631371
Yang, Yi; Wang, Tianheng; Biswal, Nrusingh C.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2011-09-01
Optical scattering coefficient from ex vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310 nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from the normal tissue group consisted of 833 measurements from 88 sites was 2.41 mm-1 (+/-0.59), while the average coefficient obtained from the malignant tissue group consisted of 264 measurements from 20 sites was 1.55 mm-1 (+/-0.46). The malignant ovarian tissue showed significant lower scattering than the normal group (p collagen within OCT imaging depth was analyzed from the tissue histological section stained with Sirius Red. The average collagen area fraction (CAF) obtained from the normal tissue group was 48.4% (+/-12.3%), while the average CAF obtained from the malignant tissue group was 11.4% (+/-4.7%). A statistical significance of the collagen content was found between the two groups (p < 0.001). These results demonstrated that quantitative measurements of optical scattering coefficient from OCT images could be a potential powerful method for ovarian cancer detection.
New CMOS Compatible Platforms for Integrated Nonlinear Optical Signal Processing
Moss, D J
2014-01-01
Nonlinear photonic chips have succeeded in generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. This paper reviews some of the recent achievements in CMOS-compatible platforms for nonlinear optics, focusing on amorphous silicon and Hydex glass, highlighting their potential future impact as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement.
Platforms for integrated nonlinear optics compatible with silicon integrated circuits
Moss, David J
2014-01-01
Nonlinear photonic chips are capable of generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review recent progress in CMOS-compatible platforms for nonlinear optics, focusing on Hydex glass and silicon nitride and briefly discuss the promising new platform of amorphous silicon. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications.
Energy Technology Data Exchange (ETDEWEB)
Karimi, M.J. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei2001@gmail.com [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Nazari, M. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of); Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)
2014-01-15
Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs.
Online Estimation of ARW Coefficient of Fiber Optic Gyro
Directory of Open Access Journals (Sweden)
Yang Li
2014-01-01
Full Text Available As a standard method for noise analysis of fiber optic gyro (FOG, Allan variance has too large offline computational burden and data storages to be applied to online estimation. To overcome the barriers, the state space model is firstly established for FOG. Then the Sage-husa adaptive Kalman filter (SHAKF is introduced in this field. Through recursive calculation of measurement noise covariance matrix, SHAKF can avoid the storage of large amounts of history data. However, the precision and stability of this method are still the primary matters that needed to be addressed. Based on this point, a new online method for estimation of the coefficient of angular random walk is proposed. In the method, estimator of measurement noise is constructed by the recursive form of Allan variance at the shortest sampling time. Then the estimator is embedded into the SHAKF framework resulting in a new adaptive filter. The estimations of measurement noise variance and Kalman filter are independent of each other in this method. Therefore, it can address the problem of filtering divergence and precision degrading effectively. Test results of both digital simulation and experimental data of FOG verify the validity and feasibility of the proposed method.
Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.
2014-03-01
A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).
Lifetime of the Nonlinear Geometric Optics Approximation
DEFF Research Database (Denmark)
Binzer, Knud Andreas
The subject of the thesis is to study acertain approximation method for highly oscillatory solutions to nonlinear partial differential equations.......The subject of the thesis is to study acertain approximation method for highly oscillatory solutions to nonlinear partial differential equations....
Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses.
Jiang, Xiao-Fang; Polavarapu, Lakshminarayana; Neo, Shu Ting; Venkatesan, T; Xu, Qing-Hua
2012-03-15
Graphene oxide (GO) thin films on glass and plastic substrates were found to display interesting broadband nonlinear optical properties. We have investigated their optical limiting activity for femtosecond laser pulses at 800 and 400 nm, which could be tuned by controlling the extent of reduction. The as-prepared GO films were found to exhibit excellent broadband optical limiting behaviors, which were significantly enhanced upon partial reduction by using laser irradiation or chemical reduction methods. The laser-induced reduction of GO resulted in enhancement of effective two-photon absorption coefficient at 400 nm by up to ∼19 times and enhancement of effective two- and three-photon absorption coefficients at 800 nm by ∼12 and ∼14.5 times, respectively. The optical limiting thresholds of partially reduced GO films are much lower than those of various previously reported materials. Highly reduced GO films prepared by using the chemical method displayed strong saturable absorption behavior.
Institute of Scientific and Technical Information of China (English)
YU You-Bin
2008-01-01
The electron-phonon interaction influences on linear and nonlinear optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential are investigated. The optical absorption coefficients are obtained by using the compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs CQW. The results show that the electron-phonon interaction makes a distinct influence on optical absorption in CQW. The electron-phonon interaction on the wave functions of electron dominates the values of absorption coefficients and the correction of the electron-phonon effect on the energies of the electron makes the absorption peaks blue shift and become wider. Moreover, the electron-phonon interaction influence on optical absorption with an infinite confining potential is different from that with a finite confining potential.
Prediction of nonlinear optical properties of large organic molecules
Cardelino, Beatriz H.
1992-01-01
The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
Extra phase noise from thermal fluctuations in nonlinear optical crystals
DEFF Research Database (Denmark)
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...... the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature....
Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.
2017-07-01
A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.
Delocalization of nonlinear optical responses in plasmonic nanoantennas
Viarbitskaya, Sviatlana; Cluzel, Benoit; Francs, Gérard Colas des; Bouhelier, Alexandre
2015-01-01
Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.
Size dependent nonlinear optical properties of YCrO{sub 3} nanosystems
Energy Technology Data Exchange (ETDEWEB)
Krishnan, Shiji, E-mail: shijikrish@gmail.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam-686 560, Kerala (India); Shafakath, K.; Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore- 560 080, Karnataka (India); Kalarikkal, Nandakumar, E-mail: nkkalarikkal@mgu.ac.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam-686 560, Kerala and Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam-686 560, Kerala (India)
2014-01-28
We report size-dependent optical limiting response of YCrO{sub 3} nanosystems upon illumination by nanosecond laser pulses at 532 nm. The limiting properties were investigated using the open aperture z-scan technique. Three-photon absorption coefficient is found to increase with particle size within the range of our investigations. We propose that the obtained nonlinearity is caused by two photon absorption, followed by excited state absorption.
Bankole, Owolabi M.; Nyokong, Tebello
2017-05-01
We report on the conjugation of azide-derivatized gold nanoparticles (AuNPs) to alkyne moieties of ZnPc and InPc via azide-alkyne Huisgen cycloaddition reaction to form phthalocyanines-AuNPs (MPc-AuNPs) conjugates. The detailed structural characterizations of the composites were in good agreement with the expected results. The nonlinear absorption coefficients and other nonlinear optical limiting parameters were almost two times larger for the conjugates compared to free phthalocyanines. We established direct relationship between improved photophysical characterizations and enhanced nonlinear effects of reverse saturable absorption mechanisms favoured by excited triplet absorption of the phthalocyanines in the presence of AuNPs. The combination of InPc with AuNPs resulted in the lowest limiting intensity value of 0.06 J/cm2, hence the best performance in terms of optical limiting.
Guner, Ozkan; Bekir, Ahmet; Unsal, Omer; Cevikel, Adem C.
2017-01-01
In this paper, we pay attention to the analytical method named, ansatz method for finding the exact solutions of the variable-coefficient modified KdV equation and variable coefficient diffusion-reaction equation. As a result the singular 1-soliton solution is obtained. These solutions are important for the explanation of some practical physical problems. The obtained results show that these methods provides a powerful mathematical tool for solving nonlinear equations with variable coefficients. This method can be extended to solve other variable coefficient nonlinear partial differential equations.
Nonlinear limits to the information capacity of optical fiber communications
Mitra, P P; Mitra, Partha P.; Stark, Jason B.
2000-01-01
The exponential growth in the rate at which information can be communicated through an optical fiber is a key element in the so called information revolution. However, like all exponential growth laws, there are physical limits to be considered. The nonlinear nature of the propagation of light in optical fiber has made these limits difficult to elucidate. Here we obtain basic insights into the limits to the information capacity of an optical fiber arising from these nonlinearities. The key simplification lies in relating the nonlinear channel to a linear channel with multiplicative noise, for which we are able to obtain analytical results. In fundamental distinction to the linear additive noise case, the capacity does not grow indefinitely with increasing signal power, but has a maximal value. The ideas presented here have broader implications for other nonlinear information channels, such as those involved in sensory transduction in neurobiology. These have been often examined using additive noise linear cha...
Third Order Nonlinear Optical Effects in Conjugated Polymers
Halvorson, Craig Steven
Third order nonlinear optical effects in conjugated materials were studied using two different spectroscopic methods, third harmonic generation and two photon absorption. The third harmonic generation spectra of cis-polyacetylene, trans-polyacetylene, oriented trans-polyacetylene, three isomers of polyaniline, cis and trans-polyacetylene in polyvinyl butyral, polyheptdadiester, polyheptadiketone, and MEH-PPV/polyethylene blends were measured. The nonlinear optical susceptibility increases with structural order, and is enhanced by the presence of a degenerate ground state. The magnitude of the susceptibility reaches as high as 10^{-7} esu, which is sufficient for the creation of all-optical nonlinear devices. The two photon absorption spectrum of oriented transpolyacetylene was measured using nonlinear photothermal deflection. The spectrum reveals directly the Ag state at 1.1 eV in trans-polyacetylene, and reveals another Ag state at higher energy. The magnitude of the two photon absorption is large enough to rule out using trans-polyacetylene in serial all-optical nonlinear devices; all-optical devices made from conjugated polymers must be parallel, not serial. A new figure of merit for nonlinear devices was proposed.
Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.
Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M
2007-10-01
We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.
A new nonlinear conjugate gradient coefficient under strong Wolfe-Powell line search
Mohamed, Nur Syarafina; Mamat, Mustafa; Rivaie, Mohd
2017-08-01
A nonlinear conjugate gradient method (CG) plays an important role in solving a large-scale unconstrained optimization problem. This method is widely used due to its simplicity. The method is known to possess sufficient descend condition and global convergence properties. In this paper, a new nonlinear of CG coefficient βk is presented by employing the Strong Wolfe-Powell inexact line search. The new βk performance is tested based on number of iterations and central processing unit (CPU) time by using MATLAB software with Intel Core i7-3470 CPU processor. Numerical experimental results show that the new βk converge rapidly compared to other classical CG method.
Intensity-Dependent Optical Nonlinear Absorption and Refraction of Gold Nanorods
Institute of Scientific and Technical Information of China (English)
GONG Hong-Mei; ZHOU zhang-Kai; XIAO Si; SONG Hao; SU xiong-Rui; LI Min; WANG Qu-Quan
2007-01-01
Au nanorods dispersed in aqueous solution were prepared with the electrochemical method.The absorption spectrum shows two absorption peaks corresponding to the perpendicular and transverse surface plasma resonance absorption of the nanorods.The third-order optical nonlinear properties are investigated by Z-scans.The signs of the nonlinear absorption coefficient and refractive index are reversed as the intensity of incident laser increases,which is due to the shape change of the gold nanoparticles melted by the intense laser pulses.
The Optical Nonlinearity of Au and Ag Nanoparticle Prepared by the Γ-Radiation Method
Directory of Open Access Journals (Sweden)
Esmaeil Shahriari
2010-01-01
Full Text Available Problem statement: The third order nonlinear optical properties of metal nanoparticles have been of interest in physical chemistry, medical diagnostics and optical devices. Gold colloidal nanoparticles are responsible for the brilliant reds seen in stained glass windows and silver particles are typically yellow. The purpose of the study was to determine the nonlinear refraction and absorption coefficient of the Au and Ag nanoparticles in PVP solution. Approach: The samples were prepared by Γ-radiation method and the nonlinear optical properties of the composites were investigated using a single beam Z-scan technique with a beam power of 40 mW and operated at wavelength of 532 nm. The measurements were carried out for both Open and closed aperture Z-scan arrangements. Results: For both Au/PVP and Ag/PVP samples the results exhibited reverse saturable absorption. The closed aperture Z-scan of the nano-fluid samples revealed self-defocusing effect while the open aperture Z-scan of the samples show a reversible saturable absorption. Conclusion: The Z-scan measurement showed that silver and gold nano-fluid prepared by gamma radiation exhibited large thermal nonlinear refractive index n2 as -8.78×10-7 and -2.478×10-6 cm2/W, respectively. We have also investigated nonlinear absorption of these samples and we found a large value of nonlinear absorption for Ag nanoparticle and a weak absorption for Au nanoparticle. In conclusion, the experimental result shows a good nonlinear refractive index at low laser power in which encouraging for possible applications in nonlinear optical devices.
Conditional linear-optical measurement schemes generate effective photon nonlinearities
Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.
2003-01-01
We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.
Chemical studies on the nonlinear optics of coordina- tion compounds
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The exploration of molecule-based nonlinear optical (NLO) materials at the molecular level is one of the novel areas developed recently from the viewpoint of chemistry. This review summarizes some of our recent researches on new NLO materials based on coordination compounds, which may have potential applications in optical devices.
Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao;
2011-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
DEFF Research Database (Denmark)
Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.
2012-01-01
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...
Directory of Open Access Journals (Sweden)
Alessandro Belardini
2012-10-01
Full Text Available Organic fluorinated materials demonstrate their excellent electro-optic properties and versatility for technological applications. The partial substitution of hydrogen with fluorine in carbon-halides bounds allows the reduction of absorption losses at the telecommunication wavelengths. In these interesting compounds, the electro-optic coefficient was typically induced by a poling procedure. The magnitude and the time stability of the coefficient is an important issue to be investigated in order to compare copolymer species. Here, a review of different measurement techniques (such as nonlinear ellipsometry, second harmonic generation, temperature scanning and isothermal relaxation was shown and applied to a variety of fluorinated and non-fluorinated electro-optic compounds.
Third-order optical nonlinearity studies of bilayer Au/Ag metallic films
Mezher, M. H.; Chong, W. Y.; Zakaria, R.
2016-05-01
This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and -1.61) × 10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at -1.24 × 10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.
Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong
2014-01-01
In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.
Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients.
Ge, Shuzhi Sam; Hong, Fan; Lee, Tong Heng
2004-02-01
In this paper, adaptive neural control is presented for a class of strict-feedback nonlinear systems with unknown time delays. The proposed design method does not require a priori knowledge of the signs of the unknown virtual control coefficients. The unknown time delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. It is proved that the proposed backstepping design method is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop. In addition, the output of the system is proven to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.
Energy Technology Data Exchange (ETDEWEB)
Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)
2017-04-15
An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.
Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation
Rogov, Andrei S.; Narimanov, Evgenii E.
2016-12-01
Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.
Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation
Rogov, Andrei
2016-01-01
Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.
Chip scale low dimensional materials: optoelectronics & nonlinear optics
Gu, Tingyi
The CMOS foundry infrastructure enables integration of high density, high performance optical transceivers. We developed integrated devices that assemble resonators, waveguide, tapered couplers, pn junction and electrodes. Not only the volume standard manufacture in silicon foundry is promising to low-lost optical components operating at IR and mid-IR range, it also provides a robust platform for revealing new physical phenomenon. The thesis starts from comparison between photonic crystal and micro-ring resonators based on chip routers, showing photonic crystal switches have small footprint, consume low operation power, but its higher linear loss may require extra energy for signal amplification. Different designs are employed in their implementation in optical signal routing on chip. The second part of chapter 2 reviews the graphene based optoelectronic devices, such as modulators, lasers, switches and detectors, potential for group IV optoelectronic integrated circuits (OEIC). In chapter 3, the highly efficient thermal optic control could act as on-chip switches and (transmittance) tunable filters. Local temperature tuning compensates the wavelength differences between two resonances, and separate electrode is used for fine tuning of optical pathways between two resonators. In frequency domain, the two cavity system also serves as an optical analogue of Autler-Towns splitting, where the cavity-cavity resonance detuning is controlled by the length of pathway (phase) between them. The high thermal sensitivity of cavity resonance also effectively reflects the heat distribution around the nanoheaters, and thus derives the thermal conductivity in the planar porous suspended silicon membrane. Chapter 4 & 5 analyze graphene-silicon photonic crystal cavities with high Q and small mode volume. With negligible nonlinear response to the milliwatt laser excitation, the monolithic silicon PhC turns into highly nonlinear after transferring the single layer graphene with
Lavdas, Spyros; You, Jie; Osgood, Richard M.; Panoiu, Nicolae C.
2015-08-01
We present recent results pertaining to pulse reshaping and optical signal processing using optical nonlinearities of silicon-based tapered photonic wires and photonic crystal waveguides. In particular, we show how nonlinearity and dispersion engineering of tapered photonic wires can be employed to generate optical similaritons and achieve more than 10× pulse compression. We also discuss the properties of four-wave mixing pulse amplification and frequency conversion efficiency in long-period Bragg waveguides and photonic crystal waveguides. Finally, the influence of linear and nonlinear optical effects on the transmission bit-error rate in uniform photonic wires and photonic crystal waveguides made of silicon is discussed.
