WorldWideScience

Sample records for nonlinear mhd equations

  1. Proceedings of the workshop on nonlinear MHD and extended MHD

    International Nuclear Information System (INIS)

    1998-01-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  2. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  4. On nonlinear MHD-stability of toroidal magnetized plasma

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.; Pastukhov, V.P.

    1994-01-01

    The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs

  5. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    International Nuclear Information System (INIS)

    Tataronis, J. A.

    2004-01-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory

  6. Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves

    International Nuclear Information System (INIS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1996-01-01

    A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in β∼1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a g 2 =V A 2 where a g is the gas sound speed and V A is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation

  7. Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

    Directory of Open Access Journals (Sweden)

    R. Erdélyi

    2002-01-01

    Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.

  8. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  9. Problems in nonlinear resistive MHD

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-01-01

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1

  10. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field

    Science.gov (United States)

    Moawad, S. M.; Moawad

    2013-10-01

    The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.

  11. 3-D resistive MHD calculations for tokamak plasmas: beyond the simple reduced set of equations

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.; Masden, B.F.

    1983-01-01

    Numerical studies of the resistive stability of tokamak plasmas in cylindrical geometry have been performed using: (1) the full set of resistive Magnetohydrodynamic (MHD) equations and (2) an extended version of the reduced set of resistive MHD equations including diamagnetic and electron temperature effects. In particular, the nonlinear interaction of tearing modes of many helicities has been investigated. The numerical results confirm many of the features uncovered previously using the simple reduced equations. (author)

  12. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  13. Nonlinear dynamics of single-helicity neoclassical MHD tearing instabilities

    International Nuclear Information System (INIS)

    Spong, D.A.; Shaing, K.C.; Carreras, B.A.; Callen, J.D.; Garcia, L.

    1988-10-01

    Neoclassical magnetohydrodynamic (MHD) effects can significantly alter the nonlinear evolution of resistive tearing instabilities. This is studied numerically by using a flux-surface-averaged set of evolution equations that includes the lowest-order neoclassical MHD effects. The new terms in the equations are fluctuating bootstrap current, neoclassical modification of the resistivity, and neoclassical damping of the vorticity. Single-helicity tearing modes are studied in a cylindrical model over a range of neoclassical viscosities (μ/sub e//ν/sup e/) and values of the Δ' parameter of tearing mode theory. Increasing the neoclassical viscosity leads to increased growth rate and saturated island width as predicted analytically. The larger island width is caused by the fluctuating bootstrap current contribution in Ohm's law. The Δ' parameter no longer solely determines the island width, and finite-width saturated islands may be obtained even when Δ' is negative. The importance of the bootstrap current (/approximately/∂/rho///partial derivative/psi/) in the nonlinear dynamics leads us to examine the sensitivity of the results with respect to different models for the density evolution. 11 refs., 8 figs

  14. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  15. Implementation of a 3-D nonlinear MHD [magnetohydrodynamics] calculation on the Intel hypercube

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Hicks, H.R.; Lawkins, W.F.

    1987-01-01

    The optimization of numerical schemes and increasing computer capabilities in the last ten years have improved the efficiency of 3-D nonlinear resistive MHD calculations by about two to three orders of magnitude. However, we are still very limited in performing these types of calculations. Hypercubes have a large number of processors with only local memory and bidirectional links among neighbors. The Intel Hypercube at Oak Ridge has 64 processors with 0.5 megabytes of memory per processor. The multiplicity of processors opens new possibilities for the treatment of such computations. The constraint on time and resources favored the approach of using the existing RSF code which solves as an initial value problem the reduced set of MHD equations for a periodic cylindrical geometry. This code includes minimal physics and geometry, but contains the basic three dimensionality and nonlinear structure of the equations. The code solves the reduced set of MHD equations by Fourier expansion in two angular coordinates and finite differences in the radial one. Due to the continuing interest in these calculations and the likelihood that future supercomputers will take greater advantage of parallelism, the present study was initiated by the ORNL Exploratory Studies Committee and funded entirely by Laboratory Discretionary Funds. The objectives of the study were: to ascertain the suitability of MHD calculation for parallel computation, to design and implement a parallel algorithm to perform the computations, and to evaluate the hypercube, and in particular, ORNL's Intel iPSC, for use in MHD computations

  16. Nonlinear MHD-equations: symmetries, solutions and conservation laws

    International Nuclear Information System (INIS)

    Samokhin, A.V.

    1985-01-01

    To investigate stability and nonlinear effects in a high-temperature plasma the system of two scalar nonlinear equations is considered. The algebra of classical symmetries of this system and a certain natural part of its conservation laws are described. It is shown that first, with symmetries one can derive invariant (self-similar) solutions, second, acting with symmetry on the known solution the latter can be included into parametric family

  17. Numerical resolution of a bi-temperature MHD model with a general Ohm's law: Roe solver - Front-tracking - Nonlinear transport equations with discontinuous coefficients. Simulation of a Plasma Opening Switch

    International Nuclear Information System (INIS)

    Brassier, Stephane

    1998-01-01

    The Magnetohydrodynamic (MHD) equations represent the coupling between fluid dynamics equations and Maxwell's equations. We consider here a new MHD model with two temperatures. A Roe scheme is first constructed in the one dimensional case, for a multi-species model and a general equation of state. The multidimensional case is treated thanks to the Powell approach. The notion of Roe-Powell matrix, generalization of the notion of Roe matrix for multidimensional MHD, allows us to develop an original scheme on a curvilinear grid. We focus on a second part on the modelling of a Plasma Opening Switch (POS). A front-tracking method is first set up, in order to correctly handle the deformation of the front between the vacuum and the plasma. Besides, by taking into account a general Ohm's law, we have to deal with the Hall effect, which leads to nonlinear transport equations with discontinuous coefficients. Several numerical schemes are proposed and tested on a variety of test cases. This work has allowed us to construct an industrial MHD code, intended to handle complex flows and in particular to correctly simulate the behaviour of the POS. (author) [fr

  18. A nonlinear resistive MHD-code in cylindrical geometry

    International Nuclear Information System (INIS)

    Jakoby, A.

    1987-11-01

    A computer code has been developed which solves the full compressible resistive magnetohydrodynamic (MHD) equations in cylindrical geometry. The variables are expanded in Fourier series in the poloidal and axial directions while finite differences are used in the radial direction. The time advance is accomplished by using a semi-implicit predictor-corrector-scheme. Applications to the ideal m=1 ideal kink saturation in the nonlinear regime and the subsequent decay of the singular current layer due to resistivity are presented. (orig.)

  19. Transfer equations for spectral densities of inhomogeneous MHD turbulence

    International Nuclear Information System (INIS)

    Tu, C.-Y.; Marsch, E.

    1990-01-01

    On the basis of the dynamic equations governing the evolution of magnetohydrodynamic fluctuations expressed in terms of Elsaesser variables and of their correlation functions derived by Marsch and Tu, a new set of equations is presented describing the evolutions of the energy spectrum e ± and of the residual energy spectra e R and e S of MHD turbulence in an inhomogeneous magnetofluid. The nonlinearities associated with triple correlations in these equations are analysed in detail and evaluated approximately. The resulting energy-transfer functions across wavenumber space are discussed. For e ± they are shown to be approximately energy-conserving if the gradients of the flow speed and density are weak. New cascading functions are heuristically determined by an appropriate dimensional analysis and plausible physical arguments, following the standard phenomenology of fluid turbulence. However, for e R the triple correlations do not correspond to an 'energy' conserving process, but also represent a nonlinear source term for e R . If this source term can be neglected, the spectrum equations are found to be closed. The problem of dealing with the nonlinear source terms remains to be solved in future investigations. (author)

  20. Nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.

    1975-01-01

    A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)

  1. Three-scale expansion of the solution of MHD and Reynolds equations for tokamak

    International Nuclear Information System (INIS)

    Maslov, V.P.; Omel'yanov, G.A.

    1994-01-01

    An asymptotic solution of the magnetohydrodynamic equations is constructed. The three scales asymptotic solution describes the non-linear evolution of small, rapidly varying perturbations of equilibrium. It is shown, that an anisotropic coherent structure appears in the linear nonstability situation, and the structures evolution directs to energy interaction between high-frequency and low-frequency waves. The closed system of MHD Reynolds equations for anisotropic structure is derived

  2. Analysis of the magnetohydrodynamic equations and study of the nonlinear solution bifurcations

    International Nuclear Information System (INIS)

    Morros Tosas, J.

    1989-05-01

    The nonlinear saturation of a plasma magnetohydrodynamic instabilities is studied, by means of a bifurcation theory. The work includes: an accurate mathematical method to study the MHD equations, in which the physical content is clear; and the study of the nonlinear solutions of the branch bifurcations, applied to different unstable plasma models. A scalar function representation is proposed for the MHD equations. This representation is characterized by a reference steady magnetic field and by a velocity field, which allow to write the equations for the scalar functions. An approximation method, leading to the obtention of the reduced equations applied in the instability study, is given. The cylindrical or toroidal plasmas are studied by using the nonlinear solutions bifurcation. Concerning the cylindrical plasma, the representation leads to a reduced system which enables the analytical calculations: two different steady bifurcation solutions are obtained. In the case of the toroidal plasma, an appropriate reduced equations system, is obtained. A qualitative approach of the Kink-type steady solution bifurcation, in a toroidal geometry, is performed [fr

  3. Nonlinear 2D convection and enhanced cross-field plasma transport near the MHD instability threshold

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Chudin, N.V.

    2003-01-01

    Results of theoretical study and computer simulations of nonlinear 2D convection induced by a convective MHD instability near its threshold in FRC-like non-paraxial magnetic confinement system are presented. An appropriate closed set of weakly nonideal reduced MHD equations is derived to describe the self-consistent plasma dynamics. It is shown that the convection forms nonlinear large scale stochastic vortices (convective cells), which tend to restore and to maintain the marginally stable pressure pro e and result in an essentially nonlocal enhanced heat transport. A large amount of data on the structure of the nascent convective flows is obtained and analyzed. The computer simulations of long time plasma evolutions demonstrate such features of the resulting anomalous transport as pro e consistency, L-H transition, external transport barrier, pinch of impurities, etc. (author)

  4. Linear and nonlinear instability theory of a noble gas MHD generator

    International Nuclear Information System (INIS)

    Mesland, A.J.

    1982-01-01

    This thesis deals with the stability of the working medium of a seeded noble gas magnetohydrodynamic generator. The aim of the study is to determine the instability mechanism which is most likely to occur in experimental MHD generators and to describe its behaviour with linear and nonlinear theories. In chapter I a general introduction is given. The pertinent macroscopic basic equations are derived in chapter II, viz. the continuity, the momentum and the energy equation for the electrons and the heavy gas particles, consisting of the seed particles and the noble gas atoms. Chapter III deals with the linear plane wave analysis of small disturbances of a homogeneous steady state. The steady state is discussed in chapter IV. The values for the steady state parameters used for the calculations both for the linear analysis as for the nonlinear analysis are made plausible with the experimental values. Based on the results of the linear plane wave theory a nonlinear plane wave model of the electrothermal instability is introduced in chapter V. (Auth.)

  5. Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects

    International Nuclear Information System (INIS)

    Schmalz, R.

    1980-11-01

    The resistive MHD equations for toroidal plasma configurations are reduced by expanding to the second order in epsilon, the inverse aspect ratio, allowing for high β = μsub(o)p/B 2 of order epsilon. The result is a closed system of nonlinear, three-dimensional equations where the fast magnetohydrodynamic time scale is eliminated. In particular, the equation for the toroidal velocity remains decoupled. (orig.)

  6. Nonlinear MHD analysis for LHD plasmas

    International Nuclear Information System (INIS)

    Ichiguchi, K.; Nakajima, N.; Wakatani, M.; Carreras, B.A.

    2003-01-01

    The nonlinear behavior of the interchange modes with multi-helicity in the Large Helical Device is analyzed based on the reduced MHD equations. In the equilibrium at sufficiently low beta value, the saturation of a single mode and the following excitation of other single mode whose resonant surface is close to that of the saturated mode are slowly repeated. This sequence leads to the local deformation of the pressure profile. Increasing the beta value with the pressure profile fixed, a bursting phenomenon due to the overlap of multiple modes is observed in the kinetic energy, which results in the global reduction of the pressure profile. Increasing the beta value using the pressure profile saturated at the lower beta value suppresses the bursting behavior. This result indicates the possibility that the pressure profile is self-organized so that the LHD plasma should attain the high beta regime through a stable path. (author)

  7. Nonlinear MHD Waves in a Prominence Foot

    Science.gov (United States)

    Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.

    2015-11-01

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  8. NONLINEAR MHD WAVES IN A PROMINENCE FOOT

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2015-11-10

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  9. On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas

    Directory of Open Access Journals (Sweden)

    L.-N. Hau

    2007-09-01

    Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.

  10. Neoclassical MHD descriptions of tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Kim, Y.B.; Sundaram, A.K.

    1988-01-01

    Considerable progress has been made in extending neoclassical MHD theory and in exploring the linear instabilities, nonlinear behavior and turbulence models it implies for tokamak plasmas. The areas highlighted in this paper include: extension of the neoclassical MHD equations to include temperature-gradient and heat flow effects; the free energy and entropy evolution implied by this more complete description; a proper ballooning mode formalism analysis of the linear instabilities; a new rippling mode type instability; numerical simulation of the linear instabilities which exhibit a smooth transition from resistive ballooning modes at high collisionality to neoclassical MHD modes at low collisionality; numerical simulation of the nonlinear growth of a single helicity tearing mode; and a Direct-Interaction-Approximation model of neoclassical MHD turbulence and the anomalous transport it induces which substantially improves upon previous mixing length model estimates. 34 refs., 2 figs

  11. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  12. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  13. Implementation of the full viscoresistive magnetohydrodynamic equations in a nonlinear finite element code

    Energy Technology Data Exchange (ETDEWEB)

    Haverkort, J.W. [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam (Netherlands); Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Blank, H.J. de [Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Huysmans, G.T.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pratt, J. [Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Koren, B., E-mail: b.koren@tue.nl [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2016-07-01

    Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. A rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.

  14. A nonlinear structural subgrid-scale closure for compressible MHD. I. Derivation and energy dissipation properties

    Energy Technology Data Exchange (ETDEWEB)

    Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)

    2016-06-15

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.

  15. Tokamak m = 1 magnetohydrodynamic calculations in toroidal geometry using a full set of nonlinear resistive magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Charlton, L.A.; Carreras, B.A.; Holmes, J.A.; Lynch, V.E.

    1988-01-01

    The linear stability and nonlinear evolution of the resistive m = 1 mode in tokamaks is studied using a full set of resistive magnetohydrodynamic (MHD) equations in toroidal geometry. The modification of the linear and nonlinear properties of the mode by a combination of strong toroidal effects and low resistivity is the focus of this work. Linearly there is a transition from resistive kink to resistive tearing behavior as the aspect ratio and resistivity are reduced, and there is a corresponding modification of the nonlinear behavior, including a slowing of the island growth and development of a Rutherford regime, as the tearing regime is approached. In order to study the sensitivity of the stability and evolution to assumptions concerning the equation of state, two sets of full nonlinear resistive MHD equations (a pressure convection set and an incompressible set) are used. Both sets give more stable nonlinear behavior as the aspect ratio is reduced. The pressure convection set shows a transition from a Kadomtsev reconnection at large aspect ratio to a saturation at small aspect ratio. The incompressible set yields Kadomtsev reconnection for all aspect ratios, but with a significant lengthening of the reconnection time and development of a Rutherford regime at an aspect ratio approaching the transition from a resistive kink mode to a tearing mode. The pressure convection set gives an incomplete reconnection similar to that sometimes seen experimentally. The pressure convection set is, however, strictly justified only at high beta

  16. Construction of a Roe linearization for the ideal MHD equations

    International Nuclear Information System (INIS)

    Cargo, P.; Gallice, G.; Raviart, P.A.

    1996-01-01

    In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)

  17. A spatial discretization of the MHD equations based on the finite volume - spectral method

    International Nuclear Information System (INIS)

    Miyoshi, Takahiro

    2000-05-01

    Based on the finite volume - spectral method, we present new discretization formulae for the spatial differential operators in the full system of the compressible MHD equations. In this approach, the cell-centered finite volume method is adopted in a bounded plane (poloidal plane), while the spectral method is applied to the differential with respect to the periodic direction perpendicular to the poloidal plane (toroidal direction). Here, an unstructured grid system composed of the arbitrary triangular elements is utilized for constructing the cell-centered finite volume method. In order to maintain the divergence free constraint of the magnetic field numerically, only the poloidal component of the rotation is defined at three edges of the triangular element. This poloidal component is evaluated under the assumption that the toroidal component of the operated vector times the radius, RA φ , is linearly distributed in the element. The present method will be applied to the nonlinear MHD dynamics in an realistic torus geometry without the numerical singularities. (author)

  18. Bifurcation theory for toroidal MHD instabilities

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1992-01-01

    Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found

  19. On MHD nonlinear stretching flow of Powell–Eyring nanomaterial

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This communication addresses the magnetohydrodynamic (MHD flow of Powell–Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell–Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted. Keywords: Powell–Eyring fluid, Magnetohydrodynamics, Nanomaterial, Nonlinear stretching surface

  20. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    International Nuclear Information System (INIS)

    Hoelzl, M; Merkel, P; Lackner, K; Strumberger, E; Huijsmans, G T A; Aleynikova, K; Liu, F; Atanasiu, C; Nardon, E; Fil, A; McAdams, R; Chapman, I

    2014-01-01

    The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described

  1. Differential field equations for the MHD waves and wave equation of Alfven; Las ecuaciones diferenciales de campo para las ondas MHD y la ecuacion de onda de Alfven

    Energy Technology Data Exchange (ETDEWEB)

    Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-02-01

    In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.

  2. Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations

    Science.gov (United States)

    Abbott, Stephen; Germaschewski, Kai

    2014-10-01

    Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.

  3. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  4. 3D nonlinear MHD simulations of ultra-low q plasmas

    International Nuclear Information System (INIS)

    Bonfiglio, D.; Cappello, S.; Piovan, R.; Zanotto, L.; Zuin, M.

    2008-01-01

    Magnetohydrodynamic (MHD) phenomena occurring in the ultra-low safety factor (ULq) configuration are investigated by means of 3D nonlinear MHD simulations. The ULq configuration, a screw pinch characterized by the edge safety factor q edge in the interval 0 edge edge values which are about the major rational numbers, suggesting plasma self-organization. Similar behaviour is observed in experimental ULq discharges, like those recently obtained exploiting the flexibility of the RFX-mod device. The transition of q edge from a major rational number to the next one occurs together with the development of a kink deformation of the plasma column, whose stabilization yields a nearly axisymmetric state with a rather flat q profile. Numerical simulations also show that it is possible to sustain either of the two conditions, namely, the saturated kink helical configuration and the axisymmetric one, by forcing q edge at a suitable value. Finally, the effects of this MHD phenomenology on the confinement properties of ULq plasmas are discussed.

  5. MHD stability analyses of a tokamak plasma by time-dependent codes

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi

    1982-07-01

    The MHD properties of a tokamak plasma are investigated by using time evolutional codes. As for the ideal MHD modes we have analyzed the external modes including the positional instability. Linear and nonlinear ideal MHD codes have been developed. Effects of the toroidicity and conducting shell on the external kink mode are studied minutely by the linear code. A new rezoning algorithm is devised and it is successfully applied to express numerically the axisymmetric plasma perturbation in a cylindrical geometry. As for the resistive MHD modes we have developed nonlinear codes on the basis of the reduced set of the resistive MHD equations. By using the codes we have studied the major disruption processes and properties of the low n resistive modes. We have found that the effects of toroidicity and finite poloidal beta are very important. Considering the above conclusion we propose a new scenario of the initiation of the major disruption. (author)

  6. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  7. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  8. 3-D nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed

  9. Universal equations of unsteady two-dimensional MHD boundary layer whose temperature varies with time

    Directory of Open Access Journals (Sweden)

    Boričić Zoran

    2009-01-01

    Full Text Available This paper concerns with unsteady two-dimensional temperature laminar magnetohydrodynamic (MHD boundary layer of incompressible fluid. It is assumed that induction of outer magnetic field is function of longitudinal coordinate with force lines perpendicular to the body surface on which boundary layer forms. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in inductionless approximation. Characteristic properties of fluid are constant because velocity of flow is much lower than speed of light and temperature difference is small enough (under 50ºC . Introduced assumptions simplify considered problem in sake of mathematical solving, but adopted physical model is interesting from practical point of view, because its relation with large number of technically significant MHD flows. Obtained partial differential equations can be solved with modern numerical methods for every particular problem. Conclusions based on these solutions are related only with specific temperature MHD boundary layer problem. In this paper, quite different approach is used. First new variables are introduced and then sets of similarity parameters which transform equations on the form which don't contain inside and in corresponding boundary conditions characteristics of particular problems and in that sense equations are considered as universal. Obtained universal equations in appropriate approximation can be solved numerically once for all. So-called universal solutions of equations can be used to carry out general conclusions about temperature MHD boundary layer and for calculation of arbitrary particular problems. To calculate any particular problem it is necessary also to solve corresponding momentum integral equation.

