Magnetic field generation from Self-Consistent collective neutrino-plasma interactions
Energy Technology Data Exchange (ETDEWEB)
Brizard, A.J.; Murayama H.; Wurtele, J.S.
1999-11-24
A new Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived from a covariant relativistic variational principle in which finite-temperature effects are retained. This new formalism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a result of collective neutrino-plasma interactions.
Interaction nonlinearity in asphalt binders
Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.
2012-05-01
Asphalt mixtures are complex composites that comprise aggregate, asphalt binder, and air. Several research studies have shown that the mechanical behavior of the asphalt mixture is strongly influenced by the matrix, i.e. the asphalt binder. Characterization and a thorough understanding of the binder behavior is the first and crucial step towards developing an accurate constitutive model for the composite. Accurate constitutive models for the constituent materials are critical to ensure accurate performance predictions at a material and structural level using micromechanics. This paper presents the findings from a systematic investigation into the nature of the linear and nonlinear response of asphalt binders subjected to different types of loading using the Dynamic Shear Rheometer (DSR). Laboratory test data show that a compressive normal force is generated in an axially constrained specimen subjected to torsional shear. This paper investigates the source of this normal force and demonstrates that the asphalt binder can dilate when subjected to shear loads. This paper also presents the findings from a study conducted to investigate the source of the nonlinearity in the asphalt binder. Test results demonstrate that the application of cyclic shear loads results in the development of a normal force and a concomitant reduction in the dynamic shear modulus. This form of nonlinear response is referred to as an "interaction nonlinearity". A combination of experimental and analytical tools is used to demonstrate and verify the presence of this interaction nonlinearity in asphalt binders. The findings from this study highlight the importance of modeling the mechanical behavior of asphalt binders based on the overall stress state of the material.
Interactive optomechanical coupling with nonlinear polaritonic systems
Bobrovska, N; Liew, T C H; Kyriienko, O
2016-01-01
We study a system of interacting matter quasiparticles strongly coupled to photons inside an optomechanical cavity. The resulting normal modes of the system are represented by hybrid polaritonic quasiparticles, which acquire effective nonlinearity. Its strength is influenced by the presence of the mechanical mode and depends on the resonance frequency of the cavity. This leads to an interactive type of optomechanical coupling, being distinct from the previously studied dispersive and dissipative couplings in optomechanical systems. The emergent interactive coupling is shown to generate effective optical nonlinearity terms of high order, being quartic in the polariton number. We consider particular systems of exciton-polaritons and dipolaritons, and show that the induced effective optical nonlinearity due to the interactive coupling can exceed in magnitude the strength of Kerr nonlinear terms, such as those arising from polariton-polariton interactions. As applications, we show that the higher order terms give...
Nonlinear science an interactive Mathematica notebook
Campbell, David K; Tanury, Thomas A
2012-01-01
This interactive Mathematica(TM) notebook provides a ready-made tool by which users can undertake their own mathematical experiments and explore the behavior of non-linear systems, from chaos in low-dimensional maps and coupled ordinary differential equations to solitons and coherent structures in nonlinear partial differential equations and "intrisic localized modes" and "discrete breathers" in extended lattice systems.
Colloquium: Nonlinear Collective Interactions in Dense Plasmas
Shukla, P K
2010-01-01
The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...
Soil-structure interaction including nonlinear soil
Gicev, Vlado
2008-01-01
There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P K; Marklund, M; Stenflo, L
2006-01-01
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
Nonlinear Light-Matter Interactions in Metamaterials
O'Brien, Kevin Patrick
Metamaterials possess extraordinary linear optical properties never observed in natural materials such as a negative refractive index, enabling exciting applications such as super resolution imaging and cloaking. In this thesis, we explore the equally extraordinary nonlinear properties of metamaterials. Nonlinear optics, the study of light-matter interactions where the optical fields are strong enough to change material properties, has fundamental importance to physics, chemistry, and material science as a non-destructive probe of material properties and has important technological applications such as entangled photon generation and frequency conversion. Due to their ability to manipulate both linear and nonlinear light matter interactions through sub-wavelength structuring, metamaterials are a promising direction for both fundamental and applied nonlinear optics research. We perform the first experiments on nonlinear propagation in bulk zero and negative index optical metamaterials and demonstrate that a zero index material can phase match four wave mixing processes in ways not possible in finite index materials. In addition, we demonstrate the ability of nonlinear scattering theory to describe the geometry dependence of second and third harmonic generation in plasmonic nanostructures. As an application of nonlinear metamaterials, we propose a phase matching technique called "resonant phase matching" to increase the gain and bandwidth of Josephson junction traveling wave parametric amplifiers. With collaborators, we demonstrate a best in class amplifier for superconducting qubit readout--over 20 dB gain with near quantum limited noise performance with a bandwidth and dynamic range an order of magnitude larger than alternative devices. In conclusion, we have demonstrated several ways in which nonlinear metamaterials surpass their natural counterparts. We look forward to the future of the field where nonlinear and quantum metamaterials will enable further new
Tunable Resonators for Nonlinear Modal Interactions
Ramini, Abdallah
2016-10-04
Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.
Tunable Resonators for Nonlinear Modal Interactions
Ramini, Abdallah H.; Hajjaj, Amal Z.; Younis, Mohammad I.
2016-10-01
Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
Nonlinear dynamics of interacting populations
Bazykin, Alexander D
1998-01-01
This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the
Nonlinear interactions for massive spin-2 fields
Schmidt-May, Angnis
2016-01-01
We give a basic introduction to ghost-free nonlinear theories involving massive spin-2 fields, focussing on bimetric theory. After motivating the construction of such models from field theoretical considerations, we review the linear theories for massive and massless spin-2 fluctuations propagating on maximally symmetric backgrounds. The structure of general nonlinear spin-2 interactions is explained before we specialise to the ghost-free case. We review the maximally symmetric solutions of bimetric theory, its mass spectrum and the parameter limit which brings the theory close to general relativity. Finally we discuss applications of bimetric theory to cosmology with particular emphasis on the role of the general relativity limit.
Nonlinear Interaction of Waves in Geomaterials
Ostrovsky, L. A.
2009-05-01
Progress of 1990s - 2000s in studying vibroacoustic nonlinearities in geomaterials is largely related to experiments in resonance samples of rock and soils. It is now a common knowledge that many such materials are very strongly nonlinear, and they are characterized by hysteresis in the dependence between the stress and strain tensors, as well as by nonlinear relaxation ("slow time"). Elastic wave propagation in such media has many peculiarities; for example, third harmonic amplitude is a quadratic (not cubic as in classical solids) function of the main harmonic amplitude, and average wave velocity is linearly (not quadratically as usual) dependent on amplitude. The mechanisms of these peculiarities are related to complex structure of a material typically consisting of two phases: a hard matrix and relatively soft inclusions such as microcracks and grain contacts. Although most informative experimental results have been obtained in rock in the form of resonant bars, few theoretical models are yet available to describe and calculate waves interacting in such samples. In this presentation, a brief overview of structural vibroacoustic nonlinearities in rock is given first. Then, a simple but rather general approach to the description of wave interaction in solid resonators is developed based on accounting for resonance nonlinear perturbations which are cumulating from period to period. In particular, the similarity and the differences between traveling waves and counter-propagating waves are analyzed for materials with different stress-strain dependences. These data can be used for solving an inverse problem, i.e. characterizing nonlinear properties of a geomaterial by its measured vibroacoustic parameters. References: 1. L. Ostrovsky and P. Johnson, Riv. Nuovo Chimento, v. 24, 1-46, 2007 (a review); 2. L. Ostrovsky, J. Acoust. Soc. Amer., v. 116, 3348-3353, 2004.
Non-Linear Dynamics and Fundamental Interactions
Khanna, Faqir
2006-01-01
The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
LIU Xiao; XU JiYao; MA RuiPing
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75-85 km, z =90-110 km and z= 115-130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the horizontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90-110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75―85 km, z = 90―110 km and z = 115―130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the hori-zontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90—110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
Nonlinear Electromagnetic Interactions in Energetic Materials
Wood, M A; Moore, D S
2016-01-01
We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.
Nonlinear shallow ocean-wave soliton interactions on flat beaches.
Ablowitz, Mark J; Baldwin, Douglas E
2012-09-01
Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
Dark Spatial Soliton Interaction in Nonlinear Kerr Medium
Institute of Scientific and Technical Information of China (English)
LuchuanWANG; QinliangFAN
1998-01-01
The dark spatial soliton interaction in nonlinear Kerr medium has been studied in this paper.The problem has been solved by the use of the slowly varying envelope approximation in solving coupled nonlinear Schroedinger equations.The perturbation nature of dark spatial soliton interaction has been described and some of their key properties has been discussed as well in the paper.
Anomalous interaction of nonlocal solitons in media with competing nonlinearities
DEFF Research Database (Denmark)
Esbensen, B. K.; Bache, Morten; Bang, Ole
2012-01-01
We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We...... and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results....
Nonlinear optical interactions in silicon waveguides
Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.
2017-03-01
The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...
Stiripentol kinetics in epilepsy: nonlinearity and interactions.
Levy, R H; Loiseau, P; Guyot, M; Blehaut, H M; Tor, J; Moreland, T A
1984-11-01
Stiripentol kinetics during oral therapy were assessed in six patients with epilepsy who were receiving other antiepileptic drugs. Steady-state levels at 600, 1200, and 2400 mg/day increased in a nonlinear fashion, indicating Michaelis-Menten kinetics. Oral clearance of stiripentol at 600 mg/day was 41.5 +/- 23.4 l/day/kg (mean +/- SD), greater than that at 1200 mg/day (20.3 +/- 8.8 l/day/kg; P less than 0.05) or 2400 mg/day (8.5 +/- 3.8 l/day/kg; P less than 0.01). The apparent in vivo Michaelis-Menten parameters were determined from three mean steady-state concentrations. The average velocity of conversion of stiripentol to its metabolites (Vm), Michaelis constant (Km), and the ratio Vm/Km were 49.3 +/- 13.1 mg/day/kg, 1.35 +/- 1.08 mg/l, and 50.2 +/- 27.5 l/day/kg. Stiripentol reduced the elimination clearances of concomitant antiepileptic drugs. Phenytoin clearance was reduced in all five subjects who received this drug, from a mean control of 29.5 +/- 13.4 l/day to 18.5 +/- 4.6 l/day at a stiripentol dose of 1200 mg/day (P = 0.05) and to 6.48 +/- 2.59 l/day at 2400 mg/day (P less than 0.01). Stiripentol reduced the clearance of carbamazepine in one subject from a control value of 209 l/day to 128 l/day (1200 mg/day) and 61 l/day (2400 mg/day). Stiripentol reduced phenobarbital clearance in two subjects from 3.8 and 5.1 l/day to 2.3 and 3.4 l/day (2400 mg/day). The Michaelis-Menten kinetics of stiripentol, as well as its interactions with other antiepileptic drugs, have important implications in the designing of controlled clinical trials.
Nonlinear interaction of meta-atoms through optical coupling
Energy Technology Data Exchange (ETDEWEB)
Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Powell, D. A. [Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Shadrivov, I. V.; Kivshar, Yu. S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Lapine, M., E-mail: mlapine@physics.usyd.edu.au [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia); McPhedran, R. C. [Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia)
2014-01-06
We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.
Inference of a nonlinear stochastic model of the cardiorespiratory interaction
Smelyanskiy, V N; Stefanovska, A; McClintock, P V E
2005-01-01
A new technique is introduced to reconstruct a nonlinear stochastic model of the cardiorespiratory interaction. Its inferential framework uses a set of polynomial basis functions representing the nonlinear force governing the system oscillations. The strength and direction of coupling, and the noise intensity are simultaneously inferred from a univariate blood pressure signal, monitored in a clinical environment. The technique does not require extensive global optimization and it is applicable to a wide range of complex dynamical systems subject to noise.
Parametric interaction and intensification of nonlinear Kelvin waves
Novotryasov, Vadim
2008-01-01
Observational evidence is presented for nonlinear interaction between mesoscale internal Kelvin waves at the tidal -- $\\omega_t$ or the inertial -- $\\omega_i$ frequency and oscillations of synoptic -- $\\Omega $ frequency of the background coastal current of Japan/East Sea. Enhanced coastal currents at the sum -- $\\omega_+ $ and dif -- $\\omega_-$ frequencies: $\\omega_\\pm =\\omega_{t,i}\\pm \\Omega$ have properties of propagating Kelvin waves suggesting permanent energy exchange from the synoptic band to the mesoscale $\\omega_\\pm $ band. The interaction may be responsible for the greater than predicted intensification, steepen and break of boundary trapped and equatorially trapped Kelvin waves, which can affect El Ni\\~{n}o. The problem on the parametric interaction of the nonlinear Kelvin wave at the frequency $\\omega $ and the low-frequency narrow-band nose with representative frequency $\\Omega\\ll\\omega $ is investigated with the theory of nonlinear week dispersion waves.
Using genetic programming to discover nonlinear variable interactions.
Westbury, Chris; Buchanan, Lori; Sanderson, Michael; Rhemtulla, Mijke; Phillips, Leah
2003-05-01
Psychology has to deal with many interacting variables. The analyses usually used to uncover such relationships have many constraints that limit their utility. We briefly discuss these and describe recent work that uses genetic programming to evolve equations to combine variables in nonlinear ways in a number of different domains. We focus on four studies of interactions from lexical access experiments and psychometric problems. In all cases, genetic programming described nonlinear combinations of items in a manner that was subsequently independently verified. We discuss the general implications of genetic programming and related computational methods for multivariate problems in psychology.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Interactions between nonlinear spur gear dynamics and surface wear
Ding, Huali; Kahraman, Ahmet
2007-11-01
In this study, two different dynamic models, a finite elements-based deformable-body model and a simplified discrete model, and a surface wear model are combined to study the interaction between gear surface wear and gear dynamic response. The proposed dynamic gear wear model includes the influence of worn surface profiles on dynamic tooth forces and transmission error as well as the influence of dynamic tooth forces on wear profiles. This paper first introduces the nonlinear dynamic models that include gear backlash and time-varying gear mesh stiffness, and a wear model separately. It presents a comparison to experiments for validation of the dynamic models. The dynamic models are combined with the wear model to study the interaction of surface wear and dynamic behavior in both linear and nonlinear response regimes. At the end, several sets of simulation results are used to demonstrate the two-way relationship between nonlinear gear dynamics and surface wear.
The Gouy phase shift in nonlinear interactions of waves
Lastzka, Nico; Schnabel, Roman
2007-06-01
We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on χ(2)interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.
Nonlinear lepton-photon interactions in external background fields
Energy Technology Data Exchange (ETDEWEB)
Akal, Ibrahim [DESY, Hamburg (Germany). Theory Group; Moortgat-Pick, Gudrid [DESY, Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2016-02-09
Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.
An Agent Interaction Based Method for Nonlinear Process Plan Scheduling
Institute of Scientific and Technical Information of China (English)
GAO Qinglu; WU Bo; GUO Guang
2006-01-01
This article puts forward a scheduling method for nonlinear process plan shop floor. Task allocation and load balance are realized by bidding mechanism. Though the agent interaction process, the execution of tasks is determined and the coherence of manufacturing decision is verified. The employment of heuristic index can help to optimize the system performance.
Non-Linear Interactive Stories in Computer Games
DEFF Research Database (Denmark)
Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas
2003-01-01
The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...
Nonlinear interaction of waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed by using the method of multiple scales. For the case of two waves, a strong nonlinear interaction exists if one of the frequencies w2 is twice the other frequency w1. Numerical results for flow past a flat plate show that this interaction mechanism is strongly destabilizing even in regions where either the fundamental or its harmonic is damped in the absence of the interaction. For the case of three waves, a strong nonlinear interaction exists when w3 = w2- w1. This combination resonance causes the amplitude of the wave with the difference frequency w3 to multiply many times in magnitude in a short distance even if it is damped in the absence of the interaction. The initial amplitudes play a dominant role in determining the changes in the amplitudes of the waves in both of these mechanisms.
Analysis of linear and nonlinear genotype × environment interaction
Directory of Open Access Journals (Sweden)
Rong-Cai eYang
2014-07-01
Full Text Available The usual analysis of genotype × environment interaction (GxE is based on the linear regression of genotypic performance on environmental changes (e.g., classic stability analysis. This linear model may often lead to lumping together of the nonlinear responses to the whole range of environmental changes from suboptimal and superoptimal conditions, thereby lowering the power of detecting GxE variation. On the other hand, the GxE is present when the magnitude of the genetic effect differs across the range of environmental conditions regardless of whether the response to environmental changes is linear or nonlinear. The objectives of this study are: (i explore the use of four commonly used nonlinear functions (logistic, parabola, normal and Cauchy functions for modeling nonlinear genotypic responses to environmental changes and (ii to investigate the difference in the magnitude of estimated genetic effects under different environmental conditions. The use of nonlinear functions was illustrated through the analysis of one data set taken from barley cultivar trials in Alberta, Canada (Data A and the examination of change in effect sizes is through the analysis another data set taken from the North America Barley Genome Mapping Project (Data B. The analysis of Data A showed that the Cauchy function captured an average of >40% of total GxE variation whereas the logistic function captured less GxE variation than the linear function. The analysis of Data B showed that genotypic responses were largely linear and that strong QTL × environment interaction existed as the positions, sizes and directions of QTL detected differed in poor vs. good environments. We conclude that (i the nonlinear functions should be considered when analyzing multi-environmental trials with a wide range of environmental variation and (ii QTL × environment interaction can arise from the difference in effect sizes across environments.
Nonlinear interaction of electromagnetic field with quantum plasma
Latyshev, A V
2014-01-01
The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures.
Nonlinear interaction of two waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1980-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.
Nonlinear interactions isolated through scale synthesis in experimental wall turbulence
Duvvuri, Subrahmanyam; McKeon, Beverley
2016-07-01
An experimental investigation of nonlinear scale interactions in a forced turbulent boundary layer is presented here. A dynamic wall perturbation mechanism was used to externally force two distinct large-scale synthetic modes with well-defined spatial and temporal wave numbers in a fully turbulent flow. The focus is on characterizing the nonlinear flow response at triadically consistent wave numbers that arises from the direct interactions of the two synthetic modes. These experimental results isolate triadic scale interactions in wall turbulence in a unique fashion, and provide the ability to explore the dynamics of scale coupling in a systematic and detailed manner. The ideas advanced here are intended to contribute towards modeling efforts of high-Reynolds-number wall turbulence.
Generalized Ghost Dark Energy with Non-Linear Interaction
Ebrahimi, E; Mehrabi, A; Movahed, S M S
2016-01-01
In this paper we investigate ghost dark energy model in the presence of non-linear interaction between dark energy and dark matter. The functional form of dark energy density in the generalized ghost dark energy (GGDE) model is $\\rho_D\\equiv f(H, H^2)$ with coefficient of $H^2$ represented by $\\zeta$ and the model contains three free parameters as $\\Omega_D, \\zeta$ and $b^2$ (the coupling coefficient of interactions). We propose three kinds of non-linear interaction terms and discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We also find the squared sound speed and search for signs of stability of the model. To compare the interacting GGDE model with observational data sets, we use more recent observational outcomes, namely SNIa, gamma-ray bursts, baryonic acoustic oscillation and the most relevant CMB parameters including, the position of acoustic peaks, shift parameters and redshift to recombination. For GGDE with the first non-linear interaction, the j...
Nonlinear wave-wave interactions and wedge waves
Institute of Scientific and Technical Information of China (English)
Ray Q.Lin; Will Perrie
2005-01-01
A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.
Contactless nonlinear optics mediated by long-range Rydberg interactions
Busche, Hannes; Huillery, Paul; Ball, Simon W.; Ilieva, Teodora; Jones, Matthew P. A.; Adams, Charles S.
2017-07-01
In conventional nonlinear optics, linear quantum optics, and cavity quantum electrodynamics to create effective photon-photon interactions photons must have, at one time, interacted with matter inside a common medium. In contrast, in Rydberg quantum optics, optical photons are coherently and reversibly mapped onto collective atomic Rydberg excitations, giving rise to dipole-mediated effective photon-photon interactions that are long range. Consequently, a spatial overlap between the light modes is no longer required. We demonstrate such a contactless coupling between photons stored as collective Rydberg excitations in spatially separate optical media. The potential induced by each photon modifies the retrieval mode of its neighbour, leading to correlations between them. We measure these correlations as a function of interaction strength, distance and storage time, demonstrating an effective interaction between photons separated by 15 times their wavelength. Contactless effective photon-photon interactions are relevant for scalable multichannel photonic devices and the study of strongly correlated many-body dynamics using light.
Photonics linear and nonlinear interactions of laser light and matter
Menzel, R
2007-01-01
This book covers the fundamental properties and the description of single photons and light beams, experimentally and theoretically. It explains the essentials of linear interactions and most nonlinear interactions between light and matter in both the transparent and absorbing cases. It also provides a basic understanding of modern quantum optics and lasers, as well as the principles of nonlinear optical spectroscopy. It is self-consistent and enriched by a large number of calculated illustrations, examples, and descriptive tables. Graduate students in physics and electrical engineering, as well as other sciences, will find this book a thorough introduction to the field, while for lecturers and scientists it is a rich source of useful information and a ready-to-hand reference. The new edition has been thoroughly expanded and revised in all sections
Impact of nonlinear effective interactions on GFT quantum gravity condensates
Pithis, Andreas G A; Tomov, Petar
2016-01-01
We present the numerical analysis of effectively interacting Group Field Theory (GFT) models in the context of the GFT quantum gravity condensate analogue of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behaviour suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthe...
Nonlinear Interaction of Transversal Modes in a CO2 Laser
Lopez-Ruiz, Ricardo; Mindlin, G. B.; Perez-Garcia, C.; Tredicce, J. R.
2002-01-01
We show the possibility of achieving experimentally a Takens-Bogdanov bifurcation for the nonlinear interaction of two transverse modes ($l = \\pm 1$) in a $CO_2$ laser. The system has a basic O(2) symmetry which is perturbed by some symmetry-breaking effects that still preserve the $Z_2$ symmetry. The pattern dynamics near this codimension two bifurcation under such symmetries is described. This dynamics changes drastically when the laser properties are modified.
Nonlinear processes in the strong wave-plasma interaction
Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei
2000-10-01
Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.
Nonlinear transient and chaotic interactions in disc brake squeal
Oberst, S.; Lai, J. C. S.
2015-04-01
In automotive disc-brake squeal, most numerical studies have been focussed on the prediction of unstable vibration modes in the frequency domain using the complex eigenvalue analysis. However, the magnitude of the positive real part of a complex eigenvalue is an unreliable indicator of squeal occurrence. Although nonlinearities have been shown to play a significant role in brake squeal, transient nonlinear time domain analyses have rarely been applied owing to high computational costs. Here the complex eigenvalue analysis, the direct steady-state analysis and the transient nonlinear time domain analysis are applied to an isotropic pad-on-disc finite element model representing a simple model of a brake system. While in this investigation, in-plane pad-mode instabilities are not detected by the complex eigenvalue analysis, the dissipated energy obtained by the direct steady-state analysis of the model subjected to harmonic contact pressure excitation is negative at frequencies of pad modes, indicating a potential for instabilities. Transient nonlinear time domain analysis of the pad and disc dynamics reveal that in-plane pad vibrations excite a dominant out-of-plane disc mode. For intermittently chaotic pad motion, the disc dynamics is quasi-periodic; and for chaotic motion of the pad, a toroidal attractor is found for the disc's out-of-plane motion. Nonlinear interactions between the pad and the disc highlight that different parts in a brake system display different dynamic behaviour and need to be analysed separately. The type II intermittency route to chaos could be the cause for the experimentally observed instantaneous mode squeal.
Fluid transport due to nonlinear fluid-structure interaction
Energy Technology Data Exchange (ETDEWEB)
Soendergaard Jensen, J.
1996-08-01
This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating uni-directional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness of the pipe. The behavior of the system in response to lateral resonant base excitation is analyzed numerically mode of vibration seems to be most effective for high mean fluid speed, whereas higher modes of vibration can be used to transport fluid with the same fluid speed but with smaller magnitude of pipe vibrations. The effect of the nonlinear geometrical terms is analyzed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement with theoretical predictions. (au) 16 refs.
Fluid transport due to nonlinear fluid-structure interaction
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
1997-01-01
This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...
Nonlinear interaction of axisymmetric circulation and nonaxisymmetric disturbances in hurricanes
Institute of Scientific and Technical Information of China (English)
LUO Zhexian
2004-01-01
The nonlinear interaction of axisymmetric circulation and nonaxisymmetric disturbances in hurricanes is numerically studied with a quasigeostrophic barotropic model of a higher resolution. It is pointed out that the interaction may be divided into two categories. In the first category, nonaxisymmetric disturbances decay, the coordinate locus of maximum relative vorticity ζmax is seemingly unordered, and the central pressure of hurricane rises; while in the second one, nonaxisymmetric disturbances develop, the locus of ζmax shows an ordered limit cycle pattern, and the central pressure falls remarkably. A succinct criterion is given to judge which category the interaction belongs to, i.e. the vortex beta Rossby number at the initial time Rβ 1 to the developing one. Finally, practical applications of theoretical results of the rotational adaptation process presented by Zeng and numerical results in this paper to the hurricane intensity prediction in China are also discussed.
Quantum nonlinear optics with single photons enabled by strongly interacting atoms
DEFF Research Database (Denmark)
Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi Yu
2012-01-01
The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding...
A look to nonlinear interacting Ghost dark energy cosmology
Khurshudyan, Martiros
2016-07-01
In this paper, we organize a look to nonlinear interacting Ghost dark energy cosmology involving a discussion on the thermodynamics of the Ghost dark energy, when the universe is bounded via the Hubble horizon. One of the ways to study a dark energy model, is to reconstruct thermodynamics of it. Ghost dark energy is one of the models of the dark energy which has an explicitly given energy density as a function of the Hubble parameter. There is an active discussion towards various cosmological scenarios, where the Ghost dark energy interacts with the pressureless cold dark matter (CDM). Recently, various models of the varying Ghost dark energy has been suggested, too. To have a comprehensive understanding of suggested models, we will discuss behavior of the cosmological parameters on parameter-redshift z plane. Some discussion on Om and statefinder hierarchy analysis of these models is presented. Moreover, up to our knowledge, suggested forms of interaction between the Ghost dark energy and cold dark matter (CDM) are new, therefore, within obtained results, we provide new contribution to previously discussed models available in the literature. Our study demonstrates that the forms of the interactions considered in the Ghost dark energy cosmology are not exotic and the justification of this is due to the recent observational data.
Unity through nonlinearity: a unimodal coral-nutrient interaction.
Gil, Michael A
2013-08-01
The magnitude and direction of biological effects of environmental disturbances can vary considerably, especially among studies that use presence/absence manipulations. Because nonlinearities (e.g., humped relationships) are common in biological systems, this heterogeneity in effects may arise if systems are similar in their responses but specific studies use few (e.g., two) levels, or a narrow range, of a factor. To test whether nonlinearity can explain heterogeneous responses to a common environmental disturbance, I examined the effect of nutrient enrichment on coral growth, which has been previously shown using simple (e.g., two-level) manipulations to yield positive, negative, or neutral responses. I subjected corals (Porites) to a nutrient gradient in situ for 28 days. Coral growth rate increased (2.4-fold) then decreased (2.7-fold) with enrichment, returning to near-ambient values at the highest nutrient levels. This unimodal response could explain disparities among past findings and provides a compelling case for using regression designs to understand heterogeneity within ecological interactions.
On a class of nonlinear dispersive-dissipative interactions
Energy Technology Data Exchange (ETDEWEB)
Rosenau, P. [Tel Aviv Univ. (Israel). School of Mathematical Sciences
1997-07-29
The authors study the prototypical, genuinely nonlinear, equation; u{sub t} + a(u{sup m}){sub x} + (u{sup n}){sub xxx} = {mu}(u{sup k}){sub xx}, a, {mu} = consts., which encompasses a wide variety of dissipative-dispersive interactions. The parametric surface k = (m + n)/2 separates diffusion dominated from dissipation dominated phenomena. On this surface dissipative and dispersive effects are in detailed balance for all amplitudes. In particular, the m = n + 2 = k + 1 subclass can be transformed into a form free of convection and dissipation making it accessible to theoretical studies. Both bounded and unbounded oscillations are found and certain exact solutions are presented. When a = (2{mu}3/){sup 2} the map yields a linear equation; rational, periodic and aperiodic solutions are constructed.
Nonlinear dynamic susceptibilities of interacting and noninteracting magnetic nanoparticles
Joensson, P; García-Palacios, J L; Svedlindh, P
2000-01-01
The linear and cubic dynamic susceptibilities of solid dispersions of nanosized maghemite gamma-Fe sub 2 O sub 3 particles have been measured for three samples with a volume concentration of magnetic particles ranging from 0.3% to 17%, in order to study the effect of dipole-dipole interactions. Significant differences between the dynamic response of the samples are observed. While the linear and cubic dynamic susceptibilities of the most dilute sample compare reasonably well with the corresponding expressions proposed by Raikher and Stepanov for noninteracting particles, the nonlinear dynamic response of the most concentrated sample exhibits at low temperatures similar features as observed in a Ag(11 at% Mn) spin glass.
New holographic dark energy model with non-linear interaction
Oliveros, A
2014-01-01
In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.
On a class of nonlinear dispersive-dissipative interactions
Energy Technology Data Exchange (ETDEWEB)
Rosenau, P. [Tel Aviv Univ. (Israel). School of Mathematical Sciences
1997-07-29
The authors study the prototypical, genuinely nonlinear, equation; u{sub t} + a(u{sup m}){sub x} + (u{sup n}){sub xxx} = {mu}(u{sup k}){sub xx}, a, {mu} = consts., which encompasses a wide variety of dissipative-dispersive interactions. The parametric surface k = (m + n)/2 separates diffusion dominated from dissipation dominated phenomena. On this surface dissipative and dispersive effects are in detailed balance for all amplitudes. In particular, the m = n + 2 = k + 1 subclass can be transformed into a form free of convection and dissipation making it accessible to theoretical studies. Both bounded and unbounded oscillations are found and certain exact solutions are presented. When a = (2{mu}3/){sup 2} the map yields a linear equation; rational, periodic and aperiodic solutions are constructed.
Probabilistic approach to nonlinear wave-particle resonant interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Nonlinear laser-plasma interaction in magnetized liner inertial fusion
Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.
2016-03-01
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.
Inverse problem for multi-body interaction of nonlinear waves
Marruzzo, Alessia; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca
2016-01-01
The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable {\\em temperature}-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems.
Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight...
Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project
National Aeronautics and Space Administration — ZONA Technology, Inc. proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight dynamics...
Nonlinear neutrino-photon interactions inside strong laser pulses
Meuren, Sebastian; Di Piazza, Antonino
2015-01-01
Even though neutrinos are neutral particles and interact only via the exchange of weak gauge bosons, charged leptons and quarks can mediate a coupling to the photon field beyond tree level. Inside a relativistically strong laser field nonlinear effects in the laser amplitude can play an important role, as electrons and positrons interact nonperturbatively with the coherent part of the photon field. Here, we calculate for the first time the leading-order contribution to the axial-vector--vector current-coupling tensor inside an arbitrary plane-wave laser field (which is taken into account exactly by employing the Furry picture). The current-coupling tensor appears in the calculation of various electroweak processes inside strong laser fields like photon emission or trident electron-positron pair production by a neutrino. Moreover, as we will see below, the axial-vector--vector current-coupling tensor contains the Adler-Bell-Jackiw (ABJ) anomaly. This occurrence renders the current-coupling tensor also interest...