On the Anionic Group Approximation to the Borate Nonlinear Optical Materials
Directory of Open Access Journals (Sweden)
Rukang Li
2017-02-01
Full Text Available In this mini-review type of article, a brief summary of the anionic group approximation as it relates to the borate nonlinear optical (NLO crystals, an idea firstly proposed by Professor Chen, is presented.The basic idea, calculation method, tabulated coefficients of various common borate, as well as nitrate or carbonate groups, in their ideal geometries will be presented. New practices reveal that those parameters can still give very accurate predicted NLO coefficients for recently found NLO crystals without any adjustment of parameters.
Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations
Energy Technology Data Exchange (ETDEWEB)
Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)
2010-05-15
The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.
The optical nonlinearity of gold nanoparticles prepared by bioreduction method
Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon
2013-11-01
Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.
Institute of Scientific and Technical Information of China (English)
Jie Ping Shi; Hui Yang; Li Wei; Hong Wen Hu; Guo Yuan Lu
2011-01-01
A series of new fluoro-containing copolymers have been synthesized by a Mitsunobu reaction with 4,4'-(hexafluoro-isopropylidene)bisphenol A (6FBPA) and the corresponding N, N-dihydroxyethylaminoaryl azo or ring-locked triene compounds, which have high thermal stability and good solubility in organic solvents. The nonlinear optical (NLO) measurements made by Marker fringe method at 1064 nm indicate that the copolymers embedded with the ring-locked triene and azo chromophores exhibit higher macroscopic nonlinear optical coefficient (70.2 pm/V and 26.5-34.6 pm/V, respectively). Thermal analysis and UV-visible absorption spectra show that the copolymers have good thermal stability (Td = 264-319 ℃) and optical transparency (λmax<500nm).
Misra, Nilanjal; Rapolu, Mounika; Venugopal Rao, S.; Varshney, Lalit; Kumar, Virendra
2016-05-01
The optical nonlinearity of metal nanoparticles in dielectrics is of special interest because of their high polarizability and ultrafast response that can be utilized in potential device applications. In this study nanocomposite thin films containing in situ generated Ag nanoparticles dispersed in an aliphatic urethane acrylate (AUA) matrix were synthesized using electron beam curing technique, in presence of an optimized concentration of diluent Trimethylolpropanetriacrylate (TMPTA). The metal nanocomposite films were characterized using UV-visible spectrophotometry, transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM) techniques. Ag nanoparticle impregnated films demonstrated an absorption peak at ∼420 nm whose intensity increased with increase in the Ag concentration. The optical limiting property of the coatings was tested using a nanosecond Nd-YAG laser operated at third harmonic wavelength of 355 nm. For a 25 ns pulse and 10 Hz cycle, Ag-polymer coatings showed good optical limiting property and the threshold fluence for optical limiting was found to be ∼3.8×10-2 J/cm2 while the transmission decreased to 82%. The nonlinear optical coefficients were also determined using the standard Z-scan technique with picosecond (∼2 ps, 1 kHz) and femtosecond (∼150 fs, 100 MHz) pulses. Open aperture Z-scan data clearly suggested two-photon absorption as the dominant nonlinear absorption mechanism. Our detailed studies suggest these composites are potential candidates for optical limiting applications.
Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells
Mohajer, Salman; Ara, Mohammad Hossein Majles; Serahatjoo, Leila
2016-07-01
We investigate linear and nonlinear optical properties of standard human ovarian cancer cells (cell line: A2780cp) in vitro. Cells were treated by graphene quantum dots (GQDs) with two special concentrations. Nontoxicity of GQDs was examined in standard biological viability tests. Cancerous cells were fixed on a glass slide; then, interaction of light with biofilms was studied in linear and nonlinear regimes. Absorption spectra of untreated biofilms and biofilms with two different concentrations of GQDs was studied by UV-visible spectrophotometer. Optical behavior of biofilms in a linear regime of intensity (with low-intensity laser exposure) was reported using a simple optical setup. After that, we compared the attenuation of light in biofilm of cancerous cells with and without GQDs. Nonlinear behavior of these biofilms was investigated by a Z-scan setup using a continued wave He-Ne laser. Results showed that GQDs decreased the extinction coefficient and changed the sign and exact value of the nonlinear refractive index of malignant ovarian cells noticeably. The nonlinear refractive index of studied cells with no GQDs treatment was in the order of 10-8 (cm2/w) with a positive sign. This quantity changed to the same order of magnitude with a negative sign after GQDs treatment. Thus, GQDs can be used for cancer diagnosis under laser irradiation.
Energy Technology Data Exchange (ETDEWEB)
Narayanan, M. [Department of Physics, Yadava College Govindarajan Campus, Thiruppalai, Madurai-625 014 (India); John Peter, A., E-mail: a.john.peter@gmail.com [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of); Yoo, Chang Kyoo [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of)
2012-02-01
Binding energy, interband emission energy and the non-linear optical properties of exciton in an InSb/InGa{sub x}Sb{sub 1-x} quantum dot are computed as functions of dot radius and the Ga content. Optical properties are obtained using the compact density matrix approach. The dependence of non-linear optical processes on the dot sizes is investigated for different Ga concentrations. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of the exciton are calculated for different concentrations of gallium content. It is found that gallium concentration has great influence on the optical properties of InSb/InGa{sub x}Sb{sub 1-x} dots.
Nonlinear Optical Absorption of Organic Molecules for Applications in Optical Devices
Boni, Leonardo De; Daniel S. Correa; Mendonca, Cleber R.
2010-01-01
This chapter aimed to describe the resonant nonlinear optical properties of four important organic molecules: Chlorophyll A, Indocyanine Green, Ytterbium Bisphthalocyanine and Cytochrome C, which are materials that present interesting optical nonlinearities for applications in optical devices. It was shown that Chlorophyll A solution exhibits a RSA process for Q-switched and mode-locked laser pulses, with an intersystem-crossing time relatively fast and a triplet state cross section value twi...
Pressure-dependent of linear and nonlinear optical properties of (In,Ga)N/GaN spherical QD
El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine
2014-07-01
Third-order nonlinear intra-conduction band optical properties of (In,Ga)N-GaN spherical quantum dot are investigated. Linear, third-order nonlinear and total absorption coefficients (ACs) of 1p-1d and 1d-1f transitions are computed using a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock-Roothaan (HFR) method. Hydrostatic pressure effect is examined within the single band effective-mass and the one parabolic band approximations under finite potential barrier. The results show that the hydrostatic pressure has a great impact on the optical properties of QDs. A blue shift of the resonant peak is observed while the maximum of the amplitude of optical absorption coefficients decreases nonlinearly under hydrostatic pressure effect. Two competing parameters are suggested to explain our results. Compared with the finding results, a good agreement is shown.
Zidan, M. D.; Al-Ktaifani, M. M.; Allahham, A.
2017-05-01
Z-scan measurements were performed with a CW diode laser at 635 nm to investigate the nonlinear optical properties of Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate in ethanol at two concentrations. Theoretical fit was carried out to evaluate the nonlinear absorption coefficient (β) and the negative nonlinear refractive index (n2) for the studied complex. Furthermore, the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient were also estimated. The investigations show large NLO response, which is predominantly associated with substantial conjugation between the aromatic ring π-electron system and d-electron set metal center. The obtained results give a strong indication that Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate have a potential application in optical domain.
Institute of Scientific and Technical Information of China (English)
JIANG Zhi-ping
2012-01-01
With the help of the variable-coefficient generalized projected Ricatti equation expansion method,we present exact solutions for the generalized (2+1)-dimensional nonlinear Schr(o)dinger equation with variable coefficients.These solutions include solitary wave solutions,soliton-like solutions and trigonometric function solutions.Among these solutions,some are found for the first time.
Demetrashvili, Nino; Van den Heuvel, Edwin R
2015-06-01
This work is motivated by a meta-analysis case study on antipsychotic medications. The Michaelis-Menten curve is employed to model the nonlinear relationship between the dose and D2 receptor occupancy across multiple studies. An intraclass correlation coefficient (ICC) is used to quantify the heterogeneity across studies. To interpret the size of heterogeneity, an accurate estimate of ICC and its confidence interval is required. The goal is to apply a recently proposed generic beta-approach for construction the confidence intervals on ICCs for linear mixed effects models to nonlinear mixed effects models using four estimation methods. These estimation methods are the maximum likelihood, second-order generalized estimating equations and two two-step procedures. The beta-approach is compared with a large sample normal approximation (delta method) and bootstrapping. The confidence intervals based on the delta method and the nonparametric percentile bootstrap with various resampling strategies failed in our settings. The beta-approach demonstrates good coverages with both two-step estimation methods and consequently, it is recommended for the computation of confidence interval for ICCs in nonlinear mixed effects models for small studies.
A Finite Mixture of Nonlinear Random Coefficient Models for Continuous Repeated Measures Data.
Kohli, Nidhi; Harring, Jeffrey R; Zopluoglu, Cengiz
2016-09-01
Nonlinear random coefficient models (NRCMs) for continuous longitudinal data are often used for examining individual behaviors that display nonlinear patterns of development (or growth) over time in measured variables. As an extension of this model, this study considers the finite mixture of NRCMs that combine features of NRCMs with the idea of finite mixture (or latent class) models. The efficacy of this model is that it allows the integration of intrinsically nonlinear functions where the data come from a mixture of two or more unobserved subpopulations, thus allowing the simultaneous investigation of intra-individual (within-person) variability, inter-individual (between-person) variability, and subpopulation heterogeneity. Effectiveness of this model to work under real data analytic conditions was examined by executing a Monte Carlo simulation study. The simulation study was carried out using an R routine specifically developed for the purpose of this study. The R routine used maximum likelihood with the expectation-maximization algorithm. The design of the study mimicked the output obtained from running a two-class mixture model on task completion data.
Nonlinear Quantum Optics in Optomechanical Nanoscale Waveguides
Zoubi, Hashem
2016-01-01
We explore the possibility of achieving a significant nonlinear phase shift among photons propagating in nanoscale waveguides exploiting interactions among photons that are mediated by vibrational modes and induced through Stimulated Brillouin Scattering (SBS). We introduce a configuration that allows slowing down the photons by several orders of magnitude via SBS involving sound waves and two pump fields. We extract the conditions for maintaining vanishing amplitude gain or loss for slowly propagating photons while keeping the influence of thermal phonons to the minimum. The nonlinear phase among two counter-propagating photons can be used to realize a deterministic phase gate.
Dynamic computer-generated nonlinear-optical holograms
Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng
2017-08-01
We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.
Dissipation-induced optical nonlinearity at low light levels
Greenberg, Joel A
2011-01-01
We observe a dissipation-induced nonlinear optical process in a gas of cold atoms that gives rise to large nonlinear coupling strengths with high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and can give rise to efficient Bragg scattering in the form of a six-wave-mixing process at low-light-levels with an extremely large effective fifth-order nonlinear susceptibility of \\chi^(5)= 7.6 x 10-15 (m/V)^4. For large optical gains, collective scattering due to the strong light-matter coupling leads to slow group velocities (~c/105) and long atomic coherence times (~100 {\\mu}s).
Linear and nonlinear optical study of pure PVA and CdSe doped PVA nanocomposite
Tyagi, Chetna; Sharma, Ambika
2016-05-01
This research work reports the synthesis and optical properties of CdSe/PVA polymer nanocomposite (PNC's) prepared by wet chemical co-precipitation method. The transmission spectra obtained from UV-Vis-NIR spectrophotometer has been investigated to determine the optical properties of PNC's. Absorption spectra give the information about energy band gap (Eg) and type of transition. Refractive index (n), extinction coefficient (k) was calculated using well known Swanepoel method. Wemple-Di Domenico model (WDD) has been used to calculate dispersion energy (Ed) and oscillator energy (E0). Boling formula is used to calculate nonlinear refractive index (n2) of CdSe/PVA nanocomposite.
Nonlinear Response of One-Dimensional Magneto-Optical Photonic Crystals
Institute of Scientific and Technical Information of China (English)
WANG Wei-Zhong
2005-01-01
@@ We numerically investigate the magneto-optical Cotton-Mouton effect in an alternating multilayer structure with a nonlinear dielectric constant. The multistability and polarization of the transmission of electromagnetic field near the edges of the stop gap are studied in detail. The resonant transmission is accompanied by solitons of intensity of the field. This investigation provides a way to select the transmission property with different polarizations since both the amplitude and the phase of the output field can be adjusted by the input power and by the magneto-optical coefficient depending on the external magnetic field.
Optical nonlinearities in GaSe and InSe crystals upon laser excitation
Kyazym-zade, A. G.; Salmanov, V. M.; Guseinov, A. G.; Gasanova, L. G.; Mamedov, R. M.
2014-04-01
The nonlinear absorption of light and its temporal evolution in the vicinity of exciton resonance in layered GaSe and InSe crystals under high optical excitation have been experimentally investigated. The decisive factor for the observed temporal dependence of the absorption coefficient and its dependence on the excitation intensity is screening excitons by nonequilibrium-carrier plasma. It is shown that the increase in the transmittance in the absorption-band edge in GaSe with a simultaneous blue shift of the band edge is caused by filling the energy bands under high optical excitation.
Nonlinear optical properties of sodium copper chlorophyllin in aqueous solution.
Li, Jiangting; Peng, Yufeng; Han, Xueyun; Guo, Shaoshuai; Liang, Kunning; Zhang, Minggao
2017-06-16
Sodium copper chlorophyllin (SCC), as one of the derivatives of chlorophyll - with its inherent green features; good stability for heat, light, acids and alkalies; unique antimicrobial capability; and particular deodori zation performance - is widely applied in some fields such as the food industry, medicine and health care, daily cosmetic industry etc. SCC, as one of the metal porphyrins, has attracted much attention because of its unique electronic band structure and photon conversion performance. To promote the application of SCC in materials science; energy research and photonics, such as fast optical communications; and its use in nonlinear optical materials, solar photovoltaic cells, all-optical switches, optical limiters and saturable absorbers, great efforts should be dedicated to studying its nonlinear optical (NLO) properties. In this study, the absorption spectra and NLO properties of SCC in aqueous solution at different concentrations were measured. The Z-scan technique was used to determine NLO properties. The results indicated that the absorption spectra of SCC exhibit 2 characteristic absorption peaks located at the wavelengths 405 and 630 nm, and the values of the peaks increase with increasing SCC concentration. The results also showed that SCC exhibits reverse saturation absorption and negative nonlinear refraction (self-defocusing). It can be seen that SCC has good optical nonlinearity which will be convenient for applications in materials science, energy research and photonics.
Institute of Scientific and Technical Information of China (English)
LI Xiang; CAO Zhuang-Qi; SHEN Qi-Shun; MENG Qing-Hua; HUANG De-Ying; GUO Kun-Peng; QIU Ling; SHEN Yu-Quan
2006-01-01
@@ Thermo-optic coefficient dn/dT as well as volume expansion coefficients β of different polymer systems are measured for both TE and TM polarizations in an attenuated total reflection (ATR) configuration. Experimental results indicate that cross-linked polymer systems exhibit the thermal expansion coefficients smaller than those of the original side-chain systems. Moreover, the anisotropies in thermo-optic coefficients of the polymer systems with small birefringence exhibit linear relationship with the anisotropies in volume expansion coefficients, but the polymer systems with larger birefringence exhibit more complicated relationship.
Nonlinear optical and magneto-optical effects in non-spherical magnetic granular composite
Institute of Scientific and Technical Information of China (English)
Ping Xu(须萍); Zhenya Li(李振亚)
2004-01-01
The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylcr-expansion method. There is a weakly nonlinear relation between electric displacement D and elcctric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.
Synthesis, growth and characterization of π conjugated organic nonlinear optical chalcone derivative
Energy Technology Data Exchange (ETDEWEB)
Prabhu, A.N., E-mail: ashwatha.prabhu@manipal.edu [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India); Upadhyaya, V. [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India); Jayarama, A., E-mail: jayaram@mite.ac.in [Department of Physics, Mangalore Institute of Technology and Engineering (MITE), Moodabidri 574225 (India); Subrahmanya Bhat, K. [Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India)
2013-02-15
A new potentially useful nonlinear optical organic material, 1-(5-chlorothiophen-2-yl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one, has been synthesized and grown as a high-quality single crystal by the slow evaporation technique. The grown crystals were characterized by FT-IR, NMR, thermal analysis, and UV–visible spectroscopy. The material is thermally stabile up to 111 °C. The mechanical property of the grown crystals was studied using Vickers microhardness tester and the load dependence hardness was observed. The third order nonlinear optical properties of the material such as real and imaginary part of χ{sup (3)}, nonlinear absorption coefficient and nonlinear refractive index were determined using nanosecond laser pulses at 532 nm wavelength by employing Z-scan technique. The nonlinear refractive index is found to be of the order of 10{sup −11} cm{sup 2} W{sup −1}. The magnitude of third order susceptibility is of the order of 10{sup −13} esu. The observed increase in the third order nonlinearity in these molecules clearly indicates the electronic origin. The compounds exhibit good optical limiting at 532 nm. The best optical limiting behavior of this molecule is due to the substituted strong electron donor. - Highlights: ► A novel thiophene substituted NLO crystal has been grown using methanol as solvent. ► The crystals were characterized by using FTIR, TGA/DTA and UV–visible spectroscopy. ► The n{sub 2} and χ{sup (3)} values is of the order of 10{sup −11} cm{sup 2} W{sup −1} and 10{sup −13} esu respectively. ► The crystals show better optical limiting behavior.