  10. Investigations on application of multigrid method to MHD equilibrium analysis

    International Nuclear Information System (INIS)

    Ikuno, Soichiro

    2000-01-01

    The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)

  11. Introduction to nonlinear dispersive equations

    CERN Document Server

    Linares, Felipe

    2015-01-01

    This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...

  12. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  13. Eigenvalues of the simplified ideal MHD ballooning equation

    International Nuclear Information System (INIS)

    Paris, R.B.; Auby, N.; Dagazian, R.Y.

    1986-01-01

    The investigation of the spectrum of the simplified differential equation describing the variation of the amplitude of the ideal MHD ballooning instability along magnetic field lines constitutes a multiparameter Schroedinger eigenvalue problem. An exact eigenvalue relation for the discrete part of the spectrum is obtained in terms of the oblate spheroidal functions. The dependence of the eigenvalues lambda on the two free parameters γ 2 and μ 2 of the equation is discussed, together with certain analytical approximations in the limits of small and large γ 2 . A brief review of the principal properties of the spheroidal functions is given in an appendix

  14. Nonlinear MHD dynamics of tokamak plasmas on multiple time scales

    International Nuclear Information System (INIS)

    Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.

    2003-01-01

    Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)

  15. Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Ren Ji; Ruan Hangyu

    2008-01-01

    We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained

  16. Variational Integration for Ideal MHD with Built-in Advection Equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Burby, J. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-05

    Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.

  17. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F

    International Nuclear Information System (INIS)

    Mellet, N.; Maget, P.; Meshcheriakov, D.; Lütjens, H.

    2013-01-01

    The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899–902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew–Goldberger–Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value. (paper)

  18. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  19. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  20. MHD turbulent dynamo in astrophysics: Theory and numerical simulation

    Science.gov (United States)

    Chou, Hongsong

    2001-10-01

    This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).

  1. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  2. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  3. Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Gardiner, Thomas Anthony

    2010-01-01

    This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.

  4. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  5. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  6. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, a generalized auxiliary equation method is proposed to construct more general exact solutions to two types of NLPDEs. First, we present new family of solutions to a nonlinear Klein-Gordon equation, by using this auxiliary equation method including a new first-order nonlinear ODE with six-degree nonlinear term proposed by Sirendaoreji. Then, we apply an indirect F-function method very close to the F-expansion method to solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully nonlinear convection C(l,n,p). Taking advantage of the new first-order nonlinear ODE with six degree nonlinear term, this indirect F-function method is used to map the solutions of C(l,n,p) equations to those of that nonlinear ODE. As a result, we can successfully obtain in a unified way, many exact solutions

  7. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  8. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  9. Experimental identification of nonlinear coupling between (intermediate, small)-scale microturbulence and an MHD mode in the core of a superconducting tokamak

    Science.gov (United States)

    Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team

    2018-01-01

    In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.

  10. Nonlinear Poisson equation for heterogeneous media.

    Science.gov (United States)

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Formation, structure, and stability of MHD intermediate shocks

    International Nuclear Information System (INIS)

    Wu, C.C.

    1990-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field

  12. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  13. The multi-order envelope periodic solutions to the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Xiao Yafeng; Xue Haili; Zhang Hongqing

    2011-01-01

    Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)

  14. Extended MHD modeling of nonlinear instabilities in fusion and space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States)

    2017-11-15

    A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements of the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.

  15. A reliable treatment for nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A.

    2007-01-01

    Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schroedinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation

  16. On Unsteady Three-Dimensional Axisymmetric MHD Nanofluid Flow with Entropy Generation and Thermo-Diffusion Effects on a Non-Linear Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammed Almakki

    2017-07-01

    Full Text Available The entropy generation in unsteady three-dimensional axisymmetric magnetohydrodynamics (MHD nanofluid flow over a non-linearly stretching sheet is investigated. The flow is subject to thermal radiation and a chemical reaction. The conservation equations are solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasi-linearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account. The nanofluid particle volume fraction on the boundary is passively controlled. The results show that as the Hartmann number increases, both the Nusselt number and the Sherwood number decrease, whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with respect to some physical parameters.

  17. Mathematical and numerical study of nonlinear boundary problems related to plasma physics

    International Nuclear Information System (INIS)

    Sermange, M.

    1982-06-01

    After the study of some equations based on the Hodgkin-Huxley model, the work presented here is concerned with nonlinear boundary problems in MHD. They are gathered in two subjects: equilibrium equations and stability equations. The axisymmetric MHD equilibrium equations with free boundary have been studied by different authors, particularly the existence, regularity, unicity and non-unicity. Here, bifurcation, convergence of calculation methods existence of solutions in a discontinuous frame are studied. MHD stability can be determined by the principle of Bernstein et al; the mathematical work concerned here bears on the equivalence, in the case of two-dimensional or axisymmetric stability, between this model and a scalar eigenvalue problem which is introduced. At last, modules for computing MHD equilibrium for the simulation of plasma confinement in a tokamak are described [fr

  18. HIDENEK: an implicit particle simulation of kinetic-MHD phenomena in three-dimensional plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1993-05-01

    An advanced 'kinetic-MHD' simulation method and its applications to plasma physics are given in this lecture. This method is quite suitable for studying strong nonlinear, kinetic processes associated with large space-scale, low-frequency electromagnetic phenomena of plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion for particle ions and guiding-center electrons are adopted. In order to retain only the low-frequency waves and instabilities, implicit particle-field equations are derived. The present implicit-particle method is proved to reproduce the MHD eigenmodes such as Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma. In the second part of the lecture, several physics applications are shown. These include not only the growth of the instabilities of beam ions against the background plasmas and helical kink of the current, but they also demonstrate nonlinear results such as pitch-angle scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability is also presented with a special emphasis on the mixing of plasma particles. (author)

  19. MHD stagnation point flow and heat transfer of a nanofluid over a permeable nonlinear stretching/shrinking sheet with viscous dissipation effect

    Science.gov (United States)

    Jusoh, Rahimah; Nazar, Roslinda

    2018-04-01

    The magnetohydrodynamic (MHD) stagnation point flow and heat transfer of an electrically conducting nanofluid over a nonlinear stretching/shrinking sheet is studied numerically. Mathematical modelling and analysis are attended in the presence of viscous dissipation. Appropriate similarity transformations are used to reduce the boundary layer equations for momentum, energy and concentration into a set of ordinary differential equations. The reduced equations are solved numerically using the built in bvp4c function in Matlab. The numerical and graphical results on the effects of various parameters on the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are analyzed and discussed in this paper. The study discovers the existence of dual solutions for a certain range of the suction parameter. The conducted stability analysis reveals that the first solution is stable and feasible, while the second solution is unstable.

  20. Modeling of Nonlinear Beat Signals of TAE's

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-03-01

    Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core

  1. Development of a 3D non-linear implicit MHD code

    International Nuclear Information System (INIS)

    Nicolas, T.; Ichiguchi, K.

    2016-06-01

    This paper details the on-going development of a 3D non-linear implicit MHD code, which aims at making possible large scale simulations of the non-linear phase of the interchange mode. The goal of the paper is to explain the rationale behind the choices made along the development, and the technical difficulties encountered. At the present stage, the development of the code has not been completed yet. Most of the discussion is concerned with the first approach, which utilizes cartesian coordinates in the poloidal plane. This approach shows serious difficulties in writing the preconditioner, closely related to the choice of coordinates. A second approach, based on curvilinear coordinates, also faced significant difficulties, which are detailed. The third and last approach explored involves unstructured tetrahedral grids, and indicates the possibility to solve the problem. The issue to domain meshing is addressed. (author)

  2. On the regularity criterion of weak solutions for the 3D MHD equations

    Science.gov (United States)

    Gala, Sadek; Ragusa, Maria Alessandra

    2017-12-01

    The paper deals with the 3D incompressible MHD equations and aims at improving a regularity criterion in terms of the horizontal gradient of velocity and magnetic field. It is proved that the weak solution ( u, b) becomes regular provided that ( \

  3. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  4. Relations between nonlinear Riccati equations and other equations in fundamental physics

    International Nuclear Information System (INIS)

    Schuch, Dieter

    2014-01-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract ''quantizations'' such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown

  5. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    Science.gov (United States)

    Vitanov, Nikolay K.; Dimitrova, Zlatinka I.

    2018-03-01

    We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  6. Symmetry and exact solutions of nonlinear spinor equations

    International Nuclear Information System (INIS)

    Fushchich, W.I.; Zhdanov, R.Z.

    1989-01-01

    This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)

  7. On a new series of integrable nonlinear evolution equations

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  8. Route analysis for MHD equilibria

    International Nuclear Information System (INIS)

    Kikuchi, Fumio; Aizawa, Tatsuhiko

    1982-01-01

    In Tokamak facilities which are promising in nuclear fusion reactor development, the plasma in the core is often described by MHD approximation. Specifically, since an axisymmetric torus is approximately assumed as the first wall (shell) shape in actual Tokamak facilities, the Grad-Shafranov equation to be satisfied by an axisymmetric equilibrium solution for ideal MHD fluid must be solved, and the characteristics of its solution must be clarified. This paper shows the outline of the numerical calculation which employs both the incremental method taking the particular incremental nodal point values as the control parameters and the interaction method in accordance with Newton method at the same time, the analysis objective being a non-linear eigenvalue problem dealing the boundary of plasma region with surrounding vacuum region as the free boundary. Next, the detailed route analysis of the equilibrium solution is performed, utilizing the above numerical calculation technique, to clarify the effect of shell shape on the behaviour of the equilibrium solution. As the shape of the shell, a rectangular section torus, which have a notch depression at a part of the shell inner boundary, is considered. In the paper, the fundamental MHD equation and its approximate solution by the finite element method, the behaviour of plasma equilibrium solution in a shell having a notch, and the effect of notch shapes on plasma behaviour are described. This analysis verifies the effectiveness of the calculation method. (Wakatsuki, Y.)

  9. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Vitanov Nikolay K.

    2018-03-01

    Full Text Available We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  10. Goya - an MHD equilibrium code for toroidal plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1984-09-01

    A description of the GOYA free-boundary equilibrium code is given. The non-linear Grad-Shafranov equation of ideal MHD is solved in a toroidal geometry for plasmas with purely poloidal magnetic fields. The code is based on a field line-tracing procedure, making storage of a large amount of information on a grid unnecessary. Usage of the code is demonstrated by computations of equi/libria for the EXTRAP-T1 device. (Author)

  11. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  12. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  13. MAIA, Eigenvalues for MHD Equation of Tokamak Plasma Stability Problems

    International Nuclear Information System (INIS)

    Tanaka, Y.; Azumi, M.; Kurita, G.; Tsunematsu, T.; Takeda, T.

    1986-01-01

    1 - Description of program or function: This program solves an eigenvalue problem zBx=Ax where A and B are real block tri-diagonal matrices. This eigenvalue problem is derived from a reduced set of linear resistive MHD equations which is often employed to study tokamak plasma stability problem. 2 - Method of solution: Both the determinant and inverse iteration methods are employed. 3 - Restrictions on the complexity of the problem: The eigenvalue z must be real

  14. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  15. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  16. The Influence of Uniform Suction/Injection on Heat Transfer of MHD Hiemenz Flow in Porous Media

    DEFF Research Database (Denmark)

    Ghsemi, E; Soleimani, S; Barari, Amin

    2012-01-01

    The steady two-dimensional laminar forced magneto-hydrodynamic (MHD) Hiemenz flow against a flat plate with variable wall temperature in a porous medium is analyzed. The transformed nonlinear boundary-layer equations are solved analytically by homotopy analysis method (HAM). Results for the veloc...

  17. MHD Jeffrey nanofluid past a stretching sheet with viscous dissipation effect

    Science.gov (United States)

    Zokri, S. M.; Arifin, N. S.; Salleh, M. Z.; Kasim, A. R. M.; Mohammad, N. F.; Yusoff, W. N. S. W.

    2017-09-01

    This study investigates the influence of viscous dissipation on magnetohydrodynamic (MHD) flow of Jeffrey nanofluid over a stretching sheet with convective boundary conditions. The nonlinear partial differential equations are reduced into the nonlinear ordinary differential equations by utilizing the similarity transformation variables. The Runge-Kutta Fehlberg method is used to solve the problem numerically. The numerical solutions obtained are presented graphically for several dimensionless parameters such as Brownian motion, Lewis number and Eckert number on the specified temperature and concentration profiles. It is noted that the temperature profile is accelerated due to increasing values of Brownian motion parameter and Eckert number. In contrast, both the Brownian motion parameter and Lewis number have caused the deceleration in the concentration profiles.

  18. Linear superposition solutions to nonlinear wave equations

    International Nuclear Information System (INIS)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  19. Decomposition of a hierarchy of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Geng Xianguo

    2003-01-01

    The generalized Hamiltonian structures for a hierarchy of nonlinear evolution equations are established with the aid of the trace identity. Using the nonlinearization approach, the hierarchy of nonlinear evolution equations is decomposed into a class of new finite-dimensional Hamiltonian systems. The generating function of integrals and their generator are presented, based on which the finite-dimensional Hamiltonian systems are proved to be completely integrable in the Liouville sense. As an application, solutions for the hierarchy of nonlinear evolution equations are reduced to solving the compatible Hamiltonian systems of ordinary differential equations

  20. Modeling TAE Response To Nonlinear Drives

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  1. A new auxiliary equation and exact travelling wave solutions of nonlinear equations

    International Nuclear Information System (INIS)

    Sirendaoreji

    2006-01-01

    A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations

  2. Quasi-exact solutions of nonlinear differential equations

    OpenAIRE

    Kudryashov, Nikolay A.; Kochanov, Mark B.

    2014-01-01

    The concept of quasi-exact solutions of nonlinear differential equations is introduced. Quasi-exact solution expands the idea of exact solution for additional values of parameters of differential equation. These solutions are approximate solutions of nonlinear differential equations but they are close to exact solutions. Quasi-exact solutions of the the Kuramoto--Sivashinsky, the Korteweg--de Vries--Burgers and the Kawahara equations are founded.

  3. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  4. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  5. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  6. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    1978-01-01

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)

  7. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)

  8. Multi-diffusive nonlinear Fokker–Planck equation

    International Nuclear Information System (INIS)

    Ribeiro, Mauricio S; Casas, Gabriela A; Nobre, Fernando D

    2017-01-01

    Nonlinear Fokker–Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker–Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker–Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker–Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution. (paper)

  9. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2018-04-01

    Full Text Available The combined effects of thermal stratification, applied electric and magnetic fields, thermal radiation, viscous dissipation and Joules heating are numerically studied on a boundary layer flow of electrical conducting nanofluid over a nonlinearly stretching sheet with variable thickness. The governing equations which are partial differential equations are converted to a couple of ordinary differential equations with suitable similarity transformation techniques and are solved using implicit finite difference scheme. The electrical conducting nanofluid particle fraction on the boundary is passively rather than actively controlled. The effects of the emerging parameters on the electrical conducting nanofluid velocity, temperature, and nanoparticles concentration volume fraction with skin friction, heat transfer characteristics are examined with the aids of graphs and tabular form. It is observed that the variable thickness enhances the fluid velocity, temperature, and nanoparticle concentration volume fraction. The heat and mass transfer rate at the surface increases with thermal stratification resulting to a reduction in the fluid temperature. Electric field enhances the nanofluid velocity which resolved the sticking effects caused by a magnetic field which suppressed the profiles. Radiative heat transfer and viscous dissipation are sensitive to an increase in the fluid temperature and thicker thermal boundary layer thickness. Comparison with published results is examined and presented. Keywords: MHD nanofluid, Variable thickness, Thermal radiation, Similarity solution, Thermal stratification

  10. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  11. Exact solutions of a nonpolynomially nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R.; Tan, H.S.

    2007-01-01

    A nonlinear generalisation of Schrodinger's equation had previously been obtained using information-theoretic arguments. The nonlinearities in that equation were of a nonpolynomial form, equivalent to the occurrence of higher-derivative nonlinear terms at all orders. Here we construct some exact solutions to that equation in 1+1 dimensions. On the half-line, the solutions resemble (exponentially damped) Bloch waves even though no external periodic potential is included. The solutions are nonperturbative as they do not reduce to solutions of the linear theory in the limit that the nonlinearity parameter vanishes. An intriguing feature of the solutions is their infinite degeneracy: for a given energy, there exists a very large arbitrariness in the normalisable wavefunctions. We also consider solutions to a q-deformed version of the nonlinear equation and discuss a natural discretisation implied by the nonpolynomiality. Finally, we contrast the properties of our solutions with other solutions of nonlinear Schrodinger equations in the literature and suggest some possible applications of our results in the domains of low-energy and high-energy physics

  12. Equations of state for self-excited MHD generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.

    1980-02-26

    We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.

  13. Solution of the time-dependent, three-dimensional resistive magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Finan, C.H. III; Killeen, J.; California Univ., Davis

    1981-01-01

    Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are expressed as conservation laws, the momentum and energy equations are nonconservative. This is to: (1) provide enhanced numerical stability by eliminating errors introduced by the nonvanishing of nabla x B on the finite difference mesh; and, (2) allow the simulation of low β plasmas. The resulting finite difference equations are a coupled system of nonlinear algebraic equations which are solved by the Newton-Raphson iteration technique. We apply our model to a number of problems of importance in magnetic fusion research. Ideal and resistive internal kink instabilities are simulated in a Cartesian geometry. Growth rates and nonlinear saturation amplitudes are found to be in agreement with previous analytic and numerical predictions. We also simulate these instabilities in a torus, which demonstrates the versatility of the orthogonal curvilinear coordinate representation. (orig.)

  14. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...

  15. Nonlinear Conservation Laws and Finite Volume Methods

    Science.gov (United States)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  16. Nonlinearly driven harmonics of Alfvén modes

    Science.gov (United States)

    Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.

    2014-01-01

    In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.

  17. Nonlinearly driven harmonics of Alfvén modes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B., E-mail: bozhang@austin.utexas.edu; Breizman, B. N.; Zheng, L. J.; Berk, H. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-01-15

    In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.

  18. Nonlinear hydrodynamic equations for superfluid helium in aerogel

    International Nuclear Information System (INIS)

    Brusov, Peter N.; Brusov, Paul P.

    2003-01-01

    Aerogel in superfluids is studied very intensively during last decade. The importance of these systems is connected to the fact that this allows to investigate the influence of impurities on superfluidity. We have derived for the first time nonlinear hydrodynamic equations for superfluid helium in aerogel. These equations are generalization of McKenna et al. equations for nonlinear hydrodynamics case and could be used to study sound propagation phenomena in aerogel-superfluid system, in particular--to study sound conversion phenomena. We have obtained two alternative sets of equations, one of which is a generalization of a traditional set of nonlinear hydrodynamics equations for the case of an aerogel-superfluid system and, the other one represents a la Putterman equations (equation for v→ s is replaced by equation for A→=((ρ n )/(ρσ))w→, where w→=v→ n -v→ s )

  19. Four-dimensional integral equations for the MHD diffraction waves in plasma

    International Nuclear Information System (INIS)

    Alexandrova, A.A.; Khizhnyak, N.A.

    2000-01-01

    The superficial analysis of the boundary-value nonstationary problem for Alfven wave has shown the principal possibility of using the method of evolutionary integral equations of non-stationary macroscopic electrodynamical in a case of MHD description of waves in plasma. With the importance of strict mathematical solutions obtained for simple model problems that is the diffraction of one separately taken Alfven wave is that it can be the basis for construction of the approximate solutions of more complex boundary-value problems

  20. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...