Texture segmentation via nonlinear interactions among Gabor feature pairs
Tang, Hak W.; Srinivasan, Venugopal; Ong, Sim-Heng
1995-01-01
Segmentation of an image based on texture can be performed by a set of N Gabor filters that uniformly covers the spatial frequency domain. The filter outputs that characterize the frequency and orientation content of the intensity distribution in the vicinity of a pixel constitute an N-element feature vector. As an alternative to the computationally intensive procedure of segmentation based on the N-element vectors generated at each pixel, we propose an algorithm for selecting a pair of filters that provides maximum discrimination between two textures constituting the object and its surroundings in an image. Images filtered by the selected filters are nonlinearity transformed to produce two feature maps. The feature maps are smoothed by an intercompetitive and intracooperative interaction process between them. These interactions have proven to be much superior to simple Gaussian filtering in reducing the effects of spatial variability of feature maps. A segmented binary image is then generated by a pixel-by-pixel comparison of the two maps. Results of experiments involving several texture combinations show that this procedure is capable of producing clean segmentation.
Inverse problem for multi-body interaction of nonlinear waves.
Marruzzo, Alessia; Tyagi, Payal; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca
2017-06-14
The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable temperature-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems. The high versatility of the exposed techniques also concerns the number of expected interactions: results are presented for different graph topologies, ranging from sparse to dense graphs.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Nonlinear Wave-Currents interactions in shallow water
Lannes, David
2015-01-01
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...
Nonlinear effects in the torsional adjustment of interacting DNA.
Kornyshev, A A; Wynveen, A
2004-04-01
DNA molecules in solution, having negatively charged phosphates and countercations readsorbed on its surface, possess a distinct charge separation motif to interact electrostatically. If their double-helical structure were ideal, duplexes in parallel juxtaposition could choose azimuthal alignment providing attraction, or at least a reduction of repulsion, between them. But duplexes are not perfect staircases and the distortions of their helical structure correlate with their base pair texts. If the patterns of distortions on the opposing molecules are uncorrelated, the mismatch will accumulate as a random walk and attraction vanishes. Based on this idea, a model of recognition of homologous sequences has been proposed [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 3666 (2001)]. But DNA has torsional elasticity. How will this help to relax a mismatch between the charge distributions on two nonhomologous DNA's? In the same work, the solution of this problem has been mapped onto a frustrated sine Gordon equation in a nonlocal random field (where the latter represents a pattern of twist angle distortions on the opposing molecules), but the results had been obtained in the limit of torsionally rigid molecules. In the present paper, by solving this equation numerically, we find a strongly nonlinear relaxation mechanism which utilizes static kink-soliton modes triggered by the "random field." In the range of parameters where the solitons do not emerge, we find good agreement with the results of a variational study [A. G. Cherstvy, A. A. Kornyshev, and S. Leikin, J. Phys. Chem. B (to be published)]. We reproduce the first-order transitions in the interaxial separation dependence, but detect also second-order or weak first-order transitions for shorter duplexes. The recognition energy between two nonhomologous DNA sequences is calculated as a function of interaxial separation and the length of juxtaposition. The soliton-caused kinky length dependence is discussed in
Nonlinear effects in the torsional adjustment of interacting DNA
Kornyshev, A. A.; Wynveen, A.
2004-04-01
DNA molecules in solution, having negatively charged phosphates and countercations readsorbed on its surface, possess a distinct charge separation motif to interact electrostatically. If their double-helical structure were ideal, duplexes in parallel juxtaposition could choose azimuthal alignment providing attraction, or at least a reduction of repulsion, between them. But duplexes are not perfect staircases and the distortions of their helical structure correlate with their base pair texts. If the patterns of distortions on the opposing molecules are uncorrelated, the mismatch will accumulate as a random walk and attraction vanishes. Based on this idea, a model of recognition of homologous sequences has been proposed [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 3666 (2001)]. But DNA has torsional elasticity. How will this help to relax a mismatch between the charge distributions on two nonhomologous DNA’s? In the same work, the solution of this problem has been mapped onto a frustrated sine Gordon equation in a nonlocal random field (where the latter represents a pattern of twist angle distortions on the opposing molecules), but the results had been obtained in the limit of torsionally rigid molecules. In the present paper, by solving this equation numerically, we find a strongly nonlinear relaxation mechanism which utilizes static kink-soliton modes triggered by the “random field.” In the range of parameters where the solitons do not emerge, we find good agreement with the results of a variational study [A. G. Cherstvy, A. A. Kornyshev, and S. Leikin, J. Phys. Chem. B (to be published)]. We reproduce the first-order transitions in the interaxial separation dependence, but detect also second-order or weak first-order transitions for shorter duplexes. The recognition energy between two nonhomologous DNA sequences is calculated as a function of interaxial separation and the length of juxtaposition. The soliton-caused kinky length dependence is
A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS
Institute of Scientific and Technical Information of China (English)
XingJ.T; PriceW.G; ChenY.G
2005-01-01
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.
Nonlinear infragravity–wave interactions on a gently sloping laboratory beach
De Bakker, A.T.M.; Herbers, T.H.C.; Smit, P.B.; Tissier, M.F.S.; Ruessink, B.G.
2015-01-01
A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy tra
Nonlinear infragravity-wave interactions on a gently sloping laboratory beach
de Bakker, A. T M; Herbers, T. H C; Smit, P. B.; Tissier, M. F S; Ruessink, B. G.
2015-01-01
A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy tra
Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study
de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.
2016-01-01
The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to deter
Possible second-order nonlinear interactions of plane waves in an elastic solid
Korneev, V.A.; Demcenko, A.
2014-01-01
There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The cons
Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
Timofeev, I V
2012-01-01
Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.
Advanced Seismic Fragility Modeling using Nonlinear Soil-Structure Interaction Analysis
Energy Technology Data Exchange (ETDEWEB)
Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talaat, Mohamed [Simpson-Gupertz & Heger, Waltham, MA (United States); Hashimoto, Philip [Simpson-Gupertz & Heger, Waltham, MA (United States)
2015-09-01
The goal of this effort is to compare the seismic fragilities of a nuclear power plant system obtained by a traditional seismic probabilistic risk assessment (SPRA) and an advanced SPRA that utilizes Nonlinear Soil-Structure Interaction (NLSSI) analysis. Soil-structure interaction (SSI) response analysis for a traditional SPRA involves the linear analysis, which ignores geometric nonlinearities (i.e., soil and structure are glued together and the soil material undergoes tension when the structure uplifts). The NLSSI analysis will consider geometric nonlinearities.
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...
Nonlinear Zeno dynamics due to atomic interactions in Bose–Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Navarro, V.G.; Shchesnovich, V.S., E-mail: valery@ufabc.edu.br
2014-12-01
We show that nonlinear interactions induce both the Zeno and anti-Zeno effects in the generalized Bose–Josephson model (with the on-site interactions and the second-order tunneling) describing Bose–Einstein condensate in double-well trap subject to particle removal from one of the wells. We find that the on-site interactions induce only the Zeno effect, which appears at long evolution times, whereas the second-order tunneling leads to a strong decay of the atomic population at short evolution times, reminiscent of the anti-Zeno effect, and destroys the nonlinear Zeno effect due to the on-site interactions at long times.
Non-Linearly Interacting Ghost Dark Energy in Brans-Dicke Cosmology
Ebrahimi, E
2016-01-01
In this paper we extend the form of interaction term into the non-linear regime in the ghost dark energy model. A general form of non-linear interaction term is presented and cosmic dynamic equations are obtained. Next, the model is detailed for two special choice of the non-linear interaction term. According to this the universe transits at suitable time ($z\\sim 0.8$) from deceleration to acceleration phase which alleviate the coincidence problem. Squared sound speed analysis revealed that for one class of non-linear interaction term $v_s^2$ can gets positive. This point is an impact of the non-linear interaction term and we never find such behavior in non interacting and linearly interacting ghost dark energy models. Also statefinder parameters are introduced for this model and we found that for one class the model meets the $\\Lambda CDM$ while in the second choice although the model approaches the $\\Lambda CDM$ but never touch that.
Time-varying interaction leads to amplitude death in coupled nonlinear oscillators
Indian Academy of Sciences (India)
Awadhesh Prasad
2013-09-01
A new form of time-varying interaction in coupled oscillators is introduced. In this interaction, each individual oscillator has always time-independent self-feedback while its interaction with other oscillators are modulated with time-varying function. This interaction gives rise to a phenomenon called amplitude death even in diffusively coupled identical oscillators. The nonlinear variation of the locus of bifurcation point is shown. Results are illustrated with Landau–Stuart (LS) and Rössler oscillators.
Directory of Open Access Journals (Sweden)
S. I. Samsudin
2014-01-01
Full Text Available The wastewater treatment plant (WWTP is highly known with the nonlinearity of the control parameters, thus it is difficult to be controlled. In this paper, the enhancement of nonlinear PI controller (ENon-PI to compensate the nonlinearity of the activated sludge WWTP is proposed. The ENon-PI controller is designed by cascading a sector-bounded nonlinear gain to linear PI controller. The rate variation of the nonlinear gain kn is automatically updated based on adaptive interaction algorithm. Initiative to simplify the ENon-PI control structure by adapting kn has been proved by significant improvement under various dynamic influents. More than 30% of integral square error and 14% of integral absolute error are reduced compared to benchmark PI for DO control and nitrate in nitrogen removal control. Better average effluent qualities, less number of effluent violations, and lower aeration energy consumption resulted.
Mode interaction in horses, tea, and other nonlinear oscillators: the universal role of symmetry
Weele, van der Jacobus P.; Banning, Erik J.
2001-01-01
This paper is about mode interaction in systems of coupled nonlinear oscillators. The main ideas are demonstrated by means of a model consisting of two coupled, parametrically driven pendulums. On the basis of this we also discuss mode interaction in the Faraday experiment (as observed by Ciliberto
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
The Nonlinear Interaction Process in the Wave Assimilation Model and Its Experiments
Institute of Scientific and Technical Information of China (English)
杨永增; 纪永刚; 袁业立
2003-01-01
This paper presents a composite interaction formula based on the discrete-interactionoperator of wave-wave nonlinear interaction for deriving its adjoint source function in the wave assimilation model. Assimilation experiments were performed using the significant wave heights observed by the TOPES/POSEIDON satellite, and the gradient distribution in the physical space wasalso analyzed preliminarily.
The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence
Energy Technology Data Exchange (ETDEWEB)
Newman, D.E.
1993-09-01
Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E {times} B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics.
Ulku, Huseyin Arda
2015-02-01
An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.
Fluid transport due to nonlinear fluid-structure interaction
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
1997-01-01
of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...
The Nonlinear Interaction of Two-Crossed Focussed Ultrasonic Beams in the Presence of Turbulence
1988-06-10
in water or any fluid medium can be obtained by the vibration of a solid body in the fluid, such as the vibration of a vocal chord or guitar string . In... physical phenomenon due to the nonlinearity of sound arises from the interaction of two sound beams. Nonlinear acoustic theory predictions by Westervelt in...known experimental data for the turbulent velocity field. Goals of this research include mapping out the turbulence and studying the physical
Nonlinear Interactions of Dispersion-managed Soliton in OTDM Systems
Institute of Scientific and Technical Information of China (English)
CAI Ju; MAO Yu; LU Hui; ZHANG Li-na; YANG Xiang-lin
2003-01-01
The dispersion-managed soliton (DMS) transmission model of dispersion-managed systems is established,and the intrachannel DMS interactions equation is obtained.The impact of soliton interactions on DMS systems are numerically investigated.Finally,the relationships of the collision length changing with map strength are revealed.
Possible second-order nonlinear interactions of plane waves in an elastic solid.
Korneev, V A; Demčenko, A
2014-02-01
There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The considered waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experimental setup and design. The analytic results are verified by comparison with numerical solutions of initial equations. Amplitude coefficients for all ten interactions are computed as functions of frequency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equation of motion is put into a general vector form and can be used for any coordinate system.
Simulations of Energetic Particles Interacting with Nonlinear Anisotropic Dynamical Turbulence
Heusen, Martin
2016-01-01
We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bend...
Chaotic saddles in nonlinear modulational interactions in a plasma
Energy Technology Data Exchange (ETDEWEB)
Miranda, Rodrigo A. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); University of Brasilia (UnB), Gama Campus, and Plasma Physics Laboratory, Institute of Physics, Brasilia, DF 70910-900 (Brazil); Rempel, Erico L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); Chian, Abraham C.-L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); Observatoire de Paris, LESIA, CNRS, 92195 Meudon (France)
2012-11-15
A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.
Chaotic saddles in nonlinear modulational interactions in a plasma
Miranda, Rodrigo A; Chian, Abraham C -L
2012-01-01
A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.
Interactive Classroom Graphics--Simulating Non-Linear Arrhenius Plots.
Ben-Zion, M.; Hoz, S.
1980-01-01
Describes two simulation programs using an interactive graphic display terminal that were developed for a course in physical organic chemistry. Demonstrates the energetic conditions that give rise to deviations from linearity in the Arrhenius equation. (CS)
AxiSketcher: Interactive Nonlinear Axis Mapping of Visualizations through User Drawings.
Kwon, Bum Chul; Kim, Hannah; Wall, Emily; Choo, Jaegul; Park, Haesun; Endert, Alex
2017-01-01
Visual analytics techniques help users explore high-dimensional data. However, it is often challenging for users to express their domain knowledge in order to steer the underlying data model, especially when they have little attribute-level knowledge. Furthermore, users' complex, high-level domain knowledge, compared to low-level attributes, posits even greater challenges. To overcome these challenges, we introduce a technique to interpret a user's drawings with an interactive, nonlinear axis mapping approach called AxiSketcher. This technique enables users to impose their domain knowledge on a visualization by allowing interaction with data entries rather than with data attributes. The proposed interaction is performed through directly sketching lines over the visualization. Using this technique, users can draw lines over selected data points, and the system forms the axes that represent a nonlinear, weighted combination of multidimensional attributes. In this paper, we describe our techniques in three areas: 1) the design space of sketching methods for eliciting users' nonlinear domain knowledge; 2) the underlying model that translates users' input, extracts patterns behind the selected data points, and results in nonlinear axes reflecting users' complex intent; and 3) the interactive visualization for viewing, assessing, and reconstructing the newly formed, nonlinear axes.
DEFF Research Database (Denmark)
Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus
1998-01-01
A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp......A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech...
Soliton pair generation in the interactions of Airy and nonlinear accelerating beams
Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Lu, Keqing; Li, Yuanyuan; Zhang, Yanpeng
2013-01-01
We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound states, after shedding some radiation initially. In the out-of-phase case, they repel each other and after an initial interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton pairs generated from those beams do not.
Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations
Luk, Jonathan
2013-01-01
In this paper, we study the problem of the nonlinear interaction of impulsive gravitational waves for the Einstein vacuum equations. The problem is studied in the context of a characteristic initial value problem with data given on two null hypersurfaces and containing curvature delta singularities. We establish an existence and uniqueness result for the spacetime arising from such data and show that the resulting spacetime represents the interaction of two impulsive gravitational waves germinating from the initial singularities. In the spacetime, the curvature delta singularities propagate along 3-dimensional null hypersurfaces intersecting to the future of the data. To the past of the intersection, the spacetime can be thought of as containing two independent, non-interacting impulsive gravitational waves and the intersection represents the first instance of their nonlinear interaction. Our analysis extends to the region past their first interaction and shows that the spacetime still remains smooth away fro...
Topological charge algebra of optical vortices in nonlinear interactions.
Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V
2015-12-28
We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.
Numerical method of studying nonlinear interactions between long waves and multiple short waves
Institute of Scientific and Technical Information of China (English)
Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei
2009-01-01
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.
Institute of Scientific and Technical Information of China (English)
Hamed Farokhi; Mergen H Ghayesh
2016-01-01
This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imper-fect microplates. Based on the modified couple stress theory, the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff ’s hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct time-integration method. The system parameters are tuned to the values associated with modal interactions, and then non-linear resonant responses and energy transfer are analysed. Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histo-ries, phase-plane portraits, and fast Fourier transforms.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Nonlinear theory of laser-induced dipolar interactions in arbitrary geometry
Shahmoon, Ephraim
2013-01-01
Polarizable dipoles, such as atoms, molecules or nanoparticles, subject to laser radiation, may attract or repel each other. We derive a general formalism in which such laser-induced dipole-dipole interactions (LIDDI) in any geometry and for any laser strength are described in terms of the resonant dipole-dipole interaction (RDDI) between dipoles dressed by the laser. Our expressions provide a physically clear and technically simple route towards the analysis of LIDDI in a general geometry. This approach can treat both mechanical and internal-state interactions between the dipoles. Our general results reveal LIDDI effects due to nonlinear dipole-laser interactions, unaccounted for by previous treatments of LIDDI. We discuss, via several simple approaches, the origin of these nonlinear effects and their absence in previous works.
Nonlinear gravity-wave interactions in stratified turbulence
Remmel, Mark; Sukhatme, Jai; Smith, Leslie M.
2014-04-01
To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called "fast") gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers ( Fr) considered (0.05 ≤ Fr ≤ 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach -2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.
Three-wave interaction in two-component quadratic nonlinear lattices
DEFF Research Database (Denmark)
Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth
1999-01-01
We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation kno...
Knoester, Jasper; Mukamel, Shaul
1989-01-01
Reduced equations of motion for material and radiation field variables in a molecular crystal are presented that allow us to calculate linear- and nonlinear-optical susceptibilities, accounting in a systematic way for intermolecular interactions. These equations are derived starting from the multipo
Interaction of Tangent Conormal Waves for Higher-Order Nonlinear Strictly Hyperbolic Equations
Institute of Scientific and Technical Information of China (English)
尹会成; 仇庆久
1994-01-01
In this paper we deal with the interaction of three conormal waves for a class of third-order nonlinear strictly hyperbolic equations, in which two conormal waves are tangent. By the same argument, we may also discuss the similar problem for equation system of compressible fluid flow and obtain similar conclusions.
Towards Ultrafast Communications: Nonlinear Coupling Dynamics and Light-Semiconductor Interaction
Wang, W.
2007-01-01
This thesis deals with some specific problems concerning the processing of ultrashort optical pulses and their interaction with semiconductors. It includes the investigation of the ultrashort optical pulse propagation and coupling dynamics in the nonlinear coupled waveguide, and the coherent and in
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.
2011-01-01
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
Interaction-induced effects in the nonlinear coherent response of quantum-well excitons
DEFF Research Database (Denmark)
Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner;
1999-01-01
Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...
Towards Ultrafast Communications: Nonlinear Coupling Dynamics and Light-Semiconductor Interaction
Wang, W.
2007-01-01
This thesis deals with some specific problems concerning the processing of ultrashort optical pulses and their interaction with semiconductors. It includes the investigation of the ultrashort optical pulse propagation and coupling dynamics in the nonlinear coupled waveguide, and the coherent and
Management of the orbital angular momentum of vortex beams in a quadratic nonlinear interaction
Bovino, Fabio A; Bertolotti, Mario; Sibilia, Concita
2011-01-01
Light intensity control of the orbital angular momentum of the fundamental beam in a quadratic nonlinear process is theoretically and numerically presented. In particular we analyzed a seeded second harmonic generation process in presence of orbital angular momentum of the interacting beams due both to on axis and off axis optical vortices. Examples are proposed and discussed.
Soliton-potential interaction in the Nonlinear Klein-Gordon Model
Saadatmand, Danial
2011-01-01
Interaction of solitons with external potentials in nonlinear Klein-Gordon field theory is investigated using an improved model. Presented model is constructed with a better approximation for adding the potential to the lagrangian through the metric of background space-time. The results of the model are compared with the another model and the differences are discussed.
Fardad, Shima; Mills, Matthew S; Zhang, Peng; Man, Weining; Chen, Zhigang; Christodoulides, D N
2013-09-15
We demonstrate optical interactions between stable self-trapped optical beams in soft-matter systems with pre-engineered saturable self-focusing optical nonlinearities. Our experiments, carried out in dilute suspensions of particles with negative polarizabilities, show that optical beam interactions can vary from attractive to repulsive, or can display an energy exchange depending on the initial relative phases. The corresponding observations are in good agreement with theoretical predictions.
Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter.
Palatella, Luigi; Trevisan, Anna
2015-04-01
When applied to strongly nonlinear chaotic dynamics the extended Kalman filter (EKF) is prone to divergence due to the difficulty of correctly forecasting the forecast error probability density function. In operational forecasting applications ensemble Kalman filters circumvent this problem with empirical procedures such as covariance inflation. This paper presents an extension of the EKF that includes nonlinear terms in the evolution of the forecast error estimate. This is achieved starting from a particular square-root implementation of the EKF with assimilation confined in the unstable subspace (EKF-AUS), that is, the span of the Lyapunov vectors with non-negative exponents. When the error evolution is nonlinear, the space where it is confined is no more restricted to the unstable and neutral subspace causing filter divergence. The algorithm presented here, denominated EKF-AUS-NL, includes the nonlinear terms in the error dynamics: These result from the nonlinear interaction among the leading Lyapunov vectors and account for all directions where the error growth may take place. Numerical results show that with the nonlinear terms included, filter divergence can be avoided. We test the algorithm on the Lorenz96 model, showing very promising results.
LINEAR AND NONLINEAR AERODYNAMIC THEORY OF INTERACTION BETWEEN FLEXIBLE LONG STRUCTURE AND WIND
Institute of Scientific and Technical Information of China (English)
徐旭; 曹志远
2001-01-01
In light of the characteristics of the interactions between flexible structure and wind in three directions, and based on the rational mechanical section-model of structure, a new aerodynamic force model is accepted, i. e. the coefficients of three component forces are the functions of the instantaneous attack angle and rotational speed Ci = Ci(β(t),θ),(i = D, L, M). So, a new method to formulate the linear and nonlinear aerodynamic items of wind and structure interacting has been put forward in accordance with "strip theory"and modified "quasi-static theory ", and then the linear and nonlinear coupled theory of super-slender structure for civil engineering analyzing are converged in one model. For the linear aerodynamic-force parts, the semi-analytical expressions of the items so-called "flutter derivatives" corresponding to the one in the classic equations have been given here,and so have the nonlinear parts. The study of the stability of nonlinear aerodynamic-coupled torsional vibration of the old Tacoma bridge shows that the form and results of the nonlinear control equation in rotational direction are in agreement with that of V. F. Bohm's.
Nonlinear Interactions within the D-Region Ionosphere
Moore, Robert
2016-07-01
This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we saw a tremendous improvement in ELF/VLF wave generation efficiency. We identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.
Interharmonic modulation products as a means to quantify nonlinear D-region interactions
Moore, Robert
Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.
Nonlinear interaction of two trapped-mode resonances in a bilayer "fish-scale" metamaterial
Tuz, Vladimir R; Mladyonov, Pavel L; Prosvirnin, Sergey L; Novitsky, Andrey V
2014-01-01
We report on a bistable light transmission through a bilayer "fish-scale" (meander-line) metamaterial. It is demonstrated that an all-optical switching may be achieved nearly the frequency of the high-quality-factor Fano-shaped trapped-mode resonance excitation. The nonlinear interaction of two closely spaced trapped-mode resonances in the bilayer structure composed with a Kerr-type nonlinear dielectric slab is analyzed in both frequency and time domains. It is demonstrated that these two resonances react differently on the applied intense light which leads to destination of a multistable transmission.
Avetissian, Hamlet
2006-01-01
This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-04-01
This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.
Shen, Yanfeng
2017-04-01
This paper presents a numerical investigation of the nonlinear interactions between multimodal guided waves and delamination in composite structures. The elastodynamic wave equations for anisotropic composite laminate were formulated using an explicit Local Interaction Simulation Approach (LISA). The contact dynamics was modeled using the penalty method. In order to capture the stick-slip contact motion, a Coulomb friction law was integrated into the computation procedure. A random gap function was defined for the contact pairs to model distributed initial closures or openings to approximate the nature of rough delamination interfaces. The LISA procedure was coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized computation on powerful graphic cards. Several guided wave modes centered at various frequencies were investigated as the incident wave. Numerical case studies of different delamination locations across the thickness were carried out. The capability of different wave modes at various frequencies to trigger the Contact Acoustic Nonlinearity (CAN) was studied. The correlation between the delamination size and the signal nonlinearity was also investigated. Furthermore, the influence from the roughness of the delamination interfaces was discussed as well. The numerical investigation shows that the nonlinear features of wave delamination interactions can enhance the evaluation capability of guided wave Structural Health Monitoring (SHM) system. This paper finishes with discussion, concluding remarks, and suggestions for future work.
Statistical analysis of nonlinear wave interactions in simulated Langmuir turbulence data
Directory of Open Access Journals (Sweden)
J. Soucek
Full Text Available We present a statistical analysis of strong turbulence of Langmuir and ion-sound waves resulting from beam-plasma interaction. The analysis is carried out on data sets produced by a numerical simulation of one-dimensional Zakharov’s equations. The nonlinear wave interactions are studied using two different approaches: high-order spectra and Volterra models. These methods were applied to identify two and three wave processes in the data, and the Volterra model was furthermore employed to evaluate the direction and magnitude of energy transfer between the wave modes in the case of Langmuir wave decay. We demonstrate that these methods allow one to determine the relative importance of strongly and weakly turbulent processes. The statistical validity of the results was thoroughly tested using surrogated data set analysis.
Key words. Space plasma physics (wave-wave interactions; experimental and mathematical techniques; nonlinear phenomena
Chaitanya, N Apurv; Banerji, J; Samanta, G K
2016-01-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.
Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.
2016-09-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.
Energy Technology Data Exchange (ETDEWEB)
Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)
2013-12-15
Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.
Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A
2003-06-01
Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.
Wave–vortex interactions in the nonlinear Schrödinger equation
Energy Technology Data Exchange (ETDEWEB)
Guo, Yuan, E-mail: yuanguo@cims.nyu.edu; Bühler, Oliver [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-02-15
This is a theoretical study of wave–vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave–vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave–vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.
Pitch glide effect induced by a nonlinear string-barrier interaction
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
Nonlinear wave-particle interactions in the outer radiation belts: Van Allen Probes results
Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton; Drake, James; Vasko, Ivan
2016-10-01
Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. Observations of electron velocity distributions and chorus waves by the Van Allen Probe B provided long-lasting signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. The feedback from trapped particles provides steepening of parallel electric field and development of TDS seeded from initial whistler structure (well explained in terms of Particle-In-Cell model). The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system and are observed by the Van Allen Probes in the radiation belts.
Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system
Kahraman, A.; Singh, R.
1991-04-01
Frequency response characteristics of a non-linear geared rotor-bearing system with time-varying mesh stiffness k h( overlinet) are examined in this paper. First, the single-degree-of-freedom spur gear pair model with backlash is extended to include sinusoidal or periodic mesh stiffness k h( overlinet) . Second, a three-degree-of-freedom model with k h( overlinet) and clearance non-lineariries associated with gear backlash and rolling element bearings, as excited by the static transmission error overlinee( overlinet) under a mean torque load, is developed. The governing equations are solved using digital simulation technique and only the primary resonances are studied. Resonances of the corresponding linear time-varying system associated with parametric and external excitations are identified using the method of multiple scales and digital simulation. Interactions between the mesh stiffness variation and clearance non-linearities have been investigated; a strong interaction between time-varying mesh stiffness k h( overlinet) and gear backlash is found, whereas the coupling between k h( overlinet) and bearing non-linearities is weak. Finally, our time-varying non-linear formulations yield reasonably good predictions when compared with the benchmark experimental results available in the literature.
Harmonic Propagation and Interaction Evaluation between Small-Scale Wind Farms and Nonlinear Loads
Directory of Open Access Journals (Sweden)
Cheng-Xiong Mao
2013-07-01
Full Text Available Distributed generation is a flexible and effective way to utilize renewable energy. The dispersed generators are quite close to the load, and pose some power quality problems such as harmonic current emissions. This paper focuses on the harmonic propagation and interaction between a small-scale wind farm and nonlinear loads in the distribution grid. Firstly, by setting the wind turbines as P – Q(V nodes, the paper discusses the expanding Newton-Raphson power flow method for the wind farm. Then the generalized gamma mixture models are proposed to study the non-characteristic harmonic propagation of the wind farm, which are based on Gaussian mixture models, improved phasor clustering and generalized Gamma models. After the integration of the small-scale wind farm, harmonic emissions of nonlinear loads will become random and fluctuating due to the non-stationary wind power. Furthermore, in this paper the harmonic coupled admittance matrix model of nonlinear loads combined with a wind farm is deduced by rigorous formulas. Then the harmonic propagation and interaction between a real wind farm and nonlinear loads are analyzed by the harmonic coupled admittance matrix and generalized gamma mixture models. Finally, the proposed models and methods are verified through the corresponding simulation models in MATLAB/SIMULINK and PSCAD/EMTDC.
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves
Luk, Onnie
The convective cells are observed in the auroral ionosphere and they could play an important role in the nonlinear interaction of Alfven waves and disrupt the kinetic Alfven wave (KAW) turbulence. Zonal fields, which are analogous to convective cells, are generated by microturbulence and regulate microturbulence inside toroidally confined plasmas. It is important to understand the role of convective cells in the nonlinear interaction of KAW leading to perpendicular cascade of spectral energy. A nonlinear gyrokinetic particle simulation has been developed to study the perpendicular spectral cascade of kinetic Alfven wave. However, convective cells were excluded in the study. In this thesis project, we have modified the formulation to implement the convective cells to study their role in the nonlinear interactions of KAW. This thesis contains detail description of the code formulation and convergence tests performed, and the simulation results on the role of convective cells in the nonlinear interactions of KAW. In the single KAW pump wave simulations, we observed the pump wave energy cascades to waves with shorter wavelengths, with three of them as dominant daughter waves. Convective cells are among those dominant daughter waves and they enhance the rate of energy transfer from pump to daughter waves. When zonal fields are present, the growth rates of the dominant daughter waves are doubled. The convective cell (zonal flow) of the zonal fields is shown to play a major role in the nonlinear wave interaction, while the linear zonal vector potential has little effects. The growth rates of the daughter waves linearly depends on the pump wave amplitude and the square of perpendicular wavenumber. On the other hand, the growth rates do not depend on the parallel wavenumber in the limit where the parallel wavenumber is much smaller than the perpendicular wavenumber. The nonlinear wave interactions with various perpendicular wavenumbers are also studied in this work. When
Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.
2017-01-01
nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum......The absorption of a single photon that excites a quantum system from a low to a high energy level is an elementary process of light-matter interaction, and a route towards realizing pure single-photon absorption has both fundamental and practical implications in quantum technology. Due to nonlinear...... optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...
Numerical simulation of nonlinear long waves interacting with arrays of emergent cylinders
Zainali, Amir; Weiss, Robert; Irish, Jennifer L; Yang, Yongqian
2016-01-01
We presented numerical simulation of long waves, interacting with arrays of emergent cylinders inside regularly spaced patches, representing discontinues patchy coastal vegetation. We employed the fully nonlinear and weakly dispersive Serre-Green-Naghdi equations (SGN) until the breaking process starts, while we changed the governing equations to nonlinear shallow water equations (NSW) at the vicinity of the breaking-wave peak and during the runup stage. We modeled the cylinders as physical boundaries rather than approximating them as macro-roughness friction. We showed that the cylinders provide protection for the areas behind them. However they might also cause amplification in local water depth in those areas. The presented results are extensively validated against the existing numerical and experimental data. Our results demonstrate the capability and reliability of our model in simulating wave interaction with emergent cylinders.