Energy Technology Data Exchange (ETDEWEB)
D' silva, E.D., E-mail: deepak.dsilva@gmail.com [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India); Podagatlapalli, G. Krishna [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046 (India); Venugopal Rao, S., E-mail: soma_venu@yahoo.com [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046 (India); Dharmaprakash, S.M. [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India)
2012-11-15
Graphical abstract: Photograph and schematic representation of Z-scan experimental setup used to investigate third order nonlinear properties of the chalcone materials. Highlights: ► Br and NO{sub 2} substituted chalcone derivatives were exposed to picosecond laser pulses. ► Third-order nonlinear optical (NLO) properties were investigated. ► Compounds show promising third-order and optical limiting properties. ► These materials found suitable for electrical and optical applications. -- Abstract: In this paper we present results from the experimental study of third-order nonlinear optical (NLO) properties of three molecules of Br and NO{sub 2} substituted chalcone derivatives namely (2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one (4Br4MSP), (2E)-1-(3-bromophenyl)-3-[4-(methylsulfanyl) phenyl]prop-2-en-1-one (3Br4MSP) and (2E)-3[4(methylsulfanyl) phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP). The NLO properties have been investigated by Z-scan technique using 2 ps laser pulses at 800 nm. The nonlinear refractive indices, nonlinear absorption coefficient, and the magnitude of third-order susceptibility have been determined. The values obtained are of the order of 10{sup −7} cm{sup 2}/GW, 10{sup −3} cm/GW and 10{sup −14} esu respectively. The molecular second hyperpolarizability for the chalcone derivatives is of the order of 10{sup −32} esu. The coupling factor, excited state cross section, ground state cross section etc. were determined. The optical limiting (OL) property was studied. The results suggest that the nonlinear properties investigated for present chalcones are comparable with some of the reported chalcone derivatives and can be desirable for NLO applications.
Zulina, Natalia A.; Pavlovetc, Ilia M.; Baranov, Mikhail A.; Denisyuk, Igor Yu.
2017-03-01
In this work Ag nanoparticles (NPs) stable colloid solution were prepared by laser ablation of chemically pure silver rod in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning electron microscope and vary from 27 to 120 nm. Nanocomposites films were prepared from obtained stable colloid solution of AgNPs by photocuring. For aliphatic polymer IDA long molecules cross-linking Diurethane dimethacrylate, 1,6-Hexandiol diacrylate and Tetra (ethylene glycol) diacrylate were used. Prepared nanomaterials exhibit strong third-order nonlinear optical responses, which was estimated by using z-scan technique. The third-order nonlinear optical coefficients of the studied nanocomposites were found to be up to Reχ(3)=1.31×10-5 (esu) and Imχ(3)=7.64×10-5 (esu).
Local-field enhancement of optical nonlinearities in the AGZO nano-triangle array
Long, Hua; Bao, Lijiao; Wang, Kai; Liu, Shuhui; Wang, Bing
2016-10-01
Enhancement of the third order optical nonlinearities in Ga and Al co-doped ZnO (AGZO) nano-triangle array was investigated by performing a Z-scan method with a femtosecond laser (800 nm, 40 fs). The AGZO nano-triangle array was fabricated on silica substrates by nanosphere lithography (NSL) method, showing a surface plasmon resonance (SPR) peak around 3 μm. The two photon absorption (TPA) coefficient and nonlinear refractive index of the AGZO nano-triangle array were determined to be 340 cm/GW and 3.22 × 10-2 cm2/GW under an excitation intensity of 26 GW/cm2. It shows a 3.4-fold enhancement of the nonlinear refraction in the AGZO array with respect to that in the AGZO film, which attributes to the local field enhancement effect. The finite-difference time-domain (FDTD) simulation was in agreement with the experimental results. It indicates that the AGZO nano-triangle arrays have potential applications for nonlinear optical devices like all-optical switching, optical limiting and other types of signal processing.
Linear and nonlinear optical properties of tellurite glasses
Jin, Zhian
Tellurite glasses have been widely studied from bulk materials to structured devices, with the emphasis on the development of nonlinear optical fibers to demonstrate the functionalities of supercontinuum generation, erbium doped fiber amplifier and Raman amplifiers, etc. The new type tellurite-based optical fibers exhibit superior advantages over conventional silica ones, due to their high optical nonlinearity, broad transmission window, high rare earth element solubility and Raman gain intensity. Like silica fibers, tellurite fibers may also incorporate various fiber structures including solid core-cladding one and microstructure one (e.g. photonic crystal). The fiber loss was ever reported as low as ˜1dB/m using rod-in-tube fabrication process. Beyond all those progresses, little success has been made on improving the optical nonlinear property of tellurite glasses chi(3) ˜ 50 times bigger than fused silica). The challenge remains for tellurite glasses that their optical nonlinearity is more than 1 order smaller to compare with chalcogenides, although they are more stable chemically and structurally. In this work, after carefully reviewing the trend of optical nonlinearity for solid glasses, we adopted two strategies to potentially increase the linear and third-order optical nonlinear properties for tellurite glasses. A more polarizable electronic excitation may be achievable by introducing chalcogen elements (e.g. Sulfur or Selenium) into TeO2 vitreous network and synthesizing glasses with a linear helical chainlike structure. The ab initio computational results of microscopic hyper-polarizabilities of hypothetical mixed - 2 - tellurite chalcogenide glass molecular structure (TeO2(TeOX)n) confirmed the enhanced effect as Te-X (X=S or Se) bonds exist and the molecular size (n) grows. Quantitative estimates of the macroscopic linear and nonlinear properties for a mixed glass made from chains of n = 5 units leads to a conclusion that the extra Te-S (or Te
Directory of Open Access Journals (Sweden)
A. D. Pataraya
Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.
Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines
Vannikov, A. V.; Grishina, A. D.; Gorbunova, Yu. G.; Tsivadze, A. Yu.
2015-08-01
The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.
Nonlinear optical studies of single gold nanoparticles
Dijk, Meindert Alexander van
2007-01-01
Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new
Conservation Laws in Higher-Order Nonlinear Optical Effects
Kim, J; Shin, H J; Kim, Jongbae
1999-01-01
Conservation laws of the nonlinear Schrödinger equation are studied in the presence of higher-order nonlinear optical effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive a general expression for infinitely many conserved currents and charges of the coupled higher-order nonlinear Schrödinger equation. The first few currents and charges are also presented explicitly. Due to the higher-order effects, conservation laws of the nonlinear Schrödinger equation are violated in general. The differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply that the higher-order terms determine the inherent types of conserved quantities for each integrable cases of the higher-order nonlinear Schrödinger equation.
Zeyada, H. M.; Makhlouf, M. M.
2016-04-01
The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.
Li, Chung-Yi; Ying, Cheng-Ling; Lin, Chun-Yu; Chu, Chien-An
2015-12-01
This study evaluated a directly modulated distributed feedback (DFB) laser diode (LD) for cable TV systems with respect to carrier-to-nonlinear distortion of LDs. The second-order distortion-to-carrier ratio is found to be proportional to that of the second-order coefficient-to-first-order coefficient of the DFB laser diode driving current and to the optical modulation index (OMI). Furthermore, the third-order distortion-to-carrier ratio is proportional to that of the third-order coefficient-to-first-order coefficient of the DFB laser diode driving current, and to the OMI2.
From Ewald sphere to Ewald shell in nonlinear optics
Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.
Pulse operation of semiconductor laser with nonlinear optical feedback
Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.
2004-09-01
A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.
Dispersion of the nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1992-09-01
The nonlinear refractive indices of several important optical materials have been measured at the second and third harmonic wavelengths of the Nd laser using nearly degenerate four-wave mixing. Measurements made relative to the nonlinear index of fused silica have the highest accuracy. Absolute measurements were also made using the Raman cross-section of benzene as a nonlinear reference standard. The relative measurements are compared with a despersion model base on parameters fitted to the linear refractive indicies and also to a recently proposed model based on Kramers-Kronig transformation of the calculated, two-band, two-photon loss spectrum.
Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks
Johannisson, Pontus
2013-01-01
A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.
Hybrid quantum systems for enhanced nonlinear optical susceptibilities
Sullivan, Dennis; Kuzyk, Mark G
2016-01-01
Significant effort has been expended in the search for materials with ultra-fast nonlinear-optical susceptibilities, but most fall far below the fundamental limits. This work applies a theoretical materials development program that has identified a promising new hybrid made of a nanorod and a molecule. This system uses the electrostatic dipole moment of the molecule to break the symmetry of the metallic nanostructure that shifts the energy spectrum to make it optimal for a nonlinear-optical response near the fundamental limit. The structural parameters are varied to determine the ideal configuration, providing guidelines for making the best structures.
Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws
Chen, Gui-Qiang; Zhang, Yongqian
2012-01-01
We establish an $L^1$-estimate to validate the weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws with arbitrary initial data of small bounded variation. This implies that the simpler geometric optics expansion function can be employed to study the properties of general entropy solutions to hyperbolic systems of conservation laws. Our analysis involves new techniques which rely on the structure of the approximate equations, besides the properties of the wave-front tracking algorithm and the standard semigroup estimates.
A Web Tool for Research in Nonlinear Optics
Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.
2016-02-01
This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.
Third-Order Optical Nonlinearity in Novel Porphyrin Dimers
Institute of Scientific and Technical Information of China (English)
PEI Song-Hao; ZHAO Da-Peng; ZHANG Wei; ZHENG Wen-Qi; WANG Xing-Qiao; PENG Wei-Xian; SHI Guang; SONG Ying-Lin
2008-01-01
@@ We investigate the third-order optical nonlinearities in four novel porphyrin dimers (directs A to I)) and a monomeric porphyrin H2 CPTPP measured by using the single-beam z-scan technique with a pulsed Q-switched Nd:YAG nanosecond laser at 532nm.All the samples show strong excited state absorption (ESA) and high value of X(3) in the ns domain at this wavelength.We perform a comparison between dimer A and its monomer H2 CPTPP in their third-order optical nonlinearity, and discuss the relationships between the values of X(3) and the different bridging groups for all the dimers.
High-speed signal processing using highly nonlinear optical fibres
DEFF Research Database (Denmark)
Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen
2009-01-01
relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...
Scaling the Raman Gain Coefficient of Optical Fibers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Bromage, J; Leng, L
2002-01-01
Scaling rules for the Raman gain coefficient are provided with emphasis on the effective area and wavelength dependence. Translation from measurements made at one pump wavelength to other pump wavelengths is demonstrated.......Scaling rules for the Raman gain coefficient are provided with emphasis on the effective area and wavelength dependence. Translation from measurements made at one pump wavelength to other pump wavelengths is demonstrated....
Khaleghi, Salman; Chitgarha, Mohammad Reza; Yilmaz, Omer F; Tur, Moshe; Haney, Michael W; Langrock, Carsten; Fejer, Martin M; Willner, Alan E
2013-05-15
We experimentally demonstrate a reconfigurable optical converter/encoder for quadrature amplitude modulated (QAM) signals. The system utilizes nonlinear wavelength multicasting, conversion-dispersion delays, and simultaneous nonlinear multiplexing and sampling. We show baud rate tunability (31 and 20 Gbaud) and reconfigurable conversions from lower-order QAM signals to higher-order QAM signals (e.g., 64-QAM).
Control of the wavelength dependent thermo-optic coefficients in structured fibres
DEFF Research Database (Denmark)
Sørensen, Henrik Rokkjær; Canning, J.; Lægsgaard, Jesper
2006-01-01
By controlling the fibre geometry, the fraction of optical field within the holes and the inserted material of a photonic crystal fibre, we demonstrate that it is possible to engineer any arbitrary wavelength-dependent thermo-optic coefficient. The possibility of making a fibre with a zero...... temperature dependent thermo-optic coefficient, ideal for packaging of structured fibre gratings, is proposed and explored....
40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror
DEFF Research Database (Denmark)
Yu, Jianjun; Zheng, Xueyan; Peucheret, Christophe
2000-01-01
All-optical wavelength conversion based on a nonlinear optical loop mirror (NOLM) at 40 Gb/s is demonstrated for the first time. The effect of walkoff time between control beam and signal beams is investigated when the NOLM is used as an all-optical wavelength converter or an all...
Recent Advances in Graphene-Assisted Nonlinear Optical Signal Processing
Directory of Open Access Journals (Sweden)
Jian Wang
2016-01-01
Full Text Available Possessing a variety of remarkable optical, electronic, and mechanical properties, graphene has emerged as an attractive material for a myriad of optoelectronic applications. The wonderful optical properties of graphene afford multiple functions of graphene based polarizers, modulators, transistors, and photodetectors. So far, the main focus has been on graphene based photonics and optoelectronics devices. Due to the linear band structure allowing interband optical transitions at all photon energies, graphene has remarkably large third-order optical susceptibility χ(3, which is only weakly dependent on the wavelength in the near-infrared frequency range. The graphene-assisted four-wave mixing (FWM based wavelength conversions have been experimentally demonstrated. So, we believe that the potential applications of graphene also lie in nonlinear optical signal processing, where the combination of its unique large χ(3 nonlinearities and dispersionless over the wavelength can be fully exploited. In this review article, we give a brief overview of our recent progress in graphene-assisted nonlinear optical device and their applications, including degenerate FWM based wavelength conversion of quadrature phase-shift keying (QPSK signal, phase conjugated wavelength conversion by degenerate FWM and transparent wavelength conversion by nondegenerate FWM, two-input and three-input high-base optical computing, and high-speed gate-tunable terahertz coherent perfect absorption (CPA using a split-ring graphene.
Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.
2016-08-01
Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.
Spoorthi, K.; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Sekkati, M.; El Fakir, A.; Rao, Ashok; Sanjeev, Ganesh; Poornesh, P.
2017-06-01
In this article, we report the third-order nonlinear optical properties of electron beam irradiated gadolinium-doped zinc oxide (GZO) thin films prepared using the spray pyrolysis deposition technique. GZO thin films were treated with an electron beam from a variable energy microtron accelerator at dose rates ranging from 1-5 kGy. Nonlinear optical measurements were conducted by employing the single beam Z-scan technique. A continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Closed aperture Z-scan results reveal that the films exhibit self-defocusing nonlinearity. Open aperture Z-scan results exhibit a switching over phenomena of reverse saturable absorption to saturable absorption for thin film irradiated at 3 kGy, indicating the influence of electron beams on optical nonlinearity. The significant change in third-order nonlinear optical susceptibility χ (3) ranging from 2.14 × 10-3 to 3.12 × 10-3 esu is attributed to the effect of electron beam irradiation. The study shows that the nonlinear coefficients of GZO films can be tuned by electron beams for use in nonlinear optical device applications.
Ganesh, V.; Yahia, I. S.; AlFaify, S.; Shkir, Mohd.
2017-01-01
In the current work, nanocrystalline undoped and Sn doped ZnO thin films with different doping concentrations (1, 3, 5, 7 at%) have been deposited on glass substrate by low cost spin coating technique. The strong effect of Sn doping on structural, morphological, optical, nonlinear properties have been observed. X-ray diffraction study revealed that all the thin films are preferentially grown along (002) plane. The crystallite size is found to be increased with increasing the concentration of Sn, similar behavior was observed by atomic force microscopy analysis. Optical study shows that the prepared thin films are highly transparent. The direct optical band gap was calculate and found to be 3.16, 3.20, 3.22, 3.34, 3.18 eV for pure and doped films respectively. The refractive index, linear susceptibility, nonlinear absorption coefficient, nonlinear susceptibility and nonlinear refractive index were calculated. Furthermore, the third order nonlinear optical properties are investigated using Z-scan technique and their values are found to be -3.75×10-8 cm2/W, -3.76×10-3 cm/W and 0.65×10-3 esu for 7% Sn doped ZnO, respectively. There is a good correlation between theoretical and experimental third order nonlinear properties and higher values shows that the deposited films are may be applied in nonlinear optical applications.
Optics in a nonlinear gravitational wave
Harte, Abraham I
2015-01-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Materials for Nonlinear Optics Chemical Perspectives
1991-01-01
introduced into LB muldilayers built from 1/1 mixtures with an amphiphilic cyclodextrin . The polyenic chains are again perpendicular to the substrate...molecules in inorganic matrices. The encapsulated molecules can be used to induce new optical properties in the material or to probe the changes at the...glass are discussed here. First, laser dyes including rhodamines and coumarins are encapsulated . The resulting doped gel-glasses exhibit optical gain
Nonlinear Real-Time Optical Signal Processing.