  1. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    OpenAIRE

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  2. MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available This research explores the magnetohydrodynamic (MHD boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter. Keywords: MHD, Variable thicked surface, Powell-Eyring nanofluid, Zero mass flux conditions

  3. A new sine-Gordon equation expansion algorithm to investigate some special nonlinear differential equations

    International Nuclear Information System (INIS)

    Yan Zhenya

    2005-01-01

    A new transformation method is developed using the general sine-Gordon travelling wave reduction equation and a generalized transformation. With the aid of symbolic computation, this method can be used to seek more types of solutions of nonlinear differential equations, which include not only the known solutions derived by some known methods but new solutions. Here we choose the double sine-Gordon equation, the Magma equation and the generalized Pochhammer-Chree (PC) equation to illustrate the method. As a result, many types of new doubly periodic solutions are obtained. Moreover when using the method to these special nonlinear differential equations, some transformations are firstly needed. The method can be also extended to other nonlinear differential equations

  4. Nonlinear Fokker-Planck Equations Fundamentals and Applications

    CERN Document Server

    Frank, Till Daniel

    2005-01-01

    Providing an introduction to the theory of nonlinear Fokker-Planck equations, this book discusses fundamental properties of transient and stationary solutions, emphasizing the stability analysis of stationary solutions by means of self-consistency equations, linear stability analysis, and Lyapunov's direct method. Also treated are Langevin equations and correlation functions. Nonlinear Fokker-Planck Equations addresses various phenomena such as phase transitions, multistability of systems, synchronization, anomalous diffusion, cut-off solutions, travelling-wave solutions and the emergence of power law solutions. A nonlinear Fokker-Planck perspective to quantum statistics, generalized thermodynamics, and linear nonequilibrium thermodynamics is given. Theoretical concepts are illustrated where possible by simple examples. The book also reviews several applications in the fields of condensed matter physics, the physics of porous media and liquid crystals, accelerator physics, neurophysics, social sciences, popul...

  5. Nonlinear radiative heat transfer in magnetohydrodynamic (MHD stagnation point flow of nanofluid past a stretching sheet with convective boundary condition

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    2015-12-01

    Full Text Available Two-dimensional boundary layer flow of nanofluid fluid past a stretching sheet is examined. The paper reveals the effect of non-linear radiative heat transfer on magnetohydrodynamic (MHD stagnation point flow past a stretching sheet with convective heating. Condition of zero normal flux of nanoparticles at the wall for the stretched flow is considered. The nanoparticle fractions on the boundary are considered to be passively controlled. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. Prandtl number Pr, velocity ratio parameter A, magnetic parameter M, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Moreover, the problem is governed by temperature ratio parameter (Nr=TfT∞ and radiation parameter Rd. Similarity transformation is used to reduce the governing non-linear boundary-value problems into coupled higher order non-linear ordinary differential equation. These equations were numerically solved using the function bvp4c from the matlab software for different values of governing parameters. Numerical results are obtained for velocity, temperature and concentration, as well as the skin friction coefficient and local Nusselt number. The results indicate that the skin friction coefficient Cf increases as the values of magnetic parameter M increase and decreases as the values of velocity ratio parameter A increase. The local Nusselt number −θ′(0 decreases as the values of thermophoresis parameter Nt and radiation parameter Nr increase and it increases as the values of both Biot number Bi and Prandtl number Pr increase. Furthermore, radiation has a positive effect on temperature and concentration profiles.

  6. The Cauchy problem for non-linear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Simon, J.C.H.; Taflin, E.

    1993-01-01

    We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)

  7. International Conference on Differential Equations and Nonlinear Mechanics

    CERN Document Server

    2001-01-01

    The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Ae...

  8. Nonlinear elliptic equations of the second order

    CERN Document Server

    Han, Qing

    2016-01-01

    Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...

  9. Fuchs indices and the first integrals of nonlinear differential equations

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method of finding the first integrals of nonlinear differential equations in polynomial form is presented. Basic idea of our approach is to use the scaling of solution of nonlinear differential equation and to find the dimensions of arbitrary constants in the Laurent expansion of the general solution. These dimensions allows us to obtain the scalings of members for the first integrals of nonlinear differential equations. Taking the polynomials with unknown coefficients into account we present the algorithm of finding the first integrals of nonlinear differential equations in the polynomial form. Our method is applied to look for the first integrals of eight nonlinear ordinary differential equations of the fourth order. The general solution of one of the fourth order ordinary differential equations is given

  10. On localization in the discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.

    1993-01-01

    For some values of the grid resolution, depending on the nonlinearity, the discrete nonlinear Schrodinger equation with arbitrary power nonlinearity can be approximated by the corresponding continuum version of the equation. When the discretization becomes too coarse, the discrete equation exhibits...

  11. Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres

    International Nuclear Information System (INIS)

    Liu Chunping

    2005-01-01

    First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed

  12. Alternating-direction implicit numerical solution of the time-dependent, three-dimensional, single fluid, resistive magnetohydrodynamic equations

    Energy Technology Data Exchange (ETDEWEB)

    Finan, C.H. III

    1980-12-01

    Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.

  13. Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations

    CERN Document Server

    Aliyu, MDS

    2011-01-01

    A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter

  14. OSCILLATION OF NONLINEAR DELAY DIFFERENCE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper deals with the oscillatory properties of a class of nonlinear difference equations with several delays. Sufficient criteria in the form of infinite sum for the equations to be oscillatory are obtained.

  15. Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions

    Science.gov (United States)

    Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif

    2018-06-01

    The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.

  16. Algorithms For Integrating Nonlinear Differential Equations

    Science.gov (United States)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  17. Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  18. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  19. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  20. Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references

  1. The modified simplest equation method to look for exact solutions of nonlinear partial differential equations

    OpenAIRE

    Efimova, Olga Yu.

    2010-01-01

    The modification of simplest equation method to look for exact solutions of nonlinear partial differential equations is presented. Using this method we obtain exact solutions of generalized Korteweg-de Vries equation with cubic source and exact solutions of third-order Kudryashov-Sinelshchikov equation describing nonlinear waves in liquids with gas bubbles.

  2. On the Stochastic Wave Equation with Nonlinear Damping

    International Nuclear Information System (INIS)

    Kim, Jong Uhn

    2008-01-01

    We discuss an initial boundary value problem for the stochastic wave equation with nonlinear damping. We establish the existence and uniqueness of a solution. Our method for the existence of pathwise solutions consists of regularization of the equation and data, the Galerkin approximation and an elementary measure-theoretic argument. We also prove the existence of an invariant measure when the equation has pure nonlinear damping

  3. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    International Nuclear Information System (INIS)

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  4. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    Science.gov (United States)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  5. Generalized nonlinear Proca equation and its free-particle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, F.D. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Plastino, A.R. [Universidad Nacional Buenos Aires-Noreoeste, CeBio y Secretaria de Investigacion, Junin (Argentina)

    2016-06-15

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ{sup μ}(vector x,t), involves an additional field Φ{sup μ}(vector x,t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E{sup 2} = p{sup 2}c{sup 2} + m{sup 2}c{sup 4} for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. (orig.)

  6. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  7. The matrix nonlinear Schrodinger equation in dimension 2

    DEFF Research Database (Denmark)

    Zuhan, L; Pedersen, Michael

    2001-01-01

    In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press....

  8. Global solutions of nonlinear Schrödinger equations

    CERN Document Server

    Bourgain, J

    1999-01-01

    This volume presents recent progress in the theory of nonlinear dispersive equations, primarily the nonlinear Schrödinger (NLS) equation. The Cauchy problem for defocusing NLS with critical nonlinearity is discussed. New techniques and results are described on global existence and properties of solutions with large Cauchy data. Current research in harmonic analysis around Strichartz's inequalities and its relevance to nonlinear PDE is presented. Several topics in NLS theory on bounded domains are reviewed. Using the NLS as an example, the book offers comprehensive insight on current research r

  9. The CHEASE code for toroidal MHD equilibria

    International Nuclear Information System (INIS)

    Luetjens, H.

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function Ψ. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs

  10. The CHEASE code for toroidal MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.

  11. Analyses of MHD instabilities

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki

    1985-01-01

    In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)

  12. Contribution to the resolution of magnetohydrodynamic and magnetostatic equations; Contribution a la resolution des equations de la magnetohydrodynamique et de la magnetostatique

    Energy Technology Data Exchange (ETDEWEB)

    Boulbe, C

    2007-10-15

    Interaction between a plasma and a magnetic field appears and has an important role in various domains such as thermonuclear fusion by magnetic confinement or astrophysical plasmas for example. In evolution, these interactions are described by the equations of magnetohydrodynamics (MHD). At equilibrium, the MHD equations result in the magnetostatic equations involving the magnetic field and the kinetic pressure of the plasma. The magnetostatic equations form a system of 3-dimensional non linear partial differential equations involving a magnetic field and a kinetic plasma pressure. When the pressure is supposed negligible, the magnetic field is known as Beltrami field. In a first time, we propose to solve numerically the Beltrami field problem using a fixed point iterative algorithm associated with finite element methods. This iterative strategy is extended in a second time to the computation of magnetostatic configurations with pressure. In the sequel, we interest in the approximation of ideal MHD equations. This system forms a nonlinear hyperbolic conservation law. We propose to use a finite volume approach, in which fluxes are calculated by a Roe's method on a tetrahedral mesh. Fluxes of the magnetic field are modified in order to satisfy the constraint of divergence free imposed on it. The proposed methods have been implemented in two new 3-dimensional codes called TETRAFFF for equilibrium, and TETRAMHD for MHD. The obtained numerical results confirm the high performance of these methods. (author)

  13. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Bai Yongqiang; Wu Ke; Zhao Weizhong; Guo Hanying

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schroedinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  14. Blow-Up Time for Nonlinear Heat Equations with Transcendental Nonlinearity

    Directory of Open Access Journals (Sweden)

    Hee Chul Pak

    2012-01-01

    Full Text Available A blow-up time for nonlinear heat equations with transcendental nonlinearity is investigated. An upper bound of the first blow-up time is presented. It is pointed out that the upper bound of the first blow-up time depends on the support of the initial datum.

  15. Handbook of Nonlinear Partial Differential Equations

    CERN Document Server

    Polyanin, Andrei D

    2011-01-01

    New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with Maple(t), Mathematica(R), and MATLAB(R) Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They

  16. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  17. A nonlinear bounce kinetic equation for trapped electrons

    International Nuclear Information System (INIS)

    Gang, F.Y.

    1990-03-01

    A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs

  18. Integrable discretization s of derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  19. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    Science.gov (United States)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.

  20. Contribution to the resolution of magnetohydrodynamic and magnetostatic equations

    International Nuclear Information System (INIS)

    Boulbe, C.

    2007-10-01

    Interaction between a plasma and a magnetic field appears and has an important role in various domains such as thermonuclear fusion by magnetic confinement or astrophysical plasmas for example. In evolution, these interactions are described by the equations of magnetohydrodynamics (MHD). At equilibrium, the MHD equations result in the magnetostatic equations involving the magnetic field and the kinetic pressure of the plasma. The magnetostatic equations form a system of 3-dimensional non linear partial differential equations involving a magnetic field and a kinetic plasma pressure. When the pressure is supposed negligible, the magnetic field is known as Beltrami field. In a first time, we propose to solve numerically the Beltrami field problem using a fixed point iterative algorithm associated with finite element methods. This iterative strategy is extended in a second time to the computation of magnetostatic configurations with pressure. In the sequel, we interest in the approximation of ideal MHD equations. This system forms a nonlinear hyperbolic conservation law. We propose to use a finite volume approach, in which fluxes are calculated by a Roe's method on a tetrahedral mesh. Fluxes of the magnetic field are modified in order to satisfy the constraint of divergence free imposed on it. The proposed methods have been implemented in two new 3-dimensional codes called TETRAFFF for equilibrium, and TETRAMHD for MHD. The obtained numerical results confirm the high performance of these methods. (author)

  1. An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow

    Directory of Open Access Journals (Sweden)

    Vasile Marinca

    2011-01-01

    Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.

  2. Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations

    International Nuclear Information System (INIS)

    Lu, Bin

    2012-01-01

    In this Letter, the fractional derivatives in the sense of modified Riemann–Liouville derivative and the Bäcklund transformation of fractional Riccati equation are employed for constructing the exact solutions of nonlinear fractional partial differential equations. The power of this manageable method is presented by applying it to several examples. This approach can also be applied to other nonlinear fractional differential equations. -- Highlights: ► Backlund transformation of fractional Riccati equation is presented. ► A new method for solving nonlinear fractional differential equations is proposed. ► Three important fractional differential equations are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained.

  3. Spurious Solutions Of Nonlinear Differential Equations

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  4. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  5. MINPACK-1, Subroutine Library for Nonlinear Equation System

    International Nuclear Information System (INIS)

    Garbow, Burton S.

    1984-01-01

    1 - Description of problem or function: MINPACK1 is a package of FORTRAN subprograms for the numerical solution of systems of non- linear equations and nonlinear least-squares problems. The individual programs are: Identification/Description: - CHKDER: Check gradients for consistency with functions, - DOGLEG: Determine combination of Gauss-Newton and gradient directions, - DPMPAR: Provide double precision machine parameters, - ENORM: Calculate Euclidean norm of vector, - FDJAC1: Calculate difference approximation to Jacobian (nonlinear equations), - FDJAC2: Calculate difference approximation to Jacobian (least squares), - HYBRD: Solve system of nonlinear equations (approximate Jacobian), - HYBRD1: Easy-to-use driver for HYBRD, - HYBRJ: Solve system of nonlinear equations (analytic Jacobian), - HYBRJ1: Easy-to-use driver for HYBRJ, - LMDER: Solve nonlinear least squares problem (analytic Jacobian), - LMDER1: Easy-to-use driver for LMDER, - LMDIF: Solve nonlinear least squares problem (approximate Jacobian), - LMDIF1: Easy-to-use driver for LMDIF, - LMPAR: Determine Levenberg-Marquardt parameter - LMSTR: Solve nonlinear least squares problem (analytic Jacobian, storage conserving), - LMSTR1: Easy-to-use driver for LMSTR, - QFORM: Accumulate orthogonal matrix from QR factorization QRFAC Compute QR factorization of rectangular matrix, - QRSOLV: Complete solution of least squares problem, - RWUPDT: Update QR factorization after row addition, - R1MPYQ: Apply orthogonal transformations from QR factorization, - R1UPDT: Update QR factorization after rank-1 addition, - SPMPAR: Provide single precision machine parameters. 4. Method of solution - MINPACK1 uses the modified Powell hybrid method and the Levenberg-Marquardt algorithm

  6. Nonlinear elliptic equations and nonassociative algebras

    CERN Document Server

    Nadirashvili, Nikolai; Vlăduţ, Serge

    2014-01-01

    This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...

  7. Discrete coupled derivative nonlinear Schroedinger equations and their quasi-periodic solutions

    International Nuclear Information System (INIS)

    Geng Xianguo; Su Ting

    2007-01-01

    A hierarchy of nonlinear differential-difference equations associated with a discrete isospectral problem is proposed, in which a typical differential-difference equation is a discrete coupled derivative nonlinear Schroedinger equation. With the help of the nonlinearization of the Lax pairs, the hierarchy of nonlinear differential-difference equations is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems. Based on the theory of algebraic curve, the Abel-Jacobi coordinates are introduced to straighten out the corresponding flows, from which quasi-periodic solutions for these differential-difference equations are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-dimensional discrete coupled derivative nonlinear Schroedinger equation is proposed and its quasi-periodic solutions are derived

  8. Nonlinear quantum fluid equations for a finite temperature Fermi plasma

    International Nuclear Information System (INIS)

    Eliasson, Bengt; Shukla, Padma K

    2008-01-01

    Nonlinear quantum electron fluid equations are derived, taking into account the moments of the Wigner equation and by using the Fermi-Dirac equilibrium distribution for electrons with an arbitrary temperature. A simplified formalism with the assumptions of incompressibility of the distribution function is used to close the moments in velocity space. The nonlinear quantum diffraction effects into the fluid equations are incorporated. In the high-temperature limit, we retain the nonlinear fluid equations for a dense hot plasma and in the low-temperature limit, we retain the correct fluid equations for a fully degenerate plasma

  9. Positive Solutions for Coupled Nonlinear Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Wenning Liu

    2014-01-01

    Full Text Available We consider the existence of positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary values. Assume the nonlinear term is superlinear in one equation and sublinear in the other equation. By constructing two cones K1, K2 and computing the fixed point index in product cone K1×K2, we obtain that the system has a pair of positive solutions. It is remarkable that it is established on the Cartesian product of two cones, in which the feature of two equations can be opposite.

  10. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    International Nuclear Information System (INIS)

    Khare, Avinash; Saxena, Avadh

    2014-01-01

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ 4 , the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn 2 (x, m), it also admits solutions in terms of dn 2 (x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations

  11. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.

    1996-01-01

    We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right

  12. Exact analytical solutions for nonlinear reaction-diffusion equations

    International Nuclear Information System (INIS)

    Liu Chunping

    2003-01-01

    By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way

  13. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  14. Multi-scale-nonlinear interactions among micro-turbulence, double tearing instability and zonal flows

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient

  15. Nontrivial Periodic Solutions for Nonlinear Second-Order Difference Equations

    Directory of Open Access Journals (Sweden)

    Tieshan He

    2011-01-01

    Full Text Available This paper is concerned with the existence of nontrivial periodic solutions and positive periodic solutions to a nonlinear second-order difference equation. Under some conditions concerning the first positive eigenvalue of the linear equation corresponding to the nonlinear second-order equation, we establish the existence results by using the topological degree and fixed point index theories.

  16. Nonlinear streak computation using boundary region equations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J A; Martel, C, E-mail: juanangel.martin@upm.es, E-mail: carlos.martel@upm.es [Depto. de Fundamentos Matematicos, E.T.S.I Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid (Spain)

    2012-08-01

    The boundary region equations (BREs) are applied for the simulation of the nonlinear evolution of a spanwise periodic array of streaks in a flat plate boundary layer. The well-known BRE formulation is obtained from the complete Navier-Stokes equations in the high Reynolds number limit, and provides the correct asymptotic description of three-dimensional boundary layer streaks. In this paper, a fast and robust streamwise marching scheme is introduced to perform their numerical integration. Typical streak computations present in the literature correspond to linear streaks or to small-amplitude nonlinear streaks computed using direct numerical simulation (DNS) or the nonlinear parabolized stability equations (PSEs). We use the BREs to numerically compute high-amplitude streaks, a method which requires much lower computational effort than DNS and does not have the consistency and convergence problems of the PSE. It is found that the flow configuration changes substantially as the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, which end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results. (paper)

  17. Spline Collocation Method for Nonlinear Multi-Term Fractional Differential Equation

    OpenAIRE

    Choe, Hui-Chol; Kang, Yong-Suk

    2013-01-01

    We study an approximation method to solve nonlinear multi-term fractional differential equations with initial conditions or boundary conditions. First, we transform the nonlinear multi-term fractional differential equations with initial conditions and boundary conditions to nonlinear fractional integral equations and consider the relations between them. We present a Spline Collocation Method and prove the existence, uniqueness and convergence of approximate solution as well as error estimatio...

  18. Solutions to nonlinear Schrodinger equations for special initial data

    Directory of Open Access Journals (Sweden)

    Takeshi Wada

    2015-11-01

    Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.

  19. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  20. Universality in an information-theoretic motivated nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R; Tabia, G

    2007-01-01

    Using perturbative methods, we analyse a nonlinear generalization of Schrodinger's equation that had previously been obtained through information-theoretic arguments. We obtain analytical expressions for the leading correction, in terms of the nonlinearity scale, to the energy eigenvalues of the linear Schrodinger equation in the presence of an external potential and observe some generic features. In one space dimension these are (i) for nodeless ground states, the energy shifts are subleading in the nonlinearity parameter compared to the shifts for the excited states; (ii) the shifts for the excited states are due predominantly to contribution from the nodes of the unperturbed wavefunctions, and (iii) the energy shifts for excited states are positive for small values of a regulating parameter and negative at large values, vanishing at a universal critical value that is not manifest in the equation. Some of these features hold true for higher dimensional problems. We also study two exactly solved nonlinear Schrodinger equations so as to contrast our observations. Finally, we comment on the possible significance of our results if the nonlinearity is physically realized

  1. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  2. Polynomial solutions of nonlinear integral equations

    International Nuclear Information System (INIS)

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  3. Polynomial solutions of nonlinear integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  4. Entropy and convexity for nonlinear partial differential equations.