Modelling of Nonlinear Dynamic of Mechanic Systems with the Force Tribological Interaction
Directory of Open Access Journals (Sweden)
K.A. Nuzhdin
2015-09-01
Full Text Available This paper considers the mechanisms with different structure: tribometric device and a mechanism for handling of optical glasses. In the first device, the movement of the upper platform is due to a reciprocating friction interaction. In the second device, the processing of the optical element or group of elements occurs due to the rotational motion. Modelling of the dynamic of these systems with Matlab/Simmechanic allowed carrying out the analysis of dynamic of mechanisms, considering nonlinearity tribological interactions for these systems. The article shows that using of the computer models can effectively carry out the selection of the control parameters to create the desired mode of operation, as well as to investigate the behaviour of systems with nonlinear parameters and processes of self-oscillations. The organization of the managed self-oscillation process is realized to create the relevant high-performance manufacturing, for example, for the processing of optical glasses.
The effect of crack orientation on the nonlinear interaction of a P wave with an S wave
TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.
2016-06-01
Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.
Wavenumber resonance in nonlinear wave interactions in the wake of a flat plate
Davila, Jose Benigno
The spatial traits of nonlinear wave interactions in transitioning flow in the symmetric wake of a flat plate were studied. The study combines the use of hot wire anemometry and digital analysis techniques for extracting frequency and wavenumber information from velocity fluctuation time series measurements. The linear spatial coherence was computed from velocity fluctuation data in order to determine if the frequency modes behave as waves, that is, spatially coherent fluctuations with a well defined dispersion relation. A new method was used to compute the mode triad wavenumber mismatch. The results were used to determine to what extent wavenumber resonance is present among quadratically interacting frequency resonant modes, as predicted by resonant wave interaction theory. The results show that, in the early part of the transition, instability modes interact nonlinearity to generate spatially coherent modes at frequencies above the instability range. Quadratically interacting, frequency resonant mode triads involve the transfer of energy to the harmonics of the fundamental instability exhibit good wavenumber resonance, as predicted by resonant wave interaction theory.
Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Ignatyeva, Daria O.; Sukhorukov, Anatoly P. [Lomonosov Moscow State University, Moscow (Russian Federation)
2012-12-15
We present a novel theory of surface plasmon polariton interaction on the surface of dielectric with saturable Kerr nonlinearity. The effect of the total internal reflection of a weak signal plasmon beam from a high-power reference beam is discussed. Both ray and wave theories are used to describe signal propagation. The effect of the signal tunneling through the narrow inhomogeneity induced by the reference beam is considered. (orig.)
Interaction-based nonlinear quantum metrology with a cold atomic ensemble
2014-01-01
In this manuscript we present an experimental and theoretical investigation of quantum-noise-limited measurement by nonlinear interferometry, or from another perspective, quantum-noise-limited interaction-based measurement. The experimental work is performed using a polarization-based quantum interface between propagating light pulses and cold rubidium-87 atoms trapped in an optical dipole trap. We first review the theory of quantum metrology and estimation theory, and we describe theor...
Energy Technology Data Exchange (ETDEWEB)
Kumar, Manoj [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Lahon, Siddhartha, E-mail: sid.lahon@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Jha, Pradip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, DDU College, University of Delhi, Delhi 110007 (India); Gumber, Sukirti; Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)
2014-04-01
Here we have investigated the influence of external electric field and magnetic field on the nonlinear optical rectification of a parabolic confinement wire in the presence of Rashba spin–orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin–orbit interaction strength and photon energy. Our results indicate an increase of electric field gives the red-shift of the peak positions of nonlinear optical rectification. The role of confinement strength and spin–orbit interaction strength as control parameters on this nonlinear property have been demonstrated.
Teitelbaum, H.; Vial, F.; Manson, A. H.; Giraldez, R.; Masseboeuf, M.
1989-01-01
Many years of measurements obtained using French meteor radars at Garchy (latitude 47 N) and Montpazier (latitude 44 N) are used to show the existence of an 8 hour oscillation. Some examples of the structure of this wave are displayed and compared with measurements performed at Saskatoon (latitude 52 N) and Budrio (latitude 45 N). This wave can be interpreted as the solar driven terdiurnal tide, or as the result of the nonlinear interaction between the diurnal and semidiurnal tides. Both hypotheses are tested with numerical models. Incidentally, the possible existence of a 24 hour wave resulting from this interaction is also studied.
Beta-functions of non-linear $\\sigma$-models for disordered and interacting electron systems
Dell'Anna, Luca
2016-01-01
We provide and study complete sets of one-loop renormalization group equations, calculated at all orders in the interaction parameters, of several Finkel'stein non-linear $\\sigma$-models, the effective field theories describing the diffusive quantum fluctuations in correlated disordered systems. We consider different cases according to the presence of certain symmetries induced by the original random Hamiltonians, and we show that, for interacting systems, the Cartan's classification of symmetry classes is not enough to uniquely determine their scaling behaviors.
Characterizing the nonlinear interaction of S- and P-waves in a rock sample
Gallot, Thomas; Malcolm, Alison; Szabo, Thomas L.; Brown, Stephen; Burns, Daniel; Fehler, Michael
2015-01-01
The nonlinear elastic response of rocks is known to be caused by the rocks' microstructure, particularly cracks and fluids. This paper presents a method for characterizing the nonlinearity of rocks in a laboratory scale experiment with a unique configuration. This configuration has been designed to open up the possibility of using the nonlinear characterization of rocks as an imaging tool in the field. In our experiment, we study the nonlinear interaction of two traveling waves: a low-amplitude 500 kHz P-wave probe and a high-amplitude 50 kHz S-wave pump in a room-dry 15 × 15 × 3 cm slab of Berea sandstone. Changes in the arrival time of the P-wave probe as it passes through the perturbation created by the traveling S-wave pump were recorded. Waveforms were time gated to simulate a semi-infinite medium. The shear wave phase relative to the P-wave probe signal was varied with resultant changes in the P-wave probe arrival time of up to 100 ns, corresponding to a change in elastic properties of 0.2%. In order to estimate the strain in our sample, we also measured the particle velocity at the sample surface to scale a finite difference linear elastic simulation to estimate the complex strain field in the sample, on the order of 10-6, induced by the S-wave pump. We derived a fourth order elastic model to relate the changes in elasticity to the pump strain components. We recover quadratic and cubic nonlinear parameters: β ˜ = - 872 and δ ˜ = - 1.1 × 10 10 , respectively, at room-temperature and when particle motions of the pump and probe waves are aligned. Temperature fluctuations are correlated to changes in the recovered values of β ˜ and δ ˜ , and we find that the nonlinear parameter changes when the particle motions are orthogonal. No evidence of slow dynamics was seen in our measurements. The same experimental configuration, when applied to Lucite and aluminum, produced no measurable nonlinear effects. In summary, a method of selectively determining the
Characterizing the nonlinear interaction of S- and P-waves in a rock sample
Gallot, Thomas; Szabo, Thomas L; Brown, Stephen; Burns, Daniel; Fehler, Michael
2014-01-01
The nonlinear elastic response of rocks is known to be caused by the rocks' microstructure, particularly cracks and fluids. This paper presents a method for characterizing the nonlinearity of rocks in a laboratory scale experiment with a unique configuration. This configuration has been designed to open up the possibility the nonlinear characterization of rocks as an imaging tool in a field scenario. The nonlinear interaction of two traveling waves: a low-amplitude 500 kHz P-wave probe and a high-amplitude 50 kHz S-wave pump has been studied on a room-dry 15 x 15x 3 cm slab of Berea sandstone. Changes in the arrival time of the P-wave probe as it passes through the perturbation created by the traveling S-wave pump were recorded. Waveforms were time gated to simulate a semi-infinite medium. The shear wave phase relative to the P-wave probe signal was varied with resultant changes in the P-wave probe arrival time of up to 100 ns, corresponding to a change in elastic properties of 0.2%. In order to estimate the ...
Institute of Scientific and Technical Information of China (English)
YU You-Bin
2008-01-01
The electron-phonon interaction influences on linear and nonlinear optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential are investigated. The optical absorption coefficients are obtained by using the compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs CQW. The results show that the electron-phonon interaction makes a distinct influence on optical absorption in CQW. The electron-phonon interaction on the wave functions of electron dominates the values of absorption coefficients and the correction of the electron-phonon effect on the energies of the electron makes the absorption peaks blue shift and become wider. Moreover, the electron-phonon interaction influence on optical absorption with an infinite confining potential is different from that with a finite confining potential.
Directory of Open Access Journals (Sweden)
James Sae Siew
2015-01-01
Full Text Available Rail turnouts are built to enable flexibility in the rail network as they allow for vehicles to switch between various tracks, therefore maximizing the utilisation of existing rail infrastructure. In general, railway turnouts are a safety-critical and expensive feature to a rail system as they suffer aggressive operational loads, in comparison to a plain rail track, and thus require frequent monitoring and maintenance. In practice, great consideration is given to the dynamic interaction between the turnouts components as a failed component may have adverse effects on the performance of neighbouring components. This paper presents a nonlinear 3D finite element (FE model, taking into account the nonlinearities of materials, in order to evaluate the interaction and behaviour of turnout components. Using ABAQUS, the finite element model was developed to simulate standard concrete bearers with 60 kg/m rail and with a tangential turnout radius of 250 m. The turnout structure is supported by a ballast layer, which is represented by a nonlinearly deformable tensionless solid. The numerical studies firstly demonstrate the importance of load transfer mechanisms in the failure modes of the turnout components. The outcome will lead to a better design and maintenance of railway turnouts, improving public safety and operational reliability.
Energy Technology Data Exchange (ETDEWEB)
Spears, Robert Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE’s) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The nonlinear dynamic behavior of a rubbing rotor system was studied with a mathematical model established with the eccentricity and interaction between bending and torsional vibrations taken into consideration.The nonlinear vibrational response of a rubbing rotor was analyzed using numerical integral,spectroscopic analysis and Poince mapping method,which made it possible to have better understanding of the vibrational characteristics of partial rubbing and complete circular rubbing rotors.The numerical results reveal the response of torsional vibration mainly takes a form of suporchronous motion,and its frequency decreases as the rotational speed increases when partial rubbing occurs,and the response of torsional vibration is synchronous when complete circular rubbing occurs.The comparison of the dynamics of rubbing rotors with and without the interaction between bending and torsional vibrations shows the interaction between bending and torsional vibrations advances the rotational speed,at which the response of bending vibration changes from a synchronous motion into a quasi-periodic motion,and the interaction between bending and torsional vibrations reduces stability of the rubbing rotor.
Latyshev, A V
2014-01-01
The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. The concept of longitudinal-transversal conductivity is entered. The graphic analysis of the real and imaginary parts of dimensionless coefficient of longitudinal-transversal conductivity is made. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures. In this formula we have allocated known Kohn's singularities (W. Kohn, 1959).
On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven By Energetic Particles
Energy Technology Data Exchange (ETDEWEB)
G.Y. Fu
2010-10-01
It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.
On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven by Energetic Particles
Energy Technology Data Exchange (ETDEWEB)
G. Y. Fu
2010-06-04
It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low uctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.
Energy Technology Data Exchange (ETDEWEB)
Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Taheri Boroujeni, S. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2015-11-15
In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Nonlinear mechanisms to Rogue events in the process of interaction between optical filaments
Kovachev, L M
2015-01-01
We investigate two types of nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing $P_{cr}$. In the first case we study energy exchange between filaments. The model describes this process through degenerate four-photon parametric mixing (FPPM) scheme and requests initial phase difference between the waves. When there are no initial phase difference between the pulses, the FPPM process does not work. In this case it is obtained the second type of interaction as merging between two, three or four filaments in a single filament with higher power. It is found that in the second case the interflow between the filaments has potential of interaction due to cross-phase modulation (CPM).
Directory of Open Access Journals (Sweden)
Matías A Goldin
Full Text Available The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior.
Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs
Bessaih, Hakima; Coghi, Michele; Flandoli, Franco
2017-03-01
Families of N interacting curves are considered, with long range, mean field type, interaction. They generalize models based on classical interacting point particles to models based on curves. In this new set-up, a mean field result is proven, as N→ ∞. The limit PDE is vector valued and, in the limit, each curve interacts with a mean field solution of the PDE. This target is reached by a careful formulation of curves and weak solutions of the PDE which makes use of 1-currents and their topologies. The main results are based on the analysis of a nonlinear Lagrangian-type flow equation. Most of the results are deterministic; as a by-product, when the initial conditions are given by families of independent random curves, we prove a propagation of chaos result. The results are local in time for general interaction kernel, global in time under some additional restriction. Our main motivation is the approximation of 3D-inviscid flow dynamics by the interacting dynamics of a large number of vortex filaments, as observed in certain turbulent fluids; in this respect, the present paper is restricted to smoothed interaction kernels, instead of the true Biot-Savart kernel.
Energy Technology Data Exchange (ETDEWEB)
Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr; Casalis, Grégoire, E-mail: Gregoire.Casalis@onera.fr [Onera - The French Aerospace Lab, F-31055 Toulouse (France)
2015-08-15
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.
ALE Fractional Step Finite Element Method for Fluid-Structure Nonlinear Interaction Problem
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.
Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.
1980-01-01
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.
Guo, Tieding; Kang, Houjun; Wang, Lianhua; Zhao, Yueyu
2016-12-01
Cable dynamics under ideal longitudinal support motions/excitations assumes that the support's mass, stiffness and mechanical energy are infinite. However, for many long/slender support structures, their finite mass and stiffness should be taken into account and the cable-support dynamic interactions should be modelled and evaluated. These moving supports are non-ideal support excitations, deserving a proper coupling analysis. For systems with a large support/cable mass ratio, using the multiple scale method and asymptotic approximations, a cable-support coupled reduced model, with both cable's geometric nonlinearity and cable-support coupling nonlinearity included, is established asymptotically and validated numerically in this paper. Based upon the reduced model, cable's nonlinear responses under non-ideal support excitations(and also the coupled responses) are found, with stability and bifurcation characteristics determined. By finding the modifications caused by the support/cable mass ratio, boundary damping, and internal detuning, full investigations into coupling-induced dynamic effects on the cable are conducted. Finally, the approximate analytical results based on the reduced model are verified by numerical results from the original full model.
Nonlinear interaction of instability waves and vortex-pairing noise in axisymmetric subsonic jets
Yang, Hai-Hua; Zhou, Lin; Zhang, Xing-Chen; Wan, Zhen-Hua; Sun, De-Jun
2016-10-01
A direct simulation with selected inflow forcing is performed for an accurate description of the jet flow field and far-field noise. The effects of the Mach number and heating on the acoustic field are studied in detail. The beam patterns and acoustic intensities are both varied as the change of the Mach number and temperature. The decomposition of the source terms of the Lilley-Goldstein (L-G) equation shows that the momentum and thermodynamic components lead to distinctly different beam patterns. Significant cancellation is found between the momentum and thermodynamic components at low polar angles for the isothermal jet and large polar angles for the hot jet. The cancellation leads to the minimum values of the far-field sound. Based on linear parabolized stability equation solutions, the nonlinear interaction model for sound prediction is built in combination with the L-G equation. The dominant beam patterns and their original locations predicted by the nonlinear model are in good agreement with the direct simulation results, and the predictions of sound pressure level (SPL) by the nonlinear model are relatively reasonable.
Three-photon interactions and spin exchange in a quantum nonlinear medium
Cantu, Sergio; Liang, Qi-Yu; Thompson, Jeff; Nicholson, Travis; Venkatramani, Aditya; Gullans, Michael; Gorshkov, Alexey; Choi, Soonwon; Lukin, Mikhail; Vuletic, Vladan
2016-05-01
Robust quantum gates for photonic qubits are a longstanding goal of quantum information science. One promising approach to achieve this goal requires strong nonlinear interactions between single photons, which is impossible with conventional optical media. We realize these interactions with electromagnetically induced transparency (EIT), and strongly interacting Rydberg states to mediate strong interactions between photons. Operating in the dispersive regime of EIT, we have recently shown that two photons propagating in our system can bind into a photonic molecule. Extending these two-photon experiments to many-body physics would lead to exotic phenomena like photon crystallization. To that end, we have scaled up our two-photon measurements to three-photon experiments. We are now able to discern signatures of three-photon molecules from a variety of two- and three-photon interactions. Three-photon bound states manifest as an increase in photon bunching in g (3) correlation measurements. We also present a recent observation of coherent spin exchange interactions in Rydberg EIT.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.
2007-01-01
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y
2007-01-15
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Chimera regimes in a ring of oscillators with local nonlinear interaction
Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.
2017-03-01
One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-02-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Three-state interactions determine the second-order nonlinear optical response
Perez-Moreno, Javier
2016-01-01
Using the sum-rules, the sum-over-states expression for the diagonal term of first hyperpolarizability can be expressed as the sum of three-state interaction terms. We study the behavior of a generic three-state term to show that is possible to tune the contribution of resonant terms by tuning the spectrum of the molecule. When extrapolated to the off-resonance regime, the three-state interaction terms are shown to behave in a similar manner as the three-level model used to derive the fundamental limits. We finally show that most results derived using the three-level ansatz are general, and apply to molecules where more than three levels contribute to the second-order nonlinear response or/and far from optimization.
A non-linear analytic stress model for the analysis on the stress interaction between TSVs
Directory of Open Access Journals (Sweden)
Ming-Han Liao
2015-06-01
Full Text Available Thermo-elastic strain is induced by through silicon vias (TSV due to the difference of thermal expansion coefficients between the copper (∼18 ppm/◦C and silicon (∼2.8 ppm/◦C when the structure is exposed to a thermal budget in the three dimensional integrated circuit (3DIC process. These thermal expansion stresses are high enough to induce the delamination on the interfaces between the copper, silicon, and isolated dielectric. A compact analytic model for the strain field induced by different layouts of thermal copper filled TSVs with the linear superposition principle is found to result in large errors due to the strong stress interaction between TSVs. In this work, a nonlinear stress analytic model with different TSV layouts is demonstrated by the finite element method and Mohr’s circle analysis. The stress characteristics are also measured by the atomic force microscope-raman technique at a nanometer level resolution. This nonlinear stress model for the strong interactions between TSVs results in an electron mobility change ~2-6% smaller than that resulting from a model that only considers the linear stress superposition principle.
Long-term wave growth and its linear and nonlinear interactions with wind fluctuations
Directory of Open Access Journals (Sweden)
Z. Ge
2008-05-01
Full Text Available Following Ge and Liu (2007, the simultaneously recorded time series of wave elevation and wind velocity are examined for long-term (on Lavrenov's τ_{4}-scale or 3 to 6 h linear and nonlinear interactions between the wind fluctuations and the wave field. Over such long times the detected interaction patterns should reveal general characteristics for the wave growth process. The time series are divided into three episodes, each approximately 1.33 h long, to represent three sequential stages of wave growth. The classic Fourier-domain spectral and bispectral analyses are used to identify the linear and quadratic interactions between the waves and the wind fluctuations as well as between different components of the wave field.
The results show clearly that as the wave field grows the linear interaction becomes enhanced and covers wider range of frequencies. Two different wave-induced components of the wind fluctuations are identified. These components, one at around 0.4 Hz and the other at around 0.15 to 0.2 Hz, are generated and supported by both linear and quadratic wind-wave interactions probably through the distortions of the waves to the wind field. The fact that the higher-frequency wave-induced component always stays with the equilibrium range of the wave spectrum around 0.4 Hz and the lower-frequency one tends to move with the downshifting of the primary peak of the wave spectrum defines the partition of the primary peak and the equilibrium range of the wave spectrum, a characteristic that could not be revealed by short-time wavelet-based analyses in Ge and Liu (2007. Furthermore, these two wave-induced peaks of the wind spectrum appear to have different patterns of feedback to the wave field. The quadratic wave-wave interactions also are assessed using the auto-bispectrum and are found to be especially active during the first and the third episodes. Such directly detected wind-wave interactions, both linear and
Directory of Open Access Journals (Sweden)
C. M. Huang
2006-12-01
Full Text Available To quantitatively study the effects of nonlinear interactions on tide structure, a nonlinear numerical tidal model is developed, and the reliability and convergence of the adopted algorithm and coding are checked by numerical experiments. Under the same conditions as those employed by the GSWM-00 (Global Scale Wave Model 2000, our model provides the nonlinear quasi-steady solution of the migrating semidiurnal tide, which differs from the GSWM-00 result (the linear steady solution in the MLT region, especially above 100 km. Additionally, their amplitude difference displays a remarkable month-to-month variation, and its significant magnitudes occur during the month with strong semidiurnal tide. A quantitative analysis suggests that the main cause for the amplitude difference is that the initial migrating 12-h tide will interact with the mean flow as well as the nonlinearity-excited 6-h tide, and subsequently yield a new 12-h tidal part. Furthermore, our simulations also show that the mean flow/tidal interaction will significantly alter the background wind and temperature fields. The large magnitudes of the tidal amplitude difference and the background alteration indicate that the nonlinear processes involved in tidal propagations should be comprehensively considered in the description of global atmospheric dynamics in the MLT region. The comparisons among our simulations, the GSWMs and some observations of tides suggest that the nonlinearity-induced tidal structure variation could be a possible mechanism to account for some discrepancies between the GSWMs and the observations.
Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2016-06-01
Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.
Rate of non-linearity in DMS aerosol-cloud-climate interactions
Directory of Open Access Journals (Sweden)
M. A. Thomas
2011-11-01
Full Text Available The degree of non-linearity in DMS-cloud-climate interactions is assessed using the ECHAM5-HAMMOZ model by taking into account end-to-end aerosol chemistry-cloud microphysics link. The evaluation is made over the Southern oceans in austral summer, a region of minimal anthropogenic influence. In this study, we compare the DMS-derived changes in the aerosol and cloud microphysical properties between a baseline simulation with the ocean DMS emissions from a prescribed climatology, and a scenario where the DMS emissions are doubled. Our results show that doubling the DMS emissions in the current climate results in a non-linear response in atmospheric DMS burden and subsequently, in SO_{2} and H_{2}SO_{4} burdens due to inadequate OH oxidation. The aerosol optical depth increases by only ~20 % in the 30° S–75° S belt in the SH summer months. This increases the vertically integrated cloud droplet number concentrations (CDNC by 25 %. Since the vertically integrated liquid water vapor is constant in our model simulations, an increase in CDNC leads to a reduction in cloud droplet radius of 3.4 % over the Southern oceans in summer. The equivalent increase in cloud liquid water path is 10.7 %. The above changes in cloud microphysical properties result in a change in global annual mean radiative forcing at the TOA of −1.4 W m^{−2}. The results suggest that the DMS-cloud microphysics link is highly non-linear. This has implications for future studies investigating the DMS-cloud climate feedbacks in a warming world and for studies evaluating geoengineering options to counteract warming by modulating low level marine clouds.
Nonlinear gauge interactions: a possible solution to the "measurement problem" in quantum mechanics
Hansson, Johan
2010-01-01
Two fundamental, and unsolved problems in physics are: i) the resolution of the "measurement problem" in quantum mechanics ii) the quantization of strongly nonlinear (nonabelian) gauge theories. The aim of this paper is to suggest that these two problems might be linked, and that a mutual, simultaneous solution to both might exist. We propose that the mechanism responsible for the "collapse of the wave function" in quantum mechanics is the nonlinearities already present in the theory via nonabelian gauge interactions. Unlike all other models of spontaneous collapse, our proposal is, to the best of our knowledge, the only one which does not introduce any new elements into the theory. A possible experimental test of the model would be to compare the coherence lengths - here defined as the distance over which quantum mechanical superposition is still valid - for, \\textit{e.g}, electrons and photons in a double-slit experiment. The electrons should have a finite coherence length, while photons should have a much ...
Nonlinear modal interactions in parity-time (${\\cal PT}$) symmetric lasers
Ge, Li
2016-01-01
Parity-time ($\\cal PT$) symmetric lasers have attracted considerable attention lately due to their promising applications and intriguing properties, such as free spectral range doubling and single-mode lasing. In this work we discuss nonlinear modal interactions in these laser systems under steady state conditions, and we demonstrate that several gain clamping scenarios can occur for lasing operation in the $\\cal PT$-symmetric and $\\cal PT$-broken phases. In particular, we show that, depending on the system's design and the external pump profile, its operation in the nonlinear regime falls into two different categories: in one the system is frozen in the $\\cal PT$ phase space as the applied gain increases, while in the other the system is pulled towards its exceptional point. These features are first illustrated by a coupled mode formalism and later verified by employing the Steady-state Ab-initio Laser Theory (SALT). Our findings shine light on the robustness of single-mode operation in these lasers against ...
Indian Academy of Sciences (India)
S Lakshmi; Swapan K Pati
2003-10-01
We consider an interacting one-dimensional molecular wire attached to two metal electrodes on either side of it. The electrostatic potential profile across the wire-electrode interface has been deduced solving the Schrodinger and Poisson equations self-consistently. Since the Poisson distribution crucially depends on charge densities, we have considered different Hamiltonian parameters to model the nanoscale wire. We find that for very weak electron correlations, the potential gradient is almost zero in the middle of the wire but are large near the chain ends. However, for strong correlations, the potential is essentially a ramp function. The nonlinear current, obtained from the scattering formalism, is found to be less with the ramp potential than for weak correlations. Some of the interesting features in current-voltage characteristics have been explained using one-electron formalism and instabilities in the system.
Interactions between impurities and breather-pairs in a nonlinear lattice
Lin, Han; Chen, Weizhong; Lu, Lei; Wei, Rongjue
2003-09-01
Based on the Frenkel-Kontorova (FK) model with a δ-impurity, this Letter investigates the interactions between impurities and breather-pairs in a nonlinear pendulum chain driven by a vertical vibration. The numerical results show that a long impurity in pendulum length can absorb more energy into the chain and upgrade the energy level of the breather-pair, when the driving frequency is slight lower than that of parametric resonance of the perfect pendulums, while a short one plays a counteractive role. As the chain is driven at a higher frequency, the effect of impurities turns reverse, which shows a clear symmetry and equivalency between long and short impurities. The main results including the effect and the symmetry of impurities generalize the conclusion on the single breather to the breather-pair.
Interactions between impurities and breather-pairs in a nonlinear lattice
Energy Technology Data Exchange (ETDEWEB)
Lin Han; Chen Weizhong; Lu Lei; Wei Rongjue
2003-09-15
Based on the Frenkel-Kontorova (FK) model with a {delta}-impurity, this Letter investigates the interactions between impurities and breather-pairs in a nonlinear pendulum chain driven by a vertical vibration. The numerical results show that a long impurity in pendulum length can absorb more energy into the chain and upgrade the energy level of the breather-pair, when the driving frequency is slight lower than that of parametric resonance of the perfect pendulums, while a short one plays a counteractive role. As the chain is driven at a higher frequency, the effect of impurities turns reverse, which shows a clear symmetry and equivalency between long and short impurities. The main results including the effect and the symmetry of impurities generalize the conclusion on the single breather to the breather-pair.
Directory of Open Access Journals (Sweden)
Etienne Thoret
2016-06-01
Full Text Available In this paper, a flexible control strategy for a synthesis model dedicated to nonlinear friction phenomena is proposed. This model enables to synthesize different types of sound sources, such as creaky doors, singing glasses, squeaking wet plates or bowed strings. Based on the perceptual stance that a sound is perceived as the result of an action on an object we propose a genuine source/filter synthesis approach that enables to elude physical constraints induced by the coupling between the interacting objects. This approach makes it possible to independently control and freely combine the action and the object. Different implementations and applications related to computer animation, gesture learning for rehabilitation and expert gestures are presented at the end of this paper.
Linear and nonlinear interactions between the earth tide and a tectonically stressed earth
Beaumont, C.
1978-01-01
In the vincinity of earthquake focal regions, conditions may not be equal. Crustal rocks stressed to more than approximately 0.6 of their failure strength exhibit material properties over and above that of linear elasticity. Interactions between the earth tide and crustal rocks that are under high tectonic stress are discussed in terms of simple phenomenological models. In particular, the difference between a nonlinear elastic model of dilatancy and a dilatancy model that exhibits hysteresis is noted. It is concluded that the small changes in stress produced by the earth tide act as a probe of the properties of crustal rocks. Observations of earth tide tilts and strains in such high stress zones may, therefore, provide keys to the constitutive properties and the tectonic stress rate tensor of these zones.
Tholerus, Emmi; Hellsten, Torbjörn
2016-01-01
FOXTAIL is a new hybrid magnetohydrodynamic-kinetic code used to describe interactions between energetic particles and Alfv\\'en eigenmodes in tokamaks with realistic geometries. The code simulates the nonlinear dynamics of the amplitudes of individual eigenmodes and of a set of discrete markers in five-dimensional phase space representing the energetic particle distribution. Action-angle coordinates of the equilibrium system are used for efficient tracing of energetic particles, and the particle acceleration by the wave fields of the eigenmodes is Fourier decomposed in the same angles. The eigenmodes are described using temporally constant eigenfunctions with dynamic complex amplitudes. Possible applications of the code are presented, e.g., making a quantitative validity evaluation of the one-dimensional bump-on-tail approximation of the system. Expected effects of the fulfillment of the Chirikov criterion in two-mode scenarios have also been verified.
Trautmann, L.; Rabenstein, R.
2004-12-01
The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.
Non-linear interactions in a cosmological background in the DGP braneworld
Koyama, K; Koyama, Kazuya; Silva, Fabio P
2007-01-01
We study quasi-static perturbations in a cosmological background in the Dvali-Gabadadze-Porrati (DGP) braneworld model. We identify the Vainshtein radius at which the non-linear interactions of the brane bending mode become important in a cosmological background. The Vainshtein radius in the early universe is much smaller than the one in the Minkowski background, but in a self-accelerating universe it is the same as the Minkowski background. Our result shows that the perturbative approach is applicable beyond the Vainshtein radius for weak gravity by taking into account the second order effects of the brane bending mode. The linearised cosmological perturbations are shown to be smoothly matched to the solutions inside the Vainshtein radius. We emphasize the importance of imposing a regularity condition in the bulk by solving the 5D perturbations and we highlight the problem of ad hoc assumptions on the bulk gravity that lead to different conclusions.
Transition waves and nonlinear interactions in the near wake of a circular cylinder
Institute of Scientific and Technical Information of China (English)
凌国灿; Allen T.Chwang; 牛家玉; 王冬(女菱)
1997-01-01
Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decomposition hybrid numerical method.Based on high resolution power spectral analyses for velocity new results on the Reynolds-number dependence of the transition wave frequency,i.e.ft/fa~Re0.87 are obtained.The new predictions are in good agreement with the experimental results of Wei and Smith but different from Braza’s prediction and some early experimental results ft/fa-Re0.5 given by Bloor et al.The multi-interactions between two kinds of vortex are clearly visualized numerically.The strong nonlinear interactions between the two independent frequencies (ft,fa) leading to spectra broadening to form the coupling mfs±nft are predicted and analyzed numerically,and the characteristics of the transition are described.Longitudinal variations of the transition wave and its coupling are reported.Deta
Comparative Study of Controllers for a Variable Area MIMO Interacting NonLinear System
Directory of Open Access Journals (Sweden)
Priya Chandrasekar
2014-03-01
Full Text Available Most of the industrial processes are basically Multi Input Multi Output (MIMO system. In this paper a new combination of Spherical Conical Interacting Tank System (SCITS which is a variable area nonlinear MIMO system is considered for study and various control algorithms based on Ziegler Nichol’s tuning method, Hagglund Astrom Robust tuning method, Fractional Order (FO control and Passivity Based Control (PBC are used and compared for the level control of spherical tank system and conical tank system connected with interaction. Transfer function matrix of the system is obtained experimentally from the open loop response of the system. The designed controllers are tested for servo and regulatory operations. The controllers are compared in terms of time domain specification and performance index criterion. From the analysis of the simulation results, it is seen that FO controller gives improved performance when compared to conventional Integer Order (IO controller and overall Passivity Based Controller (PBCr gives improved performance comparatively for spherical conical interacting MIMO system.
Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.
Zhang, Cheng; Liu, Hao; Tan, Renjia; Li, Hongyi
2014-03-01
Active capsule endoscope could also be called capsule robot, has been developed from laboratory research to clinical application. However, the system still has defects, such as poor controllability and failing to realize automatic checks. The imperfection of the interaction model between capsule robot and intestine is one of the dominating reasons causing the above problems. A model is hoped to be established for the control method of the capsule robot in this article. It is established based on nonlinear viscoelasticity. The interaction force of the model consists of environmental resistance, viscous resistance and Coulomb friction. The parameters of the model are identified by experimental investigation. Different methods are used in the experiment to obtain different values of the same parameter at different velocities. The model is proved to be valid by experimental verification. The achievement in this article is the attempted perfection of an interaction model. It is hoped that the model can optimize the control method of the capsule robot in the future.
Axion-induced birefringence effects in laser driven nonlinear vacuum interaction
Villalba-Chávez, Selym
2013-01-01
The propagation of a probe electromagnetic field through a counterpropagating strong plane wave is investigated. The effects of the electromagnetic field-(pseudo)scalar axion field interaction and of the self-interaction of the electromagnetic field mediated by virtual electron-positron pairs in the effective Lagrangian approach are included. First, we show that if the strong field is circularly polarized, contrary to the leading-order nonlinear QED effects, the axion-photon interaction induces a chiral-like birefringence and a dichroism in the vacuum. The latter effect is explained by evoking the conservation of the total angular momentum along the common propagation direction of probe and the strong wave, which allows for real axion production only for probe and strong fields with the same helicity. Moreover, in the case of ultra-short strong pulses, it is shown that the absorption coefficients of probe photons depend on the form of the pulse and, in particular, on the carrier-envelope phase of the strong b...
Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere
Hsieh, Yi-Kai; Omura, Yoshiharu
2017-01-01
We perform test particle simulations for relativistic electrons interacting with a whistler mode chorus packet propagating at oblique angles. By confirming that the energy transport of oblique lower band chorus is nearly along the ambient magnetic field, we apply the gyroaveraging method in calculating equations of motion of electrons. We trace evolution of a delta function of relativistic electrons in a phase space of kinetic energy and equatorial pitch angle and obtain numerical Green's functions of the chorus wave-particle interactions. Examining the Green's functions in a wide range of kinetic energies, we find that Landau resonance can accelerate MeV electrons efficiently and that higher nth resonances such as n =- 1 and n = 2 also contribute to acceleration of electrons at high equatorial pitch angles (˜70°) and high energies (˜2 MeV). We investigate the rate of energy gain of the cyclotron resonance acceleration and the Landau resonance acceleration and find that the perpendicular component of wave electric field dominates both accelerations for MeV electrons. Furthermore, the proximity between the parallel components of Vp and Vg of oblique whistler mode waves and the nonlinear trapping condition make the interaction time of Landau resonance much longer than that of n = 1 cyclotron resonance, resulting in efficient acceleration of MeV electrons.
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
Resonant nonlinear interactions between atmospheric waves in the polar summer mesopause region
Institute of Scientific and Technical Information of China (English)
LIU; Renqiang; (刘仁强); YI; Fan; (易帆)
2003-01-01
Data obtained from the mobile SOUSY VHF radar at And(ya/Norway in summer 1987 have been used to study the nonlinear interactions between planetary waves, tides and gravity waves in the polar mesosphere, and the instability of background atmosphere above the mesopause. It is observed that 35-h planetary wave, diurnal, semidiurnal and terdiurnal tides are the prominent perturbations in the Lomb-Scargle spectra of the zonal wind component. By inspecting the frequency combinations, several triads are identified. By bispectral analysis it is shown that most bispectral peaks stand for quadratic coupling between tidal harmonics or between tide and planetary or gravity wave, and the height dependence of bispectral peaks reflects the variation of wave-wave interactions. Above the mesopause, the occurrence heights of the maximum L-S power spectral peaks corresponding to the prominent wave components tend to increase with their frequencies. This may result from the process in which two low frequency waves interact to generate a high frequency wave. Intensities of the planetary wave and tides increase gradually, arrive at their maxima, and then decay quickly in turn with increasing height. This kind of scene correlates with a "chain" of wave-wave resonant interactions that shifts with height from lower frequency segment to higher frequency segment. By instability analysis, it is observed that above the mesopause, the Richardson number becomes smaller and smaller with height, implying that the turbulent motion grows stronger and stronger and accordingly the background atmosphere more and more instable. It is suggested that the wave-wave sum resonant interaction and the wave dissipation due to instability are two dominant dynamical processes that occur in the mesopause region. The former invokes the energy transfer from lower frequency waves to higher frequency waves. The latter results in the heating of the atmosphere and accelerating of the background flow.
Antolín, Pablo; Zhang, Nan; Goicolea, José M.; Xia, He; Astiz, Miguel Á.; Oliva, Javier
2013-03-01
In this work models with nonlinear wheel-rail contact forces are considered for analysing the dynamic interaction between high speed trains and bridges, in order to study dynamic effects both in the bridge and in the vehicles resulting from the coupling. Nonlinear contact models may be necessary for evaluating the stability and the safety of running traffic in situations such as vehicle overturn when the train is crossing a bridge under strong lateral winds or when an earthquake occurs. For studying the coupled dynamic response of trains and bridges, models of multibody dynamics are used for vehicles and the finite element method for structures. Special relevance is given here to the consideration of contact interaction forces between railway vehicles and the track. Four different interaction models are compared in this work: (1) a model where the vehicle wheelset is considered to be rigidly coupled to the track; (2) a staggered uncoupled method in which vehicle and structure are analysed separately; (3) a linear contact model in which lateral relative displacements between rails and train wheels are allowed, assuming biconic wheel and rail profiles and linear Kalker theory for tangential contact; (4) a nonlinear model in which realistic wheel and rail profiles, Hertz's nonlinear theory for normal contact and Kalker's nonlinear theory for tangential contact are used. The different models are applied and compared to experimental measurements for a test case of a high-speed train in China.
Nguyen, Vu A.; Palo, Scott E.; Lieberman, Ruth S.; Forbes, Jeffrey M.; Ortland, David A.; Siskind, David E.
2016-07-01
Theory and past observations have provided evidence that atmospheric tides and other global-scale waves interact nonlinearly to produce additional secondary waves throughout the space-atmosphere interaction region. However, few studies have investigated the generation region of nonlinearly generated secondary waves, and as a result, the manifestation and impacts of these waves are still poorly understood. This study focuses on the nonlinear interaction between the quasi 2 day wave (2dayW3) and the migrating diurnal tide (DW1), two of the largest global-scale waves in the atmosphere. The fundamental goals of this effort are to characterize the forcing region of the secondary waves and to understand how it relates to their manifestation on a global scale. First, the Fast Fourier Synoptic Mapping method is applied to Thermosphere Ionosphere Mesosphere Energetics and Dynamics-Sounding of the Atmosphere using Broadband Emission Radiometry satellite observations to provide new evidence of secondary waves. These results show that secondary waves are only significant above 80 km. The nonlinear forcing for each secondary wave is then computed by extracting short-term primary wave information from a reanalysis model. The estimated nonlinear forcing quantities are used to force a linearized tidal model in order to calculate numerical secondary wave responses. Model results show that the secondary waves are significant from the upper mesosphere to the middle thermosphere, highlighting the implications for the atmosphere-space weather coupling. The study also concludes that the secondary wave response is most sensitive to the nonlinear forcing occurring in the lower and middle mesosphere and not coincident with the regions of strongest nonlinear forcing.
Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming
Hubicki, Christian; Goldman, Daniel; Ames, Aaron
In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.
Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.
Lee, Huai-Ping; Audette, Michel; Joldes, Grand Roman; Enquobahrie, Andinet
2012-02-23
Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
The neurochemical mobile with non-linear interaction matrix: an exploratory computational model.
Qi, Z; Fieni, D; Tretter, F; Voit, E O
2013-05-01
Several years ago, the "neurochemical mobile" was introduced as a visual tool for explaining the different balances between neurotransmitters in the brain and their role in mental disorders. Here we complement this concept with a non-linear computational systems model representing the direct and indirect interactions between neurotransmitters, as they have been described in the "neurochemical interaction matrix." The model is constructed within the framework of biochemical systems theory, which facilitates the mapping of numerically ill-characterized systems into a mathematical and computational construct that permits a variety of analyses. Simulations show how short- and long-term perturbations in any of the neurotransmitters migrate through the entire system, thereby affecting the balances within the mobile. In cases of short-term alterations, transients are of particular interest, whereas long-term changes shed light on persistently altered, allostatic states, which in mental diseases and sleep disorders could be due to a combination of unfavorable factors, resulting from a specific genetic predisposition, epigenetic effects, disease, or the repeated use of drugs, such as opioids and amphetamines.
The late Universe with non-linear interaction in the dark sector: the coincidence problem
Bouhmadi-López, Mariam; Zhuk, Alexander
2016-01-01
We study the Universe at the late stage of its evolution and deep inside the cell of uniformity. At such a scale the Universe is highly inhomogeneous and filled with discretely distributed inhomogeneities in the form of galaxies and groups of galaxies. As a matter source, we consider dark matter (DM) and dark energy (DE) with a non-linear interaction $Q = 3\\mathcal{H}\\gamma \\overline\\varepsilon_{\\mathrm{DE}} \\overline\\varepsilon_{\\mathrm{DM}} / (\\overline\\varepsilon_{\\mathrm{DE}} + \\overline\\varepsilon_{\\mathrm{DM}})$, where $\\gamma$ is a constant. We assume that DM is pressureless and DE has a constant equation of state parameter $w$. In the considered model, the energy densities of the dark sector components present a scaling behaviour with $\\overline\\varepsilon_{\\mathrm{DM}} / \\overline\\varepsilon_{\\mathrm{DE}} \\sim \\left({a_0} / {a} \\right)^{-3(w+\\gamma)}$. We investigate the possibility that the perturbations of DM and DE, which are interacting among themselves, could be coupled to the galaxies with the ...
Neurosurgery simulation using non-linear finite element modeling and haptic interaction
Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet
2012-02-01
Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
DEFF Research Database (Denmark)
Castaldi, P J; Demeo, D L; Hersh, C P;
2010-01-01
with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between...
Institute of Scientific and Technical Information of China (English)
兰朝凤; 李凤臣; 陈欢; 卢迪; 杨德森; 张梦
2015-01-01
Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves’ amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.
Steffen, T; Tanimura, Y
2000-01-01
The quantum Fokker-Planck equation is derived for a system nonlinearly coupled to a harmonic oscillator bath. The system-bath interaction is assumed to be linear in the bath coordinates but quadratic in the system coordinate. The relaxation induced dynamics of a harmonic system are investigated by s
Sapsis, T.; Dijkstra, H.A.
2013-01-01
In this paper the authors study the interactions of additive noise and nonlinear dynamics in a quasi-geostrophicmodel of the double-gyre wind-driven ocean circulation. The recently developed framework of dynamically orthogonal field theory is used to determine the statistics of the flows that arise
Jaishankar, Aditya; Wee, May; Matia-Merino, Lara; Goh, Kelvin K T; McKinley, Gareth H
2015-06-05
Mamaku gum is a polysaccharide extracted from the fronds of the black tree fern found in New Zealand. The cooked pith has traditionally been used for various medicinal purposes and as a food source by the Maori people of New Zealand. It has potential applications as a thickener in the food industry and as a palliative for patients with dysphagia. Studies on the shear rheology of Mamaku gum have revealed that the gum exhibits shear thickening at a critical shear rate due to a transition from intra- to inter-molecular chain interactions upon shear-induced chain elongation. In this paper, we demonstrate that these interactions are primarily due to hydrogen bonding. We perform extensional rheology on mixtures of Mamaku gum and urea (a known disruptor of hydrogen bonds) to quantify the nature of these interactions. Capillary Breakup Extensional Rheometry (CaBER) performed on the pure Mamaku gum solutions yield plateau values of the Trouton ratio as high as ∼10(4), showing that the viscoelasticity of the gum in uniaxial elongation is much higher than in shear. For all Mamaku concentrations tested, the extensional viscosity decreases upon increasing urea concentration. Furthermore, the relaxation time decreases exponentially with increasing urea concentration. This exponential relationship is independent of the Mamaku concentration, and is identical to the relationships between urea concentration and characteristic timescales measured in nonlinear shear rheology. We show using the sticky reptation model for polymers with multiple sticker groups along the backbone how such a relationship is consistent with a linear decrease in the free energy for hydrogen bond dissociation. We then demonstrate that a time-concentration superposition principle can be used to collapse the viscoelastic properties of the Mamaku-gum/urea mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Luo, Dehai; Cha, Jing; Zhong, Linhao; Dai, Aiguo
2014-05-01
In this paper, a nonlinear multi-scale interaction (NMI) model is used to propose an eddy-blocking matching (EBM) mechanism to account for how synoptic eddies reinforce or suppress a blocking flow. It is shown that the spatial structure of the eddy vorticity forcing (EVF) arising from upstream synoptic eddies determines whether an incipient block can grow into a meandering blocking flow through its interaction with the transient synoptic eddies from the west. Under certain conditions, the EVF exhibits a low-frequency oscillation on timescales of 2-3 weeks. During the EVF phase with a negative-over- positive dipole structure, a blocking event can be resonantly excited through the transport of eddy energy into the incipient block by the EVF. As the EVF changes into an opposite phase, the blocking decays. The NMI model produces life cycles of blocking events that resemble observations. Moreover, it is shown that the eddy north-south straining is a response of the eddies to a dipole- or Ω-type block. In our model, as in observations, two synoptic anticyclones (cyclones) can attract and merge with one another as the blocking intensifies, but only when the feedback of the blocking on the eddies is included. Thus, we attribute the eddy straining and associated vortex interaction to the feedback of the intensified blocking on synoptic eddies. The results illustrate the concomitant nature of the eddy deformation, whose role as a PV source for the blocking flow becomes important only during the mature stage of a block. Our EBM mechanism suggests that an incipient block flow is amplified (or suppressed) under certain conditions by the EVF coming from the upstream of the blocking region.
Energy Technology Data Exchange (ETDEWEB)
Molin, B. [Ecole Generaliste d' Ingenieurs de Marseille, 13 (France)
2006-03-15
At first approximation, the study of wave interaction with fixed or floating bodies is carried out within a linear frame. However nonlinear effects are numerous and they have diverse origins: mechanical nonlinearities, variation in time of the wetted part of the hull, viscous phenomena (flow separation), nonlinear free surface equations. We focus here on the latter type of nonlinearities. Two different approaches are described, both being based on potential flow theory. Practical applications are given for two basic geometries: a vertical cylinder and a vertical plate, perpendicular to the wave direction. In the first approach, one proceeds through successive approximations, based on a perturbation series development. The first-order of approximation coincides with the linear theory. The main interest of the second-order of approximation, well mastered nowadays, is that it yields excitation loads in an enlarged frequency domain, encompassing most of the natural frequencies of the system considered. At third-order the complexity of the equations becomes dissuasive and few researchers have ventured there. We suggest that third-order (or tertiary) interactions, between incoming waves and reflected waves by the structure, can play a very important role, overlooked so far, in phenomena such as run-up or green water. In the second approach one integrates in time and space the nonlinear equations of the initial boundary value problem, with the free surface equations being exactly satisfied. In this way one obtains numerical equivalents of the physical wave-tanks. They are briefly described and some illustrative results are given. (authors)
1986-12-05
nonlinear oscillators described by a Duffing equation (e.g., a mass on a nonlinear spring,. The period-doubling transition to chaos is perhaps the more...resonance tube to exhibit characteristics similar to those of a mass-nonlinear spring oscillator . When driven hard, a hard spring oscillator , for example...same results was performed a bit later at the Naval Postgraduate School (NPS) by Ruff [30]. Coupled oscillators The work Breazeale began was taken up
Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.; Kletzing, C. A.; Claudepierre, S. G.
2017-01-01
Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV-200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 ms.
Energy Technology Data Exchange (ETDEWEB)
Gandomzadeh, Ali
2011-02-08
The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in
Elenchezhiyan, M; Prakash, J
2015-09-01
In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme.
Directory of Open Access Journals (Sweden)
R. Rabenstein
2004-06-01
Full Text Available The functional transformation method (FTM is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.
Vučićević, Katarina; Jovanović, Marija; Golubović, Bojana; Kovačević, Sandra Vezmar; Miljković, Branislava; Martinović, Žarko; Prostran, Milica
2015-02-01
The present study aimed to establish population pharmacokinetic model for phenobarbital (PB), examining and quantifying the magnitude of PB interactions with other antiepileptic drugs concomitantly used and to demonstrate its use for individualization of PB dosing regimen in adult epileptic patients. In total 205 PB concentrations were obtained during routine clinical monitoring of 136 adult epilepsy patients. PB steady state concentrations were measured by homogeneous enzyme immunoassay. Nonlinear mixed effects modelling (NONMEM) was applied for data analyses and evaluation of the final model. According to the final population model, significant determinant of apparent PB clearance (CL/F) was daily dose of concomitantly given valproic acid (VPA). Typical value of PB CL/F for final model was estimated at 0.314 l/h. Based on the final model, co-therapy with usual VPA dose of 1000 mg/day, resulted in PB CL/F average decrease of about 25 %, while 2000 mg/day leads to an average 50 % decrease in PB CL/F. Developed population PB model may be used in estimating individual CL/F for adult epileptic patients and could be applied for individualizing dosing regimen taking into account dose-dependent effect of concomitantly given VPA.
Nagatomo, Makoto; Kaya, Nobuyuki; Matsumoto, Hiroshi
The Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) is a sounding rocket experiment to study possible effects of strong microwave fields in case it is used for energy transmission from the Solar Power Satellite (SPS) upon the Earth's atmosphere. Its secondary objective is to develop high power microwave technology for space use. Two rocket-borne magnetrons were used to emit 2.45 GHz microwave in order to make a simulated condition of power transmission from an SPS to a ground station. Sounding of the environment radiated by microwave was conducted by the diagnostic package onboard the daughter unit which was separated slowly from the mother unit. The main design drivers of this experiment were to build such high power equipments in a standard type of sounding rocket, to keep the cost within the budget and to perform a series of experiments without complete loss of the mission. The key technology for this experiment is a rocket-borne magnetron and high voltage converter. Location of position of the daughter unit relative to the mother unit was a difficult requirement for a spin-stabilized rocket. These problems were solved by application of such a low cost commercial products as a magnetron for microwave oven and a video tape recorder and camera.
Nonlinear instability and chaos in plasma wave-wave interactions. II. Numerical methods and results
Energy Technology Data Exchange (ETDEWEB)
Kueny, C.S.; Morrison, P.J.
1995-05-01
In Part I of this work and Physics of Plasmas, June 1995, the behavior of linearly stable, integrable systems of waves in a simple plasma model was described using a Hamiltonian formulation. It was shown that explosive instability arises from nonlinear coupling between modes of positive and negative energy, with well-defined threshold amplitudes depending on the physical parameters. In this concluding paper, the nonintegrable case is treated numerically. Several sets of waves are considered, comprising systems of two and three degrees of freedom. The time evolution is modelled with an explicit symplectic integration algorithm derived using Lie algebraic methods. When initial wave amplitudes are large enough to support two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable region for explosive triplets. Phase space orbits then experience diffusive growth to amplitudes that are sufficient for explosive instability, thus effectively reducing the threshold amplitude. For initial amplitudes too small to drive decay instability, small perturbations might still grow to arbitrary size via Arnold diffusion. Numerical experiments do not show diffusion in this case, although the actual diffusion rate is probably underestimated due to the simplicity of the model.
The late Universe with non-linear interaction in the dark sector: The coincidence problem
Bouhmadi-López, Mariam; Morais, João; Zhuk, Alexander
2016-12-01
We study the Universe at the late stage of its evolution and deep inside the cell of uniformity. At such a scale the Universe is highly inhomogeneous and filled with discretely distributed inhomogeneities in the form of galaxies and groups of galaxies. As a matter source, we consider dark matter (DM) and dark energy (DE) with a non-linear interaction Q = 3 HγεbarDEεbarDM /(εbarDE +εbarDM) , where γ is a constant. We assume that DM is pressureless and DE has a constant equation of state parameter w. In the considered model, the energy densities of the dark sector components present a scaling behaviour with εbarDM /εbarDE ∼(a0 / a) - 3(w + γ). We investigate the possibility that the perturbations of DM and DE, which are interacting among themselves, could be coupled to the galaxies with the former being concentrated around them. To carry our analysis, we consider the theory of scalar perturbations (within the mechanical approach), and obtain the sets of parameters (w , γ) which do not contradict it. We conclude that two sets: (w = - 2 / 3 , γ = 1 / 3) and (w = - 1 , γ = 1 / 3) are of special interest. First, the energy densities of DM and DE on these cases are concentrated around galaxies confirming that they are coupled fluids. Second, we show that for both of them, the coincidence problem is less severe than in the standard ΛCDM. Third, the set (w = - 1 , γ = 1 / 3) is within the observational constraints. Finally, we also obtain an expression for the gravitational potential in the considered model.
Cain, A. B.; Thompson, M. W.
1986-01-01
The growth of the momentum thickness and the modal disturbance energies are examined to study the nature and onset of nonlinearity in a temporally growing free shear layer. A shooting technique is used to find solutions to the linearized eigenvalue problem, and pseudospectral weakly nonlinear simulations of this flow are obtained for comparison. The roll-up of a fundamental disturbance follows linear theory predictions even with a 20 percent disturbance amplitude. A weak nonlinear interaction of the disturbance creates a finite-amplitude mean shear stress which dominates the growth of the layer momentum thickness, and the disturbance growth rate changes until the fundamental disturbance dominates. The fundamental then becomes an energy source for the harmonic, resulting in an increase in the growth rate of the subharmonic over the linear prediction even when the fundamental has no energy to give. Also considered are phase relations and the wall influence.
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong; Chen, Yong
2017-04-01
We investigate the defocusing coupled nonlinear Schrödinger equations from a 3 ×3 Lax pair. The Darboux transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.
Halladay, Kate; Good, Peter
2016-11-01
We present a detailed analysis of mechanisms underlying the evapotranspiration response to increased {CO}_2 in HadGEM2-ES, focussed on western Amazonia. We use three simulations from CMIP5 in which atmospheric {CO}_2 increases at 1% per year reaching approximately four times pre-industrial levels after 140 years. Using 3-hourly data, we found that evapotranspiration (ET) change was dominated by decreased stomatal conductance (g_s ), and to a lesser extent by decreased canopy water and increased moisture gradient (specific humidity difference between surface and near-surface). There were large, non-linear decreases in ET in the simulation in which radiative and physiological forcings could interact. This non-linearity arises from non-linearity in the conductance term (includes aerodynamic and stomatal resistance and partitioning between the two, which is determined by canopy water availability), the moisture gradient, and negative correlation between these two terms. The conductance term is non-linear because GPP responds non-linearly to temperature and GPP is the dominant control on g_s in HadGEM2-ES. In addition, canopy water declines, mainly due to increases in potential evaporation, which further decrease the conductance term. The moisture gradient responds non-linearly owing to the non-linear response of temperature to {CO}_2 increases, which increases the Bowen ratio. Moisture gradient increases resulting from ET decline increase ET and thus constitute a negative feedback. This analysis highlights the importance of the g_s parametrisation in determining the ET response and the potential differences between offline and online simulations owing to feedbacks on ET via the atmosphere, some of which would not occur in an offline simulation.
Builes-Jaramillo, Alejandro; Marwan, Norbert; Poveda, Germán; Kurths, Jürgen
2017-07-01
We study the physical processes involved in the potential influence of Amazon (AM) hydroclimatology over the Tropical North Atlantic (TNA) Sea Surface Temperatures (SST) at interannual timescales, by analyzing time series of the precipitation index (P-E) over AM, as well as the surface atmospheric pressure gradient between both regions, and TNA SSTs. We use a recurrence joint probability based analysis that accounts for the lagged nonlinear dependency between time series, which also allows quantifying the statistical significance, based on a twin surrogates technique of the recurrence analysis. By means of such nonlinear dependence analysis we find that at interannual timescales AM hydrology influences future states of the TNA SSTs from 0 to 2 months later with a 90-95% statistical confidence. It also unveils the existence of two-way feedback mechanisms between the variables involved in the processes: (1) precipitation over AM leads the atmospheric pressure gradient between TNA and AM from 0 to 2 month lags, (2) the pressure gradient leads the trade zonal winds over the TNA from 0 to 3 months and from 7 to 12 months, (3) the zonal winds lead the SSTs from 0 to 3 months, and (4) the SSTs lead precipitation over AM by 1 month lag. The analyses were made for time series spanning from 1979 to 2008, and for extreme precipitation events in the AM during the years 1999, 2005, 2009 and 2010. We also evaluated the monthly mean conditions of the relevant variables during the extreme AM droughts of 1963, 1980, 1983, 1997, 1998, 2005, and 2010, and also during the floods of 1989, 1999, and 2009. Our results confirm that the Amazon River basin acts as a land surface-atmosphere bridge that links the Tropical Pacific and TNA SSTs at interannual timescales. The identified mutual interactions between TNA and AM are of paramount importance for a deeper understanding of AM hydroclimatology but also of a suite of oceanic and atmospheric phenomena over the TNA, including recently
Nonlinearity Role in Long-Term Interaction of the Ocean Gravity Waves
2012-09-30
the Nonlinear Schrodinger equation and its exact solutions. Numerical simulations of the fully nonlinear Euler equation have also been performed in... Schrodinger breathers, Proceedings of ECMWF Workshop on "Ocean Waves" - 25 to 27 June 2012 [published] • Onorato, M. and Proment, D.; Approximate rogue wave
A Non-smooth Nonlinear Conjugate Gradient Method for Interactive Contact Force Problems
DEFF Research Database (Denmark)
Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...
Testik, Firat Yener
An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Energy Technology Data Exchange (ETDEWEB)
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
Guo, Bang-Xing; Gao, Zhan-Jie; Lin, Ji
2016-12-01
The consistent tanh expansion (CTE) method is applied to the (2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution, and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlevé truncated expansion method. And we investigate interactive properties of solitons and periodic waves. Supported by the National Natural Science Foundation of Zhejiang Province under Grant No. LZ15A050001 and the National Natural Science Foundation of China under Grant No. 11675164
Energy Technology Data Exchange (ETDEWEB)
Sentman, L.H.; Nayfeh, M.H.
1983-12-01
This research is an integrated theoretical and experimental investigation of the nonlinear interactions which may occur between the chemical kinetics, the fluid dynamics and the unstable resonator of a continuous wave fluid flow laser. The objectives of this grant were to measure the frequency and amplitude of the time dependent pulsations in the power spectral output which have been predicted to occur in cw chemical lasers employing unstable resonators to extract power.
2015-09-30
1 A multiscale nested modeling framework to simulate the interaction of surface gravity waves with nonlinear internal gravity waves...Minnesota LONG-TERM GOALS Our long-term goal is to develop a multiscale nested modeling framework that simulates, with the finest resolution...frameworks such as the proposed HYCOM-LZSNFS-SUNTANS-LES nested model are crucial for understanding multiscale processes that are unresolved, and hence
DEFF Research Database (Denmark)
Sayed, Karim El; Birkedal, Dan; Vadim, Lyssenko;
1997-01-01
of the exciton line in the FWM spectrum and in the decay of the time-resolved FWM signal in real time are governed by the intrinsic excitonic dephasing rate. It is shown that for pulse durations of similar to 100 fs (for GaAs quantum wells) this behavior can be explained as the influence of the Coulomb exchange...... interaction, while for even shorter pulses this behavior is dominantly caused by nonlinear polarization decay....
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
A nonlinear Schroedinger equation with two symmetric point interactions in one dimension
Energy Technology Data Exchange (ETDEWEB)
Kovarik, Hynek [Dipartimento di Matematica, Politecnico di Torino, Torino (Italy); Sacchetti, Andrea [Facolta di Scienze, Universita di Modena e Reggio Emilia, Modena (Italy)], E-mail: Hynek.Kovarik@polito.it, E-mail: Andrea.Sacchetti@unimore.it
2010-04-16
We consider a time-dependent one-dimensional nonlinear Schroedinger equation with a symmetric double-well potential represented by two Dirac's {delta}. Among our results we give an explicit formula for the integral kernel of the unitary semigroup associated with the linear part of the Hamiltonian. Then we establish the corresponding Strichartz-type estimate and we prove local existence and uniqueness of the solution to the original nonlinear probl0008.
Pathak, A
2006-01-01
Interaction of intense laser beam with an inversion symmetric third order nonlinear medium is modeled as a quartic anharmonic oscillator. A first order operator solution of the model Hamiltonian is used to study the possibilities of generation of higher order nonclassical states. It is found that the higher order squeezed and higher order antibunched states can be produced by this interaction. It is also shown that the higher order nonclassical states may appear separately, i.e. a higher order antibunched state is not essentially higher order squeezed state and vice versa.
Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition
Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.
1984-04-01
Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2011-01-01
A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...
Energy Technology Data Exchange (ETDEWEB)
Solberg, Jerome M., E-mail: solberg2@llnl.gov [Methods Development Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-125, Livermore, CA 94550 (United States); Hossain, Quazi, E-mail: hossain1@llnl.gov [Structural and Applied Mechanics Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-129, Livermore, CA 94550 (United States); Mseis, George, E-mail: george.mseis@gmail.com [Structural and Applied Mechanics Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-129, Livermore, CA 94550 (United States)
2016-08-01
Highlights: • Derived modified version of Bielak’s SSI method for nonlinear time-domain analysis. • Utilized a Ramberg–Osgood material with parameters that can be fit to EPRI data. • Matched vertically propagating shear wave results from CARES. • Applied this technique to a representative SMR, compared well with SASSI. • The technique is extensible to other material models and nonlinear effects. - Abstract: A generalized time-domain method for soil–structure interaction analysis is developed, based upon an extension of the work of the domain reduction method of Bielak et al. The methodology is combined with the use of a simple hysteretic soil model based upon the Ramberg–Osgood formulation and applied to a notional Small Modular Reactor. These benchmark results compare well (with some caveats) with those obtained by using the industry-standard frequency-domain code SASSI. The methodology provides a path forward for investigation of other sources of nonlinearity, including those associated with the use of more physically-realistic material models incorporating pore-pressure effects, gap opening/closing, the effect of nonlinear structural elements, and 3D seismic inputs.
Blackman, Karin; Perret, Laurent
2016-09-01
In the present work, a boundary layer developing over a rough-wall consisting of staggered cubes with a plan area packing density, λp = 25%, is studied within a wind tunnel using combined particle image velocimetry and hot-wire anemometry to investigate the non-linear interactions between large-scale momentum regions and small-scale structures induced by the presence of the roughness. Due to the highly turbulent nature of the roughness sub-layer and measurement equipment limitations, temporally resolved flow measurements are not feasible, making the conventional filtering methods used for triple decomposition unsuitable for the present work. Thus, multi-time delay linear stochastic estimation is used to decompose the flow into large-scales and small-scales. Analysis of the scale-decomposed skewness of the turbulent velocity (u') shows a significant contribution of the non-linear term uL ' uS ' 2 ¯ , which represents the influence of the large-scales ( uL ' ) onto the small-scales ( uS ' ). It is shown that this non-linear influence of the large-scale momentum regions occurs with all three components of velocity in a similar manner. Finally, through two-point spatio-temporal correlation analysis, it is shown quantitatively that large-scale momentum regions influence small-scale structures throughout the boundary layer through a non-linear top-down mechanism.