1983-12-01
8217 " University of Southern CaliforniaN JU Los Angeles, California 90089-0272 " --;984. ,’ I ’I Research Sponsored by the ., k Air Force Office of...concentrates on experimental results from the sixteen gate clocked master-slave optical flip-flop. A second paper " Architectures for a Sequential Optical Logic...purpose computer could permit the realization of a number of architectural advantages over semiconductor electronics [27]. These advantages include
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Sakho, El hadji Mamour; Oluwafemi, Oluwatobi S.; Sreekanth, P.; Philip, Reji; Thomas, Sabu; Kalarikkal, Nandakumar
2016-08-01
Nonlinear optical (NLO) response under near infrared (800 nm) and visible (532 nm) laser excitations, of 100 fs (fs) and 5 ns (ns) pulse durations respectively, of reduced graphene oxide (RGO), non-covalent functionalized reduced graphene oxide (NF-RGO) and NF-RGO decorated with various concentration of silver nanoparticles (NF-RGO/Ag-NPs) have been investigated using the Open-aperture Z-Scan technique. For both femtosecond and nanosecond laser excitations, the studied graphene-based materials exhibit good nonlinear optical power limiting properties (OL), with NF-RGO/Ag-NPs sample prepared with 0.1 M AgNO3 showing the best nonlinear optical properties. For the ns regime, the optical limiting threshold decreased from 8.3 J/cm2 in NF-RGO to 4.3 J/cm2 in NF-RGO/Ag-NPs, while at fs regime, the nonlinear absorption coefficient (β) was found to increase with decrease in concentration of Ag-NPs in the hybrid. Two-photon absorption (2 PA) in combination with saturable absorption (SA) in femtosecond regime, and reverse saturable absorption (RSA) along with saturable absorption (SA) in the nanosecond regime, are responsible for the observed nonlinear optical absorption (NLA) behavior in these materials. These findings show that the as-synthesized NF-RGO/Ag-NPs hybrid is a relatively better material for nonlinear optical limiting applications.
Study of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin Film
Directory of Open Access Journals (Sweden)
H. N. Desai
2015-06-01
Full Text Available Thin film of Zinc Selenide (ZnSe was deposited onto transparent glass substrate by thermal evaporation technique. ZnSe thin film was characterized by UV-Visible spectrophotometer within the wavelength range of 310 nm-1080 nm. The Linear optical parameters (linear optical absorption, extinction coefficient, refractive index and complex dielectric constant of ZnSe thin film were analyzed from absorption spectra. The optical band gap and Urbach energy were obtained by Tauc’s equation. The volume and surface energy loss function of ZnSe thin film were obtained by complex dielectric constant. The Dispersion parameters (dispersion energy, oscillation energy, moment of optical dispersion spectra, static dielectric constant and static refractive index were calculated using theoretical Wemple-DiDomenico model. The oscillation strength, oscillator wavelength, high frequency dielectric constant and high frequency refractive index were calculated by single Sellmeier oscillator model. Also, Lattice dielectric constant, N/m* and plasma resonance frequency were obtained. The electronic polarizibility of ZnSe thin film was estimated by Clausius-Mossotti local field polarizibility. The nonlinear optical parameters (non-linear susceptibility and non-linear refractive index were estimated.
Linear and nonlinear optical absorption characterization of natural laccaic acid dye
Zongo, S.; Dhlamini, M. S.; Kerasidou, A. P.; Beukes, P.; Sahraoui, B.; Maaza, M.
2015-09-01
We report on the optical performances of laccaic acid dye in solution at different concentrations and dye-poly(methyl methacrylate) composite thin films. The linear spectral characteristics including optical constants, i.e. refractive index ( n) and extinction coefficient ( k), were carried out in a comprehensive way through absorbance, fluorescence and ellipsometric studies. The nonlinear optical parameters such as nonlinear absorption coefficient β eff (or β 2), the imaginary third-order susceptibility (Im[ χ (3)]) and the imaginary part of second-order hyperpolarizability ( γ) of the samples were evaluated using the open-aperture Z-scan technique with a laser pulse duration of 10 ns at 532 nm wavelength. The corresponding numerical values of these parameters were of 10-10, 10-11 and 10-32 order, respectively. Two-photon absorption was revealed to be the main driving physical mechanism in the nonlinear response. This suggests that laccaic acid dye can be a potential candidate for NLO materials application.
Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers.
Buckland, E L; Boyd, R W
1997-05-15
The electrostrictive contribution to the nonlinear refractive index is investigated by use of frequency-dependent cross-phase modulation with a weak unpolarized cw probe wave and a harmonically modulated pump copropagating in optical fibers. Self-delayed homodyne detection is used to measure the amplitude of the sidebands imposed upon the probe wave as a function of pump intensity for pump modulation frequencies from 10 MHz to 1 GHz. The ratio of the electrostrictive nonlinear coefficient to the cross-phase-modulation Kerr coefficient for unpolarized light is measured to be 1.58:1 for a standard step-index single-mode fiber and 0.41:1 for dispersion-shifted fibers, indicating a larger electrostrictive response in silica fibers than previously expected.
Application of Novel Nonlinear Optical Materials to Optical Processing
Banerjee, Partha P.
1999-01-01
We describe wave mixing and interactions in nonlinear photorefractive polymers and disodium flourescein. Higher diffracted orders yielding forward phase conjugation can be generated in a two-wave mixing geometry in photorefractive polymers, and this higher order can be used for image edge enhancement and correlation. Four-wave mixing and phase conjugation is studied using nonlinear disodium floureschein, and the nature and properties of gratings written in this material are investigated.
Nonlinear Optical BBO Crystals: Growth, Properties and Applications
Institute of Scientific and Technical Information of China (English)
唐鼎元
2000-01-01
Low temperature phase barium metaborate β-BaB2O4 (BBO) is an important nonlinear optical material. Up to now, the BBO single crystals with large size and good optical quality were grown from Na2O or NaF fluxed solvents by the top-seeded solution growth (TSSG) technique with or without pulling. In order to improve the growth rate and quality of BBO crystals, several new techniques such as continuous feeding, forced stirring and cooling growing crystals etc. have been suggested. Applications of BBO as an excellent nonlinear optical crystal include mainly frequency conversion of various laser radiation, high average power frequency conversion, frequency doubling of ultrashort pulses and broadly tunable optical parametric oscillators (OPO).This paper is a brief review on the growth, properties and applications of BBO crystals.
Nonlinear optical properties of cobalt and iron doped CdSe nanoparticles using Z-scan technique
Energy Technology Data Exchange (ETDEWEB)
Gaur, Poonam, E-mail: poonam.gaur612@gmail.com [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Malik, B.P. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Gaur, Arun [Department of Physics, Hindu College, Sonipat 131001, Haryana (India)
2015-01-15
The present work aims at the synthesis of pure, Cobalt (Co) and Iron (Fe) doped CdSe nanoparticles by the wet chemical method. The optical properties of synthesized nanoparticles have been characterized by X-ray diffraction (XRD), UV–vis spectroscopy to find the optical direct band gap and estimation of particle size by using Debye–Scherrer formula and HRTEM. The nonlinear optical properties such as nonlinear absorption co-efficient, nonlinear refraction co-efficient and third order nonlinear susceptibility χ{sup (3)} are investigated. The calculations have been performed with the help of Z-scan experimental set-up using Nd: YAG laser emitting 532 nm, 5 ns laser pulses with intensity maintained at 2.296 TW/cm{sup 2}. The nanoparticles clearly exhibit a negative value of nonlinear refraction, which is attributed to the two photon absorption and free carrier absorption. Further the optical limiting behavior is determined (figure of merit (FOM)). The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.
Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction
Energy Technology Data Exchange (ETDEWEB)
Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K., E-mail: pkdatta.iitkgp@gmail.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)
2016-07-07
Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp{sup 2}-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp{sup 2} and sp{sup 3}-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (∼127 GW/cm{sup 2}) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm{sup 2} to 302 GW/cm{sup 2}). The values of two-photon absorption co-efficient (∼0.0022–0.0037 cm/GW for GO, and ∼0.0128–0.0143 cm/GW for RGO) and the saturation intensity (∼57 GW/cm{sup 2} for GO, and ∼194 GW/cm{sup 2} for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.
A Strategy for the Development of Macromolecular Nonlinear Optical Materials
1990-01-01
obsolete. SECURITY CLASSIFICATION OF THIS PAGE STRATEGY FOR THE DEVELOPMENT OF MACROMOLECULAR NONLINEAR OPTICAL MATERIALS Braja K. Mandala , Jan-Chan...materials is significantly different from the conventional inorganic NLO materials. The extent of second order (quadratic) NLO effect such as second...is a criterion of paramount importance for a large second order electro-optic effect in organic materials 8 ,9 . The most common approach to obtain
Nonlinear Optical Properties and Femtosecond Laser Micromachining of Special Glasses
Almeida,Juliana M. P.; Gustavo F. B. Almeida; Boni, Leonardo De; Cleber R. Mendonça
2015-01-01
Materials specially designed for photonics have been at the vanguard of chemistry, physics and materials science, driven by the development of new technologies. One particular class of materials investigated in this context are glasses, that in principle should exhibit high third order optical nonlinearities and fast response time, whose optical properties can be tailored by compositional changes, such as, for instance, the incorporation of metallic nanoparticles to explore plasmon resonances...
Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics
Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi
2015-01-01
The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large ${{\\chi }^{(2)}}$ response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently ...
Guesmi, Latifa; Menif, Mourad
2016-04-01
The field of fiber optics nonlinearity is more discussed last years due to such remarkable enhancement in the nonlinear processes efficiency. In this paper, and for optical performance monitoring (OPM), a new achievement of nonlinear effects has been investigated. The use of cross-phase modulation (XPM) and four-wave mixing (FWM) effects between input optical signal and inserted continuous-wave probe has proposed for impairments monitoring. Indeed, transmitting a multi-channels phase modulated signal at high data rate (1 Tbps WDM Nyquist NRZ- DP-QPSK) improves the sensitivity and the dynamic range monitoring. It was observed by simulation results that various optical parameters including optical power, wavelength, chromatic dispersion (CD), polarization mode dispersion (PMD), optical signal-to-noise ratio (OSNR), Q-factor and so on, can be monitored. Also, the effect of increasing the channel spacing between WDM signals is studied and proved its use for FWM power monitoring.
Energy Technology Data Exchange (ETDEWEB)
Nalla, Venkatram; Ji Wei [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua, E-mail: chmxqh@nus.edu.sg, E-mail: phyjiwei@nus.edu.sg [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore)
2010-10-15
A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.
Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle
Indian Academy of Sciences (India)
GHARAATI A; KAMALDAR A
2016-06-01
The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric constants. In the second step, the Maxwell–Garnetttheory is exploited to replace the spherical nanoparticles with cylindrical and ellipsoidal ones, facilitating the calculation of the third-order nonlinear effective susceptibility for a degenerate four-wave mixing case. The results are followed by numerical computations for silver, copper and gold nanoparticles. It is shown, graphically, that the maximum and minimum of the real part of thereflection coefficient for nanoparticles of silver occurs in smaller wavelengths compared to that of copper and gold. Further, it is found that spherical nanoparticles exhibit greater figure-of-merit compared to those with cylindrical or ellipsoidal geometries.
On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient
Directory of Open Access Journals (Sweden)
John D. Towers
2002-10-01
Full Text Available We study the Cauchy problem for the nonlinear (possibly strongly degenerate parabolic transport-diffusion equation $$ partial_t u + partial_x (gamma(xf(u=partial_x^2 A(u, quad A'(cdotge 0, $$ where the coefficient $gamma(x$ is possibly discontinuous and $f(u$ is genuinely nonlinear, but not necessarily convex or concave. Existence of a weak solution is proved by passing to the limit as $varepsilondownarrow 0$ in a suitable sequence ${u_{varepsilon}}_{varepsilon>0}$ of smooth approximations solving the problem above with the transport flux $gamma(xf(cdot$ replaced by $gamma_{varepsilon}(xf(cdot$ and the diffusion function $A(cdot$ replaced by $A_{varepsilon}(cdot$, where $gamma_{varepsilon}(cdot$ is smooth and $A_{varepsilon}'(cdot>0$. The main technical challenge is to deal with the fact that the total variation $|u_{varepsilon}|_{BV}$ cannot be bounded uniformly in $varepsilon$, and hence one cannot derive directly strong convergence of ${u_{varepsilon}}_{varepsilon>0}$. In the purely hyperbolic case ($A'equiv 0$, where existence has already been established by a number of authors, all existence results to date have used a singular maolinebreak{}pping to overcome the lack of a variation bound. Here we derive instead strong convergence via a series of a priori (energy estimates that allow us to deduce convergence of the diffusion function and use the compensated compactness method to deal with the transport term. Submitted April 29, 2002. Published October 27, 2002. Math Subject Classifications: 35K65, 35D05, 35R05, 35L80 Key Words: Degenerate parabolic equation; nonconvex flux; weak solution; discontinuous coefficient; viscosity method; a priori estimates; compensated compactness
Chehrghani, A.; Torkamany, M. J.
2014-01-01
In this paper, the spectral and nonlinear optical properties of a colloidal solution of platinum nanoparticles (Pt NPs) in water are presented. The Pt NPs were prepared by laser ablation of a Pt metallic target in distilled water using a 1064 nm high frequency Nd:YAG laser. The intensity-dependent nonlinear optical absorption and nonlinear refraction behaviors of the sample exposed to the 532 nm nanosecond laser pulses were investigated by applying the Z-scan technique. The saturated nonlinear absorption coefficient 5.4 × 10-7 cm W-1 was obtained in a saturation intensity of 1.8 × 107 W cm-2. The saturable absorption response of the Pt NPs was switched to the reverse saturable absorption in the higher laser intensities. The nonlinear refractive index that has a negative value was increased from -3.5 × 10-13 cm2 W-1 up to -15 × 10-13 cm2 W-1 by increasing the laser intensity.
Zeolite Y Films as Ideal Platform for Evaluation of Third-Order Nonlinear Optical Quantum Dots
Directory of Open Access Journals (Sweden)
Hyun Sung Kim
2016-01-01
Full Text Available Zeolites are ideal host material for generation and stabilization of regular ultrasmall quantum dots (QDs array with the size below 1.5 nm. Quantum dots (QDs with high density and extinction absorption coefficient have been expected to give high level of third-order nonlinear optical (3rd-NLO and to have great potential applications in optoelectronics. In this paper, we carried out a systematic elucidation of the third-order nonlinear optical response of various types of QDs including PbSe, PbS, CdSe, CdS, ZnSe, ZnS, Ag2Se, and Ag2S by manipulation of QDs into zeolites Y pores. In this respect, we could demonstrate that the zeolite offers an ideal platform for capability comparison 3rd-NLO response of various types of QDs with high sensitivities.
Summary of known linear and nonlinear optical properties of LiInS{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Ebbers, C.
1994-02-24
LiInS{sub 2} is a potentially useful crystal for cascaded parametric frequency conversion in the mid-IR. It is nearly noncritically phasematched for 1.064 {mu}m pumped, degenerate 2.12 {mu}m generation and 2 micron pumped generation of 3--5 {mu}m light. The nonlinear optical coefficients are 2{times} larger than those of KTP or KTA, while the transparency extends from 0.5--8 {mu}m. LiInS{sub 2} crystals are currently available in volumes up to 5 mm{sup 3}. This memo provides a brief summary of the current literature concerning the growth and linear and nonlinear optical properties of LiInS{sub 2}.
Structure property relationships for the nonlinear optical response of fullerenes
Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.
1994-11-01
We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.
Demonstration of a Chip-based Nonlinear Optical Isolator
Hua, Shiyue; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min
2016-01-01
Despite fundamentally challenging in integrated (nano)photonics, achieving chip-based light nonreciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on Faraday effects, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, revealed dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To overcome this dynamic reciprocity, we here report the first demonstration of a nonlinear optical isolator on a silicon chip enforced by phase-matched parametric amplification. Using a high-Q microtoroid resonator, we realize highly nonreciprocal transport at the 1,550 nm wavelength when waves are simultaneously launched in both forward and backward directions. Our design, compatible with current CMOS technique, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input ...
Optoelectronic and nonlinear optical processes in low dimensional semiconductors
Indian Academy of Sciences (India)
B P Singh
2006-11-01
Spatial confinement of quantum excitations on their characteristic wavelength scale in low dimensional materials offers unique possibilities to engineer the electronic structure and thereby control their physical properties by way of simple manipulation of geometrical parameters. This has led to an overwhelming interest in quasi-zero dimensional semiconductors or quantum dots as tunable materials for multitude of exciting applications in optoelectronic and nonlinear optical devices and quantum information processing. Large nonlinear optical response and high luminescence quantum yield expected in these systems is a consequence of huge enhancement of transition probabilities ensuing from quantum confinement. High quantum efficiency of photoluminescence, however, is not usually realized in the case of bare semiconductor nanoparticles owing to the presence of surface states. In this talk, I will focus on the role of quantum confinement and surface states in ascertaining nonlinear optical and optoelectronic properties of II–VI semiconductor quantum dots and their nanocomposites. I will also discuss the influence of nonlinear optical processes on their optoelectronic characteristics.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Nonlinear interaction of meta-atoms through optical coupling
Energy Technology Data Exchange (ETDEWEB)
Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Powell, D. A. [Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Shadrivov, I. V.; Kivshar, Yu. S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Lapine, M., E-mail: mlapine@physics.usyd.edu.au [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia); McPhedran, R. C. [Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia)
2014-01-06
We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.
Investigation of Nonlinear Optical Properties of Semiconductors.