    Science.gov (United States)

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  5. Analysis of an Nth-order nonlinear differential-delay equation

    Science.gov (United States)

    Vallée, Réal; Marriott, Christopher

    1989-01-01

    The problem of a nonlinear dynamical system with delay and an overall response time which is distributed among N individual components is analyzed. Such a system can generally be modeled by an Nth-order nonlinear differential delay equation. A linear-stability analysis as well as a numerical simulation of that equation are performed and a comparison is made with the experimental results. Finally, a parallel is established between the first-order differential equation with delay and the Nth-order differential equation without delay.

  6. The nonlinear Schrödinger equation singular solutions and optical collapse

    CERN Document Server

    Fibich, Gadi

    2015-01-01

    This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrödinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fib...

  7. Separation of variables for the nonlinear wave equation in polar coordinates

    International Nuclear Information System (INIS)

    Shermenev, Alexander

    2004-01-01

    Some classical types of nonlinear wave motion in polar coordinates are studied within quadratic approximation. When the nonlinear quadratic terms in the wave equation are arbitrary, the usual perturbation techniques used in polar coordinates leads to overdetermined systems of linear algebraic equations for the unknown coefficients. However, we show that these overdetermined systems are compatible with the special case of the nonlinear shallow water equation and express explicitly the coefficients of the first two harmonics as polynomials of the Bessel functions of radius and of the trigonometric functions of angle. It gives a series of solutions to the nonlinear shallow water equation that are periodic in time and found with the same accuracy as the equation is derived

  8. Nonlinear scalar field equations. Pt. 1

    International Nuclear Information System (INIS)

    Berestycki, H.; Lions, P.L.

    1983-01-01

    This paper as well as a subsequent one is concerned with the existence of nontrivial solutions for some semi-linear elliptic equations in Rsup(N). Such problems are motivated in particular by the search for certain kinds of solitary waves (stationary states) in nonlinear equations of the Klein-Gordon or Schroedinger type. (orig./HSI)

  9. Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays

    Science.gov (United States)

    Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong

    2018-03-01

    We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).

  10. On the invariant measure for the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhidkov, P.R.

    1991-01-01

    The invariant measure for the nonlinear Schroedinger equation is constructed. In fact, it is assumed that the nonlinearity in the equation is semilinear. The main aim of the paper is the explanation of the Fermi - Past - Ulam phenomenon. Poincare theorem gives the answer to this question. 17 refs

  11. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  12. Regarding on the exact solutions for the nonlinear fractional differential equations

    Directory of Open Access Journals (Sweden)

    Kaplan Melike

    2016-01-01

    Full Text Available In this work, we have considered the modified simple equation (MSE method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW and the modified equal width (mEW equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.

  13. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    OpenAIRE

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  14. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  15. On the solution of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Zayed, E.M.E.; Zedan, Hassan A.

    2003-01-01

    In this paper we study the nonlinear Schrodinger equation with respect to the unknown function S(x,t). New dimensional reduction and exact solution for a nonlinear Schrodinger equation are presented and a complete group classification is given with respect to the function S(x,t). Moreover, specializing the potential function S(x,t), new classes of invariant solution and group classification are obtained in the cases of physical interest

  16. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  17. A new sub-equation method applied to obtain exact travelling wave solutions of some complex nonlinear equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.

  18. Sensitivity theory for general non-linear algebraic equations with constraints

    International Nuclear Information System (INIS)

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  19. Soliton solution for nonlinear partial differential equations by cosine-function method

    International Nuclear Information System (INIS)

    Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.

    2007-01-01

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations

  20. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations

    International Nuclear Information System (INIS)

    Hong Jialin; Li Chun

    2006-01-01

    In this paper, we consider the multi-symplectic Runge-Kutta (MSRK) methods applied to the nonlinear Dirac equation in relativistic quantum physics, based on a discovery of the multi-symplecticity of the equation. In particular, the conservation of energy, momentum and charge under MSRK discretizations is investigated by means of numerical experiments and numerical comparisons with non-MSRK methods. Numerical experiments presented reveal that MSRK methods applied to the nonlinear Dirac equation preserve exactly conservation laws of charge and momentum, and conserve the energy conservation in the corresponding numerical accuracy to the method utilized. It is verified numerically that MSRK methods are stable and convergent with respect to the conservation laws of energy, momentum and charge, and MSRK methods preserve not only the inner geometric structure of the equation, but also some crucial conservative properties in quantum physics. A remarkable advantage of MSRK methods applied to the nonlinear Dirac equation is the precise preservation of charge conservation law

  1. Nonlinear differential equations with exact solutions expressed via the Weierstrass function

    NARCIS (Netherlands)

    Kudryashov, NA

    2004-01-01

    A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear

  2. Numerical method for the eigenvalue problem and the singular equation by using the multi-grid method and application to ordinary differential equation

    International Nuclear Information System (INIS)

    Kanki, Takashi; Uyama, Tadao; Tokuda, Shinji.

    1995-07-01

    In the numerical method to compute the matching data which are necessary for resistive MHD stability analyses, it is required to solve the eigenvalue problem and the associated singular equation. An iterative method is developed to solve the eigenvalue problem and the singular equation. In this method, the eigenvalue problem is replaced with an equivalent nonlinear equation and a singular equation is derived from Newton's method for the nonlinear equation. The multi-grid method (MGM), a high speed iterative method, can be applied to this method. The convergence of the eigenvalue and the eigenvector, and the CPU time in this method are investigated for a model equation. It is confirmed from the numerical results that this method is effective for solving the eigenvalue problem and the singular equation with numerical stability and high accuracy. It is shown by improving the MGM that the CPU time for this method is 50 times shorter than that of the direct method. (author)

  3. The numerical dynamic for highly nonlinear partial differential equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  4. Tanh-travelling wave solutions, truncated Painleve expansion and reduction of Bullough-Dodd equation to a quadrature in magnetohydrodynamic equilibrium

    International Nuclear Information System (INIS)

    Ibrahim, R.S.

    2003-01-01

    The equations of magnetohydrodynamic (MHD) equilibria for a plasma in gravitational field are investigated. For equilibria with one ignorable spatial coordinate, the MHD equations are reduced to a single nonlinear elliptic equation for the magnetic potential u-tilde, known as the Grad-Shafranov equation. Specifying the arbitrary functions in this equation, the Bullough-Dodd equation can be obtained. The truncated Painleve expansion and reduction of the partial differential equation to a quadrature problem (RQ method) are described and applied to obtain the travelling wave solutions of the Bullough-Dodd equation for the case of isothermal magnetostatic atmosphere, in which the current density J is proportional to the exponentially of the magnetic flux and moreover falls off exponentially with distance vertical to the base, with an 'e-folding' distance equal to the gravitational scale height

  5. Nonlinear electrostatic wave equations for magnetized plasmas - II

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....

  6. Exact solutions for nonlinear evolution equations using Exp-function method

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2008-01-01

    In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations

  7. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    Science.gov (United States)

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  8. Explicit Solutions for Generalized (2+1)-Dimensional Nonlinear Zakharov-Kuznetsov Equation

    International Nuclear Information System (INIS)

    Sun Yuhuai; Ma Zhimin; Li Yan

    2010-01-01

    The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equation are explored by the method of the improved generalized auxiliary differential equation. Many explicit analytic solutions of the Z-K equation are obtained. The methods used to solve the Z-K equation can be employed in further work to establish new solutions for other nonlinear partial differential equations. (general)

  9. Exact solutions for a system of nonlinear plasma fluid equations

    International Nuclear Information System (INIS)

    Prahovic, M.G.; Hazeltine, R.D.; Morrison, P.J.

    1991-04-01

    A method is presented for constructing exact solutions to a system of nonlinear plasma fluid equations that combines the physics of reduced magnetohydrodynamics and the electrostatic drift-wave description of the Charney-Hasegawa-Mima equation. The system has nonlinearities that take the form of Poisson brackets involving the fluid field variables. The method relies on modifying a class of simple equilibrium solutions, but no approximations are made. A distinguishing feature is that the original nonlinear problem is reduced to the solution of two linear partial differential equations, one fourth-order and the other first-order. The first-order equation has Hamiltonian characteristics and is easily integrated, supplying information about the general structure of solutions. 6 refs

  10. Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Yu Jianping; Sun Yongli

    2008-01-01

    This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations

  11. Multiphase Weakly Nonlinear Geometric Optics for Schrödinger Equations

    KAUST Repository

    Carles, Ré mi; Dumas, Eric; Sparber, Christof

    2010-01-01

    We describe and rigorously justify the nonlinear interaction of highly oscillatory waves in nonlinear Schrödinger equations, posed on Euclidean space or on the torus. Our scaling corresponds to a weakly nonlinear regime where the nonlinearity affects the leading order amplitude of the solution, but does not alter the rapid oscillations. We consider initial states which are superpositions of slowly modulated plane waves, and use the framework of Wiener algebras. A detailed analysis of the corresponding nonlinear wave mixing phenomena is given, including a geometric interpretation of the resonance structure for cubic nonlinearities. As an application, we recover and extend some instability results for the nonlinear Schrödinger equation on the torus in negative order Sobolev spaces. © 2010 Society for Industrial and Applied Mathematics.

  12. Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas

    International Nuclear Information System (INIS)

    Bettelheim, Eldad; Abanov, Alexander G; Wiegmann, Paul B

    2008-01-01

    We present new nonlinear differential equations for spacetime correlation functions of Fermi gas in one spatial dimension. The correlation functions we consider describe non-stationary processes out of equilibrium. The equations we obtain are integrable equations. They generalize known nonlinear differential equations for correlation functions at equilibrium [1-4] and provide vital tools for studying non-equilibrium dynamics of electronic systems. The method we developed is based only on Wick's theorem and the hydrodynamic description of the Fermi gas. Differential equations appear directly in bilinear form. (fast track communication)

  13. From nonlinear Schroedinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    International Nuclear Information System (INIS)

    Yang Xiao; Du Dianlou

    2010-01-01

    The Poisson structure on C N xR N is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schroedinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  14. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamak is reported. The report explains a solution method of two-dimensional Newcomb equation, dispersion relation for an unstable ideal MHD mode in tokamak, and a new scheme for solving resistive MHD inner layer equations as an initial-value problem. (author)

  15. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamaks is reported. A solution method for the two dimensional Newcomb equation, a dispersion relation for an unstable ideal MHD mode in tokamaks and a new scheme for solving resistive MHD inner layer equations as an initial value problem are reported. (author)

  16. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  17. A procedure to construct exact solutions of nonlinear fractional differential equations.

    Science.gov (United States)

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  18. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  19. Maintaining the stability of nonlinear differential equations by the enhancement of HPM

    International Nuclear Information System (INIS)

    Hosein Nia, S.H.; Ranjbar, A.N.; Ganji, D.D.; Soltani, H.; Ghasemi, J.

    2008-01-01

    Homotopy perturbation method is an effective method to find a solution of a nonlinear differential equation. In this method, a nonlinear complex differential equation is transformed to a series of linear and nonlinear parts, almost simpler differential equations. These sets of equations are then solved iteratively. Finally, a linear series of the solutions completes the answer if the convergence is maintained. In this Letter, the need for stability verification is shown through some examples. Consequently, HPM is enhanced by a preliminary assumption. The idea is to keep the inherent stability of nonlinear dynamic, even the selected linear part is not

  20. Numerical study of the axisymmetric ideal MHD stability of Extrap

    International Nuclear Information System (INIS)

    Benda, M.

    1993-04-01

    A numerical study of the free-boundary axisymmetric (n=0) ideal magnetohydrodynamical (MHD) motions of the Extrap device is presented. The dependence of stability on current profiles in the plasma and currents in the external conductors is investigated. Results are shown for linear growth-rates and nonlinear saturation amplitudes and their dependence on plasma radius as well as on the conducting shell radius. A method combined of two different algorithms has been developed and tested. The interior region of the plasma is simulated by means of a Lagrangian Finite Element Method (FEM) for ideal magnetohydrodynamics, The method is based on a nonlinear radiation principle for the Lagrangian description of ideal MHD. The Boundary Element Method (BEM) is used together with the Lagrangian FEM to simulate nonlinear motion of an ideal MHD plasma behaviour in a vacuum region under the influence of external magnetic fields. 31 refs

  1. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  2. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  3. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Science.gov (United States)

    Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

    2018-01-01

    In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  4. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Directory of Open Access Journals (Sweden)

    Azmat Ullah

    Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  5. Modified harmonic balance method for the solution of nonlinear jerk equations

    Science.gov (United States)

    Rahman, M. Saifur; Hasan, A. S. M. Z.

    2018-03-01

    In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.

  6. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  7. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  8. On implicit abstract neutral nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br [Universidade de São Paulo, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (Brazil); O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie [National University of Ireland, School of Mathematics, Statistics and Applied Mathematics (Ireland)

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  9. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  10. Nonlocal and nonlinear dispersion in a nonlinear Schrodinger-type equation: exotic solitons and short-wavelength instabilities

    DEFF Research Database (Denmark)

    Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus

    2004-01-01

    We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...

  11. Spectral transform and solvability of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Degasperis, A.

    1979-01-01

    These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)

  12. Non-linear partial differential equations an algebraic view of generalized solutions

    CERN Document Server

    Rosinger, Elemer E

    1990-01-01

    A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

  13. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    Science.gov (United States)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  14. The application of He's exp-function method to a nonlinear differential-difference equation

    International Nuclear Information System (INIS)

    Dai Chaoqing; Cen Xu; Wu Shengsheng

    2009-01-01

    This paper applies He's exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear partial differential equations (NPDEs) or coupled nonlinear partial differential equations (CNPDEs), to a nonlinear differential-difference equation, and some new travelling wave solutions are obtained.

  15. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  16. Nonlinear Fredholm Integral Equation of the Second Kind with Quadrature Methods

    Directory of Open Access Journals (Sweden)

    M. Jafari Emamzadeh

    2010-06-01

    Full Text Available In this paper, a numerical method for solving the nonlinear Fredholm integral equation is presented. We intend to approximate the solution of this equation by quadrature methods and by doing so, we solve the nonlinear Fredholm integral equation more accurately. Several examples are given at the end of this paper

  17. On the integrability of the generalized Fisher-type nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Wang Dengshan; Zhang Zhifei

    2009-01-01

    In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2

  18. The Volterra's integral equation theory for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi

    1996-01-01

    The Volterra's integral equation equivalent to the dynamic equation of accelerator single-freedom nonlinear components is given, starting from which the transport operator of accelerator single-freedom nonlinear components and its inverse transport operator are obtained. Therefore, another algorithm for the expert system of the beam transport operator of accelerator single-freedom nonlinear components is developed

  19. First Integrals of Evolution Systems and Nonlinear Stability of Stationary Solutions for the Ideal Atmospheric, Oceanic Hydrodynamical and Plasma Models

    International Nuclear Information System (INIS)

    Gordin, V.A.

    1998-01-01

    First integral of the systems of nonlinear equations governing the behaviour of atmospheric, oceanic and MHD plasma models are determined. The Lyapunov stability conditions for the solutions under small initial disturbances are analyzed. (author)

  20. Current interactions from the one-form sector of nonlinear higher-spin equations

    Science.gov (United States)

    Gelfond, O. A.; Vasiliev, M. A.

    2018-06-01

    The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp ⁡ iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.

  1. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    Science.gov (United States)

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  2. Finding all solutions of nonlinear equations using the dual simplex method

    Science.gov (United States)

    Yamamura, Kiyotaka; Fujioka, Tsuyoshi

    2003-03-01

    Recently, an efficient algorithm has been proposed for finding all solutions of systems of nonlinear equations using linear programming. This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations using the dual simplex method. In this letter, an improved version of the LP test algorithm is proposed. By numerical examples, it is shown that the proposed algorithm could find all solutions of a system of 300 nonlinear equations in practical computation time.

  3. Global and kinetic MHD simulation by the Gpic-MHD code

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Yamada, Yusuke; Kajiwara, Kenji; Lee, Wei-li; Tokuda, Shinji; Yagi, Masatoshi

    2011-01-01

    In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vortex equation and the generalized ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential A z . Particle information is mainly used to estimate second order moments in the generalized ohm's law. Because the lower order moments of the charge density and the longitudinal current density are not used explicitly to determine φ and A z , the numerical noise induced by the discreteness of particle quantities reduces drastically. Another advantage of the algorithm is that the longitudinal induced electric field, E Tz =-∂A z /∂t, is explicitly estimated by the generalized ohm's law and used in the equations of motion. The particle velocities along the magnetic field are used (v z -formulation) instead of generalized momentums (p z -formulation), hence there is no problem of 'cancellation', which appear when estimating A z from the Ampere's law in the p z -formulation. The successful simulation of the collisionless internal kink mode by new Gpic-MHD with the realistic values of the large-scale and high-beta, revealed the usefulness of the new algorithm. (author)

  4. Differential constraints and exact solutions of nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Kaptsov, Oleg V; Verevkin, Igor V

    2003-01-01

    The differential constraints are applied to obtain explicit solutions of nonlinear diffusion equations. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the determining equations used in the search for classical Lie symmetries

  5. Allowable graphs of the nonlinear Schrödinger equation and their ...

    Indian Academy of Sciences (India)

    Bich Nguyen

    2017-11-20

    Nov 20, 2017 ... Non-linear Schrödinger equation; graphs; characteristic polynomial; .... Allowable graphs of the NLS and their applications. 795 ...... nonlinear Schroödinger equation, J. Algebra Appl. 16 (2017) 37 pp., https://doi.org/10.1142/.

  6. Partially integrable nonlinear equations with one higher symmetry

    International Nuclear Information System (INIS)

    Mikhailov, A V; Novikov, V S; Wang, J P

    2005-01-01

    In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function. (letter to the editor)

  7. Bifurcation of positive solutions to scalar reaction-diffusion equations with nonlinear boundary condition

    Science.gov (United States)

    Liu, Ping; Shi, Junping

    2018-01-01

    The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.

  8. Role of statistical linearization in the solution of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Budgor, A.B.

    1977-01-01

    The solution of a generalized Langevin equation is referred to as a stochastic process. If the external forcing function is Gaussian white noise, the forward Kolmogarov equation yields the transition probability density function. Nonlinear problems must be handled by approximation procedures e.g., perturbation theories, eigenfunction expansions, and nonlinear optimization procedures. After some comments on the first two of these, attention is directed to the third, and the method of statistical linearization is used to demonstrate a relation to the former two. Nonlinear stochastic systems exhibiting sustained or forced oscillations and the centered nonlinear Schroedinger equation in the presence of Gaussian white noise excitation are considered as examples. 5 figures, 2 tables

  9. On nonlinear differential equation with exact solutions having various pole orders

    International Nuclear Information System (INIS)

    Kudryashov, N.A.

    2015-01-01

    We consider a nonlinear ordinary differential equation having solutions with various movable pole order on the complex plane. We show that the pole order of exact solution is determined by values of parameters of the equation. Exact solutions in the form of the solitary waves for the second order nonlinear differential equation are found taking into account the method of the logistic function. Exact solutions of differential equations are discussed and analyzed

  10. Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations

    Directory of Open Access Journals (Sweden)

    Espen R. Jakobsen

    2002-05-01

    Full Text Available Using the maximum principle for semicontinuous functions [3,4], we prove a general ``continuous dependence on the nonlinearities'' estimate for bounded Holder continuous viscosity solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence, uniqueness, and Holder continuity results for bounded viscosity solutions of such equations. Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of zero-sum, two-player stochastic differential games. An immediate consequence of the results obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear degenerate elliptic equations.

  11. Integrable peakon equations with cubic nonlinearity

    International Nuclear Information System (INIS)

    Hone, Andrew N W; Wang, J P

    2008-01-01

    We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)

  12. Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility

    International Nuclear Information System (INIS)

    El-Sabbagh, Mostafa F.; Ahmad, Ali T.