Johansson; Aubry
2000-05-01
We investigate the long-time evolution of weakly perturbed single-site breathers (localized stationary states) in the discrete nonlinear Schrodinger equation. The perturbations we consider correspond to time-periodic solutions of the linearized equations around the breather, and can be either (i) spatially localized or (ii) spatially extended. For case (i), which corresponds to the excitation of an internal mode of the breather, we find that the nonlinear interaction between the breather and its internal mode always leads to a slow growth of the breather amplitude and frequency. In case (ii), corresponding to interaction between the breather and a standing-wave phonon, the breather will grow provided that the wave vector of the phonon is such that the generation of radiating higher harmonics at the breather is possible. In other cases, breather decay is observed. This condition yields a limit value for the breather frequency above which no further growth is possible. We also discuss another mechanism for breather growth and destruction which becomes important when the amplitude of the perturbation is non-negligible, and which originates from the oscillatory instabilities of the nonlinear standing-wave phonons.
Energy Technology Data Exchange (ETDEWEB)
Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.; Ebels, U. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); Delaët, B. [CEA-LETI, MINATEC, DRT/LETI/DIHS, 38054 Grenoble (France)
2015-05-11
The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currents and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.
Liepmann, H. W.; Torczynski, J. R.
1983-01-01
Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena.
Li, Zhaoying; Zhou, Wenjie; Liu, Hao
2016-09-01
This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2010-01-01
A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Sfahani, M. G.
2011-01-01
of time. The differential equations were solved using the method of Homotopy Perturbation. The simplicity and accuracy of the approximation are compared with “exact” solution and illustrated numerically and graphically. The results reveal that the HPM is very effective and simple and provides highly...... accurate solutions for nonlinear differential equations....
Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis
DEFF Research Database (Denmark)
Chon, K H; Chen, Y M; Marmarelis, V Z;
1994-01-01
for computation of the kernels have made this technique more attractive for the study of the dynamics of nonlinear physiological systems, such as the system mediating renal autoregulation. In this study, the general theory and requirements for using this technique are discussed. The feasibility of using...
Magneto-elastic oscillator: Modeling and analysis with nonlinear magnetic interaction
Kumar, K. Aravind; Ali, Shaikh Faruque; Arockiarajan, A.
2017-04-01
The magneto-elastically buckled beam is a classic example of a nonlinear oscillator that exhibits chaotic motions. This system serves as a model to analyze the motion of elastic structures in magnetic fields. The system follows a sixth order magneto-elastic potential and may have up to five static equilibrium positions. However, often the non-dimensional Duffing equation is used to approximate the system, with the coefficients being derived from experiments. In few other instances, numerical methods are used to evaluate the magnetic field values. These field values are then used to approximate the nonlinear magnetic restoring force. In this manuscript, we derive analytical closed form expressions for the magneto-elastic potential and the nonlinear restoring forces in the system. Such an analytical formulation would facilitate tracing the effect of change in a parameter, such as the magnet dimension, on the dynamics of the system. The model is derived assuming a single mode approximation, taking into account the effect of linear elastic and nonlinear magnetic forces. The developed model is then numerically simulated to show that it is accurate in capturing the system dynamics and bifurcation of equilibrium positions. The model is validated through experiments based on forced vibrations of the magneto-elastic oscillator. To gather further insights about the magneto-elastic oscillator, a parametric study has been conducted based on the field strength of the magnets and the distance between the magnets and the results are reported.
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.
Nonlinear grating interaction in photorefractive Bi12SiO20
DEFF Research Database (Denmark)
Buchhave, Preben; Andersen, Peter E.; Petersen, Paul Michael
1995-01-01
Recently significant crosstalk has been observed in a multibeam experiment in which gratings were previously thought to be independent. In this letter, it is shown that the crosstalk is due to a coherent nonlinear combination of the primary gratings, which causes additional peaks to occur...
Bentley, Sean J; Heebner, John E; Boyd, Robert W
2006-04-01
We describe observations of various transverse instabilities that occur when two laser beams intersect in nonlinear optical liquids. Patterns that we observe include two types of conical emission and the generation of a linear array of spots. These results can be understood in terms of the physical processes of self-diffraction, two-beam-excited conical emission, and seeded modulational instability.
A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.; Wang, Benlong
2006-01-01
and class II Bragg scattering from an undular sea bottom. The computations are verified against measurements, theoretical solutions and numerical models from the literature. Finally, we make a detailed investigation of nonlinear class III Bragg scattering and results are given for the sub-harmonic and super...
Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian
2016-09-01
Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Engsig-Karup, Allan Peter; Bingham, Harry B.;
2014-01-01
This paper deals with the development of an enhanced model for solving wave–wave and wave–structure interaction problems. We describe the application of a non-linear splitting method originally suggested by Di Mascio et al. [1], to the high-order finite difference model developed by Bingham et al....... [2] and extended by Engsig-Karup et al. [3] and [4]. The enhanced strategy is based on splitting all solution variables into incident and scattered fields, where the incident field is assumed to be known and only the scattered field needs to be computed by the numerical model. Although this splitting...
Mukamel, Shaul
2016-07-01
Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.
Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.
1984-04-01
The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.
Signatures of nonlinear mode interactions in the pulsating hot B subdwarf star KIC 10139564
Zong, W.; Charpinet, S.; Vauclair, G.
2016-10-01
Context. The unprecedented photometric quality and time coverage offered by the Kepler spacecraft has opened up new opportunities to search for signatures of nonlinear effects that affect oscillation modes in pulsating stars. Aims: The data accumulated on the pulsating hot B subdwarf KIC 10139564 are used to explore in detail the stability of its oscillation modes, focusing in particular on evidences of nonlinear behaviors. Methods: We analyzed 38 months of contiguous short-cadence data, concentrating on mode multiplets induced by the star rotation and on frequencies forming linear combinations that show intriguing behaviors during the course of the observations. Results: We find clear signatures that point toward nonlinear effects predicted by resonant mode coupling mechanisms. These couplings can induce various mode behaviors for the components of multiplets and for frequencies related by linear relationships. We find that a triplet at 5760 μHz, a quintuplet at 5287 μHz and a (ℓ > 2) multiplet at 5412 μHz, all induced by rotation, show clear frequency and amplitude modulations which are typical of the so-called intermediate regime of a resonance between the components. One triplet at 316 μHz and a doublet at 394 μHz show modulated amplitude and constant frequency which can be associated with a narrow transitory regime of the resonance. Another triplet at 519 μHz appears to be in a frequency-locked regime where both frequency and amplitude are constant. Additionally, three linear combinations of frequencies near 6076 μHz also show amplitude and frequency modulations, which are likely related to a three-mode direct resonance of the type ν0 ~ ν1 + ν2. Conclusions: The identified frequency and amplitude modulations are the first clear-cut signatures of nonlinear resonant couplings occurring in pulsating hot B subdwarf stars. However, the observed behaviors suggest that the resonances occurring in these stars usually follow more complicated patterns than
Institute of Scientific and Technical Information of China (English)
Fan Yuxin; Xia Jian
2014-01-01
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute tran-sient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute infla-tion is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hil-ber–Hughes–Taylor (HHT) time integration method is employed. For the fluid dynamic simula-tions, the Roe and HLLC (Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Directory of Open Access Journals (Sweden)
Fan Yuxin
2014-12-01
Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Directory of Open Access Journals (Sweden)
Rakesh Kumar
2016-01-01
Full Text Available The steady two-dimensional boundary layer stagnation point flow due to a shrinking sheet is analyzed. The combined effects of magnetic field and nonlinear convection are taken into account. The governing equations for the flow are modeled and then simplified using the similarity transformation and boundary layer approach. The numerical solution of the reduced equations is obtained by the second-order finite difference scheme also known as Keller box method. The influence of the pertinent parameters of the problem on velocity and temperature profiles, skin friction, and sheet temperature gradient are presented through the graphs and tables and discussed. The magnetic field and nonlinear convection parameters significantly enhance the solution range.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2008-01-01
A wave equation, that governs nite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. In contrast to the model known as the Kuznetsov equation, the proposed nonlinear wave equation preserves the Hamiltonian structure...... of the fundamental fluid dynamical equations in the non-dissipative limit. An exact traveling front solution is obtained from a generalized traveling wave assumption. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation...... with respect to the fluid ahead of it, and subsonic speed with respect to the fluid behind it, similarly to the fluid dynamical shock. Linear stability analysis reveals that the front is stable when the acoustic pressure belongs to a critical interval, and is otherwise unstable. These results are veried...
Nonlinear interaction of charged particles with strong laser pulses in a gaseous media
Directory of Open Access Journals (Sweden)
H. K. Avetissian
2007-07-01
Full Text Available The charged particles nonlinear dynamics in the field of a strong electromagnetic wave pulse of finite duration and certain form of the envelope, in the refractive medium with a constant and variable refraction indexes, is investigated by means of numerical integration of the classical relativistic equations of motion. The particle energy dependence on the pulse intensity manifests the nonlinear threshold phenomenon of a particle reflection and capture by actual laser pulses in dielectric-gaseous media that takes place for a plane electromagnetic wave in the induced Cherenkov process. Laser acceleration of the particles in the result of the reflection from the pulse envelope and in the capture regime with the variable refraction index along the pulse propagation direction is investigated.
Least-Squares, Continuous Sensitivity Analysis for Nonlinear Fluid-Structure Interaction
2009-08-20
Lecture notes in mathematics ; 606, Springer-Verlag, Berlin ; New York, 1977, pp. 362. [56] Gel’fand, I.M., Fomin, S.V., and Silverman, R.A...computational fluid dynamics and electromagnetics, Scientific computation, Springer, Berlin ; New York, 1998. [70] Karniadakis, G., and Sherwin, S.J...Aeroelasticity,” Journal of Aircraft, Vol. 40, No. 6, 2003, pp. 1066-1092. [78] Lucia , D.J., “The SensorCraft Configurations: A Non-Linear
Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode
Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.
2004-11-01
It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).
Energy Technology Data Exchange (ETDEWEB)
Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu; Schwendeman, D.W., E-mail: schwed@rpi.edu
2016-01-15
We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solid Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.
DEFF Research Database (Denmark)
Castaldi, P J; Demeo, D L; Hersh, C P
2010-01-01
Background The identification of gene-by-environment interactions is important for understanding the genetic basis of chronic obstructive pulmonary disease (COPD). Many COPD genetic association analyses assume a linear relationship between pack-years of smoking exposure and forced expiratory volume...... in 1 s (FEV(1)); however, this assumption has not been evaluated empirically in cohorts with a wide spectrum of COPD severity. Methods The relationship between FEV(1) and pack-years of smoking exposure was examined in four large cohorts assembled for the purpose of identifying genetic associations...... with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between...
Moon, Chanho; Kaneko, Toshiro; Itoh, Kimitaka; Ida, Katsumi; Kobayashi, Tatsuya; Inagaki, Shigeru; Itoh, Sanae-I.; Hatakeyama, Rikizo
2016-11-01
Turbulence in fluids and plasmas is ubiquitous in Nature and in the laboratory. Contrary to the importance of the ‘scale-free’ nature of cascade in neutral fluid turbulence, the turbulence in plasma is characterised by dynamics of distinct length scales. The cross-scale interactions can be highly non-symmetric so as to generate the plasma turbulence structures. Here we report that the system of hyper-fine electron-temperature-gradient (ETG) fluctuations and microscopic drift-wave (DW) fluctuations is strongly influenced by the sign of the gradient of the radial electric field through multiscale nonlinear interactions. The selective suppression effects by radial electric field inhomogeneity on DW mode induce a new route to modify ETG mode. This suppression mechanism shows disparity with respect to the sign of the radial electric field inhomogeneity, which can be driven by turbulence, so that it could be a new source for symmetry breaking in the turbulence structure formation in plasmas.
Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera
2008-04-01
Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.
Energy Technology Data Exchange (ETDEWEB)
Hassanabadi, Hassan, E-mail: h.hasanabadi@shahroodut.ac.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood (Iran, Islamic Republic of); Rahimov, Hamed [Physics Department, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood (Iran, Islamic Republic of); Lu Liangliang [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)
2012-05-15
In this study, a detailed investigation of the nonlinear optical properties such as optical absorption and refractive index change associated with intersubband transitions in a three-electron quantum dot in two dimensions in the presence of the Rashba spin-orbit interaction has been carried out. We present the exact wave functions and energy levels of the system. Numerical results on typical GaAs/AlGaAs materials show that the decrease of the quantum dot radius blueshifts and amplifies the absorption coefficients as well as the refractive index changes, as expected. Additionally, an increase of the optical intensity and relaxation time considerably changes the absorption coefficients and the refractive index changes. - Highlights: Black-Right-Pointing-Pointer We consider a three-electron quantum dot in 2D in the presence of the Rashba spin-orbit interaction. Black-Right-Pointing-Pointer We present the exact wave functions and energy levels of the system. Black-Right-Pointing-Pointer We apply this model for GaAs/AlGaAs materials. Black-Right-Pointing-Pointer The detailed nonlinear optical properties have been investigated.
Nonlinear vortex-phonon interactions in a Bose-Einstein condensate
Mendonça, J. T.; Haas, F.; Gammal, A.
2016-07-01
We consider the nonlinear coupling between an exact vortex solution in a Bose-Einstein condensate and a spectrum of elementary excitations in the medium. These excitations, or Bogoliubov-de Gennes modes, are indeed a special kind of phonons. We treat the spectrum of elementary excitations in the medium as a gas of quantum particles, sometimes also called bogolons. An exact kinetic equation for the bogolon gas is derived, and an approximate form of this equation, valid in the quasi-classical limit, is also obtained. We study the energy transfer between the vortex and the bogolon gas, and establish conditions for vortex instability and damping.
Effects of Interaction Between Gravitation and Nonlinear Electrodynamics On Scalar Field Evolution
Institute of Scientific and Technical Information of China (English)
CHEN Ju-Hua; WANG Yong-Jiu
2011-01-01
In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation.We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly.On the other words, this coupling term takes effect on the scalar field evolution as a damping factor.At the same time these effects become more obvious for the scalar field with higher angle quantum number.
Nonlinear interaction of charged particles with strong laser pulses in a magnetic undulator
Directory of Open Access Journals (Sweden)
H. K. Avetissian
2010-08-01
Full Text Available Laser acceleration due to the nonlinear-threshold phenomena of charged particle “reflection” and capture by slowed wave in a magnetic undulator is considered. The obtained numerical results prove the particle reflection and capture phenomena in the field of actual laser pulses with temporal and space profiles which lead to the particles acceleration. In contrast to the reflection regime where particle acceleration takes place already at the constant undulator step, in the capture regime it is necessary to increase adiabatically the undulator step along the laser pulse propagation direction by the certain self-consistent variation law corresponding to acceleration rate.
A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics
DEFF Research Database (Denmark)
Engell-Nørregård, Morten; Erleben, Kenny
2009-01-01
Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...
Nonlinear Model of the Specificity of DNA-Protein Interactions and Its Stability
Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.
2016-08-01
Specific DNA-protein interactions are fundamental processes of living cells. We propose a new model of DNA-protein interactions to explain the site specificity of the interactions. The hydrogen bonds between DNA base pairs and between DNA-protein peptide groups play a significant role in determination of the specific binding site. We adopt the Morse potential with coupling terms to construct the Hamiltonian of coupled oscillators representing the hydrogen bonds in which the depth of the potentials vary in the DNA chain. In this paper we investigate the stability of the model to determine the conditions satisfying the biological circumstances of the DNA-protein interactions.
Nonlinear interaction of intense hypergeometric Gaussian subfamily laser beams in plasma
Sobhani, H.; Vaziri (Khamedi), M.; Rooholamininejad, H.; Bahrampour, A. R.
2016-07-01
Propagation of Hypergeometric-Gaussian laser beam in a nonlinear plasma medium is investigated by considering the Source Dependent Expansion method. A subfamily of Hypergeometric-Gaussian beams with a non-negative, even and integer radial index, can be expressed as the linear superposition of finite number of Laguerre-Gaussian functions. Propagation of Hypergeometric-Gaussian beams in a nonlinear plasma medium depends on the value of radial index. The bright rings' number of these beams is changed during the propagation in plasma medium. The effect of beam vortex charge number l and initial (input) beam intensity on the self-focusing of Hypergeometric-Gaussian beams is explored. Also, by choosing the suitable initial conditions, Hypergeometric-Gaussian subfamily beams can be converted to one or more mode components that a typical of mode conversion may be occurred. The self-focusing of these winding beams can be used to control the focusing force and improve the electron bunch quality in laser plasma accelerators.
Said-Houari, Belkacem
2012-09-01
The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.
Zimbovskaya, Natalya A.
2016-07-01
In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.
Energy Technology Data Exchange (ETDEWEB)
Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2013-08-15
The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.
Helical waves and non-linear dynamics of fluid/structure interactions in a tube row
Energy Technology Data Exchange (ETDEWEB)
Moon, F.C.; Thothadri, M. [Cornell Univ., Ithaca, NY (United States)
1997-12-31
The goal of this study has been to investigate low-dimensional models for fluid-structure dynamics of flow across a row of cylindrical tubes. Four principle results of this experimental-theoretical study are discussed. (i) Experimental evidence has shown that the dynamic instability of the tube row is a subcritical Hopf bifurcation. (ii) The critical flow velocity decreases as the number of flexible cylinders increases. (iii) The linear model exhibits coupled helical wave solutions in the tube dynamics. (iv) A nonlinear model of the tube motions shows a complex subcritical Hopf bifurcation with a secondary bifurcation to a torus or quasi-periodic oscillation. In this analysis the tools of center manifolds, normal forms and numerical simulation are used.
Directory of Open Access Journals (Sweden)
H. K. Avetissian
2010-10-01
Full Text Available The nonlinear threshold phenomena of particle reflection and capture of electrons in the induced Compton process that have previously been revealed in the case of plane monochromatic counterpropagating waves, take place also with the actual nonplane laser pulses of ultrashort duration and lead to particle acceleration. In contrast to analogous phenomena in the induced Cherenkov and undulator processes, the Compton reflection-capture mechanism with laser pulses of relativistic intensities practically may be realized for arbitrary initial energies of particles. The acceleration effect for particles initially in rest is explored numerically, taking into account the significance of this case connected with the relativistic electron bunches of high densities, which currently may be realized by relativistic lasers on the ultrathin solid foils where the electrons initially are almost in rest.
Ardhuin, Fabrice
2012-01-01
Oceanic observations, even in very deep water, and atmospheric pressure or seismic records, from anywhere on Earth, contain noise with dominant periods between 3 and 10 seconds, that can be related to surface gravity waves in the oceans. This noise is consistent with a dominant source explained by a nonlinear wave-wave interaction mechanism, and takes the form of surface gravity waves, acoustic or seismic waves. Previous theoretical works on seismic noise focused on surface (Rayleigh) waves, and did not consider finite depth effects on the generating wave kinematics. These finite depth effects are introduced here, which requires the consideration of the direct wave-induced pressure at the ocean bottom, a contribution previously overlooked in the context of seismic noise. That contribution can lead to a considerable reduction of the seismic noise source, which is particularly relevant for noise periods larger than 10 s. The theory is applied to acoustic waves in the atmosphere, extending previous theories that...
Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia
2014-01-01
We calculate the power spectrum of density fluctuations in the statistical non-equilibrium field theory for classical, microscopic degrees of freedom to first order in the interaction potential. We specialise our result to cosmology by choosing appropriate initial conditions and propagators and show that the non-linear growth of the density power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to redshift zero and for arbitrary wave numbers. The main difference of our approach to ordinary cosmological perturbation theory is that we do not perturb a dynamical equation for the density contrast. Rather, we transport the initial phase-space distribution of a canonical particle ensemble forward in time and extract any collective information from it at the time needed. Since even small perturbations of particle trajectories can lead to large fluctuations in density, our approach allows to reach high density contrast already at first order in the perturbations of the particle...
Chen, W; Yu, L M; Ji, X Q; Dong, J Q; Yang, Q W; Liu, Yi; Yan, L W; Zhou, Y; Li, W; Song, X M; Chen, S Y; Cheng, J; Shi, Z B; Duan, X R
2012-01-01
In this letter, it is reported that the ?rst experimental results are associated with the GAM induced by energetic electrons (eEGAM) in HL-2A Ohmic plasma. The energetic-electrons are generated by parallel electric ?elds during magnetic reconnection associated with tearing mode (TM). The eEGAM localizes in the core plasma, i.e. in the vicinity of q=2 surface, and is very di?erent from one excited by the drift-wave turbulence in the edge plasma. The analysis indicated that the eEGAM is provided with the magnetic components, whose intensities depend on the poloidal angles, and its mode numbers are jm/nj=2/0. Further, there exist intense nonlinear interactions among eEGAM, BAEs and strong tearing modes (TMs). These new ?ndings shed light on the underlying physics mechanism for the excitation of the low frequency (LF) Alfv?enic and acoustic uctuations.
Energy Technology Data Exchange (ETDEWEB)
Chen, Shun-Li; Fu, Li; Chase, Zizwe A.; Gan, Wei; Wang, Hong-Fei
2016-11-10
Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group has been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.
Effect of nonlinear wave-current interaction on flow fields and hydrodynamic forces
Institute of Scientific and Technical Information of China (English)
王涛; 李家春
1997-01-01
A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does so by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.
Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field
Ranciaro Neto, A.; de Moura, F. A. B. F.
2016-11-01
Considering non-interacting electrons in a one-dimension alloy in which atoms are coupled by a Morse potential, we study the system dynamics in the presence of a static electric field. Calculations are performed assuming a quantum mechanical treatment for the electronic transport and a classical Hamiltonian model for the lattice vibrations. We report numerical evidence of the existence of a soliton-electron pair, even when the electric field is turned on, and we offer a description of how the existence of such a phase depends on the magnitude of the electric field and the electron-phonon interaction.
Signatures of nonlinear mode interactions in the pulsating hot B subdwarf star KIC 10139564
Zong, Weikai; Vauclair, Gérard
2016-01-01
We analyse 38-month of contiguous short-cadence data, concentrating on mode multiplets induced by the star rotation and on frequencies forming linear combinations that show intriguing behaviors during the course of the observations. We find clear signatures that point toward nonlinear effects predicted by resonant mode coupling mechanisms. These couplings can induce various mode behaviors for the components of multiplets and for frequencies related by linear relationships. We find that a triplet at 5760\\,$\\mu$Hz, a quintuplet at 5287\\,$\\mu$Hz and a ($\\ell>2$) multiplet at 5412\\,$\\mu$Hz, all induced by rotation, show clear frequency and amplitude modulations which are typical of the so-called intermediate regime of a resonance between the components. One triplet at 316\\,$\\mu$Hz and a doublet at 394\\,$\\mu$Hz show modulated amplitude and constant frequency which can be associated with a narrow transitory regime of the resonance. Another triplet at 519\\,$\\mu$Hz appears to be in a frequency lock regime where both ...
Energy Technology Data Exchange (ETDEWEB)
Herrera-Aguilar, Alfredo [Instituto de FIsica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Ciudad Universitaria, Morelia, Mich., CP 58040 (Mexico); Nowakowski, Marek [Departamento de FIsica, Universidad de los Andes, Cra. 1 No 18A-10, Santa Fe de Bogota (Colombia)
2004-02-21
Using the stationary formulation of the toroidally compactified heterotic string theory in terms of a pair of matrix Ernst potentials we consider the four-dimensional truncation of this theory with no U(1) vector fields excited. Imposing one timelike Killing vector permits us to express the stationary effective action as a model in which gravity is coupled to a matrix Ernst potential which, under certain parametrization, allows us to interpret the matter sector of this theory as a double Ernst system. We generate a web of string vacua which are related to each other via a set of discrete symmetries of the effective action (some of them involve S-duality transformations and possess non-perturbative character). Some physical implications of these discrete symmetries are analysed and we find that, in some particular cases, they relate rotating black holes coupled to a dilaton with no Kalb-Ramond field, static black holes with non-trivial dilaton and antisymmetric tensor fields, and rotating and static naked singularities. Further, by applying a nonlinear symmetry, namely, the so-called normalized Harrison transformation, on the seed field configurations corresponding to these neutral backgrounds, we recover the U(1){sup n} Abelian vector sector of the four-dimensional action of the heterotic string, charging in this way the double Ernst system which corresponds to each one of the neutral string vacua, i.e., the stationary and the static black holes and the naked singularities.
Fundamental nonlinearities of the reactor-settler interaction in the activated sludge process.
Diehl, Stefan; Farås, Sebastian
2012-01-01
The activated sludge process can be modelled by ordinary and partial differential equations for the biological reactors and secondary settlers, respectively. Because of the complexity of such a system, simulation models are most often used to investigate them. However, simulation models cannot give general rules on how to control a complex nonlinear process. For a reduced-order model with only two components, soluble substrate and particulate biomass, general results on steady-state solutions have recently been obtained, such as existence, uniqueness and stability of solutions. The aim of the present paper is to utilize those results to formulate some implications of practical importance. In particular, strategies are described for the manual control of the effluent substrate concentration subject to the constraint that the settler is maintained in normal operation (with a sludge blanket in the thickening zone) in steady state. Such strategies contain how the two control parameters, the recycle and waste volumetric flow ratios, should be chosen for any (steady-state) values of the input variables.
Palilonis, Jennifer; Butler, Darrell; Leidig-Farmen, Pamela
2013-01-01
As online teaching techniques continue to evolve, new opportunities surface for research and insight regarding best practices for the development and implementation of interactive, multimedia teaching and learning tools. These tools are particularly attractive for courses that lend themselves to a rich media approach. Such is the case for visual…
Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction
Yu, Jane J.; Young, Eric D.
2013-01-01
The tuning, binaural properties, and encoding characteristics of neurons in the central nucleus of the inferior colliculus (CNIC) were investigated to shed light on nonlinearities in the responses of these neurons. Results were analyzed for three types of neurons (I, O, and V) in the CNIC of decerebrate cats. Rate responses to binaural stimuli were characterized using a 1st- plus 2nd-order spectral integration model. Parameters of the model were derived using broadband stimuli with random spectral shapes (RSS). This method revealed four characteristics of CNIC neurons: (1) Tuning curves derived from broadband stimuli have fixed (i. e., level tolerant) bandwidths across a 50–60 dB range of sound levels; (2) 1st-order contralateral weights (particularly for type I and O neurons) were usually larger in magnitude than corresponding ipsilateral weights; (3) contralateral weights were more important than ipsilateral weights when using the model to predict responses to untrained noise stimuli; and (4) 2nd-order weight functions demonstrate frequency selectivity different from that of 1st-order weight functions. Furthermore, while the inclusion of 2nd-order terms in the model usually improved response predictions related to untrained RSS stimuli, they had limited impact on predictions related to other forms of filtered broadband noise [e. g., virtual-space stimuli (VS)]. The accuracy of the predictions varied considerably by response type. Predictions were most accurate for I neurons, and less accurate for O and V neurons, except at the lowest stimulus levels. These differences in prediction performance support the idea that type I, O, and V neurons encode different aspects of the stimulus: while type I neurons are most capable of producing linear representations of spectral shape, type O and V neurons may encode spectral features or temporal stimulus properties in a manner not easily explained with the low-order model. Supported by NIH grant DC00115. PMID:23675323
CMB and matter power spectra with non-linear dark-sector interactions
vom Marttens, R. F.; Casarini, L.; Hipólito-Ricaldi, W. S.; Zimdahl, W.
2017-01-01
An interaction between dark matter and dark energy, proportional to the product of their energy densities, results in a scaling behavior of the ratio of these densities with respect to the scale factor of the Robertson-Walker metric. This gives rise to a class of cosmological models which deviate from the standard model in an analytically tractable way. In particular, it becomes possible to quantify the role of potential dark-energy perturbations. We investigate the impact of this interaction on the structure formation process. Using the (modified) CAMB code we obtain the CMB spectrum as well as the linear matter power spectrum. It is shown that the strong degeneracy in the parameter space present in the background analysis is considerably reduced by considering Planck data. Our analysis is compatible with the ΛCDM model at the 2σ confidence level with a slightly preferred direction of the energy flow from dark matter to dark energy.
Interaction of discrete nonlinear Schr\\"odinger solitons with a linear lattice impurity
Brazhnyi, Valeriy A; Rodrigues, A S
2013-01-01
The interaction of moving discrete solitons with a linear Gaussian defect is investigated. Solitons with profiles varying from hyperbolic secant to exponentially localized are considered such that the mobility of soliton is maintained; the condition for which is obtained. Studies on scattering of the soliton by an attractive defect potential reveal the existence of total reflection and transmission windows which become very narrow with increasing initial soliton amplitude. Transmission regions disappear beyond the small-amplitude limit. The regions of complete reflection and partial capture correspond to the windows of the existence and nonexistence of solution of the stationary problem. Interaction of the discrete soliton with a barrier potential is also investigated. The critical amplitude of the defect at which splitting of the soliton into two parts occurs was estimated from a balance equation. The results were confirmed through direct numerical integration of the dynamical equation showing very good agre...
CMB and matter power spectra with non-linear dark-sector interactions
Marttens, R F vom; Hipólito-Ricaldi, W S; Zimdahl, W
2016-01-01
An interaction between dark matter and dark energy, proportional to the product of their energy densities, results in a scaling behavior of the ratio of these densities with respect to the scale factor of the Robertson-Walker metric. This gives rise to a class of cosmological models which deviate from the standard model in an analytically tractable way. In particular, it becomes possible to quantify the role of potential dark-energy perturbations. We investigate the impact of this interaction on the structure formation process. Using the (modified) CAMB code we obtain the CMB spectrum as well as the linear matter power spectrum. It is shown that the strong degeneracy in the parameter space present in the background analysis is considerably reduced by considering \\textit{Planck} data. Our analysis is compatible with the $\\Lambda$CDM model at the $2\\sigma$ confidence level with a slightly preferred direction of the energy flow from dark matter to dark energy.
Non-linear interaction between high energy ions and MHD-modes
Energy Technology Data Exchange (ETDEWEB)
Bergkvist, Tommy
2001-12-01
When heating a fusion plasma with ICRE or NBI a non-Maxwellian distribution function with high energy ions is created. Ions which are in resonance with a MHD mode will interact with the electric field from the mode and in some circumstances energy will flow from the particles to the mode or opposite. A quasi-linear model for the interaction between high energy ions and a MHD mode has been developed. To solve the time evolution of the MHD mode a module has been implemented into the Monte Carlo code FIDO, which is used for calculating a 3-dimensional distribution function. The model has been tested for an internal kink mode during fishbone oscillations.
Interaction of linear and nonlinear ion-sound waves with inclusions of dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Grimalsky, V V [National Institute for Astrophysics, Optics, and Electronics (INAOE), Z.P. 72000, Puebla (Mexico); Koshevaya, S V [Autonomous University of Morelos (UAEM), FCQeI, CIICAp, Z.P. 62210, Cuernavaca, Mor. (Mexico); Enriquez, R Perez- [UNAM, Center of Geoscience, Juriquilla 1-742, Z.P. 76230, Que. (Mexico); Kotsarenko, A N [UNAM, Center of Geoscience, Juriquilla 1-742, Z.P. 76230, Que. (Mexico)
2006-09-15
Diverse phenomena exist in the ionosphere caused by the presence of dusty plasma objects. These have a bearing on problems of space communication and possibly on the Earth's weather, among others. Therefore, it is very important to study them so that many questions on the subject can be answered. In this paper, the interaction of plasma waves with these objects is studied and some instrumentation to measure such interactions is proposed. In particular, the interaction of ion-sound waves (ISW) by non-soliton and soliton pulses propagating in dusty plasma is investigated. It is shown that inclusions of dusty components of the ionosphere plasma behave as resonators for non-soliton pulses, so that ISW are excited. Korteveg-de Vries (KdV) solitons practically do not resonate with the inclusions of dusty plasma. Instead, the presence of dusty plasma inclusions can lead to the presence of transverse instabilities and the eventual destruction of the KdV solitons.