1984-02-23
optical studies of InSb NI. W. Goodwin" and D. G. Seiler Center jo .4pphed Quurntm Electronics, Department of Phytics , North 1exu.% State Unuvpieroty...lnSb, in zero magnetic field, is that of Pidgeon anJ data, aside from two-photon absorption, could be ab- co-workers,’ who give references to other
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
Decay of high order optical vortices in anisotropic nonlinear optical media
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.; Zozulya, A.A.
1997-01-01
We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....
Implementation of Nonlinear Control Laws for an Optical Delay Line
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
Few-photon coherent nonlinear optics with a single molecule
Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid
2015-01-01
The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...
Broadband excitation and collection in fiber-optic nonlinear endomicroscopy
Prakash Ghimire, Navin; Bao, Hongchun; Gu, Min
2013-08-01
Broadband excitation and collection in a fiber-optic nonlinear endomicroscope are realized by using a single hollow-core double-clad photonic crystal fiber and a gradient index lens. Femtosecond pulses with central wavelengths in the range of 750-850 nm can be directly delivered through the core of the fiber for nonlinear excitation without pre-chirping. A gradient index lens with numerical aperture 0.8 designed to operate over the near-infrared wavelength range is used for focusing the laser beam from the fiber for nonlinear excitation and for collecting the fluorescent signal from the sample. This compact system is suitable to perform nonlinear imaging of multiple fluorophors in the wavelength range of 750-850 nm.
Indian Academy of Sciences (India)
EMRULLAH YA¸SAR; YAKUP YILDIRIM; ILKER BURAK GIRESUNLU
2016-08-01
Fin materials can be observed in a variety of engineering applications. They are used to ease the dissipation of heat from a heated wall to the surrounding environment. In this work, we consider a nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. The equation(s) under study are highly nonlinear. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. Firstly, we consider the Lie group analysis for different cases of thermal conductivity and the heat transfer coefficients. These classifications are obtained from the Lie group analysis. Then, the first integrals of the nonlinear straight fin problem are constructed by three methods, namely, Noether’s classical method, partial Noether approach and Ibragimov’s nonlocal conservation method. Some exact analytical solutions are also constructed. The obtained result is also compared with the result obtained by other methods.
2015-09-17
processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position
Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.
1993-03-01
The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.
Quantum nonlinear optics with single photons enabled by strongly interacting atoms
DEFF Research Database (Denmark)
Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi Yu
2012-01-01
The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding...
Power-transfer effects in monomode optical nonlinear waveguiding structures.
Jakubczyk, Z; Jerominek, H; Patela, S; Tremblay, R; Delisle, C
1987-09-01
We describe power-transfer effects, over a certain threshold, among constituents of planar waveguiding structures consisting of an optical linear layer deposited onto a nonlinear substrate (CdS(x)Se(1-x)-doped glass). Proper selection of the thickness of the linear waveguiding film and the refractive index of the linear cladding allows one to obtain optical transistor action and to construct all-optical AND, OR, NOT, and XOR logic gates. The effects appear for the TE(0) guided mode.
Covariant Description of Transformation Optics in Linear and Nonlinear Media
Paul, Oliver
2011-01-01
The technique of transformation optics (TO) is an elegant method for the design of electromagnetic media with tailored optical properties. In this paper, we focus on the formal structure of TO theory. By using a complete covariant formalism, we present a general transformation law that holds for arbitrary materials including bianisotropic, magneto-optical, nonlinear and moving media. Due to the principle of general covariance, the formalism is applicable to arbitrary space-time coordinate transformations and automatically accounts for magneto-electric coupling terms. The formalism is demonstrated for the calculation of the second harmonic generation in a twisted TO concentrator.
Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae
Maksymov, Ivan S
2015-01-01
Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...
Liu, Yi; Liu, Hui; Qin, Guangjiong; Gui, Zhiguo; Yang, Zhimao; Liu, Jialei
2017-10-01
Novel nonlinear optical polymer based on poly(aryl ether ketone) was designed and prepared. Such kind of materials showed excellent water solubility and thermal properties, its onset decomposition temperature can reach 314 °C; glass transition temperature can reach 170 °C. Though the nonlinear optical coefficients (d33) is not very large at 1310 nm, just about 13.9 pm/V; such kind of materials show us a low absorption spectral window at red and infrared light area (wavelength longer than 650 nm). Under the laser of 1310 nm, the morphology of the poled films can be detected by second harmonic generation (SHG) scanning microscopy.
Investigation of Optical Nonlinearities in Bi-Doped Se-Te Chalcogenide Thin Films
Yadav, Preeti; Sharma, Ambika
2015-03-01
The present paper reports the nonlinear optical properties of chalcogenide Se85- x Te15Bi x (0 ≤ x ≤ 5) thin films. The formulation proposed by Boling, Fournier, and Snitzer and Tichy and Ticha has been used to compute the nonlinear refractive index n 2. The two-photon absorption coefficient β 2, and first- and third-order susceptibilities [ χ (1) and χ (3)] are also reported. The nonlinear refractive index n 2 is well correlated with the linear refractive index n and Wemple-DiDomenico (WDD) parameters, in turn depending on the density ρ and molar volume V m of the system. The density of the system is calculated experimentally by using Archimedes' principle. The linear optical parameters, viz. n, WDD parameters, and optical bandgap E g, are measured experimentally using ellipsometric curves obtained by spectrophotometry. The composition-dependent behavior of n 2 is analyzed on the basis of various parameters, viz. density, bond distribution, cohesive energy (CE), and optical bandgap E g, of the system. The variation of n 2 and β 2 with changing bandgap E g is also reported. The values of n 2 and χ (3) of the investigated chalcogenides are compared with those of pure silica, oxide, and other Se-based glasses.
Optical nonlinearities of small polarons in lithium niobate
Imlau, Mirco; Badorreck, Holger; Merschjann, Christoph
2015-12-01
An overview of optical nonlinearities of small bound polarons is given, which can occur in the congruently melting composition of LiNbO3. Such polarons decisively influence the linear and nonlinear optical performance of this material that is important for the field of optics and photonics. On the basis of an elementary phenomenological approach, the localization of carriers in a periodic lattice with intrinsic defects is introduced. It is applied to describe the binding energies of four electron and hole small polarons in LiNbO3: small free NbNb4 + polarons, small bound NbLi4 + polarons, small bound NbLi4 +:NbNb4 + bipolarons, and small bound O- hole polarons. For the understanding of their linear interaction with light, an optically induced transfer between nearest-neighboring polaronic sites is assumed. It reveals spectrally well separated optical absorption features in the visible and near-infrared spectral range, their small polaron peak energies and lineshapes. Nonlinear interaction of light is assigned to the optical formation of short-lived small polarons as a result of carrier excitation by means of band-to-band transitions. It is accompanied by the appearance of a transient absorption being spectrally constituted by the individual fingerprints of the small polarons involved. The relaxation dynamics of the transients is thermally activated and characterized phenomenologically by a stretched exponential behavior, according to incoherent 3D small polaron hopping between regular and defect sites of the crystal lattice. It is shown that the analysis of the dynamics is a useful tool for revealing the recombination processes between small polarons of different charge. Nonlinear interaction of small polarons with light furthermore results in changes of the index of refraction. Besides its causal relation to the transients via Kramers-Kronig relation, pronounced index changes may occur due to optically generated electric fields modulating the index of refraction
Third-order optical nonlinearities of PVP/Pd nanohybrids
Papagiannouli, I.; Potamianos, D.; Krasia-Christoforou, T.; Couris, S.
2017-10-01
Pd nanoparticles stabilized by polyvinylpyrrolidone were synthesized following mild reduction of palladium ion complexes. Their morphology and optical properties were characterized using Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis absorption spectroscopy to confirm the existence of monodispersed, low-dimensional single nanoparticles. Furthermore, their third-order nonlinear optical properties were investigated by means of the Z-scan technique, using 35 ps and 4 ns laser pulses, both in the visible (532 nm) and in the infrared (1064 nm). These results denote that the surface plasmon resonance is not significantly contributing to the nonlinear optical response of Pd nanoparticles. In contrast, a two photon absorption process was found to contribute to the observed response. The present results are discussed and compared with previous literature findings.
Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks
Directory of Open Access Journals (Sweden)
Cosimo Lacava
2017-01-01
Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.
Space vehicle pose estimation via optical correlation and nonlinear estimation
Rakoczy, John M.; Herren, Kenneth A.
2008-03-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
E Heebner, John; Boyd, Robert W; Park, Q-Han
2002-03-01
We describe an optical transmission line that consists of an array of wavelength-scale optical disk resonators coupled to an optical waveguide. Such a structure leads to exotic optical characteristics, including ultraslow group velocities of propagation, enhanced optical nonlinearities, and large dispersion with a controllable magnitude and sign. This device supports soliton propagation, which can be described by a generalized nonlinear Schrodinger equation.
Institute of Scientific and Technical Information of China (English)
Qiao Yao-Jun; Liu Xue-Jun; Ji Yue-Feng
2011-01-01
This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems.The research results show that this method can reduce the walkoff effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method,the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system,but also effective for highdispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation.The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method.For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system,the suggested method can improve the nonlinear threshold (for Q ＞ 10 dB) about 2.7,1.2 and 1.0 dB,and the maximum Q factor about 1.2,0.4 and 0.3 dB,for 2,8 and 16 ps/(nm·km) dispersion coefficients.
Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.
2016-04-01
We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.
Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs
Maksymov, Ivan S
2016-01-01
Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.
Second-order nonlinear optical metamaterials: ABC-type nanolaminates
Energy Technology Data Exchange (ETDEWEB)
Alloatti, L., E-mail: alloatti@mit.edu; Kieninger, C.; Lauermann, M.; Köhnle, K. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Froelich, A.; Wegener, M. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Frenzel, T. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Freude, W. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Leuthold, J.; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)
2015-09-21
We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.
VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM
Directory of Open Access Journals (Sweden)
RANJU KANWAR
2013-04-01
Full Text Available In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through this work, it is investigated that for longer transmission distance, 40-Gb/s systems are more sensitive to nonlinear phase noise as compared to 50-Gb/s systems. Also, when transmitting the data through the fiber optic link, bit errors are produced due to various effects such as noise from optical amplifiers and nonlinearity occurring in fiber. On the basis of the simulation results , we have compared the bit error rate based on 8-PSK with theoretical results, and result shows that in real time approach, the bit error rate is high for the same signal to noise ratio. MATLAB software is used to validate the analytical expressions for the variance of nonlinear phase noise.
Directory of Open Access Journals (Sweden)
Kim Gaik Tay
2010-04-01
Full Text Available In the present work, by considering the artery as a prestressed thin-walled elastic tube with a symmetrical stenosis and the blood as an incompressible viscous fluid, we have studied the amplitude modulation of nonlinear waves in such a composite medium through the use of the reductive perturbation method [23]. The governing evolutions can be reduced to the dissipative non-linear Schrodinger (NLS equation with variable coefficient. The progressive wave solution to the above non-linear evolution equation is then sought.
Contactless nonlinear optics mediated by long-range Rydberg interactions
Busche, Hannes; Huillery, Paul; Ball, Simon W.; Ilieva, Teodora; Jones, Matthew P. A.; Adams, Charles S.
2017-07-01
In conventional nonlinear optics, linear quantum optics, and cavity quantum electrodynamics to create effective photon-photon interactions photons must have, at one time, interacted with matter inside a common medium. In contrast, in Rydberg quantum optics, optical photons are coherently and reversibly mapped onto collective atomic Rydberg excitations, giving rise to dipole-mediated effective photon-photon interactions that are long range. Consequently, a spatial overlap between the light modes is no longer required. We demonstrate such a contactless coupling between photons stored as collective Rydberg excitations in spatially separate optical media. The potential induced by each photon modifies the retrieval mode of its neighbour, leading to correlations between them. We measure these correlations as a function of interaction strength, distance and storage time, demonstrating an effective interaction between photons separated by 15 times their wavelength. Contactless effective photon-photon interactions are relevant for scalable multichannel photonic devices and the study of strongly correlated many-body dynamics using light.
Dispersive optical nonlinearities in an EIT-Rydberg medium
Stanojevic, Jovica; Bimbard, Erwan; Ourjoumtsev, Alexei; Grangier, Philippe
2013-01-01
We investigate dispersive optical nonlinearities that arise from Rydberg excitation blockade in cold Rydberg gases. We consider a two-photon transition scheme and study the non-linear response to a weak optical probe in presence of a strong control beam. For very low probe fields, the dominant nonlinearities are of the third order and they can be exactly evaluated in a steady state regime. In a more general case, the change in average atomic populations and coherences due to Rydberg interactions can be characterized by properly defined scaling parameters, which are generally complex numbers but in certain situations take the usual meaning of the number of atoms in a blockade sphere. They can be used in a simple "universal scaling" formula to determine the dispersive optical nonlinearity of the medium. We also develop a novel technique to account for the Rydberg interaction effects, by simplifying the treatment of nonlocal interaction terms, the so-called collisional integrals. We find algebraic relations that...
Deterministic quantum nonlinear optics with single atoms and virtual photons
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
(DARPA) Nonlinear Optics at Low Light Levels
2010-05-28
Stokes and anti-Stokes photons are transmitted through 10 GHz electro- optic amplitude modulators ( Eospace Inc.) with a half-wave voltage, Vπ of 1.3V. To...sinusoidal phase modulators ( EOSPACE ) which are driven at 30 GHz with modulation depths of about 1.5 radians. To set the modulation depth, we adjust...variable attenuator, (e) Atm Inc. P1409-360 phase trimmer, (f) Nextec-RF NA00435 amplifiers, (g) MegaPhase CA- V1K2 K to V coaxial adapters, (h) EOSPACE
Power transmission coefficients for multi-step index optical fibres.
Aldabaldetreku, Gotzon; Zubia, Joseba; Durana, Gaizka; Arrue, Jon
2006-02-20
The aim of the present paper is to provide a single analytical expression of the power transmission coefficient for leaky rays in multi-step index (MSI) fibres. This expression is valid for all tunnelling and refracting rays and allows us to evaluate numerically the power attenuation along an MSI fibre of an arbitrary number of layers. We validate our analysis by comparing the results obtained for limit cases of MSI fibres with those corresponding to step-index (SI) and graded-index (GI) fibres. We also make a similar comparison between this theoretical expression and the use of the WKB solutions of the scalar wave equation.
Improvement of nonlinear optical properties of graphene oxide in mixed with Ag2S@ZnS core-shells
Khanzadeh, M.; Dehghanipour, M.; Karimipour, M.; Molaei, M.
2017-04-01
Nonlinear optical properties including size and sign of nonlinear refractive index and nonlinear absorption coefficient of Graphene Oxide (GO), Ag2S@ZnS quantum dots and GO-Ag2S@ZnS were investigated using a Z-scan technique by laser diode with 532 nm wavelength. Third-order susceptibility of the compounds was calculated and compared with the reported values. By comparing the nonlinear optical (NLO) properties of GO and the mixture of GO-Ag2S@ZnS, it was observed that the NLO properties of GO were increased using simply mixing with Ag2S@ZnS quantum dots. It was also observed that with increase of sonication time, the NLO properties of the mixture increased accordingly.
Hirooka, Toshihiko; Seya, Daiki; Harako, Koudai; Suzuki, Daiki; Nakazawa, Masataka
2015-08-10
We propose the ultrahigh-speed demultiplexing of Nyquist OTDM signals using an optical Nyquist pulse as both a signal and a sampling pulse in an all-optical nonlinear switch. The narrow spectral width of the Nyquist pulses means that the spectral overlap between data and control pulses is greatly reduced, and the control pulse itself can be made more tolerant to dispersion and nonlinear distortions inside the nonlinear switch. We apply the Nyquist control pulse to the 640 to 40 Gbaud demultiplexing of DPSK and DQPSK signals using a nonlinear optical loop mirror (NOLM), and demonstrate a large performance improvement compared with conventional Gaussian control pulses. We also show that the optimum spectral profile of the Nyquist control pulse depends on the walk-off property of the NOLM.
Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.
2017-02-01
Metal organic complexes, diaceto bis benzimidazole cobalt(II) and diaceto bis benzimidazole copper(II), are synthesized by a simple chemical route. The synthesized powders are doped in PMMA with 1, 3, 5 wt% and deposited as free standing films of thickness ∼1 μm. For theoretical simulation, metal organic complex (MOC) embedded into the PMMA matrix is subjected to polarizability and hyperpolarizability calculations using the PM6 algorithm in MOPAC2012 package. It is found that the minimum interaction distance between PMMA and MOC is about 34 nm and does not vary with respect to the dopant. The copper complex shows higher interaction energy with the polymer matrix than the cobalt complex. Time dependent Hartree Fock approach is used to calculate the α, β and γ values for static, 0.25 and 0.5 eV energies; the cobalt complex shows higher polarizability and hyperpolarizability than the copper complex. Experimentally, the optical absorption, thermo-optic coefficient, nonlinear absorption coefficient and nonlinear refractive index of the samples are determined. The thermo-optic coefficients of the samples are seen to increase with increasing dopant concentration. From open aperture Z-scan studies the films are found to exhibit reverse saturable absorption behaviour, and from the closed aperture Z-scan all samples are found to exhibit self-focusing effects. The calculated third order susceptibility is in the order of 10‑5 esu. The optical limiting properties are studied at 650 nm using a 20 mW laser and all the samples are found to exhibit good optical limiting in the operating wavelength.