    2011-01-01

    The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples illustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries. (general)

  13. Bright and dark soliton solutions for some nonlinear fractional differential equations

    International Nuclear Information System (INIS)

    Guner, Ozkan; Bekir, Ahmet

    2016-01-01

    In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space–time fractional modified Benjamin–Bona–Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional derivatives are described in the modified Riemann–Liouville sense. (paper)

  14. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems

    International Nuclear Information System (INIS)

    Liu Chunliang; Xie Xi; Chen Yinbao

    1991-01-01

    The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation

  15. Approximate Solution of Nonlinear Klein-Gordon Equation Using Sobolev Gradients

    Directory of Open Access Journals (Sweden)

    Nauman Raza

    2016-01-01

    Full Text Available The nonlinear Klein-Gordon equation (KGE models many nonlinear phenomena. In this paper, we propose a scheme for numerical approximation of solutions of the one-dimensional nonlinear KGE. A common approach to find a solution of a nonlinear system is to first linearize the equations by successive substitution or the Newton iteration method and then solve a linear least squares problem. Here, we show that it can be advantageous to form a sum of squared residuals of the nonlinear problem and then find a zero of the gradient. Our scheme is based on the Sobolev gradient method for solving a nonlinear least square problem directly. The numerical results are compared with Lattice Boltzmann Method (LBM. The L2, L∞, and Root-Mean-Square (RMS values indicate better accuracy of the proposed method with less computational effort.

  16. New exact solutions for two nonlinear equations

    International Nuclear Information System (INIS)

    Wang Quandi; Tang Minying

    2008-01-01

    In this Letter, we investigate two nonlinear equations given by u t -u xxt +3u 2 u x =2u x u xx +uu xxx and u t -u xxt +4u 2 u x =3u x u xx +uu xxx . Through some special phase orbits we obtain four new exact solutions for each equation above. Some previous results are extended

  17. Entire solutions of nonlinear differential-difference equations.

    Science.gov (United States)

    Li, Cuiping; Lü, Feng; Xu, Junfeng

    2016-01-01

    In this paper, we describe the properties of entire solutions of a nonlinear differential-difference equation and a Fermat type equation, and improve several previous theorems greatly. In addition, we also deduce a uniqueness result for an entire function f(z) that shares a set with its shift [Formula: see text], which is a generalization of a result of Liu.

  18. Nonlinear stability of source defects in the complex Ginzburg–Landau equation

    International Nuclear Information System (INIS)

    Beck, Margaret; Nguyen, Toan T; Sandstede, Björn; Zumbrun, Kevin

    2014-01-01

    In an appropriate moving coordinate frame, source defects are time-periodic solutions to reaction–diffusion equations that are spatially asymptotic to spatially periodic wave trains whose group velocities point away from the core of the defect. In this paper, we rigorously establish nonlinear stability of spectrally stable source defects in the complex Ginzburg–Landau equation. Due to the outward transport at the far field, localized perturbations may lead to a highly non-localized response even on the linear level. To overcome this, we first investigate in detail the dynamics of the solution to the linearized equation. This allows us to determine an approximate solution that satisfies the full equation up to and including quadratic terms in the nonlinearity. This approximation utilizes the fact that the non-localized phase response, resulting from the embedded zero eigenvalues, can be captured, to leading order, by the nonlinear Burgers equation. The analysis is completed by obtaining detailed estimates for the resolvent kernel and pointwise estimates for Green's function, which allow one to close a nonlinear iteration scheme. (paper)

  19. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maccari, A.

    1997-01-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics

  20. The presentation of explicit analytical solutions of a class of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Feng Jinshun; Guo Mingpu; Yuan Deyou

    2009-01-01

    In this paper, we introduce a function set Ω m . There is a conjecture that an arbitrary explicit travelling-wave analytical solution of a real constant coefficient nonlinear evolution equation is necessarily a linear (or nonlinear) combination of the product of some elements in Ω m . A widespread applicable approach for solving a class of nonlinear evolution equations is established. The new analytical solutions to two kinds of nonlinear evolution equations are described with the aid of the guess.

  1. Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations

    International Nuclear Information System (INIS)

    Brizard, Alain J.

    2000-01-01

    A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated

  2. Exact non-linear equations for cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)

    2017-10-01

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  3. A Generalized Halanay Inequality for Stability of Nonlinear Neutral Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Wansheng Wang

    2010-01-01

    Full Text Available This paper is devoted to generalize Halanay's inequality which plays an important rule in study of stability of differential equations. By applying the generalized Halanay inequality, the stability results of nonlinear neutral functional differential equations (NFDEs and nonlinear neutral delay integrodifferential equations (NDIDEs are obtained.

  4. Global solvability, non-resistive limit and magnetic boundary layer of the compressible heat-conductive MHD equations

    OpenAIRE

    Zhang, Jianwen; Zhao, Xiaokui

    2015-01-01

    In general, the resistivity is inversely proportional to the electrical conductivity, and is usually taken to be zero when the conducting fluid is of extremely high conductivity (e.g., ideal conductors). In this paper, we first establish the global well-posedness of strong solution to an initial-boundary value problem of the one-dimensional compressible, viscous, heat-conductive, non-resistive MHD equations with general heat-conductivity coefficient and large data. Then, the non-resistive lim...

  5. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  6. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  7. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    Nonlinear partial differential equations (NPDEs) are encountered in various ... such as physics, mechanics, chemistry, biology, mathematics and engineering. ... In §3, this method is applied to the generalized forms of Klein–Gordon equation,.

  8. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  9. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects

    Institute of Scientific and Technical Information of China (English)

    M Ramzan; M Farooq; T Hayat; A Alsaedi; J Cao

    2015-01-01

    Combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained. Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.

  10. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  11. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  12. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  13. Piecewise-linear and bilinear approaches to nonlinear differential equations approximation problem of computational structural mechanics

    OpenAIRE

    Leibov Roman

    2017-01-01

    This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...

  14. Nonlinear evolution equations having a physical meaning

    International Nuclear Information System (INIS)

    Nakach, R.

    1976-06-01

    The non stationary self-similar solutions of the nonlinear evolution equations which can be solved by the inverse scattering method are studied. It turns out, as shown by means of several examples, that when the L linear operator associated with these equations, is of second order and only then, the self-similar solutions can be expressed in terms of the various Painleve's transcendents [fr

  15. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The initial value problem of a nonlinear fractional differential equation is discussed in this paper. Using the nonlinear alternative of Leray-Schauder type and the contraction mapping principle,we obtain the existence and uniqueness of solutions to the fractional differential equation,which extend some results of the previous papers.

  16. Nonlinear wave equations, formation of singularities

    CERN Document Server

    John, Fritz

    1990-01-01

    This is the second volume in the University Lecture Series, designed to make more widely available some of the outstanding lectures presented in various institutions around the country. Each year at Lehigh University, a distinguished mathematical scientist presents the Pitcher Lectures in the Mathematical Sciences. This volume contains the Pitcher lectures presented by Fritz John in April 1989. The lectures deal with existence in the large of solutions of initial value problems for nonlinear hyperbolic partial differential equations. As is typical with nonlinear problems, there are many results and few general conclusions in this extensive subject, so the author restricts himself to a small portion of the field, in which it is possible to discern some general patterns. Presenting an exposition of recent research in this area, the author examines the way in which solutions can, even with small and very smooth initial data, "blow up" after a finite time. For various types of quasi-linear equations, this time de...

  17. An introduction to geometric theory of fully nonlinear parabolic equations

    International Nuclear Information System (INIS)

    Lunardi, A.

    1991-01-01

    We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs

  18. Linear analysis of neoclassical tearing mode based on the four-field reduced neoclassical MHD equation

    International Nuclear Information System (INIS)

    Furuya, Atsushi; Yagi, Masatoshi; Itoh, Sanae-I.

    2003-01-01

    The linear neoclassical tearing mode is investigated using the four-field reduced neoclassical MHD equations, in which the fluctuating ion parallel flow and ion neoclassical viscosity are taken into account. The dependences of the neoclassical tearing mode on collisionality, diamagnetic drift and q profile are investigated. These results are compared with the results from the conventional three-field model. It is shown that the linear neoclassical tearing mode is stabilized by the ion neoclassical viscosity in the banana regime even if Δ' > 0. (author)

  19. Complex nonlinear Lagrangian for the Hasegawa-Mima equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.

    2005-01-01

    The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)

  20. Soliton solutions of some nonlinear evolution equations with time ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...

  1. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  2. Picone-type inequalities for nonlinear elliptic equations and their applications

    Directory of Open Access Journals (Sweden)

    Takaŝi Kusano

    2001-01-01

    Full Text Available Picone-type inequalities are derived for nonlinear elliptic equations, and Sturmian comparison theorems are established as applications. Oscillation theorems for forced super-linear elliptic equations and superlinear-sublinear elliptic equations are also obtained.

  3. Quantum theory from a nonlinear perspective Riccati equations in fundamental physics

    CERN Document Server

    Schuch, Dieter

    2018-01-01

    This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in ...

  4. Modified wave operators for nonlinear Schrodinger equations in one and two dimensions

    Directory of Open Access Journals (Sweden)

    Nakao Hayashi

    2004-04-01

    Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13

  5. An effective method for finding special solutions of nonlinear differential equations with variable coefficients

    International Nuclear Information System (INIS)

    Qin Maochang; Fan Guihong

    2008-01-01

    There are many interesting methods can be utilized to construct special solutions of nonlinear differential equations with constant coefficients. However, most of these methods are not applicable to nonlinear differential equations with variable coefficients. A new method is presented in this Letter, which can be used to find special solutions of nonlinear differential equations with variable coefficients. This method is based on seeking appropriate Bernoulli equation corresponding to the equation studied. Many well-known equations are chosen to illustrate the application of this method

  6. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  7. Stochastic effects on the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Flessas, G P; Leach, P G L; Yannacopoulos, A N

    2004-01-01

    The aim of this article is to provide a brief review of recent advances in the field of stochastic effects on the nonlinear Schroedinger equation. The article reviews rigorous and perturbative results. (review article)

  8. Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2009-01-01

    In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.

  9. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation

    CERN Document Server

    Kamvissis, Spyridon; Miller, Peter D

    2003-01-01

    This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing

  10. Solving Nonlinear Partial Differential Equations with Maple and Mathematica

    CERN Document Server

    Shingareva, Inna K

    2011-01-01

    The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple an

  11. Nonlinear dynamics in the Einstein-Friedmann equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji

    2009-01-01

    We have studied the gravitational field equations on the basis of general relativity and nonlinear dynamics. The space component of the Einstein-Friedmann equation shows the chaotic behaviours in case the following conditions are satisfied: (i)the expanding ratio: h=x . /x max = +0.14) for the occurrence of the chaotic behaviours in the Einstein-Friedmann equation (0 ≤ λ ≤ +0.14). The numerical calculations are performed with the use of the Microsoft EXCEL(2003), and the results are shown in the following cases; λ = 2b = +0.06 and +0.14.

  12. Oscillation criteria for third order delay nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    E. M. Elabbasy

    2012-01-01

    via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.

  13. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr

  14. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr

  15. Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, Akihiro; Nakajima, Noriyoshi

    2007-01-01

    This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)

  16. Characteristics of laminar MHD fluid hammer in pipe

    International Nuclear Information System (INIS)

    Huang, Z.Y.; Liu, Y.J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  17. NONLINEAR DYNAMO IN A ROTATING ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    M. I. Kopp

    2017-05-01

    Full Text Available We found a new large-scale instability, which arises in the rotating conductive fluid with small-scale turbulence. Turbulence is generated by small-scale external force with a low Reynolds number. The theory is built simply by the method of multiscale asymptotic expansions. Nonlinear equations for vortex and magnetic perturbations obtained in the third order for small Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The large-scale increments of the instability, correspond to generation as the vortex and magnetic disturbances. This type of instability is classified as hydrodynamic and MHD alpha-effect. We studied the stationary regimes of nonlinear equations of magneto-vortex dynamo. In the limit of weakly conducting fluid found stationary solutions in the form of helical kinks. In the limit of high conductivity fluid was obtained stationary solutions in the form of nonlinear periodic waves and kinks.

  18. MHD equilibrium of toroidal fusion plasma with stationary flows; Rownowaga MHD toroidalnej plazmy termojadrowej z przeplywami

    Energy Technology Data Exchange (ETDEWEB)

    Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.

  19. STABILITY OF NONLINEAR NEUTRAL DIFFERENTIAL EQUATION VIA FIXED POINT

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,a nonlinear neutral differential equation is considered.By a fixed point theory,we give some conditions to ensure that the zero solution to the equation is asymptotically stable.Some existing results are improved and generalized.

  20. Nonlinear anisotropic parabolic equations in Lm

    Directory of Open Access Journals (Sweden)

    Fares Mokhtari

    2014-01-01

    Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].

  1. From nonlinear Schrödinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    Science.gov (United States)

    Yang, Xiao; Du, Dianlou

    2010-08-01

    The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  2. Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations

    Science.gov (United States)

    Athanassoulis, Agissilaos

    2018-03-01

    We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1  +  1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.

  3. ALMOST PERIODIC SOLUTIONS TO SOME NONLINEAR DELAY DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The existence of an almost periodic solutions to a nonlinear delay diffierential equation is considered in this paper. A set of sufficient conditions for the existence and uniqueness of almost periodic solutions to some delay diffierential equations is obtained.

  4. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.

  5. Oscillation criteria for third order nonlinear delay differential equations with damping

    Directory of Open Access Journals (Sweden)

    Said R. Grace

    2015-01-01

    Full Text Available This note is concerned with the oscillation of third order nonlinear delay differential equations of the form \\[\\label{*} \\left( r_{2}(t\\left( r_{1}(ty^{\\prime}(t\\right^{\\prime}\\right^{\\prime}+p(ty^{\\prime}(t+q(tf(y(g(t=0.\\tag{\\(\\ast\\}\\] In the papers [A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl. 325 (2007, 54-68] and [M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third order nonlinear functional differential equations, Applied Math. Letters 23 (2010, 756-762], the authors established some sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates or converges to zero, provided that the second order equation \\[\\left( r_{2}(tz^{\\prime }(t\\right^{\\prime}+\\left(p(t/r_{1}(t\\right z(t=0\\tag{\\(\\ast\\ast\\}\\] is nonoscillatory. Here, we shall improve and unify the results given in the above mentioned papers and present some new sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates if equation (\\(\\ast\\ast\\ is nonoscillatory. We also establish results for the oscillation of equation (\\(\\ast\\ when equation (\\(\\ast\\ast\\ is oscillatory.

  6. Superdiffusions and positive solutions of nonlinear partial differential equations

    CERN Document Server

    Dynkin, E B

    2004-01-01

    This book is devoted to the applications of probability theory to the theory of nonlinear partial differential equations. More precisely, it is shown that all positive solutions for a class of nonlinear elliptic equations in a domain are described in terms of their traces on the boundary of the domain. The main probabilistic tool is the theory of superdiffusions, which describes a random evolution of a cloud of particles. A substantial enhancement of this theory is presented that can be of interest for everybody who works on applications of probabilistic methods to mathematical analysis.

  7. Topological soliton solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-03-01

    Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.

  8. An ansatz for solving nonlinear partial differential equations in mathematical physics.

    Science.gov (United States)

    Akbar, M Ali; Ali, Norhashidah Hj Mohd

    2016-01-01

    In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.

  9. Multi-soliton management by the integrable nonautonomous nonlinear integro-differential Schrödinger equation

    International Nuclear Information System (INIS)

    Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang

    2014-01-01

    We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton. - Highlights: • We consider a unified model for soliton management by an integrable integro-differential Schrödinger equation. • Using Lax pair, the N-fold Darboux transformation for the equation is presented. • The multi-soliton management is considered. • The synchronized dispersive and nonlinear management is suggested

  10. Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Shaheed N. Huseen

    2013-01-01

    Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.

  11. Nonlinear heat conduction equations with memory: Physical meaning and analytical results

    Science.gov (United States)

    Artale Harris, Pietro; Garra, Roberto

    2017-06-01

    We study nonlinear heat conduction equations with memory effects within the framework of the fractional calculus approach to the generalized Maxwell-Cattaneo law. Our main aim is to derive the governing equations of heat propagation, considering both the empirical temperature-dependence of the thermal conductivity coefficient (which introduces nonlinearity) and memory effects, according to the general theory of Gurtin and Pipkin of finite velocity thermal propagation with memory. In this framework, we consider in detail two different approaches to the generalized Maxwell-Cattaneo law, based on the application of long-tail Mittag-Leffler memory function and power law relaxation functions, leading to nonlinear time-fractional telegraph and wave-type equations. We also discuss some explicit analytical results to the model equations based on the generalized separating variable method and discuss their meaning in relation to some well-known results of the ordinary case.

  12. Seismological comparisons of solar models with element diffusion using the MHD, OPAL, and SIREFF equations of state

    International Nuclear Information System (INIS)

    Guzik, J.A.; Swenson, F.J.

    1997-01-01

    We compare the thermodynamic and helioseismic properties of solar models evolved using three different equation of state (EOS) treatments: the Mihalas, Daeppen ampersand Hummer EOS tables (MHD); the latest Rogers, Swenson, ampersand Iglesias EOS tables (OPAL), and a new analytical EOS (SIREFF) developed by Swenson et al. All of the models include diffusive settling of helium and heavier elements. The models use updated OPAL opacity tables based on the 1993 Grevesse ampersand Noels solar element mixture, incorporating 21 elements instead of the 14 elements used for earlier tables. The properties of solar models that are evolved with the SIREFF EOS agree closely with those of models evolved using the OPAL or MHD tables. However, unlike the MHD or OPAL EOS tables, the SIREFF in-line EOS can readily account for variations in overall Z abundance and the element mixture resulting from nuclear processing and diffusive element settling. Accounting for Z abundance variations in the EOS has a small, but non-negligible, effect on model properties (e.g., pressure or squared sound speed), as much as 0.2% at the solar center and in the convection zone. The OPAL and SIREFF equations of state include electron exchange, which produces models requiring a slightly higher initial helium abundance, and increases the convection zone depth compared to models using the MHD EOS. However, the updated OPAL opacities are as much as 5% lower near the convection zone base, resulting in a small decrease in convection zone depth. The calculated low-degree nonadiabatic frequencies for all of the models agree with the observed frequencies to within a few microhertz (0.1%). The SIREFF analytical calibrations are intended to work over a wide range of interior conditions found in stellar models of mass greater than 0.25M circle-dot and evolutionary states from pre-main-sequence through the asymptotic giant branch (AGB). It is significant that the SIREFF EOS produces solar models that both measure up

  13. Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method

    International Nuclear Information System (INIS)

    Bekir Ahmet; Güner Özkan

    2013-01-01

    In this paper, we use the fractional complex transform and the (G′/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann—Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations

  14. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    Science.gov (United States)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  15. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    International Nuclear Information System (INIS)

    Indekeu, Joseph O; Smets, Ruben

    2017-01-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically. (paper)

  16. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  17. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  18. The Use of Nonlinear Constitutive Equations to Evaluate Draw Resistance and Filter Ventilation

    Directory of Open Access Journals (Sweden)

    Eitzinger B

    2014-12-01

    Full Text Available This study investigates by nonlinear constitutive equations the influence of tipping paper, cigarette paper, filter, and tobacco rod on the degree of filter ventilation and draw resistance. Starting from the laws of conservation, the path to the theory of fluid dynamics in porous media and Darcy's law is reviewed and, as an extension to Darcy's law, two different nonlinear pressure drop-flow relations are proposed. It is proven that these relations are valid constitutive equations and the partial differential equations for the stationary flow in an unlit cigarette covering anisotropic, inhomogeneous and nonlinear behaviour are derived. From these equations a system of ordinary differential equations for the one-dimensional flow in the cigarette is derived by averaging pressure and velocity over the cross section of the cigarette. By further integration, the concept of an electrical analog is reached and discussed in the light of nonlinear pressure drop-flow relations. By numerical calculations based on the system of ordinary differential equations, it is shown that the influence of nonlinearities cannot be neglected because variations in the degree of filter ventilation can reach up to 20% of its nominal value.