Directory of Open Access Journals (Sweden)
Xiaozhong Ren
2015-01-01
Full Text Available A three-dimensional numerical flume is developed to study cnoidal wave interaction with multiple arranged perforated quasi-ellipse caissons. The continuity equation and the Navier-Stokes equations are used as the governing equation, and the VOF method is adopted to capture the free surface elevation. The equations are discretized on staggered cells and then solved using a finite difference method. The generation and propagation of cnoidal waves in the numerical flume are tested first. And the ability of the present model to simulate interactions between waves and structures is verified by known experimental results. Then cnoidal waves with varying incident wave height and period are generated and interact with multiple quasi-ellipse caissons with and without perforation. It is found that the perforation plays an effective role in reducing wave runup/rundown and wave forces on the caissons. The wave forces on caissons reduce with the decreasing incident wave period. The influence of the transverse distance of multiple caissons on wave forces is also investigated. A closer transverse distance between caissons can produce larger wave forces. But when relative adjacent distance L/D (L is the transverse distance and D is the width of the quasi-ellipse caisson is larger than 3, the effect of adjacent distance is limited.
Dey, Prasenjit
understanding the basic unexplored science as well as creating technological developments. The dephasing dynamics in semiconductors typically occur in the picosecond to femtosecond timescale, thus the use of ultrafast laser spectroscopy is a potential route to probe such excitonic responses. The focus of this dissertation is two-fold: firstly, to develop the necessary instrumentation to accurately probe the aforementioned parameters and secondly, to explore the quantum dynamics and the underlying many-body interactions in different layered semiconducting materials. A custom-built multidimensional optical non-linear spectrometer was developed in order to perform two-dimensional spectroscopic (2DFT) measurements. The advantages of this technique are multifaceted compared to regular one-dimensional and non-linear incoherent techniques. 2DFT technique is based on an enhanced version of Four wave mixing experiments. This powerful tool is capable of identifying the resonant coupling, probing the coherent pathways, unambiguously extracting the homogeneous linewidth in the presence of inhomogeneity and decomposing a complex spectra into real and imaginary parts. It is not possible to uncover such crucial features by employing one dimensional non-linear technique. Monolayers as well as bulk TMDs and group III-VI bulk layered materials are explored in this dissertation. The exciton quantum dynamics is explored with three pulse four-wave mixing whereas the phase sensitive measurements are obtained by employing two-dimensional Fourier transform spectroscopy. Temperature and excitation density dependent 2DFT experiments unfold the information associated with the many-body interactions in the layered semiconducting samples.
Zhang, Yali; Wang, Jun
2017-09-01
In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.
Threlfall, J W; De Moortel, I; McClements, K G; Arber, T D
2012-01-01
Context. This paper investigates the role of the Hall term in the propagation and dissipation of waves which interact with 2D magnetic X-points and considers the effect of the Hall term on the nature of the resulting reconnection. Aims. The goal is to determine how the evolution of a nonlinear fast magnetoacoustic wave pulse, and the behaviour of the oscillatory reconnection which results from the interaction of the pulse with a line-tied 2D magnetic X-point, is affected by the Hall term in the generalised Ohm's law. Methods. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (di) in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Results. In general, the fast wave is coupled to a shear wave and, for finite di, to whistler and ion cyclotron waves. Dispersive whistler effects...
Lo, Men-Tzung; Novak, Vera; Peng, C-K; Liu, Yanhui; Hu, Kun
2009-06-01
Phase interactions among signals of physical and physiological systems can provide useful information about the underlying control mechanisms of the systems. Physical and biological recordings are often noisy and exhibit nonstationarities that can affect the estimation of phase interactions. We systematically studied effects of nonstationarities on two phase analyses including (i) the widely used transfer function analysis (TFA) that is based on Fourier decomposition and (ii) the recently proposed multimodal pressure flow (MMPF) analysis that is based on Hilbert-Huang transform (HHT)-an advanced nonlinear decomposition algorithm. We considered three types of nonstationarities that are often presented in physical and physiological signals: (i) missing segments of data, (ii) linear and step-function trends embedded in data, and (iii) multiple chaotic oscillatory components at different frequencies in data. By generating two coupled oscillatory signals with an assigned phase shift, we quantify the change in the estimated phase shift after imposing artificial nonstationarities into the oscillatory signals. We found that all three types of nonstationarities affect the performances of the Fourier-based and the HHT-based phase analyses, introducing bias and random errors in the estimation of the phase shift between two oscillatory signals. We also provided examples of nonstationarities in real physiological data (cerebral blood flow and blood pressure) and showed how nonstationarities can complicate result interpretation. Furthermore, we propose certain strategies that can be implemented in the TFA and the MMPF methods to reduce the effects of nonstationarities, thus improving the performances of the two methods.
Nonlinear Dynamic Response of Concrete Structure with Soil-Structure Interaction
Talberg, Marte Sørbrøden
2015-01-01
A common assumption for a structure that is subjected to an earthquake is that the structure is considered fixed at the base. In this thesis, analyses where the soil is deformed and the foundation may be moved and rotate have been done, and it has been investigated if this can reduce forces or displacements in the structure. This have been done through the use of soil-structure interaction (SSI). In this thesis well known beam-column element formulations will be presented, and the benefi...
Camporeale, Enrico; Zimbardo, G.
2015-01-01
We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earths radiation belt. By tracking PIC particles, and comparing with test-particle simulations we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi- linear theory routinely used in ...
Nonlinear, interacting responses to climate limit grassland production under global change.
Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B
2016-09-20
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.
Nonlinear, interacting responses to climate limit grassland production under global change
Zhu, Kai; Chiariello, Nona R.; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B.
2016-01-01
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale—a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability. PMID:27601643
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Buckanie, N M; Kirschbaum, P; Sindermann, S; Meyer zu Heringdorf, F-J
2013-07-01
Two photon photoemission microscopy was used to study the interaction of femtosecond laser pulses with Ag islands prepared using different strategies on Si(111) and SiO₂. The femtosecond laser pulses initiate surface plasmon polariton (SPP) waves at the edges of the island. The superposition of the electrical fields of the femtosecond laser pulses with the electrical fields of the SPP results in a moiré pattern that is comparable despite the rather different methods of preparation and that gives access to the wavelength and direction of the SPP waves. If the SPPs reach edges of the Ag islands, they can be converted back into light waves. The incident and refracted light waves result in an interference pattern that can again be described with a moiré pattern, demonstrating that Ag islands can be used as plasmonic beam deflectors for light.
1977-05-10
CenterRockwell International SC5027.4FR 5.0 APPEND IX a) Participating Sci enti fic Personnel: Dr. Edgar A. Kraut Dr. T. C. Lim Mr. Fran k J. Morin Mr. John...Research Triangle Park, North Carolina 27709 JUN 23 19fl _ / L~. Co-Inve stigators F— 0 . Edgar A. Kraut Dr. Te g C. Lim ___________ 4nr...INTERACTIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ON THE WAVELENGTH OF LIGHT~ I sc~o~i.~ p. /7 QR(a,) ~~~~~O~~TRA~~’T O R GRA NT NUMBER(S) Dr. Edgar A
Nonlinear dynamics of emotion-cognition interaction: when emotion does not destroy cognition?
Afraimovich, Valentin; Young, Todd; Muezzinoglu, Mehmet K; Rabinovich, Mikhail I
2011-02-01
Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neuroscience. We formulate here the dynamical model of emotion-cognition interaction that is based on the following principles: (1) the temporal evolution of cognitive and emotion modes are captured by the incoming stimuli and competition within and among themselves (competition principle); (2) metastable states exist in the unified emotion-cognition phase space; and (3) the brain processes information with robust and reproducible transients through the sequence of metastable states. Such a model can take advantage of the often ignored temporal structure of the emotion-cognition interaction to provide a robust and generalizable method for understanding the relationship between brain activation and complex human behavior. The mathematical image of the robust and reproducible transient dynamics is a Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have been hypothesized to be possible mechanisms that lead to the sequential transient behavior observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is supported in one part of a network, we study conditions under which the SHC pertaining to the cognition will continue to function in the presence of interfering activity with other parts of the network, i.e., emotion.
Directory of Open Access Journals (Sweden)
N. A. Veretenov
2014-09-01
Full Text Available The paper deals with generalization of investigation materials performed by the authors in recent years and analysis of obtained results. The subject of the paper is accounting of many-particle interactions in molecular J-aggregates at their resonance excitation by laser radiation. In this case, not only twin interactions are taken into considerations, but also the interactions of a given particle with three and more particles simultaneously. Three basic directions can be denoted among carried out investigations. The first direction is connected with derivation (from the first principles of motion equations for molecular of J-aggregates in view of many-particle interactions, and also twin correlations between particles. The derivation of equations from the first principles leads in general to the system of coupled equations for the means of products of n operators relating to n different molecules. Since n increases in every following equation, the problems arise, connected with uncoupling of this system and also factorization of the means with the highest n. The most difficult and complicated problem in this process is correct calculation of relaxed terms, arising due to exciton-exciton annihilation. The first direction is connected concretely with solution of all above mentioned problems. Within the second direction the study of bistability has been carried out on the basis of obtained equations, in view of three-particle interactions. Meanwhile primary attention has been concentrated on analysis of homogeneous regimes in J-aggregates. It has been shown, in particular, that accounting of many-particle contributions leads to the shift of bistability boundary into region of smaller constants of exciton-exciton annihilation. And, at last, the third direction of investigations is connected with analysis of modulation instability for stationary states of J-aggregates considered earlier at bistability study. The study of stability region boundaries
Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng
2003-01-01
Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.
Energy Technology Data Exchange (ETDEWEB)
Buckanie, N.M.; Kirschbaum, P.; Sindermann, S.; Heringdorf, F.-J. Meyer zu, E-mail: meyerzh@uni-due.de
2013-07-15
Two photon photoemission microscopy was used to study the interaction of femtosecond laser pulses with Ag islands prepared using different strategies on Si(111) and SiO{sub 2}. The femtosecond laser pulses initiate surface plasmon polariton (SPP) waves at the edges of the island. The superposition of the electrical fields of the femtosecond laser pulses with the electrical fields of the SPP results in a moiré pattern that is comparable despite the rather different methods of preparation and that gives access to the wavelength and direction of the SPP waves. If the SPPs reach edges of the Ag islands, they can be converted back into light waves. The incident and refracted light waves result in an interference pattern that can again be described with a moiré pattern, demonstrating that Ag islands can be used as plasmonic beam deflectors for light. - Highlights: • Surface plasmon polaritons were studied on Ag islands in two photon photoemission microscopy. • Ag islands were prepared using self-assembly, electron beam lithography, and a focused ion beam. • The SPP pattern on Ag islands can be described with a simple moiré concept. • SPP output coupling results in a pattern that can again be described by the moiré effect.
Nonlinear Dynamic Analysis of Multi-component Mooring Lines Incorporating Line-seabed Interaction
Directory of Open Access Journals (Sweden)
V.J. Kurian
2013-07-01
Full Text Available In this study, a deterministic approach for the dynamic analysis of a multi-component mooring line was formulated. The floater motion responses were considered as the mooring line upper boundary conditions while the anchored point was considered as pinned. Lumped parameter approach was adopted for the mooring line modelling. The forces considered were the submerged weights of mooring/attachment, physical/added inertia, line tension, fluid/line relative drag forces and line/seabed reactive forces. The latter interactions were modelled assuming that the mooring line rested on an elastic dissipative foundation. An iterative procedure for the dynamic analysis was developed and results for various mooring lines partially lying on different soils were obtained and validated by conducting a comparative study against published results. Good agreement between numerical and published experimental results was achieved. The contribution of the soil characteristics of the seabed to the dynamic behaviour of mooring line was investigated for different types of soil and reported.
Energy Technology Data Exchange (ETDEWEB)
Reena Mary, A P; Anantharaman, M R [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Suchand Sandeep, C S; Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Sadashivanagar, Bangalore-560080 (India); Narayanan, T N; Moloney, Padraig; Ajayan, P M, E-mail: reji@rri.res.in, E-mail: mraiyer@yahoo.com [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX-77005 (United States)
2011-09-16
Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of {approx} 5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field.
Institute of Scientific and Technical Information of China (English)
Heinrich Hora; K. Jungwirth; B. Kralikova; J. Kraska; L. Laska; Liu Hong; G.H. Miley; P. Parys; Peng Hansheng; M. Pfeifer; K. Rohlena; Cang Yu; J. Skala; Z. Skladanowski; L. Torrisi; J. Ullschmied; J. Wolowski; Zhang Weiyan; He Xiantu; Zhang Jie; F. Osman; J. Badziak; F.P. Boody; S. Gammino; R. H(o)pfl
2004-01-01
The discovery of the essential difference of maximum ion energy for TW-ps laser plasma interaction compared with the 100 ns laser pulses [1] led to the theory of a skin layer model [2] where the control of prepulses suppressed the usual relativistic self-focusing. The subsequent generation of two nonlinear force driven blocks has been demonstrated experimentally and in extensive numerical studies where one block moves against the laser light and the other block into the irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beam current densities [3] exceeding 1010 A/cm2 where the ion velocity can be chosen up to highly relativistic values. Using the results of the expected ignition of DT fuel by light ion beams, a selfsustained fusion reaction front may be generated even into uncompressed solid DT fuel similar to the Nuckolls-Wood [4] scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new and simplified scheme of laser-ICF needs and optimisation of the involved parameters.
Bobály, Balázs; Randazzo, Giuseppe Marco; Rudaz, Serge; Guillarme, Davy; Fekete, Szabolcs
2017-01-20
The goal of this work was to evaluate the potential of non-linear gradients in hydrophobic interaction chromatography (HIC), to improve the separation between the different homologous species (drug-to-antibody, DAR) of commercial antibody-drug conjugates (ADC). The selectivities between Brentuximab Vedotin species were measured using three different gradient profiles, namely linear, power function based and logarithmic ones. The logarithmic gradient provides the most equidistant retention distribution for the DAR species and offers the best overall separation of cysteine linked ADC in HIC. Another important advantage of the logarithmic gradient, is its peak focusing effect for the DAR0 species, which is particularly useful to improve the quantitation limit of DAR0. Finally, the logarithmic behavior of DAR species of ADC in HIC was modelled using two different approaches, based on i) the linear solvent strength theory (LSS) and two scouting linear gradients and ii) a new derived equation and two logarithmic scouting gradients. In both cases, the retention predictions were excellent and systematically below 3% compared to the experimental values. Copyright © 2016 Elsevier B.V. All rights reserved.
Indian Academy of Sciences (India)
KRISHNA KUMAR SONI; K P MAHESHWARI
2016-11-01
We present a study of the effect of laser pulse temporal profile on the energy/momentum acquired by the ions as a result of the ultraintense laser pulse focussed on a thin plasma layer in the radiation pressuredominant(RPD) regime. In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of laser–matter interaction is exhibited in the relativistic frequency shift, and also change in the wave amplitude as the EM wave gets reflected by the relativistically moving thin dense plasma layer. Relativistic effects in a highenergy plasma provide matching conditions that make it possible to exchange very effectively ordered kineticenergy and momentum between the EM fields and the plasma. When matter moves at relativistic velocities, the efficiency of the energy transfer from the radiation to thin plasma foil is more than 30% and in ultrarelativisticcase it approaches one. The momentum/energy transfer to the ions is found to depend on the temporal profile of the laser pulse. Our numerical results show that for the same laser and plasma parameters, a Lorentzian pulse canaccelerate ions upto 0.2 GeV within 10 fs which is 1.5 times larger than that a Gaussian pulse can.
Geiges, A.; Nowak, W.; Rubin, Y.
2013-12-01
Stochastic models of sub-surface systems generally suffer from parametric and conceptual uncertainty. To reduce the model uncertainty, model parameters are calibrated using additional collected data. These data often come from costly data acquisition campaigns that need to be optimized to collect the data with the highest data utility (DU) or value of information. In model-based approaches, the DU is evaluated based on the uncertain model itself and is therefore uncertain as well. Additionally, for non-linear models, data utility depends on the yet unobserved measurement values and can only be estimated as an expected value over an assumed distribution of possible measurement values. Both factors introduce uncertainty into the optimization of field campaigns. We propose and investigate a sequential interaction scheme between campaign optimization, data collection and model calibration. The field campaign is split in individual segments. Each segment consists of optimization, segment-wise data collection, and successive model calibration or data assimilation. By doing so, (1) the expected data utility for the newly collected data is replaced by their actual one, (2) the calibration restricts both conceptual and parametric model uncertainty, and thus (3) the distribution of possible future data values for the subsequent campaign segments also changes. Hence, the model to describe the real system improves successively with each collected data segment, and so does the estimate of the yet remaining data requirements to achieve the overall investigation goals. We will show that using the sequentially improved model for the optimal design (OD) of the remaining field campaign leads to superior and more targeted designs.However, this traditional sequential OD optimizes small data segments one-by-one. In such a strategy, possible mutual dependencies with the possible data values and the optimization of data values collection in later segments are neglected. This allows a
Kong, Fande; Cai, Xiao-Chuan
2017-07-01
Nonlinear fluid-structure interaction (FSI) problems on unstructured meshes in 3D appear in many applications in science and engineering, such as vibration analysis of aircrafts and patient-specific diagnosis of cardiovascular diseases. In this work, we develop a highly scalable, parallel algorithmic and software framework for FSI problems consisting of a nonlinear fluid system and a nonlinear solid system, that are coupled monolithically. The FSI system is discretized by a stabilized finite element method in space and a fully implicit backward difference scheme in time. To solve the large, sparse system of nonlinear algebraic equations at each time step, we propose an inexact Newton-Krylov method together with a multilevel, smoothed Schwarz preconditioner with isogeometric coarse meshes generated by a geometry preserving coarsening algorithm. Here ;geometry; includes the boundary of the computational domain and the wet interface between the fluid and the solid. We show numerically that the proposed algorithm and implementation are highly scalable in terms of the number of linear and nonlinear iterations and the total compute time on a supercomputer with more than 10,000 processor cores for several problems with hundreds of millions of unknowns.
DEFF Research Database (Denmark)
Parigi, V.; Bimbard, E.; Stanojevic, J.
2012-01-01
We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within ...
Parigi, Valentina; Bimbard, Erwan; Stanojevic, Jovica; Hilliard, Andrew J; Nogrette, Florence; Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Grangier, Philippe
2012-12-07
We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within the medium. The measurements allow a direct estimation of the "blockaded fraction" of atoms within the atomic ensemble.
2000-12-01
for the ALE problem, but for the so-called hypoelastic models of elastoplasticity in rate form. The interest in this work, however, lies in the...34 Algorithms in Nonlinear Dynamics . 103 III.1. Introduction ................. ........................... ... 104 111.2. Model Problem I: a Nonlinear Elastic...Representative numerical simulations ...... ............. .. 123 111.3. Model Problem II: a Simplified Model of Thin Beams ... ......... ... 127 III
Energy Technology Data Exchange (ETDEWEB)
Lahon, Siddhartha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Kumar, Manoj, E-mail: manojmalikdu@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jha, Pradip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, DDU College, University of Delhi, Delhi 110007 (India); Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)
2013-12-15
Here we have investigated the influence of external electric field and magnetic field on the optical absorption and refractive index changes of a parabolically confinement wire in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate an increase of electric field redshifts the peak positions of absorption coefficient and refractive index changes. The role of confinement strength and spin orbit interaction strength as control parameters on the linear and nonlinear properties have been demonstrated. -- Highlights: • We study nonlinear properties in a quantum wire. • We have solved the effect of external electric and magnetic field with Rashba spin orbit interaction on linear and nonlinear properties in quantum wire. • We have used density matrix theory approach. • We find that the absorption coefficients and changes in refractive index are shifted.
Mori, Shigeo; Katayama, Naomi
2005-02-01
. To extend this hypothesis further, another group of subjects was exposed to three different optokinetic-stimulus speeds of 20, 40 and 60 deg/s combined with an acceleration of 0.3 G (Experiment 2, N=15). Combined stimulation tended to optimize the combined-OKR velocity around the given optokinetic stimulus-speed, especially in those cases where the reference-OKR velocity deviated significantly from the stimulus speed. Changes in combined-OKR velocity were small at 20 deg/s, and were likely to be linear across the agonistic and antagonistic conditions. With increasing optokinetic stimulus-speeds, the direction-selective asymmetry hypothesized above was maintained in more than half of the subjects, while in the other subjects the combined-OKR velocity difference increased remarkably, probably due to an enhancement of the OKR gain. We conclude that tVOR suppression during the antagonistic stimulus-condition and non-linearity in the tVOR-OKR interaction are characteristic of the otolith system, even under moderate-stimulus environments, in contrast to the linear eye-movement interaction in the semicircular canal system.
Directory of Open Access Journals (Sweden)
E. Çelebi
2012-11-01
Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.
Passian, Ali; Tetard, Laurene; Thundat, Thomas
2013-08-01
This comment on the paper "A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces" by Sohrab Eslami and Jalili (2012) [1] aims to: (1) discuss and elucidate the concept of "virtual resonance" and thus (2) avert a misinterpretation of the experimental results and findings reported in the Tetard et al. Physical Review Letters 106, 180801 (2011) [2].
Institute of Scientific and Technical Information of China (English)
LUO Jin-Ming; LI Jia-Hua; XIE Xiao-Tao
2006-01-01
@@ Taking the intensity-dependent coupling between atoms and cavity mode into account, we investigate a system consisting of N homogeneously broadened two-level atoms interacting with the field inside a single-mode Fabry Perot cavity containing a nonlinear Kerr-like medium. We derive the steady-state bistable behaviour of the system, and further analyse in details the influence of several critical parameters on the bistable behaviour.
De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S
2011-08-01
BACKGROUND: While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. METHODS: In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. RESULTS: We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. CONCLUSIONS: A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal
Energy Technology Data Exchange (ETDEWEB)
Chen, X. [University of California-Irvine, Irvine, California 92697 (United States); General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Heidbrink, W. W. [University of California-Irvine, Irvine, California 92697 (United States); Kramer, G. J.; Nazikian, R.; Grierson, B. A.; Podesta, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Zeng, L. [University of California, Los Angeles 90095, California (United States); Austin, M. E. [University of Texas-Austin, Austin, Texas 78712 (United States)
2014-08-15
Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.
Ne'eman, Y; Sijacki, D
1979-02-01
We review two possible affine extensions of gravity connected to the strong interactions. In the metric affine theory, torsion and nonmetricity do not propagate, gravitation is effectively unmodified, and the observed approximate conservation of hadron intrinsic hypermomentum-i.e., scaling, SU(6), and Regge trajectories-is due to the GL(4,R) band-spinor structure of the hadrons. In the second approach, the new gravitational Lagrangian density generates propagating but confined torsion and nonmetricity, presumably the main contributions to quark confinement. Leptons are represented nonlinearly as Poincaré spinors with the metric field as "realizer" and Higgs boson, and are unconfined. We present a construction for all linear multiplicity-free (= bandor) representations of GL(4,R) and in particular the [Formula: see text] fitting the hadron manifield. We also construct the Hilbert space hadron states [irreps (irreducible representations) of GA(4,R)] and the nonlinear realizations of GL(4,R) for lepton fields.
Two-oscillator model of trapped-modes interaction in a nonlinear bilayer fish-scale metamaterial
Tuz, Vladimir R; Kochetova, Lyudmila A; Mladyonov, Pavel L; Prosvirnin, Sergey L
2014-01-01
We discuss the similarity between the nature of resonant oscillations in two nonlinear systems, namely, a chain of coupled Duffing oscillators and a bilayer fish-scale metamaterial. In such systems two different resonant states arise which differ in their spectral lines. The spectral line of the first resonant state has a Lorentzian form, while the second one has a Fano form. This difference leads to a specific nonlinear response of the systems which manifests itself in appearance of closed loops in spectral lines and bending and overlapping of resonant curves. Conditions of achieving bistability and multistability are found out.
Molini, A.; Casagrande, E.; Mueller, B.
2013-12-01
Land-Atmosphere (L-A) interactions, their strength and directionality, are one of the main sources of uncertainty in current climate modeling, with strong implications on the accurate assessment of future climate variability and climate change impacts. Beside from the scarcity of direct observations, major uncertainties derive from the inherent complexity and nonlinearity of these interactions, and from their multi-scale character. Statistical analysis of L-A couplings is traditionally based on linear correlation methods and metrics. However, these approaches are not designed to detect causal connections or non-linear couplings and they poorly perform in presence of non-stationarities. Additionally these methods assess L-A couplings essentially in the time domain, despite the fact that L-A dynamical drivers can act simultaneously over a wide range of different space and time scales. This talk explores the multi-scale nature of L-A interactions, through the example of soil moisture-temperature couplings and soil-moisture memory effects. In several regions of the world, soil moisture can have a dampening effect on temperature due to evaporative cooling. By using spectral decomposition techniques and both newly developed satellite based products and re-analysis, we analyze the contribution of different time scales to the build-up of global soil moisture-temperature coupling hot spots, addressing at the same time the role of seasonality, causation and non-linear feedbacks in land-atmosphere interactions. Finally we focus on the role of fine (sub-monthly) time scales and their interplay with the seasonal scales.
Directory of Open Access Journals (Sweden)
S. Savin
2006-01-01
Full Text Available Proceeding with the analysis of Amata et al. (2005, we suggest that the general feature for the local transport at a thin magnetopause (MP consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005, which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton
Tanimura, Y; Steffen, T
2000-01-01
The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy form. This model describes frequency fluctuations in the quantum system with an arbitrary correlation time and thus
Institute of Scientific and Technical Information of China (English)
Peng Jin-Zhang; Yang Hong; Tang Yi
2009-01-01
By making use of the split-step Fourier method, this paper numerically simulates dynamical behaviors, including repulsion, fusion, scattering and spiraling of colliding (3+1)D spatiotemporal solitons in both the dispersive medium with cubic-quintic and the saturable medium. Careful comparison of the colliding behaviors in these two media is presented. Although the origin of the nonlinearities is different in these two media, the obtained results show that the dynamical behaviors are very similar. This presents additional evidence to support the supposition of universality of interactions between solitons.
d'Avila, Maria Paola Santisi
2016-01-01
In this paper, a model of one-directional propagation of three-component seismic waves in a nonlinear multilayered soil profile is coupled with a multi-story multi-span frame model to consider, in a simple way, the soil-structure interaction modelled in a finite element scheme. Modeling the three-component wave propagation enables the effects of a soil multiaxial stress state to be taken into account. These reduce soil strength and increase nonlinear effects, compared with the axial stress state. The simultaneous propagation of three components allows the prediction of the incident direction of seismic loading at the ground surface and the analysis of the behavior of a frame structure shaken by a three-component earthquake. A parametric study is carried out to characterize the changes in the ground motion due to dynamic features of the structure, for different incident wavefield properties and soil nonlinear effects. A seismic response depending on parameters such as the frequency content of soil and structur...
Bankole, Owolabi M; Achadu, Ojodomo J; Nyokong, Tebello
2017-03-01
This study reports the development of functional optical limiting materials composed of pristine graphene (GQDs), nitrogen-doped (NGQDs) and sulfur-nitrogen co-doped (SNGQDs) graphene quantum dots covalently linked to mono-amino substituted zinc phthalocyanine (Pc). Open aperture Z-scan technique was employed to monitor the behaviour of the conjugates under tightly focussed Gaussian laser beam using a mode-locked Nd:YAG laser delivering 10 nanosecond (FWHM) pulses at 532 nm wavelength. Nonlinear effect due to reverse saturable absorption was the predominant mechanism; and was attributed to the moderately enhanced triplet population. The major factor(s) responsible for the enhanced nonlinearities in the Pc-NGQDs and Pc-SNGQDs was fully described and attributed to the surface defects caused by the presence of heteroatoms of N and S.
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network
Energy Technology Data Exchange (ETDEWEB)
Camporeale, Enrico, E-mail: e.camporeale@cwi.nl [Center for Mathematics and Computer Science (CWI), 1098 XG Amsterdam (Netherlands); Zimbardo, Gaetano [Department of Physics, University of Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy)
2015-09-15
We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles and comparing with test-particle simulations, we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular, we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore, we discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuses is bounded, and to the well-known problem of 90° diffusion barrier.
Camporeale, Enrico
2014-01-01
We present self-consistent Particle-in-Cell simulations of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles, and comparing with test-particles simulations we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates. We discuss how the saturation is related to the fact that the domain in which the particles' pitch angle diffuse is bounded, and to the well-known problem of $90^\\circ$ diffusion barrier.
Terletska, Kateryna; Maderich, Vladimir; Brovchenko, Igor; Jung, Kyung Tae
2013-04-01
In the freshwater lakes in moderate latitudes stratification occurs as a result of the seasonal warming of the surface water layer. Than the intense wind surges (usually in autumn) tilt the surface and generate long basin-scale low-frequency standing internal waves (seiches). Depending on the initial interface tilt and stratification wide spectra of possible flow regimes can be observed [1]-[2].They varied from small amplitude symmetric seiches to large amplitude nonlinear waves.Nonlinearity leads to an asymmetry of internal waves and appearance of the surge or bore and further disintegration of it on a sequence of solitary waves. In present study degeneration of the strongly nonlinear internal seiches in elongated lakes with a concave "spoon-like" topography is investigated.Two different three-dimensional non-hydrostatic free-surface numerical models are used to investigate degeneration of large internal waves and its subsequent interaction with the concave lake slope. One of this model is non-hydrostatic model [3] and the other is a well-known MIT model. At first we consider idealized elongated elliptic-shape lake with the dimension of 5 km X 1 km with the maximal depth 30 m. The stratification in lake is assumed to be given in a form of the tangent function with a density difference between upper and lower layers 2 kgm-3 . It is assumed that motion in such lake is initiated by inclination of thermocline on a certain angle. Than lake adjusts to return to its original state producing internal seiches which begin interacting with a bottom topography. The process of degeneration of internal seiches in the lake with concave ends consist of chain of elementary processes: 1) steeping of long basin scale large amplitude wave, that evolve into internal surge, 2) surge interact with concave lake ends that leads the concentration of the flow and formation of down slope bottom jet along the lake axis, 3) due to cumulative effect local velocity in the jet accelerates up to
Silliman, Brian R; McCoy, Michael W; Trussell, Geoffrey C; Crain, Caitlin M; Ewanchuk, Patrick J; Bertness, Mark D
2013-01-01
Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects.
Directory of Open Access Journals (Sweden)
Brian R Silliman
Full Text Available Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails on community recovery under both high (mussel dominated and low flow (plant dominated conditions. By partitioning the direct impacts of predators (crabs and grazers (snails on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects.
2009-01-01
Phase interactions among signals of physical and physiological systems can provide useful information about the underlying control mechanisms of the systems. Physical and biological recordings are often noisy and exhibit nonstationarities that can affect the estimation of phase interactions. We systematically studied effects of nonstationarities on two phase analyses including (i) the widely used transfer function analysis (TFA) that is based on Fourier decomposition and (ii) the recently pro...