Second-order nonlinear optical microscopy of spider silk
Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.
2017-06-01
Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.
Self-characterization of linear and nonlinear adaptive optics systems
Hampton, Peter J.; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan
2008-01-01
We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM.
In vivo multimodal nonlinear optical imaging of mucosal tissue
Sun, Ju; Shilagard, Tuya; Bell, Brent; Motamedi, Massoud; Vargas, Gracie
2004-05-01
We present a multimodal nonlinear imaging approach to elucidate microstructures and spectroscopic features of oral mucosa and submucosa in vivo. The hamster buccal pouch was imaged using 3-D high resolution multiphoton and second harmonic generation microscopy. The multimodal imaging approach enables colocalization and differentiation of prominent known spectroscopic and structural features such as keratin, epithelial cells, and submucosal collagen at various depths in tissue. Visualization of cellular morphology and epithelial thickness are in excellent agreement with histological observations. These results suggest that multimodal nonlinear optical microscopy can be an effective tool for studying the physiology and pathology of mucosal tissue.
Synthesis and third-order nonlinear optical property of poly(urethane-imide)
Institute of Scientific and Technical Information of China (English)
Fuhong Zhu; Fengxian Qiu; Dongya Yang; Rongxian Zhang
2009-01-01
The poly(urcthane-imide) (PUI) which uses isophorone diisocyanate,dispersed red 19 (DR-19),and py romellitic dianhydride is synthesized. The PUI is characterized by Fourier transform infrared (FT-IR) spectroscopy,differential scanning calorimetry (DSC),and thermogravimetric analysis (TGA).The results of DSC and TGA indicate that the PUI exhibits high thermal stability up to its glass-transition temperature of 209 ~C and 5% heat weight loss temperature of 296 ~C.The fluorescence spectra of PUI and DR-19 are measured,showing that the fluorescence effect of PUI is very similar to that of DR-19 except for the light decrease of fluorescence intensity,which indicates that the fluorescence effect of PUI is generated by the azobenzene groups in its macromolecular chains.The maximum molar absorption coefficient,absorption wavelength,and chromophores density are measured and used to calculate the third-order nonlinear optical coefficient X(3) to be 3.96×10-13 esu.The nonlinear refractive index coefficient and molecular hypcrpolarizability of PUI are also obtained.PUI is proved to have an excellent optical performance.
Muruganandi, G.; Saravanan, M.; Vinitha, G.; Jessie Raj, M. B.; Sabari Girisun, T. C.
2017-05-01
Reduced graphene oxide (rGO) was prepared by reduction method using various reductants like hydrazine, sodium borohydride and ascorbic acid. XRD and Raman analysis confirmed the effective removal of functional groups in GO. SEM revealed that rGO consists of thin crumpled and disordered sheets closely associated with each other. Blue shift in UV-absorption maxima was due to weak interlayer coupling between the layers of rGO. Third order NLO properties of dispersed rGO were measured by Z-scan technique (532 nm, 50 mW). Both GO and rGO possess self defocusing, saturable absorption and optical limiting behavior. The nonlinear component of refractive index, absorption coefficient and optical susceptibility were found to be 10-8 cm2/W, 10-3 cm/W and 10-6 esu respectively. Tunability of NLO coefficients with altering functional groups upon rGO was achieved. rGO prepared using hydrazine with high NLO coefficient and excellent durability, signify the scope of utilizing them as optical limiters.
Nonlinear Quantum Optical Springs and Their Nonclassical Properties
Institute of Scientific and Technical Information of China (English)
M.J. Faghihi; M.K. Tavassoly
2011-01-01
The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant （and so its frequency） depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1＋ μα＋α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it＇s solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.
Ablation and optical third-order nonlinearities in Ag nanoparticles
Directory of Open Access Journals (Sweden)
Carlos Torres-Torres
2010-11-01
Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser
Nonlinear optical response in doped conjugated polymers
Harigaya, K
1995-01-01
Exciton effects on conjugated polymers are investigated in soliton lattice states. We use the Su-Schrieffer-Heeger model with long-range Coulomb interactions. The Hartree-Fock (HF) approximation and the single-excitation configuration- interaction (single-CI) method are used to obtain optical absorption spectra. The third-harmonic generation (THG) at off-resonant frequencies is calculated as functions of the soliton concentration and the chain length of the polymer. The magnitude of the THG at the 10 percent doping increases by the factor about 10^2 from that of the neutral system. This is owing to the accumulation of the oscillator strengths at the lowest exciton with increasing the soliton concentration. The increase by the order two is common for several choices of Coulomb interaction strengths.
Nonlinear optics with coherent free electron lasers
Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.
2016-12-01
We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.
Intrinsic optical bistability between left-handed material and nonlinear optical materials
Institute of Scientific and Technical Information of China (English)
Shi Hong-Yan; Jiang Yong-Yuan; Sun Xiu-Dong; Guo Ru-Hai; Zhao Yi-Ping
2005-01-01
The electromagnetic properties of the interface between a left-handed material and a conventional nonlinear material were investigated theoretically and numerically. We found a new phenomenon-optical bistability of the interface.It was shown that the incident intensity, incident angle and permeability ratio between the left-handed and the nonlinear materials could dramatically affect the optical bistable behaviour. We also compared the bistable behaviours of different electromagnetic modes. The results indicated that the TE mode was prior to the TM mode to obtain optical bistability for the same parameter.
Energy Technology Data Exchange (ETDEWEB)
Dhanalakshmi, B. [Department of Physics, Asan Memorial College of Engineering and Technology, Chengalpattu 603 203, Tamil Nadu (India); Ponnusamy, S., E-mail: suruponnus@gmail.com [Center for Materials Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Tamil Nadu (India); Muthamizhchelvan, C.; Subhashini, V. [Center for Materials Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Tamil Nadu (India)
2015-10-15
Highlights: • EDA4NPH crystal possesses negative nonlinear refractive index. • The crystal exhibits high third-order NLO susceptibility. • Wide transparency of the crystal makes it suitable for NLO applications. • Dielectric studies substantiate the suitability for electro-optic applications. • The crystal possesses suitable mechanical strength for device fabrication. - Abstract: Bulk crystals of the charge-transfer complex, ethylenediamine-4-nitrophenolate monohydrate, were grown by slow solvent evaporation method from aqueous solution at room temperature. The X-ray diffraction measurements showed that the crystal belongs to centrosymmetric space group C2/c of monoclinic system. The functional groups in the complex were identified using FTIR, FTRaman and FTNMR analyses. The Z-scan measurements revealed the negative nonlinear refractive index of the crystal. The nonlinear absorption coefficient and third order nonlinear optical susceptibility calculated from the measurements were −3.5823 × 10{sup −3} cm/W and 2.3762 × 10{sup −6} esu respectively. The crystal was shown to be highly transparent above 366 nm by UV–vis spectroscopy and a yellow fluorescence was observed from PL spectrum. The TG–DTA and DSC analyses showed that the crystal is thermally stable up to 117.4 °C. The crystals were characterized by dielectric, etching and microhardness studies.
Directory of Open Access Journals (Sweden)
Anju K. Augustine
2014-01-01
Full Text Available We present third-order optical nonlinear absorption in CdSe quantum dots (QDs with particle sizes in the range of 4.16–5.25 nm which has been evaluated by the Z-scan technique. At an excitation irradiance of 0.54 GW/cm2 the CdSe QDs exhibit reverse saturation indicating a clear nonlinear behavior. Nonlinearity increases with particle size in CdSe QDs within the range of our investigations which in turn depends on the optical band gap. The optical limiting threshold of the QDs varies from 0.35 GW/cm2 to 0.57 GW/cm2 which makes CdSe QDs a promising candidate for reverse-saturable absorption based devices at high laser intensities such as optical limiters.
Nonlinear optical properties and optical limiting measurements of graphene oxide - Ag@TiO2 compounds
Ebrahimi, M.; Zakery, A.; Karimipour, M.; Molaei, M.
2016-07-01
In this work Graphene Oxide (GO), Ag@TiO2 core-shells and GO-Ag@TiO2 compounds were prepared and experimentally verified. Using a low power laser diode with 532 nm wavelength, the magnitude and the sign of the nonlinear refractive index and nonlinear absorption were determined by the Z-scan technique. It was observed that the nonlinear absorption of GO-Ag@TiO2 mixture was higher than pure GO. The optical limiting effect of these samples was also investigated using the 2nd harmonics of a pulsed Nd-YAG laser at 532 nm. Our results showed that the sole Ag@TiO2 didn't show any appreciable optical limiting effect, however after just mixing with graphene oxide the threshold of optical limiting was increased and the compound showed an enhancement of optical limiting behavior compared to GO itself. The presented results are discussed and compared with other literature reports.
Enhancement of second-order nonlinear-optical signals by optical stimulation
Goodman, Aaron J
2015-01-01
Second-order nonlinear optical interactions such as sum- and difference-frequency generation are widely used for bioimaging and as selective probes of interfacial environments. However, inefficient nonlinear optical conversion often leads to poor signal-to-noise ratio and long signal acquisition times. Here, we demonstrate the dramatic enhancement of weak second-order nonlinear optical signals via stimulated sum- and difference-frequency generation. We present a conceptual framework to quantitatively describe the interaction and show that the process is highly sensitive to the relative optical phase of the stimulating field. To emphasize the utility of the technique, we demonstrate stimulated enhancement of second harmonic generation (SHG) from bovine collagen-I fibrils. Using a stimulating pulse fluence of only 3 nJ/cm2, we obtain an SHG enhancement >10^4 relative to the spontaneous signal. The stimulation enhancement is greatest in situations where spontaneous signals are the weakest - such as low laser pow...
Zhao, Peng; Wang, Zonghua; Chen, Jishi; Zhou, Yu; Zhang, Fushi
2017-04-01
The nonlinear optical properties of the polymeric carboxyl phthalocyanine with lanthanum (LaPPc.COOH), holmium (HoPPc.COOH) and ytterbium (YbPPc.COOH) as centric atom, were investigated by the Z-scan method using a picosecond 532 nm laser. The synthesized phthalocyanines had steric polymeric structure and dissolved well in aqueous solution. The nonlinear optical response of them was attributed to the reverse saturable absorption and self-focus refraction. The nonlinear absorption properties decreased with the centric atoms changing from La, Ho to Yb. The largest second-order hyperpolarizability and optical limiting response threshold of LaPPc.COOH were 3.89 × 10-29 esu and 0.32 J/cm2, respectively. The reverse saturable absorption was explained by a three level mode of singlet excited state under the picosecond irradiation. The result indicates the steric structure presented additive stability of these polymeric phthalocyanines for their application as potential optical limiting materials.
Nonlinear effects in optical pumping of a cold and slow atomic beam
Porfido, N.
2015-10-12
By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center
Energy Technology Data Exchange (ETDEWEB)
Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: jcorrea@udem.edu.co [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2016-03-01
We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.
Pakarzadeh, H.; Rezaei, S. M.
2016-01-01
In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.
Institute of Scientific and Technical Information of China (English)
ZHU Jia-Min; LIU Yu-Lu
2009-01-01
By constructing appropriate transformations and an extended elliptic sub-equation approach, we find some exact solutions of variable coefficient cubic-qulntic nonlinear Schrodinger equation with an external potential, which include bell and kink profile solitary wave solutions, singular solutions, triangular periodic wave solutions and so on.
Institute of Scientific and Technical Information of China (English)
Zhiguang Xiong; Chuanmiao Chen
2007-01-01
In this paper,n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u - uh = O(hn+2),n ≥ 2,at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.
Large Enhancement of Optical Nonlinearities of New Organophosphorus Fullerene Derivative
Institute of Scientific and Technical Information of China (English)
刘智波; 田建国; 臧维平; 周文远; 张春平; 郑建禺; 周迎春; 徐华
2003-01-01
Optical nonlinearities of new organophosphorus fullerene derivative were determined by the Z-scan method with a pulsed Q-switch Nd:YAG laser at 532nm. The experimental results demonstrated that the derivative has much larger excited-states nonlinear absorption and nonlinear refraction than C60. A five-level model was utilized to fit the experimental data, and a good agreement is reached. Some parameters such as excited-state absorption cross and refraction cross were obtained. To our knowledge, the excited-state cross section of new organophosphorus fullerene derivative and its effective ratio to the ground-state cross section are the largest values among the fullerene derivatives reported to date.
Arivazhagan, T.; Siva Bala Solanki, S.; Rajesh, Narayana Perumal
2017-02-01
The butyl 4-hydroxybenzoate single crystal has been grown by vertical Bridgman technique using single wall ampoule. The cell parameters of the grown crystal are verified by single crystal X-ray diffraction analysis. The functional groups of the grown crystal were identified by Fourier transform infrared analysis. The melting, decomposition and crystallization point of the compound are determined by thermo gravimetric analysis and differential scanning calorimetric analysis. The mechanical properties of the grown crystal has been analyzed by Vickers microhardness method. The optical behavior of the grown crystal has been observed by UV-vis-NIR transmission spectroscopic analysis which shows that the lower cut-off wavelength lying at 293 nm and found that the energy band gap value is 4.05 eV. The blue light emission of the crystal was identified by photoluminescence studies. The positive third order nonlinear optical parameters like nonlinear refractive index (n2), nonlinear absorption co-efficient (β) and third order nonlinear susceptibility (χ3) of the grown crystal was calculated by Z-scan studies. The positive sign of nonlinear refractive index (n2) indicates that the crystal exhibits self focusing optical nonlinearity. The crystal exhibits good optical power limiting behavior.
Motiei, H.; Jafari, A.; Naderali, R.
2017-02-01
In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.
A NON-LINEAR STRUCTURE-PROPERTY MODEL FOR OCTANOL-WATER PARTITION COEFFICIENT.
Yerramsetty, Krishna M; Neely, Brian J; Gasem, Khaled A M
2012-10-25
Octanol-water partition coefficient (K(ow)) is an important thermodynamic property used to characterize the partitioning of solutes between an aqueous and organic phase and has importance in such areas as pharmacology, pharmacokinetics, pharmacodynamics, chemical production and environmental toxicology. We present a non-linear quantitative structure-property relationship model for determining K(ow) values of new molecules in silico. A total of 823 descriptors were generated for 11,308 molecules whose K(ow) values are reported in the PhysProp dataset by Syracuse Research. Optimum network architecture and its associated inputs were identified using a wrapper-based feature selection algorithm that combines differential evolution and artificial neural networks. A network architecture of 50-33-35-1 resulted in the least root-mean squared error (RMSE) in the training set. Further, to improve on single-network predictions, a neural network ensemble was developed by combining five networks that have the same architecture and inputs but differ in layer weights. The ensemble predicted the K(ow) values with RMSE of 0.28 and 0.38 for the training set and internal validation set, respectively. The ensemble performed reasonably well on an external dataset when compared with other popular K(ow) models in the literature.
Directory of Open Access Journals (Sweden)
Azita Yazdanpanah
2014-04-01
Full Text Available Continuum robot manipulators are optimized to meet best trajectory requirements. Closed loop control is a key technology that is used to optimize the system output process to achieve this goal. In order to conduct research in the area of closed loop control, a control oriented cycle-to-cycle continuum robot model, containing dynamic model information for each individual continuum robot manipulator, is a necessity. In this research, the continuum robot manipulator is modeled according to information between joint variable and torque, which is represented by the nonlinear dynamic equation. After that, a multi-input-multi-output baseline computed torque control scheme is used to simultaneously control the torque load of system to regulate the joint variables to desired levels. One of the most important challenge in control theory is on-line tuning therefore fuzzy supervised optimization is used to tune the modified baseline and computed torque control coefficient. The performance of the modified baseline computed torque controller is compared with that of a baseline proportional, integral, and derivative (PID controller.
Energy Technology Data Exchange (ETDEWEB)
Sreekanth, G. [Department of Physics, St. Thomas College Pala, Kottayam 686574, Kerala (India); Chandralingam, S. [Department of Physics, Jawaharlal Nehru Technological University, Hyderabad 500085 (India); Philip, Jacob; Jayalakshmy, M.S. [Department of instrumentation, Cochin University of Science and Technology, Cochin, Kerala (India); Philip, Reji; Sridharan, Kishore [Raman research institute, Bangalore, Karnataka 560080 (India); Santhosh Kumar, R. [Department of Physics, St. George' s College Aruvithura, Kottayam 686122, Kerala (India); Joseph, Ginson P., E-mail: ginsonpj@gmail.com [Department of Physics, St. Thomas College Pala, Kottayam 686574, Kerala (India)
2012-12-15
Graphical abstract: Display Omitted Highlights: ► The single crystals of dimension 10 × 5 × 5 mm{sup 3} of allylthiourea mercury chloride are synthesized using slow evaporation technique. ► The bandgap of allylthiourea mercury chloride crystal is found to be about 3.18 eV. ► The optical nonlinearity of the crystal sample are studied using the open aperture Z-scan technique employing a nanosecond laser at 532 nm, and three photon absorption effect has been found. ► An improved photo pyroelectric is used to find the thermal parameters of the crystal. ► The piezoelectric charge coefficient is determined. -- Abstract: Single crystals of dimension 10 × 5 × 5 mm{sup 3} of allylthiourea mercury chloride were synthesized from aqueous solution using slow evaporation technique at ambient temperature. The grown crystals are confirmed by elemental analysis. The band gap of Allylthiourea mercury chloride crystal was found to be about 3.18 eV. The optical nonlinearity of the crystal sample was studied using the open aperture Z-scan technique employing a nanosecond laser at 532 nm, and a three-photon absorption effect has been found. The electrical properties such as dielectric constant, dielectric loss and ac conductivity of the sample were carried out by Agillent E 4980 A LCR meter at different temperatures. An improved photopyroelectric technique was used to find the thermal parameters of the crystal. The piezo electric charge coefficient is also determined.
Quantum nonlinear optics with polar J-aggregates in microcavities
Herrera, Felipe; Pachon, Leonardo A; Saikin, Semion K; Aspuru-Guzik, Alán
2014-01-01
We show that an ensemble of organic dye molecules with permanent electric dipole moments embedded in a microcavity can lead to strong optical nonlinearities at the single photon level. The strong long-range electrostatic interaction between chromophores due to their permanent dipoles introduces the desired nonlinearity of the light-matter coupling in the microcavity. We obtain the absorption spectra of a weak probe field under the influence of strong exciton-photon coupling with the cavity field. Using realistic parameters, we demonstrate that a single cavity photon can significantly modify the absorptive and dispersive response of the medium to a probe photon at a different frequency. Finally, we show that the system is in the regime of cavity-induced transparency with a broad transparency window for dye dimers. We illustrate our findings using pseudoisocyanine chloride (PIC) J-aggregates in currently-available optical microcavities.
Preparation of the Inclusion Complex-Type Nonlinear Optical Polymer
Directory of Open Access Journals (Sweden)
Li-Fen Wang
2013-01-01
Full Text Available This study uses the inclusion complex method to import nonlinear optical (NLO chromophores, disperse red1 (DR1, and spiropyran (SP, into the γ-CD cavity of the γ-cyclodextrin polymer (γ-CDP to prepare orderly aligned nonphotocontrollable and photocontrollable nonlinear optical polymers. Calculations support the ultraviolet/visible analyses and suggest the formation of the 1 : 2 DR1/γ-CDP and 1 : 2 SP/γ-CDP inclusion complexes. Upon complexation, the DR1 and SP molecules are free to align themselves along an applied electric field and show high order parameters of approximately 0.48 and 0.20, respectively. Reversible photochromic reactions exhibit that the SP/γ-CDP complex still retains the photochromic properties following corona poling.
Chromatic and Dispersive Effects in Nonlinear Integrable Optics
Webb, Stephen D; Valishev, Alexander; Nagaitsev, Sergei N; Danilov, Viatcheslav V
2015-01-01
Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker ...
Nonlinear optical polarization analysis in chemistry and biology
Simpson, Garth J
2017-01-01
This rigorous yet accessible guide presents a molecular-based description of nonlinear optical polarization analysis of chemical and biological assemblies. It includes discussion of the most common nonlinear optical microscopy and interfacial measurements used for quantitative analysis, specifically second harmonic generation (SHG), two-photon excited fluorescence (2PEF), vibrational sum frequency generation (SFG), and coherent anti-Stokes Raman spectroscopy/stimulated Raman spectroscopy (CARS/SRS). A linear algebra mathematical framework is developed, allowing step-wise systematic connections to be made between the observable measurements and the molecular response. Effects considered include local field corrections, the molecular orientation distribution, rotations between the molecular frame, the local frame and the laboratory frame, and simplifications from molecular and macromolecular symmetry. Specific examples are provided throughout the book, working from the common and relatively simple case studies ...
Parametric Analysis of Fiber Non-Linearity in Optical systems
Directory of Open Access Journals (Sweden)
Abhishek Anand
2013-06-01
Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.
ZnS/PVA nanocomposites for nonlinear optical applications
Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.
2016-07-01
We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.
Nonlinear optical localization in embedded chalcogenide waveguide arrays
Directory of Open Access Journals (Sweden)
Mingshan Li
2014-05-01
Full Text Available We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm2, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.
Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics
Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi
2015-03-01
The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large {{χ }(2)} response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently nonlinear and based on the efficient generation of harmonics as opposed to fluorescence or surface plasmon scattering. In addition, the fully coherent signal emitted by HNPs together with their polarization sensitive response and absence of resonant interaction make them appealing for several applications ranging from multi-photon (infrared) microscopy and holography, to cell tracking and sensing.
Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Nonlinear interface optical switch structure for dual mode switching revisited
Bussjager, Rebecca J.; Osman, Joseph M.; Chaiken, Joseph
1998-07-01
There is a need for devices which will allow integration of photonic/optical computing subsystems into electronic computing architectures. This presentation reviews the nonlinear interface optical switch (NIOS) concept and then describes a new effect, the erasable optical memory (EOM) effect. We evaluate an extension of the NIOS device to allow simultaneous optical/electronic, i.e. dual mode, switching of light utilizing the EOM effect. Specific devices involve the fabrication of thin film tungsten (VI) oxide (WO3) and tungsten (V) oxide (W2O5) on the hypotenuse of glass (BK-7), fused silica (SiO2) and zinc selenide (ZnSe) right angle prisms. Chemical reactions and temporal response tests were performed and are discussed.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
Computationally Efficient Nonlinearity Compensation for Coherent Fiber-Optic Systems
Institute of Scientific and Technical Information of China (English)
Likai Zhu; Guifang Li
2012-01-01
Split-step digital backward propagation (DBP) can be combined with coherent detection to compensate for fiber nonlinear impairments. A large number of DBP steps is usually needed for a long-haul fiber system, and this creates a heavy computational load. In a trade-off between complexity and performance, interchannel nonlinearity can be disregarded in order to simplify the DBP algorithm. The number of steps can also be reduced at the expense of performance. In periodic dispersion-managed long-haul transmission systems, optical waveform distortion is dominated by chromatic dispersion. As a result, the nonlinearity of the optical signal repeats in every dispersion period. Because of this periodic behavior, DBP of many fiber spans can be folded into one span. Using this distance-folded DBP method, the required computation for a transoceanic transmission system with full inline dispersion compensation can be reduced by up to two orders of magnitude with negligible penalty. The folded DBP method can be modified to compensate for nonlinearity in fiber links with non-zero residua dispersion per span.
Nonlinear optical properties of methyl red under CW irradiation
Zheng, Yu; Ye, Qing; Wang, Chen; Wang, Jin; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo
2015-12-01
Organic materials have wide potential application in nonlinear optical devices. The nonlinear optical (NLO) properties of methyl red (MR) doped polymethyl methacrylate (MR-PMMA) are investigated under CW laser irradiation at 473 nm, 532 nm and 632.8 nm, respectively. By combining Kramers-Kronig (K-K) relation and CW Z-scan technique, the effective refractive index n2 and the change of refractive index Δn are obtained under different scanning speed at 473 nm and 532 nm. Δn is positive at 473 nm, while Δn is negative at 532 nm. The experimental result is consistent with that of K-K relation. With the scanning speed decreasing, the NLO properties of MR-PMMA are enhanced. With different laser powers at 632.8 nm, MR-PMMA has only nonlinear absorption rather than nonlinear refraction. Meanwhile, the sample is investigated under pulse laser irradiation at 532 nm. Through the comparison of results of CW Z-scan and pulse Z-scan, the influence of the cumulative thermal effect on NLO properties of material is investigated. The results indicate that, under CW irradiation near the absorption peak wavelength, the cumulative thermal effect has great influence to the NLO properties of MR-PMMA.
Femtosecond nonlinear fiber optics in the ionization regime.
Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J
2011-11-11
By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.
Optical detection of terahertz using nonlinear parametric upconversion.
Khan, M Jalal; Chen, Jerry C; Kaushik, Sumanth
2008-12-01
We extend our work to perform sensitive, room-temperature optical detection of terahertz (THz) by using nonlinear parametric upconversion. THz radiation at 700 GHz is mixed with pump light at 1,550 nm in a bulk GaAs crystal to generate an idler wave at 1,555.6 nm. The idler is separated, coupled into optical fiber, and detected using a gated Geiger-mode avalanche photodiode. The resulting THz detector has a power sensitivity of 4.5 pW/Hz and a timing resolution of 1 ns.
Nonlinear optical properties of atomic vapor and semiconductors
Energy Technology Data Exchange (ETDEWEB)
Kim, Doseok [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1997-05-01
This thesis contains the study of highly forbidden resonant second harmonic generation (SHG) in atomic potassium vapor using tunable picosecond pulses. Various output characteristics of vapor SHG have been investigated including the input intensity dependence, potassium vapor density dependence, buffer gas pressure dependence, and spatial profile. Recently, the discovery of new nonlinear optical crystals such as barium borate (β-BaB_{2}O_{4}, BBO) and lithium borate (LiB_{3}O_{5}, LBO) has greatly improved the performance of a tunable coherent optical devices based on optical parametric generation and amplification. In the second part of this thesis, a homebuilt picosecond optical parametric generator/amplifier (OPG/OPA) system is described in detail, including its construction details and output characteristics. This laser device has found many useful applications in spectroscopic studies including surface nonlinear optical spectroscopy via sum-frequency generation (SFG). The last part of this thesis reports studies on multiphoton-excited photoluminescence from porous silicon and GaN. Multiphoton excitation and photoluminescence can give numerous complementary information about semiconductors not obtainable with one-photon, above-bandgap excitation.
Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Klimov, V.; McBranch, D.; Schwarz, C.
1998-08-10
Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.
Dispersion and polarization dependence of mobile carrier optical nonlinearities
Rustagi, K. C.
1984-06-01
Based on the author's earlier work, it is shown that the proper inclusion of carrier scattering should strongly modify the frequency and polarization dependence of optical nonlinearities due to mobile carriers in semiconductors. When the momentum relaxation is much faster than the energy relaxation, the intensity dependent refractive index is enhanced, the induced birefringence becomes a sharp function of the difference frequency ωa-ωb, and a collision induced stimulated Raman effect becomes important.
High field optical nonlinearity and the Kramers-Kronig relations.
Wahlstrand, J K; Cheng, Y-H; Milchberg, H M
2012-09-14
The nonlinear optical response to high fields is absolutely measured for the noble gas atoms He, Ne, Ar, Kr, and Xe. We find that the response is quadratic in the laser field magnitude up to the ionization threshold of each gas. Its size and quadratic dependence are well predicted by a Kramers-Kronig analysis employing known ionization probabilities, and the results are consistent with calculations using the time-dependent Schrödinger equation.
Nonlinear Optical Spectroscopy of Excited States in Polyfluorene
Tong, M; Vardeny, Z V
2006-01-01
We used a variety of nonlinear optical (NLO) spectroscopies to study the singlet excited states order, and primary photoexcitations in polyfluorene; an important blue emitting p-conjugated polymer. The polarized NLO spectroscopies include ultrafast pump-probe photomodulation, two-photon absorption, and electroabsorption. For completeness we also measured the linear absorption and photoluminescence spectra. We found that the primary photoexcitations in polyfluorene are singlet excitons.
Properties of nonreciprocal light propagation in a nonlinear optical isolator
Roy, Dibyendu
2016-01-01
Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly c...
Pabitha, G.; Dhanasekaran, R.
2013-09-01
The third order nonlinear optical properties of bis thiourea zinc acetate single crystal were measured using He-Ne laser (λ=632.8nm) by employing the Z-scan technique. The magnitude of nonlinear refractive index and nonlinear absorption coefficient were found to be -2.11×10-8cm2/W and -1.201×10-3cm/W respectively. The linear refractive index of the complex was measured by the Brewster angle method and was found to be 1.483. The third order non-linear optical susceptibility χ(3) was found to be in the order of 10-6esu. The negative non-linear absorption coefficient shows the defocusing nature of the complex which is an essential property required for the application in optical limiting application. The second harmonic generation efficiency of the complex was studied using the Powder Kurtz method and was found to be 1.5 times greater than that of KDP.
Optical nonlinearities in semiconductor-doped glasses near and below the band edge
Bindra, K. S.; Oak, S. M.; Rustagi, K. C.
1998-03-01
We present a brief review of our recent experimental results on optical nonlinearities in semiconductor-doped glasses. It is shown that even below the absorption edge the nonlinearities are determined by nonlinear absorption. The optical Kerr effect is found to have a susceptibility which is comparable to that for nonlinear refraction. We also find that in degenerate four-wave mixing the observed intensity dependence can be strongly influenced by nonlinear absorption.
Review of Robust Data Exchange Using Optical Nonlinearities
Directory of Open Access Journals (Sweden)
Jian Wang
2012-01-01
Full Text Available Data exchange, namely bidirectional information swapping, provides enhanced flexibility compared to the unidirectional information transfer. To fulfill the rapid development of high-speed large-capacity optical communications with emerging multiplexing/demultiplexing techniques and advanced modulation formats, a laudable goal would be to achieve data exchange in different degrees of freedom (wavelength, time, polarization, for different modulation formats (OOK, DPSK, DQPSK, pol-muxed, and at different granularities (entire data, groups of bits, tributary channels. Optical nonlinearities are potentially suitable candidates to enable data exchange in the wavelength, time, and polarization domains. In this paper, we will review our recent works towards robust data exchange by exploiting miscellaneous optical nonlinearities, including the use of cSFG/DFG in a PPLN waveguide for time- (groups of bits and channel-selective data exchange and tributary channel exchange between two WDM+OTDM signals, nondegenerate FWM in an HNLF for phase-transparent data exchange (DPSK, DQPSK, bidirectional degenerate FWM in an HNLF for multi-channel data exchange, and Kerr-induced nonlinear polarization rotation in an HNLF for tributary channel exchange of a pol-muxed DPSK OTDM signal. The demonstrated data exchanges in different degrees of freedom, for different modulation formats, and at different granularities, open the door for alternative approaches to achieve superior network performance.
Energy Technology Data Exchange (ETDEWEB)
Picozzi, A., E-mail: Antonio.Picozzi@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, CNRS-UMR 5027, Dijon (France); Garnier, J. [Laboratoire de Probabilités et Modèles Aléatoires and Laboratoire Jacques-Louis Lions, Université Paris VII, 75205 Paris Cedex 13 (France); Hansson, T. [Department of Information Engineering, Università di Brescia, Brescia 25123 (Italy); Suret, P.; Randoux, S. [Laboratoire de Physique des Lasers, Atomes et Molécules, CNRS, Université de Lille (France); Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, CNRS-UMR 5027, Dijon (France); Christodoulides, D.N. [College of Optics/CREOL, University of Central Florida, Orlando, FL 32816 (United States)
2014-09-01
The nonlinear propagation of coherent optical fields has been extensively explored in the framework of nonlinear optics, while the linear propagation of incoherent fields has been widely studied in the framework of statistical optics. However, these two fundamental fields of optics have been mostly developed independently of each other, so that a satisfactory understanding of statistical nonlinear optics is still lacking. This article is aimed at reviewing a unified theoretical formulation of statistical nonlinear optics on the basis of the wave turbulence theory, which provides a nonequilibrium thermodynamic description of the system of incoherent nonlinear waves. We consider the nonlinear Schrödinger equation as a representative model accounting either for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. Depending on the amount of nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous (nonstationary) statistics of the incoherent wave, different types of kinetic equations are derived and discussed. In the spatial domain, when the incoherent wave exhibits inhomogeneous statistical fluctuations, different forms of the (Hamiltonian) Vlasov equation are obtained depending on the amount of nonlocality. This Vlasov approach describes the processes of incoherent modulational instability and localized incoherent soliton structures. In the temporal domain, the causality property inherent to the response function leads to a kinetic formulation analogous to the weak Langmuir turbulence equation, which describes nonlocalized spectral incoherent solitons. In the presence of a highly noninstantaneous response, this formulation reduces to a family of singular integro-differential kinetic equations (e.g., Benjamin–Ono equation), which describe incoherent dispersive shock waves. Conversely, a non-stationary statistics leads to a (non-Hamiltonian) long-range Vlasov formulation, whose self-consistent potential
Energy Technology Data Exchange (ETDEWEB)
Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, México (Mexico); Kasapoglu, E.; Ungan, F.; Yesilgul, U. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)
2013-11-15
The 1s-like and 2p-like donor impurity energy states are studied in a semiconductor quantum wire of equilateral triangular cross section as functions of the impurity position and the geometrical size of the structure. Linear and nonlinear coefficients for the optical absorption and relative refractive index change associated with 1s→2p transitions are calculated for both the x-polarization and y-polarization of the incident light. The results show a mixed effect of redshift and blueshift depending on the location of the donor atom. Also, strong nonlinear contributions to the optical absorption coefficient are obtained for both polarizations in the on-center impurity case. -- Highlights: • The 1s- and 2p-like impurity states in triangular quantum-well wires. • Optical absorption and relative refractive index changes are calculated. • Redshift and blueshift in the optical structures depend on the donor position. • Strong nonlinear contributions to the absorption coefficient have been obtained.
Modulation instability of broad optical beams in nonlinear media with general nonlinearity
Institute of Scientific and Technical Information of China (English)
Hongcheng Wang; Weilong She
2006-01-01
@@ The modulation instability of quasi-plane-wave optical beams is investigated in the frame of generalized Schr(o)dinger equation with the nonlinear term of a general form. General expressions are derived for the dispersion relation, the critical transverse spatial frequency, as well as the instability growth rate.The analysis generalizes the known results reported previously. A detailed discussion on the modulation instability in biased centrosymmetric photorefractive media is also given.
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique
Institute of Scientific and Technical Information of China (English)
DONG Shu-Guang; YANG Jun-Yi; SHUI Min; YI Chuan-Xiang; LI Zhong-Guo; SONG Ying-Lin
2011-01-01
@@ Spatial and temporal changes of temperature in a novel polymer are investigated by using the Z-scan technique under ns laser pulse excitation.According to the open aperture Z-scan experimental results, the nonlinear absorption coefficient of the polymer is determined.By solving the diffusion equation of heat conduction induced by optical absorption, the spatial and temporal changes in temperature are obtained.This change in temperature drives the photo-acoustic and electromagnetic wave propagating in the polymer and induces the change in refractive index, which serves as a negative lens, and the closed aperture Z-scan shows a peak and valley profile.Based on the numerical calculation, we achieve a good fit to the closed-aperture Z-scan curve with an optimized nonlinear refractive index.This consistency attests the existence of temperature change in the solution, and the Z-scan technique is suitable to investigate this change in temperature.
Linear and nonlinear optical properties of ZnO nanorod arrays
Institute of Scientific and Technical Information of China (English)
Xiao Si; Su Xiong-Rui; Li Chun; Han Yi-Bo; Fang Guo-Jia; Wang Qu-Quan
2008-01-01
Polarization-dependent linear absorption, second-harmonic generation (SHG) and 3rd-order nonlinearities of wellaligned ZnO nanorod arrays have been investigated with ps pulses. The depressed spectral width and the enhanced intensity of reflective SHG along the long axis of ZnO nanorods were observed by using p-polarized pulses, which is explained by the optical confinements. The nonlinear absorption coefficient measured with s-polarization reached the maximum 4.0×104cm/GW at the wavelength ～750 nm, which revealed a large two-photon resonance absorption attributed to the quantum confined exciton when the polarization is vertical to the long axis of ZnO nanorod.
Linear and nonlinear magneto-optics of ferritin.
Pankowska, M; Dobek, A
2009-07-07
Measurements of Rayleigh light scattering and Cotton-Mouton (CM) effect are carried out at room temperature for 100 mM NaCl solutions of apoferritin/ferritin loaded with 0, 90, 100, 500, 700, and 1500 Fe atoms/molecule. Because of the spherical shape, ferritin macromolecule should not manifest magnetic anisotropy; however, in solution it shows the induced magnetic birefringence (CM effect) and changes in intensity of the scattered light components. The newly obtained data support the previously reported conclusions indicating that the deformation of linear optical polarizability induced in the ferritin by a magnetic field and the orientation of the induced magnetic dipole moment by this field are the main sources of the magneto-optical phenomena observed. Nevertheless, it is also found that the orientation of the permanent magnetic dipole moment contributes to both effects. The magnetic field induced changes in the light scattering and the CM effect theoretically depend on the linear magneto-optical polarizability, chi, on the nonlinear magneto-optical polarizability, eta, and square of the permanent magnetic dipole moment value of the macromolecule, mu(2). On the basis of the theory describing both effects as well as the experimental data, the values of the anisotropy of linear magneto-optical polarizabilities components, the values of the linear optical polarizability and its anisotropy, nonlinear magneto-optical polarizability and its anisotropy, are estimated. Also the magnetic dipole moment of the ferritin macromolecule is found. Interestingly, not all iron atoms in the ferritin are indicated to be in the superparamagnetic state, some of them occur in the diamagnetic form.
Energy Technology Data Exchange (ETDEWEB)
Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)
2013-09-01
In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.
Nonlinear Optical Properties of Carotenoid and Chlorophyll Harmonophores
Tokarz, Danielle Barbara
Information regarding the structure and function of living tissues and cells is instrumental to the advancement of cell biology and biophysics. Nonlinear optical microscopy can provide such information, but only certain biological structures generate nonlinear optical signals. Therefore, structural specificity can be achieved by introducing labels for nonlinear optical microscopy. Few studies exist in the literature about labels that facilitate harmonic generation, coined "harmonophores". This thesis consists of the first major investigation of harmonophores for third harmonic generation (THG) microscopy. Carotenoids and chlorophylls were investigated as potential harmonophores. Their nonlinear optical properties were studied by the THG ratio technique. In addition, a tunable refractometer was built in order to determine their second hyperpolarizability (gamma). At 830 nm excitation wavelength, carotenoids and chlorophylls were found to have large negative gamma values however, at 1028 nm, the sign of gamma reversed for carotenoids and remained negative for chlorophylls. Consequently, at 1028 nm wavelength, THG signal is canceled with mixtures of carotenoids and chlorophylls. Furthermore, when such molecules are covalently bonded as dyads or interact within photosynthetic pigment-protein complexes, it is found that additive effects with the gamma values still play a role, however, the overall gamma value is also influenced by the intra-pigment and inter-pigment interaction. The nonlinear optical properties of aggregates containing chlorophylls and carotenoids were the target of subsequent investigations. Carotenoid aggregates were imaged with polarization-dependent second harmonic generation and THG microscopy. Both techniques revealed crystallographic information pertaining to H and J aggregates and beta-carotene crystalline aggregates found in orange carrot. In order to demonstrate THG enhancement due to labeling, cultured cells were labeled with carotenoid
Othman, N.; Shah, N. S. M.; Tay, K. G.; Pakarzadeh, H.; Cholan, N. A.; Talib, R.
2017-09-01
The highly-nonlinear fiber is the ideal gain medium for many applications particularly because its dispersion can be easily engineered. However, the modification of the fiber dispersion will affect the higher-order dispersion coefficients. Hence, this paper investigates the effect of highly-nonlinear dispersion-shifted fiber dispersion profile on the higher-order dispersion coefficients which are the fourth-order and sixth-order dispersion coefficients. The dispersion profile was modified by varying the slope at zero-dispersion wavelength. The fourth-order dispersion coefficient exhibits changes from positive to negative value as the slope at zero-dispersion wavelength is getting higher. Meanwhile, sixth-order dispersion coefficient remains with the positive value even though it shows the reduction as the slope is increased, however it will eventually become negative when the dispersion is high enough. In short, the values of both fourth-order and sixth-order dispersion coefficients at zero-dispersion wavelength decrease when the slope increases.
A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass
Energy Technology Data Exchange (ETDEWEB)
Yahia, I.S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Abutalib, M.M. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); AlFaify, S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Shkir, M. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-wahab, M.Sh.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); El-Naggar, A.M. [Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)
2016-06-01
The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ{sup (1)}, nonlinear optical susceptibility χ{sup (3)}, nonlinear refractive index (n{sub 2}) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.
A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass
Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.
2016-06-01
The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.
Band gap shift and the optical nonlinear absorption of sputtered ZnO-TiO2 films.
Han, Yi-Bo; Han, Jun-Bo; Hao, Zhong-Hua
2011-06-01
ZnO-TiO2 composite films with different Zn/Ti atomic ratios were prepared with radio frequency reactive sputtering method. The Zn percentage composition (f(Zn)) dependent optical band gap and optical nonlinear absorption were investigated using the transmittance spectrum and the Z-scan technique, respectively. The results showed that composite films with f(Zn) in the range of 23.5%-88.3% are poor crystallized and their optical properties are anomalous which exhibit adjustable optical band gap and large optical nonlinear absorption. The optical absorption edge shifted to the blue wavelength direction with the increasing of f(Zn) and reached the minimum value of 285 nm for the sample with f(Zn) = 70.5%, which has the largest direct band gap of 4.30 eV. Further increasing of f(Zn) resulted in the red-shift of the optical absorption edge. The maximum optical nonlinear absorption coefficient of 1.5 x 10(3) cm/GW was also obtained for the same sample with f(Zn) = 70.5%, which is more than 40 times larger than those of pure TiO2 and ZnO films.
Energy Technology Data Exchange (ETDEWEB)
Moran, M.J.
1976-11-15
The investigation of two poorly understood but technologically important physical properties of silicate glasses and related materials is described. The use of Electron Paramagnetic Resonance to investigate the nature of radiation-induced damage in glasses exposed to a variety of high-energy radiation sources is discussed first. Second, the measurement of the nonlinear index of refraction coefficient in a variety of optical materials related to the design of high-power laser systems is described. The radiation damage investigations rely heavily on the comparison of experimental results for different experimental situations. The comparison of EPR lineshapes, absolute spin densities and power saturation behavior is used to probe a variety of microscopic and macroscopic aspects of radiation damage in glasses. Comparison of radiation damage associated with exposure to gamma rays and fast neutrons (and combinations thereof) are interpreted in terms of the microscopic damage mechanisms which are expected to be associated with the specific radiations. Comparison of radiation damage behavior in different types of glasses is also interpreted in terms of the behavior expected for the specific materials. The body of data which is generated is found to be internally self-consistent and is also generally consistent with the radiation damage behavior expected for specific situations. A new and versatile technique for measuring the nonlinear index of refraction coefficient, n/sub 2/, in optical materials is described. The technique utilizes a 1 ns pulsed neodymium-glass laser system and time-resolved interferometry to determine the ratio of the coefficient n/sub 2/ of sample materials to the n/sub 2/ of CS/sub 2/. This method avoids some of the complications associated with performing absolute measurements of n/sub 2/ and allows the use of a relatively simple experimental technique. The measurements determine the nonlinear index ratios of the samples with an accuracy of about
Shin, Heedeuk; Chang, Hye Jeong; Boyd, Robert W; Choi, M R; Jo, W
2007-08-15
We measure the nonlinear susceptibility of Bi(3.25)La(0.75)Ti(3)O(12) (BLT) thin films grown on quartz substrates using the Z-scan technique with picosecond laser pulses at a wavelength of 532 nm. The third-order nonlinear refractive index coefficient gamma and absorption coefficient beta of the BLT thin film are 3.1 x 10(-10) cm(2)/W and 3 x 10(-5) cm/W, respectively, which are much larger than those of most ferroelectric films. The results show that the BLT thin films on quartz substrates are good candidate materials for applications in nonlinear optical devices.
Nonlinear optical characteristics of monolayer MoSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)
2016-08-15
In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nonlinear optical field sensors in extreme electromagnetic and acoustic environments
Garzarella, Anthony; Wu, Dong Ho
2014-03-01
Sensors based on electro-optic (EO) and magneto-optic (MO) crystals measure external electric and magnetic fields through changes in birefringence which the fields induce on the nonlinear crystals. Due to their small size and all-dielectric structure, EO and MO sensors are ideal in environments involving very large electromagnetic powers. Conventional antennas and metallic probes not only present safety hazards, due to their metallic structure and the presence of large currents, but they can also perturb the very fields they intend to measure. In the case of railguns, the large electromagnetic signals are also accompanied by tremendous acoustic noise, which presents a noise background that the sensors must overcome. In this presentation, we describe extensive data obtained from fiber optic EO and MO sensors used in the railgun of the Naval Research Laboratory. Along with the field measurements obtained, we will describe the interactions between the acoustic noise and the nonlinear crystals (most notably, photoelastic effects), the noise equivalent fields they produce, and methods they could be suppressed through the optical and geometrical configurations of the sensor so that the signal to noise ratio can be maximized.
Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao
2016-10-01
The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.
Optical nonlinearities of iron doped zinc sulphide quantum dots
Cinumon, K. V.; Prasanth, S.; Raj, D. Rithesh; Vineeshkumar, T. V.; Pillai, V. P. Mahadevan; Sudarsanakumar, C.
2017-05-01
Polyethylene glycol (PEG) capped pure and Fe doped ZnS nanoparticles were successfully synthesized by chemical precipitation method. Cubic zinc blende phase of the samples was confirmed from X-ray diffraction. The average grain size was found to be in the range of 2-3 nm and was confirmed with TEM. The undoped and doped ZnS samples show blue emission with emission wavelength at 360 nm. A rapid luminescence quenching with increasing dopant concentration was observed. The nonlinear absorption coefficients of the doped and undoped samples were calculated using Z-scan technique.
Third order optical nonlinear studies on highly conducting vertically aligned carbon nanoflakes
Singh, Mukesh; Kumar, Indrajeet; Khare, Alika; Agarwal, Pratima
2016-12-01
Third order optical nonlinearity of carbon nanoflakes were studied by modified single beam closed aperture Z-scan technique using a continuous wave He-Ne laser at 632.8 nm. Thin films of vertically aligned carbon nanoflakes were synthesized on corning glass substrate at substrate temperature of 400 °C by hot filament chemical vapor deposition. Films were characterized by scanning electron microscope and atomic force microscopy which confirmed that carbon nanoflakes were vertically aligned on the substrate. Temperature dependent electrical conductivity measurements in temperature range of 300-480 K under high vacuum (˜10-5 mbar) showed that conductivity of the films was increased almost linearly with increasing temperature with a weak temperature dependence. The negative temperature coefficient of resistance indicates semiconducting behavior of the films. Nonlinear refractive index coefficient (n 2) of the films was found to be of the order of 10-5 cm2 W-1, which can be important for the applications in the field of nonlinear photonics.
AN EPOXY/(METHYL METHACRYLATE) INTERPENETRATING POLYMER NETWORK FOR NONLINEAR OPTICS
Institute of Scientific and Technical Information of China (English)
Ling-zhi Zhang; Zhi-gang Cai; Quan-dong Ying; Zhao-xi Liang
1999-01-01
An interpenetrating polymer networks (IPN) consisting of an epoxy-based polymer network and a polymethyl methacrylate network were synthesized and characterized. The IPN showed only one Ts, and hence a homogeneous-phase morphology was suggested. The second-order nonlinear optical coefficient (d33) of the IPN was measured to be 1.72×10-7 esu. The study of NLO temporal stability at room temperature and elevated temperature (100℃) indicated that the IPN exhibits a high stability in the dipole orientation due to the permanent entanglements of two component networks in the IPN system. Long-term stability of second harmonic coefficients was observed at room temperature for more than 1000 h.
THz Generation by Optical Rectification and Competition with Other Nonlinear Processes
Institute of Scientific and Technical Information of China (English)
ZHAO Zhen-Yu; HAMEAU Sophie; TIGNON Jér(o)me
2008-01-01
We present a study of the competition between tera-hertz (THz) generation by optical rectification in (110)Zn Te crystals,two-photon absorption,second harmonic generation and flee-carrier absorption.The two-photon nonlinear absorption coefficient,second harmonic generation efficiency and flee-carrier absorption coefficient in the THz range are measured independently.The incident pump field is shown to be depleted by two-photon absorption and the THz radiation is shown to be reduced,upon focusing,by free-carrier absorption.The reduction of the generated THz radiation upon tight focusing is explained,provided that one also takes into account diffraction effects from the sub-wavelength THz source.
Thermal conductivities of some novel nonlinear optical materials.
Beasley, J D
1994-02-20
Results of thermal conductivity measurements are reported for several of the more recently developed nonlinear optical crystals. New or substantially revised values of thermal conductivity were obtained in six materials. Notable thermal conductivities measured were those for AgGaS(2) [0.014 W/(cm K) and 0.015 W/(cm K)], AgGaSe(2) [0.010 W/(cm K) and 0.011 W/(cm K)], beta barium borate [0.016 W/(cm K) and 0.012 W/(cm K)], and ZnGeP(2) [0.36 W/(cm K) and 0.35 W/(cm K)], with values quoted for directions respectively parallel and perpendicular to the optic axis for each material. These new data provide necessary input for the design of high-power optical frequency converters.
Linear addition algebra of optical nonlinearities in transparent conductive oxides
Kinsey, N; Clerici, M; Kim, J; Carnemolla, E; Shaltout, A; Kaipurath, R; Faccio, D; Shalaev, V M; Ferrera, M; Boltasseva, A
2016-01-01
The fields of nanophotonics and metamaterials have revolutionized the way we think of optical space ({\\epsilon},{\\mu}), enabling us to engineer the refractive index almost at will to confine light to the smallest of volumes as well as to manipulate optical signals with extremely small footprints and energy requirements. More recently, significant efforts have been devoted to the search for suitable materials for dynamic control, and so far, all-optical methods have primarily relied on either interband or intraband excitations. Here, we show that aluminum doped zinc oxide (AZO) supports a hybrid nonlinearity that exhibits a large and ultrafast response with controllable sign. We demonstrate that these two opposite material responses are independent and can be algebraically added together via two-color excitation, resulting in an increase in device bandwidth and unprecedented tuning capabilities. This peculiar behavior of AZO places it as a key material for next-generation ultrafast tunable nanophotonics and me...
Synthesis of Imidazole Derivatives for Their Second-order Nonlinear Optics
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The design and the synthesis of two conjugated donor-acceptor imidazole derivatives(1, 2) were carried out for second-order nonlinear optics. The thermal properties, the transparency and second-order nonlinear optical properties of the molecules were investigated. The experimental results indicate that a good nonlinearity-transparency-thermal stability trade-off is achieved for them.