  19. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  20. An Integrable Discrete Generalized Nonlinear Schrödinger Equation and Its Reductions

    International Nuclear Information System (INIS)

    Li Hong-Min; Li Yu-Qi; Chen Yong

    2014-01-01

    An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones. (general)

  1. A family of analytical solutions of a nonlinear diffusion-convection equation

    Science.gov (United States)

    Hayek, Mohamed

    2018-01-01

    Despite its popularity in many engineering fields, the nonlinear diffusion-convection equation has no general analytical solutions. This work presents a family of closed-form analytical traveling wave solutions for the nonlinear diffusion-convection equation with power law nonlinearities. This kind of equations typically appears in nonlinear problems of flow and transport in porous media. The solutions that are addressed are simple and fully analytical. Three classes of analytical solutions are presented depending on the type of the nonlinear diffusion coefficient (increasing, decreasing or constant). It has shown that the structure of the traveling wave solution is strongly related to the diffusion term. The main advantage of the proposed solutions is that they are presented in a unified form contrary to existing solutions in the literature where the derivation of each solution depends on the specific values of the diffusion and convection parameters. The proposed closed-form solutions are simple to use, do not require any numerical implementation, and may be implemented in a simple spreadsheet. The analytical expressions are also useful to mathematically analyze the structure and properties of the solutions.

  2. Nonlinear evolution equations for waves in random media

    International Nuclear Information System (INIS)

    Pelinovsky, E.; Talipova, T.

    1994-01-01

    The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs

  3. Taylor's series method for solving the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

  4. Numerical method for the nonlinear Fokker-Planck equation

    International Nuclear Information System (INIS)

    Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

    1997-01-01

    A practical method based on distributed approximating functionals (DAFs) is proposed for numerically solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numerical scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the method is compared with the accurate K-point Stirling interpolation formula finite-difference method. The approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which both the cumulant expansion and scaling theory have been found by Drozdov and Morillo [Phys. Rev. E 54, 931 (1996)] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard interpretation of the transient bimodality in terms of the flat region in the kinetic potential fails for the present case. An alternative analysis based on the effective potential of the Schroedinger-like Fokker-Planck equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are numerically much more challenging than other examples that have been previously reported for this problem. copyright 1997 The American Physical Society

  5. Toward Analytic Solution of Nonlinear Differential Difference Equations via Extended Sensitivity Approach

    International Nuclear Information System (INIS)

    Darmani, G.; Setayeshi, S.; Ramezanpour, H.

    2012-01-01

    In this paper an efficient computational method based on extending the sensitivity approach (SA) is proposed to find an analytic exact solution of nonlinear differential difference equations. In this manner we avoid solving the nonlinear problem directly. By extension of sensitivity approach for differential difference equations (DDEs), the nonlinear original problem is transformed into infinite linear differential difference equations, which should be solved in a recursive manner. Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained. Numerical examples are employed to show the effectiveness of the proposed approach. (general)

  6. On coupled development of MHD instabilities of Rayleigh-Taylor and Kelvin-Helmholtz types in nonuniform gas-plasmas flows

    International Nuclear Information System (INIS)

    Likhachev, A P; Medin, S A

    2010-01-01

    The simultaneous development of the MHD instabilities of Raylegh-Taylor and Kelvin-Helmholtz types at the interface between high-conducting plasmoid and surrounding non- or low-conducting gas is considered. The linear stage of the RTI development is studied analytically for incompressible and compressible fluids. The nonlinear stage of the individual development of the RTI and the coupled development of both instabilities has been investigated numerically. The time-dependent two-dimensional numerical model based on the solution of the Euler gasdynamic equations with body momentum and energy sources of MHD origin has been developed and used in calculations. A disturbance introducing in the background flow has been periodic with varied assignment type and wave length. Fundamental difference between the results of linear and nonlinear analysis has been revealed. In particular, the increment of the RTI development at nonlinear stage is one-two order of magnitude less than that predicted by linear theory and rather weakly depends on initial disturbance mode. In linear analysis the coupled development of the RTI and the KHI is determined by simple summing of the two effects in the expression of wave increment, whereas in nonlinear case the mutual influence of the instabilities leads to essential alterations in their development, main of which is the intensive 'layer-by-layer' destruction of the plasmoid surface.

  7. Stability of ideal MHD configurations. I. Realizing the generality of the G operator

    Science.gov (United States)

    Keppens, R.; Demaerel, T.

    2016-12-01

    A field theoretical approach, applied to the time-reversible system described by the ideal magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory. MHD spectral theory, which classified waves and instabilities of static or stationary, usually axisymmetric or translationally symmetric configurations, actually governs the stability of flowing, (self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator G , discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the acceleration identified by a Lagrangian displacement field ξ , which connects two ideal MHD states in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field. The governing equation reads /d 2 ξ d t 2 = G [ ξ ] , as first noted by Cotsaftis and Newcomb [Nucl. Fusion, Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, corresponding to being square integrable in the Hilbert space of displacements equipped with an inner product rule, for which the G operator is self-adjoint. The acceleration in the left-hand side features the Doppler-Coriolis operator v . ∇ , which is known to become an antisymmetric operator when restricting attention to stationary equilibria. Here, we present all derivations needed to get to these insights and connect results throughout the literature. A first illustration elucidates what can happen when self-gravity is incorporated and presents aspects that have been overlooked even in simple uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where the 6 wave modes

  8. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  9. Inverse operator method for solutions of nonlinear dynamical equations and some typical applications

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    1993-01-01

    The inverse operator method (IOM) is described briefly. We have realized the IOM for the solutions of nonlinear dynamical equations by the mathematics-mechanization (MM) with computers. They can then offer a new and powerful method applicable to many areas of physics. We have applied them successfully to study the chaotic behaviors of some nonlinear dynamical equations. As typical examples, the well-known Lorentz equation, generalized Duffing equation and two coupled generalized Duffing equations are investigated by using the IOM and the MM. The results are in good agreement with those given by Runge-Kutta method. So the IOM realized by the MM is of potential application valuable in nonlinear physics and many other fields

  10. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  11. Equivalence transformations and differential invariants of a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Senthilvelan, M; Torrisi, M; Valenti, A

    2006-01-01

    By using Lie's invariance infinitesimal criterion, we obtain the continuous equivalence transformations of a class of nonlinear Schroedinger equations with variable coefficients. We construct the differential invariants of order 1 starting from a special equivalence subalgebra E χ o . We apply these latter ones to find the most general subclass of variable coefficient nonlinear Schr?dinger equations which can be mapped, by means of an equivalence transformation of E χ o , to the well-known cubic Schroedinger equation. We also provide the explicit form of the transformation

  12. Traveling solitary wave solutions to evolution equations with nonlinear terms of any order

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2003-01-01

    Many physical phenomena in one- or higher-dimensional space can be described by nonlinear evolution equations, which can be reduced to ordinary differential equations such as the Lienard equation. Thus, to study those ordinary differential equations is of significance not only in mathematics itself, but also in physics. In this paper, a kind of explicit exact solutions to the Lienard equation is obtained. The applications of the solutions to the nonlinear RR-equation and the compound KdV-type equation are presented, which extend the results obtained in the previous literature

  13. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

    Science.gov (United States)

    Badia, Santiago; Martín, Alberto F.; Planas, Ramon

    2014-10-01

    The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.

  14. Optimal analytic method for the nonlinear Hasegawa-Mima equation

    Science.gov (United States)

    Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle

    2014-05-01

    The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.

  15. Forward-backward equations for nonlinear propagation in axially invariant optical systems

    International Nuclear Information System (INIS)

    Ferrando, Albert; Zacares, Mario; Fernandez de Cordoba, Pedro; Binosi, Daniele; Montero, Alvaro

    2005-01-01

    We present a general framework to deal with forward and backward components of the electromagnetic field in axially invariant nonlinear optical systems, which include those having any type of linear or nonlinear transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order equations for forward and backward components, explicitly showing the nonlinear couplings among them. The modal approach used allows for an effective reduction of the dimensionality of the original problem from 3+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency dimension). The new equations can be written in a spinor Dirac-like form, out of which conserved quantities can be calculated in an elegant manner. Finally, these equations inherently incorporate spatiotemporal couplings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear forward pulse propagation and nonparaxial evolution of spatial structures are analyzed as examples

  16. Soliton solutions of coupled nonlinear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Alagesan, T.; Chung, Y.; Nakkeeran, K.

    2004-01-01

    The coupled nonlinear Klein-Gordon equations are analyzed for their integrability properties in a systematic manner through Painleve test. From the Painleve test, by truncating the Laurent series at the constant level term, the Hirota bilinear form is identified, from which one-soliton solutions are derived. Then, the results are generalized to the two, three and N-coupled Klein-Gordon equations

  17. Tensor-GMRES method for large sparse systems of nonlinear equations

    Science.gov (United States)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  18. Soliton Resolution for the Derivative Nonlinear Schrödinger Equation

    Science.gov (United States)

    Jenkins, Robert; Liu, Jiaqi; Perry, Peter; Sulem, Catherine

    2018-05-01

    We study the derivative nonlinear Schrödinger equation for generic initial data in a weighted Sobolev space that can support bright solitons (but exclude spectral singularities). Drawing on previous well-posedness results, we give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. At leading order and in space-time cones, the solution has the form of a multi-soliton whose parameters are slightly modified from their initial values by soliton-soliton and soliton-radiation interactions. Our analysis provides an explicit expression for the correction dispersive term. We use the nonlinear steepest descent method of Deift and Zhou (Commun Pure Appl Math 56:1029-1077, 2003) revisited by the {\\overline{partial}} -analysis of McLaughlin and Miller (IMRP Int Math Res Pap 48673:1-77, 2006) and Dieng and McLaughlin (Long-time asymptotics for the NLS equation via dbar methods. Preprint, arXiv:0805.2807, 2008), and complemented by the recent work of Borghese et al. (Ann Inst Henri Poincaré Anal Non Linéaire, https://doi.org/10.1016/j.anihpc.2017.08.006, 2017) on soliton resolution for the focusing nonlinear Schrödinger equation. Our results imply that N-soliton solutions of the derivative nonlinear Schrödinger equation are asymptotically stable.

  19. Dissipative behavior of some fully non-linear KdV-type equations

    Science.gov (United States)

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  20. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin; Carrillo, José ; Wolfram, Marie-Therese

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  1. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1985-01-01

    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  2. Taming the nonlinearity of the Einstein equation.

    Science.gov (United States)

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.

  3. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhu Jiamin; Ma Zhengyi

    2007-01-01

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions

  4. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  5. Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)

    1982-01-01

    The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru

  6. Scaling, Intermittency and Decay of MHD Turbulence

    International Nuclear Information System (INIS)

    Lazarian, A.; Cho, Jungyeon

    2005-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field

  7. Hidden regularity for a strongly nonlinear wave equation

    International Nuclear Information System (INIS)

    Rivera, J.E.M.

    1988-08-01

    The nonlinear wave equation u''-Δu+f(u)=v in Q=Ωx]0,T[;u(0)=u 0 ,u'(0)=u 1 in Ω; u(x,t)=0 on Σ= Γx]0,T[ where f is a continuous function satisfying, lim |s| sup →+∞ f(s)/s>-∞, and Ω is a bounded domain of R n with smooth boundary Γ, is analysed. It is shown that there exist a solution for the presented nonlinear wave equation that satisfies the regularity condition: |∂u/∂ η|ε L 2 (Σ). Moreover, it is shown that there exist a constant C>0 such that, |∂u/∂ η|≤c{ E(0)+|v| 2 Q }. (author) [pt

  8. Solitary wave solutions to nonlinear evolution equations in ...

    Indian Academy of Sciences (India)

    1Computer Engineering Technique Department, Al-Rafidain University College, Baghdad, ... applied to extract solutions are tan–cot method and functional variable approaches. ... Consider the nonlinear partial differential equation in the form.

  9. Thermal-diffusion and diffusion-thermo effects on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation

    Directory of Open Access Journals (Sweden)

    S. Srinivas

    2016-01-01

    Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.

  10. Nonlinear analysis of a reaction-diffusion system: Amplitude equations

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2012-10-15

    A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.

  11. A hierarchy of systems of nonlinear equations

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1985-01-01

    Imposing isospectral invariance for the one-dimensional Dirac operator yields an infinite hierarchy of systems of chiral invariant nonlinear partial differential equations. The same system is obtained through a Lax pair construction and finally a formulation in terms of Kac-Moody generators is given. (Author)

  12. Explicit solutions of two nonlinear dispersive equations with variable coefficients

    International Nuclear Information System (INIS)

    Lai Shaoyong; Lv Xiumei; Wu Yonghong

    2008-01-01

    A mathematical technique based on an auxiliary equation and the symbolic computation system Matlab is developed to construct the exact solutions for a generalized Camassa-Holm equation and a nonlinear dispersive equation with variable coefficients. It is shown that the variable coefficients of the derivative terms in the equations cause the qualitative change in the physical structures of the solutions

  13. Exact Solutions of Five Complex Nonlinear Schrödinger Equations by Semi-Inverse Variational Principle

    International Nuclear Information System (INIS)

    Najafi Mohammad; Arbabi Somayeh

    2014-01-01

    In this paper, we establish exact solutions for five complex nonlinear Schrödinger equations. The semi-inverse variational principle (SVP) is used to construct exact soliton solutions of five complex nonlinear Schrödinger equations. Many new families of exact soliton solutions of five complex nonlinear Schrödinger equations are successfully obtained. (general)

  14. Chaos synchronization of nonlinear Bloch equations

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived

  15. Nonlinear model of a rotating hub-beams structure: Equations of motion

    Science.gov (United States)

    Warminski, Jerzy

    2018-01-01

    Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.

  16. Non-linear numerical studies of the tearing mode

    International Nuclear Information System (INIS)

    Schnack, D.D. Jr.

    1978-01-01

    A non-linear, time dependent, hydromagnetic model is developed and applied to the tearing mode, one of a class of instabilities which can occur in a magnetically confined plasma when the constraint of infinite conductivity is relaxed. The model is based on the eight partial differential equations of resistive magnetohydrodynamics (MHD). The equations are expressed as a set of conservation laws which conserves magnetic flux, momentum, mass, and total energy. These equations are then written in general, orthogonal, curvilinear coordinates in two space dimensions, so that the model can readily be applied to a variety of geometries. No assumption about the ordering of terms is made. The resulting equations are then solved by the method of finite differences on an Eulerian mesh. The model is applied to several geometries

  17. Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng

    2004-01-01

    Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair

  18. Analytic continuation of solutions of some nonlinear convolution partial differential equations

    Directory of Open Access Journals (Sweden)

    Hidetoshi Tahara

    2015-01-01

    Full Text Available The paper considers a problem of analytic continuation of solutions of some nonlinear convolution partial differential equations which naturally appear in the summability theory of formal solutions of nonlinear partial differential equations. Under a suitable assumption it is proved that any local holomorphic solution has an analytic extension to a certain sector and its extension has exponential growth when the variable goes to infinity in the sector.

  19. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

    KAUST Repository

    Carrillo, José A.

    2016-09-22

    In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.

  20. New variable separation approach: application to nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Zhang Shunli; Lou, S Y; Qu Changzheng

    2003-01-01

    The concept of the derivative-dependent functional separable solution (DDFSS), as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the DDFSS is obtained and some exact solutions to the resulting equations are described

  1. Exponential Growth of Nonlinear Ballooning Instability

    International Nuclear Information System (INIS)

    Zhu, P.; Hegna, C. C.; Sovinec, C. R.

    2009-01-01

    Recent ideal magnetohydrodynamic (MHD) theory predicts that a perturbation evolving from a linear ballooning instability will continue to grow exponentially in the intermediate nonlinear phase at the same linear growth rate. This prediction is confirmed in ideal MHD simulations. When the Lagrangian compression, a measure of the ballooning nonlinearity, becomes of the order of unity, the intermediate nonlinear phase is entered, during which the maximum plasma displacement amplitude as well as the total kinetic energy continues to grow exponentially at the rate of the corresponding linear phase.

  2. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    Energy Technology Data Exchange (ETDEWEB)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Madurai Region, Ramanathapuram (India); Mahalingam, A. [Department of Physics, Anna University, Chennai - 600 025 (India); Uthayakumar, A. [Department of Physics, Presidency College, Chennai - 600 005 (India)

    2014-07-15

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.

  3. Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates

    International Nuclear Information System (INIS)

    Brizard, A.

    1988-09-01

    A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs

  4. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  5. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    Science.gov (United States)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  6. Calculation code NIRVANA for free boundary MHD equilibrium

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Suzuki, Yasuo; Kameari, Akihisa

    1975-03-01

    The calculation method and code of solving the free boundary problem for MHD equilibrium has been developed. Usage of the code ''NIRVANA'' is described. The toroidal plasma current density determined as a function of the flux function PSI is substituted by a group of the ring currents, whereby the equation of MHD equilibrium is transformed into an integral equation. Either of the two iterative methods is chosen to solve the integral equation, depending on the assumptions made of the plasma surface points. Calculation of the magnetic field configurations is possible when the plasma surface coincides self-consistently with the magnetic flux including the separatrix points. The code is usable in calculation of the circular or non-circular shell-less Tokamak equilibrium. (auth.)

  7. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  8. A nonlinear wave equation in nonadiabatic flame propagation

    International Nuclear Information System (INIS)

    Booty, M.R.; Matalon, M.; Matkowsky, B.J.

    1988-01-01

    The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time

  9. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  10. New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics

    International Nuclear Information System (INIS)

    Yao Ruo-Xia; Wang Wei; Chen Ting-Hua

    2014-01-01

    Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. (general)

  11. Forced oscillation of hyperbolic equations with mixed nonlinearities

    Directory of Open Access Journals (Sweden)

    Yutaka Shoukaku

    2012-04-01

    Full Text Available In this paper, we consider the mixed nonlinear hyperbolic equations with forcing term via Riccati inequality. Some sufficient conditions for the oscillation are derived by using Young inequality and integral averaging method.

  12. Nonlinear damped Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Tarek Saanouni

    2015-04-01

    Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.

  13. Properties of some nonlinear Schroedinger equations motivated through information theory

    International Nuclear Information System (INIS)

    Yuan, Liew Ding; Parwani, Rajesh R

    2009-01-01

    We update our understanding of nonlinear Schroedinger equations motivated through information theory. In particular we show that a q-deformation of the basic nonlinear equation leads to a perturbative increase in the energy of a system, thus favouring the simplest q = 1 case. Furthermore the energy minimisation criterion is shown to be equivalent, at leading order, to an uncertainty maximisation argument. The special value η = 1/4 for the interpolation parameter, where leading order energy shifts vanish, implies the preservation of existing supersymmetry in nonlinearised supersymmetric quantum mechanics. Physically, η might be encoding relativistic effects.

  14. Convergence criteria for systems of nonlinear elliptic partial differential equations

    International Nuclear Information System (INIS)

    Sharma, R.K.

    1986-01-01

    This thesis deals with convergence criteria for a special system of nonlinear elliptic partial differential equations. A fixed-point algorithm is used, which iteratively solves one linearized elliptic partial differential equation at a time. Conditions are established that help foresee the convergence of the algorithm. Under reasonable hypotheses it is proved that the algorithm converges for such nonlinear elliptic systems. Extensive experimental results are reported and they show the algorithm converges in a wide variety of cases and the convergence is well correlated with the theoretical conditions introduced in this thesis

  15. Analysis and classification of nonlinear dispersive evolution equations in the potential representation

    International Nuclear Information System (INIS)

    Eichmann, U.A.; Draayer, J.P.; Ludu, A.

    2002-01-01

    A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class. (author)

  16. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    Science.gov (United States)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  17. Creation and annihilation of solitons in the string nonlinear equation

    International Nuclear Information System (INIS)

    Aguero G, M.A.; Espinosa G, A.A.; Martinez O, J.

    1997-01-01

    Starting from the cubic-quintic Schroedinger equation it is obtained the nonlinear string equation. This system supports regular and singular solitons. It is shown that two singular solitons could be generated after the interaction of two regular solitons and viceversa. (Author)

  18. Stability of Nonlinear Neutral Stochastic Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Minggao Xue

    2010-01-01

    Full Text Available Neutral stochastic functional differential equations (NSFDEs have recently been studied intensively. The well-known conditions imposed for the existence and uniqueness and exponential stability of the global solution are the local Lipschitz condition and the linear growth condition. Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main aim of this paper is to remove the linear growth condition and establish a Khasminskii-type test for nonlinear NSFDEs. New criteria not only cover a wide class of highly nonlinear NSFDEs but they can also be verified much more easily than the classical criteria. Finally, several examples are given to illustrate main results.

  19. A general nonlinear evolution equation for irreversible conservative approach to stable equilibrium

    International Nuclear Information System (INIS)

    Beretta, G.P.