An Envelope Soliton in a Nonlinear Chain with the Power-Law Dependence of Long-Range Interaction
Institute of Scientific and Technical Information of China (English)
王登龙; 颜晓红; 唐翌
2003-01-01
We study the Fermi-Pasta-Ulam lattice model in the presence ora power-law dependence of long-range interaction by virtue of the method of multiple scales. Our results show that an envelope soliton still appears, but it is of different property for the group velocity compared with that of the soliton in the model when long-range interaction is absent.
Tavassoly, M. K.; Rastegarzadeh, M.
2016-10-01
In this paper based on a generalization of the Jaynes-Cummings model we solve the dynamical Hamiltonian describing the interaction between a (Λ or V-type) three-level atom and a single-mode field in the "full nonlinear regime" and then the analytical form of state vector of the system is explicitly obtained. In this manner, we encountered with "intensity-dependent detuning" as well as "intensity-dependent atom-field coupling" in our two models. Via choosing an appropriate deformation function (which imposes nonlinearity to the system) we consider the influence of Kerr-like medium from which the resonance condition for a selected number of quanta is achieved (selective transition is occurred). Furthermore, by these considerations, we may find the optimum values for atom-field coupling constants which provide a regular periodic behavior of probability amplitudes for the two considered atomic systems. Moreover, to show this periodic time behavior, the temporal evolution of the probability of the allowed atomic transitions as well as the Mandel parameter (as a non-classical sign) is depicted for various circumstances. As is observed, complete revivals may appear in some particular situations.
Tunable nonlinear graphene metasurfaces
Smirnova, Daria A; Kivshar, Yuri S; Khanikaev, Alexander B
2015-01-01
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of structured metamaterial elements ("metamolecules") and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
Xia, Ya-Rong; Xin, Xiang-Peng; Zhang, Shun-Li
2017-01-01
This paper mainly discusses the (2+1)-dimensional modified dispersive water-wave (MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlevé analysis and consistent tanh-function expansion (CTE) method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved. Supported by National Natural Science Foundation of China under Grant Nos. 11371293, 11505090, the Natural Science Foundation of Shaanxi Province under Grant No. 2014JM2-1009, Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009 and the Science and Technology Innovation Foundation of Xi’an under Grant No. CYX1531WL41
Zhao, Xingang; Yu, Guangtao; Huang, Xuri; Chen, Wei; Niu, Min
2013-12-01
Under high-level ab initio calculations, the geometrical structures and nonlinear optical properties of M@P₄ (M=Li, Na, K and Li₃O) and M@C₃H₆ (M=Li and Li₃O) were investigated; all were found to exhibit considerable first hyperpolarizabilities (18110, 1440, 22490, 50487, 2757 and 31776 au, respectively). The computational results revealed that when doping the (super)alkali atom M into the tetrahedral P₄ molecule, the original dual spherical aromaticity of the P₄ moiety is broken and new σ electron cloud is formed on the face of P₄ part interacting with the M atom. It was found that interaction of the (super)alkali atom with the σ electron cloud is a novel mode to produce diffuse excess electrons effectively to achieve a considerable β₀ value. Further, beyond the alkali atom, employing the superalkali unit can be a more effective approach to significantly enhance the first hyperpolarizability of the systems, due to the much lower vertical ionization potential. These results were further supported by the case of the (super)alkali atom interacting with the cyclopropane C₃H₆ molecule with its typical σ aromatic electron cloud. Moreover, the β₀ values of the M@P₄ series are nonmonotonic dependent on alkali atomic number, namely, 1440 au (M = Na) alkali atom and the interacting surface with the σ electron cloud in P4 is a crucial geometrical factor in determining their first hyperpolarizabilities. These intriguing findings will be advantageous for promoting the design of novel high-performance nonlinear optical materials.
Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku
2017-04-01
The main focus of this work is to investigate non-linearity of Mercury's magnetospheric features. We use the paraboloid magnetospheric model (PMM) to calculate the initial magnetospheric field which we then use in hybrid simulations. We show that the initial total magnetospheric field can be considered a linear combination of the planetary dipole field, magnetospheric current system fields, and a penetrating portion of the interplanetary magnetic field (IMF). We use two sets of modelling runs with IMF values of identical magnitudes and anti-parallel directions. We then compute semi-sums and semi-differences of final magnetic field maps generated by hybrid plasma simulations, and use semi-sums to cancel out IMF contributions and semi-differences to cancel out PMM contributions. The remnant fields outside and inside the magnetosphere (for semi-sum and semi-difference fields, accordingly) are used to improve our ability to determine the position of the bow shock and magnetopause, as well as calculate the IMF penetration coefficient that results into best matches of this model to observational MESSENGER data. We compare Mercury's magnetosheath magnetic field predicted by our model with MESSENGER data in the appropriate orbit sections.
Photon interaction study of organic nonlinear optical materials in the energy range 122-1330 keV
Awasarmol, Vishal V.; Gaikwad, Dhammajyot K.; Raut, Siddheshwar D.; Pawar, Pravina P.
2017-01-01
In the present study, the mass attenuation coefficient (μm) of six organic nonlinear optical materials has been calculated in the energy range 122-1330 keV and compared with the obtained values from the WinXCOM program. It is found that there is a good agreement between theoretical and experimental values (<3%). The linear attenuation coefficients (μ) total atomic cross section (σt, a), and total electronic cross section (σt, el) have also been calculated from the obtained μm values and their variations with photon energy have been plotted. From the present work, it is observed that the variation of obtained values of μm, μ, σt, a, and σt, el strongly depends on the photon energy and decreases or increases due to chemical composition and density of the sample. All the samples have been studied extensively using transmission method with a view to utilize the material for radiation dosimetry. Investigated samples are good material for radiation dosimetry due their low effective atomic number. The mass attenuation coefficient (μm), linear attenuation coefficients (μ), total atomic cross section (σt, a), total electronic cross section (σt, el), effective atomic numbers (Zeff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa, en) of all sample materials have been carried out and transmission curves have been plotted. The transmission curve shows that the variation of all sample materials decreases with increasing photon energy.
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
De, Saumyendu; Sahai, Atul Kumar; Nath Goswami, Bhupendra
2013-04-01
energy and the scale interactions in terms of the wave-wave exchanges among nonlinear triads are formulated and the above hypothesis is tested through a diagnostic analysis of the error energetics in two different model predictions at the lower troposphere (850hPa). It has been revealed that nonlinear triad interactions lead to advection of errors from short and synoptic waves (wave number >10) to long waves (wave numbers 5 - 10) and from long waves to ultra-long waves (wave numbers 1 - 4) and is responsible for the rapid growth of errors in the planetary waves. The continuous generation and then, non-linear propagation of error upto the planetary scales in the course of prediction increase the uncertainty in ultra-long scales which actually inhibit to predict accurately the planetary scale waves in tropics during medium range forecasts. Unraveling this exact mechanism through which upscale transfer of errors take place may help us devising a method to limit the mixing of small scale error with the error in forecast of tropical Intra-seasonal Oscillations and improve the prediction of lower tropospheric ISOs. Keywords: Predictability, Systematic error energetics, Scale interactions, Triads, Intra-seasonal Oscillations. Reference: The YOTC Science Plan (2008) prepared by Duane Waliser and Mitch Moncrieff. A joint WCRP-WWRP/THORPEX International Initiative, WMO/TD-No. 1452, pp. 20. Baumhefner D P and Downey P 1978 Forecast intercomparisons from three numerical weather prediction models; Mon. Weather Rev. 106 1245 - 1279. Krishnamurti T N, Subramanium M, Oosteroff D K, Daughenbaugh G. 1990 Predictability of low frequency modes. Meteorol. Atmos. phys. 44 63 - 83.
Energy Technology Data Exchange (ETDEWEB)
Watson, C. R.; Cochran, M. I.; Thomas, J. M.; Eberhardt, L. L
1977-11-01
To find a mathematical model which describes (fits) data from a process which is fundamentally nonlinear, one usually uses nonlinear least-squares techniques on maxicomputers. These usually run in batch mode with the user supplying a model and initial ''guesstimates'' of its parameters. However, fitting the model to the data can be considered an art because computer algorithms either converge to true solutions, or converge to erroneous solutions, or fail to converge, depending on the quality of the guesstimates. It is slow and expensive to try enough runs to obtain a logical solution (unless one makes lucky initial guesses). An interactive BASIC procedure was developed which runs on either the PDP-11/34 under RT-11 or the PDP-11/70 under IAS. These programs help the investigator quickly fit the model to the data and statistically evaluate the differences between the two. The parameter estimates thus determined may then be used as guesstimates for the more precise maxicomputer codes. The key to the system is the re-enterant nature of the curve fitting routine (allowed only with a language such as INTERPRETED BASIC). The user supplies estimates of the parameters for the selected model (18 are currently available, and users can easily write their own). The computer tries a few iterative refinements (by using Taylor series expansion of partial derivatives to obtain linearization) of the estimates in an attempt to minimize the deviations between the values predicted by the model and the observed data. The user can observe as the program executes whether the result is a logical solution. If not, he may stop the process, enter new guesstimates, and examine those results, try again, or select a new model.
Multipolar nonlinear nanophotonics
Smirnova, Daria
2016-01-01
Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nanda, Sudarsan
2013-01-01
"Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Nonlinear optomechanics with graphene
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Vengalattore, Mukund
2016-05-01
To date, studies of cavity optomechanics have been limited to exploiting the linear interactions between the light and mechanics. However, investigations of quantum signal transduction, quantum enhanced metrology and manybody physics with optomechanics each require strong, nonlinear interactions. Graphene nanomembranes are an exciting prospect for realizing such studies due to their inherently nonlinear nature and low mass. We fabricate large graphene nanomembranes and study their mechanical and optical properties. By using dark ground imaging techniques, we correlate their eigenmode shapes with the measured dissipation. We study their hysteretic response present even at low driving amplitudes, and their nonlinear dissipation. Finally, we discuss ongoing efforts to use these resonators for studies of quantum optomechanics and force sensing. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar
2016-07-01
Symmetric sidebands are observed in the ionosphere by the DEMETER (Detection of Electromagnetic Radiation Transmitted through Earthquake Region) satellite, when it passes above the Indian VLF transmitter, named VTX (18.2 kHz), located near Kanyakumari, India. The spectral boarding phenomena may be divided into two types: (1) spectrally broadened components occurring without any association with ELF/VLF emissions under disturbed ionospheric condition, (2) Spectrally broadened components with predominant side band structure in association with ELF emission. Generally spectral analysis at second order (Power spectrum) is used to analyze the frequency component of signal, but it losses the phase information among the different Fourier components. To retain this information the bispectrum (third order) and/or the bicoherence (normalized bispectrum) are used. Results suggest a non-linear mode coupling between the transmitter signal and ELF emission which produces sidebands that are quasi-electrostatic in nature. However, faint spectral broadened components in both types 1 and 2 may be connected with Doppler shift of quasi-electrostatic, whistler mode waves with a broad spectrum near resonance cone, due to scattering of the transmitter signals from ionospheric irregularities in the F-region. Keywords: spectral boarding, wave-wave Interaction, whistler mode waves and Doppler shift
Letellier, C.; Aguirre, L. A.; Maquet, J.; Lefebvre, B.
2003-05-01
This paper investigates nonlinear wave-wave interactions in a system that describes a modified decay instability and consists of three Langmuir and one ion-sound waves. As a means to establish that the underlying dynamics exists in a 3D space and that it is of the Lorenz-type, both continuous and discrete-time multivariable global models were obtained from data. These data were obtained from a 10D dynamical system that describes the modified decay instability obtained from Zakharov’s equations which characterise Langmuir turbulence. This 10D model is equivariant under a continuous rotation symmetry and a discrete order-2 rotation symmetry. When the continuous rotation symmetry is modded out, that is, when the dynamics are represented with the continuous rotation symmetry removed under a local diffeomorphism, it is shown that a 3D system may describe the underlying dynamics. For certain parameter values, the models, obtained using global modelling techniques from three time series from the 10D dynamics with the continuous rotation symmetry modded out, generate attractors which are topologically equivalent. These models can be simulated easily and, due to their simplicity, are amenable for analysis of the original dynamics after symmetries have been modded out. Moreover, it is shown that all of these attractors are topologically equivalent to an attractor generated by the well-known Lorenz system.
Ikeda, Tatsushi; Tanimura, Yoshitaka
2015-01-01
We explore and describe the roles of inter-molecular vibrations in terms of a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear absorption (1D IR), we calculate 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are then accounted by the LL+SL BO model with the use of the hierarchal Fokker-Planck equations for a non-perturbative and non-Markovian noise. All of the characteristic 2D profiles of the simulated signals are reproduced using the LL+SL BO model, indicating that the present model captures the essential features of the inter-molecular motion. We analyze the fitted the 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The ...
García-Melendo, E.; Legarreta, J.; Sánchez-Lavega, A.; Hueso, R.; Pérez-Hoyos, S.; González, J.; Gómez-Forrellad, J. M.; IOPW Team
2009-10-01
A study of the dynamics of the second largest anticyclone in Jupiter, Oval BA, and its red colour change that occurred in late 2005 is presented in a three part study. The first part, this paper, deals with its long-term kinematical and dynamical behaviour monitored since its formation in 2000 to September 2008 using ground-based observations archived at the public International Outer Planet Watch (IOPW) database. The vortex changed its zonal drift velocity from 1.8 m s -1 in the period 2000-2002 to 0.8 m s -1 in 2002-2003, and to 2.5 m s -1 since late 2003. It also migrated southwards by 1.0 ± 0.5° in latitude between 2000 and 2004, remaining afterwards at an almost fixed latitude position. During the period 2000-2007, the oval also changed its triangular-like shape to a more symmetrical one. No latitudinal change was found in the months before the development of a red annulus in its interior. The colour change took place in less than 5 months in 2005-2006 and no red colour feature was observed to have been present or entrained by BA months before the annulus development. After detailed examination of the four encounters between BA and GRS that took place during this 9 year period, we did not detect any noticeable change in its drift rate or in apparent structure associated with the encounters at cloud level. Also, the area of BA did not significantly change in this period. Additionally, we found that BA displays a long-term oscillation of ˜160 days in its longitude position with peak to peak amplitude of 1.2°. Numerical experiments using the global circulation model EPIC reproduce accurately the shape, connecting it to its latitude migration, and morphology of the oval and confirm that no strong interaction between BA and the GRS is possible at least in the current situation.
Problems in nonlinear resistive MHD
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Interactive Nonlinear Structural Analysis: Enhancement.
1981-07-31
COMMON /PTSBUF/ ISLPTS, LOCPTS, NBPTS , LPTSSZ (5) , * 1 IBPTS(102) ,FBPTS(170) COMMON /ELTBUF/ ISLELT,LOCELT,NBELT, LELTSZ (5), 1 IBELT (252) ,FBELT...8400) C.... IIILZ IT / UFR LOCPTS - 0 * NBPTS -l1 LOCELT - 0 NBELT - 1 LOCMAT - 0 NBMAT - 1 LOCTHS - 0 NETHS -l1 LOCLOS - 0 NBLDS - 1 LOCELD - 0 NBELD...NELT,NWN,NFN, NFM,NDOFL, IUC COMMON /JOB/ XJOB(2) ,YJOB(5) COMMON /PAR/ LHV(13) ,LGL(5) ,LP(25) ,LS(16) ,LM(11) COMMON /PTSBUF/ ISLPTS, LOCPTS, NBPTS
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t
Nonlinear Dynamic Force Spectroscopy
Björnham, Oscar
2016-01-01
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information of the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear regime. For example, bacterial adhesion pili and polymers with worm-like chain properties are examples of structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory we modeled a bio-complex expressed on a stiff, an elastic and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found th...
Nonlinear optomechanical paddle nanocavities
Kaviani, Hamidreza; Wu, Marcelo; Ghobadi, Roohollah; Barclay, Paul E
2014-01-01
A photonic crystal optomechanical system combining strong nonlinear optomechanical coupling, low effective mass and large optical mode spacing is introduced. This nanoscale "paddle nanocavity" device supports mechanical resonances with effective mass of 300--600 fg which couple nonlinearly to co-localized optical modes with a quadratic optomechanical coupling coefficient $g^{(2)} > 2\\pi\\times400$ MHz/nm$^2$, and a two phonon to single photon optomechanical coupling rate $\\Delta \\omega_0 > 2\\pi\\times 16$ Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly non--degenerate. Simulations indicate that nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T $> 50 $ mK, and that measurement of phonon shot noise is achievable.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)
1989-01-01
Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.
Terahertz Nonlinearity in Graphene Plasmons
Jadidi, Mohammad M; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin
2015-01-01
Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.
Fast Numerical Nonlinear Fourier Transforms
Wahls, Sander
2014-01-01
The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...
The Nonlinear Analytical Envelope Equation in quadratic nonlinear crystals
Bache, Morten
2016-01-01
We here derive the so-called Nonlinear Analytical Envelope Equation (NAEE) inspired by the work of Conforti et al. [M. Conforti, A. Marini, T. X. Tran, D. Faccio, and F. Biancalana, "Interaction between optical fields and their conjugates in nonlinear media," Opt. Express 21, 31239-31252 (2013)], whose notation we follow. We present a complete model that includes $\\chi^{(2)}$ terms [M. Conforti, F. Baronio, and C. De Angelis, "Nonlinear envelope equation for broadband optical pulses in quadratic media," Phys. Rev. A 81, 053841 (2010)], $\\chi^{(3)}$ terms, and then extend the model to delayed Raman effects in the $\\chi^{(3)}$ term. We therefore get a complete model for ultrafast pulse propagation in quadratic nonlinear crystals similar to the Nonlinear Wave Equation in Frequency domain [H. Guo, X. Zeng, B. Zhou, and M. Bache, "Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media," J. Opt. Soc. Am. B 30, 494-504 (2013)], but where the envelope is...
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Nonlinear Inflaton Fragmentation after Preheating
Felder, G N; Felder, Gary N.; Kofman, Lev
2007-01-01
We consider the nonlinear dynamics of inflaton fragmentation during and after preheating in the simplest model of chaotic inflation. While the earlier regime of parametric resonant particle production and the later turbulent regime of interacting fields evolving towards equilibrium are well identified and understood, the short intermediate stage of violent nonlinear dynamics remains less explored. Lattice simulations of fully nonlinear preheating dynamics show specific features of this intermediate stage: occupation numbers of the scalar particles are peaked, scalar fields become significantly non-gaussian and the field dynamics become chaotic and irreversible. Visualization of the field dynamics in configuration space reveals that nonlinear interactions generate non-gaussian inflaton inhomogeneities with very fast growing amplitudes. The peaks of the inflaton inhomogeneities coincide with the peaks of the scalar field(s) produced by parametric resonance. When the inflaton peaks reach their maxima, they stop ...
Advances in nonlinear optical materials and devices
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Tsia, Kevin K.; Jalali, Bahram
2010-05-01
An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.
2015-01-01
From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...
Wang, Baoyuan
The objective of this research is to develop an efficient and accurate methodology to resolve flow non-linearity of fluid-structural interaction. To achieve this purpose, a numerical strategy to apply the detached-eddy simulation (DES) with a fully coupled fluid-structural interaction model is established for the first time. The following novel numerical algorithms are also created: a general sub-domain boundary mapping procedure for parallel computation to reduce wall clock simulation time, an efficient and low diffusion E-CUSP (LDE) scheme used as a Riemann solver to resolve discontinuities with minimal numerical dissipation, and an implicit high order accuracy weighted essentially non-oscillatory (WENO) scheme to capture shock waves. The Detached-Eddy Simulation is based on the model proposed by Spalart in 1997. Near solid walls within wall boundary layers, the Reynolds averaged Navier-Stokes (RANS) equations are solved. Outside of the wall boundary layers, the 3D filtered compressible Navier-Stokes equations are solved based on large eddy simulation(LES). The Spalart-Allmaras one equation turbulence model is solved to provide the Reynolds stresses in the RANS region and the subgrid scale stresses in the LES region. An improved 5th order finite differencing weighted essentially non-oscillatory (WENO) scheme with an optimized epsilon value is employed for the inviscid fluxes. The new LDE scheme used with the WENO scheme is able to capture crisp shock profiles and exact contact surfaces. A set of fully conservative 4th order finite central differencing schemes are used for the viscous terms. The 3D Navier-Stokes equations are discretized based on a conservative finite differencing scheme. The unfactored line Gauss-Seidel relaxation iteration is employed for time marching. A general sub-domain boundary mapping procedure is developed for arbitrary topology multi-block structured grids with grid points matched on sub-domain boundaries. Extensive numerical experiments
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Zhou, Binbin;
2011-01-01
When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...... efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses....
Kerr nonlinearity and plasmonic bistability in graphene nanoribbons
DEFF Research Database (Denmark)
Christensen, Thomas; Yan, Wei; Jauho, Antti-Pekka;
2015-01-01
We theoretically examine the role of Kerr nonlinearities for graphene plasmonics in nanostructures, specifically in nanoribbons. The nonlinear Kerr interaction is included semiclassically in the intraband approximation. The resulting electromagnetic problem is solved numerically by self-consisten...
Monte Carlo and nonlinearities
Dauchet, Jérémi; Blanco, Stéphane; Caliot, Cyril; Charon, Julien; Coustet, Christophe; Hafi, Mouna El; Eymet, Vincent; Farges, Olivier; Forest, Vincent; Fournier, Richard; Galtier, Mathieu; Gautrais, Jacques; Khuong, Anaïs; Pelissier, Lionel; Piaud, Benjamin; Roger, Maxime; Terrée, Guillaume; Weitz, Sebastian
2016-01-01
The Monte Carlo method is widely used to numerically predict systems behaviour. However, its powerful incremental design assumes a strong premise which has severely limited application so far: the estimation process must combine linearly over dimensions. Here we show that this premise can be alleviated by projecting nonlinearities on a polynomial basis and increasing the configuration-space dimension. Considering phytoplankton growth in light-limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering by particles and concentrated-solar-power-plant productions, we prove the real world usability of this advance on four test-cases that were so far regarded as impracticable by Monte Carlo approaches. We also illustrate an outstanding feature of our method when applied to sharp problems with interacting particles: handling rare events is now straightforward. Overall, our extension preserves the features that made the method popular: addressing nonlinearities does not compromise o...
DEFF Research Database (Denmark)
Archilla, J. F.R.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich
2002-01-01
Most of the studies on mathematical models of DNA are limited to next neighbor interaction. However, the coupling between base pairs is thought to be caused by dipole interaction, and, when the DNA strand is bent, the distances between base pairs become shorter, therefore the interactions with di...
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
DEFF Research Database (Denmark)
The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists...... such as Lorentz and Einstein as well as mathematicians such as Poincare, Minkowski, Hilbert and Weyl contributed to this development. They created the new physical theories and the mathematical disciplines that play such paramount roles in their mathematical formulations. These physicists and mathematicians were...
Light-shift-induced photonic nonlinearities
Energy Technology Data Exchange (ETDEWEB)
Brandao, F G S L; Hartmann, M J; Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, SW7 2PE (United Kingdom)], E-mail: fernando@brandao@imperial.ac.uk
2008-04-15
We propose a new method to produce self- and cross-Kerr photonic nonlinearities, using light-induced Stark shifts due to the interaction of a cavity mode with atoms. The proposed experimental set-up is simpler than in previous approaches, while the strength of the nonlinearity obtained with a single atom is the same as in the setting based on electromagnetically induced transparency. Furthermore our scheme can be applied to engineer effective photonic nonlinear interactions whose strength increases with the number of atoms coupled to the cavity mode, leading to photon-photon interactions several orders of magnitude larger than previously considered possible.
Institute of Scientific and Technical Information of China (English)
HANG Chao; HUANG Guo-Xiang
2006-01-01
We investigate the nonlinear localized structures of optical pulses propagating in a one-dimensional photonic crystal with a quadratic nonlinearity. Using a method of multiple scales we show that the nonlinear evolution of a wave packet, formed by the superposition of short-wavelength excitations, and long-wavelength mean fields, generated by the self-interaction of the wave packet, are governed by a set of coupled high-dimensional nonlinear envelope equations, which can be reduced to Davey-Stewartson equations and thus support dromionlike high-dimensional nonlinear excitations in the system.
Nonlinear surface electromagnetic phenomena
Ponath, H-E
1991-01-01
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are
Faye, Guillaume; Iyer, Bala R
2014-01-01
This paper is motivated by the need to improve the post-Newtonian (PN) amplitude accuracy of waveforms for gravitational waves generated by inspiralling compact binaries, both for use in data analysis and in the comparison between post-Newtonian approximations and numerical relativity computations. It presents: (i) the non-linear couplings between multipole moments of general post-Newtonian matter sources up to order 3.5PN, including all contributions from tails, tails-of-tails and the non-linear memory effect; and (ii) the source mass-type octupole moment of (non-spinning) compact binaries up to order 3PN, which permits to complete the expressions of the octupole modes (3,3) and (3,1) of the gravitational waveform to order 3.5PN. At this occasion we reconfirm by means of independent calculations our earlier results concerning the source mass-type quadrupole moment to order 3PN. Related discussions on factorized resummed waveforms and the occurence of logarithmic contributions to high order are also included.
Faye, Guillaume; Blanchet, Luc; Iyer, Bala R.
2015-02-01
This paper is motivated by the need to improve the post-Newtonian (PN) amplitude accuracy of waveforms for gravitational waves generated by inspiralling compact binaries, both for use in data analysis and in the comparison between post-Newtonian approximations and numerical relativity computations. It presents (i) the non-linear couplings between multipole moments of general post-Newtonian matter sources up to order 3.5PN, including all contributions from tails, tails-of-tails and the non-linear memory effect; and (ii) the source mass-type octupole moment of (non-spinning) compact binaries up to order 3PN, which permits completion of the expressions of the octupole modes (3,3) and (3,1) of the gravitational waveform to order 3.5PN. On this occasion we reconfirm by means of independent calculations our earlier results concerning the source mass-type quadrupole moment to order 3PN. Related discussions on factorized resummed waveforms and the occurence of logarithmic contributions to high order are also included.
Nonlinear dynamics of the left ventricle.
Munteanu, Ligia; Chiroiu, Calin; Chiroiu, Veturia
2002-05-01
The cnoidal method is applied to solve the set of nonlinear dynamic equations of the left ventricle. By using the theta-function representation of the solutions and a genetic algorithm, the ventricular motion can be described as a linear superposition of cnoidal pulses and additional terms, which include nonlinear interactions among them.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Institute of Scientific and Technical Information of China (English)
1996-01-01
3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.
Predictive simulation of nonlinear ultrasonics
Shen, Yanfeng; Giurgiutiu, Victor
2012-04-01
Most of the nonlinear ultrasonic studies to date have been experimental, but few theoretical predictive studies exist, especially for Lamb wave ultrasonic. Compared with nonlinear bulk waves and Rayleigh waves, nonlinear Lamb waves for structural health monitoring become more challenging due to their multi-mode dispersive features. In this paper, predictive study of nonlinear Lamb waves is done with finite element simulation. A pitch-catch method is used to interrogate a plate with a "breathing crack" which opens and closes under tension and compression. Piezoelectric wafer active sensors (PWAS) used as transmitter and receiver are modeled with coupled field elements. The "breathing crack" is simulated via "element birth and death" technique. The ultrasonic waves generated by the transmitter PWAS propagate into the structure, interact with the "breathing crack", acquire nonlinear features, and are picked up by the receiver PWAS. The features of the wave packets at the receiver PWAS are studied and discussed. The received signal is processed with Fast Fourier Transform to show the higher harmonics nonlinear characteristics. A baseline free damage index is introduced to assess the presence and the severity of the crack. The paper finishes with summary, conclusions, and suggestions for future work.
Borghesani, A F; Carugno, G
2013-01-01
We report measurements of microwave (RF) generation in the centimeter band accomplished by irradiating a nonlinear KTiOPO$_4$ (KTP) crystal with a home-made, infrared laser at $1064\\,$nm as a result of optical rectification (OR). The laser delivers pulse trains of duration up to $1\\,\\mu$s. Each train consists of several high-intensity pulses at an adjustable repetition rate of approximately $ 4.6\\,$GHz. The duration of the generated RF pulses is determined by that of the pulse trains. We have investigated both microwave- and second harmonic (SHG) generation as a function of the laser intensity and of the orientation of the laser polarization with respect to the crystallographic axes of KTP.
Energy Technology Data Exchange (ETDEWEB)
Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.
2015-12-29
A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixing zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.
Awasarmol, V. V.; Gaikwad, D. K.; Raut, S. D.; Pawar, P. P.
The mass attenuation coefficients (μm) for organic nonlinear optical materials measured at 122-1330 keV photon energies were investigated on the basis of mixture rule and compared with obtained values of WinXCOM program. It is observed that there is a good agreement between theoretical and experimental values of the samples. All samples were irradiated with six radioactive sources such as 57Co, 133Ba, 22Na, 137Cs, 54Mn and 60Co using transmission arrangement. Effective atomic and electron numbers or electron densities (Zeff and Neff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa,en) were determined experimentally and theoretically using the obtained μm values for investigated samples and graphs have been plotted. The graph shows that the variation of all samples decreases with increasing photon energy.
Bache, M; Bang, O; Zhou, B B; Moses, J; Wise, F W
2011-11-07
When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2.2 - 4.5 μm range when pumping at λ₁ = 1.2 - 1.8 μm. The exact phase-matching point depends on the soliton wavelength, and we show that a simple longpass filter can separate the Cherenkov waves from the solitons. The Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses.
Pakniat, R.; Tavassoly, M. K.; Zandi, M. H.
2017-01-01
In this paper, we outline a scheme for entanglement swapping based on the concept of cavity QED. The atom-field entangled state in our study is produced in the nonlinear regime. In this scheme, the exploited cavities are prepared in a hybrid entangled state (a combination of coherent and number states) and the swapping process is investigated using two different methods, i.e., detecting and Bell-state measurement methods through the cavity QED. Then, we make use of the atom-field entangled state obtained by detecting method to show that how the atom-atom entanglement as well as atomic and field states teleportation can be achieved with complete fidelity.
Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing
2016-06-01
The wind-induced vibration of the high-speed catenary and the dynamic behaviour of the pantograph-catenary under stochastic wind field are firstly analysed. The catenary model is established based on nonlinear cable and truss elements, which can fully describe the nonlinearity of each wire and the initial configuration. The model of the aerodynamic forces acting on the messenger/contact wire is deduced by considering the effect of the vertical and horizontal fluctuating winds. The vertical and horizontal fluctuating winds are simulated by employing the Davenport and Panofsky spectrums, respectively. The aerodynamic coefficients of the contact/messenger wire are calculated through computational fluid dynamics. The wind-induced vibration response of catenary is analysed with different wind speeds and angles. Its frequency-domain characteristics are discussed using Auto Regression model. Finally, a pantograph model is introduced and the contact force of the pantograph-catenary under stochastic wind is studied. The results show that both the wind speed and the attack angle exert a significant effect on the wind-induced vibration. The existence of the groove on the contact wire cross-section leads to a significant change of the aerodynamic coefficient, which affects largely the aerodynamic forces applied on the catenary wires, as well as the vibration response. The vibration frequency with high spectral power mainly concentrates on the predominant frequency of the fluctuating wind and the natural frequency of catenary. The increase in the wind speed results in a significant deterioration of the current collection. The numerical example shows that a relatively stable current collection can be ensured when the wind flows at the relatively horizontal direction.
Nonlinear Materials Characterization Facility
Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...
Directory of Open Access Journals (Sweden)
V. V. Kulyabko
2010-04-01
Full Text Available In the article the issues of increasing the possibilities of computer modeling of the dynamic interaction of bridge constructions and their infrastructure with moving transport and flows are considered.
Fainberg, B D
2015-01-01
Purely organic materials with negative and near-zero dielectric permittivity can be easily fabricated. Here we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser pulses. The bistability response of the electron-vibrational model of organic materials in the condensed phase has been demonstrated. Non-steady-state organic plasmonics enable us to obtain near-zero dielectric permittivity during a short time. We have proposed to use non-steady-state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium.
Nonlinearities in Behavioral Macroeconomics.
Gomes, Orlando
2017-07-01
This article undertakes a journey across the literature on behavioral macroeconomics, with attention concentrated on the nonlinearities that the behavioral approach typically suggests or implies. The emphasis is placed on thinking the macro economy as a living organism, composed of many interacting parts, each one having a will of its own, which is in sharp contrast with the mechanism of the orthodox view (well represented by the neoclassical or new Keynesian dynamic stochastic general equilibrium - DSGE - model). The paper advocates that a thorough understanding of individual behavior in collective contexts is the only possible avenue to further explore macroeconomic phenomena and the often observed 'anomalies' that the benchmark DSGE macro framework is unable to explain or justify. After a reflection on the role of behavioral traits as a fundamental component of a new way of thinking the economy, the article proceeds with a debate on some of the most relevant frameworks in the literature that somehow link macro behavior and nonlinearities; covered subjects include macro models with disequilibrium rules, agent-based models that highlight interaction and complexity, evolutionary switching frameworks, and inattention based decision problems. These subjects have, as a fundamental point in common, the use of behavioral elements to transform existing interpretations of the economic reality, making it more evident how irregular fluctuations emerge and unfold on the aggregate.
Qualitative stability of nonlinear networked systems
Angulo, Marco Tulio; Slotine, Jean-Jacques
2016-01-01
In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This paper extends to nonlinear systems the classical criteria of linear sign stability introduced in the 70's, yielding simple sufficient conditions to determine stability using only the sign patterns of the interactions.
On nonlinear Markov chain Monte Carlo
Andrieu, Christophe; Doucet, Arnaud; Del Moral, Pierre; 10.3150/10-BEJ307
2011-01-01
Let $\\mathscr{P}(E)$ be the space of probability measures on a measurable space $(E,\\mathcal{E})$. In this paper we introduce a class of nonlinear Markov chain Monte Carlo (MCMC) methods for simulating from a probability measure $\\pi\\in\\mathscr{P}(E)$. Nonlinear Markov kernels (see [Feynman--Kac Formulae: Genealogical and Interacting Particle Systems with Applications (2004) Springer]) $K:\\mathscr{P}(E)\\times E\\rightarrow\\mathscr{P}(E)$ can be constructed to, in some sense, improve over MCMC methods. However, such nonlinear kernels cannot be simulated exactly, so approximations of the nonlinear kernels are constructed using auxiliary or potentially self-interacting chains. Several nonlinear kernels are presented and it is demonstrated that, under some conditions, the associated approximations exhibit a strong law of large numbers; our proof technique is via the Poisson equation and Foster--Lyapunov conditions. We investigate the performance of our approximations with some simulations.
Nonlinear Landau damping in quark-gluon plasma
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Nonlinear singular vectors and nonlinear singular values
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.
Wave equation with concentrated nonlinearities
Noja, Diego; Posilicano, Andrea
2004-01-01
In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field $V$ on an open subset of $\\CO^n$ and a discrete set $Y\\subset\\RE^3$ with $n$ elements, we define a nonlinear operator $\\Delta_{V,Y}$ on $L^2(\\RE^3)$ which coincides with the free Laplacian when restricted to regular functions vanishing at $Y$, and which reduces to the usual Laplacian with point interactions placed at $Y$ when $V$ is linear and is represented by an Hermitean m...
Institute of Scientific and Technical Information of China (English)
邓燕飞; 杨建民; 肖龙飞; 李欣
2016-01-01
鉴于极端波浪的极大破坏力，其与海洋结构物的强非线性作用研究正日益受到重视。为了评估极端波浪可能带来的严重破坏，有必要对极端波浪作用下海洋结构物的波浪爬升与抨击、强非线性波浪力、结构载荷与运动响应等问题开展深入研究。国内外许多学者采用数值计算、模型实验及小波分析等手段对这些问题开展了探索研究，获得了一些有益的研究结论。该文对极端波浪与海洋结构物相互作用的研究现状和现有结论作了综述，可为进一步开展深入研究提供有益参考。%Considering the potential threats due to extreme waves, interactions between extreme waves and marine structures have been receiving more and more attentions. In order to assess the possible damage in-duced by extreme waves, in-depth investigations on the wave run-ups, slamming, nonlinear wave forces, motion responses and structural loadings due to extreme waves are required. For these issues, a great many studies based on numerical simulations, model tests or wavelet analyses were conducted and some mean-ingful conclusions were achieved. This paper presents a state-of-art review on the nonlinear interactions be-tween extreme waves and marine structures.
Energy Technology Data Exchange (ETDEWEB)
Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.
2008-11-05
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Kolesik, M; Wright, E M; Andreasen, J; Brown, J M; Carlson, D R; Jones, R J
2012-07-02
We introduce a new computational approach for femtosecond pulse propagation in the transparency region of gases that permits full resolution in three space dimensions plus time while fully incorporating quantum coherent effects such as high-harmonic generation and strong-field ionization in a holistic fashion. This is achieved by utilizing a one-dimensional model atom with a delta-function potential which allows for a closed-form solution for the nonlinear optical response due to ground-state to continuum transitions. It side-steps evaluation of the wave function, and offers more than one hundred-fold reduction in computation time in comparison to direct solution of the atomic Schrödinger equation. To illustrate the capability of our new computational approach, we apply it to the example of near-threshold harmonic generation in Xenon, and we also present a qualitative comparison between our model and results from an in-house experiment on extreme ultraviolet generation in a femtosecond enhancement cavity.
Kolesik, M; Andreasen, J; Brown, J M; Carlson, D R; Jones, R J; 10.1364/OE.20.016113
2012-01-01
We introduce a new computational approach for femtosecond pulse propagation in the transparency region of gases that permits full resolution in three space dimensions plus time while fully incorporating quantum coherent effects such as high-harmonic generation and strong-field ionization in a holistic fashion. This is achieved by utilizing a one-dimensional model atom with a delta-function potential which allows for a closed-form solution for the nonlinear optical response due to ground-state to continuum transitions. It side-steps evaluation of the wave function, and offers more than one hundred-fold reduction in computation time in comparison to direct solution of the atomic Schr\\"odinger equation. To illustrate the capability of our new computational approach, we apply it to the example of near-threshold harmonic generation in Xenon, and we also present a qualitative comparison between our model and results from an in-house experiment on extreme ultraviolet generation in a femtosecond enhancement cavity.
Camporeale, E.; Zimbardo, G.
2014-01-01
We present self-consistent Particle-in-Cell simulations of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles, and comparing with test-particles simulations we emphasi
Camporeale, E.; Zimbardo, G.
2015-01-01
We present self-consistent Particle-in-Cell simulations of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles, and comparing with test-particles simulations we emphasi
Nonlinear Phase Control and Anomalous Phase Matching in Plasmonic Metasurfaces
Almeida, Euclides; Prior, Yehiam
2015-01-01
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute a particularly attractive set of materials. By means of modern nanolithographic fabrication techniques, flat, ultrathin optical elements may be constructed. However, in spite of their strong optical nonlinearities, plasmonic metasurfaces have so far been investigated mostly in the linear regime. Here we introduce full nonlinear phase control over plasmonic elements in metasurfaces. We show that for nonlinear interactions in a phase-gradient nonlinear metasurface a new anomalous nonlinear phase matching condition prevails, which is the nonlinear analog of the generalized Snell law demonstrated for linear metasurfaces. This phase matching condition is very different from the other known phase matching schemes. The subwavelength phase control of optical nonlinearities provides a foundation for the design of flat nonlinear optical elements based on metasurfaces. Our demonstrated flat nonlinear elements (i.e. lenses) act...
NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS
Institute of Scientific and Technical Information of China (English)
PENG SHIGE
2005-01-01
This paper deals with nonlinear expectations. The author obtains a nonlinear generalization of the well-known Kolmogorov's consistent theorem and then use it to construct filtration-consistent nonlinear expectations via nonlinear Markov chains. Compared to the author's previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probability measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations.The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.
Rayleigh reflections and nonlinear acoustics of solids
Breazeale, M. A.
1980-10-01
Schlierken studies of ultrasonic waves, and nonlinear acoustics of solids are addressed. A goniometer for use in a Schlieren system for visualization of ultrasonic waves in liquids is described. The goniometer is used to obtain Schlieren photographs of leaky Rayleigh waves excited on an Al2O3 layer on a stainless steel reflector immersed in water, showing that the Rayleigh wave velocity in this case is less than that of either a water Al203 layer or a water stainless steel layer. Also investigated are: (1) nonlinearity parameters and third order elastic constants of copper between 300 and 3 K; (2) measurement of nonlinearity parameters in small solid samples by the harmonic generation technique; (3) relationship between solid nonlinearity parameters and thermodynamic Gruneisen parameters; and (4) quantum mechanical theory of nonlinear interaction of ultrasonic waves.
Completely integrable models of nonlinear optics
Indian Academy of Sciences (India)
Andrey I Maimistov
2001-11-01
The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modiﬁed Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral ﬁeld equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.
Nonlinear plasmonic amplification via dissipative soliplasmons
Ferrando, Albert
2016-01-01
In this contribution we introduce a new strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasi-particle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a new mechanism of quasi-resonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling and gain give rise to a new scenario for the excitation of long- range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.
Discontinuity and complexity in nonlinear physical systems
Baleanu, Dumitru; Luo, Albert
2014-01-01
This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....
Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs
Maksymov, Ivan S
2016-01-01
Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.
Liu, Jing; Xia, Jiarui; Song, Peng; Ding, Yong; Cui, Yanling; Liu, Xuemei; Dai, Yumei; Ma, Fengcai
2014-08-25
The ground- and excited-state properties of benzene-linked bisphenalenyl (B-LBP), naphthaline-linked bisphenalenyl (N-LBP), and anthracene-linked bisphenalenyl (A-LBP) Kekulé molecules and their respective one-dimensional (1D) stacks are investigated using time-dependent density functional theory (TD-DFT) and a range of extensive multidimensional visualization techniques. The results reveal a covalent π-π bonding interaction between overlapping phenalenyl radicals whose bond length is shorter than the van der Waals distance between carbon atoms. Increasing the linker length and/or number of molecules involved in the 1D stack decreases the HOMO-LUMO energy gap and increases the wavelength of the systems. The charge-transfer mechanism and electron coherence both differ with changes in the linker length and/or number of molecules involved in the 1D stack. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear Acoustic Characterization of Targets
2008-01-01
matching so as to transmit as much energy as possible into the test object. In addition to this limitation, ultrasound is only able to measure range by...metric arrays for standoff analysis of targets. In 1982, Yoneyama[4] discussed the nonlinear interaction of ultrasound with air as the “scattering of... cavitation effect. This produces a rectification at higher frequencies just as a diode does in an electrical circuit. This natural rectification allows
Transformation design and nonlinear Hamiltonians
Brougham, Thomas; Jex, Igor
2009-01-01
We study a class of nonlinear Hamiltonians, with applications in quantum optics. The interaction terms of these Hamiltonians are generated by taking a linear combination of powers of a simple `beam splitter' Hamiltonian. The entanglement properties of the eigenstates are studied. Finally, we show how to use this class of Hamiltonians to perform special tasks such as conditional state swapping, which can be used to generate optical cat states and to sort photons.
Institute of Scientific and Technical Information of China (English)
杨德森; 兰朝凤; 时胜国; 江薇
2012-01-01
In order to investigate the energy transfer under interaction among nonlinear acoustic variable parameters,the spectrum decomposition was used to study and simulate amplitude resolution after interaction of intefer-times frequency waves.The results showed that when a high-frequency source level is greater than a low-frequency source level and the high-frequency source level is fixed,the sound absorption of sound decreases as the frequency ratio increases; when the frequency ratio is not less than 3,the sound absorption effects of sound caused by the initial phase relationship between two sound waves can be ignored; As a high-frequency pump source is stronger,the absorption effects of higher frequency sound on lower frequency sound become weaker; in contrast,as a low-frequency pump source is stronger,the absorption effects of higher frequency sound on lower frequency sound become stronger,the nonlinear cumulative effect is maximum at break distances.%为研究声波非线性变参数相作用后的能量转移问题,利用谱分解方法对整倍频声波相互作用后的幅度解进行理论研究和仿真分析.研究表明:高频声源级大于低频声源级,且高频声源级取定值时,频率比N越大,声吸收声效果越小.频率比N≥3时,两列声波的初始相位关系对声吸收声的影响可忽略不计.高频泵源越强,高频对低频声的声吸收声效果越弱；相反,低频泵源越强,高频声波对低频声的声吸收声效果越强.非线性累积效应在间断距离处达到最强.
Nonlinear Ultrasonic Characterization Using the Noncollinear Method
Croxford, A. J.; Drinkwater, B. W.; Wilcox, P. D.
2011-06-01
The measurement of material non-linearity using ultrasound is an attractive concept, offering the potential to detect fatigue damage earlier than is possible with conventional techniques. Despite this advantage and much work in the field the currently developed approaches are primarily limited to the lab environment. This is due to the difficulty in separating the material nonlinearity from that generated by equipment. This paper reports on an approach that eliminates this problem. When two shear waves interact a third wave is generated due to the material nonlinearity. This paper shows how this interaction can be used to measure material properties in damaged specimens. It goes on to show that this approach can be used to make measurements of material non-linearity both across a specimen.
Discrete dissipative localized modes in nonlinear magnetic metamaterials.
Rosanov, Nikolay N; Vysotina, Nina V; Shatsev, Anatoly N; Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S
2011-12-19
We analyze the existence, stability, and propagation of dissipative discrete localized modes in one- and two-dimensional nonlinear lattices composed of weakly coupled split-ring resonators (SRRs) excited by an external electromagnetic field. We employ the near-field interaction approach for describing quasi-static electric and magnetic interaction between the resonators, and demonstrate the crucial importance of the electric coupling, which can completely reverse the sign of the overall interaction between the resonators. We derive the effective nonlinear model and analyze the properties of nonlinear localized modes excited in one-and two-dimensional lattices. In particular, we study nonlinear magnetic domain walls (the so-called switching waves) separating two different states of nonlinear magnetization, and reveal the bistable dependence of the domain wall velocity on the external field. Then, we study two-dimensional localized modes in nonlinear lattices of SRRs and demonstrate that larger domains may experience modulational instability and splitting.
Reconfigurable nonreciprocity with nonlinear Fano diode
Xu, Yi; Miroshnichenko, Andrey E.
2013-01-01
We propose a dynamically tunable nonreciprocal response for wave propagations by employing nonlinear Fano resonances. We demonstrate that transmission contrast of waves propagation in opposite directions can be controlled by excitation signal. In particular, the unidirectional transmission can be flipped at different times of a pulse, resembling a diode operation with {\\em dynamical reconfigurable nonreciprocity}. The key mechanism is the interaction between the linear and nonlinear Fano reso...
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Noncommutative Nonlinear Supersymmetry
Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash
2002-01-01
We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).
Fiber Nonlinearities: A Tutorial
Institute of Scientific and Technical Information of China (English)
Govind P. Agrawal
2003-01-01
Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..
Fiber Nonlinearities: A Tutorial
Institute of Scientific and Technical Information of China (English)
Govind; P.; Agrawal
2003-01-01
Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..
PBH tests for nonlinear systems
Kawano, Yu; Ohtsuka, Toshiyuki
2017-01-01
Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit
Observation of Nonlinear Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Kotseroglou, T.
2003-12-19
This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.
Quantum nonlinear optics without photons
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Nonlinear theory of beam-wave interaction in gyro-TWT with spiral waveguide%螺旋波纹波导回旋行波管注波互作用非线性理论
Institute of Scientific and Technical Information of China (English)
薛智浩; 刘濮鲲; 杜朝海
2012-01-01
螺旋波纹波导回旋行波管与采用光滑圆波导的回旋管相比,有较大的带宽.介绍了该类回旋行波管的非线性注波互作用理论.计算结果表明该理论计算结果与实际实验报道的结果基本符合,相应的电子效率达到29％,饱和增益达到37 dB,工作磁场0.21 T,电压185 kV,电流19A.%Gyro-TWT (traveling wave tube) with helical waveguide has wider instantaneous frequency bandwidth than that with smooth waveguide. This paper introduces the nonlinear theory of its beam-wave interaction. The calculation shows that, the electron efficiency reaches 29% . and the saturated gain is 37 dB, when the working magnetic field is 0. 21 T. the voltage is 185 kV and the current is 19 A. The calculated results accord with that reported in literature.
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Theory and design of nonlinear metamaterials
Rose, Alec Daniel
If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers
Nonlinearities in vegetation functioning
Ceballos-Núñez, Verónika; Müller, Markus; Metzler, Holger; Sierra, Carlos
2016-04-01
Given the current drastic changes in climate and atmospheric CO2 concentrations, and the role of vegetation in the global carbon cycle, there is increasing attention to the carbon allocation component in biosphere terrestrial models. Improving the representation of C allocation in models could be the key to having better predictions of the fate of C once it enters the vegetation and is partitioned to C pools of different residence times. C allocation has often been modeled using systems of ordinary differential equations, and it has been hypothesized that most models can be generalized with a specific form of a linear dynamical system. However, several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems with model structure. Although efforts have been made to compare different models, the outcome of these qualitative assessments has been a conceptual categorization of them. In this contribution, we introduce a new effort to identify the main properties of groups of models by studying their mathematical structure. For this purpose, we performed a literature research of the relevant models of carbon allocation in vegetation and developed a database with their representation in symbolic mathematics. We used the Python package SymPy for symbolic mathematics as a common language and manipulated the models to calculate their Jacobian matrix at fixed points and their eigenvalues, among other mathematical analyses. Our preliminary results show a tendency of inverse proportionality between model complexity and size of time/space scale; complex interactions between the variables controlling carbon allocation in vegetation tend to operate at shorter time/space scales, and vice-versa. Most importantly, we found that although the linear structure is common, other structures with non-linearities have been also proposed. We, therefore, propose a new General Model that can accommodate these
Nonlinear optomechanical measurement of mechanical motion
DEFF Research Database (Denmark)
Brawley, G.A.; Vanner, M R; Larsen, Peter Emil
2016-01-01
Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing...... with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator...... by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can...
Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity
Bache, Morten; Lavrinenko, Andrei V.
2017-09-01
Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei
2001-11-01
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).
Nonlinear ion trap stability analysis
Energy Technology Data Exchange (ETDEWEB)
Mihalcea, Bogdan M; Visan, Gina G, E-mail: bmihal@infim.r [Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Str. Nr. 409, 077125 Magurele-Bucharest, Jud. Ilfov (Romania)
2010-09-01
This paper investigates the dynamics of an ion confined in a nonlinear Paul trap. The equation of motion for the ion is shown to be consistent with the equation describing a damped, forced Duffing oscillator. All perturbing factors are taken into consideration in the approach. Moreover, the ion is considered to undergo interaction with an external electromagnetic field. The method is based on numerical integration of the equation of motion, as the system under investigation is highly nonlinear. Phase portraits and Poincare sections show that chaos is present in the associated dynamics. The system of interest exhibits fractal properties and strange attractors. The bifurcation diagrams emphasize qualitative changes of the dynamics and the onset of chaos.
Nonlinear Krylov acceleration of reacting flow codes
Energy Technology Data Exchange (ETDEWEB)
Kumar, S.; Rawat, R.; Smith, P.; Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)
1996-12-31
We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.
Enhanced optical nonlinearities in air-cladding silicon pedestal waveguides
Zhang, Yaojing; Yao, Yifei; Tsang, Hon Ki
2016-01-01
The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated waveguide platform with a high nonlinearity is therefore important for nonlinear integrated photonics. Here, we report the observation of an enhancement in the nonlinearity of an air-cladding silicon pedestal waveguide. We observe enhanced nonlinear spectral broadening compared to a conventional silicon-on-insulator waveguide. At the center wavelength of 1555 nm, the nonlinear-index coefficient of air-cladding silicon pedestal waveguide is measured to be about 5% larger than that of a conventional silicon-on-insulator waveguide. We observe enhanced spectral broadening from self-phase modulation of an optical pulse in the pedestal waveguide. The interaction of light with the confined acoustic phonons in the pedestal structure gives rise to a larger nonlinear-index coeffi...
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Dynamics of Nonlinear Waves on Bounded Domains
Maliborski, Maciej
2016-01-01
This thesis is concerned with dynamics of conservative nonlinear waves on bounded domains. In general, there are two scenarios of evolution. Either the solution behaves in an oscillatory, quasiperiodic manner or the nonlinear effects cause the energy to concentrate on smaller scales leading to a turbulent behaviour. Which of these two possibilities occurs depends on a model and the initial conditions. In the quasiperiodic scenario there exist very special time-periodic solutions. They result for a delicate balance between dispersion and nonlinear interaction. The main body of this dissertation is concerned with construction (by means of perturbative and numerical methods) of time-periodic solutions for various nonlinear wave equations on bounded domains. While turbulence is mainly associated with hydrodynamics, recent research in General Relativity has also revealed turbulent phenomena. Numerical studies of a self-gravitating massless scalar field in spherical symmetry gave evidence that anti-de Sitter space ...
Electrifying photonic metamaterials for tunable nonlinear optics.
Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan
2014-08-11
Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.
Ionescu, Tudor C.; Scherpen, Jacquelien M. A.
We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.
Directory of Open Access Journals (Sweden)
W. L. Fouché
1983-03-01
Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.
Nonlinear Electrodynamics and QED
2003-01-01
The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...
Nonlinear Acoustic Wave Interactions in Layered Media.
1980-03-06
Generated Components in Dispersive Media. . . . . . . . . . . . . 62 4.4 Dispersion in Medium II . . . . . . . . .. 68 V. CONCLUSIONS...give rise to leaky wave modes which are more thoroughly discussed 17 18 by Kapany and Burke, and by Marcuse . Leaky modes are C.C. Ghizoni, J.M...1977), 843-848. 1 7N.S. Kapany and J.J. Burke, Optical Waveeeuides, (New York: Academic Press, 1972), pp. 24-34. D. Marcuse , Theory of Dielectric Optical
Nonlinear Stochastic Interaction in Aeroelastic Structures.
1988-01-29
thaird-order joit (in Rdf. 23) that rod conerect in the Edgeworth expan- cumsulat to zero, ie.. iSo can he achievt4d by retininag the first few terms in...natural frequency ratio r -W /( ... 3 on the ratios w/W3 and (A w3 for beams of length ratio Z. / 0.25, 13333 11 and mass ratios m2 /m, - 0.5. and m3
Nonlinear Interactions for Broadband Energy Harvesting
2015-04-22
is one of the most promising strategies for meeting the power requirements while simultaneously reducing the weight load. However, energy harvesting ...summarize, the current state of the art in mechanical energy harvesting is ineffective for many environments. The proposed research explores new...concepts with the potential to offer fundamentally new insights for energy harvesting . I expect this project to provide enabling technological
Nonlinear interactions in renal blood flow regulation
DEFF Research Database (Denmark)
Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.
2005-01-01
, identical except for the strength of TGF input, with a third, fixed resistance segment representing prearteriolar vessels. The two arteriolar segments are electrically coupled. The arteriolar, glomerular, and tubular models are linked; TGF modulates arteriolar circumference, which determines vascular...... resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller...
Nonlinear Interactions Between Oblique Wind Waves
2015-08-01
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 27-Aug-2015 2. REPORT TYPE Final...easy cross-referencing. However, a change occurred for the normalization of variables in the final amplitude equations. In Lee (2012), the variables in...of difference modes when λ = O(1) Equation (87) shows that the amplitudes of the first N − 2 difference modes grow exponentially, Adn = adnexp(κdnt̄
Institute of Scientific and Technical Information of China (English)
吴微; 孟繁友
2000-01-01
We consider a triple zero point of nonlinear equations with O(2)-symmetry, where the Jacobian has a zero eigenvalue of geometric multiplicity one and algebraic multiplicity three, We show that this triple zero point exhibits a new bifurcation phenomenon, that is, a mode interaction of the following three paths: bifurcation points from steady-states, steadystates and rotating waves to standing waves, rotating waves and modulated rotating waves respectively.
Kono, Mitsuo
2010-01-01
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear magnetic metamaterials.
Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S
2008-12-08
We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Nonlinearity-reduced interferometer
Wu, Chien-ming
2007-12-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.
Design with Nonlinear Constraints
Tang, Chengcheng
2015-12-10
Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.
Yashkir, O. V.; Yashkir, Yu N.
1987-11-01
An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.
Topological approximation of the nonlinear Anderson model
Milovanov, Alexander V.; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the
Frequency comb generation in quadratic nonlinear media
Ricciardi, Iolanda; Parisi, Maria; Maddaloni, Pasquale; Santamaria, Luigi; De Natale, Paolo; De Rosa, Maurizio
2014-01-01
Optical frequency combs are nowadays routinely used tools in a wide range of scientific and technological applications. Different techniques have been developed for generating optical frequency combs, like mode-locking in lasers and third-order interactions in microresonators, or to extend their spectral capabilities, using frequency conversion processes in nonlinear materials. Here, we experimentally demonstrate and theoretically explain the onset of optical frequency combs in a simple cavity-enhanced second-harmonic-generation system, exploiting second-order nonlinear interactions. We develop an elemental model which provides a deep physical insight into the observed dynamics. Moreover, despite the different underlying physical mechanism, the proposed model is remarkably similar to the description of third-order effects in microresonators, revealing a potential variety of new effects to be explored. Finally, exploiting a nonlinearity intrinsically stronger than the third-order one, our work lays the groundw...
Nonlinear and magic ponderomotive spectroscopy
Moore, Kaitlin
2015-01-01
In ponderomotive spectroscopy an amplitude-modulated optical standing wave is employed to probe Rydberg-atom transitions, utilizing a ponderomotive rather than a dipole-field interaction. Here, we engage nonlinearities in the modulation to drive dipole-forbidden transitions up to the fifth order. We reach transition frequencies approaching the sub-THz regime. We also demonstrate magic-wavelength conditions, which result in symmetric spectral lines with a Fourier-limited feature at the line center. Applicability to precision measurement is discussed.
Pressure tunable cascaded third order nonlinearity and temporal pulse switching
DEFF Research Database (Denmark)
Eilenberger, Falk; Bache, Morten; Minardi, Stefano
2013-01-01
Effects based on the χ(3)-nonlinearity are arguably the most commonly discussed nonlinear interactions in photonics. In the description of pulse propagation, however, the generation of the third harmonic (TH) is commonly neglected, because it is strongly phase mismatched in most materials and wav...
Non-linear stochastic response of a shallow cable
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2004-01-01
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...
Self-induced gap solitons in nonlinear magnetic metamaterials.
Cui, Weina; Zhu, Yongyuan; Li, Hongxia; Liu, Sumei
2009-09-01
The self-induced gap solitons in nonlinear magnetic metamaterials is investigated. It is shown that the self-induced gap solitons may exist due to the interaction of the discreteness and nonlinearity. The evolution of these localized structures is studied in the phase plane and analytical and numerical expressions are obtained.
Complex and Nonlinear Pedagogy and the Implications for Physical Education
Chow, Jia Yi; Atencio, Matthew
2014-01-01
There is increasing support to describe and examine the teaching of game skills in physical education from a complex and nonlinear perspective. The emergence of game behaviours as a consequence of the dynamic interactions of the learner, the game environment and the task constraints within the game context highlights the nonlinear and complex…
A simple numerical model of a geometrically nonlinear Timoshenko beam
Keijdener, C.; Metrikine, A.
2015-01-01
In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and tran
Lasers for nonlinear microscopy.
Wise, Frank
2013-03-01
Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
Billings, S. A.
1988-03-01
Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.
Ionescu, T. C.; Scherpen, J. M. A.; Korytowski, A; Malanowski, K; Mitkowski, W; Szymkat, M
2009-01-01
We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.
1999-01-01
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...
Controllability in nonlinear systems
Hirschorn, R. M.
1975-01-01
An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.
Menon, P. K. A.; Badgett, M. E.; Walker, R. A.
1992-01-01
Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...
Nonlinear spectral imaging of biological tissues
Palero, J.A.
2007-01-01
The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal.
Nonlinear spectral imaging of biological tissues
Palero, J.A.
2007-01-01
The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal.
Nonlinear second order elliptic equations involving measures
Marcus, Moshe
2013-01-01
This book presents a comprehensive study of boundary value problems for linear and semilinear second order elliptic equations with measure data,especially semilinear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role.
Controller reconfiguration for non-linear systems
Kanev, S.; Verhaegen, M.
2000-01-01
This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.;
2005-01-01
or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
A Second Generation Nonlinear Factor Analysis.
Etezadi-Amoli, Jamshid; McDonald, Roderick P.
1983-01-01
Nonlinear common factor models with polynomial regression functions, including interaction terms, are fitted by simultaneously estimating the factor loadings and common factor scores, using maximum likelihood and least squares methods. A Monte Carlo study gives support to a conjecture about the form of the distribution of the likelihood ratio…
Nonlinear optics with stationary pulses of light
Andre, A.; Bajcsy, M.; Zibrov, A. S.; Lukin, M. D.
2004-01-01
We show that the recently demonstrated technique for generating stationary pulses of light [Nature {\\bf 426}, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resul...
Nonlinear terahertz metamaterials with active electrical control
Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.
2017-09-01
We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.
Extremely nonlocal optical nonlinearities in atoms trapped near a waveguide
Shahmoon, Ephraim; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon
2014-01-01
Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.
Zweig, George
2016-05-01
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
Non-linear propagation in near sonic flows
Nayfeh, A. H.; Kelly, J. J.; Watson, L. T.
1981-01-01
A nonlinear analysis is developed for sound propagation in a variable-area duct in which the mean flow approaches choking conditions. A quasi-one-dimensional model is used and the nonlinear analysis represents the acoustic disturbance as a sum of interacting harmonics. The numerical procedure is stable for cases of strong interaction and is able to integrate through the throat region without any numerical instability.
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)
2015-10-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Will Nonlinear Backcalculation Help?
DEFF Research Database (Denmark)
Ullidtz, Per
2000-01-01
demonstrates, that treating the subgrade as a nonlinear elastic material, can result in more realistic moduli and a much better agreement between measured and calculated stresses and strains.The response of nonlinear elastic materials can be calculated using the Finite Element Method (FEM). A much simpler...... approach is to use the Method of Equivalent Thicknesses (MET), modified for a nonlinear subgrade. The paper includes an example where moduli backcalculated using FEM, linear elastic theory and MET are compared. Stresses and strains predicted by the three methods are also compared to measured values...
Nonlinear graphene metamaterial
Nikolaenko, Andrey E; Atmatzakis, Evangelos; Luo, Zhiqiang; Shen, Ze Xiang; De Angelis, Francesco; Boden, Stuart A; Di Fabrizio, Enzo; Zheludev, Nikolay I
2012-01-01
We demonstrate that the broadband nonlinear optical response of graphene can be resonantly enhanced by more than an order of magnitude through hybridization with a plasmonic metamaterial,while retaining an ultrafast nonlinear response time of ~1 ps. Transmission modulation close to ~1% is seen at a pump uence of ~0.03 mJ/cm^2 at the wavelength of ~1600 nm. This approach allows to engineer and enhance graphene's nonlinearity within a broad wavelength range enabling applications in optical switching, mode-locking and pulse shaping.