    1986-01-01

    This paper addresses a mathematical problem relevant to the question of nonequilibrium and irreversibility, namely, that of ''designing'' a general evolution equation capable of describing irreversible but conservative relaxtion towards equilibrium. The objective is to present an interesting mathematical solution to this design problem, namely, a new nonlinear evolution equation that satisfies a set of very stringent relevant requirements. Three different frameworks are defined from which the new equation could be adopted, with entirely different interpretations. Some useful well-known mathematics involving Gram determinants are presented and a nonlinear evolution equation is given which meets the stringent design specifications

  20. On realization of nonlinear systems described by higher-order differential equations

    NARCIS (Netherlands)

    van der Schaft, Arjan

    1987-01-01

    We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the

  1. Existence Results for Some Nonlinear Functional-Integral Equations in Banach Algebra with Applications

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayan Mishra

    2016-04-01

    Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.

  2. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax =3.6 m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  3. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax = 3.6m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  4. Nonlinear partial differential equations of second order

    CERN Document Server

    Dong, Guangchang

    1991-01-01

    This book addresses a class of equations central to many areas of mathematics and its applications. Although there is no routine way of solving nonlinear partial differential equations, effective approaches that apply to a wide variety of problems are available. This book addresses a general approach that consists of the following: Choose an appropriate function space, define a family of mappings, prove this family has a fixed point, and study various properties of the solution. The author emphasizes the derivation of various estimates, including a priori estimates. By focusing on a particular approach that has proven useful in solving a broad range of equations, this book makes a useful contribution to the literature.

  5. Infinite sets of conservation laws for linear and nonlinear field equations

    International Nuclear Information System (INIS)

    Mickelsson, J.

    1984-01-01

    The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)

  6. Initial-value problem for the Gardner equation applied to nonlinear internal waves

    Science.gov (United States)

    Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim

    2017-04-01

    The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of

  7. Self-similar solutions of the modified nonlinear schrodinger equation

    International Nuclear Information System (INIS)

    Kitaev, A.V.

    1986-01-01

    This paper considers a 2 x 2 matrix linear ordinary differential equation with large parameter t and irregular singular point of fourth order at infinity. The leading order of the monodromy data of this equation is calculated in terms of its coefficients. Isomonodromic deformations of the equation are self-similar solutions of the modified nonlinear Schrodinger equation, and therefore inversion of the expressions obtained for the monodromy data gives the leading term in the time-asymptotic behavior of the self-similar solution. The application of these results to the type IV Painleve equation is considered in detail

  8. Variational method for the derivative nonlinear Schroedinger equation with computational applications

    Energy Technology Data Exchange (ETDEWEB)

    Helal, M A [Mathematics Department, Faculty of Science, Cairo University (Egypt); Seadawy, A R [Mathematics Department, Faculty of Science, Beni-Suef University (Egypt)], E-mail: mahelal@yahoo.com, E-mail: aly742001@yahoo.com

    2009-09-15

    The derivative nonlinear Schroedinger equation (DNLSE) arises as a physical model for ultra-short pulse propagation. In this paper, the existence of a Lagrangian and the invariant variational principle (i.e. in the sense of the inverse problem of calculus of variations through deriving the functional integral corresponding to a given coupled nonlinear partial differential equations) for two-coupled equations describing the nonlinear evolution of the Alfven wave with magnetosonic waves at a much larger scale are given and the functional integral corresponding to those equations is derived. We found the solutions of DNLSE by choice of a trial function in a region of a rectangular box in two cases, and using this trial function, we find the functional integral and the Lagrangian of the system without loss. Solution of the general case for the two-box potential can be obtained on the basis of a different ansatz where we approximate the Jost function using polynomials of order n instead of the piecewise linear function. An example for the third order is given for illustrating the general case.

  9. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

    DEFF Research Database (Denmark)

    Miansari, Mo; Miansari, Me; Barari, Amin

    2009-01-01

    In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...

  10. Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients

    International Nuclear Information System (INIS)

    Liao Cui-Cui; Cui Jin-Chao; Liang Jiu-Zhen; Ding Xiao-Hua

    2016-01-01

    In this paper, we propose a variational integrator for nonlinear Schrödinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrödinger equations with variable coefficients, cubic nonlinear Schrödinger equations and Gross–Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space. (paper)

  11. Numerical bifurcation analysis of a class of nonlinear renewal equations

    NARCIS (Netherlands)

    Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca

    2016-01-01

    We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits

  12. Nonlinear convective flow of Powell-Erying magneto nanofluid with Newtonian heating

    Directory of Open Access Journals (Sweden)

    Sajid Qayyum

    Full Text Available Objective of present article is to describe magnetohydrodynamic (MHD non-linear convective flow of Powell-Erying nanofluid over a stretching surface. Characteristics of Newtonian heat and mass conditions in this attempt is given attention. Heat and mass transfer analysis is examined in the frame of thermal radiation and chemical reaction. Brownian motion and thermophoresis concept is introduced due to presence of nanoparticles. Nonlinear equations of momentum, energy and concentration are transformed into dimensionless expression by invoking suitable variables. The series solutions are obtained through homotopy analysis method (HAM. Impact of embedded variables on the velocity, temperature and nanoparticles concentration is graphically presented. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and analyzed. It is concluded that velocity field enhances for fluid variable while reverse situation is noticed regarding Hartman number. Temperature and heat transfer rate behave quite reverse for Prandtl number. It is also noted that the concentration and local Sherwood number have opposite behavior in the frame of Brownian motion. Keywords: Powell-Erying nanofluid, Magnetohydrodynamic (MHD, Nonlinear convection, Thermal radiation, Chemical reaction, Newtonian heat and mass conditions

  13. Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order

    International Nuclear Information System (INIS)

    Feng Qing-Hua; Zhang Yao-Ming; Meng Fan-Wei

    2011-01-01

    In this paper, based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method, we try to seek the exact solutions of the general Gardner equation and the general Benjamin—Bona—Mahoney equation. As a result, some traveling wave solutions for the two nonlinear equations are established successfully. Also we make a comparison between the two methods. It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems, and more general solutions are constructed by the Riccati sub-ODE method. (general)

  14. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  15. MHD deceleration of fusion reaction products

    International Nuclear Information System (INIS)

    Chow, S.; Bohachevsky, I.O.

    1979-04-01

    The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process

  16. Embedded solitons in the third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pal, Debabrata; Ali, Sk Golam; Talukdar, B

    2008-01-01

    We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion

  17. Existence of Solutions of Nonlinear Integrodifferential Equations of ...

    Indian Academy of Sciences (India)

    Abstract. In this paper we prove the existence of mild and strong solutions of a nonlinear integrodifferential equation of Sobolev type with nonlocal condition. The results are obtained by using semigroup theory and the Schauder fixed point theorem.

  18. Localized solutions of non-linear Klein--Gordon equations

    International Nuclear Information System (INIS)

    Werle, J.

    1977-05-01

    Nondissipative, stationary solutions for a class of nonlinear Klein-Gordon equations for a scalar field were found explicitly. Since the field is different from zero only inside a sphere of definite radius, the solutions are called quantum droplets

  19. Numerical Simulation of Entropy Generation with Thermal Radiation on MHD Carreau Nanofluid towards a Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    Muhammad Mubashir Bhatti

    2016-05-01

    Full Text Available In this article, entropy generation with radiation on non-Newtonian Carreau nanofluid towards a shrinking sheet is investigated numerically. The effects of magnetohydrodynamics (MHD are also taken into account. Firstly, the governing flow problem is simplified into ordinary differential equations from partial differential equations with the help of similarity variables. The solution of the resulting nonlinear differential equations is solved numerically with the help of the successive linearization method and Chebyshev spectral collocation method. The influence of all the emerging parameters is discussed with the help of graphs and tables. It is observed that the influence of magnetic field and fluid parameters oppose the flow. It is also analyzed that thermal radiation effects and the Prandtl number show opposite behavior on temperature profile. Furthermore, it is also observed that entropy profile increases for all the physical parameters.

  20. Semi-classical analysis for nonlinear Schrödinger equations

    CERN Document Server

    Carles, Remi

    2008-01-01

    These lecture notes review recent results on the high-frequency analysis of nonlinear Schrödinger equations in the presence of an external potential. The book consists of two relatively independent parts: WKB analysis, and caustic crossing. In the first part, the basic linear WKB theory is constructed and then extended to the nonlinear framework. The most difficult supercritical case is discussed in detail, together with some of its consequences concerning instability phenomena. Applications of WKB analysis to functional analysis, in particular to the Cauchy problem for nonlinear Schrödinger e

  1. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    Science.gov (United States)

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  2. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria

    International Nuclear Information System (INIS)

    Frieman, E.A.; Chen, L.

    1981-10-01

    A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency

  3. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  4. From the hypergeometric differential equation to a non-linear Schrödinger one

    International Nuclear Information System (INIS)

    Plastino, A.; Rocca, M.C.

    2015-01-01

    We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre–Rego-Monteiro–Tsallis one. - Highlights: • We show that the q-exponential is a hypergeometric function. • It thus obeys the hypergeometric differential equation (HDE). • We show that the HDE can be cast as a non-linear Schrödinger equation. • This is different from the Nobre, Rego-Monteiro, Tsallis one.

  5. Small-χ singlet structure functions from the nonlinear GLR equation

    International Nuclear Information System (INIS)

    Kim, V.T.; Ryskin, M.G.

    1991-06-01

    The effect of absorptive corrections in the nonlinear GLR evolution equation is considered. A simple method how to estimate the corrections numerically is described. In the case of the parametrization based on semihard hadron phenomenology developed earlier a visible difference between linear and nonlinear evolution is expected at HERA energies. (orig.)

  6. Inverse operator theory method mathematics-mechanization for the solutions of nonlinear equations and some typical applications in nonlinear physics

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    1992-12-01

    Inverse operator theory method (IOTM) has developed rapidly in the last few years. It is an effective and useful procedure for quantitative solution of nonlinear or stochastic continuous dynamical systems. Solutions are obtained in series form for deterministic equations, and in the case of stochastic equation it gives statistic measures of the solution process. A very important advantage of the IOTM is to eliminate a number of restrictive and assumption on the nature of stochastic processes. Therefore, it provides more realistic solutions. The IOTM and its mathematics-mechanization (MM) are briefly introduced. They are used successfully to study the chaotic behaviors of the nonlinear dynamical systems for the first time in the world. As typical examples, the Lorentz equation, generalized Duffing equation, two coupled generalized Duffing equations are investigated by the use of the IOTM and the MM. The results are in good agreement with ones by the Runge-Kutta method (RKM). It has higher accuracy and faster convergence. So the IOTM realized by the MM is of potential application valuable in nonlinear science

  7. New Exact Solutions for New Model Nonlinear Partial Differential Equation

    OpenAIRE

    Maher, A.; El-Hawary, H. M.; Al-Amry, M. S.

    2013-01-01

    In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.

  8. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  9. Nonlinear q-Generalizations of Quantum Equations: Homogeneous and Nonhomogeneous Cases—An Overview

    Directory of Open Access Journals (Sweden)

    Fernando D. Nobre

    2017-01-01

    Full Text Available Recent developments on the generalizations of two important equations of quantum physics, namely the Schroedinger and Klein–Gordon equations, are reviewed. These generalizations present nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard linear equations are recovered in the limit q → 1 . Interestingly, these equations present a common, soliton-like, traveling solution, which is written in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. In both cases, the corresponding well-known Einstein energy-momentum relations, as well as the Planck and the de Broglie ones, are preserved for arbitrary values of q. In order to deal appropriately with the continuity equation, a classical field theory has been developed, where besides the usual Ψ ( x → , t , a new field Φ ( x → , t must be introduced; this latter field becomes Ψ * ( x → , t only when q → 1 . A class of linear nonhomogeneous Schroedinger equations, characterized by position-dependent masses, for which the extra field Φ ( x → , t becomes necessary, is also investigated. In this case, an appropriate transformation connecting Ψ ( x → , t and Φ ( x → , t is proposed, opening the possibility for finding a connection between these fields in the nonlinear cases. The solutions presented herein are potential candidates for applications to nonlinear excitations in plasma physics, nonlinear optics, in structures, such as those of graphene, as well as in shallow and deep water waves.

  10. New non-linear modified massless Klein-Gordon equation

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2017-11-15

    The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)

  11. Divergence-free MHD Simulations with the HERACLES Code

    Directory of Open Access Journals (Sweden)

    Vides J.

    2013-12-01

    Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.

  12. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux.

    Science.gov (United States)

    Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat

    2014-01-01

    This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.

  13. Projection-iteration methods for solving nonlinear operator equations

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Tran thi Lan Anh; Tran Quoc Binh

    1989-09-01

    In this paper, the authors investigate a nonlinear operator equation in uniformly convex Banach spaces as in metric spaces by using stationary and nonstationary generalized projection-iteration methods. Convergence theorems in the strong and weak sense were established. (author). 7 refs

  14. Symmetry reduction for nonlinear wave equations in Riemannian and pseudo-Riemannian spaces

    International Nuclear Information System (INIS)

    Grundland, A.M.; Harnad, J.; Winternitz, P.

    1984-01-01

    The authors show how group theory can be systematically employed to reduce nonlinear partial differential equations in n independent variables to partial differential equations in fewer variables and in particular, to ordinary differential equations. (Auth.)

  15. Computational solutions for non-isothermal, nonlinear magneto-convection in porous media with hall/ionslip currents and ohmic dissipation

    Directory of Open Access Journals (Sweden)

    O. Anwar Bég

    2016-03-01

    Full Text Available A theoretical and numerical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD free convection boundary layer flow and heat transfer in a non-Darcian, isotropic, homogenous porous medium, in the presence of Hall currents, Ionslip currents, viscous heating and Joule heating. A power-law variation is used for the temperature at the wall. The governing nonlinear coupled partial differential equations for momentum conservation in the x and z directions and heat conservation, in the flow regime are transformed from an (x, y, z coordinate system to a (ξ,η coordinate system in terms of dimensionless x-direction velocity (∂F/∂η and z-direction velocity (G and dimensionless temperature function (H under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also local Nusselt number. Excellent correlation is achieved with a Nakamura tridiagonal finite difference scheme (NTM. The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.

  16. Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2005-01-01

    In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)

  17. Exact solutions to a class of nonlinear Schrödinger-type equations

    Indian Academy of Sciences (India)

    A class of nonlinear Schrödinger-type equations, including the Rangwala–Rao equation, the Gerdjikov–Ivanov equation, the Chen–Lee–Lin equation and the Ablowitz–Ramani–Segur equation are investigated, and the exact solutions are derived with the aid of the homogeneous balance principle, and a set of subsidiary ...

  18. Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schroedinger's equation, and hydrodynamic organization of near-molecular-scale vorticity

    International Nuclear Information System (INIS)

    Keanini, R.G.

    2011-01-01

    Research highlights: → Systematic approach for physically probing nonlinear and random evolution problems. → Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. → Organization of near-molecular scale vorticity mediated by hydrodynamic modes. → Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the

  19. On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations

    International Nuclear Information System (INIS)

    An Hengbin; Mo Zeyao; Xu Xiaowen; Liu Xu

    2009-01-01

    The 2-D 3-T heat conduction equations can be used to approximately describe the energy broadcast in materials and the energy swapping between electron and photon or ion. To solve the equations, a fully implicit finite volume scheme is often used as the discretization method. Because the energy diffusion and swapping coefficients have a strongly nonlinear dependence on the temperature, and some physical parameters are discontinuous across the interfaces between the materials, it is a challenge to solve the discretized nonlinear algebraic equations. Particularly, as time advances, the temperature varies so greatly in the front of energy that it is difficult to choose an effective initial iterate when the nonlinear algebraic equations are solved by an iterative method. In this paper, a method of choosing a nonlinear initial iterate is proposed for iterative solving this kind of nonlinear algebraic equations. Numerical results show the proposed initial iterate can improve the computational efficiency, and also the convergence behavior of the nonlinear iteration.

  20. Non self-similar collapses described by the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  1. Quantum osp-invariant non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1985-04-01

    The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)

  2. Stability analysis of resistive MHD modes via a new numerical matching technique

    International Nuclear Information System (INIS)

    Furukawa, M.; Tokuda, S.; Zheng, L.-J.

    2009-01-01

    Full text: Asymptotic matching technique is one of the principal methods for calculating linear stability of resistive magnetohydrodynamics (MHD) modes such as tearing modes. In applying the asymptotic method, the plasma region is divided into two regions: a thin inner layer around the mode-resonant surface and ideal MHD regions except for the layer. If we try to solve this asymptotic matching problem numerically, we meet practical difficulties. Firstly, the inertia-less ideal MHD equation or the Newcomb equation has a regular singular point at the mode-resonant surface, leading to the so-called big and small solutions. Since the big solution is not square-integrable, it needs sophisticated treatment. Even if such a treatment is applied, the matching data or the ratio of small solution to the big one, has been revealed to be sensitive to local MHD equilibrium accuracy and grid structure at the mode-resonant surface by numerical experiments. Secondly, one of the independent solutions in the inner layer, which should be matched onto the ideal MHD solution, is not square-integrable. The response formalism has been adopted to resolve this problem. In the present paper, we propose a new method for computing the linear stability of resistive MHD modes via matching technique, where the plasma region is divided into ideal MHD regions and an inner region with finite width. The matching technique using an inner region with finite width was recently developed for ideal MHD modes in cylindrical geometry, and good performance was shown. Our method extends this idea to resistive MHD modes. In the inner region, the low-beta reduced MHD equations are solved, and the solution is matched onto the solution of the Newcomb equation by using boundary conditions such that the parallel electric field vanishes properly as approaching the computational boundaries. If we use the inner region with finite width, the practical difficulties raised above can be avoided from the beginning. Figure

  3. Several Dynamical Properties for a Nonlinear Shallow Water Equation

    Directory of Open Access Journals (Sweden)

    Ls Yong

    2014-01-01

    Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R  (N is a natural number estimate for the solution are obtained.

  4. Singular solitons and other solutions to a couple of nonlinear wave equations

    International Nuclear Information System (INIS)

    Inc Mustafa; Ulutaş Esma; Biswas Anjan

    2013-01-01

    This paper addresses the extended (G'/G)-expansion method and applies it to a couple of nonlinear wave equations. These equations are modified the Benjamin—Bona—Mahoney equation and the Boussinesq equation. This extended method reveals several solutions to these equations. Additionally, the singular soliton solutions are revealed, for these two equations, with the aid of the ansatz method

  5. Reduction of the state vector by a nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Pearle, P.

    1976-01-01

    It is hypothesized that the state vector describes the physical state of a single system in nature. Then it is necessary that the state vector of a macroscopic apparatus not assume the form of a superposition of macroscopically distinguishable state vectors. To prevent this, it is suggested that a nonlinear term be added to the Schrodinger equation, which rapidly drives the amplitude of one or another of the state vectors in such a superposition to one, and the rest to zero. It is proposed that it is the phase angles of the amplitudes immediately after a measurement which determine which amplitude is driven to one. A diffusion equation is arrived at to describe the reduction of an ensemble of state vectors corresponding to an ensemble of macroscopically identically prepared experiments. Then a nonlinear term to add to the Schrodinger equation is presented, and it is shown that this leads to the diffusion equation in a weak-coupling approximation

  6. Closed form solutions of two time fractional nonlinear wave equations

    Directory of Open Access Journals (Sweden)

    M. Ali Akbar

    2018-06-01

    Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation

  7. Fujita Exponent for a Nonlinear Degenerate Parabolic Equation with Localized Source

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2014-01-01

    Full Text Available This paper is devoted to understand the blow-up properties of reaction-diffusion equations which combine a localized reaction term with nonlinear diffusion. In particular, we study the critical exponent of a p-Laplacian equation with a localized reaction. We obtain the Fujita exponent qc of the equation.

  8. PERTURBATION ESTIMATES FOR THE MAXIMAL SOLUTION OF A NONLINEAR MATRIX EQUATION

    Directory of Open Access Journals (Sweden)

    Vejdi I. Hasanov

    2017-06-01

    Full Text Available In this paper a nonlinear matrix equation is considered. Perturba- tion estimations for the maximal solution of the considered equation are obtained. The results are illustrated by the use of numerical ex- amples.

  9. Resistive MHD Stability Analysis in Near Real-time

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  10. Analytical approximate solutions for a general class of nonlinear delay differential equations.

    Science.gov (United States)

    Căruntu, Bogdan; Bota, Constantin

    2014-01-01

    We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.

  11. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  12. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  13. Integrability of a system of two nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhukhunashvili, V.Z.

    1989-01-01

    In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants

  14. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics

    International Nuclear Information System (INIS)

    Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.

    2004-01-01

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed

  15. Exact solutions for the quintic nonlinear Schroedinger equation with time and space modulated nonlinearities and potentials

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Calvo, Gabriel F.

    2009-01-01

    In this Letter, by means of similarity transformations, we construct explicit solutions to the quintic nonlinear Schroedinger equation with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general approach and use it to study some examples and find nontrivial explicit solutions such as periodic (breathers), quasiperiodic and bright and dark soliton solutions

  16. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  17. Free convective MHD Cattaneo-Christov flow over three different geometries with thermophoresis and Brownian motion

    Directory of Open Access Journals (Sweden)

    M. Jayachandra Babu

    2017-12-01

    Full Text Available The knowledge of heat and mass transfer of MHD flows over different geometries is very important for heat exchangers design, transpiration, fiber coating, etc. With this initiation, a mathematical model is proposed to investigate the two-dimensional flow, heat and mass transfer of magnetohydrodynamic flow over three different geometries (vertical cone, vertical wedge, and a vertical plate. Cattaneo-Christov heat flux with external magnetic field, thermophoresis and Brownian movement effect are introduced in the model. Runge-Kutta and Newton’s methods are employed to solve the altered governing nonlinear equations. The influences of the parameters of concern on the common profiles (velocity, temperature, and concentration are conversed (in three cases. By viewing the same parameters, skin friction coefficient, heat and mass transfer rates are discussed with the assistance of tables. It is discovered that the momentum and thermal boundary layers are non-uniform for the MHD flow over three geometries (vertical cone, wedge, and a plate. Thermal and solutal Grashof numbers regulate the temperature and concentration fields. The heat and mass transfer rates of the flow over a cone are highly influenced by the thermal relaxation parameter. Keywords: MHD, Cattaneo-Christov heat flux, Thermal relaxation, Thermophoresis, Brownian motion

  18. Nonlinear Schrödinger equations with single power nonlinearity and harmonic potential

    Science.gov (United States)

    Cipolatti, R.; de Macedo Lira, Y.; Trallero-Giner, C.

    2018-03-01

    We consider a generalized nonlinear Schrödinger equation (GNLS) with a single power nonlinearity of the form λ ≤ft\\vert \\varphi \\right\\vert p , with p  >  0 and λ\\in{R} , in the presence of a harmonic confinement. We report the conditions that p and λ must fulfill for the existence and uniqueness of ground states of the GNLS. We discuss the Cauchy problem and summarize which conditions are required for the nonlinear term λ ≤ft\\vert \\varphi \\right\\vert p to render the ground state solutions orbitally stable. Based on a new variational method we provide exact formulæ for the minimum energy for each index p and the changing range of values of the nonlinear parameter λ. Also, we report an approximate close analytical expression for the ground state energy, performing a comparative analysis of the present variational calculations with those obtained by a generalized Thomas-Fermi approach, and soliton solutions for the respective ranges of p and λ where these solutions can be implemented to describe the minimum energy.

  19. On a method for constructing the Lax pairs for nonlinear integrable equations

    International Nuclear Information System (INIS)

    Habibullin, I T; Poptsova, M N; Khakimova, A R

    2016-01-01

    We suggest a direct algorithm for searching the Lax pairs for nonlinear integrable equations. It is effective for both continuous and discrete models. The first operator of the Lax pair corresponding to a given nonlinear equation is found immediately, coinciding with the linearization of the considered nonlinear equation. The second one is obtained as an invariant manifold to the linearized equation. A surprisingly simple relation between the second operator of the Lax pair and the recursion operator is discussed: the recursion operator can immediately be found from the Lax pair. Examples considered in the article are convincing evidence that the found Lax pairs differ from the classical ones. The examples also show that the suggested objects are true Lax pairs which allow the construction of infinite series of conservation laws and hierarchies of higher symmetries. In the case of the hyperbolic type partial differential equation our algorithm is slightly modified; in order to construct the Lax pairs from the invariant manifolds we use the cutting off conditions for the corresponding infinite Laplace sequence. The efficiency of the method is illustrated by application to some equations given in the Svinolupov–Sokolov classification list for which the Lax pairs and the recursion operators have not been found earlier. (paper)

  20. Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Sun Chengfeng; Gao Hongjun

    2009-01-01

    The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.

  1. The spectral transform as a tool for solving nonlinear discrete evolution equations

    International Nuclear Information System (INIS)

    Levi, D.

    1979-01-01

    In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)

  2. Center manifold for nonintegrable nonlinear Schroedinger equations on the line

    International Nuclear Information System (INIS)

    Weder, R.

    2000-01-01

    In this paper we study the following nonlinear Schroedinger equation on the line, where f is real-valued, and it satisfies suitable conditions on regularity, on growth as a function of u and on decay as x → ± ∞. The generic potential, V, is real-valued and it is chosen so that the spectrum of H:= -d 2 /dx 2 +V consists of one simple negative eigenvalue and absolutely-continuous spectrum filling (0,∞). The solutions to this equation have, in general, a localized and a dispersive component. The nonlinear bound states, that bifurcate from the zero solution at the energy of the eigenvalue of H, define an invariant center manifold that consists of the orbits of time-periodic localized solutions. We prove that all small solutions approach a particular periodic orbit in the center manifold as t→ ± ∞. In general, the periodic orbits are different for t→ ± ∞. Our result implies also that the nonlinear bound states are asymptotically stable, in the sense that each solution with initial data near a nonlinear bound state is asymptotic as t→ ± ∞ to the periodic orbits of nearby nonlinear bound states that are, in general, different for t→ ± ∞. (orig.)

  3. Some aspects of transformation of the nonlinear plasma equations to the space-independent frame

    International Nuclear Information System (INIS)

    Paul, S.N.; Chakraborty, B.

    1982-01-01

    Relativistically correct transformation of nonlinear plasma equations are derived in a space-independent frame. This transformation is useful in many ways because in place of partial differential equations one obtains a set of ordinary differential equations in a single independent variable. Equations of Akhiezer and Polovin (1956) for nonlinear plasma oscillations have been generalized and the results of Arons and Max (1974), and others for wave number shift and precessional rotation of electromagnetic wave are recovered in a space-independent frame. (author)

  4. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  5. A simplified MHD model of capillary Z-Pinch compared with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)

    2016-11-15

    The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Oscillating particle-like solutions of nonlinear Klein-Gordon equation

    International Nuclear Information System (INIS)

    Bogolubsky, I.L.

    1976-01-01

    A denumerable set of oscillating spherically-symmetric particle-like solutions of the Klein-Gordon equation with cubic nonlinearity is found. Extended particles modelled by them turn out to be slightly radiating and long-lived

  7. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  8. dimensional nonlinear Schrödinger equation with spatially

    Indian Academy of Sciences (India)

    Hong-Yu Wu

    2017-08-16

    Aug 16, 2017 ... HONG-YU WU. ∗ and LI-HONG JIANG ... Our present work provides a detailed answer to these questions. ... with the self-consistency condition |Y(θ,ϕ)|2 = 1. Equation (4) .... [4] L Q Kong and C Q Dai, Nonlinear Dyn. 81, 1553 ...

  9. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  10. New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Yang Qin; Dai Chaoqing; Zhang Jiefang

    2005-01-01

    Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.

  11. Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism

    Directory of Open Access Journals (Sweden)

    Ervin K. Lenzi

    2017-01-01

    Full Text Available We investigate an intermittent process obtained from the combination of a nonlinear diffusion equation and pauses. We consider the porous media equation with reaction terms related to the rate of switching the particles from the diffusive mode to the resting mode or switching them from the resting to the movement. The results show that in the asymptotic limit of small and long times, the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for intermediate times depends on the rates present in the reaction terms. In this scenario, we show that, in the asymptotic limits, the distributions for this process are given by in terms of power laws which may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a situation characterized by different diffusive regimes, which emerges when the diffusive term is a mixing of linear and nonlinear terms.

  12. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  13. Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.

    1996-01-01

    Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...

  14. GDTM-Padé technique for the non-linear differential-difference equation

    Directory of Open Access Journals (Sweden)

    Lu Jun-Feng

    2013-01-01

    Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.

  15. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.

    Science.gov (United States)

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2014-09-01

    We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.

  16. Thermophoretic diffusion and nonlinear radiative heat transfer due to a contracting cylinder in a nanofluid with generalized slip condition

    Directory of Open Access Journals (Sweden)

    Z. Abbas

    Full Text Available An analysis is carried out to study the generalized slip condition and MHD flow of a nanofluid due to a contracting cylinder in the presence of non-linear radiative heat transfer using Buongiorno’s model. The Navier-Stokes along with energy and nanoparticle concentration equations is transformed to highly nonlinear ordinary differential equations using similarity transformations. These similar differential equations are then solved numerically by employing a shooting technique with Runge–Kutta–Fehlberg method. Dual solutions exist for a particular range of the unsteadiness parameter. The physical influence of the several important fluid parameters on the flow velocity, temperature and nanoparticle volume fraction is discussed and shown through graphs and table in detail. The present study indicates that as increase of Brownian motion parameter and slip velocity is to decrease the nanoparticle volume fraction. Keywords: Nanofluid, Contracting cylinder, Nonlinear thermal radiation, Generalized slip condition, Numerical solution

  17. A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mountassir Hamdi Cherif

    2017-11-01

    Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

  18. New generalized and improved (G′/G-expansion method for nonlinear evolution equations in mathematical physics

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2014-10-01

    Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.

  19. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    Science.gov (United States)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  20. Numerical computation of MHD equilibria

    International Nuclear Information System (INIS)

    Atanasiu, C.V.

    1982-10-01

    A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)

  1. Oscillation criteria for fourth-order nonlinear delay dynamic equations

    Directory of Open Access Journals (Sweden)

    Yunsong Qi

    2013-03-01

    Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples

  2. Contractivity and Exponential Stability of Solutions to Nonlinear Neutral Functional Differential Equations in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    Wan-sheng WANG; Shou-fu LI; Run-sheng YANG

    2012-01-01

    A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.

  3. Statistical Theory of the Ideal MHD Geodynamo

    Science.gov (United States)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  4. Synoptic, Global Mhd Model For The Solar Corona

    Science.gov (United States)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  5. Jacobian elliptic function expansion solutions of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Wei Caimin; Xia Zunquan; Tian Naishuo

    2005-01-01

    Jacobian elliptic function expansion method is extended and applied to construct the exact solutions of the nonlinear Wick-type stochastic partial differential equations (SPDEs) and some new exact solutions are obtained via this method and Hermite transformation

  6. Application of the trial equation method for solving some nonlinear ...

    Indian Academy of Sciences (India)

    Therefore, our aim is just to find the function F. Liu has obtained a number of exact solutions to many nonlinear differential equations when F(u) is a polynomial or a rational function. ... In this study, we apply the trial equation method to seek exact solutions of the ... twice and setting the integration constant to zero, we have.

  7. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Science.gov (United States)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  8. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile

  9. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  10. Nonlinear perturbations of systems of partial differential equations with constant coefficients

    Directory of Open Access Journals (Sweden)

    Carmen J. Vanegas

    2000-01-01

    Full Text Available In this article, we show the existence of solutions to boundary-value problems, consisting of nonlinear systems of partial differential equations with constant coefficients. For this purpose, we use the right inverse of an associated operator and a fix point argument. As illustrations, we apply this method to Helmholtz equations and to second order systems of elliptic equations.

  11. Chirped self-similar solutions of a generalized nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Fei Jin-Xi [Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Zheng Chun-Long [Shaoguan Univ., Guangdong (China). School of Physics and Electromechanical Engineering; Shanghai Univ. (China). Shanghai Inst. of Applied Mathematics and Mechanics

    2011-01-15

    An improved homogeneous balance principle and an F-expansion technique are used to construct exact chirped self-similar solutions to the generalized nonlinear Schroedinger equation with distributed dispersion, nonlinearity, and gain coefficients. Such solutions exist under certain conditions and impose constraints on the functions describing dispersion, nonlinearity, and distributed gain function. The results show that the chirp function is related only to the dispersion coefficient, however, it affects all of the system parameters, which influence the form of the wave amplitude. As few characteristic examples and some simple chirped self-similar waves are presented. (orig.)

  12. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2012-01-01

    Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

  13. Periodic solutions for one dimensional wave equation with bounded nonlinearity

    Science.gov (United States)

    Ji, Shuguan

    2018-05-01

    This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.

  14. Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency

    Science.gov (United States)

    Zhang, Dong; Kushibiki, Junichi; Zou, Wei

    2006-10-01

    We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.

  15. Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction

    Science.gov (United States)

    Shateyi, Stanford; Marewo, Gerald T.

    2018-05-01

    We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.

  16. Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations

    Directory of Open Access Journals (Sweden)

    E. Messina

    2008-01-01

    Full Text Available We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj,  i=0,1,2,…, where fj(x  (j=0,…,i are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.

  17. Iteration of some discretizations of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Ross, K.A.; Thompson, C.J.

    1986-01-01

    We consider several discretizations of the nonlinear Schroedinger equation which lead naturally to the study of some symmetric difference equations of the form PHIsub(n+1) + PHIsub(n-1) = f(PHIsub(n)). We find a variety of interesting and exotic behaviour from simple closed orbits to intricate patterns of orbits and loops in the (PHIsub(n+1),PHIsub(n)) phase-plane. Some analytical results for a special case are also presented. (orig.)

  18. General decay of solutions of a nonlinear system of viscoelastic wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2011-04-16

    This work is concerned with a system of two viscoelastic wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we prove that, for certain class of relaxation functions and for some restrictions on the initial data, the rate of decay of the total energy depends on those of the relaxation functions. This result improves many results in the literature, such as the ones in Messaoudi and Tatar (Appl. Anal. 87(3):247-263, 2008) and Liu (Nonlinear Anal. 71:2257-2267, 2009) in which only the exponential and polynomial decay rates are considered. © 2011 Springer Basel AG.

  19. General decay of solutions of a nonlinear system of viscoelastic wave equations

    KAUST Repository

    Said-Houari, Belkacem; Messaoudi, Salim A.; Guesmia, Aï ssa

    2011-01-01

    This work is concerned with a system of two viscoelastic wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we prove that, for certain class of relaxation functions and for some restrictions on the initial data, the rate of decay of the total energy depends on those of the relaxation functions. This result improves many results in the literature, such as the ones in Messaoudi and Tatar (Appl. Anal. 87(3):247-263, 2008) and Liu (Nonlinear Anal. 71:2257-2267, 2009) in which only the exponential and polynomial decay rates are considered. © 2011 Springer Basel AG.

  20. Modern aspects of nonlinear convection and magnetic field in flow of thixotropic nanofluid over a nonlinear stretching sheet with variable thickness

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir

    2018-05-01

    Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.

  1. Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics

    Science.gov (United States)

    Kakhktsyan, V. M.; Khachatryan, A. Kh.

    2013-07-01

    A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.

  2. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  3. A perturbation expansion for the nonlinear Schroedinger equation with application to the influence of nonlinear Landau damping

    International Nuclear Information System (INIS)

    Weiland, J.; Ichikawa, Y.H.; Wilhelmsson, H.

    1977-12-01

    The Bogoliubov-Mitropolsky perturbation method has been applied to the study of a perturbation on soliton solutions to the nonlinear Schroedinger equation. The results are compared to those of Karpman and Maslov using the inverse scattering method and to those by Ott and Sudan on the KdV equation. (auth.)

  4. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves

    DEFF Research Database (Denmark)

    Eldeberky, Y.; Madsen, Per A.

    1999-01-01

    and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement......This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary...... is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic...

  5. Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation

    Directory of Open Access Journals (Sweden)

    V. O. Vakhnenko

    2016-01-01

    Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.

  6. Nonlinear evolution of magnetic islands in a two fluid torus

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.

    1996-01-01

    A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress

  7. ON THE INSTABILITY OF SOLUTIONS TO A NONLINEAR VECTOR DIFFERENTIAL EQUATION OF FOURTH ORDER

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.

  8. Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-09-15

    Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the

  9. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  10. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Science.gov (United States)

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  11. New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations

    International Nuclear Information System (INIS)

    Tian Lixin; Yin Jiuli

    2004-01-01

    In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations

  12. Effects of toroidal coupling on the non-linear evolution of tearing modes and on the stochastisation of the magnetic field topology in plasmas

    International Nuclear Information System (INIS)

    Edery, D.; Pellat, R.; Soule, J.L.

    1981-01-01

    The resistive MHD equations have been handled in toroidal geometry following the tokamak ordering, in order to obtain a simplified set of non-linear equations. This system of equations is compact, closed, consistent and exact to the first two orders in the expansion in the inverse aspect ratio. Studies of the non-linear evolution of tearing modes in the real geometry of tokamak discharges are now in progress, and quite significant results have been obtained from the numerical code REVE of Fontenay based on our above model. From the analytical results, strong linear coupling between neighbouring modes is expected as is demonstrated by the numerical results in the linear, and non-linear regimes. Moreover, coupling exhibits a stochastic structure of the magnetic field lines, the threshold of which is seen to be easily computed by a simple analytical criterion. (orig.)

  13. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  14. Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Danxia Wang

    2015-01-01

    Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l‍(ux2dxuxx-ϕ(∫0l‍(ux2dxuxxt=q(x, in  [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.

  15. Generalized MHD for numerical stability analysis of high-performance plasmas in tokamaks

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.

    1998-01-01

    A set of generalized magnetohydrodynamic (MHD) equations is formulated to accommodate the effects associated with high ion and electron temperatures in high-performance plasmas in tokamaks. The effects of neoclassical bootstrap current, neoclassical ion viscosity, the ion finite Larmor radius effect and electron and ion drift effects are taken into account in two-fluid MHD equations together with gyroviscosity, parallel viscosity, electron parallel inertia and collisionless ion heat flux. The ion velocity is identified as the plasma velocity, while the electron velocity is expressed in terms of the plasma velocity and electric current. Ion and electron momentum equations are combined to give the plasma momentum equation. The perpendicular (with respect to the equilibrium magnetic field) ion momentum equation is used as perpendicular Ohm's law and the parallel electron momentum equation - as parallel Ohm's law. Perpendicular Ohm's law allows for the Hall and ion drift effects. Parallel Ohm's law includes the electron drift effect, collisionless skin effect and bootstrap current. In addition, both perpendicular and parallel Ohm's laws contain the resistivity. Due to the quasineutrality condition, the ions and electrons are characterized by the same number density which is described by the ion continuity equation. On the other hand, the ion and electron temperatures are allowed to be different. The ion temperature is described by the ion energy equation allowing for the oblique heat flux, in addition to the perpendicular ion heat flux. The electron temperature is determined by the condition of high parallel electron heat conductivity. The ion and electron parallel viscosities are represented in a form valid for all the collisionality regimes (Pfirsch-Schluter, plateau, and banana). An optimized form of the generalized MHD equations is then represented in terms of the toroidal coordinate system used in the JET equilibrium and stability codes. The derived equations

  16. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.; Langer, U.

    2010-01-01

    of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series

  17. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  18. Parametric autoresonant excitation of the nonlinear Schrödinger equation.

    Science.gov (United States)

    Friedland, L; Shagalov, A G

    2016-10-01

    Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.

  19. Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data

    Science.gov (United States)

    Schmitt, François G.

    2007-10-01

    Several nonlinear constitutive equations have been proposed to overcome the limitations of the linear eddy-viscosity models to describe complex turbulent flows. These nonlinear equations have often been compared to experimental data through the outputs of numerical models. Here we perform a priori analysis of nonlinear eddy-viscosity models using direct numerical simulation (DNS) of simple shear flows. In this paper, the constitutive equation is directly checked using a tensor projection which involves several invariants of the flow. This provides a 3 terms development which is exact for 2D flows, and a best approximation for 3D flows. We provide the quadratic nonlinear constitutive equation for the near-wall region of simple shear flows using DNS data, and estimate their coefficients. We show that these coefficients have several common properties for the different simple shear flow databases considered. We also show that in the central region of pipe flows, where the shear rate is very small, the coefficients of the constitutive equation diverge, indicating the failure of this representation for vanishing shears.

  20. MHD equilibrium of toroidal fusion plasma with stationary flows

    International Nuclear Information System (INIS)

    Galkowski, A.

    1994-01-01

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs