Wang, X.; Zheng, G. T.
2016-02-01
A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.
Indian Academy of Sciences (India)
Ramaswamy Jaganathan; Sudeshna Sinha
2005-03-01
Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.
Lasue, Jeremie; Wiens, Roger; Stepinski, Tom; Forni, Olivier; Clegg, Samuel; Maurice, Sylvestre; Chemcam Team
2011-02-01
ChemCam is a remote laser-induced breakdown spectroscopy (LIBS) instrument that will arrive on Mars in 2012, on-board the Mars Science Laboratory Rover. The LIBS technique is crucial to accurately identify samples and quantify elemental abundances at various distances from the rover. In this study, we compare different linear and nonlinear multivariate techniques to visualize and discriminate clusters in two dimensions (2D) from the data obtained with ChemCam. We have used principal components analysis (PCA) and independent components analysis (ICA) for the linear tools and compared them with the nonlinear Sammon's map projection technique. We demonstrate that the Sammon's map gives the best 2D representation of the data set, with optimization values from 2.8% to 4.3% (0% is a perfect representation), together with an entropy value of 0.81 for the purity of the clustering analysis. The linear 2D projections result in three (ICA) and five times (PCA) more stress, and their clustering purity is more than twice higher with entropy values about 1.8. We show that the Sammon's map algorithm is faster and gives a slightly better representation of the data set if the initial conditions are taken from the ICA projection rather than the PCA projection. We conclude that the nonlinear Sammon's map projection is the best technique for combining data visualization and clustering assessment of the ChemCam LIBS data in 2D. PCA and ICA projections on more dimensions would improve on these numbers at the cost of the intuitive interpretation of the 2D projection by a human operator.
Directory of Open Access Journals (Sweden)
Ali Volkan Bilgili
2013-07-01
Full Text Available In the Harran Plain, southeastern Turkey, soil salinisation causes land degradation threatening the sustainability of agricultural production. According to a recent survey, approximately 18000 ha area has been affected by soil salinity and sodicity at various levels. Determining the distribution of saline and sodic soils in the study area is the first step for effective management of these soils. Over 200 soil samples have been randomly selected across the plain and analyzed for selected soil salinity and sodicity variables in soil salinity laboratory. Indicator kriging (IK, a non-linear interpolation technique, was used to map the probability levels of occurrence of saline and sodic soils across the plain. The results of IK showed the probability distributions of risky areas under different types of soil salinity classes; nonsaline, saline, saline – sodic and sodic.
Frasinski, Leszek J.
2016-08-01
Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.
Learning Inverse Rig Mappings by Nonlinear Regression.
Holden, Daniel; Saito, Jun; Komura, Taku
2016-11-11
We present a framework to design inverse rig-functions - functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.
Invariant metric for nonlinear symplectic maps
Indian Academy of Sciences (India)
Govindan Rangarajan; Minita Sachidanand
2002-03-01
In this paper, we construct an invariant metric in the space of homogeneous polynomials of a given degree (≥ 3). The homogeneous polynomials specify a nonlinear symplectic map which in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as a function of system parameters, we demonstrate that the performance of a nonlinear Hamiltonian system is enhanced.
Improving wetland mapping techniques
US Fish and Wildlife Service, Department of the Interior — Mapping wetland extent, structure and invasives using radar imagery. Acquiring optical, thermal, LIDAR, and RADAR images and analysis for improved wetland mapping,...
An Explicit Nonlinear Mapping for Manifold Learning.
Qiao, Hong; Zhang, Peng; Wang, Di; Zhang, Bo
2013-02-01
Manifold learning is a hot research topic in the held of computer science and has many applications in the real world. A main drawback of manifold learning methods is, however, that there are no explicit mappings from the input data manifold to the output embedding. This prohibits the application of manifold learning methods in many practical problems such as classification and target detection. Previously, in order to provide explicit mappings for manifold learning methods, many methods have been proposed to get an approximate explicit representation mapping with the assumption that there exists a linear projection between the high-dimensional data samples and their low-dimensional embedding. However, this linearity assumption may be too restrictive. In this paper, an explicit nonlinear mapping is proposed for manifold learning, based on the assumption that there exists a polynomial mapping between the high-dimensional data samples and their low-dimensional representations. As far as we know, this is the hrst time that an explicit nonlinear mapping for manifold learning is given. In particular, we apply this to the method of locally linear embedding and derive an explicit nonlinear manifold learning algorithm, which is named neighborhood preserving polynomial embedding. Experimental results on both synthetic and real-world data show that the proposed mapping is much more effective in preserving the local neighborhood information and the nonlinear geometry of the high-dimensional data samples than previous work.
Comparative wear mapping techniques
DEFF Research Database (Denmark)
Alcock, J.; Sørensen, Ole Toft; Jensen, S.
1996-01-01
Pin surfaces were analysed by laser profilometry. Two roughness parameters, R(a) and the fractal dimension, were investigated as a first step towards methods of quantitative wear mechanism mapping. Both parameters were analysed for their relationship to the severity and prevalence of a mechanism....
Comparative wear mapping techniques
DEFF Research Database (Denmark)
Alcock, J.; Sørensen, Ole Toft; Jensen, S.
1996-01-01
Pin-on-disc tests of tungsten carbide pins against silicon carbide discs were performed and wear rate, mechanism and friction maps constructed. Correlations were observed between the wear mode and the friction of the pin-disc interface, and between the qualitative incidence of disruptive wear...
Modal Identification Using OMA Techniques: Nonlinearity Effect
Directory of Open Access Journals (Sweden)
E. Zhang
2015-01-01
Full Text Available This paper is focused on an assessment of the state of the art of operational modal analysis (OMA methodologies in estimating modal parameters from output responses of nonlinear structures. By means of the Volterra series, the nonlinear structure excited by random excitation is modeled as best linear approximation plus a term representing nonlinear distortions. As the nonlinear distortions are of stochastic nature and thus indistinguishable from the measurement noise, a protocol based on the use of the random phase multisine is proposed to reveal the accuracy and robustness of the linear OMA technique in the presence of the system nonlinearity. Several frequency- and time-domain based OMA techniques are examined for the modal identification of simulated and real nonlinear mechanical systems. Theoretical analyses are also provided to understand how the system nonlinearity degrades the performance of the OMA algorithms.
Metric domains, holomorphic mappings and nonlinear semigroups
Directory of Open Access Journals (Sweden)
Simeon Reich
1998-01-01
Full Text Available We study nonlinear semigroups of holomorphic mappings on certain domains in complex Banach spaces. We examine, in particular, their differentiability and their representations by exponential and other product formulas. In addition, we also construct holomorphic retractions onto the stationary point sets of such semigroups.
L2-gain and passivity techniques in nonlinear control
van der Schaft, Arjan
2017-01-01
This standard text gives a unified treatment of passivity and L2-gain theory for nonlinear state space systems, preceded by a compact treatment of classical passivity and small-gain theorems for nonlinear input-output maps. The synthesis between passivity and L2-gain theory is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this standpoint. The connection between L2-gain and passivity via scattering is detailed. Feedback equivalence to a passive system and resulting stabilization strategies are discussed. The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasising the close relations with physical modeling and control by interconnection, and leading to novel control methodologies going beyond passivity. The potential of L2-gain techniques in nonlinear control, including a theory of all-pass factorizations of nonlinear systems, and of parametrization...
Nonlinear functional mapping of the human brain
Allgaier, Nicholas; Banaschewski, Tobias; Barker, Gareth; Arun L W Bokde; Bongard, Josh C.; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J.; Danforth, Christopher M.; Desrivières, Sylvane; Peter S. Dodds; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen
2015-01-01
The field of neuroimaging has truly become data rich, and novel analytical methods capable of gleaning meaningful information from large stores of imaging data are in high demand. Those methods that might also be applicable on the level of individual subjects, and thus potentially useful clinically, are of special interest. In the present study, we introduce just such a method, called nonlinear functional mapping (NFM), and demonstrate its application in the analysis of resting state fMRI fro...
Recovering map static nonlinearities from chaotic data using dynamical models
Aguirre, Luis Antonio
1997-02-01
This paper is concerned with the estimation from chaotic data of maps with static nonlinearities. A number of issues concerning model construction such as structure selection, over-parametrization and model validation are discussed in the light of the shape of the static non-linearities reproduced by the estimated maps. A new interpretation of term clusters and cluster coefficients of polynomial models is provided based on this approach. The paper discusses model limitations and some useful principles to select the structure of nonlinear maps. Some of the ideas have been tested using several nonlinear systems including a boost voltage regulator map and a set of real data from a chaotic circuit.
Nonlinear dynamic macromodeling techniques for audio systems
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
Spatial 3-D nonlinear calibration technique for PSD
Guo, Lifeng; Zhang, Guoxiong; Zheng, Qi; Gong, Qiang; Liu, Wenyao
2006-11-01
A 3-D nonlinear calibration technique for Position sensitive detector (PSD) in long distance laser collimating measurement is proposed. An automatic calibration system was developed to measure the nonlinearity of a 2-D PSD in 3-D space. It is mainly composed of a high accurate 2-D motorized translational stage, a high precision distance measuring device, and a computer-based data acquisition and control system. With the aid of the calibration system, the nonlinear characteristic of 2-D PSD is checked in a long collimating distance up to 78 meters. The calibration experiment was carried out for a series of distance, e.g. every 15 meters. The results showed that the nonlinearity of 2-D PSD is different evidently when the PSD element is at different distance from the laser head. One calculating method is defined to evaluate the nonlinear errors. The spatial 3-D mapping relationship between the actual displacements of the incident light and the coordinates of 2-D PSD outputs is established using a multilayer feedforward neural network.
An Introduction to the Space Mapping Technique
DEFF Research Database (Denmark)
Bakr, Mohamed H.; Bandler, John W.; Madsen, Kaj
2001-01-01
The space mapping technique is intended for optimization of engineering models which involve very expensive function evaluations. It is assumed that two different models of the same physical system are available: Besides the expensive model of primary interest (denoted the fine model), access...... to a cheaper (coarse) model is assumed which may be less accurate. The main idea of the space mapping technique is to use the coarse model to gain information about the fine model, and to apply this in the search for an optimal solution of the latter. Thus the technique iteratively establishes a mapping...... for engineering purposes. Thus the space mapping technique may be considered a preprocessing technique that perhaps must be succeeded by use of classical optimization techniques. We present an automatic scheme which integrates the space mapping and classical techniques....
Energy Technology Data Exchange (ETDEWEB)
Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it
2006-02-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
Color image encryption based on Coupled Nonlinear Chaotic Map
Energy Technology Data Exchange (ETDEWEB)
Mazloom, Sahar [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: sahar.mazloom@gmail.com; Eftekhari-Moghadam, Amir Masud [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: eftekhari@qazviniau.ac.ir
2009-11-15
Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.
Algebraic calculation of stroboscopic maps of ordinary, nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Wackerbauer, R. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)); Huebler, A. (Illinois Univ., Urbana, IL (United States). Center for Complex Systems Research); Mayer-Kress, G. (Los Alamos National Lab., NM (United States) California Univ., Santa Cruz, CA (United States). Dept. of Mathematics)
1991-07-25
The relation between the parameters of a differential equation and corresponding discrete maps are becoming increasingly important in the study of nonlinear dynamical systems. Maps are well adopted for numerical computation and several universal properties of them are known. Therefore some perturbation methods have been proposed to deduce them for physical systems, which can be modeled by an ordinary differential equation (ODE) with a small nonlinearity. A new iterative, rigorous algebraic method for the calculation of the coefficients of a Taylor expansion of a stroboscopic map from ODE's with not necessarily small nonlinearities is presented. It is shown analytically that most of the coefficients are small for a small integration time and grow slowly in the course of time if the flow vector field of the ODE is polynomial and if the ODE has fixed point in the origin. Approximations of different orders respectively of the rest term are investigated for several nonlinear systems. 31 refs., 16 figs.
Nonlinear feedback control of spatiotemporal chaos in coupled map lattices
Directory of Open Access Journals (Sweden)
Jin-Qing Fang
1998-01-01
Full Text Available We describe a nonlinear feedback functional method for study both of control and synchronization of spatiotemporal chaos. The method is illustrated by the coupled map lattices with five different connection forms. A key issue addressed is to find nonlinear feedback functions. Two large types of nonlinear feedback functions are introduced. The efficient and robustness of the method based on the flexibility of choices of nonlinear feedback functions are discussed. Various numerical results of nonlinear control are given. We have not found any difficulty for study both of control and synchronization using nonlinear feedback functional method. The method can also be extended to time continuous dynamical systems as well as to society problems.
On the manifold-mapping optimization technique
Echeverria, D.; Hemker, P.W.
2006-01-01
In this paper, we study in some detail the manifold-mapping optimization technique introduced in an earlier paper. Manifold mapping aims at accelerating optimal design procedures that otherwise require many evaluations of time-expensive cost functions. We give a proof of convergence for the manifold
Nonlinear Maps and their Applications 2011 International Workshop
Fournier-Prunaret, Daniele; Ueta, Tetsushi; Nishio, Yoshifumi
2014-01-01
In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2011) held in Évora, Portugal, on September 15-16, 2011. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.
An Explicit Nonlinear Mapping for Manifold Learning
Qiao, Hong; Zhang, Peng; Wang, Di; Zhang, Bo
2010-01-01
Manifold learning is a hot research topic in the field of computer science and has many applications in the real world. A main drawback of manifold learning methods is, however, that there is no explicit mappings from the input data manifold to the output embedding. This prohibits the application of manifold learning methods in many practical problems such as classification and target detection. Previously, in order to provide explicit mappings for manifold learning methods, many methods have...
Hooker, John C.
1990-01-01
A preliminary study of the applicability of nonlinear dynamic systems analysis techniques to low body negative pressure (LBNP) studies. In particular, the applicability of the heart rate delay map is investigated. It is suggested that the heart rate delay map has potential as a supplemental tool in the assessment of subject performance in LBNP tests and possibly in the determination of susceptibility to cardiovascular deconditioning with spaceflight.
An analytic map for space charge in a nonlinear lattice
Energy Technology Data Exchange (ETDEWEB)
Benedetti, C. [Dipartimento di Fisica Universita di Bologna and INFN, Via Irnerio 46, 40126 Bologna (Italy)]. E-mail: benedetti@bo.infn.it; Turchetti, G. [Dipartimento di Fisica Universita di Bologna and INFN, Via Irnerio 46, 40126 Bologna (Italy)
2005-06-13
We propose a simple analytical model for an intense beam in a lattice with localized nonlinearities. In the thin lens limit a single nonlinearity leads to a Henon like map. When the space charge is present and the core radius is small with respect to the dynamic aperture, the use of a frozen core distribution like KV is justified. In this case we define an analytic map M by composing the phase advance due to space charge, computed at the first perturbation order, with the kick due to the nonlinear force. The corresponding dynamics is almost indistinguishable from the dynamics of the 'exact' map, which requires an accurate symplectic integration, if the tune depression is weak enough. The same accuracy is preserved for parametric modulations of the perveance or the beam core radius. The extension to any other distribution is straightforward.
Chaos Suppression in a Sine Square Map through Nonlinear Coupling
Institute of Scientific and Technical Information of China (English)
Eduardo L. Brugnago; Paulo C. Rech
2011-01-01
We study a pair of nonlinearly coupled identical chaotic sine square maps.More specifically,we investigate the chaos suppression associated with the variation of two parameters.Two-dimensional parameter-space regions where the chaotic dynamics of the individual chaotic sine square map is driven towards regular dynamics are delimited.Additionally,the dynamics of the coupled system is numerically characterized as the parameters are changed.In recent years,many efforts have been devoted to chaos suppression in a nonlinear dynamics field.Iglesias et al.[1] reported a chaos suppression method through numerical truncation and rounding errors,with applications in discrete-time systems.Hénon map[2] and the Burgers map[3] were used to illustrate the method.A method of feedback impulsive chaos suppression was introduced by Osipov et al.[4]It is an algorithm of suppressing chaos in continuoustime dissipative systems with an external impulsive force,whose necessary condition is a reduction of the continuous flow to a discrete-time one-dimensional map.%We study a pair of nonlinearly coupled identical chaotic sine square maps. More specifically, we investigate the chaos suppression associated with the variation of two parameters. Two-dimensional parameter-space regions where the chaotic dynamics of the individual chaotic sine square map is driven towards regular dynamics are delimited. Additionally, the dynamics of the coupled system is numerically characterized as the parameters are changed.
Linear Algebraic Method for Non-Linear Map Analysis
Energy Technology Data Exchange (ETDEWEB)
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Digital Mapping Techniques '07 - Workshop Proceedings
Soller, David R.
2008-01-01
The Digital Mapping Techniques '07 (DMT'07) workshop was attended by 85 technical experts from 49 agencies, universities, and private companies, including representatives from 27 state geological surveys. This year's meeting, the tenth in the annual series, was hosted by the South Carolina Geological Survey, from May 20-23, 2007, on the University of South Carolina campus in Columbia, South Carolina. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous year's meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.
Nonlinear continua fundaments for the computational techniques
Dvorkin, Eduardo N
2005-01-01
Offers a presentation of Continuum Mechanics, oriented towards numerical applications in the nonlinear analysis of solids, structures and fluid mechanics. This book develops general curvilinear coordinator kinematics of the continuum deformation using general curvilinear coordinates.
Rational Expansion for Nonlinear Input-Output Maps
1988-01-01
This paper introduces a Rational Expansion for Nonlinear Input-Output MAPS. The method is new and is based on the rational expansion of functions of several complex variables. If truncated, this series reduces to a ratio of truncated Volterra series, A "feedback form" will be presented.
Visualization of nonlinear kernel models in neuroimaging by sensitivity maps
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Lund, Torben Ellegaard
2011-01-01
There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus......, and conclude that the sensitivity map is a versatile and computationally efficient tool for visualization of nonlinear kernel models in neuroimaging....
Nonlinear acoustic techniques for landmine detection.
Korman, Murray S; Sabatier, James M
2004-12-01
Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.
Mapping techniques for atrial fibrillation ablation.
Sra, Jasbir; Akhtar, Masood
2007-12-01
Atrial fibrillation (AF) is a common arrhythmia. Although significant work still needs to be done, recent advances in understanding the mechanism of AF have led to the development of elegant catheter mapping techniques for ablation of AF. These improved mapping techniques are complemented by an evolution in various imaging and navigational technologies, several of which can now be combined in a process called registration, so that the physician no longer needs to rely solely on a mental image of the anatomy of the left atrium and the pulmonary vein while attempting to ablate the region. Ongoing advances in mapping technique will increase safety and efficacy and it is likely that AF ablation will become the first-line therapy in most patients with this complicated arrhythmia.
An Adaptive Non-Linear Map and Its Application
Institute of Scientific and Technical Information of China (English)
YAN Xuefeng
2006-01-01
A novel adaptive non-linear mapping (ANLM),integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodically in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimensional olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.
New Techniques in Dark Matter Mapping
Lorenz, Suzanne; Peterson, J. R.
2013-06-01
We have developed a new pipeline for mapping dark matter associated with clusters of galaxies via weak gravitational lensing. This method will be useful both with current datasets and future large optical survey telescopes, such as the Large Synoptic Survey Telescope (LSST). We use a novel source finding technique using a wavelet detection method. We then find known photometric and spectroscopic redshifts associated with our sources and measure the ellipticities of galaxies using a second moment technique. The ellipticity and photometric redshift distribution are then converted to a dark matter map. We have represented the dark matter as smoothed particles to invert the ellipticity map. This had yielded dark matter distributions when applied to our Subaru archive image of Abell 2218.
An Introduction to the Space Mapping Technique
DEFF Research Database (Denmark)
Bakr, Mohamed H.; Bandler, John W.; Madsen, Kaj;
2001-01-01
The space mapping technique is intended for optimization of engineering models which involve very expensive function evaluations. It is assumed that two different models of the same physical system are available: Besides the expensive model of primary interest (denoted the fine model), access...
AxiSketcher: Interactive Nonlinear Axis Mapping of Visualizations through User Drawings.
Kwon, Bum Chul; Kim, Hannah; Wall, Emily; Choo, Jaegul; Park, Haesun; Endert, Alex
2017-01-01
Visual analytics techniques help users explore high-dimensional data. However, it is often challenging for users to express their domain knowledge in order to steer the underlying data model, especially when they have little attribute-level knowledge. Furthermore, users' complex, high-level domain knowledge, compared to low-level attributes, posits even greater challenges. To overcome these challenges, we introduce a technique to interpret a user's drawings with an interactive, nonlinear axis mapping approach called AxiSketcher. This technique enables users to impose their domain knowledge on a visualization by allowing interaction with data entries rather than with data attributes. The proposed interaction is performed through directly sketching lines over the visualization. Using this technique, users can draw lines over selected data points, and the system forms the axes that represent a nonlinear, weighted combination of multidimensional attributes. In this paper, we describe our techniques in three areas: 1) the design space of sketching methods for eliciting users' nonlinear domain knowledge; 2) the underlying model that translates users' input, extracts patterns behind the selected data points, and results in nonlinear axes reflecting users' complex intent; and 3) the interactive visualization for viewing, assessing, and reconstructing the newly formed, nonlinear axes.
Energy Technology Data Exchange (ETDEWEB)
Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)
2014-09-25
Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.
Chaotic Map Construction from Common Nonlinearities and Microcontroller Implementations
Ablay, Günyaz
2016-06-01
This work presents novel discrete-time chaotic systems with some known physical system nonlinearities. Dynamic behaviors of the models are examined with numerical methods and Arduino microcontroller-based experimental studies. Many new chaotic maps are generated in the form of x(k + 1) = rx(k) + f(x(k)) and high-dimensional chaotic systems are obtained by weak coupling or cross-coupling the same or different chaotic maps. An application of the chaotic maps is realized with Arduino for chaotic pulse width modulation to drive electrical machines. It is expected that the new chaotic maps and their microcontroller implementations will facilitate practical chaos-based applications in different fields.
High-resolution mapping of bifurcations in nonlinear biochemical circuits
Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.
2016-08-01
Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.
High-resolution mapping of bifurcations in nonlinear biochemical circuits.
Genot, A J; Baccouche, A; Sieskind, R; Aubert-Kato, N; Bredeche, N; Bartolo, J F; Taly, V; Fujii, T; Rondelez, Y
2016-08-01
Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.
Path Based Mapping Technique for Robots
Directory of Open Access Journals (Sweden)
Amiraj Dhawan
2013-05-01
Full Text Available The purpose of this paper is to explore a new way of autonomous mapping. Current systems using perception techniques like LAZER or SONAR use probabilistic methods and have a drawback of allowing considerable uncertainty in the mapping process. Our approach is to break down the environment, specifically indoor, into reachable areas and objects, separated by boundaries, and identifying their shape, to render various navigable paths around them. This is a novel method to do away with uncertainties, as far as possible, at the cost of temporal efficiency. Also this system demands only minimum and cheap hardware, as it relies on only Infra-Red sensors to do the job.
Fixed Point Approximation of Nonexpansive Mappings on a Nonlinear Domain
Directory of Open Access Journals (Sweden)
Safeer Hussain Khan
2014-01-01
Full Text Available We use a three-step iterative process to prove some strong and Δ-convergence results for nonexpansive mappings in a uniformly convex hyperbolic space, a nonlinear domain. Three-step iterative processes have numerous applications and hyperbolic spaces contain Banach spaces (linear domains as well as CAT(0 spaces. Thus our results can be viewed as extension and generalization of several known results in uniformly convex Banach spaces as well as CAT(0 spaces.
Nonlinear plasmonic imaging techniques and their biological applications
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Nonlinear plasmonic imaging techniques and their biological applications
Directory of Open Access Journals (Sweden)
Deka Gitanjal
2016-07-01
Full Text Available Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics, as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Digital mapping techniques '06 - Workshop proceedings
Soller, David R.
2007-01-01
The Digital Mapping Techniques `06 (DMT`06) workshop was attended by more than 110 technical experts from 51 agencies, universities, and private companies, including representatives from 27 state geological surveys (see Appendix A of these Proceedings). This workshop was similar in nature to the previous nine meetings, which were held in Lawrence, Kansas (Soller, 1997), Champaign, Illinois (Soller, 1998), Madison, Wisconsin (Soller, 1999), Lexington, Kentucky (Soller, 2000), Tuscaloosa, Alabama (Soller, 2001), Salt Lake City, Utah (Soller, 2002), Millersville, Pennsylvania (Soller, 2003), Portland, Oregon (Soller, 2004), and Baton Rouge, Louisiana (Soller, 2005). This year?s meeting was hosted by the Ohio Geological Survey, from June 11-14, 2006, on the Ohio State University campus in Columbus, Ohio. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops.Each DMT workshop has been coordinated by the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS) Data Capture Working Group, the latter of which was formed in August 1996 to support the AASG and the USGS in their effort to build a National Geologic Map Database (see Soller, this volume, and http://ngmdb.usgs.gov/info/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed for the database - and for the State and Federal geological surveys - to provide more high-quality digital maps to the public.At the 2006 meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, "publishing" includes Web-based release); 2) field data
Nonlinear temporal pulse cleaning techniques and application
Institute of Scientific and Technical Information of China (English)
Yi; Xu; Jianzhou; Wang; Yansui; Huang; Yanyan; Li; Xiaomin; Lu; Yuxin; Leng
2013-01-01
Two different pulse cleaning techniques for ultra-high contrast laser systems are comparably analysed in this work.The first pulse cleaning technique is based on noncollinear femtosecond optical-parametric amplification(NOPA)and second-harmonic generation(SHG)processes.The other is based on cross-polarized wave(XPW)generation.With a double chirped pulse amplifier(double-CPA)scheme,although temporal contrast enhancement in a high-intensity femtosecond Ti:sapphire chirped pulse amplification(CPA)laser system can be achieved based on both of the techniques,the two different pulse cleaning techniques still have their own advantages and are suitable for different contrast enhancement requirements of different laser systems.
Detecting Environmental Change Using Self-Organizing Map Techniques Applied to the ERA-40 Database
Directory of Open Access Journals (Sweden)
Mohamed Gebri
2011-05-01
Full Text Available Data mining is a valuable tool in meteorological applications. Properly selected data mining techniques enable researchers to process and analyze massive amounts of data collected by satellites and other instruments. Large spatial-temporal datasets can be analyzed using different linear and nonlinear methods. The Self-Organizing Map (SOM is a promising tool for clustering and visualizing high dimensional data and mapping spatial-temporal datasets describing nonlinear phenomena. We present results of the application of the SOM technique in regions of interest within the European re-analysis data set. The possibility of detecting climate change signals through the visualization capability of SOM tools is examined.
Imaging of contact acoustic nonlinearity using synthetic aperture technique.
Yun, Dongseok; Kim, Jongbeom; Jhang, Kyung-Young
2013-09-01
The angle beam incidence and reflection technique for the evaluation of contact acoustic nonlinearity (CAN) at solid-solid contact interfaces (e.g., closed cracks) has recently been developed to overcome the disadvantage of accessing both the inner and outer surfaces of structures for attaching pulsing and receiving transducers in the through-transmission of normal incidence technique. This paper proposes a technique for B-mode imaging of CAN based on the above reflection technique, which uses the synthetic aperture focusing technique (SAFT) and short-time Fourier transform (STFT) to visualize the distribution of the CAN-induced second harmonic magnitude as well as the nonlinear parameter. In order to verify the usefulness of the proposed method, a solid-solid contact interface was tested and the change of the contact acoustic nonlinearity according to the increasing contact pressure was visualized in images of the second harmonic magnitude and the relative nonlinear parameter. The experimental results showed good agreement with the previously developed theory identifying the dependence of the scattered second harmonics on the contact pressure. This technique can be used for the detection and improvement of the sizing accuracy of closed cracks that are difficult to detect using the conventional linear ultrasonic technique.
Imprint of non-linear effects on HI intensity mapping on large scales
Umeh, Obinna
2016-01-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We consider how non-linear effects associated with the HI bias and redshift space distortions contribute to the clustering of cosmic neutral Hydrogen on large scales. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result to show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortions leads to about 10\\% modulation of the HI power spectrum on large scales.
Imprint of non-linear effects on HI intensity mapping on large scales
Umeh, Obinna
2017-06-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.
Mapping deformation method and its application to nonlinear equations
Institute of Scientific and Technical Information of China (English)
李画眉
2002-01-01
An extended mapping deformation method is proposed for finding new exact travelling wave solutions of nonlinearpartial differential equations (PDEs). The key idea of this method is to take full advantage of the simple algebraicmapping relation between the solutions of the PDEs and those of the cubic nonlinear Klein-Gordon equation. This isapplied to solve a system of variant Boussinesq equations. As a result, many explicit and exact solutions are obtained,including solitary wave solutions, periodic wave solutions, Jacobian elliptic function solutions and other exact solutions.
On diagrammatic technique for nonlinear dynamical systems
Semenyakin, Mykola
2014-01-01
In this paper we investigate phase flows over $\\mathbb{C}^n$ and $\\mathbb{R}^n$ generated by vector fields $V=\\sum P^{i}\\partial_i$ where $P^{i}$ are finite degree polynomials. With the convenient diagrammatic technique we get expressions for evolution operators $ev\\{V|t\\}: x(0)\\mapsto x(t)$ through the series in powers of $x(0)$ and $t$, represented as sum over all trees of particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in the neighborhood of vector field fixed points are examined. Resonance cases are considered separately.
On diagrammatic technique for nonlinear dynamical systems
Semenyakin, Mykola
2014-01-01
In this paper we investigate phase flows over $\\mathbb{C}^n$ and $\\mathbb{R}^n$ generated by vector fields $V=\\sum P^{i}\\partial_i$ where $P^{i}$ are finite degree polynomials. With the convenient diagrammatic technique we get expressions for evolution operators $ev\\{V|t\\}: x(0)\\mapsto x(t)$ through the series in powers of $x(0)$ and $t$, represented as sum over all trees of particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in...
Dynamic structural correlation via nonlinear programming techniques
Ting, T.; Ojalvo, I. U.
1988-01-01
A solution to the correlation between structural dynamic test results and finite element analyses of the same components is presented in this paper. Basically, the method can be categorized as a Levenberg-Marquardt type Gauss-Newton method which requires only the differences between FE modal analyses and test results and their first derivatives with respect to preassigned design variables. With proper variable normalization and equation scaling, the method has been made numerically better-conditioned and the inclusion of the Levenberg-Marquardt technique overcomes any remaining difficulty encountered in inverting singular or near-singular matrices. An important feature is that each iteration requires only one function evaluation along with the associated design sensitivity analysis and so the procedure is computationally efficient.
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
Energy Technology Data Exchange (ETDEWEB)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2010-10-15
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation
Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty
2017-08-01
In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.
APPLICATION OF NONLINEAR WATERMARK TECHNIQUES IN DIGITAL LIBRARIES
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A digital watermark is an invisible mark embedded in a digital image that may be used for a number of different purposes including copyright protection. Due to the urgent need for protecting the copyright of digital products in digital library, digital watermarking has been proposed as a solution to this problem. This letter describes potential situations that nonlinear theory can be used to enhance robustness and security of the watermark in digital library. Some nonlinear watermark techniques have been enumerated. Experimental results show that the proposed scheme is superior to the general watermark scheme both in security and robustness in digital library.
Episodic Mapping: A Technique To Help Students Understand Stories.
Schmelzer, Ronald; Henson, Kenneth
Semantic mapping is effective with expository prose but not as effective with narrative prose. To achieve a better understanding of narrative prose, yet still keep the benefits of semantic mapping, the traditional approach can be modified into a technique called "episodic mapping." Episodic mapping is based on the idea that most stories…
Nonlinear ultrasonic measurements based on cross-correlation filtering techniques
Yee, Andrew; Stewart, Dylan; Bunget, Gheorghe; Kramer, Patrick; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2017-02-01
Cyclic loading of mechanical components promotes the formation of dislocation dipoles in metals, which can serve as precursors to crack nucleation and ultimately lead to failure. In the laboratory setting, an acoustic nonlinearity parameter has been assessed as an effective indicator for characterizing the progression of fatigue damage precursors. However, the need to use monochromatic waves of medium-to-high acoustic energy has presented a constraint, making it problematic for use in field applications. This paper presents a potential approach for field measurement of acoustic nonlinearity by using general purpose ultrasonic pulser-receivers. Nonlinear ultrasonic measurements during fatigue testing were analyzed by the using contact and immersion pulse-through method. A novel cross-correlation filtering technique was developed to extract the fundamental and higher harmonic waves from the signals. As in the case of the classic harmonic generation, the nonlinearity parameters of the second and third harmonics indicate a strong correlation with fatigue cycles. Consideration was given to potential nonlinearities in the measurement system, and tests have confirmed that measured second harmonic signals exhibit a linear dependence on the input signal strength, further affirming the conclusion that this parameter relates to damage precursor formation from cyclic loading.
The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation
Institute of Scientific and Technical Information of China (English)
Mo Jia-Qi; Lin Su-Rong
2009-01-01
This paper studies a generalized nonlinear evolution equation. Using the homotopic mapping method,it constructs a corresponding homotopic mapping transform. Selecting a suitable initial approximation and using homotopic mapping,it obtains an approximate solution with an arbitrary degree of accuracy for the solitary wave. From the approximate solution obtained by using the homotopic mapping method,it possesses a good accuracy.
Synchronizing spatiotemporal chaos in the coupled map lattices using nonlinear feedback functions
Institute of Scientific and Technical Information of China (English)
FangJin－Qing; MKAli
1997-01-01
In this paper the nonlinear feedback functional method is presented for study of synchronization of spatiotemporal chaos in coupled map lattices with five connection forms.Some of nonlinear feedback functions are given.The noise effect on synchronization and sporadic nonlinear feedback are discussed.
On input/output maps for nonlinear systems via continuity in a locally convex topology
Mazumdar, Ravi R.; Kannurpatti, Raghavan; Bagchi, Arunabha
1995-01-01
In this paper we show that the output of a nonlinear system with inputs in () whose state satisfies a nonlinear differential equation with standard smoothness conditions can be written as the composition of a nonlinear map with a linear Hilbert-Schmidt operator acting on the input. The result also e
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R. K.
-numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...... of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
2002-06-01
IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE
Arc-length technique for nonlinear finite element analysis
Institute of Scientific and Technical Information of China (English)
MEMON Bashir-Ahmed; SU Xiao-zu(苏小卒)
2004-01-01
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, Received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
Detecting High-Order Epistasis in Nonlinear Genotype-Phenotype Maps.
Sailer, Zachary R; Harms, Michael J
2017-03-01
High-order epistasis has been observed in many genotype-phenotype maps. These multi-way interactions between mutations may be useful for dissecting complex traits and could have profound implications for evolution. Alternatively, they could be a statistical artifact. High-order epistasis models assume the effects of mutations should add, when they could in fact multiply or combine in some other nonlinear way. A mismatch in the "scale" of the epistasis model and the scale of the underlying map would lead to spurious epistasis. In this article, we develop an approach to estimate the nonlinear scales of arbitrary genotype-phenotype maps. We can then linearize these maps and extract high-order epistasis. We investigated seven experimental genotype-phenotype maps for which high-order epistasis had been reported previously. We find that five of the seven maps exhibited nonlinear scales. Interestingly, even after accounting for nonlinearity, we found statistically significant high-order epistasis in all seven maps. The contributions of high-order epistasis to the total variation ranged from 2.2 to 31.0%, with an average across maps of 12.7%. Our results provide strong evidence for extensive high-order epistasis, even after nonlinear scale is taken into account. Further, we describe a simple method to estimate and account for nonlinearity in genotype-phenotype maps.
Concept Mapping: A Critical Thinking Technique
Harris, Charles M.; Zha, Shenghua
2013-01-01
Concept mapping, graphically depicting the structure of abstract concepts, is based on the observation that pictures and line drawings are often more easily comprehended than the words that represent an abstract concept. The efficacy of concept mapping for facilitating critical thinking was assessed in four sections of an introductory psychology…
Process Mapping: Tools, Techniques, & Critical Success Factors.
Kalman, Howard K.
2002-01-01
Explains process mapping as an analytical tool and a process intervention that performance technologists can use to improve human performance by reducing error variance. Highlights include benefits of process mapping; and critical success factors, including organizational readiness, time commitment by participants, and the availability of a…
Romanov, Dmitri; Smith, Stanley; Brady, John; Levis, Robert J.
2008-02-01
We have studied the application of the diffusion mapping technique to dimensionality reduction and clustering in multidimensional optical datasets. The combinational (input-output) data were obtained by sampling search spaces related to optimization of a nonlinear physical process, short-pulse second harmonic generation. The diffusion mapping technique hierarchically reduces the dimensionality of the data set and unifies the statistics of input (the pulse shape) and output (the integral output intensity) parameters. The information content of the emerging clustered pattern can be optimized by modifying the parameters of the mapping procedure. The low-dimensional pattern captures essential features of the nonlinear process, based on a finite sampling set. In particular, the apparently parabolic two-dimensional projection of this pattern exhibits regular evolution with the increase of higher-intensity data in the sampling set. The basic shape of the pattern and the evolution are relatively insensitive to the size of the sampling set, as well as to the details of the mapping procedure. Moreover, the experimental data sets and the sets produced numerically on the basis of a theoretical model are mapped into patterns of remarkable similarity (as quantified by the similarity of the related quadratic-form coefficients). The diffusion mapping method is robust and capable of predicting higher-intensity points from a set of low-intensity points. With these attractive features, diffusion mapping stands poised to become a helpful statistical tool for preprocessing analysis of vast and multidimensional combinational optical datasets.
Manifold mapping: a two-level optimization technique
Echeverria, D.; Hemker, P.W.
2008-01-01
In this paper, we analyze in some detail the manifold-mapping optimization technique introduced recently [Echeverría and Hemker in space mapping and defect correction. Comput Methods Appl Math 5(2): 107-–136, 2005]. Manifold mapping aims at accelerating optimal design procedures that otherwise requi
Manifold mapping: a two-level optimization technique
Echeverría, D.; Hemker, P.W.
2008-01-01
In this paper, we analyze in some detail the manifold-mapping optimization technique introduced recently [Echeverría and Hemker in space mapping and defect correction. Comput Methods Appl Math 5(2): 107--136, 2005]. Manifold mapping aims at accelerating optimal design procedures that otherwise requi
Nonlinear control techniques for an atomic force microscope system
Institute of Scientific and Technical Information of China (English)
Yongchun FANG; Matthew FEEMSTER; Darren DAWSON; Nader M.JALILI
2005-01-01
Two nonlinear control techniques are proposed for an atomic force microscope system.Initially,a learning-based control algorithm is developed for the microcantilever-sample system that achieves asymptotic cantilever tip tracking for periodic trajectories.Specifically,the control approach utilizes a learning-based feedforward term to compensate for periodic dynamics and high-gain terms to account for non-periodic dynamics.An adaptive control algorithm is then developed to achieve asymptotic cantilever tip tracking for bounded tip trajectories despite uncertainty throughout the system parameters.Simulation results are provided to illustrate the efficacy and performance of the control strategies.
Finding zeros of nonlinear functions using the hybrid parallel cell mapping method
Xiong, Fu-Rui; Schütze, Oliver; Ding, Qian; Sun, Jian-Qiao
2016-05-01
Analysis of nonlinear dynamical systems including finding equilibrium states and stability boundaries often leads to a problem of finding zeros of vector functions. However, finding all the zeros of a set of vector functions in the domain of interest is quite a challenging task. This paper proposes a zero finding algorithm that combines the cell mapping methods and the subdivision techniques. Both the simple cell mapping (SCM) and generalized cell mapping (GCM) methods are used to identify a covering set of zeros. The subdivision technique is applied to enhance the solution resolution. The parallel implementation of the proposed method is discussed extensively. Several examples are presented to demonstrate the application and effectiveness of the proposed method. We then extend the study of finding zeros to the problem of finding stability boundaries of potential fields. Examples of two and three dimensional potential fields are studied. In addition to the effectiveness in finding the stability boundaries, the proposed method can handle several millions of cells in just a few seconds with the help of parallel computing in graphics processing units (GPUs).
Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.
Giridhar, K.
decision-feedback mechanism is introduced to truncate the channel memory "seen" by the MAPSD section. Also, simpler gradient-based updates for the channel estimates, and a metric pruning technique are used to further reduce the MAPSD complexity. Spatial diversity MAP combiners are developed to enhance the error rate performance and combat channel fading. As a first application of the MAPSD algorithm, dual-mode recovery techniques for TDMA (time-division multiple access) mobile radio signals are presented. Combined estimation of the symbol timing and the multipath parameters is proposed, using an auxiliary extended Kalman filter during the training cycle, and then tracking of the fading parameters is performed during the data cycle using the blind MAPSD algorithm. For the second application, a single-input receiver is employed to jointly recover cochannel narrowband signals. Assuming known channels, this two-stage joint MAPSD (JMAPSD) algorithm is compared to the optimal joint maximum likelihood sequence estimator, and to the joint decision-feedback detector. A blind MAPSD algorithm for the joint recovery of cochannel signals is also presented. Computer simulation results are provided to quantify the performance of the various algorithms proposed in this dissertation.
Pictorial Narrative Mapping as a Qualitative Analytic Technique
Jennifer L. Lapum; Linda Liu; Sarah Hume; Siyuan Wang; Megan Nguyen; Bailey Harding; Kathryn Church; Gideon Cohen; Yau, Terrence M
2015-01-01
Qualitative analysis is often a textual undertaking. However, it can be helpful to think about and represent study phenomena or narrative accounts in nontextual ways. In this article, we share our unique and artistic process in developing and employing pictorial narrative mapping as a qualitative analytic technique. We recast a nontextual, artistic–analytic technique by combining elements related to narrative mapping and narrative art. This technique involves aesthetic attunement to data and ...
Remote sensing techniques for mangrove mapping
Vaiphasa, C.
2006-01-01
Mangroves, important components of the world's coastal ecosystems, are threatened by the expansion of human settlements, the boom in commercial aquaculture, the impact of tidal waves and storm surges, etc. Such threats are leading to the increasing demand for detailed mangrove maps for the purpose o
Directory of Open Access Journals (Sweden)
Elsayed Mohamed Elsayed ZAYED
2014-07-01
Full Text Available In this article, many new exact solutions of the (2+1-dimensional nonlinear Boussinesq-Kadomtsev-Petviashvili equation and the (1+1-dimensional nonlinear heat conduction equation are constructed using the Riccati equation mapping method. By means of this method, many new exact solutions are successfully obtained. This method can be applied to many other nonlinear evolution equations in mathematical physics.doi:10.14456/WJST.2014.14
NERO a code for evaluation of nonlinear resonances in 4D symplectic mappings
Todesco, Ezio; Giovannozzi, Massimo
1998-01-01
A code to evaluate the stability, the position and the width of nonlinear resonances in four-dimensional symplectic mappings is described. NERO is based on the computation of the resonant perturbative series through the use of Lie transformation implemented in the code ARES, and on the analysis of the resonant orbits of the interpolating Hamiltonian. The code is aimed at studying the nonlinear moti on of a charged particle moving in a circular accelerator under the influence of nonlinear forces.
Parameter Estimation Technique of Nonlinear Prosthetic Hand System
Directory of Open Access Journals (Sweden)
M.H.Jali
2016-10-01
Full Text Available This paper illustrated the parameter estimation technique of motorized prosthetic hand system. Prosthetic hands have become importance device to help amputee to gain a normal functional hand. By integrating various types of actuators such as DC motor, hydraulic and pneumatic as well as mechanical part, a highly useful and functional prosthetic device can be produced. One of the first steps to develop a prosthetic device is to design a control system. Mathematical modeling is derived to ease the control design process later on. This paper explained the parameter estimation technique of a nonlinear dynamic modeling of the system using Lagrangian equation. The model of the system is derived by considering the energies of the finger when it is actuated by the DC motor. The parameter estimation technique is implemented using Simulink Design Optimization toolbox in MATLAB. All the parameters are optimized until it achieves a satisfactory output response. The results show that the output response of the system with parameter estimation value produces a better response compare to the default value
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
Z-scan: A simple technique for determination of third-order optical nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)
2015-08-28
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.
Pictorial Narrative Mapping as a Qualitative Analytic Technique
Directory of Open Access Journals (Sweden)
Jennifer L. Lapum
2015-12-01
Full Text Available Qualitative analysis is often a textual undertaking. However, it can be helpful to think about and represent study phenomena or narrative accounts in nontextual ways. In this article, we share our unique and artistic process in developing and employing pictorial narrative mapping as a qualitative analytic technique. We recast a nontextual, artistic–analytic technique by combining elements related to narrative mapping and narrative art. This technique involves aesthetic attunement to data and visual representation through pictorial design. We advanced this technique in the context of a narrative study about how arts-informed dissemination methods influence health-care practitioners’ delivery of care. We found that the Pictorial Narrative Mapping process prompted an aesthetic and imaginative experience in the analytic process of qualitative inquiry. As an analytic technique, Pictorial Narrative Mapping extends the inquiry process and enhances rigor through artistic means as well as iterative and critical dialogue. Additionally, pictorial narrative maps can provide a holistic account of the phenomenon under study and assist researchers to make meaning of nuances within complex narratives. As researchers consider employing Pictorial Narrative Mapping, we recommend that they draw upon this technique as a malleable script yielding to an organic process that emerges from both their own data and analytic discussions. We are further curious about its imaginative capacities in social and health science literature, its possibilities in other disciplinary contexts, and the prospects of what Maxine Greene refers to as becoming more wide awake—in our case, in future research analytic endeavors.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In this paper, we extend the mapping transformation method through introducing variable coefficients.By means of the extended mapping transformation method, many explicit and exact general solutions with arbitrary functions for some nonlinear partial differential equations, which contain solitary wave solutions, trigonometric function solutions, and rational solutions, are obtained.
Optimization using surrogate models - by the space mapping technique
DEFF Research Database (Denmark)
Søndergaard, Jacob
2003-01-01
mapping surrogate has a lower approximation error for long steps. For short steps, however, the Taylor model of the expensive model is best, due to exact interpolation at the model origin. Five algorithms for space mapping optimization are presented and the numerical performance is evaluated. Three...... conditions are satisfied. So hybrid methods, combining the space mapping technique with classical optimization methods, should be used if convergence to high accuracy is wanted. Approximation abilities of the space mapping surrogate are compared with those of a Taylor model of the expensive model. The space...
Optimization using surrogate models - by the space mapping technique
DEFF Research Database (Denmark)
Søndergaard, Jacob
2003-01-01
mapping surrogate has a lower approximation error for long steps. For short steps, however, the Taylor model of the expensive model is best, due to exact interpolation at the model origin. Five algorithms for space mapping optimization are presented and the numerical performance is evaluated. Three...... conditions are satisfied. So hybrid methods, combining the space mapping technique with classical optimization methods, should be used if convergence to high accuracy is wanted. Approximation abilities of the space mapping surrogate are compared with those of a Taylor model of the expensive model. The space...
Nonlinear auto-adjusting iterative reconstruction technique for interferometric tomography
Song, Yizhong; Sun, Tao; Qu, Peishu
2013-07-01
A new algebraic reconstruction technique (ART), nonlinear auto-adjusting iterative reconstruction technique (NAIRT), is proposed and applied to reconstruct a section of an actual thermal air flow field. With numerical simulation, NAIRT was tested to reconstruct a complicated field to demonstrate its superior reconstructive capability. In contrast, three typical ARTs, the basic ART, simultaneous ART (SART), and a modified SART (MSART), were simulated to demonstrate the reconstructive capability improvement attained through the use of the proposed NAIRT. The calculated results were discussed with mean square error (MSE) and peak error (PE). A thermal air flow field was produced with an alcohol burner and was detected by a laser beam. With laser beam projections, a cross-section of the field was reconstructed by NAIRT. As a result, the reconstructive capability was improved much by NAIRT. The MSE decreased by 95.5%, and PE by 97.2% from that of the basic ART. Only NAIRT converged without filters while its reconstructive accuracy improved. By increasing the projections from 42 to 84, the accuracy of NAIRT without filters was improved significantly. NAIRT could effectively reconstruct the section of the thermal field. The proposed NAIRT needed no filter for its convergence and it had the highest reconstructive accuracy and simplest iterative expression of those analyzed.
Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps
Directory of Open Access Journals (Sweden)
Deep Parikh
2015-08-01
Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM. Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.
Nonlinear programming technique for analyzing flocculent settling data.
Rashid, Md Mamunur; Hayes, Donald F
2014-04-01
The traditional graphical approach for drawing iso-concentration curves to analyze flocculent settling data and design sedimentation basins poses difficulties for computer-based design methods. Thus, researchers have developed empirical approaches to analyze settling data. In this study, the ability of five empirical approaches to fit flocculent settling test data is compared. Particular emphasis is given to compare rule-based SETTLE and rule-based nonlinear programming (NLP) techniques as a viable alternative to the modeling methods of Berthouex and Stevens (1982), San (1989), and Ozer (1994). Published flocculent settling data are used to test the suitability of these empirical approaches. The primary objective, however, is to determine if the results of a NLP optimization technique are more reliable than those of other approaches. For this, mathematical curve fitting is conducted and the modeled concentration data are graphically compared to the observed data. The design results in terms of average solid removal efficiency as a function of detention times are also compared. Finally, the sum of squared errors values from these approaches are compared. The results indicate a strong correlation between observed and NLP modeled concentration data. The SETTLE and NLP approaches tend to be more conservative at lower retention times and less conservative at longer retention times. The SETTLE approach appears to be the most conservative. In terms of sum of squared errors values, NLP appears to be rank number one (i.e., best model) for eight data sets and number two for six data sets among 15 data sets. Therefore, NLP is recommended for analyzing flocculent settling data as a logical extension of other approaches. The NLP approach is further recommended as it is an optimization technique and uses conventional mathematical algorithms that can be solved using widely available software such as EXCEL and LINGO.
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
Historical shoreline mapping (I): improving techniques and reducing positioning errors
Thieler, E. Robert; Danforth, William W.
1994-01-01
A critical need exists among coastal researchers and policy-makers for a precise method to obtain shoreline positions from historical maps and aerial photographs. A number of methods that vary widely in approach and accuracy have been developed to meet this need. None of the existing methods, however, address the entire range of cartographic and photogrammetric techniques required for accurate coastal mapping. Thus, their application to many typical shoreline mapping problems is limited. In addition, no shoreline mapping technique provides an adequate basis for quantifying the many errors inherent in shoreline mapping using maps and air photos. As a result, current assessments of errors in air photo mapping techniques generally (and falsely) assume that errors in shoreline positions are represented by the sum of a series of worst-case assumptions about digitizer operator resolution and ground control accuracy. These assessments also ignore altogether other errors that commonly approach ground distances of 10 m. This paper provides a conceptual and analytical framework for improved methods of extracting geographic data from maps and aerial photographs. We also present a new approach to shoreline mapping using air photos that revises and extends a number of photogrammetric techniques. These techniques include (1) developing spatially and temporally overlapping control networks for large groups of photos; (2) digitizing air photos for use in shoreline mapping; (3) preprocessing digitized photos to remove lens distortion and film deformation effects; (4) simultaneous aerotriangulation of large groups of spatially and temporally overlapping photos; and (5) using a single-ray intersection technique to determine geographic shoreline coordinates and express the horizontal and vertical error associated with a given digitized shoreline. As long as historical maps and air photos are used in studies of shoreline change, there will be a considerable amount of error (on the
Kaye, N. R.; Hartley, A.; Hemming, D.
2012-02-01
Maps are a crucial asset in communicating climate science to a diverse audience, and there is a wealth of software available to analyse and visualise climate information. However, this availability makes it easy to create poor maps as users often lack an underlying cartographic knowledge. Unlike traditional cartography, where many known standards allow maps to be interpreted easily, there is no standard mapping approach used to represent uncertainty (in climate or other information). Consequently, a wide range of techniques have been applied for this purpose, and users may spend unnecessary time trying to understand the mapping approach rather than interpreting the information presented. Furthermore, communicating and visualising uncertainties in climate data and climate change projections, using for example ensemble based approaches, presents additional challenges for mapping that require careful consideration. The aim of this paper is to provide background information and guidance on suitable techniques for mapping climate variables, including uncertainty. We assess a range of existing and novel techniques for mapping variables and uncertainties, comparing "intrinsic" approaches that use colour in much the same way as conventional thematic maps with "extrinsic" approaches that incorporate additional geometry such as points or features. Using cartographic knowledge and lessons learned from mapping in different disciplines we propose the following 6 general mapping guidelines to develop a suitable mapping technique that represents both magnitude and uncertainty in climate data: text-indent:1em;">- use a sensible sequential or diverging colour scheme; text-indent:1em;">- use appropriate colour symbolism if it is applicable; text-indent:1em;">- ensure the map is usable by colour blind people; text-indent:1em;">- use a data classification scheme that does not misrepresent the data; text-indent:1em;">- use a map projection that does not distort the data text-indent:1em
Fitting Nonlinear Curves by use of Optimization Techniques
Hill, Scott A.
2005-01-01
MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.
Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models
Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric; Naranjo, Ramon C.; Huntington, Justin
2017-01-01
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.
Strong Convergence of Modified Ishikawa Iterations for Nonlinear Mappings
Indian Academy of Sciences (India)
Yongfu Su; Xiaolong Qin
2007-02-01
In this paper, we prove a strong convergence theorem of modified Ishikawa iterations for relatively asymptotically nonexpansive mappings in Banach space. Our results extend and improve the recent results by Nakajo, Takahashi, Kim, $Xu$, Matsushita and some others.
Digital Mapping Techniques '11–12 workshop proceedings
Soller, David R.
2014-01-01
The Digital Mapping Techniques '11 (DMT'11) workshop was hosted by Virginia Division of Geology and Mineral Resources and The College of William & Mary, and coordinated by the National Geologic Map Database project. Conducted May 22-25 on the campus of The College of William & Mary, in Williamsburg, Virginia, it was attended by 77 technical experts from 30 agencies, universities, and private companies, including representatives from 19 State geological surveys (see "DMT'11 Presentations and Attendees" in these Proceedings).
Omura, J. K.; Simon, M. K.
1982-01-01
A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.
Technique of Embedding Depth Maps into 2D Images
Institute of Scientific and Technical Information of China (English)
Kazutake Uehira; Hiroshi Unno; Youichi Takashima
2014-01-01
This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.
Malfense Fierro, Gian Piero; Meo, Michele
2017-02-01
Recently, there has been high interest in the capabilities of nonlinear ultrasound techniques for damage/defect detection as these techniques have been shown to be quite accurate in imaging some particular type of damage. This paper presents a Constructive Nonlinear Array (CNA) method, for the detection and imaging of material defects/damage in a complex composite stiffened panel. CNA requires the construction of an ultrasound array in a similar manner to standard phased arrays systems, which require multiple transmitting and receiving elements. The method constructively phase-match multiple captured signals at a particular position given multiple transmit positions, similar to the total focusing method (TFM) method. Unlike most of the ultrasonic linear techniques, a longer excitation signal was used to achieve a steady-state excitation at each capturing position, so that compressive and tensile stress at defect/crack locations increases the likelihood of the generation of nonlinear elastic waves. Moreover, the technique allows the reduction of instrumentation nonlinear wave generation by relying on signal attenuation to naturally filter these errors. Experimental tests were carried out on a stiffened panel with manufacturing defects. Standard industrial linear ultrasonic test were carried out for comparison. The proposed new method allows to image damages/defects in a reliable and reproducible manner and overcomes some of the main limitations of nonlinear ultrasound techniques. In particular, the effectiveness and robustness of CNA and the advantages over linear ultrasonic were clearly demonstrated allowing a better resolution and imaging of complex and realistic flaws.
Condition Monitoring of Turbines Using Nonlinear Mapping Method
Institute of Scientific and Technical Information of China (English)
Liao Guang-lan; Shi Tie-lin; Jiang Nan
2004-01-01
Aiming at the non-linear nature of the signals generated from turbines, curvilinear component analysis (CCA), a novel nonlinear projection method that favors local topology conservation is presented for turbines conditions monitoring. This is accomplished in two steps. Time domain features are extracted from raw vibration signals, and then they are projected into a two-dimensional output space by using CCA method and form regions indicative of specific conditions, which helps classify and identify turbine states visually. Therefore, the variation of turbine conditions can be observed clearly with the trajectory of image points for the feature data in the two-dimensional space, and the occurrence and development of failures can be monitored in time.
Validation of Two Nonlinear System Identification Techniques Using an Experimental Testbed
Directory of Open Access Journals (Sweden)
V. Lenaerts
2004-01-01
Full Text Available The identification of a nonlinear system is performed using experimental data and two different techniques, i.e. a method based on the Wavelet transform and the Restoring Force Surface method. Both techniques exploit the system free response and result in the estimation of linear and nonlinear physical parameters.
Nonlinear Dimensionality Reduction via Path-Based Isometric Mapping
2013-01-01
Nonlinear dimensionality reduction methods have demonstrated top-notch performance in many pattern recognition and image classification tasks. Despite their popularity, they suffer from highly expensive time and memory requirements, which render them inapplicable to large-scale datasets. To leverage such cases we propose a new method called "Path-Based Isomap". Similar to Isomap, we exploit geodesic paths to find the low-dimensional embedding. However, instead of preserving pairwise geodesic ...
Automated thermal mapping techniques using chromatic image analysis
Buck, Gregory M.
1989-01-01
Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.
Yan, Chaowen; Wang, Jianping; Lu, Huimin; Shi, Yinjia; Zhang, Yini
2016-05-01
A joint algorithm, integrating selective mapping (SLM) and restorable clipping (RC), is proposed for the direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) and visible light communication (VLC) system to reduce the nonlinearity impacts of light-emitting diode (LED) aggravated by high peak-to-average power ratio (PAPR) and DC-bias. The performance of DCO-OFDM VLC system is analyzed and discussed with different techniques of LED nonlinearity alleviation. The simulation results show that compared to the original DCO-OFDM VLC system, the system with the proposed scheme can achieve about 4.8 dB improvement of PAPR reduction and 7 dB improvement of bit error rate (BER) performance. The reason is that the signals acquiring the desired shape in LED linear region can be recovered correctly without distortion induced by LED nonlinearity. It is demonstrated that the proposed SLM-RC technique effectively reduces not only PAPR but also the impacts of LED nonlinearity without BER deterioration.
Application of nonlinear dynamic techniques to high pressure plasma jets
Ghorui, S.; Das, A. K.
2010-02-01
Arcs and arc plasmas have been known and used for welding, cutting, chemical synthesis and multitude of other industrial applications for more than hundred years. Though a copious source of heat, light and active species, plasma arc is inherently unstable, turbulent and difficult to control. During recent years, primarily driven by the need of new and energy efficient materials processing, various research groups around the world have been studying new and innovative ways of looking at the issues related to arc dynamics, arc stabilization, species non equilibrium, flow and heat transfer in a stabilized arc plasma device. In this context, experimental determination of nature of arc instabilities using tools of non-linear dynamics, theoretical model formulation, prediction of instability behavior under given operating conditions and possible control methods for the observed instabilities in arcs are reviewed. Space selective probing of the zones inside arc plasma devices without disturbing the system is probably the best way to identify the originating zone of instabilities inside such devices. Existence of extremely high temperature and inaccessibility to direct experimentations due to mechanical obstructions make this task extremely difficult. Probing instabilities in otherwise inaccessible inner regions of the torches, using binary gas mixture as plasma gas is a novel technique that primarily rests on a process known as demixing in arcs. Once a binary gas mixture enters the constricted plasma column, the demixing process sets in causing spatial variations for each of the constituent gases depending on the diffusion coefficients and the gradient of the existing temperature field. By varying concentrations of the constituent gases in the feeding line, it is possible to obtain spatial variations of the plasma composition in a desired manner, enabling spatial probing of the associated zones. Detailed compositional description of different zones inside the torch may be
Sparse PDF maps for non-linear multi-resolution image operations
Hadwiger, Markus
2012-11-01
We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.
Coastal tomographic mapping of nonlinear tidal currents and residual currents
Zhu, Ze-Nan; Zhu, Xiao-Hua; Guo, Xinyu
2017-07-01
Depth-averaged current data, which were obtained by coastal acoustic tomography (CAT) July 12-13, 2009 in Zhitouyang Bay on the western side of the East China Sea, are used to estimate the semidiurnal tidal current (M2) as well as its first two overtide currents (M4 and M6). Spatial mean amplitude ratios M2:M4:M6 in the bay are 1.00:0.15:0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, where water depths are larger than 60 m, M4 velocity amplitudes measured by CAT agree well with those predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. In addition, dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents. This is the first ever nonlinear tidal current study by CAT.
Generic convergence of iterates for a class of nonlinear mappings
Directory of Open Access Journals (Sweden)
Alexander J. Zaslavski
2004-08-01
Full Text Available Let K be a nonempty, bounded, closed, and convex subset of a Banach space. We show that the iterates of a typical element (in the sense of Baire's categories of a class of continuous self-mappings of K converge uniformly on K to the unique fixed point of this typical element.
Column-Oriented Storage Techniques for MapReduce
Floratou, Avrilia; Shekita, Eugene; Tata, Sandeep
2011-01-01
Users of MapReduce often run into performance problems when they scale up their workloads. Many of the problems they encounter can be overcome by applying techniques learned from over three decades of research on parallel DBMSs. However, translating these techniques to a MapReduce implementation such as Hadoop presents unique challenges that can lead to new design choices. This paper describes how column-oriented storage techniques can be incorporated in Hadoop in a way that preserves its popular programming APIs. We show that simply using binary storage formats in Hadoop can provide a 3x performance boost over the naive use of text files. We then introduce a column-oriented storage format that is compatible with the replication and scheduling constraints of Hadoop and show that it can speed up MapReduce jobs on real workloads by an order of magnitude. We also show that dealing with complex column types such as arrays, maps, and nested records, which are common in MapReduce jobs, can incur significant CPU ove...
Koch, Herbert; Vişan, Monica
2014-01-01
The first part of the book provides an introduction to key tools and techniques in dispersive equations: Strichartz estimates, bilinear estimates, modulation and adapted function spaces, with an application to the generalized Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation. The energy-critical nonlinear Schrödinger equation, global solutions to the defocusing problem, and scattering are the focus of the second part. Using this concrete example, it walks the reader through the induction on energy technique, which has become the essential methodology for tackling large data critical problems. This includes refined/inverse Strichartz estimates, the existence and almost periodicity of minimal blow up solutions, and the development of long-time Strichartz inequalities. The third part describes wave and Schrödinger maps. Starting by building heuristics about multilinear estimates, it provides a detailed outline of this very active area of geometric/dispersive PDE. It focuses on concepts and ide...
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
NERO: a code for the nonlinear evaluation of resonances in one-turn mappings
Todesco, E.; Gemmi, M.; Giovannozzi, M.
1997-10-01
We describe a code that evaluates the stability, the position and the width of resonances in four-dimensional symplectic mappings. The code is based on the computation of the resonant perturbative series through the program ARES, and on the analysis of the resonant orbits of the interpolating Hamiltonian. The code is dedicated to the study and to the comparison of the nonlinear behaviour in one-turn betatronic maps.
Techniques in Linear and Nonlinear Partial Differential Equations
1991-10-21
nonlinear partial differential equations , elliptic 15. NUMBER OF PAGES hyperbolic and parabolic. Variational methods. Vibration problems. Ordinary Five...NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS FINAL TECHNICAL REPORT PROFESSOR LOUIS NIRENBERG OCTOBER 21, 1991 NT)S CRA&I D FIC ,- U.S. ARMY RESEARCH OFFICE...Analysis and partial differential equations . ed. C. Sadowsky. Marcel Dekker (1990) 567-619. [7] Lin, Fanghua, Asymptotic behavior of area-minimizing
UAS Mapping as an alternative for land surveying techniques?
Directory of Open Access Journals (Sweden)
L. Devriendt
2014-03-01
Full Text Available Can a UAS mapping technique compete with standard surveying techniques? Since the boom in different RPAS (remotely piloted air system, UAV (unmanned aerial vehicle, or UAS (unmanned aerial system, this is one of the crucial questions when it comes to UAS mappings. Not the looks and feels are important but the reliability, ease-to-use, and accuracy that you get with a system based on hardware and corresponding software. This was also one of the issues that the Dutch Land Registry asked a few months ago aimed at achieving an effective and usable system for updating property boundaries in new-build districts. Orbit GT gave them a ready-made answer: a definitive outcome based on years of research and development in UAS mapping technology and software.
Linking human factors to corporate strategy with cognitive mapping techniques.
Village, Judy; Greig, Michael; Salustri, Filippo A; Neumann, W Patrick
2012-01-01
For human factors (HF) to avoid being considered of "side-car" status, it needs to be positioned within the organization in such a way that it affects business strategies and their implementation. Tools are needed to support this effort. This paper explores the feasibility of applying a technique from operational research called cognitive mapping to link HF to corporate strategy. Using a single case study, a cognitive map is drawn to reveal the complex relationships between human factors and achieving an organization's strategic goals. Analysis of the map for central concepts and reinforcing loops enhances understanding that can lead to discrete initiatives to facilitate integration of HF. It is recommended that this technique be used with senior managers to understand the organizations` strategic goals and enhance understanding of the potential for HF to contribute to the strategic goals.
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Two new variants of the manifold-mapping technique
Echeverria, D.
2006-01-01
Manifold-mapping is an efficient surrogate-based optimization technique aimed at the acceleration of very time-consuming design problems. In this paper we present two new variants of the original algorithm that make it applicable to a broader range of optimization scenarios. The first variant is use
Dynamics of a Skew Tent Map in the Nonlinear Frobenius-Perron Equation
Katsuragi, Daisuke
Return maps of the mean field in globally coupled map lattices (GCML) with a large system size were compared with those at the limit in a large system size. We adopted a nonlinear Frobenius-Perron equation (NFPE) for the limit in the large system size, and used a skew tent map as a chaotic map to simplify calculations in the NFPE. The return maps of the mean field for direct numerical calculations in the GCML usually fluctuate from those for numerical calculations in the NFPE. However, at some coupling strengths, there are totally different return maps between the GCML and the NFPE. We show that this strongly depends on the initial conditions at some coupling strengths.
Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps
Deep Parikh; Jignesh Patel; Jayesh Barve
2015-01-01
This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current) motors used in quad-copter UAV (Unmanned Aerial Vehicles). The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM). Traditionally, quad-copter BLDC motor speed control uses simple linear motor-cont...
Nonlinear systems techniques for dynamical analysis and control
Lefeber, Erjen; Arteaga, Ines
2017-01-01
This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participan...
Reconstructing the Nonlinear Dynamical Systems by Evolutionary Computation Techniques
Institute of Scientific and Technical Information of China (English)
LIU Minzhong; KANG Lishan
2006-01-01
We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems ). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.
Wang, Sijia; Peterson, Daniel J.; Gatenby, J. C.; Li, Wenbin; Grabowski, Thomas J.; Madhyastha, Tara M.
2017-01-01
Correction of echo planar imaging (EPI)-induced distortions (called “unwarping”) improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and functional imaging investigations. Commonly used unwarping methods require the acquisition of supplementary images during the scanning session. Alternatively, distortions can be corrected by nonlinear registration to a non-EPI acquired structural image. In this study, we compared reliability using two methods of unwarping: (1) nonlinear registration to a structural image using symmetric normalization (SyN) implemented in Advanced Normalization Tools (ANTs); and (2) unwarping using an acquired field map. We performed this comparison in two different test-retest data sets acquired at differing sites (N = 39 and N = 32). In both data sets, nonlinear registration provided higher test-retest reliability of the output fractional anisotropy (FA) maps than field map-based unwarping, even when accounting for the effect of interpolation on the smoothness of the images. In general, field map-based unwarping was preferable if and only if the field maps were acquired optimally.
Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps
Energy Technology Data Exchange (ETDEWEB)
Méndez-Bermúdez, J.A. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Oliveira, Juliano A. de [UNESP – Univ. Estadual Paulista, Câmpus de São João da Boa Vista, Av. Professora Isette Corrêa Fontão, 505, Jardim Santa Rita das Areias, 13876-750 São João da Boa Vista, SP (Brazil); Leonel, Edson D. [Departamento de Física, UNESP – Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900 Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)
2016-05-20
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust. - Highlights: • We analytically approach scaling properties of a family of two-dimensional dissipative nonlinear maps. • We derive universal scaling functions that were obtained before only approximately. • We predict the unexpected condition where diffusion and dissipation compensate each other exactly. • We find a new universal scaling function that embraces all possible dissipative behaviors.
Sato, Masaaki; Murayama, Tomonori; Nakajima, Jun
2016-10-01
Anatomical segmentectomies play an important role in oncological lung resection, particularly for ground-glass types of primary lung cancers. This operation can also be applied to metastatic lung tumors deep in the lung. Virtual assisted lung mapping (VAL-MAP) is a novel technique that allows for bronchoscopic multi-spot dye markings to provide "geometric information" to the lung surface, using three-dimensional virtual images. In addition to wedge resections, VAL-MAP has been found to be useful in thoracoscopic segmentectomies, particularly complex segmentectomies, such as combined subsegmentectomies or extended segmentectomies. There are five steps in VAL-MAP-assisted segmentectomies: (I) "standing" stitches along the resection lines; (II) cleaning hilar anatomy; (III) confirming hilar anatomy; (IV) going 1 cm deeper; (V) step-by-step stapling technique. Depending on the anatomy, segmentectomies can be classified into linear (lingular, S6, S2), V- or U-shaped (right S1, left S3, S2b + S3a), and three dimensional (S7, S8, S9, S10) segmentectomies. Particularly three dimensional segmentectomies are challenging in the complexity of stapling techniques. This review focuses on how VAL-MAP can be utilized in segmentectomy, and how this technique can assist the stapling process in even the most challenging ones.
Uncertainty in mapping urban air quality using crowdsourcing techniques
Schneider, Philipp; Castell, Nuria; Lahoz, William; Bartonova, Alena
2016-04-01
Small and low-cost sensors measuring various air pollutants have become available in recent years owing to advances in sensor technology. Such sensors have significant potential for improving high-resolution mapping of air quality in the urban environment as they can be deployed in comparatively large numbers and therefore are able to provide information at unprecedented spatial detail. However, such sensor devices are subject to significant and currently little understood uncertainties that affect their usability. Not only do these devices exhibit random errors and biases of occasionally substantial magnitudes, but these errors may also shift over time. In addition, there often tends to be significant inter-sensor variability even when supposedly identical sensors from the same manufacturer are used. We need to quantify accurately these uncertainties to make proper use of the information they provide. Furthermore, when making use of the data and producing derived products such as maps, the measurement uncertainties that propagate throughout the analysis need to be clearly communicated to the scientific and non-scientific users of the map products. Based on recent experiences within the EU-funded projects CITI-SENSE and hackAIR we discuss the uncertainties along the entire processing chain when using crowdsourcing techniques for mapping urban air quality. Starting with the uncertainties exhibited by the sensors themselves, we present ways of quantifying the error characteristics of a network of low-cost microsensors and show suitable statistical metrics for summarizing them. Subsequently, we briefly present a data-fusion-based method for mapping air quality in the urban environment and illustrate how we propagate the uncertainties of the individual sensors throughout the mapping system, resulting in detailed maps that document the pixel-level uncertainty for each concentration field. Finally, we present methods for communicating the resulting spatial uncertainty
The constructive technique and its application in solving a nonlinear reaction diffusion equation
Institute of Scientific and Technical Information of China (English)
Lai Shao-Yong; Guo Yun-Xi; Qing Yin; Wu Yong-Hong
2009-01-01
A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear reaction diffusion equation which describes a real process in physics and in chemistry. Several exact solutions for the equation are acquired under certain circumstances.
Linear iterative technique for solution of nonlinear thermal network problems
Energy Technology Data Exchange (ETDEWEB)
Seabourn, C.M.
1976-11-01
A method for rapid and accurate solution of linear and/or nonlinear thermal network problems is described. It is a matrix iterative process that converges for nodal temperatures and variations of thermal conductivity with temperature. The method is computer oriented and can be changed easily for design studies.
Indian Academy of Sciences (India)
S Venugopal Rao; P T Anusha; L Giribabu; Surya P Tewari
2010-11-01
We present our experimental results on the picosecond nonlinear optical (NLO) studies of symmetrical and unsymmetrical phthalocyanines, examined using the Z-scan technique. Both the open-aperture and closed-aperture Z-scan curves for three samples were recorded and the nonlinear coefficients were extracted from the theoretical fits. The nonlinear absorption/refraction contribution from the solvent was also identified. The observed open aperture behaviour for these molecules is understood in terms of the absorption coefficients of these molecules near 800 nm and the peak intensities used. It is established that these phthalocyanines exhibit large optical nonlinearities and, hence, are suitable for optical limiting applications.
Application of nonlinear forecasting techniques for meteorological modeling
Directory of Open Access Journals (Sweden)
V. Pérez-Muñuzuri
Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.
Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields
Data Analysis Techniques for Resolving Nonlinear Processes in Plasmas : a Review
de Wit, T. Dudok
1996-01-01
The growing need for a better understanding of nonlinear processes in plasma physics has in the last decades stimulated the development of new and more advanced data analysis techniques. This review lists some of the basic properties one may wish to infer from a data set and then presents appropriate analysis techniques with some recent applications. The emphasis is put on the investigation of nonlinear wave phenomena and turbulence in space plasmas.
A SELF-ADAPTIVE TECHNIQUE FOR A KIND OF NONLINEAR CONJUGATE GRADIENT METHODS
Institute of Scientific and Technical Information of China (English)
王丽平
2004-01-01
Conjugate gradient methods. are a class of important methods for unconstrained optimization, especially when the dimension is large. In 2001, Dai and Liao have proposed a new conjugate condition, based on it two nonlinear conjugate gradient methods are constructed. With trust region idea, this paper gives a self-adaptive technique for the two methods. The numerical results show that this technique works well for the given nonlinear optimization test problems.
Characterization of nonlinear ultrasonic effects using the dynamic wavelet fingerprint technique
Lv, Hongtao; Jiao, Jingpin; Meng, Xiangji; He, Cunfu; Wu, Bin
2017-02-01
An improved dynamic wavelet fingerprint (DWFP) technique was developed to characterize nonlinear ultrasonic effects. The white area in the fingerprint was used as the nonlinear feature to quantify the degree of damage. The performance of different wavelet functions, the effect of scale factor and white subslice ratio on the nonlinear feature extraction were investigated, and the optimal wavelet function, scale factor and white subslice ratio for maximum damage sensitivity were determined. The proposed DWFP method was applied to the analysis of experimental signals obtained from nonlinear ultrasonic harmonic and wave-mixing experiments. It was demonstrated that the proposed DWFP method can be used to effectively extract nonlinear features from the experimental signals. Moreover, the proposed nonlinear fingerprint coefficient was sensitive to micro cracks and correlated well with the degree of damage.
Energy Technology Data Exchange (ETDEWEB)
Cloutier, J.R.; D`Souza, C.N.; Mracek, C.P. [Air Force Armament Directorate, Eglin, FL (United States)
1994-12-31
A little known technique for systematically designing nonlinear regulators is analyzed. The technique consists of first using direct parameterization to bring the nonlinear system to a linear structure having state-dependent coefficients (SDC). A state-dependent Riccati equation (SDRE) is then solved at each point x along the trajectory to obtain a nonlinear feedback controller of the form u = -R{sup -1}(x)B{sup T}(x)P(x)x, where P(x) is the solution of the SDRE. In the case of scalar x, it is shown that the SDRE approach yields a control solution which satisfies all of the necessary conditions for optimality even when the state and control weightings are functions of the state. It is also shown that the solution is globally asymptotically stable. In the multivariable case, the optimality, suboptimality and stability properties of the SDRE method are investigated. Under various mild assumptions of controllability and observability, the following is shown: (a) concerning the necessary conditions for optimality, where H is the Hamiltonian of the system, H{sub u} = 0 is always satisfied and, under stability, {lambda} = -H{sub x} is asymptotically satisfied at a quadratic rate as the states are driven toward the origin, (b) if it exists, a parameter-dependent SDC parameterization can be computed such that the multivariable SDRE closed loop solution satisfies all of the necessary conditions for optimality for a given initial condition, and (c) the method is locally asymptotically stable. A general nonlinear minimum-energy (nonlinear H{sub {infinity}}) problem is then posed. For this problem, the SDRF, method involves the solution of two coupled state-dependent Riccati equations at each point x along the trajectory. In the case of full state information, again under mild assumptions of controllability and observability, it is shown that the SDRE non-linear H{sub {infinity}} controller is internally locally asymptotically stable.
A Novel Analog-to-digital conversion Technique using nonlinear duty-cycle modulation
Directory of Open Access Journals (Sweden)
Jean Mbihi
2012-06-01
Full Text Available A new type of analog-to-digital conversion technique is presented in this paper. The interfacing hardware is a very simple nonlinear circuit with 1-bit modulated output. As a implication, behind the hardware simplicity retained is hidden a dreadful nonlinear duty-cycle modulation ratio. However, the overall nonlinear behavior embeds a sufficiently wide linear range, for a rigorous digital reconstitution of the analog input signal using a standard linear filter. Simulation and experimental results obtained using a well tested prototyping system, show the feasibility and good quality of the proposed conversion technique.
Nondestructive evaluation of notched cracks in mortars by nonlinear ultrasonic technique
Chen, Jun; Ren, Jun; Yin, Tingyuan
2016-04-01
In this paper, a nonlinear ultrasonic technique is used to nondestructively characterise concentrated defects in cement-based materials. Cracks are artificially notched in mortar samples and five different crack widths are used to simulate increased damage of samples. The relative ratio of second harmonic amplitude to the square of fundamental ultrasonic signal amplitude is defined as the damage indicator of the nonlinear ultrasonic technique, which is measured for mortar samples in conjunction with a typical linear nondestructive evaluation parameter - ultrasonic pulse velocity. It is found that both linear and nonlinear damage parameters have a good correlation with the change of crack width, while the nonlinearity parameter shows a better sensitivity to the width increase. In addition, the nonlinearity parameter presents an exponential increase with the crack growth, indicating an accelerating nonlinear ultrasonic response of materials to increased internal damage in the late phase. The results demonstrate that the nonlinear ultrasonic technique based on the second harmonic principle keeps the high sensitivity to the isolated cracks in cement-based materials, similarly to the case of distributed cracks in previous studies. The developed technique could thus be a useful experimental tool for the assessment of concentrated damage of concrete structures.
2014-03-27
errors found using the polynomial response surrogate (LS PRM ) overlaid on the data from the space-mapped (SM) surrogate...nonlinear space-mapped surrogate responses, with the least-squares PRM surrogate response plotted for comparison . . . . . . . . . . . . . . . . . 65 42...Percent error comparison between the least-squares space-mapping and the PRM surrogate models derived from samples in the second dataset
Influence of pansharpening techniques in obtaining accurate vegetation thematic maps
Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier
2016-10-01
In last decades, there have been a decline in natural resources, becoming important to develop reliable methodologies for their management. The appearance of very high resolution sensors has offered a practical and cost-effective means for a good environmental management. In this context, improvements are needed for obtaining higher quality of the information available in order to get reliable classified images. Thus, pansharpening enhances the spatial resolution of the multispectral band by incorporating information from the panchromatic image. The main goal in the study is to implement pixel and object-based classification techniques applied to the fused imagery using different pansharpening algorithms and the evaluation of thematic maps generated that serve to obtain accurate information for the conservation of natural resources. A vulnerable heterogenic ecosystem from Canary Islands (Spain) was chosen, Teide National Park, and Worldview-2 high resolution imagery was employed. The classes considered of interest were set by the National Park conservation managers. 7 pansharpening techniques (GS, FIHS, HCS, MTF based, Wavelet `à trous' and Weighted Wavelet `à trous' through Fractal Dimension Maps) were chosen in order to improve the data quality with the goal to analyze the vegetation classes. Next, different classification algorithms were applied at pixel-based and object-based approach, moreover, an accuracy assessment of the different thematic maps obtained were performed. The highest classification accuracy was obtained applying Support Vector Machine classifier at object-based approach in the Weighted Wavelet `à trous' through Fractal Dimension Maps fused image. Finally, highlight the difficulty of the classification in Teide ecosystem due to the heterogeneity and the small size of the species. Thus, it is important to obtain accurate thematic maps for further studies in the management and conservation of natural resources.
The Use of Electromagnetic Induction Techniques for Soil Mapping
Brevik, Eric C.; Doolittle, Jim
2015-04-01
Soils have high natural spatial variability. This has been recognized for a long time, and many methods of mapping that spatial variability have been investigated. One technique that has received considerable attention over the last ~30 years is electromagnetic induction (EMI). Particularly when coupled with modern GPS and GIS systems, EMI techniques have allowed the rapid and relatively inexpensive collection of large spatially-related data sets that can be correlated to soil properties that either directly or indirectly influence electrical conductance in the soil. Soil electrical conductivity is directly controlled by soil water content, soluble salt content, clay content and mineralogy, and temperature. A wide range of indirect controls have been identified, such as soil organic matter content and bulk density; both influence water relationships in the soil. EMI techniques work best in areas where there are large changes in one soil property that influences soil electrical conductance, and don't work as well when soil properties that influence electrical conductance are largely homogenous. This presentation will present examples of situations where EMI techniques were successful as well as a couple of examples of situations where EMI was not so useful in mapping the spatial variability of soil properties. Reasons for both the successes and failures will be discussed.
Block and parallel modelling of broad domain nonlinear continuous mapping based on NN
Institute of Scientific and Technical Information of China (English)
Yang Guowei; Tu Xuyan; Wang Shoujue
2006-01-01
The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity.
Clayton, C E; Adli, E; Allen, J; An, W; Clarke, C I; Corde, S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Xu, X; Yakimenko, V
2016-08-16
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.
2016-08-01
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within +/-3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m-1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.
An analysis of a new nonlinear estimation technique: The state-dependent Ricatti equation method
Ewing, Craig Michael
1999-10-01
Research into nonlinear estimation techniques for terminal homing missiles has been conducted for many decades. The terminal state estimator, also called the guidance filter, is responsible for providing accurate estimates of target motion for use in guiding the missile to a collision course with the target. Some form of the extended-Kalman filter (EKF) has become the standard estimation technique employed in most modern weapon guidance systems. EKF linearization of nonlinear dynamics and/or measurements can cause problems of divergence when confronted by highly nonlinear conditions. The objective of this dissertation is to analyze a new nonlinear estimation technique that is based on the parameterization of the nonlinearities. This parameterization converts the nonlinear estimation problem into the form of a steady-state continuous Kalman filtering problem with state-dependent coefficients. This new technique, called the state-dependent Ricatti equation filter (SDREF), allows the nonlinearities of the system to be fully incorporated into the filter design, before stochastic uncertainties are imposed, without the need for linearization. The SDREF was investigated in three problems: an exoatmospheric, terminal homing, ballistic-missile intercept problem; a highly nonlinear pendulum example; and an algorithmic loss of observability problem. The exoatmospheric guidance problem examined nonlinear measurements with linear dynamics. To investigate the SDREF when used with a combination of nonlinear dynamics and nonlinear measurements, a highly nonlinear, two-state pendulum problem was also examined. While these problems were useful in gaining insight into the performance characteristics of the SDREF, no formal proof of stability could be determined for the original formulation of the estimator. The original SDREF solved an algebraic SDRE that arose from an infinite-time horizon formulation of the nonlinear filtering problem. A modification to the SDREF formulation was
Frequency map analysis of resonances in a nonlinear lattice with space charge
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. E-mail: turchetti@bo.infn.it; Bazzani, A.; Bergamini, F.; Rambaldi, S.; Hofmann, I.; Bongini, L.; Franchetti, G
2001-05-21
In storage rings for heavy ion fusion beam losses must be minimized. During bunch compression high space charge is reached and the reciprocal effects between the collective modes of the beam and the single particle lattice nonlinearities must be considered to understand the problem of resonance crossing and halo formation. We show that the frequency map analysis of particle in core models gives an adequate description of the resonance network and of the chaotic regions where the halo particles can diffuse.
A new mapping method and its applications to nonlinear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Zeng Xin [Department of Mathematics, Zhengzhou University, Zhengzhou 450052 (China)], E-mail: zeng79723@163.com; Yong Xuelin [Department of Mathematics and Physics, North China Electric Power University, Beijing 102206 (China)
2008-10-27
In this Letter, a new mapping method is proposed for constructing more exact solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose the (2+1)-dimensional Konopelchenko-Dubrovsky equation and the (2+1)-dimensional KdV equations to illustrate the validity and advantages of the method. As a result, many new and more general exact solutions are obtained.
Nonlinear Maps for Design of Discrete-Time Models of Neuronal Network Dynamics
2016-03-31
responsive tiring patterns . We propose to use modern DSP ideas to develop new efficient approaches to the design of such discrete-time models for...2016 Performance/Technic~ 03-01-2016- 03-31-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Nonlinear Maps for Design of Discrete-Time Models of...simulations is to design a neuronal model in the form of difference equations that generates neuronal states in discrete moments of time. In this
Differential geometry techniques for sets of nonlinear partial differential equations
Estabrook, Frank B.
1990-01-01
An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.
Nonlinear Filtering Techniques Comparison for Battery State Estimation
Directory of Open Access Journals (Sweden)
Aspasia Papazoglou
2014-09-01
Full Text Available The performance of estimation algorithms is vital for the correct functioning of batteries in electric vehicles, as poor estimates will inevitably jeopardize the operations that rely on un-measurable quantities, such as State of Charge and State of Health. This paper compares the performance of three nonlinear estimation algorithms: the Extended Kalman Filter, the Unscented Kalman Filter and the Particle Filter, where a lithium-ion cell model is considered. The effectiveness of these algorithms is measured by their ability to produce accurate estimates against their computational complexity in terms of number of operations and execution time required. The trade-offs between estimators' performance and their computational complexity are analyzed.
Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique
Energy Technology Data Exchange (ETDEWEB)
Shanshool, Haider Mohammed, E-mail: haidshan62@gmail.com [Ministry of Science and Technology, Baghdad (Iraq); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, Serdang (Malaysia); Abdullah, Ibtisam Yahya [Department of Physics, College of Science, University of Mosul, Mosul (Iraq)
2015-10-15
The nonlinear optical properties of ZnO nanoparticles dispersed in poly (vinylidene fluoride) (PVDF) polymer are investigated. PVDF/ZnO nanocomposites were prepared by mixing different concentrations of ZnO nanoparticles, as the filler, with PVDF, as the polymer matrix, using casting method. Acetone was used as a solvent for the polymer. FTIR spectra of the samples were analyzed thus confirming the formation of α and β phases. The absorbance spectra of the samples were obtained, thereby showing high absorption in the UV region. The linear absorption coefficient was calculated. The single-beam Z-scan technique was used to measure the nonlinear refractive index and the nonlinear absorption coefficient of the PVDF/ZnO nanocomposite samples. We observed that the nonlinear refractive index is in the order of 10{sup -13} cm{sup 2}/W with the negative sign, whereas the nonlinear absorption coefficient is in the order of 10{sup -8} cm/W. (author)
Compensation techniques for non-linearities in H-bridge inverters
Directory of Open Access Journals (Sweden)
Daniel Zammit
2016-12-01
Full Text Available This paper presents compensation techniques for component non-linearities in H-bridge inverters as those used in grid-connected photovoltaic (PV inverters. Novel compensation techniques depending on the switching device current were formulated to compensate for the non-linearities in inverter circuits caused by the voltage drops on the switching devices. Both simulation and experimental results will be presented. Testing was carried out on a PV inverter which was designed and constructed for this research. Very satisfactory results were obtained from all the compensation techniques presented, however the exact compensation method was the most effective, providing the highest reduction in harmonics.
Kounadis, A. N.
1992-05-01
An efficient and easily applicable, approximate analytic technique for the solution of nonlinear initial and boundary-value problems associated with nonlinear ordinary differential equations (O.D.E.) of any order and variable coefficients, is presented. Convergence, uniqueness and upper bound error estimates of solutions, obtained by the successive approximations scheme of the proposed technique, are thoroughly established. Important conclusions regarding the improvement of convergence for large time and large displacement solutions in case of nonlinear initial-value problems are also assessed. The proposed technique is much more efficient than the perturbations schemes for establishing the large postbuckling response of structural systems. The efficiency, simplicity and reliability of the proposed technique is demonstrated by two illustrative examples for which available numerical results exist.
A new approach of binary addition and subtraction by non-linear material based switching technique
Indian Academy of Sciences (India)
Archan Kumar Das; Partha Partima Das; Sourangshu Mukhopadhyay
2005-02-01
Here, we refer a new proposal of binary addition as well as subtraction in all-optical domain by exploitation of proper non-linear material-based switching technique. In this communication, the authors extend this technique for both adder and subtractor accommodating the spatial input encoding system.
Indirect techniques for adaptive input-output linearization of non-linear systems
Teel, Andrew; Kadiyala, Raja; Kokotovic, Peter; Sastry, Shankar
1991-01-01
A technique of indirect adaptive control based on certainty equivalence for input output linearization of nonlinear systems is proven convergent. It does not suffer from the overparameterization drawbacks of the direct adaptive control techniques on the same plant. This paper also contains a semiindirect adaptive controller which has several attractive features of both the direct and indirect schemes.
Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique
Directory of Open Access Journals (Sweden)
Izhal Abdul Halin
2009-11-01
Full Text Available The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.
Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique
Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan
2009-01-01
The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133
Constructing a Soil Class Map of Denmark based on the FAO Legend Using Digital Techniques
DEFF Research Database (Denmark)
Adhikari, Kabindra; Minasny, Budiman; Greve, Mette Balslev
2014-01-01
Soil mapping in Denmark has a long history and a series of soil maps based on conventional mapping approaches have been produced. In this study, a national soil map of Denmark was constructed based on the FAO–Unesco Revised Legend 1990 using digital soil mapping techniques, existing soil profile...
Sudheesh, P.; Rao, D. Mallikharjuna; Chandrasekharan, K.
2014-01-01
The third-order nonlinear optical properties of newly synthesized phenylhydrazone derivatives and the influence of noble metal nanoparticles (Ag & Au) on their nonlinear optical responses were investigated by employing Degenerate Four wave Mixing (DFWM) technique with a 7 nanosecond, 10Hz Nd: YAG laser pulses at 532nm. Metal nanoparticles were prepared by laser ablation and the particle formation was confirmed using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM). The nonlinear optical susceptibility were measured and found to be of the order 10-13esu. The results are encouraging and conclude that the materials are promising candidate for future optical device applications.
Development of a nonlinear ultrasonic NDE technique for detection of kissing bonds in composites
Alston, Jonathan; Croxford, Anthony; Potter, Jack; Blanloeuil, Philippe
2017-04-01
The development of low-cost bonded assembly of composite aerospace structures ideally requires an NDE method to detect the presence of poor quality, weak bonds or kissing bonds. Such interfaces can introduce nonlinearity as a result of contact nonlinearity where an ultrasonic wave is distorted when it interacts with the interface. In general, the nonlinear elastic behaviour of these interfaces will generate harmonics but they can be lost among the harmonics generated by other nonlinearities present in the experimental system. The technique developed in this research is a non-collinear method; this involves the interaction of two ultrasonic beams, and it allows the removal of virtually all system nonlinearity except for that produced in the region where the two beams overlap. The frequencies of the two beams and the angle between are varied during the experiment. By measuring the nonlinear mixing response as these two parameters are swept through a `fingerprint' of the nonlinear properties in the interaction region can be obtained. This fingerprint has been shown to contain information about the bulk material and the interface status. Work is ongoing to understand which features in the fingerprints reliably correlate with particular material or interface properties. To build this understanding a greatly simplified kissing bond, a compression loaded aluminium-aluminium interface, has been tested. Modelling of the nonlinear behaviour of the aluminium interface has also been conducted.
Correction of Phase Distortion by Nonlinear Optical Techniques
1981-05-01
ward wave oscillators and distributed feedback lasers, occur even in the presence of pump attenuation. It is obvious that pump depletion effects...a*. Efl v* Z* ^iCVb^^f-V VEfl> (4-3-2) Ik -VE +^ V,2 E - n— p p 2k T p 2nc W {M[(I +1 )En - (E -E*) t...offset techniques. (1) Since the pumps may be arranged to be non-counterpropagating with angle offset techniques, feedback of the pump into the
Automated, non-linear registration between 3-dimensional brain map and medical head image
Energy Technology Data Exchange (ETDEWEB)
Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao [National Cardiovascular Center, Suita, Osaka (Japan)
1998-05-01
In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)
Dávila Pintle, José A; Lara, Edmundo Reynoso; Iturbe Castillo, Marcelo D
2013-07-01
It is presented a criteria for selecting the optimum aperture radius for the one beam Z-scan technique (OBZT), based on the analysis of the transmittance of the aperture. It is also presented a modification to the OBZT by directly measuring the beam radius in the far field with a rotating disk, which allows to determine simultaneously the non-linear absorptive coefficient and non-linear refractive index, much less sensitive to wave front distortions caused by inhomogeneities of the sample with a negligible loss of signal to noise ratio. It is demonstrated its equivalence to the OBZT.
Advanced Phase noise modeling techniques of nonlinear microwave devices
Prigent, M.; J. C. Nallatamby; R. Quere
2004-01-01
In this paper we present a coherent set of tools allowing an accurate and predictive design of low phase noise oscillators. Advanced phase noise modelling techniques in non linear microwave devices must be supported by a proven combination of the following : - Electrical modeling of low-frequency noise of semiconductor devices, oriented to circuit CAD . The local noise sources will be either cyclostationary noise sources or quasistationary noise sources. - Theoretic...
Directory of Open Access Journals (Sweden)
Ebrahim Parcham
2014-07-01
Full Text Available Classifying similar images is one of the most interesting and essential image processing operations. Presented methods have some disadvantages like: low accuracy in analysis step and low speed in feature extraction process. In this paper, a new method for image classification is proposed in which similarity weight is revised by means of information in related and unrelated images. Based on researchers’ idea, most of real world similarity measurement systems are nonlinear. Thus, traditional linear methods are not capable of recognizing nonlinear relationship and correlation in such systems. Undoubtedly, Self Organizing Map neural networks are strongest networks for data mining and nonlinear analysis of sophisticated spaces purposes. In our proposed method, we obtain images with the most similarity measure by extracting features of our target image and comparing them with the features of other images. We took advantage of NLPCA algorithm for feature extraction which is a nonlinear algorithm that has the ability to recognize the smallest variations even in noisy images. Finally, we compare the run time and efficiency of our proposed method with previous proposed methods.
Institute of Scientific and Technical Information of China (English)
LI Hua-Mei
2003-01-01
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
Extending the perturbation technique to the modal representation of nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Soltani, S. [Department of Electrical Engineering, Science and Research Branch, Islamic Azad University (IAU), 1477893855-14515775, Tehran (Iran); Pariz, N.; Ghazi, R. [Department of Electrical Engineering, ferdowsi University, 9177948944-1111, Mashhad (Iran)
2009-08-15
After a brief review of perturbation technique, using this method an approach is developed to represent and study the behavior of nonlinear dynamic power systems. For the first time in this field, perturbation technique is applied to obtain an approximate closed form expression for the zero input response of stressed power systems. In order to show the superiority of the proposed method, it has been applied to a typical nonlinear system which is a single machine infinite bus (SMIB) power system with unified power flow controller (UPFC). The accuracy and competency of this method in comparison with Modal Series method will also be validated. (author)
Guermond, Jean-Luc
2014-01-01
© 2014 Society for Industrial and Applied Mathematics. This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213], a high-order entropy viscosity method, and the Boris-Book-Zalesak flux correction technique. The algorithm works for arbitrary meshes in any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method and its convergence properties are tested on a series of linear and nonlinear benchmark problems.
Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza
2013-03-01
Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Application of Remote Sensing Techniques for Mapping Shifting Cultivation
Directory of Open Access Journals (Sweden)
N.Vijaya Kumari
2017-01-01
Full Text Available Shifting cultivation is an ancient and primitive method of cultivation, also referred to as ‘slash and burn’ or ‘rotational bush fallow agricultural system’. The practice mainly involves removal of the forests by primitive slash and burn technique followed by mixed cropping for short period before abandoning the site. Tribals all over India are known to follow the practice of shifting cultivation with some regional variations. The present study has been undertaken to estimate the spatial distribution of podu cultivation in Srikakulam district of Andhra Pradesh by using remote sensing techniques. Results of the present study indicate that an estimated area of 10,491.857 acres of the forest area is under shifting cultivation in Srikakulam district. Shifting cultivation has caused a great deal of environmental degradation. Remote sensing techniques with repetitive coverage and synoptic view provide database for assessing environment degrading practices. Mapping of shifting areas is important not only from ecological point of view but also for management purposes.
Haroon, Muhammad; Adams, Douglas E.
2007-04-01
Fatigue tests on a stabilizer bar link of an automotive suspension system are used to initiate a crack and grow the crack size. During these tests, slow sine sweeps are used to extract narrowband restoring forces across the stabilizer bar link. The restoring forces are shown to characterize the nonlinear changes in component internal forces due to crack growth. Broadband frequency response domain techniques are used to analyze the durability response data. Nonlinear frequency domain models of the dynamic transmissibility across the cracked region are shown to change as a function of crack growth. Higher order spectra are used to show the increase in nonlinear coupling of response frequency components with the appearance and growth of the crack. It is shown that crack growth can be detected and characterized by the changes in nonlinear indicators.
Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique
Zongo, S.; Sanusi, K.; Britton, J.; Mthunzi, P.; Nyokong, T.; Maaza, M.; Sahraoui, B.
2015-08-01
We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer. The experiments were performed by using single beam Z-scan technique at 532 nm with 10 ns, 10 Hz Nd:YAG laser pulses excitation. From the open-aperture Z-scan data, we derived that the laccaic dye samples exhibit strong two photon absorption (2PA). The nonlinear refractive index was determined through the closed aperture Z-scan data. The estimated absorption coefficient β2, nonlinear refractive index n2 and second order hyperpolarizability γ were found to be of the order of 10-10 m/W, 10-9 esu and 10-32 esu, respectively. The Z-scan study reveals that the natural laccaic acid dye emerges as a promising material for third order nonlinear optical devices application.
Neural Network Nonlinear Predictive Control Based on Tent-map Chaos Optimization%基于Tent混沌优化的神经网络预测控制
Institute of Scientific and Technical Information of China (English)
宋莹; 陈增强; 袁著祉
2007-01-01
With the unique ergodicity, irregularity, and special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for application in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predictive control (NNPC) strategy based on the new Tent-map chaos optimization algorithm (TCOA) is presented. The feedforward neural network is used as the multi-step predictive model. In addition, the TCOA is applied to perform the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a laboratory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.
Cosmology with intensity mapping techniques using atomic and molecular lines
Fonseca, José; Santos, Mário G; Cooray, Asantha
2016-01-01
We present a systematic study of the intensity mapping technique using updated models for the different emission lines from galaxies and identify which ones are more promising for cosmological studies of the post reionization epoch. We consider the emission of ${\\rm Ly\\alpha}$, ${\\rm H\\alpha}$, H$\\beta$, optical and infrared oxygen lines, nitrogen lines, CII and the CO rotational lines. We then identify that ${\\rm Ly\\alpha}$, ${\\rm H\\alpha}$, OII, CII and the lowest rotational CO lines are the best candidates to be used as IM probes. These lines form a complementary set of probes of the galaxies emission spectra. We then use reasonable experimental setups from current, planned or proposed experiments to access the detectability of the power spectrum of each emission line. Intensity mapping of ${\\rm Ly\\alpha}$ emission from $z=2$ to 3 will be possible in the near future with HETDEX, while far-infrared lines require new dedicated experiments. We also show that the proposed SPHEREx satellite can use OII and ${\\r...
Applications of Mapping and Tomographic Techniques in Gem Sciences
Shen, A. H.
2014-12-01
Gem Sciences are scientific studies of gemstones - their genesis, provenance, synthesis, enhancement, treatment and identification. As high quality forms of specific minerals, the gemstones exhibit unusual physical properties that are usually unseen in the regular counterparts. Most gemstones are colored by trace elements incorporated in the crystal lattice during various growth stages; forming coloration zones of various scales. Studying the spectral and chemical contrast across color zones helps elucidating the origins of colors. These are done by UV-visible spectrometers with microscope and LA-ICPMS in modern gemological laboratories. In the case of diamonds, their colored zones arise from various structural defects incorporated in different growth zones and are studied with FTIR spectrometers with IR microscope and laser photoluminescence spectrometers. Advancement in modern synthetic techniques such as chemical vapor deposition (CVD) has created some problem for identification. Some exploratory experiments in carbon isotope mapping were done on diamonds using SIMS. The most important issue in pearls is to identify one particular pearl being a cultured one or a natural pearl. The price difference can be enormous. Classical way of such identification is done by x-ray radiographs, which clearly show the bead and the nacre. Modern cultured pearl advancement has eliminated the need for an artificial bead, but a small piece of tissue instead. Nowadays, computer x-ray tomography (CT) scanning devices are used to depict the clear image of the interior of a pearl. In the Chinese jade market, filling fissures with epoxy and/or wax are very commonly seen. We are currently exploring Magnetic Resonance Imaging (MRI) technique to map the distribution of artificial resin within a polycrystalline aggregates.
Nonlinear Maps for Design of Discrete Time Models of Neuronal Network Dynamics
2016-02-29
and K+ pumps responsible for generation of action potential (spike). This map is of the form Xn+l = fa(Xn, y), where Xn is a dynamical variable and...function fa(. . ) is a piecewise nonlinear function containing three segments . In the original form the function is { a 1 + y, Xn ~ 0, fa(Xn,y...a~~~ 0 < Xn <a+ y and Xn-1 ~ 0, -1, Xn 2:: a+ y or Xn- 1 > 0, where variable Xn_ 1 is used to define a condition that prevents system to remain at
The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation
Dong, Huanhe; Zhang, Yong; Zhang, Xiaoen
2016-07-01
A discrete matrix spectral problem is presented and the hierarchy of discrete integrable systems is derived. Their Hamiltonian structures are established. As to the discrete integrable system, nonlinearization of the spatial parts of the Lax pairs and the adjoint Lax pairs generate a new integrable symplectic map. Based on the theory, a new integrable symplectic map and a family of finite-dimension completely integrable systems are given. Especially, two explicit equations are obtained under the Bargmann constraint. Finally, the symmetry of the discrete equation is provided according to the recursion operator and the seed symmetry. Although the solutions of the discrete equations have been gained by many methods, there are few articles that solving the discrete equation via the symmetry. So the solution of the discrete lattice equation is obtained through the symmetry theory.
HMM Speaker Identification Using Linear and Non-linear Merging Techniques
Mahola, Unathi; Marwala, Tshilidzi
2007-01-01
Speaker identification is a powerful, non-invasive and in-expensive biometric technique. The recognition accuracy, however, deteriorates when noise levels affect a specific band of frequency. In this paper, we present a sub-band based speaker identification that intends to improve the live testing performance. Each frequency sub-band is processed and classified independently. We also compare the linear and non-linear merging techniques for the sub-bands recognizer. Support vector machines and Gaussian Mixture models are the non-linear merging techniques that are investigated. Results showed that the sub-band based method used with linear merging techniques enormously improved the performance of the speaker identification over the performance of wide-band recognizers when tested live. A live testing improvement of 9.78% was achieved
Saturation of Alfvén modes in tokamak plasmas investigated by Hamiltonian mapping techniques
Briguglio, S.; Schneller, M.; Wang, X.; Di Troia, C.; Hayward-Schneider, T.; Fusco, V.; Vlad, G.; Fogaccia, G.
2017-07-01
Nonlinear dynamics of single toroidal number Alfvén eigenmodes destabilised by the the resonant interaction with fast ions is investigated, in tokamak equilibria, by means of Hamiltonian mapping techniques. The results obtained by two different simulation codes, XHMGC and HAGIS, are presented for n = 2 Beta induced Alfvén eigenmodes and, respectively n = 6 toroidal Alfvén eigenmodes. Simulations of the bump-on-tail instability performed by a 1-dimensional code, PIC1DP, are also analysed for comparison. As a general feature, modes saturate as the resonant-particle distribution function is flattened over the whole region where mode-particle power transfer can take place in the linear phase. Such region is limited by the narrowest of resonance width and mode width. In the former case, mode amplitude at saturation exhibits a quadratic scaling with the linear growth rate; in the latter case, the scaling is linear. These results are explained in terms of the approximate analytic solution of a nonlinear pendulum model. They are also used to prove that the radial width of the single poloidal harmonic sets an upper limit to the radial displacement of circulating fast ions produced by a single-toroidal-number gap mode in the large n limit, irrespectively of the possible existence of a large global mode structure formed by many harmonics.
A microwave technique for mapping thin sea ice
Cavalieri, Donald J.
1994-01-01
A technique is presented for mapping the distribution of new, young and first-year sea ice in seasonal sea ice zones that utilizes microwave spectral and polarization information from the Defense Meteorological Satellite Program Special Sensor Microwave/Imager (DMSP SSM/I). The motivation for this work stems from the need for accurate estimates of open water and thin ice within the Arctic ice pack. The technique utilizes the microwave polarization and spectral characteristics of these three ice types through two microwave radiance ratios: the 19.4 GHz polarization and the spectral gradient ratio, which is a measure of the spectral difference between the 19.4-GHz and the 37.0-GHz vertically polarized radiance components. The combined use of the spectral gradient ratio and polarization reduces the low ice concentration bias generally associated with the presence of thin ice types. The microwave polarization, which is sensitive to changes in ice thickness and ice surface characteristics, is used to classify new, young, and first-year ice types.
Gluing for Raman lidar systems using the lamp mapping technique.
Walker, Monique; Venable, Demetrius; Whiteman, David N
2014-12-20
In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.
Aerial remote sensing hyperspectral techniques for rocky outcrops mapping
Directory of Open Access Journals (Sweden)
V. Tramutoli
2002-06-01
Full Text Available In this work the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer hyperspectral data, acquired during aerial campaigns made in 1998 over the Pollino National Park in the framework of the «Progetto Pollino», have been used to set up a supervised technique devoted to identify the presence of selected rocky outcrops. Tests have been performed over an extended area characterised by a complex orography. Within this area, serpentinite was chosen as a test-rock because it is present in isolated outcrops, distributed all over the test-area, besides subtending important problems of environmental nature as it contains asbestos. Geological information, coming from field observations or geological maps, was used to trigger the algorithms and as ground truth for its validation. Two spectral analysis techniques, SAM (Spectral Angle Mapper and LSU (Linear Spectral Unmixing, have been applied and their results n combined to automatically identify serpentinite outcrops and, in some cases, to mark its boundaries. The approach used in this work is characterised by simplicity (no atmosphere and illumination corrections were performed on MIVIS data, robustness (material of interest is identified for certainty and intrinsic exportability (the method proposed can be applied on different geographic areas and, in theory, to identify any kind of material because no datum about atmospheric and illumination conditions is required.
Large areas elemental mapping by ion beam analysis techniques
Silva, T. F.; Rodrigues, C. L.; Curado, J. F.; Allegro, P.; Moro, M. V.; Campos, P. H. O. V.; Santos, S. B.; Kajiya, E. A. M.; Rizzutto, M. A.; Added, N.; Tabacniks, M. H.
2015-07-01
The external beam line of the Laboratory for Material Analysis with Ion Beams (LAMFI) is a versatile setup for multi-technique analysis. X-ray detectors for Particle Induced X-rays Emission (PIXE) measurements, a Gamma-ray detector for Particle Induced Gamma- ray Emission (PIGE), and a particle detector for scattering analysis, such as Rutherford Backscattering Spectrometry (RBS), were already installed. In this work, we present some results, using a large (60-cm range) XYZ computer controlled sample positioning system, completely developed and build in our laboratory. The XYZ stage was installed at the external beam line and its high spacial resolution (better than 5 μm over the full range) enables positioning the sample with high accuracy and high reproducibility. The combination of a sub-millimeter beam with the large range XYZ robotic stage is being used to produce elemental maps of large areas in samples like paintings, ceramics, stones, fossils, and all sort of samples. Due to its particular characteristics, this is a unique device in the sense of multi-technique analysis of large areas. With the continuous development of the external beam line at LAMFI, coupled to the robotic XYZ stage, it is becoming a robust and reliable option for regular analysis of trace elements (Z > 5) competing with the traditional in-vacuum ion-beam-analysis with the advantage of automatic rastering.
Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques
Indian Academy of Sciences (India)
Umakanta Tripathy; R Justin Rajesh; Prem B Bisht; A Subrahamanyam
2002-12-01
The excited state absorption cross-section of 5,5′-dichloro-11-diphenylamino- 3,3′-diethyl-10,12-ethylinethiatricarbocyanine perchlorate (IR140) have been measured by using a single beam transmission technique. Z-scan experiments have been used to find out a few nonlinear parameters. The excited state relaxation times have also been measured by using laser induced transient grating (LITG) technique.
GDTM-Padé technique for the non-linear differential-difference equation
Directory of Open Access Journals (Sweden)
Lu Jun-Feng
2013-01-01
Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.
Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames
Directory of Open Access Journals (Sweden)
Jaroon Rungamornrat
2014-01-01
Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.
Directory of Open Access Journals (Sweden)
Lin Liang
2015-01-01
Full Text Available A new method for extracting the low-dimensional feature automatically with self-organization mapping manifold is proposed for the detection of rotating mechanical nonlinear faults (such as rubbing, pedestal looseness. Under the phase space reconstructed by single vibration signal, the self-organization mapping (SOM with expectation maximization iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention. After that, the local tangent space alignment algorithm is adopted to compress the high-dimensional phase space into low-dimensional feature space. The proposed method takes advantages of the manifold learning in low-dimensional feature extraction and adaptive neighborhood construction of SOM and can extract intrinsic fault features of interest in two dimensional projection space. To evaluate the performance of the proposed method, the Lorenz system was simulated and rotation machinery with nonlinear faults was obtained for test purposes. Compared with the holospectrum approaches, the results reveal that the proposed method is superior in identifying faults and effective for rotating machinery condition monitoring.
Semantic Data And Visualization Techniques Applied To Geologic Field Mapping
Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.
2015-12-01
Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.
Directory of Open Access Journals (Sweden)
K. R. Subhashini
2014-01-01
synthesis is termed as the variation in the element excitation amplitude and nonlinear synthesis is process of variation in element angular position. Both ADE and AFA are a high-performance stochastic evolutionary algorithm used to solve N-dimensional problems. These methods are used to determine a set of parameters of antenna elements that provide the desired radiation pattern. The effectiveness of the algorithms for the design of conformal antenna array is shown by means of numerical results. Comparison with other methods is made whenever possible. The results reveal that nonlinear synthesis, aided by the discussed techniques, provides considerable enhancements compared to linear synthesis.
Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells
Itoh, Kazuyoshi
2015-12-01
Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
The iterative technique of sign-changing solution is studied for a nonlinear third-order two-point boundary value problem, where the nonlinear term has the time sin-gularity. By applying the monotonically iterative technique, an existence theorem is established and two useful iterative schemes are obtained.
Chiou, Chei-Chang; Lee, Li-Tze; Tien, Li-Chu; Wang, Yu-Min
2017-01-01
This study explored the effectiveness of different concept mapping techniques on the learning achievement of senior accounting students and whether achievements attained using various techniques are affected by different learning styles. The techniques are computer-assisted construct-by-self-concept mapping (CACSB), computer-assisted…
Study of nonlinear absorption properties of reduced graphene oxide by Z-scan technique
Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.
2017-05-01
Graphene has generated enormous research interest during the last decade due to its significant unique properties and wide applications in the field of optoelectronics and photonics. This research studied the structural and nonlinear absorption properties of reduced graphene oxide (rGO) synthesized by Modified Hummer's method. Structural and physiochemical properties of the rGO were explored with the help of Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy (Raman). Nonlinear absorption property in rGO, was investigated by open aperture Z-scan technique by using a continuous wave (CW) laser. The Z-scan results demonstrate saturable absorption property of rGO with a nonlinear absorption coefficient, β, of -2.62 × 10-4 cm/W, making it suitable for applications in Q switching, generation of ultra-fast high energy pulses in laser cavity and mode lockers.
Cosmology with intensity mapping techniques using atomic and molecular lines
Fonseca, José; Silva, Marta B.; Santos, Mário G.; Cooray, Asantha
2017-01-01
We present a systematic study of the intensity mapping (IM) technique using updated models for the different emission lines from galaxies. We identify which ones are more promising for cosmological studies of the post-reionization epoch. We consider the emission of Lyα, Hα, Hβ, optical and infrared oxygen lines, nitrogen lines, C II and the CO rotational lines. We show that Lyα, Hα, O II, C II and the lowest rotational CO lines are the best candidates to be used as IM probes. These lines form a complementary set of probes of the galaxies' emission spectra. We then use reasonable experimental setups from current, planned or proposed experiments to assess the detectability of the power spectrum of each emission line. IM of Lyα emission from z = 2 to 3 will be possible in the near future with Hobby-Eberly Telescope Dark Energy Experiment, while far-infrared lines require new dedicated experiments. We also show that the proposed SPHEREx satellite can use O II and Hα IM to study the large-scale distribution of matter in intermediate redshifts of 1-4. We find that submillimetre experiments with bolometers can have similar performances at intermediate redshifts using C II and CO(3-2).
Theory and praxis of map analsys in CHEF part 2: Nonlinear normal form
Energy Technology Data Exchange (ETDEWEB)
Michelotti, Leo; /FERMILAB
2009-04-01
This is the second of three memos describing how normal form map analysis is implemented in CHEF. The first [1] explained the manipulations required to assure that initial, linear transformations preserved Poincare invariants, thereby confirming correct normalization of action-angle coordinates. In this one, the transformation will be extended to nonlinear terms. The third, describing how the algorithms were implemented within the software of CHEF's libraries, most likely will never be written. The first section, Section 2, quickly lays out preliminary concepts and relationships. In Section 3, we shall review the perturbation theory - an iterative sequence of transformations that converts a nonlinear mapping into its normal form - and examine the equation which moves calculations from one step to the next. Following that is a section titled 'Interpretation', which identifies connections between the normalized mappings and idealized, integrable, fictitious Hamiltonian models. A final section contains closing comments, some of which may - but probably will not - preview work to be done later. My reasons for writing this memo and its predecessor have already been expressed. [1] To them can be added this: 'black box code' encourages users to proceed with little or no understanding of what it does or how it operates. So far, CHEF has avoided this trap admirably by failing to attract potential users. However, we reached a watershed last year: even I now have difficulty following the software through its maze of operations. Extensions to CHEF's physics functionalities, software upgrades, and even simple maintenance are becoming more difficult than they should. I hope these memos will mark parts of the maze for easier navigation in the future. Despite appearances to the contrary, I tried to include no (or very little) more than the minimum needed to understand what CHEF's nonlinear analysis modules do.1 As with the first memo, material
Study of nonlinear refraction of organic dye by Z-scan technique using He-Ne laser
Medhekar, S.; Kumar, R.; Mukherjee, S.; Choubey, R. K.
2013-02-01
Laser induced third-order nonlinear optical responses of Brilliant Green solution has been investigated by utilizing single beam Z-scan technique with a continuous-wave He-Ne laser radiation at 632.8 nm. It was observed that the material exhibits self-defocusing type optical nonlinearity. The measurements of nonlinear refraction were carried out at different dye concentrations and found that the increase in solution concentration leads to the linear increase of the nonlinear refractive index. The experimental results confirm great potential of the Brilliant Green for the application in nonlinear optical devices.
Study of nonlinear refraction of organic dye by Z-scan technique using He-Ne laser
Energy Technology Data Exchange (ETDEWEB)
Medhekar, S.; Kumar, R.; Mukherjee, S.; Choubey, R. K. [Dept. of Applied Physics, Birla Institute of Technology, Mesra, Ranchi - 835215, Jharkhand (India)
2013-02-05
Laser induced third-order nonlinear optical responses of Brilliant Green solution has been investigated by utilizing single beam Z-scan technique with a continuous-wave He-Ne laser radiation at 632.8 nm. It was observed that the material exhibits self-defocusing type optical nonlinearity. The measurements of nonlinear refraction were carried out at different dye concentrations and found that the increase in solution concentration leads to the linear increase of the nonlinear refractive index. The experimental results confirm great potential of the Brilliant Green for the application in nonlinear optical devices.
Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique
Institute of Scientific and Technical Information of China (English)
DONG Shu-Guang; YANG Jun-Yi; SHUI Min; YI Chuan-Xiang; LI Zhong-Guo; SONG Ying-Lin
2011-01-01
@@ Spatial and temporal changes of temperature in a novel polymer are investigated by using the Z-scan technique under ns laser pulse excitation.According to the open aperture Z-scan experimental results, the nonlinear absorption coefficient of the polymer is determined.By solving the diffusion equation of heat conduction induced by optical absorption, the spatial and temporal changes in temperature are obtained.This change in temperature drives the photo-acoustic and electromagnetic wave propagating in the polymer and induces the change in refractive index, which serves as a negative lens, and the closed aperture Z-scan shows a peak and valley profile.Based on the numerical calculation, we achieve a good fit to the closed-aperture Z-scan curve with an optimized nonlinear refractive index.This consistency attests the existence of temperature change in the solution, and the Z-scan technique is suitable to investigate this change in temperature.
Roul, Pradip
2016-06-01
This paper presents a new iterative technique for solving nonlinear singular two-point boundary value problems with Neumann and Robin boundary conditions. The method is based on the homotopy perturbation method and the integral equation formalism in which a recursive scheme is established for the components of the approximate series solution. This method does not involve solution of a sequence of nonlinear algebraic or transcendental equations for the unknown coefficients as in some other iterative techniques developed for singular boundary value problems. The convergence result for the proposed method is established in the paper. The method is illustrated by four numerical examples, two of which have physical significance: The first problem is an application of the reaction-diffusion process in a porous spherical catalyst and the second problem arises in the study of steady-state oxygen-diffusion in a spherical cell with Michaelis-Menten uptake kinetics.
Nonlinear filtering techniques for noisy geophysical data: Using big data to predict the future
Moore, J. M.
2014-12-01
Chaos is ubiquitous in physical systems. Within the Earth sciences it is readily evident in seismology, groundwater flows and drilling data. Models and workflows have been applied successfully to understand and even to predict chaotic systems in other scientific fields, including electrical engineering, neurology and oceanography. Unfortunately, the high levels of noise characteristic of our planet's chaotic processes often render these frameworks ineffective. This contribution presents techniques for the reduction of noise associated with measurements of nonlinear systems. Our ultimate aim is to develop data assimilation techniques for forward models that describe chaotic observations, such as episodic tremor and slip (ETS) events in fault zones. A series of nonlinear filters are presented and evaluated using classical chaotic systems. To investigate whether the filters can successfully mitigate the effect of noise typical of Earth science, they are applied to sunspot data. The filtered data can be used successfully to forecast sunspot evolution for up to eight years (see figure).
A technique using a nonlinear helicopter model for determining trims and derivatives
Ostroff, A. J.; Downing, D. R.; Rood, W. J.
1976-01-01
A technique is described for determining the trims and quasi-static derivatives of a flight vehicle for use in a linear perturbation model; both the coupled and uncoupled forms of the linear perturbation model are included. Since this technique requires a nonlinear vehicle model, detailed equations with constants and nonlinear functions for the CH-47B tandem rotor helicopter are presented. Tables of trims and derivatives are included for airspeeds between -40 and 160 knots and rates of descent between + or - 10.16 m/sec (+ or - 200 ft/min). As a verification, the calculated and referenced values of comparable trims, derivatives, and linear model poles are shown to have acceptable agreement.
Han, Qun; Xu, Wei; Sun, Jian-Qiao
2016-09-01
The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.
Elemental mapping of medieval teeth using XRF technique
Energy Technology Data Exchange (ETDEWEB)
Muja, Cristina [Laboratoire Diagnostics des Plasma, CUFR J.F.C, Albi (France); Faculty of Biology, University of Bucharest (Romania); Vasile Parvan Institute of Archaeology, Bucharest (Romania); Therese, Laurent; Guillot, Philippe, E-mail: philippe.guillot@univ-jfc.fr [Laboratoire Diagnostics des Plasma, CUFR J.F.C, Albi (France)
2011-07-01
Full text: Recent developments in X-Ray Fluorescence micro-analysis techniques made the traditional range of XRF applications expand, benefiting from the combination of single point analysis with high spatial element imaging. The sample is scanned through the X-Ray beam and corresponding spectra are continuously read from the detector and correlated to a particular position on the sample. In this work, elemental concentrations were obtained by X-ray fluorescence (XRF) technique (Jobin Yvon Horiba XGT-5000 instrument) offering detailed elemental analysis. The instrument is equipped with a tungsten X-ray tube and a beryllium window, operating at 50 kV with a beam collimator of 100{mu}m in diameter to irradiate the sample and with a Si detector. Tooth mapping provided semi-quantitative information and highlighted the regions of interest. Then multi-points analysis was used to obtain quantitative results on calcium, phosphorus, strontium and iron. As the chemical composition of dental tissues is similar to the one of bone tissue, the certified reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were used for calibration. In this study, only permanent first molars were selected for analysis. The material comes from the medieval cemetery (XII{sup th} . XIII{sup th}) of Feldioara (Bra.ov County, Romania). In the same time, modern teeth were used as reference. The top of the tooth was removed using a diamond disk, with a cut lying perpendicular to the dental cusps, creating a flat transversal surface to be characterized. XRF elemental (Ca, P, Sr, Fe) and ratio (Ca/P, Sr/Ca, Sr/Fe) distribution images for dental tissues (enamel and dentin) were obtained from past and modern teeth with and without caries and the results are presented and discussed. The analysis of the spatial element distribution in the teeth tissues revealed severe alterations in elemental composition of both enamel and dentin from the regions affected by caries that were confirmed by the
Nonlinear techniques for forecasting solar activity directly from its time series
Ashrafi, S.; Roszman, L.; Cooley, J.
1993-01-01
This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.
Wu, Tsai-Chin; Anderson, Rae
We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.
Weeratunga, Sisira K.; Kamath, Chandrika
2002-05-01
Removing noise from data is often the first step in data analysis. Denoising techniques should not only reduce the noise, but do so without blurring or changing the location of the edges. Many approaches have been proposed to accomplish this; in this paper, we focus on one such approach, namely the use of non-linear diffusion operators. This approach has been studied extensively from a theoretical viewpoint ever since the 1987 work of Perona and Malik showed that non-linear filters outperformed the more traditional linear Canny edge detector. We complement this theoretical work by investigating the performance of several isotropic diffusion operators on test images from scientific domains. We explore the effects of various parameters such as the choice of diffusivity function, explicit and implicit methods for the discretization of the PDE, and approaches for the spatial discretization of the non-linear operator etc. We also compare these schemes with simple spatial filters and the more complex wavelet-based shrinkage techniques. Our empirical results show that, with an appropriate choice of parameters, diffusion-based schemes can be as effective as competitive techniques.
PERFORMANCE OF PID CONTROLLER OF NONLINEAR SYSTEM USING SWARM INTELLIGENCE TECHNIQUES
Directory of Open Access Journals (Sweden)
Neeraj Jain
2016-07-01
Full Text Available In this paper swarm intelligence based PID controller tuning is proposed for a nonlinear ball and hoop system. Particle swarm optimization (PSO, Artificial bee colony (ABC, Bacterial foraging optimization (BFO is some example of swarm intelligence techniques which are focused for PID controller tuning. These algorithms are also tested on perturbed ball and hoop model. Integral square error (ISE based performance index is used for finding the best possible value of controller parameters. Matlab software is used for designing the ball and hoop model. It is found that these swarm intelligence techniques have easy implementation & lesser settling & rise time compare to conventional methods.
A Robust Hash Function Using Cross-Coupled Chaotic Maps with Absolute-Valued Sinusoidal Nonlinearity
Directory of Open Access Journals (Sweden)
Wimol San-Um
2016-01-01
Full Text Available This paper presents a compact and effective chaos-based keyed hash function implemented by a cross-coupled topology of chaotic maps, which employs absolute-value of sinusoidal nonlinearity, and offers robust chaotic regions over broad parameter spaces with high degree of randomness through chaoticity measurements using the Lyapunov exponent. Hash function operations involve an initial stage when the chaotic map accepts initial conditions and a hashing stage that accepts input messages and generates the alterable-length hash values. Hashing performances are evaluated in terms of original message condition changes, statistical analyses, and collision analyses. The results of hashing performances show that the mean changed probabilities are very close to 50%, and the mean number of bit changes is also close to a half of hash value lengths. The collision tests reveal the mean absolute difference of each character values for the hash values of 128, 160 and 256 bits are close to the ideal value of 85.43. The proposed keyed hash function enhances the collision resistance, comparing to MD5 and SHA1, and the other complicated chaos-based approaches. An implementation of hash function Android application is demonstrated.
Assessment of Alkali-Silica Reaction Damage in Mortars with Nonlinear Ultrasonic Techniques
Chen, J.; Jayapalan, A. R.; Kurtis, K. E.; Kim, J.-Y.; Jacobs, L. J.
2008-02-01
In this work, a nonlinear ultrasonic modulation technique is employed to assess the damage state of portland cement mortar samples induced by alkali-silica reaction (ASR). Due to the nonlinear interaction of propagating waves caused by distributed microcracks that are agitated from its equilibrium state, the ultrasonic responses of samples produce sideband frequencies around the frequency of propagating waves. The amplitude of the sidebands depends on the amplitude of the input signals and is particularly sensitive to the state of damage evolved in the sample. Therefore, the development of internal microcracks with increasing duration of exposure to aggressive conditions can be quantitatively related to the variation of external ultrasonic measurements. The ultrasonic results are compared with results from standard ASR expansion measurements (ASTM C 1260), and a proportionally increasing relation was found in the early stages. In addition, aggregates with different alkali-reactivity (i.e., low reactivity or high reactivity) were examined in a similar manner. The results indicate that the nonlinear parameter obtained from ultrasonic tests directly reflects the difference of aggregate reactivity. This clearly indicates that the developed nonlinear ultrasonic method is potentially a good alternative for a more rapid and still reliable assessment of aggregate alkali-reactivity.
Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow
Energy Technology Data Exchange (ETDEWEB)
Knoll, D.A.; McHugh, P.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1996-12-31
We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.
Directory of Open Access Journals (Sweden)
Mohamed A. El-Beltagy
2013-01-01
Full Text Available This paper introduces higher-order solutions of the stochastic nonlinear differential equations with the Wiener-Hermite expansion and perturbation (WHEP technique. The technique is used to study the quadratic nonlinear stochastic oscillatory equation with different orders, different number of corrections, and different strengths of the nonlinear term. The equivalent deterministic equations are derived up to third order and fourth correction. A model numerical integral solver is developed to solve the resulting set of equations. The numerical solver is tested and validated and then used in simulating the stochastic quadratic nonlinear oscillatory motion with different parameters. The solution ensemble average and variance are computed and compared in all cases. The current work extends the use of WHEP technique in solving stochastic nonlinear differential equations.
Directory of Open Access Journals (Sweden)
Qiaomei Su
2017-07-01
Full Text Available Landslide susceptibility mapping is the first and most important step involved in landslide hazard assessment. The purpose of the present study is to compare three nonlinear approaches for landslide susceptibility mapping and test whether coal mining has a significant impact on landslide occurrence in coal mine areas. Landslide data collected by the Bureau of Land and Resources are represented by the X, Y coordinates of its central point; causative factors were calculated from topographic and geologic maps, as well as satellite imagery. The five-fold cross-validation method was adopted and the landslide/non-landslide datasets were randomly split into a ratio of 80:20. From this, five subsets for 20 times were acquired for training and validating models by GIS Geostatistical analysis methods, and all of the subsets were employed in a spatially balanced sample design. Three landslide models were built using support vector machine (SVM, logistic regression (LR, and artificial neural network (ANN models by selecting the median of the performance measures. Then, the three fitted models were compared using the area under the receiver operating characteristics (ROC curves (AUC and the performance measures. The results show that the prediction accuracies are between 73.43% and 87.45% in the training stage, and 67.16% to 73.13% in the validating stage for the three models. AUCs vary from 0.807 to 0.906 and 0.753 to 0.944 in the two stages, respectively. Additionally, three landslide susceptibility maps were obtained by classifying the range of landslide probabilities into four classes representing low (0–0.02, medium (0.02–0.1, high (0.1–0.85, and very high (0.85–1 probabilities of landslides. For the distributions of landslide and area percentages under different susceptibility standards, the SVM model has more relative balance in the four classes compared to the LR and the ANN models. The result reveals that the SVM model possesses better
A Comparison of PDE-based Non-Linear Anisotropic Diffusion Techniques for Image Denoising
Energy Technology Data Exchange (ETDEWEB)
Weeratunga, S K; Kamath, C
2003-01-06
PDE-based, non-linear diffusion techniques are an effective way to denoise images. In a previous study, we investigated the effects of different parameters in the implementation of isotropic, non-linear diffusion. Using synthetic and real images, we showed that for images corrupted with additive Gaussian noise, such methods are quite effective, leading to lower mean-squared-error values in comparison with spatial filters and wavelet-based approaches. In this paper, we extend this work to include anisotropic diffusion, where the diffusivity is a tensor valued function which can be adapted to local edge orientation. This allows smoothing along the edges, but not perpendicular to it. We consider several anisotropic diffusivity functions as well as approaches for discretizing the diffusion operator that minimize the mesh orientation effects. We investigate how these tensor-valued diffusivity functions compare in image quality, ease of use, and computational costs relative to simple spatial filters, the more complex bilateral filters, wavelet-based methods, and isotropic non-linear diffusion based techniques.
Comparison of PDE-based non-linear anistropic diffusion techniques for image denoising
Weeratunga, Sisira K.; Kamath, Chandrika
2003-05-01
PDE-based, non-linear diffusion techniques are an effective way to denoise images.In a previous study, we investigated the effects of different parameters in the implementation of isotropic, non-linear diffusion. Using synthetic and real images, we showed that for images corrupted with additive Gaussian noise, such methods are quite effective, leading to lower mean-squared-error values in comparison with spatial filters and wavelet-based approaches. In this paper, we extend this work to include anisotropic diffusion, where the diffusivity is a tensor valued function which can be adapted to local edge orientation. This allows smoothing along the edges, but not perpendicular to it. We consider several anisotropic diffusivity functions as well as approaches for discretizing the diffusion operator that minimize the mesh orientation effects. We investigate how these tensor-valued diffusivity functions compare in image quality, ease of use, and computational costs relative to simple spatial filters, the more complex bilateral filters, wavelet-based methods, and isotropic non-linear diffusion based techniques.
Inverse solution technique of steady-state responses for local nonlinear structures
Wang, Xing; Guan, Xin; Zheng, Gangtie
2016-03-01
An inverse solution technique with the ability of obtaining complete steady-state primary harmonic responses of local nonlinear structures in the frequency domain is proposed in the present paper. In this method, the nonlinear dynamic equations of motion is first condensed from many to only one algebraic amplitude-frequency equation of relative motion. Then this equation is transformed into a polynomial form, and with its frequency as the unknown variable, the polynomial equation is solved by tracing all the solutions of frequency with the increase of amplitude. With this solution technique, some complicated dynamic behaviors such as sharp tuning, anomalous jumps, breaks in responses and detached resonance curves could be obtained. The proposed method is demonstrated and validated through a finite element beam under force excitations and a lumped parameter model with a local nonlinear element under base excitations. The phenomenon of detached resonance curves in the frequency response and its coupling effects with multiple linear modes in the latter example are observed.
Owodunni, Damilola S.
2014-04-01
In this paper, compressed sensing techniques are proposed to linearize commercial power amplifiers driven by orthogonal frequency division multiplexing signals. The nonlinear distortion is considered as a sparse phenomenon in the time-domain, and three compressed sensing based algorithms are presented to estimate and compensate for these distortions at the receiver using a few and, at times, even no frequency-domain free carriers (i.e. pilot carriers). The first technique is a conventional compressed sensing approach, while the second incorporates a priori information about the distortions to enhance the estimation. Finally, the third technique involves an iterative data-aided algorithm that does not require any pilot carriers and hence allows the system to work at maximum bandwidth efficiency. The performances of all the proposed techniques are evaluated on a commercial power amplifier and compared. The error vector magnitude and symbol error rate results show the ability of compressed sensing to compensate for the amplifier\\'s nonlinear distortions. © 2013 Elsevier B.V.
Analytical approximate technique for strongly nonlinear oscillators problem arising in engineering
Directory of Open Access Journals (Sweden)
Y. Khan
2012-12-01
Full Text Available In this paper, a novel method called generalized of the variational iteration method is presented to obtain an approximate analytical solution for strong nonlinear oscillators problem associated in engineering phenomena. This approach resulted in the frequency of the motion as a function of the amplitude of oscillation. It is determined that the method works very well for the whole range of parameters and an excellent agreement is demonstrated and discussed between the approximate frequencies and the exact one. The most significant features of this method are its simplicity and excellent accuracy for the whole range of oscillation amplitude values. Also, the results reveal that this technique is very effective and convenient for solving conservative oscillatory systems with complex nonlinearities. Results obtained by the proposed method are compared with Energy Balance Method (EBM and exact solution showed that, contrary to EBM, simply one or two iterations are enough for obtaining highly accurate results.
Modelling and Design of a Microstrip Band-Pass Filter Using Space Mapping Techniques
Tavakoli, Saeed; Mohanna, Shahram
2010-01-01
Determination of design parameters based on electromagnetic simulations of microwave circuits is an iterative and often time-consuming procedure. Space mapping is a powerful technique to optimize such complex models by efficiently substituting accurate but expensive electromagnetic models, fine models, with fast and approximate models, coarse models. In this paper, we apply two space mapping, an explicit space mapping as well as an implicit and response residual space mapping, techniques to a case study application, a microstrip band-pass filter. First, we model the case study application and optimize its design parameters, using explicit space mapping modelling approach. Then, we use implicit and response residual space mapping approach to optimize the filter's design parameters. Finally, the performance of each design methods is evaluated. It is shown that the use of above-mentioned techniques leads to achieving satisfactory design solutions with a minimum number of computationally expensive fine model eval...
Miniaci, M.; Gliozzi, A. S.; Morvan, B.; Krushynska, A.; Bosia, F.; Scalerandi, M.; Pugno, N. M.
2017-05-01
The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage. However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques. Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection. The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection.
Magnetic induction technique for mapping vertical conductive fractures: electronic design
Energy Technology Data Exchange (ETDEWEB)
Landt, J.A.; Koelle, A.R.; Trump, M.A.; Nickell, J.D. Jr.
1978-09-01
This report is the last in a series that describes the preliminary design of an instrument capable of mapping conductive fractures deep below the surface of the earth. Earlier reports dealt with theoretical analysis, the general status of the instrument development, and materials vendor searches. Here, attention is focused on the electronics design and prototype hardware to perform the mapping task. A phase-sensitive detector is described that has a sensitivity in the tens of nanovolts. Coil-switching circuitry is also described, as well as a downhole data link tailor-made for this particular instrument's needs.
An efficient numerical technique for the solution of nonlinear singular boundary value problems
Singh, Randhir; Kumar, Jitendra
2014-04-01
In this work, a new technique based on Green's function and the Adomian decomposition method (ADM) for solving nonlinear singular boundary value problems (SBVPs) is proposed. The technique relies on constructing Green's function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on the ADM, the proposed technique avoids solving a sequence of transcendental equations for the undetermined coefficients. It approximates the solution in the form of a series with easily computable components. Additionally, the convergence analysis and the error estimate of the proposed method are supplemented. The reliability and efficiency of the proposed method are demonstrated by several numerical examples. The numerical results reveal that the proposed method is very efficient and accurate.
Chopped nonlinear magneto-optic rotation: a technique for precision measurements
Ravishankar, Harish; Natarajan, Vasant
2011-01-01
We have developed a technique for precise measurement of small magnetic fields using nonlinear magneto-optic rotation (NMOR). The technique relies on the resonant laser beam being chopped. During the on time, the atoms are optically pumped into an aligned ground state ($\\Delta m=2$ coherence). During the off time, they freely precess around the magnetic field at the Larmor frequency. If the on-off modulation frequency matches (twice) the Larmor precession frequency, the rotation is resonantly enhanced in every cycle, thereby making the process like a repeated Ramsey measurement of the Larmor frequency. We study chopped-NMOR in a paraffin-coated Cs vapor cell. The out-of-phase demodulated rotation shows a Lorentzian peak of linewidth 85 $\\mu$G, corresponding to a sensitivity of 0.15 nG/$\\sqrt{{\\rm Hz}}$. We discuss the potential of this technique for the measurement of an atomic electric-dipole moment.
Zayed, Elsayed M. E.; Al-Nowehy, Abdul-Ghani; Elshater, Mona E. M.
2017-06-01
The (G^'/G)-expansion method, the improved Sub-ODE method, the extended auxiliary equation method, the new mapping method and the Jacobi elliptic function method are applied in this paper for finding many new exact solutions including Jacobi elliptic solutions, solitary solutions, singular solitary solutions, trigonometric function solutions and other solutions to the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity whose balance number is not positive integer. The used methods present a wider applicability for handling the nonlinear partial differential equations. A comparison of our new results with the well-known results is made. Also, we compare our results with each other yielding from these five integration tools.
Calibration of Vector Magnetogram with the Nonlinear Least-squares Fitting Technique
Institute of Scientific and Technical Information of China (English)
Jiang-Tao Su; Hong-Qi Zhang
2004-01-01
To acquire Stokes profiles from observations of a simple sunspot with the Video Vector Magnetograph at Huairou Solar Observing Station(HSOS),we scanned the FeIλ5324.19 A line over the wavelength interval from 150mA redward of the line center to 150mA blueward,in steps of 10mA.With the technique of analytic inversion of Stokes profiles via nonlinear least-squares,we present the calibration coefficients for the HSOS vector magnetic magnetogram.We obtained the theoretical calibration error with linear expressions derived from the Unno-Becker equation under weak-field approximation.
Nonlinear Second-Order Partial Differential Equation-Based Image Smoothing Technique
Directory of Open Access Journals (Sweden)
Tudor Barbu
2016-09-01
Full Text Available A second-order nonlinear parabolic PDE-based restoration model is provided in this article. The proposed anisotropic diffusion-based denoising approach is based on some robust versions of the edge-stopping function and of the conductance parameter. Two stable and consistent approximation schemes are then developed for this differential model. Our PDE-based filtering technique achieves an efficient noise removal while preserving the edges and other image features. It outperforms both the conventional filters and also many PDE-based denoising approaches, as it results from the successful experiments and method comparison applied.
Clinical and molecular cytogenetics and gene mapping: principles and techniques.
Francke, U
1995-01-01
This article reviews the history of human cytogenetics with respect to technical advances from chromosome banding to molecular cytogenetics. Technologies such as in situ hybridization, chromosome painting, comparative genomic hybridization and interphase cytogenetics and their applications are discussed. The assignments of genes to chromosome regions by somatic cell genetics is illustrated by molecular analyses of somatic cell hybrid panels. The generation of complete physical maps of human chromosomes, by radiation hybrid mapping of sequence-tagged sites and establishment of chromosome-specific yeast artificial chromosome (YAC) banks and clone overlaps (contigs), is exemplified by studies of chromosome 18. The last section outlines the recent and future advances in clinical cytogenetics made possible by progress in molecular genetics.
Modeling and Analyzing Terrain Data Acquired by Modern Mapping Techniques
2009-09-22
enhanced by new terrain mapping technologies such as Laser altimetry (LIDAR), ground based laser scanning and Real Time Kinematic GPS ( RTK - GPS ) that...developed and implemented an approach that has the following features: it is modular so that a user can use different models for each of the modules ...support some way of connecting separate modules together to form pipelines, however this requires manual intervention. While a typical GIS can manage
DNA fiber mapping techniques for the assembly of high-resolution physical maps.
Weier, H U
2001-08-01
High-resolution physical maps are indispensable for directed sequencing projects or the finishing stages of shotgun sequencing projects. These maps are also critical for the positional cloning of disease genes and genetic elements that regulate gene expression. Typically, physical maps are based on ordered sets of large insert DNA clones from cosmid, P1/PAC/BAC, or yeast artificial chromosome (YAC) libraries. Recent technical developments provide detailed information about overlaps or gaps between clones and precisely locate the position of sequence tagged sites or expressed sequences, and thus support efforts to determine the complete sequence of the human genome and model organisms. Assembly of physical maps is greatly facilitated by hybridization of non-isotopically labeled DNA probes onto DNA molecules that were released from interphase cell nuclei or recombinant DNA clones, stretched to some extent and then immobilized on a solid support. The bound DNA, collectively called "DNA fibers," may consist of single DNA molecules in some experiments or bundles of chromatin fibers in others. Once released from the interphase nuclei, the DNA fibers become more accessible to probes and detection reagents. Hybridization efficiency is therefore increased, allowing the detection of DNA targets as small as a few hundred base pairs. This review summarizes different approaches to DNA fiber mapping and discusses the detection sensitivity and mapping accuracy as well as recent achievements in mapping expressed sequence tags and DNA replication sites.
The Quench Map in an Integrable Classical Field Theory: Nonlinear Schr\\"odinger Equation
Caudrelier, Vincent
2016-01-01
We study the non-equilibrium dynamics obtained by an abrupt change (a {\\em quench}) in the parameters of an integrable classical field theory, the nonlinear Schr\\"odinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the {\\em quench map} which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux-B\\"acklund transformations, Gelfand-Levitan-Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the ...
The quench map in an integrable classical field theory: nonlinear Schrödinger equation
Caudrelier, Vincent; Doyon, Benjamin
2016-11-01
We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.
Parker, Matthew D; Jones, Lynette A; Hunter, Ian W; Taberner, A J; Nash, M P; Nielsen, P M F
2017-01-01
A triaxial force-sensitive microrobot was developed to dynamically perturb skin in multiple deformation modes, in vivo. Wiener static nonlinear identification was used to extract the linear dynamics and static nonlinearity of the force-displacement behavior of skin. Stochastic input forces were applied to the volar forearm and thenar eminence of the hand, producing probe tip perturbations in indentation and tangential extension. Wiener static nonlinear approaches reproduced the resulting displacements with variances accounted for (VAF) ranging 94-97%, indicating a good fit to the data. These approaches provided VAF improvements of 0.1-3.4% over linear models. Thenar eminence stiffness measures were approximately twice those measured on the forearm. Damping was shown to be significantly higher on the palm, whereas the perturbed mass typically was lower. Coefficients of variation (CVs) for nonlinear parameters were assessed within and across individuals. Individual CVs ranged from 2% to 11% for indentation and from 2% to 19% for extension. Stochastic perturbations with incrementally increasing mean amplitudes were applied to the same test areas. Differences between full-scale and incremental reduced-scale perturbations were investigated. Different incremental preloading schemes were investigated. However, no significant difference in parameters was found between different incremental preloading schemes. Incremental schemes provided depth-dependent estimates of stiffness and damping, ranging from 300 N/m and 2 Ns/m, respectively, at the surface to 5 kN/m and 50 Ns/m at greater depths. The device and techniques used in this research have potential applications in areas, such as evaluating skincare products, assessing skin hydration, or analyzing wound healing.
Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components
Energy Technology Data Exchange (ETDEWEB)
Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)
2015-11-02
The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1
Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dubbert, Dale F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tise, Bertice L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-07-01
Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.
Gully Erosion Mapping Using Remote Sensing Techniques in the ...
African Journals Online (AJOL)
NdifelaniM
Gully Features Extraction Using Remote Sensing Techniques. Ndifelani .... catchment area and NDVI as threshold and the accuracy indicated a negligible over estimation. In SA, the use of ..... data and software used in this research. We also ...
Robust Control Synthesis of Polynomial Nonlinear Systems Using Sum of Squares Technique
Institute of Scientific and Technical Information of China (English)
HUANG Wen-Chao; SUN Hong-Fei; ZENG Jian-Ping
2013-01-01
In this paper,sum of squares (SOS) technique is used to analyze the robust state feedback synthesis problem for a class of uncertain affine nonlinear systems with polynomial vector fields.Sufficient conditions are given to obtain the solutions to the above control problem either without or with guaranteed cost or H∞ performance objectives.Moreover,such solvable conditions can be formulated as SOS programming problems in terms of state dependent linear matrix inequalities (LMIs) which can be dealt with by the SOS technique directly.Besides,an idea is provided to describe the inverse of polynomial or even rational matrices by introducing some extra polynomials.A numerical example is presented to illustrate the effectiveness of the approach.
Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique
El-Beltagy, Mohamed A.
2014-01-06
Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.
Motiei, H.; Jafari, A.; Naderali, R.
2017-02-01
In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.
Cicone, Antonio; Zhou, Haomin; Piersanti, Mirko; Materassi, Massimo; Spogli, Luca
2017-04-01
Nonlinear and nonstationary signals are ubiquitous in real life. Their decomposition and analysis is of crucial importance in many research fields. Traditional techniques, like Fourier and wavelet Transform have been proved to be limited in this context. In the last two decades new kind of nonlinear methods have been developed which are able to unravel hidden features of these kinds of signals. In this talk we will review the state of the art and present a new method, called Adaptive Local Iterative Filtering (ALIF). This method, developed originally to study mono-dimensional signals, unlike any other technique proposed so far, can be easily generalized to study two or higher dimensional signals. Furthermore, unlike most of the similar methods, it does not require any a priori assumption on the signal itself, so that the method can be applied as it is to any kind of signals. Applications of ALIF algorithm to real life signals analysis will be presented. Like, for instance, the behavior of the water level near the coastline in presence of a Tsunami, the length of the day signal, the temperature and pressure measured at ground level on a global grid, and the radio power scintillation from GNSS signals.
On large-scale nonlinear programming techniques for solving optimal control problems
Energy Technology Data Exchange (ETDEWEB)
Faco, J.L.D.
1994-12-31
The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.
Khan, Saad Ahmad; Thakore, Vaibhav; Behal, Aman; Bölöni, Ladislau; Hickman, James J
2013-03-01
Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.
Reference Map Technique for Incompressible Fluid-Structure Interaction Problems
Rycroft, Chris; Wu, Chen-Hung; Yu, Yue; Kamrin, Ken
2016-11-01
We present a fully Eulerian approach to simulate soft structures immersed in an incompressible fluid. The flow is simulated on a fixed grid using a second order projection method to solve the incompressible Navier-Stokes equations, and the fluid-structure interfaces are modeled using the level set method. By introducing a reference map variable to model finite-deformation constitutive relations in the structure on the same grid as the fluid, the interfacial coupling is highly simplified. This fully Eulerian approach provides a computationally efficient alternative to moving mesh approaches. Example simulations featuring many-body contacts and flexible swimmers will be presented.
Bhat, Gopalakrishna K.
1994-10-01
A fringe analysis technique, which makes use of the spatial filtering property of the Fourier transform method, for the elimination of random impulsive noise in the wrapped phase maps obtained using the phase stepping technique, is presented. Phase noise is converted into intensity noise by transforming the wrapped phase map into a continuous fringe pattern inside the digital image processor. Fourier transform method is employed to filter out the intensity noise and recover the clean wrapped phase map. Computer generated carrier fringes are used to preserve the sign information. This technique makes the two dimensional phase unwrapping process less involved, because it eliminates the local phase fluctuations, which act as pseudo 2π discontinuities. The technique is applied for the elimination of noise in a phase map obtained using electro-optic holography.
Analyzing Classroom Strategy: Evaluating the Concept Mapping Technique at SSC Level in Pakistan
Directory of Open Access Journals (Sweden)
Sidra Mahmood
2015-08-01
Full Text Available This study documents the usage of Concept Mapping in the teaching-learning situation of English at SSC Level. The study is descriptive and analytical in nature and tries to investigate the effects which Concept Mapping renders in the academic environment in the context of ESL classroom setting. The research offers strategies for adopting certain techniques and up gradation of the content taught at the mentioned level by the inculcation of such techniques. Overall, the study produced a range of implementable outcomes by a pervasive discussion of Concept Mapping, the role of the textbooks, the importance of adding the technique to the contents of ESL classroom setting. For data collection and data analysis, two classes were selected. Both were taught the same content under controlled conditions. The concept mapping technique in the class guided the learners towards the improved way of learning the text of second language.
Kengne, Emmanuel; Saydé, Michel; Ben Hamouda, Fathi; Lakhssassi, Ahmed
2013-11-01
Analytical entire traveling wave solutions to the 1+1 density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method are presented in this paper. This equation can be regarded as an extension case of the Fisher-Kolmogoroff equation, which is used for studying insect and animal dispersal with growth dynamics. The analytical solutions are then used to investigate the effect of equation parameters on the population distribution.
Angelis, Georgios I; Matthews, Julian C; Kotasidis, Fotis A; Markiewicz, Pawel J; Lionheart, William R; Reader, Andrew J
2014-11-01
Estimation of nonlinear micro-parameters is a computationally demanding and fairly challenging process, since it involves the use of rather slow iterative nonlinear fitting algorithms and it often results in very noisy voxel-wise parametric maps. Direct reconstruction algorithms can provide parametric maps with reduced variance, but usually the overall reconstruction is impractically time consuming with common nonlinear fitting algorithms. In this work we employed a recently proposed direct parametric image reconstruction algorithm to estimate the parametric maps of all micro-parameters of a two-tissue compartment model, used to describe the kinetics of [[Formula: see text]F]FDG. The algorithm decouples the tomographic and the kinetic modelling problems, allowing the use of previously developed post-reconstruction methods, such as the generalised linear least squares (GLLS) algorithm. Results on both clinical and simulated data showed that the proposed direct reconstruction method provides considerable quantitative and qualitative improvements for all micro-parameters compared to the conventional post-reconstruction fitting method. Additionally, region-wise comparison of all parametric maps against the well-established filtered back projection followed by post-reconstruction non-linear fitting, as well as the direct Patlak method, showed substantial quantitative agreement in all regions. The proposed direct parametric reconstruction algorithm is a promising approach towards the estimation of all individual microparameters of any compartment model. In addition, due to the linearised nature of the GLLS algorithm, the fitting step can be very efficiently implemented and, therefore, it does not considerably affect the overall reconstruction time.
Directory of Open Access Journals (Sweden)
Malte C. Ebach
2013-09-01
Full Text Available Geobiota are defined by taxic assemblages (i.e., biota and their defining abiotic breaks, which are mapped in cross-section to reveal past and future biotic boundaries. We term this conceptual approach Temporal Geobiotic Mapping (TGM and offer it as a conceptual approach for biogeography. TGM is based on geological cross-sectioning, which creates maps based on the distribution of biota and known abiotic factors that drive their distribution, such as climate, topography, soil chemistry and underlying geology. However, the availability of abiotic data is limited for many areas. Unlike other approaches, TGM can be used when there is minimal data available. In order to demonstrate TGM, we use the well-known area in the Blue Mountains, New South Wales (NSW, south-eastern Australia and show how surface processes such as weathering and erosion affect the future distribution of a Moist Basalt Forest taxic assemblage. Biotic areas are best represented visually as maps, which can show transgressions and regressions of biota and abiota over time. Using such maps, a biogeographer can directly compare animal and plant distributions with features in the abiotic environment and may identify significant geographical barriers or pathways that explain biotic distributions.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping
Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung
2017-08-01
Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.
Jafari, A.; Naderali, R.; Motiei, H.
2017-02-01
The studies on the third-order nonlinear optical properties of carboxymethyl cellulose nanocomposite in the absence and presence of inorganic acid as a dopant was reported. The Z-scan technique was used to measure the nonlinear refraction n2, and absorption β, indexes and the third-order nonlinear susceptibility χ3. Characterization of this nanocomposite was performed by using scanning electron microscopy and Ultraviolet-Visible absorption spectroscopy in two different solvents; Dimethylformamide and N-Methylpyrrolidone. Additionally X-ray diffraction was used to study their crystal structure. The measured values of the nonlinear refraction of each sample in both of the solutions were in the order of 10-9m2/w and the corresponding third-order nonlinear susceptibilities were in the order 10-4 esu.
Energy Technology Data Exchange (ETDEWEB)
Delaune, X.; Piteau, Ph.; Borsoi, L. [CEA Saclay, Laboratoire d' Etudes de Dynamique, CEA, DEN, DM2S, SEMT, 91 - Gif-sur-Yvette (France); Antunes, J.; Debut, V. [Applied Dynamics Laboratory, Instituto Tecnologico e Nuclear, ITN/ADL, Estrada Nacional 10, 2686 Sacavem Codex (Portugal)
2010-06-15
Predictive computation of the nonlinear dynamical responses of gap-supported tubes subjected to flow excitation has been the subject of very active research. Nevertheless, there is a need for robust techniques capable of extracting, from the actual vibratory response data, information which is relevant for asserting the components integrity. The dynamical contact/impact (vibro-impact) forces are of paramount significance, as are the tube/support gaps. Following our previous studies in this field using wave-propagation techniques, we apply modal methods in the present paper for extracting such information. The dynamical support forces, as well as the vibratory responses at the support locations, are identified from one or several vibratory response measurements at remote transducers, from which the support gaps can be inferred. As for most inverse problems, the identification results prove quite sensitive to noise and modeling error problems. Therefore, topics discussed in the paper include regularization techniques to mitigate the effects of non-measured noise perturbations. In particular, a method is proposed to improve the identification of contact forces at the supports when the system is excited by an unknown distributed turbulence force field. The important topic of dealing with the imperfect knowledge of the modal parameters used to build the inverted transfer functions is addressed elsewhere. Here, the extensive identifications presented are based on the exact modal parameters and performed on realistic numerical simulations of gap-supported tubes subjected to flow excitation. We can thus confront the identified dynamical support contact forces and vibratory motions at the gap-support with the actual values stemming from the original nonlinear computations, with overall satisfying results. (authors)
Nonlinear adaptive control based on fuzzy sliding mode technique and fuzzy-based compensator.
Nguyen, Sy Dzung; Vo, Hoang Duy; Seo, Tae-Il
2017-09-01
It is difficult to efficiently control nonlinear systems in the presence of uncertainty and disturbance (UAD). One of the main reasons derives from the negative impact of the unknown features of UAD as well as the response delay of the control system on the accuracy rate in the real time of the control signal. In order to deal with this, we propose a new controller named CO-FSMC for a class of nonlinear control systems subjected to UAD, which is constituted of a fuzzy sliding mode controller (FSMC) and a fuzzy-based compensator (CO). Firstly, the FSMC and CO are designed independently, and then an adaptive fuzzy structure is discovered to combine them. Solutions for avoiding the singular cases of the fuzzy-based function approximation and reducing the calculating cost are proposed. Based on the solutions, fuzzy sliding mode technique, lumped disturbance observer and Lyapunov stability analysis, a closed-loop adaptive control law is formulated. Simulations along with a real application based on a semi-active train-car suspension are performed to fully evaluate the method. The obtained results reflected that vibration of the chassis mass is insensitive to UAD. Compared with the other fuzzy sliding mode control strategies, the CO-FSMC can provide the best control ability to reduce unwanted vibrations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Tofighi, Elham; Mahdizadeh, Amin
2016-09-01
This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.
Comparing interpolation techniques for annual temperature mapping across Xinjiang region
Ren-ping, Zhang; Jing, Guo; Tian-gang, Liang; Qi-sheng, Feng; Aimaiti, Yusupujiang
2016-11-01
Interpolating climatic variables such as temperature is challenging due to the highly variable nature of meteorological processes and the difficulty in establishing a representative network of stations. In this paper, based on the monthly temperature data which obtained from the 154 official meteorological stations in the Xinjiang region and surrounding areas, we compared five spatial interpolation techniques: Inverse distance weighting (IDW), Ordinary kriging, Cokriging, thin-plate smoothing splines (ANUSPLIN) and Empirical Bayesian kriging(EBK). Error metrics were used to validate interpolations against independent data. Results indicated that, the ANUSPLIN performed best than the other four interpolation methods.
An Electronic Engineering Curriculum Design Based on Concept-Mapping Techniques
Toral, S. L.; Martinez-Torres, M. R.; Barrero, F.; Gallardo, S.; Duran, M. J.
2007-01-01
Curriculum design is a concern in European Universities as they face the forthcoming European Higher Education Area (EHEA). This process can be eased by the use of scientific tools such as Concept-Mapping Techniques (CMT) that extract and organize the most relevant information from experts' experience using statistics techniques, and helps a…
An Electronic Engineering Curriculum Design Based on Concept-Mapping Techniques
Toral, S. L.; Martinez-Torres, M. R.; Barrero, F.; Gallardo, S.; Duran, M. J.
2007-01-01
Curriculum design is a concern in European Universities as they face the forthcoming European Higher Education Area (EHEA). This process can be eased by the use of scientific tools such as Concept-Mapping Techniques (CMT) that extract and organize the most relevant information from experts' experience using statistics techniques, and helps a…
Ambiguities in results obtained with 2D gel replicon mapping techniques
Linskens, Maarten H.K.; Huberman, Joel A.
1990-01-01
Recently, two 2-dimensional (2D) gel techniques, termed neutral/neutral and neutral/alkaline, have been developed and employed to map replication origins in eukaryotic plasmids and chromosomal DNA. The neutral/neutral technique, which requires less DNA for analysis, has been preferentially used in r
My Solar System: A Developmentally Adapted Eco-Mapping Technique for Children
Curry, Jennifer R.; Fazio-Griffith, Laura J.; Rohr, Shannon N.
2008-01-01
Counseling children requires specific skills and techniques, such as play therapy and expressive arts, to address developmental manifestations and to facilitate the understanding of presenting problems. This article outlines an adapted eco-mapping activity that can be used as a creative counseling technique with children in order to promote…
Use of stochastic optimization techniques for damage detection in complex nonlinear systems
Directory of Open Access Journals (Sweden)
Jafarkhani R.
2012-07-01
Full Text Available In this study, the performance of stochastic optimization techniques in the finite element model updating approach was investigated for damage detection in a quarter-scale two-span reinforced concrete bridge system which was tested experimentally at the University of Nevada, Reno. The damage sequence in the structure was induced by a range of progressively increasing excitations in the transverse direction of the specimen. Intermediate non-destructive white noise excitations and response measurements were used for system identification and damage detection purposes. It is shown that, when evaluated together with the strain gauge measurements and visual inspection results, the applied finite element model updating algorithm on this complex nonlinear system could accurately detect, localize, and quantify the damage in the tested bridge columns throughout the different phases of the experiment.
Active control and parameter updating techniques for nonlinear thermal network models
Papalexandris, M. V.; Milman, M. H.
The present article reports on active control and parameter updating techniques for thermal models based on the network approach. Emphasis is placed on applications where radiation plays a dominant role. Examples of such applications are the thermal design and modeling of spacecrafts and space-based science instruments. Active thermal control of a system aims to approximate a desired temperature distribution or to minimize a suitably defined temperature-dependent functional. Similarly, parameter updating aims to update the values of certain parameters of the thermal model so that the output approximates a distribution obtained through direct measurements. Both problems are formulated as nonlinear, least-square optimization problems. The proposed strategies for their solution are explained in detail and their efficiency is demonstrated through numerical tests. Finally, certain theoretical results pertaining to the characterization of solutions of the problems of interest are also presented.
Assimilation of ERBE data with a nonlinear programming technique to improve cloud-cover diagnosis
Wu, Xiangqian; Smith, William L.
1992-01-01
A method is developed to assimilate satellite data for the purpose of improving the diagnosis of fractional cloud cover within a numerical weather prediction model. The method makes use of a nonlinear programming technique to find a set of parameters for the cloud diagnosis that minimizes the difference between the observed and model-produced outgoing longwave radiation (OLR). The algorithm and theoretical basis of the method are presented. The method has been applied in two forecast experiments using a numerical weather prediction model. The results from a winter case demonstrate that the root-mean-square (rms) difference between the observed and forecasted OLR can be reduced by 50 percent when the optimized cloud diagnosis is used, with the remaining rms difference within the background noise.
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2014-01-01
Full Text Available To solve an unconstrained nonlinear minimization problem, we propose an optimal algorithm (OA as well as a globally optimal algorithm (GOA, by deflecting the gradient direction to the best descent direction at each iteration step, and with an optimal parameter being derived explicitly. An invariant manifold defined for the model problem in terms of a locally quadratic function is used to derive a purely iterative algorithm and the convergence is proven. Then, the rank-two updating techniques of BFGS are employed, which result in several novel algorithms as being faster than the steepest descent method (SDM and the variable metric method (DFP. Six numerical examples are examined and compared with exact solutions, revealing that the new algorithms of OA, GOA, and the updated ones have superior computational efficiency and accuracy.
High-resolution fiber optic temperature sensors using nonlinear spectral curve fitting technique
Su, Z. H.; Gan, J.; Yu, Q. K.; Zhang, Q. H.; Liu, Z. H.; Bao, J. M.
2013-04-01
A generic new data processing method is developed to accurately calculate the absolute optical path difference of a low-finesse Fabry-Perot cavity from its broadband interference fringes. The method combines Fast Fourier Transformation with nonlinear curve fitting of the entire spectrum. Modular functions of LabVIEW are employed for fast implementation of the data processing algorithm. The advantages of this technique are demonstrated through high performance fiber optic temperature sensors consisting of an infrared superluminescent diode and an infrared spectrometer. A high resolution of 0.01 °C is achieved over a large dynamic range from room temperature to 800 °C, limited only by the silica fiber used for the sensor.
A Beam-Fourier Technique for the Numerical Investigation of 2D Nonlinear Convective Flows
Papanicolaou, N. C.
2011-11-01
In the current work, we develop a numerical method suitable for treating the problem of nonlinear two-dimensional flows in rectangular domains. For the spatial approximation we employ the Fourier-Galerkin approach. More specifically, our basis functions are products of trigonometric and Beam functions. This choice means that the solutions automatically satisfy the boundary and periodic conditions in the x and y directions respectively. The accuracy of the method is assessed by applying it to model problems which admit exact analytical solutions. The numerical and analytic solutions are found to be in good agreement. The convergence rate of the spectral coefficients is found to be fifth-order algebraic in the x-direction and y-direction, confirming the efficiency and speed of our technique.
A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree
DEFF Research Database (Denmark)
Leander, Gregor; Bracken, Carl
2010-01-01
cryptosystem should be a permutation. Also, it is required that the function is highly nonlinear so that it is resistant to Matsui’s linear attack. In this article we demonstrate that the highly nonlinear permutation f (x) = x22k+2k+1 on the field F24k , discovered by Hans Dobbertin (1998) [1], has...
Bhowmick, Arup; Sahoo, Sushree S.; Mohapatra, Ashok K.
2016-08-01
We discuss the optical-heterodyne-detection technique to study the absorption and dispersion of a probe beam propagating through a medium with a narrow resonance. The technique has been demonstrated for Rydberg electromagnetically induced transparency in rubidium thermal vapor and the optical nonlinearity of a probe beam with variable intensity has been studied. A quantitative comparison of the experimental result with a suitable theoretical model is presented. The limitations and the working regime of the technique are discussed.
Digital Mapping Techniques '08—Workshop Proceedings, Moscow, Idaho, May 18–21, 2008
Soller, David R.
2009-01-01
The Digital Mapping Techniques '08 (DMT'08) workshop was attended by more than 100 technical experts from 40 agencies, universities, and private companies, including representatives from 24 State geological surveys. This year's meeting, the twelfth in the annual series, was hosted by the Idaho Geological Survey, from May 18-21, 2008, on the University of Idaho campus in Moscow, Idaho. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
Robert, Katleen; Jones, Daniel O. B.; Roberts, J. Murray; Huvenne, Veerle A. I.
2016-07-01
In the deep sea, biological data are often sparse; hence models capturing relationships between observed fauna and environmental variables (acquired via acoustic mapping techniques) are often used to produce full coverage species assemblage maps. Many statistical modelling techniques are being developed, but there remains a need to determine the most appropriate mapping techniques. Predictive habitat modelling approaches (redundancy analysis, maximum entropy and random forest) were applied to a heterogeneous section of seabed on Rockall Bank, NE Atlantic, for which landscape indices describing the spatial arrangement of habitat patches were calculated. The predictive maps were based on remotely operated vehicle (ROV) imagery transects high-resolution autonomous underwater vehicle (AUV) sidescan backscatter maps. Area under the curve (AUC) and accuracy indicated similar performances for the three models tested, but performance varied by species assemblage, with the transitional species assemblage showing the weakest predictive performances. Spatial predictions of habitat suitability differed between statistical approaches, but niche similarity metrics showed redundancy analysis and random forest predictions to be most similar. As one statistical technique could not be found to outperform the others when all assemblages were considered, ensemble mapping techniques, where the outputs of many models are combined, were applied. They showed higher accuracy than any single model. Different statistical approaches for predictive habitat modelling possess varied strengths and weaknesses and by examining the outputs of a range of modelling techniques and their differences, more robust predictions, with better described variation and areas of uncertainties, can be achieved. As improvements to prediction outputs can be achieved without additional costly data collection, ensemble mapping approaches have clear value for spatial management.
Identification of a Class of Non-linear State Space Models using RPE Techniques
DEFF Research Database (Denmark)
Zhou, Wei-Wu; Blanke, Mogens
1989-01-01
The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...
Directory of Open Access Journals (Sweden)
Jurado-Piña, R.
2014-12-01
Full Text Available When designing a tension structure the shape is not known at the beginning of the process. Form-finding methods allow the designer to obtain an initial shape from given boundary conditions. Several form-finding methods for tension structures are already available in the technical literature; all of them posses certain limitations and drawbacks and no single method is optimal for all problems. The engineer may select the proper combination of methods best suited to the designer’s needs. In this paper it is proposed a combined method to achieve satisfactory equilibrium configurations for fabric tension structures. The force density method (FDM implemented with topological mapping (TM is used as a search engine for the preliminary design, and a procedure that employs nonlinear structural analysis is proposed for final refinement of the initial equilibrium configuration hence allowing the use of the same analysis tool for both refinement of the solution and analysis under loading.Al diseñar una estructura tensada la forma inicial es normalmente desconocida. Los métodos de búsqueda de forma permiten al ingeniero obtener una geometría inicial dadas unas condiciones de contorno. Existen diferentes métodos de búsqueda de formas de equilibrio, pero todos tienen limitaciones y no existe uno único óptimo para cualquier tipo de problema. El ingeniero debe elegir la combinación de métodos que mejor se adapte a sus necesidades. En este artículo se propone un método combinado para generar configuraciones de equilibrio satisfactorias en estructuras tensadas. Como motor de búsqueda para el diseño preliminar se emplea el método de las densidades de fuerza (FDM implementado con mallado en topología (TM, y se propone un procedimiento basado en análisis no lineal de estructuras para el refinamiento de la configuración inicial de equilibrio, permitiéndose así el empleo de las mismas herramientas tanto para el refinamiento de la solución inicial
Asaki, SAITO; Future University-Hakodate
2006-01-01
We introduce a modified Bernoulli map, which presents f^ spectrum. This map is equivalent to a certain symbolic operation of continued fraction representation. From this fact, we can derive various properties of the map, e.g., concerning residence times, from the theory of continued fractions. Furthermore, we can generate true chaotic orbits with intermittent behavior long enough to investigate their statistical properties.
Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan
2007-01-01
This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.
Directory of Open Access Journals (Sweden)
Garoui Nassreddine
2012-04-01
Full Text Available The idea of this paper is to determine the mental models of actors in the firm with respect to the stakeholder approach of corporate governance. The use of the cognitive map to view these diagrams to show the ways of thinking and conceptualization of the stakeholder approach. The paper takes a corporate governance perspective, discusses stakeholder model. It takes also a cognitive mapping technique.
Digital Mapping Techniques '09-Workshop Proceedings, Morgantown, West Virginia, May 10-13, 2009
Soller, David R.
2011-01-01
The Digital Mapping Techniques '09 (DMT'09) workshop was attended by 90 technical experts from 42 agencies, universities, and private companies, including representatives from 24 State geological surveys. This workshop, the thirteenth in the annual series, was hosted by the West Virginia Geological and Economic Survey, May 10-13, 2009, on the West Virginia University campus in Morgantown, West Virginia. Each DMT workshop has been coordinated by the National Geologic Map Database project and the Association of American State Geologists (AASG).
Ripamonti, Francesco; Orsini, Lorenzo; Resta, Ferruccio
2015-04-01
Non-linear behavior is present in many mechanical system operating conditions. In these cases, a common engineering practice is to linearize the equation of motion around a particular operating point, and to design a linear controller. The main disadvantage is that the stability properties and validity of the controller are local. In order to improve the controller performance, non-linear control techniques represent a very attractive solution for many smart structures. The aim of this paper is to compare non-linear model-based and non-model-based control techniques. In particular the model-based sliding-mode-control (SMC) technique is considered because of its easy implementation and the strong robustness of the controller even under heavy model uncertainties. Among the non-model-based control techniques, the fuzzy control (FC), allowing designing the controller according to if-then rules, has been considered. It defines the controller without a system reference model, offering many advantages such as an intrinsic robustness. These techniques have been tested on the pendulum nonlinear system.
Hosen, Md. Alal; Chowdhury, M. S. H.; Ali, Mohammad Yeakub; Ismail, Ahmad Faris
In the present paper, a novel analytical approximation technique has been proposed based on the energy balance method (EBM) to obtain approximate periodic solutions for the focus generalized highly nonlinear oscillators. The expressions of the natural frequency-amplitude relationship are obtained using a novel analytical way. The accuracy of the proposed method is investigated on three benchmark oscillatory problems, namely, the simple relativistic oscillator, the stretched elastic wire oscillator (with a mass attached to its midpoint) and the Duffing-relativistic oscillator. For an initial oscillation amplitude A0 = 100, the maximal relative errors of natural frequency found in three oscillators are 2.1637%, 0.0001% and 1.201%, respectively, which are much lower than the errors found using the existing methods. It is highly remarkable that an excellent accuracy of the approximate natural frequency has been found which is valid for the whole range of large values of oscillation amplitude as compared with the exact ones. Very simple solution procedure and high accuracy that is found in three benchmark problems reveal the novelty, reliability and wider applicability of the proposed analytical approximation technique.
Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.
Min Wang; Xiaoping Liu; Peng Shi
2011-12-01
This paper is concerned with robust stabilization problem for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Novel continuous packaged functions are introduced in advance to remove unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay functions, which avoids the functions with control law to be approximated by radial basis function (RBF) neural networks. This technique combining implicit function and mean value theorems overcomes the difficulty in controlling the nonaffine pure-feedback systems. Dynamic surface control (DSC) is used to avoid "the explosion of complexity" in the backstepping design. Design difficulties from unknown time-delay functions are overcome using the function separation technique, the Lyapunov-Krasovskii functionals, and the desirable property of hyperbolic tangent functions. RBF neural networks are employed to approximate desired virtual controls and desired practical control. Under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced significantly, and semiglobal uniform ultimate boundedness of all of the signals in the closed-loop system is guaranteed. Simulation studies are given to demonstrate the effectiveness of the proposed design scheme.
Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C
2014-03-01
In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.
Evaluation of frost damage in cement-based materials by a nonlinear elastic wave technique
Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Soriano, L.; Payá, J.
2014-03-01
Frost resistance of concrete is a major concern in cold regions. RILEM (International union of laboratories and experts in construction materials, systems and structures) recommendations provide two alternatives for evaluating frost damage by nondestructive evaluation methods for concrete like materials. The first method is based on the ultrasonic pulse velocity measurement, while the second alternative technique is based on the resonant vibration test. In this study, we monitor the frost damage in Portland cement mortar samples with water to cement ratio of 0.5 and aggregate to cement ratio of 3. The samples are completely saturated by water and are frozen for 24 hours at -25°C. The frost damage is monitored after 0, 5, 10, 15 and 20 freezing-thawing cycles by nonlinear impact resonance acoustic spectroscopy (NIRAS). The results obtained are compared with those obtained by resonant vibration tests, the second alternative technique recommended by RILEM. The obtained results show that NIRAS is more sensitive to early stages of damage than the standard resonant vibration tests.
Flight control design using a blend of modern nonlinear adaptive and robust techniques
Yang, Xiaolong
In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles
Hingerl, Ferdinand; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally
2014-05-01
We have developed and evaluated methods for creating voxel-based 3D permeability maps of a heterogeneous sandstone sample using independent experimental data from single phase flow (Magnetic Resonance Imaging, MRI) and two-phase flow (X-ray Computed Tomography, CT) measurements. Fluid velocities computed from the generated permeability maps using computational fluid dynamics simulations fit measured velocities very well and significantly outperform empirical porosity-permeability relations, such as the Kozeny-Carman equation. Acquiring images on the meso-scale from porous rocks using MRI has till recently been a great challenge, due to short spin relaxation times and large field gradients within the sample. The combination of the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme with three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE) - a technique recently developed at the UNB MRI Center - can overcome these challenges and enables obtaining quantitative 3 dimensional maps of porosities and fluid velocities. Using porosity and (single-phase) velocity maps from MRI and (multi-phase) saturation maps from CT measurements, we employed three different techniques to obtain permeability maps. In the first approach, we applied the Kozeny-Carman relationship to porosities measured using MRI. In the second approach, we computed permeabilities using a J-Leverett scaling method, which is based on saturation maps obtained from N2-H2O multi-phase experiments. The third set of permeabilities was generated using a new inverse iterative-updating technique, which is based on porosities and measured velocities obtained in single-phase flow experiments. The resulting three permeability maps provided then input for computational fluid dynamics simulations - employing the Stanford CFD code AD-GPRS - to generate velocity maps, which were compared to velocity maps measured by MRI. The J-Leveret scaling method and the iterative-updating method
AUTO-EXTRACTING TECHNIQUE OF DYNAMIC CHAOS FEATURES FOR NONLINEAR TIME SERIES
Institute of Scientific and Technical Information of China (English)
CHEN Guo
2006-01-01
The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay τ by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D;Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method.
Digital Mapping Techniques '10-Workshop Proceedings, Sacramento, California, May 16-19, 2010
Soller, David R.; Soller, David R.
2012-01-01
The Digital Mapping Techniques '10 (DMT'10) workshop was attended by 110 technical experts from 40 agencies, universities, and private companies, including representatives from 19 State geological surveys (see Appendix A). This workshop, hosted by the California Geological Survey, May 16-19, 2010, in Sacramento, California, was similar in nature to the previous 13 meetings (see Appendix B). The meeting was coordinated by the U.S. Geological Survey's (USGS) National Geologic Map Database project. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was again successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products ("publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
Method to Depict Many Kinds of Choroplethic Map through VB and Surfer Techniques
Institute of Scientific and Technical Information of China (English)
QING; Xiang-tao; ZHU; Guo-guang; DUAN; Li-jie; LI; Chao; LUO; Bo-liang; CAI; Yuan-gang
2012-01-01
[Objective] The aim was to picture choroplethic map through VB and Surfer techniques. [Method] Taking the way to depict many kinds of choroplethic map through VB and Surfer techniques as an example, methods to realize data process, system protection and programming through ActiveX control under VB 6.0 programming environment. [Result] In the development of "Hunan Modern Agricultural Meteorological Business Service Comprehensive Platform", because of different requirements, the workload was large, but picture and data was isolated by dint of ActiveX control, which improved the software efficiency. [Conclusion] The study solved the problems such as programming workload reduction, code utilization efficiency improvement and software interface.
Nonlinear optical techniques for imaging and manipulating the mouse central nervous system
Farrar, Matthew John
The spinal cord of vertebrates serves as the conduit for somatosensory information and motor control, as well as being the locus of neural circuits that govern fast reflexes and patterned behaviors, such as walking in mammals or swimming in fish. Consequently, pathologies of the spinal cord -such as spinal cord injury (SCI)- lead to loss of motor control and sensory perception, with accompanying decline in life expectancy and quality of life. Despite the devastating effects of these diseases, few therapies exist to substantially ameliorate patient outcome. In part, studies of spinal cord pathology have been limited by the inability to perform in vivo imaging at the level of cellular processes. The focus of this thesis is to present the underlying theory for and demonstration of novel multi-photon microscopy (MPM) and optical manipulation techniques as they apply to studies the mouse central nervous system (CNS), with an emphasis on the spinal cord. The scientific findings which have resulted from the implementation of these techniques are also presented. In particular, we have demonstrated that third harmonic generation is a dye-free method of imaging CNS myelin, a fundamental constituent of the spinal cord that is difficult to label using exogenous dyes and/or transgenic constructs. Since gaining optical access to the spinal cord is a prerequisite for spinal cord imaging, we review our development of a novel spinal cord imaging chamber and surgical procedure which allowed us to image for multiple weeks following implantation without the need for repeated surgeries. We also have used MPM to characterize spinal venous blood flow before and after point occlusions. We review a novel nonlinear microscopy technique that may serve to show optical interfaces in three dimensions inside scattering tissue. Finally, we discuss a model and show results of optoporation, a means of transfecting cells with genetic constructs. Brief reviews of MPM and SCI are also presented.
Energy Technology Data Exchange (ETDEWEB)
Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)
2011-10-15
Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.
Non-linear Maps on Borel Subalgebras of Simple Lie Algebras Preserving Abelin Ideals
Institute of Scientific and Technical Information of China (English)
ZHAO Yan-xia; WANG Deng-yin
2012-01-01
Let g be a complex simple Lie algebra of rank l,b the standard Borel subalgebra.An invertible map on b is said to preserve abelian ideals if it maps each abelian ideal to some such ideal of the same dimension.In this article,by using some results of Chevalley groups,the theory of root systems and root space decomposition,the author gives an explicit description on such maps of b.
Energy Technology Data Exchange (ETDEWEB)
Guo, Kong-Ming, E-mail: kmguo@xidian.edu.cn [School of Electromechanical Engineering, Xidian University, P.O. Box 187, Xi' an 710071 (China); Jiang, Jun, E-mail: jun.jiang@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China)
2014-07-04
To apply stochastic sensitivity function method, which can estimate the probabilistic distribution of stochastic attractors, to non-autonomous dynamical systems, a 1/N-period stroboscopic map for a periodic motion is constructed in order to discretize the continuous cycle into a discrete one. In this way, the sensitivity analysis of a cycle for discrete map can be utilized and a numerical algorithm for the stochastic sensitivity analysis of periodic solutions of non-autonomous nonlinear dynamical systems under stochastic disturbances is devised. An external excited Duffing oscillator and a parametric excited laser system are studied as examples to show the validity of the proposed method. - Highlights: • A method to analyze sensitivity of stochastic periodic attractors in non-autonomous dynamical systems is proposed. • Probabilistic distribution around periodic attractors in an external excited Φ{sup 6} Duffing system is obtained. • Probabilistic distribution around a periodic attractor in a parametric excited laser system is determined.
Li, Zhong-Yu; Xu, Song; Chen, Zi-Hui; Zhang, Fu-Shi; Kasatani, Kazuo
2011-08-01
Third-order optical nonlinearities of two squarylium dyes with benzothiazole donor groups (BSQ1 and BSQ2) in chloroform solution are measured by a picosecond Z-scan technique at 532 nm. It is found that the two compounds show the saturation absorption and nonlinear self-focus refraction effect. The molecular second hyperpolarizabilities are calculated to be 7.46 × 10-31 esu and 5.01 × 10-30 esu for BSQ1 and BSQ2, respectively. The large optical nonlinearities of squarylium dyes can be attributed to their rigid and intramolecular charge transfer structure. The difference in γ values is attributed to the chloro group of benzene rings of BSQ2 and the one-photon resonance effect. It is found that the third-order nonlinear susceptibilities of two squarylium dyes are mainly determined by the real parts of χ(3), and the large optical nonlinearities of studied squarylium dyes can be attributed to the nonlinear refraction.
Institute of Scientific and Technical Information of China (English)
LI Zhong-Yu; XU Song; CHEN Zi-Hui; ZHANG Fu-Shi; KASATANI Kazuo
2011-01-01
@@ Third-order optical nonlinearities of two squarylium dyes with benzothiazole donor groups (BSQ1 and BSQ2)in chloroform solution are measured by a picosecond Z-scan technique at 532 nm.It is found that the two compounds show the saturation absorption and nonlinear self-focus refraction effect.The molecular second hyperpolarizabilities are calculated to be 7.46×10-31 esu and 5.01×10-30 esu for BSQ1 and BSQ2, respectively.The large optical nonlinearities of squarylium dyes can be attributed to their rigid and intramolecular charge transfer structure.The difference in γvalues is attributed to the chloro group of benzene rings of BSQ2 and the one-photon resonance effect.It is found that the third-order nonlinear susceptibilities of two squarylium dyes are mainly determined by the real parts of X(3), and the large optical nonlinearities of studied squarylium dyes can be attributed to the nonlinear refraction.
Arivazhagan, T.; Siva Bala Solanki, S.; Rajesh, Narayana Perumal
2017-02-01
The butyl 4-hydroxybenzoate single crystal has been grown by vertical Bridgman technique using single wall ampoule. The cell parameters of the grown crystal are verified by single crystal X-ray diffraction analysis. The functional groups of the grown crystal were identified by Fourier transform infrared analysis. The melting, decomposition and crystallization point of the compound are determined by thermo gravimetric analysis and differential scanning calorimetric analysis. The mechanical properties of the grown crystal has been analyzed by Vickers microhardness method. The optical behavior of the grown crystal has been observed by UV-vis-NIR transmission spectroscopic analysis which shows that the lower cut-off wavelength lying at 293 nm and found that the energy band gap value is 4.05 eV. The blue light emission of the crystal was identified by photoluminescence studies. The positive third order nonlinear optical parameters like nonlinear refractive index (n2), nonlinear absorption co-efficient (β) and third order nonlinear susceptibility (χ3) of the grown crystal was calculated by Z-scan studies. The positive sign of nonlinear refractive index (n2) indicates that the crystal exhibits self focusing optical nonlinearity. The crystal exhibits good optical power limiting behavior.
Z-scan technique for investigation of the noninstantaneous optical Kerr nonlinearity.
Gu, Bing; Wang, Hui-Tian; Ji, Wei
2009-09-15
By treating laser-induced optical Kerr nonlinearity as a noninstantaneous decaying process, we present the pulse-duration-dependent Z-scan analytical expressions for an arbitrary aperture and an arbitrary nonlinear magnitude. This theory has the capacity to characterize the third-order nonlinear refraction induced by a laser pulse with its temporal duration being much longer than or comparable to the recovery time of the nonlinear effect. Through Z-scan measurements at different pulse durations, the nonlinear refractive coefficient and the recovery time could be determined unambiguously and simultaneously. Furthermore, the theory can be utilized to confirm whether the measured optical Kerr nonlinearity is instantaneous or noninstantaneous with respect to the given pulse duration.
Field monitoring of rail squats using 3D ultrasonic mapping technique
Energy Technology Data Exchange (ETDEWEB)
Kaewunruen, S., E-mail: sakdirat.kaewunruen@transport.nsw.gov.au [NSW, Transport, Sydney (Australia); Ishida, M., E-mail: ishida-mk@n-koei.jp [Nippon Koei Co. Ltd., Railway Div., Railway Engineering Dept., Chiyoda-ku, Tokyo (Japan)
2014-11-15
Rail squats and studs are typically classified as the propagation of any cracks .that have grown longitudinally through the subsurface. Some of the cracks could propagate to the bottom of rails transversely, which have branched from the initial longitudinal cracks with a depression of rail surface. The rail defects are commonly referred to as 'squats' when they were initiated from a damage layer caused by rolling contact fatigue, and as 'studs' when they were associated with a white etching layer caused by the transformation from pearlitic steel due to friction heat generated by wheel sliding or excessive traction. Such above-mentioned rail defects have been often observed in railway tracks catered for either light passenger or heavy freight traffics and for low, medium or high speed trains all over the world for over 60 years except some places such as sharp curves where large wear takes place under severe friction between the wheel flange and rail gauge face. It becomes a much-more significant issue when the crack grows and sometimes flakes off the rail (by itself or by insufficient rail grinding), resulting in a rail surface irregularity. Such rail surface defects induce wheel/rail impact and large amplitude vibration of track structure and poor ride quality. In Australia, Europe, and Japan, rail squats/studs have occasionally turned into broken rails. The root cause and preventive solution to this defect are still under investigation from the fracture mechanics and material sciences point of view. Some patterns of squat/stud development related to both curve and tangent track geometries have been observed and squat growth has been monitored for individual squats using ultrasonic mapping techniques. This paper highlights the field monitoring of squat/stud distribution and its growth. Squat/stud growth has been detected and scanned using the ultrasonic measurement device on a grid applied to the rail surface. The depths of crack paths at each
Identification of a class of nonlinear state-space models using RPE techniques
DEFF Research Database (Denmark)
Zhou, W. W.; Blanke, Mogens
1986-01-01
The recursive prediction error methods in state-space form have been efficiently used as parameter identifiers for linear systems, and especially Ljung's innovations filter using a Newton search direction has proved to be quite ideal. In this paper, the RPE method in state-space form is developed...... to the nonlinear case and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows...... a quite convincing performance of the filter as combined parameter and state estimator....
Neural Feedback Passivity of Unknown Nonlinear Systems via Sliding Mode Technique.
Yu, Wen
2015-07-01
Passivity method is very effective to analyze large-scale nonlinear systems with strong nonlinearities. However, when most parts of the nonlinear system are unknown, the published neural passivity methods are not suitable for feedback stability. In this brief, we propose a novel sliding mode learning algorithm and sliding mode feedback passivity control. We prove that for a wide class of unknown nonlinear systems, this neural sliding mode control can passify and stabilize them. This passivity method is validated with a simulation and real experiment tests.
Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging.
Lai, Yu-Hung; Lee, Szu-Yu; Chang, Chieh-Feng; Cheng, Yu-Hsiang; Sun, Chi-Kuang
2014-01-13
In order to achieve high-resolution deep-tissue imaging, multi-photon fluorescence microscopy and photoacoustic tomography had been proposed in the past two decades. However, combining the advantages of these two imaging systems to achieve optical-spatial resolution with an ultrasonic-penetration depth is still a field with challenges. In this paper, we investigate the detection of the two-photon photoacoustic ultrasound, and first demonstrate background-free two-photon photoacoustic imaging in a phantom sample. To generate the background-free two-photon photoacoustic signals, we used a high-repetition rate femtosecond laser to induce narrowband excitation. Combining a loss modulation technique, we successfully created a beating on the light intensity, which not only provides pure sinusoidal modulation, but also ensures the spectrum sensitivity and frequency selectivity. By using the lock-in detection, the power dependency experiment validates our methodology to frequency-select the source of the nonlinearity. This ensures our capability of measuring the background-free two-photon photoacoustic waves by detecting the 2nd order beating signal directly. Furthermore, by mixing the nanoparticles and fluorescence dyes as contrast agents, the two-photon photoacoustic signal was found to be enhanced and detected. In the end, we demonstrate subsurface two-photon photoacoustic bio-imaging based on the optical scanning mechanism inside phantom samples.
Directory of Open Access Journals (Sweden)
Peng Guo
2012-12-01
Full Text Available With appropriate vibration modeling and analysis the incipient failure of key components such as the tower, drive train and rotor of a large wind turbine can be detected. In this paper, the Nonlinear State Estimation Technique (NSET has been applied to model turbine tower vibration to good effect, providing an understanding of the tower vibration dynamic characteristics and the main factors influencing these. The developed tower vibration model comprises two different parts: a sub-model used for below rated wind speed; and another for above rated wind speed. Supervisory control and data acquisition system (SCADA data from a single wind turbine collected from March to April 2006 is used in the modeling. Model validation has been subsequently undertaken and is presented. This research has demonstrated the effectiveness of the NSET approach to tower vibration; in particular its conceptual simplicity, clear physical interpretation and high accuracy. The developed and validated tower vibration model was then used to successfully detect blade angle asymmetry that is a common fault that should be remedied promptly to improve turbine performance and limit fatigue damage. The work also shows that condition monitoring is improved significantly if the information from the vibration signals is complemented by analysis of other relevant SCADA data such as power performance, wind speed, and rotor loads.
Expulsion characterization in resistance spot welding by means of a hardness mapping technique
Institute of Scientific and Technical Information of China (English)
H.Ghazanfari; M.Naderi
2014-01-01
Expulsion is an undesired event during resistance spot welding because the weld quality deteriorates. It is the ejection of molten metal from the weld nugget which usually occurs due to applying a high current for a short welding time. Expulsion has a significant impact on the final yield strength of the weld, thus the detection and characterization of expulsion events is significant for the quality assurance of resistance spot welds. In this study, hardness mapping, using a scanning hardness machine, was used as a quality assurance technique for re-sistance spot welding. Hardness tests were conducted on a resistance spot welded sample to prepare a hardness map. The test results showed good correlation between the hardness map and metallographic cross sections. The technique also provided further fundamental understand-ing of the resistance spot welding process, especially regarding the occurrence of expulsion in the nugget.
The Effect of Mnemonic and Mapping Techniques on L2 Vocabulary Learning
Directory of Open Access Journals (Sweden)
Abbas Ali Zarei
2016-01-01
Full Text Available The present study investigated the effects of selected presentation techniques including the keyword method, the peg word method, the loci method, argument mapping, concept mapping and mind mapping on L2 vocabulary comprehension and production. To this end, a sample of 151 Iranian female students from a public pre-university school in Islam Shahr was selected. They were assigned to six groups. Each group was randomly assigned to one of the afore-mentioned treatment conditions. After the experimental period, two post-tests in multiple choice and fill-in-the-blanks formats were administered to assess the participants’ vocabulary comprehension and production. Two independent One-Way ANOVA procedures were used to analyze the obtained data. The results showed that the differences among the effects of the above-mentioned techniques were statistically significant in both vocabulary comprehension and production. These findings can have implications for learners, teachers, and materials’ developers.
Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency CMB maps
Herranz, D; Hobson, M P; Barreiro, R B; Diego-Rodriguez, J M; Martínez-González, E; Lasenby, A N
2002-01-01
The problem of detecting Sunyaev-Zel'dovich (SZ) clusters in multifrequency CMB observations is investigated using a number of filtering techniques. A multifilter approach is introduced, which optimizes the detection of SZ clusters on microwave maps. An alternative method is also investigated, in which maps at different frequencies are combined in an optimal manner so that existing filtering techniques can be applied to the single combined map. The SZ profiles are approximated by the circularly-symmetric template $\\tau (x) = [1 +(x/r_c)^2]^{-\\lambda}$, with $\\lambda \\simeq \\tfrac{1}{2}$ and $x\\equiv |\\vec{x}|$, where the core radius $r_c$ and the overall amplitude of the effect are not fixed a priori, but are determined from the data. The background emission is modelled by a homogeneous and isotropic random field, characterized by a cross-power spectrum $P_{\
Development of experimental verification techniques for non-linear deformation and fracture.
Energy Technology Data Exchange (ETDEWEB)
Moody, Neville Reid; Bahr, David F. (Washington State University, Pullman, WA)
2003-12-01
This project covers three distinct features of thin film fracture and deformation in which the current experimental technique of nanoindentation demonstrates limitations. The first feature is film fracture, which can be generated either by nanoindentation or bulge testing thin films. Examples of both tests will be shown, in particular oxide films on metallic or semiconductor substrates. Nanoindentations were made into oxide films on aluminum and titanium substrates for two cases; one where the metal was a bulk (effectively single crystal) material and the other where the metal was a 1 pm thick film grown on a silica or silicon substrate. In both cases indentation was used to produce discontinuous loading curves, which indicate film fracture after plastic deformation of the metal. The oxides on bulk metals fractures occurred at reproducible loads, and the tensile stress in the films at fracture were approximately 10 and 15 GPa for the aluminum and titanium oxides respectively. Similarly, bulge tests of piezoelectric oxide films have been carried out and demonstrate film fracture at stresses of only 100's of MPa, suggesting the importance of defects and film thickness in evaluating film strength. The second feature of concern is film adhesion. Several qualitative and quantitative tests exist today that measure the adhesion properties of thin films. A relatively new technique that uses stressed overlayers to measure adhesion has been proposed and extensively studied. Delamination of thin films manifests itself in the form of either telephone cord or straight buckles. The buckles are used to calculate the interfacial fracture toughness of the film-substrate system. Nanoindentation can be utilized if more energy is needed to initiate buckling of the film system. Finally, deformation in metallic systems can lead to non-linear deformation due to 'bursts' of dislocation activity during nanoindentation. An experimental study to examine the structure of
Shih, Kao-Shang; Hsu, Ching-Chi; Hsu, Tzu-Pin; Hou, Sheng-Mou; Liaw, Chen-Kun
2014-02-01
Femoral shaft fractures can be treated using retrograde interlocking nailing systems; however, fracture nonunion still occurs. Dynamic fixation techniques, which remove either the proximal or distal locking screws, have been used to solve the problem of nonunion. In addition, a surgical rule for dynamic fixation techniques has been defined based on past clinical reports. However, the biomechanical performance of the retrograde interlocking nailing systems with either the traditional static fixation technique or the dynamic fixation techniques has not been investigated by using nonlinear numerical modeling. Three-dimensional nonlinear finite element models were developed, and the implant strength, fixation stability, and contact area of the fracture surfaces were evaluated. Three types of femoral shaft fractures (a proximal femoral shaft fracture, a middle femoral shaft fracture, and a distal femoral shaft fracture) fixed by three fixation techniques (insertion of all the locking screws, removal of the proximal locking screws, or removal of the distal locking screws) were analyzed. The results showed that the static fixation technique resulted in sufficient fixation stability and that the dynamic fixation techniques decreased the failure risk of the implant and produced a larger contact area of the fracture surfaces. The outcomes of the current study could assist orthopedic surgeons in comprehending the biomechanical performances of both static and dynamic fixation techniques. In addition, the surgeons could also select a fixation technique based on the specific patient situation using the numerical outcomes of this study.
Tsai, Bor-sheng
2003-01-01
Total quality management and knowledge management are merged and used as a conceptual model to direct and develop information landscaping techniques through the coordination of information mapping, charting, querying, and reporting. Goals included: merge citation analysis and data mining, and apply data visualization and information architecture…
DEFF Research Database (Denmark)
Larsen, Anders Astrup; Bendsøe, Martin P.; Schmidt, Henrik Nikolaj Blicher;
2007-01-01
The aim of this paper is to optimize a thermal model of a friction stir welding process. The optimization is performed using a space mapping technique in which an analytical model is used along with the FEM model to be optimized. The results are compared to traditional gradient based optimization...
Techniques for Down-Sampling a Measured Surface Height Map for Model Validation
Sidick, Erkin
2012-01-01
This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces
Data Maps: A Hypertext Technique for Visualizing, Analyzing and Presenting Qualitative Data.
Horney, Mark
Making diagrams of the relationships among data is not a new idea: however, the utility of computerized hypertext techniques makes the task more feasible, on a wider scale of data. Data maps using "EntryWay" (a hypertext editing program) were made based on qualitative data from eight different research projects, including: a discourse…
Tsai, Bor-sheng
2003-01-01
Total quality management and knowledge management are merged and used as a conceptual model to direct and develop information landscaping techniques through the coordination of information mapping, charting, querying, and reporting. Goals included: merge citation analysis and data mining, and apply data visualization and information architecture…
Accuracy of vertical radial plume mapping technique in measuring lagoon gas emission
Recently, the U.S. Environmental Protection Agency (USEPA) posted a ground-based optical remote sensing method on its website called OTM 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to c...
DEFF Research Database (Denmark)
Larsen, Anders Astrup; Bendsøe, Martin P.; Schmidt, Henrik Nikolaj Blicher
2007-01-01
The aim of this paper is to optimize a thermal model of a friction stir welding process. The optimization is performed using a space mapping technique in which an analytical model is used along with the FEM model to be optimized. The results are compared to traditional gradient based optimization...
Space-mapping techniques applied to the optimization of a safety isolating transformer
T.V. Tran; S. Brisset; D. Echeverria (David); D.J.P. Lahaye (Domenico); P. Brochet
2007-01-01
textabstractSpace-mapping optimization techniques allow to allign low-fidelity and high-fidelity models in order to reduce the computational time and increase the accuracy of the solution. The main idea is to build an approximate model from the difference of response between both models. Therefore
Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys
2016-05-01
An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.
Khaki, Mehdi; Forootan, Ehsan; Kuhn, Michael; Awange, Joseph; Pattiaratchi, Charitha
2016-04-01
Quantifying large-scale (basin/global) water storage changes is essential to understand the Earth's hydrological water cycle. Hydrological models have usually been used to simulate variations in storage compartments resulting from changes in water fluxes (i.e., precipitation, evapotranspiration and runoff) considering physical or conceptual frameworks. Models however represent limited skills in accurately simulating the storage compartments that could be the result of e.g., the uncertainty of forcing parameters, model structure, etc. In this regards, data assimilation provides a great chance to combine observational data with a prior forecast state to improve both the accuracy of model parameters and to improve the estimation of model states at the same time. Various methods exist that can be used to perform data assimilation into hydrological models. The one more frequently used particle-based algorithms suitable for non-linear systems high-dimensional systems is the Ensemble Kalman Filtering (EnKF). Despite efficiency and simplicity (especially in EnKF), this method indicate some drawbacks. To implement EnKF, one should use the sample covariance of observations and model state variables to update a priori estimates of the state variables. The sample covariance can be suboptimal as a result of small ensemble size, model errors, model nonlinearity, and other factors. Small ensemble can also lead to the development of correlations between state components that are at a significant distance from one another where there is no physical relation. To investigate the under-sampling issue raise by EnKF, covariance inflation technique in conjunction with localization was implemented. In this study, a comparison between latest methods used in the data assimilation framework, to overcome the mentioned problem, is performed. For this, in addition to implementing EnKF, we introduce and apply the Local Ensemble Kalman Filter (LEnKF) utilizing covariance localization to remove
Mapping nonlinear shallow-water tides: a look at the past and future
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Egbert, G.D.; Erofeeva, S.Y.;
2006-01-01
these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M-4 tide over the northwest European Shelf. Future applications of altimetry...
Directory of Open Access Journals (Sweden)
Ram C. Sharma
2016-11-01
Full Text Available As the barren lands play a key role in the interaction between land cover dynamics and climate system, an efficient methodology for the global-scale extraction and mapping of the barren lands is important. The discriminative potential of the existing soil/bareness indexes was assessed by collecting globally distributed reference data belonging to major land cover types. The existing soil/bareness indexes parameterized at the local scale did not work satisfactorily everywhere at the global level. A new technique called the Biophysical Image Composite (BIC is proposed in the research by exploiting time-series of the multi-spectral data to capture global-scale barren land attributes effectively. The BIC is a false color composite image made up of Normalized Difference Vegetation Index (NDVI, short wave infrared reflectance, and green reflectance, which were specially selected from the highest vegetation activity period by avoiding signals from the seasonal snowfall. The drastic contrast between the barren lands and vegetation as exhibited by the BIC provides a robust extraction and mapping of the barren lands, and facilitates its visual interpretation. Random Forests based supervised classification approach was applied on the BIC for the mapping of global barren lands. A new global barren land cover map of year 2013 was produced with high accuracy. The comparison of the resulted map with an existing map of the same year showed a substantial discrepancy between two maps due to methodological variation. To cope with this problem, the BIC based mapping methodology, with a special account of the land surface phenological changes, is suggested to standardize the global-scale estimates and mapping of the barren lands.
Accuracy assessment of GPS and surveying technique in forest road mapping
Directory of Open Access Journals (Sweden)
Ehsan Abdi
2012-12-01
Full Text Available Forest road networks provide access to the forest as a source of timber production and tourism services. Moreover, it is considered the main tool to protect forests from fire and smuggling. The prerequisite of road management and maintenance planning is to have spatial distribution and map of the roads. But newly constructed or some other forest road segments are not available in national maps. Therefore, mapping these networks is raised as a priority for a forest manager. The aim of this study was to assess accuracy of routine methods in road mapping. For this purpose, Patom district forest road was selected and road network map was extracted from the National Cartographic Center maps as the ground truth or base map. The map of the network was acquired using two methods, a GPS receiver and survey technique. Selecting 70 sample points on the network and considering the National Cartographic Center map as base map, accuracy was determined for two methods. The results showed that while the survey method was more accurate at the beginning of the path (first 500 meters, accumulation of errors resulted in higher rates of error in this method (up to 263 meters compared to GPS. Mann-Whitney test revealed significant differences in accuracy of two methods and mean accuracies were 38.86 and 147.90 for GPS and surveying respectively. The results showed that for samples 1-15 there was no significant difference between the survey and GPS data but for samples 28-42 and 56-70 statistically significant difference were existed between the survey and GPS data. Regression analysis showed that the relation between GPS and surveying accuracies and distance were best defined by cubic (R2 adj = 0.65 and linear (R2 adj = 0.83 regression models respectively. Applying 10 and 5 meters buffers around base map, 68 and 41% of GPS and 44 and 21% of surveying derived road were overlapped with buffer zones. The time required to complete the survey was found to increase the
Zuev, Vladimir V.; Gerasimov, Vladislav V.; Pravdin, Vladimir L.; Pavlinskiy, Aleksei V.; Nakhtigalova, Daria P.
2017-01-01
Among lidar techniques, the pure rotational Raman (PRR) technique is the best suited for tropospheric and lower stratospheric temperature measurements. Calibration functions are required for the PRR technique to retrieve temperature profiles from lidar remote sensing data. Both temperature retrieval accuracy and number of calibration coefficients depend on the selected function. The commonly used calibration function (linear in reciprocal temperature 1/T with two calibration coefficients) ignores all types of broadening of individual PRR lines of atmospheric N2 and O2 molecules. However, the collisional (pressure) broadening dominates over other types of broadening of PRR lines in the troposphere and can differently affect the accuracy of tropospheric temperature measurements depending on the PRR lidar system. We recently derived the calibration function in the general analytical form that takes into account the collisional broadening of all N2 and O2 PRR lines (Gerasimov and Zuev, 2016). This general calibration function represents an infinite series and, therefore, cannot be directly used in the temperature retrieval algorithm. For this reason, its four simplest special cases (calibration functions nonlinear in 1/T with three calibration coefficients), two of which have not been suggested before, were considered and analyzed. All the special cases take the collisional PRR lines broadening into account in varying degrees and the best function among them was determined via simulation. In this paper, we use the special cases to retrieve tropospheric temperature from real PRR lidar data. The calibration function best suited for tropospheric temperature retrievals is determined from the comparative analysis of temperature uncertainties yielded by using these functions. The absolute and relative statistical uncertainties of temperature retrieval are given in an analytical form assuming Poisson statistics of photon counting. The vertical tropospheric temperature
A wafer mapping technique for residual stress in surface micromachined films
Schiavone, G.; Murray, J.; Smith, S.; Desmulliez, M. P. Y.; Mount, A. R.; Walton, A. J.
2016-09-01
The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements.
Tiffany, S. H.; Adams, W. M., Jr.
1984-01-01
A technique which employs both linear and nonlinear methods in a multilevel optimization structure to best approximate generalized unsteady aerodynamic forces for arbitrary motion is described. Optimum selection of free parameters is made in a rational function approximation of the aerodynamic forces in the Laplace domain such that a best fit is obtained, in a least squares sense, to tabular data for purely oscillatory motion. The multilevel structure and the corresponding formulation of the objective models are presented which separate the reduction of the fit error into linear and nonlinear problems, thus enabling the use of linear methods where practical. Certain equality and inequality constraints that may be imposed are identified; a brief description of the nongradient, nonlinear optimizer which is used is given; and results which illustrate application of the method are presented.
Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M
2016-01-01
The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa
2012-08-01
Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model.
Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2014-01-01
It is often advantageous to account for the microstructure of the material directly using multiscale modeling. For computational tractability, an idealized repeating unit cell (RUC) is used to capture all of the pertinent features of the microstructure. Typically, the RUC is dimensionless and depends only on the relative volume fractions of the different phases in the material. This works well for non-linear and inelastic behavior exhibiting a positive-definite constitutive response. Although, once the material exhibits strain softening, or localization, a mesh objective failure theories, such as smeared fracture theories, nodal and element enrichment theories (XFEM), cohesive elements or virtual crack closure technique (VCCT), can be utilized at the microscale, but the dimensions of the RUC must then be defined. One major challenge in multiscale progressive damage modeling is relating the characteristic lengths across the scales in order to preserve the energy that is dissipated via localization at the microscale. If there is no effort to relate the size of the macroscale element to the microscale RUC, then the energy that is dissipated will remain mesh dependent at the macroscale, even if it is regularized at the microscale. Here, a technique for mapping characteristic lengths across the scales is proposed. The RUC will be modeled using the generalized method of cells (GMC) micromechanics theory, and local failure in the matrix constituent subcells will be modeled using the crack band theory. The subcell characteristic lengths used in the crack band calculations will be mapped to the macroscale finite element in order to regularize the local energy in a manner consistent with the global length scale. Examples will be provided with and without the regularization, and they will be compared to a baseline case where the size and shape of the element and RUC are coincident (ensuring energy is preserved across the scales).
MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination
Riggs, George A.; Hall, Dorothy K.
2010-01-01
Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.
Institute of Scientific and Technical Information of China (English)
GE Jian-Ya; WANG Rui-Min; DAI Chao-Qing; ZHANG Jie-Fang
2006-01-01
In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schr(o)dinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.
Uttam Mande; Y. Srinivas; Murthy, J. V. R.
2012-01-01
Lot of research is projected to map the criminal with that of crime and it is observed that there is still a huge increase in the crime rate due to the gap between the optimal usage of technologies and investigation. This has given scope for the development of new methodologies in the area of crime investigation using the techniques based on data mining, image processing, forensic, and social mining. In this paper, presents a model using new methodology for mapping the criminal with the crime...
Digital Mapping Techniques '05--Workshop Proceedings, Baton Rouge, Louisiana, April 24-27, 2005
Soller, David R.
2005-01-01
Intorduction: The Digital Mapping Techniques '05 (DMT'05) workshop was attended by more than 100 technical experts from 47 agencies, universities, and private companies, including representatives from 25 state geological surveys (see Appendix A). This workshop was similar in nature to the previous eight meetings, held in Lawrence, Kansas (Soller, 1997), in Champaign, Illinois (Soller, 1998), in Madison, Wisconsin (Soller, 1999), in Lexington, Kentucky (Soller, 2000), in Tuscaloosa, Alabama (Soller, 2001), in Salt Lake City, Utah (Soller, 2002), in Millersville, Pennsylvania (Soller, 2003), and in Portland, Oregon (Soller, 2004). This year's meeting was hosted by the Louisiana Geological Survey, from April 24-27, 2005, on the Louisiana State University campus in Baton Rouge, Louisiana. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure I note that the objective was successfully met, as attendees continued to share and exchange knowledge and information, and to renew friendships and collegial work begun at past DMT workshops. Each DMT workshop has been coordinated by the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS) Data Capture Working Group, which was formed in August 1996, to support the AASG and the USGS in their effort to build a National Geologic Map Database (see Soller and Berg, this volume, and http://ngmdb.usgs.gov/info/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed for the database?and for the State and Federal geological surveys?to provide more high-quality digital maps to the public. At the 2005 meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and
Rogers, R.; Marres, N.
2000-01-01
New World Wide Web (web) mapping techniques may inform and ultimately facilitate meaningful participation in current science and technology debates. The technique described here "landscapes" a debate by displaying key "webby" relationships between organizations. "Debate-scaping" plots two organizati
Rogers, R.; Marres, N.
2000-01-01
New World Wide Web (web) mapping techniques may inform and ultimately facilitate meaningful participation in current science and technology debates. The technique described here "landscapes" a debate by displaying key "webby" relationships between organizations. "Debate-scaping" plots two organizati
Rogers, R.; Marres, N.
2000-01-01
New World Wide Web (web) mapping techniques may inform and ultimately facilitate meaningful participation in current science and technology debates. The technique described here "landscapes" a debate by displaying key "webby" relationships between organizations. "Debate-scaping" plots two
Directory of Open Access Journals (Sweden)
Cristiano Cigagna
2015-12-01
Full Text Available Abstract Aim: This study aimed to map the concentrations of limnological variables in a reservoir employing semivariogram geostatistical techniques and Kriging estimates for unsampled locations, as well as the uncertainty calculation associated with the estimates. Methods: We established twenty-seven points distributed in a regular mesh for sampling. Then it was determined the concentrations of chlorophyll-a, total nitrogen and total phosphorus. Subsequently, a spatial variability analysis was performed and the semivariogram function was modeled for all variables and the variographic mathematical models were established. The main geostatistical estimation technique was the ordinary Kriging. The work was developed with the estimate of a heavy grid points for each variables that formed the basis of the interpolated maps. Results: Through the semivariogram analysis was possible to identify the random component as not significant for the estimation process of chlorophyll-a, and as significant for total nitrogen and total phosphorus. Geostatistical maps were produced from the Kriging for each variable and the respective standard deviations of the estimates calculated. These measurements allowed us to map the concentrations of limnological variables throughout the reservoir. The calculation of standard deviations provided the quality of the estimates and, consequently, the reliability of the final product. Conclusions: The use of the Kriging statistical technique to estimate heavy mesh points associated with the error dispersion (standard deviation of the estimate, made it possible to make quality and reliable maps of the estimated variables. Concentrations of limnological variables in general were higher in the lacustrine zone and decreased towards the riverine zone. The chlorophyll-a and total nitrogen correlated comparing the grid generated by Kriging. Although the use of Kriging is more laborious compared to other interpolation methods, this
Mapping nonlinear receptive field structure in primate retina at single cone resolution.
Freeman, Jeremy; Field, Greg D; Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam; Simoncelli, Eero P; Chichilnisky, E J
2015-01-01
The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits.
Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen
2016-05-01
Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016
Non-linear imaging techniques visualize the lipid profile of C. elegans
Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George
2015-07-01
The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.
Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique
CSIR Research Space (South Africa)
Zongo, S
2015-08-01
Full Text Available We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer...
Hays, J. R.
1969-01-01
Lumped parametric system models are simplified and computationally advantageous in the frequency domain of linear systems. Nonlinear least squares computer program finds the least square best estimate for any number of parameters in an arbitrarily complicated model.
Stabilization of nonlinear systems with parametric uncertainty using variable structure techniques
Energy Technology Data Exchange (ETDEWEB)
Schoenwald, D.A. [Oak Ridge National Lab., TN (United States); Oezguener, Ue. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering
1995-07-01
The authors present a result on the robust stabilization of a class of nonlinear systems exhibiting parametric uncertainty. They consider feedback linearizable nonlinear systems with a vector of unknown constant parameters perturbed about a known value. A Taylor series of the system about the nominal parameter vector coupled with a feedback linearizing control law yields a linear system plus nonlinear perturbations. Via a structure matching condition, a variable structure control law is shown to exponentially stabilize the full system. The novelty of the result is that the linearizing coordinates are completely known since they are defined about the nominal parameter vector, and fewer restrictions are imposed on the nonlinear perturbations than elsewhere in the literature.
An Improved Ishikawa-type Iteration for Nonlinear Quase-Contraction Mappings%非线性拟压缩映射的改进Ishikawa型迭代
Institute of Scientific and Technical Information of China (English)
田有先
2001-01-01
在凸度量空间内，引入了非线性拟压缩映射序列和改进的Ishikawa型迭代序列，证明了改进的Ishikawa型迭代序列收敛于非线性拟压缩映射序列的唯一公共不动点。%The notion of nonlinear qusi-contraction mappings squence and improved Ishikawa-type iteration are introduced in convex matric space.The result that the improved lshikawa-type iteration sequence converges to unique common fixed point of nonlinear quasi-contraction-mappings sequence is also given.
Institute of Scientific and Technical Information of China (English)
Min WANG; Xiuying WANG; Bing CHEN; Shaocheng TONG
2007-01-01
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.
Beam rate influence on dose distribution and fluence map in IMRT dynamic technique.
Slosarek, Krzysztof; Grządziel, Aleksandra; Osewski, Wojciech; Dolla, Lukasz; Bekman, Barbara; Petrovic, Borislava
2012-01-01
To examine the impact of beam rate on dose distribution in IMRT plans and then to evaluate agreement of calculated and measured dose distributions for various beam rate values. Accelerators used in radiotherapy utilize some beam rate modes which can shorten irradiation time and thus reduce ability of patient movement during a treatment session. This aspect should be considered in high conformal dynamic techniques. Dose calculation was done for two different beam rates (100 MU/min and 600 MU/min) in an IMRT plan. For both, a comparison of Radiation Planning Index (RPI) and MU was conducted. Secondly, the comparison of optimal fluence maps and corresponding actual fluence maps was done. Next, actual fluence maps were measured and compared with the calculated ones. Gamma index was used for that assessment. Additionally, positions of each leaf of the MLC were controlled by home made software. Dose distribution obtained for lower beam rates was slightly better than for higher beam rates in terms of target coverage and risk structure protection. Lower numbers of MUs were achieved in 100 MU/min plans than in 600 MU/min plans. Actual fluence maps converted from optimal ones demonstrated more similarity in 100 MU/min plans. Better conformity of the measured maps to the calculated ones was obtained when a lower beam rate was applied. However, these differences were small. No correlation was found between quality of fluence map conversion and leaf motion accuracy. Execution of dynamic techniques is dependent on beam rate. However, these differences are minor. Analysis shows a slight superiority of a lower beam rate. It does not significantly affect treatment accuracy.
Digital mapping techniques '00, workshop proceedings - May 17-20, 2000, Lexington, Kentucky
Soller, David R.
2000-01-01
Introduction: The Digital Mapping Techniques '00 (DMT'00) workshop was attended by 99 technical experts from 42 agencies, universities, and private companies, including representatives from 28 state geological surveys (see Appendix A). This workshop was similar in nature to the first three meetings, held in June, 1997, in Lawrence, Kansas (Soller, 1997), in May, 1998, in Champaign, Illinois (Soller, 1998a), and in May, 1999, in Madison, Wisconsin (Soller, 1999). This year's meeting was hosted by the Kentucky Geological Survey, from May 17 to 20, 2000, on the University of Kentucky campus in Lexington. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. When, based on discussions at the workshop, an attendee adopts or modifies a newly learned technique, the workshop clearly has met that objective. Evidence of learning and cooperation among participating agencies continued to be a highlight of the DMT workshops (see example in Soller, 1998b, and various papers in this volume). The meeting's general goal was to help move the state geological surveys and the USGS toward development of more cost-effective, flexible, and useful systems for digital mapping and geographic information systems (GIS) analysis. Through oral and poster presentations and special discussion sessions, emphasis was given to: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) continued development of the National Geologic Map Database; 3) progress toward building a standard geologic map data model; 4) field data-collection systems; and 5) map citation and authorship guidelines. Four representatives of the GIS hardware and software vendor community were invited to participate. The four annual DMT workshops were coordinated by the AASG/USGS Data Capture Working Group, which was formed in August, 1996, to support the Association of American State Geologists and the USGS in their effort
Breast density mapping based upon system calibration, x-ray techniques, and FFDM images
Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao
2007-03-01
Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.
Myocardial T1 and T2 mapping: Techniques and clinical applications
Energy Technology Data Exchange (ETDEWEB)
Kim, Pan Ki; Hong, Yoo Jin; Im, Dong Jin [Dept. of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others
2017-01-15
Cardiac magnetic resonance (CMR) imaging is widely used in various medical fields related to cardiovascular diseases. Rapid technological innovations in magnetic resonance imaging in recent times have resulted in the development of new techniques for CMR imaging. T1 and T2 image mapping sequences enable the direct quantification of T1, T2, and extracellular volume fraction (ECV) values of the myocardium, leading to the progressive integration of these sequences into routine CMR settings. Currently, T1, T2, and ECV values are being recognized as not only robust biomarkers for diagnosis of cardiomyopathies, but also predictive factors for treatment monitoring and prognosis. In this study, we have reviewed various T1 and T2 mapping sequence techniques and their clinical applications.
Energy Technology Data Exchange (ETDEWEB)
Weeratunga, S K; Kamath, C
2001-12-20
Removing noise from data is often the first step in data analysis. Denoising techniques should not only reduce the noise, but do so without blurring or changing the location of the edges. Many approaches have been proposed to accomplish this; in this paper, they focus on one such approach, namely the use of non-linear diffusion operators. This approach has been studied extensively from a theoretical viewpoint ever since the 1987 work of Perona and Malik showed that non-linear filters outperformed the more traditional linear Canny edge detector. They complement this theoretical work by investigating the performance of several isotropic diffusion operators on test images from scientific domains. They explore the effects of various parameters such as the choice of diffusivity function, explicit and implicit methods for the discretization of the PDE, and approaches for the spatial discretization of the non-linear operator etc. They also compare these schemes with simple spatial filters and the more complex wavelet-based shrinkage techniques. The empirical results show that, with an appropriate choice of parameters, diffusion-based schemes can be as effective as competitive techniques.
Using MatContM in the study of a nonlinear map in economics
Neirynck, Niels; Al-Hdaibat, Bashir; Govaerts, Willy; Kouznetsov, Yuri A.; Meijer, Hil G.E.
2016-01-01
MatContM is a MATLAB interactive toolbox for the numerical study of iterated smooth maps, their Lyapunov exponents, fixed points, and periodic, homoclinic and heteroclinic orbits as well as their stable and unstable invariant manifolds. The bifurcation analysis is based on continuation methods, trac
Using MatContM in the study of a nonlinear map in economics
Neirynck, N.; Al Hdaibat, Bashir; Govaerts, W.; Kuznetsov, Yu.A.; Meijer, H.G.E.
2016-01-01
MatContM is a MATLAB interactive toolbox for the numerical study of iterated smooth maps, their Lyapunov exponents, fixed points, and periodic, homoclinic and heteroclitic orbits as well as their stable and unstable invariant manifolds. The bifurcation analysis is based on continuation methods, trac
SPATIO-TEMPORAL DATA ANALYSIS WITH NON-LINEAR FILTERS: BRAIN MAPPING WITH fMRI DATA
Directory of Open Access Journals (Sweden)
Karsten Rodenacker
2011-05-01
Full Text Available Spatio-temporal digital data from fMRI (functional Magnetic Resonance Imaging are used to analyse and to model brain activation. To map brain functions, a well-defined sensory activation is offered to a test person and the hemodynamic response to neuronal activity is studied. This so-called BOLD effect in fMRI is typically small and characterised by a very low signal to noise ratio. Hence the activation is repeated and the three dimensional signal (multi-slice 2D is gathered during relatively long time ranges (3-5 min. From the noisy and distorted spatio-temporal signal the expected response has to be filtered out. Presented methods of spatio-temporal signal processing base on non-linear concepts of data reconstruction and filters of mathematical morphology (e.g. alternating sequential morphological filters. Filters applied are compared by classifications of activations.
Hassan, M Manzurul; Atkins, Peter J
2007-10-01
Risk analysis with spatial interpolation methods from a regional database on to a continuous surface is of contemporary interest. Groundwater arsenic poisoning in Bangladesh and its impact on human health has been one of the "biggest environmental health disasters" in current years. It is ironic that so many tubewells have been installed in recent times for pathogen-free drinking water but the water pumped is often contaminated with toxic levels of arsenic. This paper seeks to analyse the spatial pattern of arsenic risk by mapping composite "problem regions" in southwest Bangladesh. It also examines the cokriging interpolation method in analysing the suitability of isopleth maps for different risk areas. GIS-based data processing and spatial analysis were used for this research, along with state-of-the-art decision-making techniques. Apart from the GIS-based buffering and overlay mapping operations, a cokriging interpolation method was adopted because of its exact interpolation capacity. The paper presents an interpolation of regional estimates of arsenic data for spatial risk mapping that overcomes the areal bias problem for administrative boundaries. Moreover, the functionality of the cokriging method demonstrates the suitability of isopleth maps that are easy to read.
Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques.
Zh, H C; Charlet, J M; Poffijn, A
2001-05-14
A data set of long-term radon measurements in approximately 2200 houses in southern Belgium has been collected in an on-going national radon survey. The spatial variation of indoor Rn concentrations is modelled by variograms. A radon distribution map is produced using the log-normal kriging technique. A GIS is used to digitise, process and integrate a variety of data, including geological maps, Rn concentrations associated with house locations and an administrative map, etc. It also allows evaluation of the relationships between various spatial data sets with the goal of producing radon risk maps. Based on geostatistical mapping and spatial analysis, we define three categories of risk areas: high risk, medium risk and low risk area. The correlation between radon concentrations and geological features is proved in this study. High and medium Rn risk zones are dominantly situated in bedrock from the Cambrian to Lower Devonian, although a few medium risk zones are within the Jurassic. It is evident that high-risk zones are related to a strongly folded and fractured context.
Directory of Open Access Journals (Sweden)
Uttam Mande
2012-06-01
Full Text Available Lot of research is projected to map the criminal with that of crime and it is observed that there is still a huge increase in the crime rate due to the gap between the optimal usage of technologies and investigation. This has given scope for the development of new methodologies in the area of crime investigation using the techniques based on data mining, image processing, forensic, and social mining. In this paper, presents a model using new methodology for mapping the criminal with the crime. This model clusters the criminal data basing on the type crime. When a crime occurs, based on the eye witness specified features, the criminal is mapped. Here we propose a novel methodology that uses Generalized Gaussian Mixture Model to map the features specified by the eyewitness with that of the features of the criminal who have committed the same type of the crime, if the criminal is not mapped, the suspect table is checked and the reports are generated
GIS-based statistical mapping technique for block-and-ash pyroclastic flow and surge hazards
Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.
2008-12-01
Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from many volcanoes and given by A = (0.05-0.1)V2/3, B = (35-40)V2/3 , where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on coefficients applicable to individual PFs, DEM details, and release volumes. Gradational nested hazard maps produced by these simulations reflect in a sense these uncertainties. The model does not explicitly consider dynamic behavior, which can be important. Surge impacts must be extended beyond PF hazard zones and we have explored several approaches to do this. The method has been used to supply PF hazard maps in two crises: Merapi 2006; and Montserrat 2006- 2007. We have also compared our hazard maps to actual recent PF deposits and to maps generated by several other model techniques.
Hashim, M.; Pour, A. B.; Misbari, S.
2017-05-01
Integration of satellite remote sensing data and Geographic Information System (GIS) techniques is one of the most applicable approach for landslide mapping and identification of high potential risk and susceptible zones in tropical environments. Yearly, several landslides occur during heavy monsoon rainfall in Kelantan river basin, Peninsular Malaysia. In this investigation, Landsat-8 and Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) remote sensing data sets were integrated with GIS analysis for detect, map and characterize landslide occurrences during December 2014 flooding period in the Kelantan river basin. Landslides were determined by tracking changes in vegetation pixel data using Landsat-8 images that acquired before and after December 2014 flooding for the study area. The PALSAR-2 data were used for mapping of major geological structures and detailed characterizations of lineaments in the state of Kelantan. Analytical Hierarchy Process (AHP) approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, Normalized Difference Vegetation Index (NDVI), land cover, distance to drainage, precipitation, distance to fault, and distance to road were extracted from remote sensing satellite data and fieldwork to apply AHP approach. Two main outputs of this study were landslide inventory occurrences map during 2014 flooding episode and landslide susceptibility map for entire the Kelantan state. Modelled/predicted landslides with susceptible map generated prior and post flood episode, confirmed that intense rainfall in the Kelantan have contributed to weightage of numerous landslides with various sizes. It is concluded that precipitation is the most influential factor that bare to landslide event.
Kamarulzaman Kamarudin; Syed Muhammad Mamduh; Ali Yeon Md. Shakaff; Ammar Zakaria
2014-01-01
This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor wi...
A technique on automatic land-use database reconstruction based on scanning land-use map
Institute of Scientific and Technical Information of China (English)
LI Xiaojuan; GONG Huili; YIN Lianwang; SUN Yonghua; YANG Lingli; WANG Yanggang
2006-01-01
Although a land-cover database is very important to national land use including urban planning and land-use management, it is very laborious and time-consuming to build through digitization of paper land-use maps (1:10000) and data input by hand. Here we propose a new, high-level, automatic technique to build a land-use database, which has proved useful and practical in building a land-use database of Baotou City.
Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to Multi-GPU Clusters
2012-12-01
are suited for threaded (parallel) execution, by labeling them as kernels using syntax specified by the GPU programming language (e.g., CUDA for an...Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to Multi- GPU Clusters Eric Hayden, Mark Schmalz, William Chapman, Sanjay...Abstract - This paper presents a design for parallel processing of synthetic aperture radar (SAR) data using multiple Graphics Processing Units ( GPUs ). Our
Numerical Studies of Nonlinear Schrodinger and Klein-Gordon Systems: Techniques and Applications
Choi, Dae-Il
ödinger-Poisson equations. In particular, I study the dynamics of stationary stars, stars with linear momentum, and binary star systems. The recent discovery of Bose-Einstein condensates (BEC) in dilute atomic gases has led to renewed experimental and theoretical interest in the study of quantum degenerate gases. These condensates provide a new testing ground for atomic and many-body physics, and there are many unanswered questions in this emerging field. I present methods for manipulating the condensates by an optical lattice generated by laser light and study the effect of atomic interaction on the quantum transport properties. I also study Bloch oscillations and Landau-Zener tunnelings in an accelerating optical lattice. The study of hydrogen atoms interacting with ultra-intense laser light in the non-perturbative regime has gained attention as a surprising new phenomena in nonlinear atomic physics. Particularly noteworthy are high harmonic generation (HHG) and stabilization, which provide interesting new physics. I use a 2D model to study stabilization behavior for an arbitrary polarization. As a first step, I studied circular and linear laser polarizations. In the circular case, I found spiral wave functions with strong stabilization. In the linear case, I found dichotomous wave functions with weaker stabilization. I have also observed the related HHG signatures. Finally, adaptive mesh refinement (AMR) techniques are crucial for the numerical solution of problems which have large dynamical range. I present results from the implementation and testing of some general algorithms for use in AMR work, including 2D and 3D clustering routines.
Mineral classification map using MF and SAM techniques: A case study in the Nohwa Island, Korea
Energy Technology Data Exchange (ETDEWEB)
Son, Young-Sun; Yoon, Wang-Jung [Department of Energy and Resources Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)
2015-03-10
The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.
Energy Technology Data Exchange (ETDEWEB)
Aage, H.K. E-mail: hka@iau.dtu.dk; Korsbech, U.; Bargholz, K.; Hovgaard, J
1999-12-01
A new technique for processing airborne gamma ray spectrometry data has been developed. It is based on the noise adjusted singular value decomposition method introduced by Hovgaard in 1997. The new technique opens for mapping of very low contamination levels. It is tested with data from Latvia where the remaining contamination from the 1986 Chernobyl accident together with fallout from the atmospheric nuclear weapon tests includes {sup 137}Cs at levels often well below 1 kBq/m{sup 2} equivalent surface contamination. The limiting factors for obtaining reliable results are radon in the air, spectrum stability and accurate altitude measurements.
Barros, A. P.; Wilson, A. M.; Miller, D. K.; Tao, J.; Genereux, D. P.; Prat, O.; Petersen, W. A.; Brunsell, N. A.; Petters, M. D.; Duan, Y.
2015-12-01
Using the planet as a study domain and collecting observations over unprecedented ranges of spatial and temporal scales, NASA's EOS (Earth Observing System) program was an agent of transformational change in Earth Sciences over the last thirty years. The remarkable space-time organization and variability of atmospheric and terrestrial moist processes that emerged from the analysis of comprehensive satellite observations provided much impetus to expand the scope of land-atmosphere interaction studies in Hydrology and Hydrometeorology. Consequently, input and output terms in the mass and energy balance equations evolved from being treated as fluxes that can be used as boundary conditions, or forcing, to being viewed as dynamic processes of a coupled system interacting at multiple scales. Measurements of states or fluxes are most useful if together they map, reveal and/or constrain the underlying physical processes and their interactions. This can only be accomplished through an integrated observing system designed to capture the coupled physics, including nonlinear feedbacks and tipping points. Here, we first review and synthesize lessons learned from hydrometeorology studies in the Southern Appalachians and in the Southern Great Plains using both ground-based and satellite observations, physical models and data-assimilation systems. We will specifically focus on mapping and understanding nonlinearity and multiscale memory of rainfall-runoff processes in mountainous regions. It will be shown that beyond technical rigor, variety, quantity and duration of measurements, the utility of observing systems is determined by their interpretive value in the context of physical models to describe the linkages among different observations. Second, we propose a framework for designing science-grade and science-minded process-oriented integrated observing and modeling platforms for hydrometeorological studies.
Phase-mapping technique for the evaluation of aortic valve stenosis by MR
Energy Technology Data Exchange (ETDEWEB)
Engels, G. [Medizinische Klinik 2, Univ. of Erlangen (Germany); Mueller, E. [Siemens Medical Engineering Group, Erlangen (Germany); Reynen, K. [Medizinische Klinik 2, Univ. of Erlangen (Germany); Wilke, N. [Siemens Medical Engineering Group, Erlangen (Germany); Bachmann, K. [Medizinische Klinik 2, Univ. of Erlangen (Germany)
1992-08-01
New MR-techniques for quantitative blood flow registration such as phase-mapping (a two-dimensional space-resolved technique with a time-averaged measurement of blood flow) or RACE (real-time acquisition and evaluation of blood flow in one-dimensional space projection) are available for the diagnosis of valvular heart disease. Initial results of grading aortic valve stenosis by these methods are shown in comparison to continuous wave Ultrasound-Doppler. Two groups of 15 patients were examined by RACE or phase-mapping, 12 respectively 8 of whom suffered from an aortic valve stenosis. The shape of blood flow profiles as well as grading of aortic valve stenosis show high concordance when comparing the results of MR and Doppler technique. Good reliability and practicability of the demonstrated MR-method are shown. With respect to the results of RACE and phase-mapping the development of an alternative and competing MR-method for the evaluation of valvular heart disease and shunt diagnostics seems possible. (orig.)
Directory of Open Access Journals (Sweden)
D. E. Panayotounakos
1996-01-01
Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.
Directory of Open Access Journals (Sweden)
Panayotounakos D. E.
1996-01-01
Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.
Abesser, Corinna; Lewis, Melinda
2015-12-01
The development and validation of aquifer productivity and depth-to-source maps for England and Wales are described. Aquifer productivity maps can provide valuable support for the assessment, planning and management of groundwater and renewable heat energy resources. Aquifer productivity is often mapped using geostatistical interpolation techniques such as kriging, but these techniques tend to be unsuitable for mapping at the national scale due to the high data (and time) demands. A methodology is outlined for mapping aquifer productivity at the national scale using existing national-scale data sets. Pumping test data are used to characterise the potential borehole yields that different geological formations of varying lithologies and ages can provide. Based on this analysis and using expert knowledge, the corresponding map codes on the geological map are assigned to potential productivity classes. The subsurface (concealed) extent of aquifer units is mapped from geophysical data, and together with the attributed geological map, provide the bedrock-aquifer productivity map. Drilling and pumping costs can be an important consideration when evaluating the feasibility of developing a groundwater source. Thus, a map of the approximate depth to source is developed alongside the aquifer productivity map. The maps are validated using independent data sets, and map performance is compared against performance from maps derived by random and uniform attribution. The results show that the maps successfully predict potential productivity and approximate depth to the water source, although utility of the depth-to-source map could be improved by increasing the vertical discretisation at which depth intervals are mapped.
Sarhadi, Ali; Burn, Donald H.; Johnson, Fiona; Mehrotra, Raj; Sharma, Ashish
2016-05-01
Accurate projection of global warming on the probabilistic behavior of hydro-climate variables is one of the main challenges in climate change impact assessment studies. Due to the complexity of climate-associated processes, different sources of uncertainty influence the projected behavior of hydro-climate variables in regression-based statistical downscaling procedures. The current study presents a comprehensive methodology to improve the predictive power of the procedure to provide improved projections. It does this by minimizing the uncertainty sources arising from the high-dimensionality of atmospheric predictors, the complex and nonlinear relationships between hydro-climate predictands and atmospheric predictors, as well as the biases that exist in climate model simulations. To address the impact of the high dimensional feature spaces, a supervised nonlinear dimensionality reduction algorithm is presented that is able to capture the nonlinear variability among projectors through extracting a sequence of principal components that have maximal dependency with the target hydro-climate variables. Two soft-computing nonlinear machine-learning methods, Support Vector Regression (SVR) and Relevance Vector Machine (RVM), are engaged to capture the nonlinear relationships between predictand and atmospheric predictors. To correct the spatial and temporal biases over multiple time scales in the GCM predictands, the Multivariate Recursive Nesting Bias Correction (MRNBC) approach is used. The results demonstrate that this combined approach significantly improves the downscaling procedure in terms of precipitation projection.
Sintes, R; Darves-Bornoz, J-M
2002-01-01
The second part of the twentieth century has seen societal modifications as well as evolution of medical techniques allowing now thinking human procreation in terms of choices or even rights. Certain voices require sometimes Medically Assisted Procreation (MAP) for lesbians. Even though society did not allow such a possibility in France, it seemed interesting to question about it professionals actively involved in the use of MAP techniques. Through systematic internet queries, we obtained a list of one hundred private or public french medical institutions with a unit for the treatment of sterility. A telephone call to their secretary allowed us to individualize those doctors who did practice MAP. A sample of 147 medical doctors practicing MAP was then drawn. They were questioned with a clinical instrument including 20 ended-questions in order to assess their opinions on: homosexual women with a desire of a child; possibility for these clinicians to intervene with a donor insemination in such situations; developmental risk for such children. One hundred twenty five (85%) accepted to answer. Nine percent of these gynaecologists still consider homosexuality as pathological, and 10% as deviant - contrary to international classifications of mental disorders - and 5% deny good maternal abilities to homosexual women. Before the so-called french laws of bioethics in 1994, none of them had practiced a donor insemination for a lesbian couple, though 4% had realized some for single homosexual women. Two third of them do not agree opening donor insemination to homosexual women though for half of them, the anonymity of a donor is not perceived as prejudicial to the child. Eighty-seven percent of these gynaecologists think that a child brought up by homosexual parents is at risk for developmental disorder, the configuration supposed the most pathogenic being when the birth results from a donor insemination. The supposedly most important risk factors are thought to be the
Accurate 3D maps from depth images and motion sensors via nonlinear Kalman filtering
Hervier, Thibault; Goulette, François
2012-01-01
This paper investigates the use of depth images as localisation sensors for 3D map building. The localisation information is derived from the 3D data thanks to the ICP (Iterative Closest Point) algorithm. The covariance of the ICP, and thus of the localization error, is analysed, and described by a Fisher Information Matrix. It is advocated this error can be much reduced if the data is fused with measurements from other motion sensors, or even with prior knowledge on the motion. The data fusion is performed by a recently introduced specific extended Kalman filter, the so-called Invariant EKF, and is directly based on the estimated covariance of the ICP. The resulting filter is very natural, and is proved to possess strong properties. Experiments with a Kinect sensor and a three-axis gyroscope prove clear improvement in the accuracy of the localization, and thus in the accuracy of the built 3D map.
Guesmi, Latifa; Menif, Mourad
2016-04-01
The field of fiber optics nonlinearity is more discussed last years due to such remarkable enhancement in the nonlinear processes efficiency. In this paper, and for optical performance monitoring (OPM), a new achievement of nonlinear effects has been investigated. The use of cross-phase modulation (XPM) and four-wave mixing (FWM) effects between input optical signal and inserted continuous-wave probe has proposed for impairments monitoring. Indeed, transmitting a multi-channels phase modulated signal at high data rate (1 Tbps WDM Nyquist NRZ- DP-QPSK) improves the sensitivity and the dynamic range monitoring. It was observed by simulation results that various optical parameters including optical power, wavelength, chromatic dispersion (CD), polarization mode dispersion (PMD), optical signal-to-noise ratio (OSNR), Q-factor and so on, can be monitored. Also, the effect of increasing the channel spacing between WDM signals is studied and proved its use for FWM power monitoring.
Nonlinear imaging and 3D-mapping of terahertz fields with Kerr media
Clerici, Matteo; Caspani, Lucia; Peccianti, Marco; Rubino, Eleonora; Razzari, Luca; Légaré, François; Ozaki, Tsuneyuki; Morandotti, Roberto
2013-01-01
We investigate the spatially and temporally resolved four-wave mixing of terahertz fields and optical pulses in large band-gap dielectrics, such as diamond. We show that it is possible to perform beam profiling and space-time resolved mapping of terahertz fields with sub-wavelength THz resolution by encoding the spatial information into an optical signal, which can then be recorded by a standard CCD camera.
Nonlinear Maps Satisfying Derivability on the Parabolic Subalgebras of the Full Matrix Algebras
Institute of Scientific and Technical Information of China (English)
Zheng Xin CHEN; Yu E ZHAO
2011-01-01
Let F be a field of characteristic O,Mn(F) the full matrix algebra over F,t the subalgebra of Mn(F) consisting of all upper triangular matrices.Any subalgebra of Mn(F) containing t is called a parabolic subalgebra of Mn(F).Let P be a parabolic subalgebra of Mn(F).A map φ on P is said to satisfy derivability if φ(x·y) =φ(x).y+x·φ(y) for all x,y ∈ P,where φ is not necessarily linear.Note that a map satisfying derivability on P is not necessarily a derivation on P.In this paper,we prove that a map φ on P satisfies derivability if and only if φ is a sum of an inner derivation and an additive quasi-derivation on P.In particular,any derivation of parabolic subalgebras of Mn (F) is an inner derivation.
Non-linear swept frequency technique for CO2 measurements using a CW laser system
Campbell, Joel F
2013-01-01
A system using a non-linear multi-swept sine wave system is described which employs a multi-channel, multi-swept orthogonal waves, to separate channels and make multiple, simultaneous online/offline CO2 measurements. An analytic expression and systematic method for determining the orthogonal frequencies for the unswept, linear swept and non-linear swept cases is presented. It is shown that one may reduce sidelobes of the autocorrelation function while preserving cross channel orthogonality, for thin cloud rejection.
Garzón-Machado, Víctor; Otto, Rüdiger; del Arco Aguilar, Marcelino José
2014-07-01
Different spatial interpolation techniques have been applied to construct objective bioclimatic maps of La Palma, Canary Islands. Interpolation of climatic data on this topographically complex island with strong elevation and climatic gradients represents a challenge. Furthermore, meteorological stations are not evenly distributed over the island, with few stations at high elevations. We carried out spatial interpolations of the compensated thermicity index (Itc) and the annual ombrothermic Index (Io), in order to obtain appropriate bioclimatic maps by using automatic interpolation procedures, and to establish their relation to potential vegetation units for constructing a climatophilous potential natural vegetation map (CPNV). For this purpose, we used five interpolation techniques implemented in a GIS: inverse distance weighting (IDW), ordinary kriging (OK), ordinary cokriging (OCK), multiple linear regression (MLR) and MLR followed by ordinary kriging of the regression residuals. Two topographic variables (elevation and aspect), derived from a high-resolution digital elevation model (DEM), were included in OCK and MLR. The accuracy of the interpolation techniques was examined by the results of the error statistics of test data derived from comparison of the predicted and measured values. Best results for both bioclimatic indices were obtained with the MLR method with interpolation of the residuals showing the highest R2 of the regression between observed and predicted values and lowest values of root mean square errors. MLR with correction of interpolated residuals is an attractive interpolation method for bioclimatic mapping on this oceanic island since it permits one to fully account for easily available geographic information but also takes into account local variation of climatic data.
Institute of Scientific and Technical Information of China (English)
Li Jiang(江丽); Shi'an Zhang(张诗按); Yufei Wang(王宇飞); Zhenrong Sun(孙真荣); Zugeng Wang(王祖赓); Jian Lin(林健); Wenhai Huang(黄文旵); Zhizhan Xu(徐至展); Ruxin Li(李儒新)
2004-01-01
We investigated nonlinear optical properties of ZnO-Nb2O5-TeO2 glass excited by a femtosecond laser with time-resolved four-wave mixing (FWM) technique. The unusual FWM signals were observed in samples with ZnO dopant. The mechanism for the optical nonlinearities was discussed.
Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data
Wolz, L; Abdalla, F B; Anderson, C M; Chang, T -C; Li, Y -C; Masui, K W; Switzer, E; Pen, U -L; Voytek, T C; Yadav, J
2015-01-01
We present the first application of a new foreground removal pipeline to the current leading HI intensity mapping dataset, obtained by the Green Bank Telescope (GBT). We study the 15hr and 1hr field data of the GBT observations previously presented in Masui et al. (2013) and Switzer et al. (2013) covering about 41 square degrees at 0.6 < z < 1.0 which overlaps with the WiggleZ galaxy survey employed for the cross-correlation with the maps. In the presented pipeline, we subtract the Galactic foreground continuum and the point source contaminations using an independent component analysis technique (fastica) and develop a description for a Fourier-based optimal weighting estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that fastica is a reliable tool to subtract diffuse and point-source emission by using the non-Gaussian nature of their probability functions. The power spectra of the intensity maps and the cross-correlation...
Fuerst, S. I.; Roberts, J. D.
2010-12-01
Having participated in a University of Rhode Island Project Armada expedition to join the University of New Hampshire Center for Coastal and Oceanographic Studies in making multi-beam sonar contour maps of the Arctic Ocean floor, I was able to bring the principles learned from this trip to my earth science high school students and create a project in our "mapping the earth" unit. Students learn basic surveying techniques and create authentic, accurately detailed topographic maps of the schoolyard. Models of their maps are then constructed of either Styrofoam or wood which enables them to make the transition from a 2-dimensional map to a 3-dimensional representation. Even though our maps are created using sticks, line levels, compasses and GPS, the scientific concepts of using location and elevation data to draw contour lines are identical to those used in underwater mapping. Once the students understand the science in mapping and creating contour maps to scale on graph paper by hand, they are able to easily relate this knowledge to what I was doing onboard ship using multi-beam sonar and computer mapping programs. We would like to share with you the lab and techniques that we have developed to make this activity possible with minimal materials and simple technology. As a background extension, it is also possible to replicate sonar measurements using an aquarium, food coloring, and a surface grid to map the topography of a teacher created landscape on the aquarium bottom. Earth Science students using simple tools to accurately map the topography of the school grounds
Directory of Open Access Journals (Sweden)
Kamarulzaman Kamarudin
2014-12-01
Full Text Available This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM techniques (i.e., Gmapping and Hector SLAM using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS. The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect’s depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
Novel techniques of real-time blood flow and functional mapping: technical note.
Kamada, Kyousuke; Ogawa, Hiroshi; Saito, Masato; Tamura, Yukie; Anei, Ryogo; Kapeller, Christoph; Hayashi, Hideaki; Prueckl, Robert; Guger, Christoph
2014-01-01
There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies.
Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2014-12-05
This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
Han, Ping
2017-01-01
A novel Giant Magnetostrictive Actuator (GMA) experimental system with Fiber Bragg Grating (FBG) sensing technique and its modeling method based on data driven principle are proposed. The FBG sensors are adopted to gather the multi-physics fields' status data of GMA considering the strong nonlinearity of the Giant Magnetostrictive Material and GMA micro-actuated structure. The feedback features are obtained from the raw dynamic status data, which are preprocessed by data fill and abnormal value detection algorithms. Correspondingly the Least Squares Support Vector Machine method is utilized to realize GMA online nonlinear modeling with data driven principle. The model performance and its relative algorithms are experimentally evaluated. The model can regularly run in the frequency range from 10 to 1000 Hz and temperature range from 20 to 100 °C with the minimum prediction error stable in the range from -1.2% to 1.1%.
Developments of VLBI synthesis mapping.
Jiang, Dongrong; Wan, Tongshan
1992-12-01
The authors review the developments of VLBI synthesis mapping. First they give a brief history of VLBI techniques and a summary of some technical parameters frequently used in VLBI synthesis mapping. They then mention problems, namely, (u,v) coverage, correction of errors in visibility data, image quality, GFF (Global Fringe Fitting), field of view, etc. The new developments which are presented include the improvements of (u,v) coverage and angular resolution, Mk III GFF, phase reference mapping, wide field mapping, difference mapping, the potential of space VLBI mapping, mosaicing and non-linear deconvolution.
Using MatContM in the study of a nonlinear map in economics
Neirynck, Niels; Al-Hdaibat, Bashir; Govaerts, Willy; Kuznetsov, Yuri A.; Meijer, Hil G. E.
2016-02-01
MatContM is a MATLAB interactive toolbox for the numerical study of iterated smooth maps, their Lyapunov exponents, fixed points, and periodic, homoclinic and heteroclinic orbits as well as their stable and unstable invariant manifolds. The bifurcation analysis is based on continuation methods, tracing out solution manifolds of various types of objects while some of the parameters of the map vary. In particular, MatContM computes codimension 1 bifurcation curves of cycles and supports the computation of the normal form coefficients of their codimension two bifurcations, and allows branch switching from codimension 2 points to secondary curves. MatContM builds on an earlier command-line MATLAB package CL MatContM but provides new computational routines and functionalities, as well as a graphical user interface, enabling interactive control of all computations, data handling and archiving. We apply MatContM in our study of the monopoly model of T. Puu with cubic price and quadratic marginal cost functions. Using MatContM, we analyze the fixed points and their stability and we compute branches of solutions of period 5, 10, 13 17. The chaotic and periodic behavior of the monopoly model is further analyzed by computing the largest Lyapunov exponents.
Current techniques for high-resolution mapping of behavioral circuits in Drosophila.
Sivanantharajah, Lovesha; Zhang, Bing
2015-09-01
Understanding behavior requires unraveling the mysteries of neurons, glia, and their extensive connectivity. Drosophila has emerged as an excellent organism for studying the neural basis of behavior. This can be largely attributed to the extensive effort of the fly community to develop numerous sophisticated genetic tools for visualizing, mapping, and manipulating behavioral circuits. Here, we attempt to highlight some of the new reagents, techniques and approaches available for dissecting behavioral circuits in Drosophila. We focus on detailing intersectional strategies such as the Flippase-induced intersectional Gal80/Gal4 repression (FINGR), because of the tremendous potential they possess for mapping the minimal number of cells required for a particular behavior. The logic and strategies outlined in this review should have broad applications for other genetic model organisms.
Robust Optimization of Thermal Aspects of Friction Stir Welding Using Manifold Mapping Techniques
DEFF Research Database (Denmark)
Larsen, Anders Astrup; Lahaye, Domenico; Schmidt, Henrik Nikolaj Blicher
2008-01-01
The aim of this paper is to optimize a friction stir welding process taking robustness into account. The optimization problems are formulated with the goal of obtaining desired mean responses while reducing the variance of the response. We restrict ourselves to a thermal model of the process...... and use the manifold mapping technique to solve the optimization problems using a fast analytical coarse and an expensive accurate fine model. The statistics of the response are calculated using Taylor expansions and are compared to Monte Carlo simulations. The results show that the use of manifold...... mapping reduces the number of fine model evaluations required and that the Taylor expansion approach gives good results when compared to Monte Carlo simulations....
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Erasing the Milky Way: New Cleaning Technique Applied to GBT Intensity Mapping Data
Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masi, K.W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.;
2016-01-01
We present the first application of a new foreground removal pipeline to the current leading HI intensity mapping dataset, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h field data of the GBT observations previously presented in Masui et al. (2013) and Switzer et al. (2013), covering about 41 square degrees at 0.6 less than z is less than 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point source contamination using an independent component analysis technique (fastica), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that fastica is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps is dominated by instrumental noise on small scales which fastica, as a conservative sub-traction technique of non-Gaussian signals, can not mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the Singular Value Decomposition (SVD) method, and confirm that foreground subtraction with fastica is robust against 21cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and fastica are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping datasets.
Unidirectionally Coupled Map Lattices with Nonlinear Coupling: Unbinding Transitions and Superlong Transients
DEFF Research Database (Denmark)
Marschler, Christian; Vollmer, Jürgen
2014-01-01
, the Reynolds number for pipe flow, and with transitions from bounded chaotic patches to an invasion of space of irregular motion. Dynamical systems models are unique tools in this respect because they can provide insight into the origin of the very long lifetime of puffs, and the dynamical mechanism leading......Recently, highly resolved experiments and simulations have provided detailed insight into the dynamics of turbulent pipe flow. This has revived the interest in identifying mechanisms that generate chaotic transients with superexponential growth of lifetime as a function of a control parameter...... to the transition from puffs to slugs in pipe flow. The present paper contributes to this enterprise by introducing a unidirectionally coupled map lattice. It mimics three of the salient features of pipe-flow turbulence: (i) the transition from laminar flow to puffs, (ii) a superexponential scaling of puff lifetime...
Marschler, Christian
2014-01-01
Recently, highly resolved experiments and simulations have provided detailed insight into the dynamics of turbulent pipe flow. This has revived the interest to identify mechanisms that generate chaotic transients with super-exponential growth of lifetime as a function of a control parameter, the Reynolds number for pipe flow, and with transitions from bounded chaotic patches to an invasion of space of irregular motion. Dynamical systems models are unique tools in this respect because they can provide insight into the origin of the very long life time of puffs, and the dynamical mechanism leading to the transition from puffs to slugs in pipe flow. The present paper contributes to this enterprise by introducing a unidirectionally coupled map lattice. It mimics three of the salient features of pipe-flow turbulence: (i) the transition from laminar flow to puffs, (ii) a super-exponential scaling of puff lifetime, and (iii) the transition from puffs to slugs by an unbinding transition in an intermittency scenario. ...
Directory of Open Access Journals (Sweden)
B. Shank
2014-11-01
Full Text Available We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs connected to quasiparticle (qp traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.
Wittig, A; Di Lizia, P.; Armellin, R.; Zazzera, FB; Makino, K; Berzş, M
2014-01-01
Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current...
2012-12-01
or proof, rather as a review and reference for subsequent sections. Brau’s Modern Problems in Electrodynamics and Mill’s Nonlinear Optics are both... Modern Problems in Electrodynamics , follows from the Lorentz-Drude Model for the polarization of the atom[2]. In this model, the electron is harmonically...2] C. A. Brau, Modern Problems in Classical Electrodynamics , New York: Oxford University Press, 2004. [3] K. Than, “Scientists Create Cloak of
Shank, B; Cabrera, B; Kreikebaum, J M; Moffatt, R; Redl, P; Young, B A; Brink, P L; Cherry, M; Tomada, A
2014-01-01
We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.
Efendiev, Y.
2009-11-01
The Markov chain Monte Carlo (MCMC) is a rigorous sampling method to quantify uncertainty in subsurface characterization. However, the MCMC usually requires many flow and transport simulations in evaluating the posterior distribution and can be computationally expensive for fine-scale geological models. We propose a methodology that combines coarse- and fine-scale information to improve the efficiency of MCMC methods. The proposed method employs off-line computations for modeling the relation between coarse- and fine-scale error responses. This relation is modeled using nonlinear functions with prescribed error precisions which are used in efficient sampling within the MCMC framework. We propose a two-stage MCMC where inexpensive coarse-scale simulations are performed to determine whether or not to run the fine-scale (resolved) simulations. The latter is determined on the basis of a statistical model developed off line. The proposed method is an extension of the approaches considered earlier where linear relations are used for modeling the response between coarse-scale and fine-scale models. The approach considered here does not rely on the proximity of approximate and resolved models and can employ much coarser and more inexpensive models to guide the fine-scale simulations. Numerical results for three-phase flow and transport demonstrate the advantages, efficiency, and utility of the method for uncertainty assessment in the history matching. Copyright 2009 by the American Geophysical Union.
Sarhadi, Ali; Burn, Donald H.; Yang, Ge; Ghodsi, Ali
2017-02-01
One of the main challenges in climate change studies is accurate projection of the global warming impacts on the probabilistic behaviour of hydro-climate processes. Due to the complexity of climate-associated processes, identification of predictor variables from high dimensional atmospheric variables is considered a key factor for improvement of climate change projections in statistical downscaling approaches. For this purpose, the present paper adopts a new approach of supervised dimensionality reduction, which is called "Supervised Principal Component Analysis (Supervised PCA)" to regression-based statistical downscaling. This method is a generalization of PCA, extracting a sequence of principal components of atmospheric variables, which have maximal dependence on the response hydro-climate variable. To capture the nonlinear variability between hydro-climatic response variables and projectors, a kernelized version of Supervised PCA is also applied for nonlinear dimensionality reduction. The effectiveness of the Supervised PCA methods in comparison with some state-of-the-art algorithms for dimensionality reduction is evaluated in relation to the statistical downscaling process of precipitation in a specific site using two soft computing nonlinear machine learning methods, Support Vector Regression and Relevance Vector Machine. The results demonstrate a significant improvement over Supervised PCA methods in terms of performance accuracy.
Synchronization Analysis: Are such Nonlinear Techniques Useful for Earth Sciences? (Invited)
Kurths, J.
2009-12-01
Synchronization phenomena are abundant in nature, science, engineering and social life, such as in organ pipes, fireflies and even in the mechanics of bridges. But synchronization was first recognized by Christiaan Huygens in 1665 for coupled pendulum clocks; this was the beginning of nonlinear sciences. In the last two decades, this concept has been successfully extended to more complex systems and the following basic phenomena have been found in coupled chaotic systems: complete synchronization (CS), generalized synchronization (GS), and phase synchronization (PS). Here we discuss two general concepts of nonlinear dynamics how to identify such complex synchronization phenomena in multivariate time series; the first is based on the Hilbert transform and the second one on recurrence. We show that the corresponding methods can be applied even to rather short and somewhat non-stationary data. Finally, applications are presented to study dynamic teleconnections, such as El Nino - Monsoon interactions. References Pikovsky, A., M. Rosenblum, and J. Kurths, Synchronization - A Universal Concept in Nonlinear Sciences, Cambridge University Press 2001. Boccaletti, S., J. Kurths, G. Osipov, and C. Zhou, Phys. Rep. 2002, 366, 1. Maraun, D., and J. Kurths, Geophys. Res. Lett. 2005, 32, L15709 Marwan, N., Thiel, M., Romano, M., and J. Kurths, Phys. Rep. 2007, 438, 237. Tokuda, I., Kurths, J., Kiss, I., and J. Hudson, Europhys. Lett. 2008 83, 50003.
The nonlinear evolution of rogue waves generated by means of wave focusing technique
Hu, HanHong; Ma, Ning
2011-01-01
Generating the rogue waves in offshore engineering is investigated, first of all, to forecast its occurrence to protect the offshore structure from being attacked, to study the mechanism and hydrodynamic properties of rouge wave experimentally as well as the rouge/structure interaction for the structure design. To achieve these purposes demands an accurate wave generation and calculation. In this paper, we establish a spatial domain model of fourth order nonlinear Schrödinger (NLS) equation for describing deep-water wave trains in the moving coordinate system. In order to generate rogue waves in the experimental tank efficiently, we take care that the transient water wave (TWW) determines precisely the concentration of time/place. First we simulate the three-dimensional wave using TWW in the numerical tank and modeling the deepwater basin with a double-side multi-segmented wave-maker in Shanghai Jiao Tong University (SJTU) under the linear superposing theory. To discuss its nonlinearity for guiding the experiment, we set the TWW as the initial condition of the NLS equation. The differences between the linear and nonlinear simulations are presented. Meanwhile, the characteristics of the transient water wave, including water particle velocity and wave slope, are investigated, which are important factors in safeguarding the offshore structures.
Directory of Open Access Journals (Sweden)
Amari Mouna
2015-12-01
Full Text Available The objective of this paper is to apply cognitive map-related techniques to extract causal knowledge from a specific problem domain. This paper proposes to draw an average cognitive map in order to identify the failure factors of the Tunisian small investors. Our paper extends traditional and behavioral finance and previous research by proposing a new approach to building an average cognitive map for the explanation of small investors’ failure in the stock market.
Characterization of a seeded pulsed molecular beam using the velocity map imaging technique
Lietard, Aude; Poisson, Lionel; Mestdagh, Jean-Michel; Gaveau, Marc-André
2016-11-01
An experimental study has been performed to characterize the density and the velocity distribution in a pulsed molecular beam generated by a source associating a pulsed valve and an oven placed just downstream. In its operating mode, the flow is alternatively in a supersonic and effusive regime. The Velocity Map Imaging (VMI) technique associated with laser ionization allows measuring the velocity distribution and the density of molecules as a function of time during the expansion. It gives us a very precise insight into the structure of the molecule bunch, and therefore into the nature of the expansion from which the molecular beam is extracted.
Robust Optimization of Thermal Aspects of Friction Stir Welding Using Manifold Mapping Techniques
DEFF Research Database (Denmark)
Larsen, Anders Astrup; Lahaye, Domenico; Schmidt, Henrik Nikolaj Blicher;
2008-01-01
and use the manifold mapping technique to solve the optimization problems using a fast analytical coarse and an expensive accurate fine model. The statistics of the response are calculated using Taylor expansions and are compared to Monte Carlo simulations. The results show that the use of manifold......The aim of this paper is to optimize a friction stir welding process taking robustness into account. The optimization problems are formulated with the goal of obtaining desired mean responses while reducing the variance of the response. We restrict ourselves to a thermal model of the process...
Evaluation of High Dynamic Range Photography as a Luminance Mapping Technique
Energy Technology Data Exchange (ETDEWEB)
Inanici, Mehlika; Galvin, Jim
2004-12-30
The potential, limitations, and applicability of the High Dynamic Range (HDR) photography technique is evaluated as a luminance mapping tool. Multiple exposure photographs of static scenes are taken with a Nikon 5400 digital camera to capture the wide luminance variation within the scenes. The camera response function is computationally derived using the Photosphere software, and is used to fuse the multiple photographs into HDR images. The vignetting effect and point spread function of the camera and lens system is determined. Laboratory and field studies have shown that the pixel values in the HDR photographs can correspond to the physical quantity of luminance with reasonable precision and repeatability.
Institute of Scientific and Technical Information of China (English)
LIU Zheng-Feng; WANG Xiao-Hong
2008-01-01
Adopting Yoshizawa's two-scale expansion technique,the fluctuating field is expanded around the isotropic field.The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion,A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically.Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa,the calculation is much more simple.The analytical model presented here is close to the Speziale model,which is widely applied in the numerical simulations for the complex turbulent flows.
Institute of Scientific and Technical Information of China (English)
2013-01-01
In this paper, a numerical method based on a coupling between a mathematical model of nonlinear transient ship manoeu-vring motion in the horizontal plane and Mathematical Programming (MP) techniques is proposed. The aim of the proposed proce-dure is an efficient estimation of optimal ship hydrodynamic parameters in a dynamic model at the early design stage. The proposed procedure has been validated through turning circle and zigzag manoeuvres based on experimental data of sea trials of the 190 000-dwt oil tanker. Comparisons between experimental and computed data show a good agreement of overall tendency in manoeuvring trajectories.
Institute of Scientific and Technical Information of China (English)
Cao Wen-Jun; Xu Wen-Cheng; Luo Zhi-Chao; Wang Lu-Yan; Wang Hui-Yi; Dong Jiang-Li; Luo Ai-Ping
2011-01-01
We report on the generation of dual-wavelength dissipative solitons in a passively mode-locked fibre laser with a net normal dispersion using the nonlinear polarization rotation (NPR) technique.Taking the intrinsic advantage of the intracavity birefringence-induced spectral filtering effect in the NPR-based ring laser cavity,the dual-wavelength dissipative solitons are obtained.In addition,the wavelength separation and the lasing location of the dual-wavelength solitons can be flexibly tuned by changing the orientation of the polarization controller.
The creation of a digital soil map for Cyprus using decision-tree classification techniques
Camera, Corrado; Zomeni, Zomenia; Bruggeman, Adriana; Noller, Joy; Zissimos, Andreas
2014-05-01
Considering the increasing threats soil are experiencing especially in semi-arid, Mediterranean environments like Cyprus (erosion, contamination, sealing and salinisation), producing a high resolution, reliable soil map is essential for further soil conservation studies. This study aims to create a 1:50.000 soil map covering the area under the direct control of the Republic of Cyprus (5.760 km2). The study consists of two major steps. The first is the creation of a raster database of predictive variables selected according to the scorpan formula (McBratney et al., 2003). It is of particular interest the possibility of using, as soil properties, data coming from three older island-wide soil maps and the recently published geochemical atlas of Cyprus (Cohen et al., 2011). Ten highly characterizing elements were selected and used as predictors in the present study. For the other factors usual variables were used: temperature and aridity index for climate; total loss on ignition, vegetation and forestry types maps for organic matter; the DEM and related relief derivatives (slope, aspect, curvature, landscape units); bedrock, surficial geology and geomorphology (Noller, 2009) for parent material and age; and a sub-watershed map to better bound location related to parent material sources. In the second step, the digital soil map is created using the Random Forests package in R. Random Forests is a decision tree classification technique where many trees, instead of a single one, are developed and compared to increase the stability and the reliability of the prediction. The model is trained and verified on areas where a 1:25.000 published soil maps obtained from field work is available and then it is applied for predictive mapping to the other areas. Preliminary results obtained in a small area in the plain around the city of Lefkosia, where eight different soil classes are present, show very good capacities of the method. The Ramdom Forest approach leads to reproduce soil
Robust biological parametric mapping: an improved technique for multimodal brain image analysis
Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.
2011-03-01
Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.
MacQuillan, E L; Curtis, A B; Baker, K M; Paul, R; Back, Y O
2017-08-01
With advances in spatial analysis techniques, there has been a trend in recent public health research to assess the contribution of area-level factors to health disparity for a number of outcomes, including births. Although it is widely accepted that health disparity is best addressed by targeted, evidence-based and data-driven community efforts, and despite national and local focus in the U.S. to reduce infant mortality and improve maternal-child health, there is little work exploring how choice of scale and specific GIS visualization technique may alter the perception of analyses focused on health disparity in birth outcomes. Retrospective cohort study. Spatial analysis of individual-level vital records data for low birthweight and preterm births born to black women from 2007 to 2012 in one mid-sized Midwest city using different geographic information systems (GIS) visualization techniques [geocoded address records were aggregated at two levels of scale and additionally mapped using kernel density estimation (KDE)]. GIS analyses in this study support our hypothesis that choice of geographic scale (neighborhood or census tract) for aggregated birth data can alter programmatic decision-making. Results indicate that the relative merits of aggregated visualization or the use of KDE technique depend on the scale of intervention. The KDE map proved useful in targeting specific areas for interventions in cities with smaller populations and larger census tracts, where they allow for greater specificity in identifying intervention areas. When public health programmers seek to inform intervention placement in highly populated areas, however, aggregated data at the census tract level may be preferred, since it requires lower investments in terms of time and cartographic skill and, unlike neighborhood, census tracts are standardized in that they become smaller as the population density of an area increases.
General solution to nonlinear optical quantum graphs using Dalgarno-Lewis summation techniques
Lytel, Rick; Kuzyk, Mark G
2016-01-01
We develop an algorithm to apply the Dalgarno-Lewis (DL) perturbation theory to quantum graphs with multiple, connected edges. We use it to calculate the nonlinear optical hyperpolarizability tensors for graphs and show that it replicates the sum over states computations, but executes ten to fifty times faster. DL requires only knowledge of the ground state of the graph, eliminating the requirement to determine all possible degeneracies of a complex network. The algorithm is general and may be applied to any quantum graph.
Directory of Open Access Journals (Sweden)
Mohamed Elhag
2016-01-01
Full Text Available Land covers in Saudi Arabia are generally described as salty soils with sand dunes and sand sheets. Waterlogging and higher soil salinity are major challenges to sustaining agricultural practices in Saudi Arabia principally within closed drainage basins. Agricultural practices in Saudi Arabia were flourishing in the last two decades. The newly reclaimed lands were added annually and distributed all over the country. Irrigation techniques are mostly modernized to fulfill water saving strategies. Nevertheless, water resources in Saudi Arabia are under stress and groundwater levels are depleted rapidly due to heavy abstraction that may exceed crop water requirements in most of the cases due to high evaporation rates. The excess use of irrigational water leads to severe soil salinity problems. Applications of remote sensing technique in agricultural practices became widely distinctive and cover multidisciplinary principal interests on both local and regional levels. The most important remote sensing applications in agricultural practices are vegetation indices which are related to vegetation and water especially in an arid environment. Soil salinity mapping in an arid ecosystem using remote sensing data is a demanding task. Several soil salinity indices were implemented and evaluated to detect soil salinity effectively and quantitatively. Thematic maps of soil salinity were satisfactorily produced and assessed.
Yadav, Bechu K V; Nandy, S
2015-05-01
Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.
Directory of Open Access Journals (Sweden)
Abd El-Naser A. Mohammed
2010-09-01
Full Text Available In the present paper, the problem amplification techniques of ultra dense wavelength division multiplexing (UDWDM in nonlinear optical networks are investigated through five transmission techniques. The impact of tailoring of chirped pulses of different temporal waveforms is investigated in a normal dispersion fiber. The set of multiplexed signals are tailored in a different a subset to assure approximately the same output level of power to hold the signal-to-noise ratio at the same level. Moreover, three different transmission techniques, namely, soliton propagation, maximum time division multiplexing (MTDM and ìShannonî capacity, are employed where successive section of alternating dispersion are used as a technique to manage the dispersion. Distributed ìRamanî amplifiers as well as Erbium doped fiber amplifier are engaged to maximize the repeater spacing. We have succeeded to multiplex 2400 (UDWDM channels in the optical range 1.45 1.65 µm with channel spacing ranging from 0.3 up to 0.6 nm where each channel has its own characteristic parameters of loss, dispersion, and amplification. The channels are divided into sub-groups ( each of 4, 5, 6, 7,Ö.,24 where the technique of space division multiplexing (SDM is applied. The multispan effects of ìKerrî nonlinearity and amplifier noise on ìShannonî channel capacity of dispersion-free nonlinear fiber is considered as a ceiling value for the sake of comparison. The case of soliton with modified Raman amplification via parametric gain also is investigated. Each link has special chemical structure, optical signals power, and optical Raman pumping. The cable contains {4, 5, 6, 7,Ö. , 24} links in SDM. It has been shown that the modified Raman gain yields higher effects on the variable under consideration if compared with the conventional Raman gain. The number of links is in positive correlations with the set of effects {Repeater spacing, Soliton product, MTDM product}. In general
Directory of Open Access Journals (Sweden)
Ying-Ying Wang
2015-06-01
Full Text Available The identification difficulties for a dual-rate Hammerstein system lie in two aspects. First, the identification model of the system contains the products of the parameters of the nonlinear block and the linear block, and a standard least squares method cannot be directly applied to the model; second, the traditional single-rate discrete-time Hammerstein model cannot be used as the identification model for the dual-rate sampled system. In order to solve these problems, by combining the polynomial transformation technique with the key variable separation technique, this paper converts the Hammerstein system into a dual-rate linear regression model about all parameters (linear-in-parameter model and proposes a recursive least squares algorithm to estimate the parameters of the dual-rate system. The simulation results verify the effectiveness of the proposed algorithm.
Kostenko, Yuri T.; Shkvarko, Yuri V.
1994-06-01
The aim of this presentation is to address a new theoretic approach to the problem of the development of remote sensing imaging (RSI) nonlinear techniques that exploit the idea of fusion the experiment design and statistical regularization theory-based methods for inverse problems solution optimal/suboptimal in the mixed Bayesian-regularization setting. The basic purpose of such the information fusion-based methodology is twofold, namely, to design the appropriate system- oriented finite-dimensional model of the RSI experiment in the terms of projection schemes for wavefield inversion problems, and to derive the two-stage estimation techniques that provide the optimal/suboptimal restoration of the power distribution in the environment from the limited number of the wavefield measurements. We also discuss issues concerning the available control of some additional degrees of freedom while such an RSI experiment is conducted.
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-02-18
Multifold seismic reflection data from the Dixie Valley geothermal field in Nevada were reprocessed using a nonlinear optimization scheme called simulated annealing to model subsurface acoustic velocities, followed by a pre-stack Kirchhoff migration to produce accurate and detailed depth-migrated images of subsurface structure. In contrast to conventional processing techniques, these methods account for significant lateral variations in velocity and thus have the potential ability to image steeply-dipping faults and fractures that may affect permeability within geothermal fields. The optimization scheme develops two-dimensional velocity models to within 6% of velocities obtained from well and surface geologic data. Only the seismic data (i.e., first arrival times of P waves) are used to construct the velocity models and pre-stack migration images, and no other a priori assumptions are invoked. Velocities obtained by processing individual seismic tracks were integrated to develop a block diagram of velocities to 2.3 km depth within the Dixie Valley geothermal field. Details of the tectonic and stratigraphic structure allowed three dimensional extension of the interpretations of two dimensional data. Interpretations of the processed seismic data are compared with well data, surface mapping, and other geophysical data. The Dixie Valley fault along the southeastern Stillwater Range Piedmont is associated with a pronounced lateral velocity gradient that is interpreted to represent the juxtaposition of relatively low velocity basin-fill strata in the hanging wall against higher velocity crystalline rocks in the footwall. The down-dip geometry of the fault was evaluated by inverting arrival times from a negative move-out event, which we associate with the dipping fault plane, on individual shot gathers for seismic line SRC-3 for the location and depth of the associated reflection points on the fault.
Directory of Open Access Journals (Sweden)
Tienfuan Kerh
2014-01-01
Full Text Available The effects of extreme weather and overdevelopment may cause some coastal areas to exhibit erosion problems, which in turn may contribute to creating disasters of varying scale, particularly in regions comprising islands. This study used aerial survey information from three periods (1990, 2001, and 2010 and used graphical software to establish the spatial data of six beaches surrounding the island of Taiwan. An overlaying technique was then implemented to compare the sandy area of each beach in the aforementioned study periods. In addition, an artificial neural network model was developed based on available digitised coordinates for predicting coastline variation for 2015 and 2020. An onsite investigation was performed using a global positioning system for comparing the beaches. The results revealed that two beaches from this study may have experienced significant changes in total sandy areas under a statistical 95% confidence interval. The proposed method and the result of this study may provide a valuable reference in follow-up research and applications.
Structure-selection techniques applied to continuous-time nonlinear models
Aguirre, Luis A.; Freitas, Ubiratan S.; Letellier, Christophe; Maquet, Jean
2001-10-01
This paper addresses the problem of choosing the multinomials that should compose a polynomial mathematical model starting from data. The mathematical representation used is a nonlinear differential equation of the polynomial type. Some approaches that have been used in the context of discrete-time models are adapted and applied to continuous-time models. Two examples are included to illustrate the main ideas. Models obtained with and without structure selection are compared using topological analysis. The main differences between structure-selected models and complete structure models are: (i) the former are more parsimonious than the latter, (ii) a predefined fixed-point configuration can be guaranteed for the former, and (iii) the former set of models produce attractors that are topologically closer to the original attractor than those produced by the complete structure models.
Directory of Open Access Journals (Sweden)
Samir Dey
2015-07-01
Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.
Rodrigo, M A; Seco, A; Ferrer, J; Penya-roja, J M; Valverde, J L
1999-01-01
In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy membership functions and fuzzy rules of the fuzzy PID controller.
Feedback control linear, nonlinear and robust techniques and design with industrial applications
Dodds, Stephen J
2015-01-01
This book develops the understanding and skills needed to be able to tackle original control problems. The general approach to a given control problem is to try the simplest tentative solution first and, when this is insufficient, to explain why and use a more sophisticated alternative to remedy the deficiency and achieve satisfactory performance. This pattern of working gives readers a full understanding of different controllers and teaches them to make an informed choice between traditional controllers and more advanced modern alternatives in meeting the needs of a particular plant. Attention is focused on the time domain, covering model-based linear and nonlinear forms of control together with robust control based on sliding modes and the use of state observers such as disturbance estimation. Feedback Control is self-contained, paying much attention to explanations of underlying concepts, with detailed mathematical derivations being employed where necessary. Ample use is made of diagrams to aid these conce...
Haar basis and nonlinear modeling of complex systems
García, P.; Merlitti, A.
2007-04-01
In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kernel to achieve the task. This strategy, in contrast to Support Vector Machines technique, shows the conceptual simplicity of least mean square algoritm for linear regression but allows local nonlinear aproximation of the system evolution, with low computational cost.
Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging
Directory of Open Access Journals (Sweden)
Kelsey Herrmann
2015-07-01
Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.
Mapping air pollution using Earth observation techniques for cultural heritage sites
Agapiou, Athos; Nisantzi, Argyro; Lysandrou, Vasiliki; Mamouri, Rodanthi; Alexakis, Dimitrios D.; Themistocleous, Kyriacos; Sarris, Apostolos; Hadjimitsis, Diofantos G.
2013-08-01
Air pollutants, together with climatic parameters, are of major importance for the deterioration of cultural heritage monuments. Atmospheric pollution is widely recognized as one of the major anthropogenic threats to architectural cultural heritage, in particular when associated with water absorption phenomena. Atmospheric particle deposition on surfaces of Monuments (of cultural heritage interest) may cause an aesthetic impact induced by a series of chemical reactions. Therefore there is a need for systematic monitoring and mapping of air pollution for areas where important archaeological sites and monuments are found. observation techniques, such as the use of satellite image for the retrieval of Aerosol Optical Thickness (AOT), are ideal for this purpose. In this paper, all important monuments of the Paphos District, listed by the Department of Antiquities of Cyprus, have been mapped using Geographical Information Systems. Several recent (2012) MODIS satellite images (both Aqua and Terra) have been used to extract the AOT values in this area. Multi-temporal analysis was performed to identify areas of high risk where AOT values are considered to be high. In situ observations have been also carried out to verify the results.
Application of the lamp mapping technique for overlap function for Raman lidar systems.
Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu
2016-04-01
Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap.
MAPPING GLAUCONITE UNITES WITH USING REMOTE SENSING TECHNIQUES IN NORTH EAST OF IRAN
Directory of Open Access Journals (Sweden)
R. Ahmadirouhani
2014-10-01
Full Text Available Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM, band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.
Mapping of thermal injury in biologic tissues using quantitative pathologic techniques
Thomsen, Sharon L.
1999-05-01
Qualitative and quantitative pathologic techniques can be used for (1) mapping of thermal injury, (2) comparisons lesion sizes and configurations for different instruments or heating sources and (3) comparisons of treatment effects. Concentric zones of thermal damage form around a single volume heat source. The boundaries between some of these zones are distinct and measurable. Depending on the energy deposition, heating times and tissue type, the zones can include the following beginning at the hotter center and progressing to the cooler periphery: (1) tissue ablation, (2) carbonization, (3) tissue water vaporization, (4) structural protein denaturation (thermal coagulation), (5) vital enzyme protein denaturation, (6) cell membrane disruption, (7) hemorrhage, hemostasis and hyperhemia, (8) tissue necrosis and (9) wound organization and healing.
Abdeldayem, Hossin A.; Sheng, Wen; Venkateswarlu, P.; Witherow, William K.; Frazier, Don O.; Chandra Sekhar, P.; George, M. C.; Kispert, Lowell; Wasielewski, Michael R.
1993-01-01
Quantitative measurements of the nonlinear refractive index coefficient n(2) and the third-order nonlinear susceptibility chi(3) for a solution of 7-prime,7-prime-dicyano-7-prime-apo-beta-carotene (DCAC) in hexane have been measured at different concentrations. The measurements have been performed by both the self-trapping and self-phase modulation techniques using a CW Ar(+) laser. The results show that DCAC has a relatively large nonlinearity, attributed to a thermal mechanism, with n(2) of the order of 10 exp 9 times that of CS2.
Directory of Open Access Journals (Sweden)
McCullagh Paul J
2005-09-01
Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however
Profiling a Mind Map User: A Descriptive Appraisal
Tucker, Joanne M.; Armstrong, Gary R.; Massad, Victor J.
2010-01-01
Whether manually or through the use of software, a non-linear information organization framework known as mind mapping offers an alternative method for capturing thoughts, ideas and information to linear thinking modes such as outlining. Mind mapping is brainstorming, organizing, and problem solving. This paper examines mind mapping techniques,…
Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn
2015-03-01
Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.
Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Roth, Caleb C.; Ibey, Bennett L.
2014-03-01
Nonlinear optical probes, especially those involving second harmonic generation (SHG), have proven useful as sensors for near-instantaneous detection of alterations to orientation or energetics within a substance. This has been exploited to some success for observing conformational changes in proteins. SHG probes, therefore, hold promise for reporting rapid and minute changes in lipid membranes. In this report, one of these probes is employed in this regard, using nanosecond electric pulses (nsEPs) as a vehicle for instigating subtle membrane perturbations. The result provides a useful tool and methodology for the observation of minute membrane perturbation, while also providing meaningful information on the phenomenon of electropermeabilization due to nsEP. The SHG probe Di- 4-ANEPPDHQ is used in conjunction with a tuned optical setup to demonstrate nanoporation preferential to one hemisphere, or pole, of the cell given a single square shaped pulse. The results also confirm a correlation of pulse width to the amount of poration. Furthermore, the polarity of this event and the membrane physics of both hemispheres, the poles facing either electrode, were tested using bipolar pulses consisting of two pulses of opposite polarity. The experiment corroborates findings by other researchers that these types of pulses are less effective in causing repairable damage to the lipid membrane of cells.
Owolabi, Kolade M.
2017-03-01
In this paper, some nonlinear space-fractional order reaction-diffusion equations (SFORDE) on a finite but large spatial domain x ∈ [0, L], x = x(x , y , z) and t ∈ [0, T] are considered. Also in this work, the standard reaction-diffusion system with boundary conditions is generalized by replacing the second-order spatial derivatives with Riemann-Liouville space-fractional derivatives of order α, for 0 < α < 2. Fourier spectral method is introduced as a better alternative to existing low order schemes for the integration of fractional in space reaction-diffusion problems in conjunction with an adaptive exponential time differencing method, and solve a range of one-, two- and three-components SFORDE numerically to obtain patterns in one- and two-dimensions with a straight forward extension to three spatial dimensions in a sub-diffusive (0 < α < 1) and super-diffusive (1 < α < 2) scenarios. It is observed that computer simulations of SFORDE give enough evidence that pattern formation in fractional medium at certain parameter value is practically the same as in the standard reaction-diffusion case. With application to models in biology and physics, different spatiotemporal dynamics are observed and displayed.
Ma, Yongjie; Dong, Wenbin; Bao, Hongliang; Fang, Yue; Fan, Cheng
2017-04-15
This paper proposed a nonlinear chemical fingerprint method for simultaneous determination of urea and melamine in milk powder using "H(+)+Ce(4+)+BrO3(-)+malonic acid" as reaction system. A multiple linear relationship was obtained between the adulterants content in milk powder and inductive time of corresponding mixed milk powder. System analysis model established with classical least squares (CLS) method was then used to calculate the content of urea and melamine in milk powder. The method was successfully applied to milk powder samples and had good recoveries in the range of 99.17-100.25%, with the relative standard deviation (RSD) in the range of 0.60-4.12%. The limits of detection for urea and melamine were 0.33μg·g(-1) and 0.05μg·g(-1), respectively. The limits of quantification were 1.11μg·g(-1) and 0.18μg·g(-1), respectively. The results indicated that the new method was feasible and had the advantages of low cost, simple operation and without pretreatment of samples.
Advances in the Techniques and Technology of the Application of Nonlinear Filters and Kalman Filters
1982-03-01
June 1981. 61 Madan , Y., and bar-Xtahack, I. Y., "Error and Sensitivity Analysis Scheme of a Now Data Compression Technique in Estimation," TAE...other radio transmicsawis cloe Ai. fre- .quency to the radar’s.I A illitary. tartwt, Pa.s, nxample. might transmit signals ta cofuse the ra44r. These
Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.
2013-12-01
Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or
Bhowmick, Arup; Mohapatra, Ashok K
2016-01-01
We demonstrate the phenomenon of blockade in two-photon excitations to the Rydberg state in thermal vapor. A technique based on optical heterodyne is used to measure the dispersion of a probe beam far off resonant to the D2 line of rubidium in the presence of a strong laser beam that couples to the Rydberg state via two-photon resonance. Density dependent suppression of the dispersion peak is observed while coupling to the Rydberg state with principal quantum number, n = 60. The experimental observation is explained using the phenomenon of Rydberg blockade. The blockade radius is measured to be about 2.2 {\\mu}m which is consistent with the scaling due to the Doppler width of 2-photon resonance in thermal vapor. Our result promises the realization of single photon source and strong single photon non-linearity based on Rydberg blockade in thermal vapor.
Mani, S.; Jang, J. I.; Ketterson, J. B.
2010-09-01
Employing a modified Z-scan technique at 2 K, we monitor not only the fundamental (ω) but also the frequency-doubled (2ω) and tripled (3ω) Z-scan responses in Cu2O when the input laser frequency ω is tuned to the two-photon quadrupole polariton resonance. The Z-scan response at ω allows us to accurately estimate the absolute number of polaritons generated via two-photon absorption. A striking dip is observed near the 2ω Z-scan focus which basically arises from Auger-type recombination of polaritons. Under high excitation levels, the 3ω Z-scan shows strong third harmonic generation. Based on the nonlinear optical parameters determined, we estimate the experimental polariton density achievable and propose a direction for polariton-based Bose-Einstein condensation in Cu2O .
Edwards, Jack R.; Mcrae, D. S.
1993-01-01
An efficient implicit method for the computation of steady, three-dimensional, compressible Navier-Stokes flowfields is presented. A nonlinear iteration strategy based on planar Gauss-Seidel sweeps is used to drive the solution toward a steady state, with approximate factorization errors within a crossflow plane reduced by the application of a quasi-Newton technique. A hybrid discretization approach is employed, with flux-vector splitting utilized in the streamwise direction and central differences with artificial dissipation used for the transverse fluxes. Convergence histories and comparisons with experimental data are presented for several 3-D shock-boundary layer interactions. Both laminar and turbulent cases are considered, with turbulent closure provided by a modification of the Baldwin-Barth one-equation model. For the problems considered (175,000-325,000 mesh points), the algorithm provides steady-state convergence in 900-2000 CPU seconds on a single processor of a Cray Y-MP.
Directory of Open Access Journals (Sweden)
V.M. Deshmukh
2015-05-01
Full Text Available This paper proposed closed loop control of nonlinear system connected inverter based on the optimal neural controller (ONC. The novelty of the proposed method rests on the hybrid technique which is the combined performance of both, particle swarm optimization (PSO technique and Radial basis function neural network (RBFNN. It effectively optimizes the feasible solutions by updating the generations, by taking lesser time with greater reliability. In the proposed method, the PSO generates the dataset according to different loading conditions. The RBFNN is trained by using the target control signals along with the corresponding input load voltage error and change in error. Depending on the load variations, the RBFNN predicts the exact control signals of the inverter during the testing time. Since experimentation and comparison of such inverter models on hardware being relatively expensive, the proposed method is implemented in the MATLAB/Simulink platform and the performance has been validated through the comparison analysis with the conventional techniques. The comparison results have proved the superiority of the proposed method.
A New Non-linear Technique for Measurement of Splitting Functions of Normal Modes of the Earth
Pachhai, S.; Masters, G.; Tkalcic, H.
2014-12-01
Normal modes are the vibrating patterns of the Earth in response to the large earthquakes. Normal mode spectra are split due to Earth's rotation, ellipticity, and heterogeneity. The normal mode splitting is visualized through splitting functions, which represent the local radial average of Earth's structure seen by a mode of vibration. The analysis of the splitting of normal modes can provide unique information about the lateral variation of the Earth's elastic properties that cannot be directly imaged in body wave tomographic images. The non-linear iterative spectral fitting of the observed complex spectra and autoregressive linear inversion have been widely utilized to compute the Earth's 3-D structure. However, the non-linear inversion requires a model of the earthquake source and the retrieved 3-D structure is sensitive to the initial constraints. In contrast, the autoregressive linear inversion does not require the source model. However, this method requires many events to achieve full convergence. In addition, significant disagreement exists between different studies because of the non-uniqueness of the problem and limitations of different methods. We thus apply the neighbourhood algorithm (NA) to measure splitting functions. The NA is an efficient model space search technique and works in two steps: In the first step, the algorithm finds all the models compatible with given data while the posterior probability density of the model parameters are obtained in the second step. The NA can address the problem of non-uniqueness by taking advantage of random sampling of the full model space. The parameter trade-offs are conveniently visualized using joint marginal distributions. In addition, structure coefficients uncertainties can be extracted from the posterior probability distribution. After demonstrating the feasibility of NA with synthetic examples, we compute the splitting functions for the mode 13S2 (sensitive to the inner core) from several large
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
DEFF Research Database (Denmark)
Vested Madsen, Matias; Macario, Alex; Yamamoto, Satoshi
2016-01-01
In this study, we examined the regularly scheduled, formal teaching sessions in a single anesthesiology residency program to (1) map the most common primary instructional methods, (2) map the use of 10 known teaching techniques, and (3) assess if residents scored sessions that incorporated active......; range, 0-9). Clinical applicability (85%) and attention grabbers (85%) were the 2 most common teaching techniques. Thirty-eight percent of the sessions defined learning objectives, and one-third of sessions engaged in active learning. The overall survey response rate equaled 42%, and passive sessions...... learning as higher quality than sessions with little or no verbal interaction between teacher and learner. A modified Delphi process was used to identify useful teaching techniques. A representative sample of each of the formal teaching session types was mapped, and residents anonymously completed a 5...
Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.
2014-02-01
Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.
Nonlinear inversion for arbitrarily-oriented anisotropic models II: Inversion techniques
Bremner, P. M.; Panning, M. P.
2011-12-01
We present output models from inversion of a synthetic surface wave dataset. We implement new 3-D finite-frequency kernels, based on the Born approximation, to invert for upper mantle structure beneath western North America. The kernels are formulated based on a hexagonal symmetry with an arbitrary orientation. Numerical tests were performed to achieve a robust inversion scheme. Four synthetic input models were created, to include: isotropic, constant strength anisotropic, variable strength anisotropic, and both anisotropic and isotropic together. The reference model was a simplified version of PREM (dubbed PREM LIGHT) in which the crust and 220 km discontinuity have been removed. Output models from inversions of calculated synthetic data are compared against these input models to test for accurate reproduction of input model features, and the resolution of those features. The object of this phase of the study was to determine appropriate nonlinear inversion schemes that adequately recover the input models. The synthetic dataset consists of collected seismic waveforms of 126 earthquake mechanisms, of magnitude 6-7 from Dec 2006 to Feb 2009, from the IRIS database. Events were selected to correlate with USArray deployments, and to have as complete an azimuthal coverage as possible. The events occurred within a circular region of radius 150o centered about 44o lat, -110o lon (an arbitrary location within USArray coverage). Synthetic data were calculated utilizing a spectral element code (SEM) coupled to a normal mode solution. The mesh consists of a 3-D heterogeneous outer shell, representing the upper mantle above 450 km depth, coupled to a spherically symmetric inner sphere. From the synthetic dataset, multi-taper fundamental mode surface wave phase delay measurements are taken. The orthogonal 2.5π -prolate spheroidal wave function eigentapers (Slepian tapers) reduce noise biasing, and can provide error estimates in phase delay measurements. This study is a
Usuda, Kan; Kono, Rei; Ueno, Takaaki; Ito, Yuichi; Dote, Tomotaro; Yokoyama, Hirotaka; Kono, Koichi; Tamaki, Junko
2015-09-01
Various fluoride compounds are widely used in industry. The present risk assessment study was conducted using a series of inorganic binary fluorides of the type XFn, where X(n) = Na(+), K(+), Li(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Al(3+), Nd(3+), La(3+), Ce(3+), Sm(3+), Gd(3+), Y(3+), Yb(2+), and Zn(2+). The aqueous solutions of these salts were orally administrated to 16 experimental groups (one for each of the salts tested). The levels of fluoride, N-acetyl-β-D-glucosaminidase in cumulative 24-h urine samples and creatinine clearance were measured to assess possible acute renal damages. The levels of fluoride, alanine aminotransferase, and aspartate aminotransferase were also determined in serum samples to assess possible acute hepatic damages. The results reveal that sodium fluoride (NaF), potassium fluoride (KF), and zinc fluoride tetrahydrate (ZnF2 (.)4H2O) can carry the fluoride ion into the bloodstream and that it is excreted via urine more readily than the other compounds tested. These fluorides were assigned the highest risk impact factor. Most of the rare earth fluorides are insoluble in water while those groups 2 and 13 of the periodic table are slightly soluble, so that they do not have a significant negative risk. These findings suggest that the biological impact of fluoride depends on the accompanying counter ion and its solubility. The risk map obtained in the present study shows that the graphical visualization map technique employed is a valuable new tool to assess the toxicological risk of chemical compounds.
Image-based continental shelf habitat mapping using novel automated data extraction techniques
Seiler, Jan; Friedman, Ariell; Steinberg, Daniel; Barrett, Neville; Williams, Alan; Holbrook, Neil J.
2012-08-01
We automatically mapped the distribution of temperate continental shelf rocky reef habitats with a high degree of confidence using colour, texture, rugosity and patchiness features extracted from images in conjunction with machine-learning algorithms. This demonstrated the potential of novel automation routines to expedite the complex and time-consuming process of seabed mapping. The random forests ensemble classifier outperformed other tree-based algorithms and also offered some valuable built-in model performance assessment tools. Habitat prediction using random forests performed most accurately when all 26 image-derived predictors were included in the model. This produced an overall habitat prediction accuracy of 84% (with a kappa statistic of 0.793) when compared to nine distinct habitat classes assigned by a human annotator. Predictions for three habitat classes were all within the 95% confidence intervals, indicating close agreement between observed and predicted habitat classes. Misclassified images were mostly unevenly, partially or insufficiently illuminated and came mostly from rugged terrains and during the autonomous underwater vehicle's obstacle avoidance manoeuvres. The remaining misclassified images were wrongly or inconsistently labelled by the human annotator. This study demonstrates the suitability of autonomous underwater vehicles to effectively sample benthic habitats and the ability of automated data handling techniques to extract and reliably process large volumes of seabed image data. Our methods for image feature extraction and classification are repeatable, cost-effective and well suited to studies that require non-extractive and/or co-located sampling, e.g. in marine reserves and for monitoring the recovery from physical impacts, e.g. from bottom fishing activities. The methods are transferable to other continental shelf areas and to other disciplines such as seabed geology.
Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.
2014-01-01
Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.
Can social semantic web techniques foster collaborative curriculum mapping in medicine?
Spreckelsen, Cord; Finsterer, Sonja; Cremer, Jan; Schenkat, Hennig
2013-08-15
Curriculum mapping, which is aimed at the systematic realignment of the planned, taught, and learned curriculum, is considered a challenging and ongoing effort in medical education. Second-generation curriculum managing systems foster knowledge management processes including curriculum mapping in order to give comprehensive support to learners, teachers, and administrators. The large quantity of custom-built software in this field indicates a shortcoming of available IT tools and standards. The project reported here aims at the systematic adoption of techniques and standards of the Social Semantic Web to implement collaborative curriculum mapping for a complete medical model curriculum. A semantic MediaWiki (SMW)-based Web application has been introduced as a platform for the elicitation and revision process of the Aachen Catalogue of Learning Objectives (ACLO). The semantic wiki uses a domain model of the curricular context and offers structured (form-based) data entry, multiple views, structured querying, semantic indexing, and commenting for learning objectives ("LOs"). Semantic indexing of learning objectives relies on both a controlled vocabulary of international medical classifications (ICD, MeSH) and a folksonomy maintained by the users. An additional module supporting the global checking of consistency complements the semantic wiki. Statements of the Object Constraint Language define the consistency criteria. We evaluated the application by a scenario-based formative usability study, where the participants solved tasks in the (fictional) context of 7 typical situations and answered a questionnaire containing Likert-scaled items and free-text questions. At present, ACLO contains roughly 5350 operational (ie, specific and measurable) objectives acquired during the last 25 months. The wiki-based user interface uses 13 online forms for data entry and 4 online forms for flexible searches of LOs, and all the forms are accessible by standard Web browsers. The
Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing
Evangelista, Paul H.
peak growing months. These studies demonstrate that new techniques can further our understanding of tamarisk's impacts on ecosystem processes, predict potential distribution and new invasions, and improve our ability to detect occurrence using remote sensing techniques. Collectively, the results of my studies may increase our ability to map tamarisk distributions and better quantify its impacts over multiple spatial and temporal scales.
Energy Technology Data Exchange (ETDEWEB)
Moody, Neville Reid; Bahr, David F.
2005-11-01
This work covers three distinct aspects of deformation and fracture during indentations. In particular, we develop an approach to verification of nanoindentation induced film fracture in hard film/soft substrate systems; we examine the ability to perform these experiments in harsh environments; we investigate the methods by which the resulting deformation from indentation can be quantified and correlated to computational simulations, and we examine the onset of plasticity during indentation testing. First, nanoindentation was utilized to induce fracture of brittle thin oxide films on compliant substrates. During the indentation, a load is applied and the penetration depth is continuously measured. A sudden discontinuity, indicative of film fracture, was observed upon the loading portion of the load-depth curve. The mechanical properties of thermally grown oxide films on various substrates were calculated using two different numerical methods. The first method utilized a plate bending approach by modeling the thin film as an axisymmetric circular plate on a compliant foundation. The second method measured the applied energy for fracture. The crack extension force and applied stress intensity at fracture was then determined from the energy measurements. Secondly, slip steps form on the free surface around indentations in most crystalline materials when dislocations reach the free surface. Analysis of these slip steps provides information about the deformation taking place in the material. Techniques have now been developed to allow for accurate and consistent measurement of slip steps and the effects of crystal orientation and tip geometry are characterized. These techniques will be described and compared to results from dislocation dynamics simulations.
Nonlinear transient analysis of joint dominated structures
Chapman, J. M.; Shaw, F. H.; Russell, W. C.
1987-01-01
A residual force technique is presented that can perform the transient analyses of large, flexible, and joint dominated structures. The technique permits substantial size reduction in the number of degrees of freedom describing the nonlinear structural models and can account for such nonlinear joint phenomena as free-play and hysteresis. In general, joints can have arbitrary force-state map representations but these are used in the form of residual force maps. One essential feature of the technique is to replace the arbitrary force-state maps describing the nonlinear joints with residual force maps describing the truss links. The main advantage of this replacement is that the incrementally small relative displacements and velocities across a joint are not monitored directly thereby avoiding numerical difficulties. Instead, very small and 'soft' residual forces are defined giving a numerically attractive form for the equations of motion and thereby permitting numerically stable integration algorithms. The technique was successfully applied to the transient analyses of a large 58 bay, 60 meter truss having nonlinear joints. A method to perform link testing is also presented.
Directory of Open Access Journals (Sweden)
Sean Sweeney
2015-11-01
Full Text Available Traditional smallholder farming systems dominate the savanna range countries of sub-Saharan Africa and provide the foundation for the region’s food security. Despite continued expansion of smallholder farming into the surrounding savanna landscapes, food insecurity in the region persists. Central to the monitoring of food security in these countries, and to understanding the processes behind it, are reliable, high-quality datasets of cultivated land. Remote sensing has been frequently used for this purpose but distinguishing crops under certain stages of growth from savanna woodlands has remained a major challenge. Yet, crop production in dryland ecosystems is most vulnerable to seasonal climate variability, amplifying the need for high quality products showing the distribution and extent of cropland. The key objective in this analysis is the development of a classification protocol for African savanna landscapes, emphasizing the delineation of cropland. We integrate remote sensing techniques with probabilistic modeling into an innovative workflow. We present summary results for this methodology applied to a land cover classification of Zambia’s Southern Province. Five primary land cover categories are classified for the study area, producing an overall map accuracy of 88.18%. Omission error within the cropland class is 12.11% and commission error 9.76%.
Analysis of resonant responses of split ring resonators using conformal mapping techniques
McMeekin, Scott G.; Khokhar, Ali Z.; Lahiri, Basudev; De La Rue, Richard M.; Johnson, Nigel P.
2007-05-01
We report a novel method for modeling the resonant frequency response of infra-red light, in the range of 2 to 10 microns, reflected from metallic spilt ring resonators (SRRs) fabricated on a silicon substrate. The calculated positions of the TM and TE peaks are determined from the plasma frequency associated with the filling fraction of the metal array and the equivalent LC circuit defined by the SRR elements. The capacitance of the equivalent circuit is calculated using conformal mapping techniques to determine the co-planar capacitance associated with both the individual and the neighbouring elements. The inductance of the equivalent circuit is based on the self-inductance of the individual elements and the mutual inductance of the neighboring elements. The results obtained from the method are in good agreement with experimental results and simulation results obtained from a commercial FDTD simulation software package. The method allows the frequency response of a SRR to be readily calculated without complex computational methods and enables new designs to be optimised for a particular frequency response by tuning the LC circuit.
Classification of a set of vectors using self-organizing map- and rule-based technique
Ae, Tadashi; Okaniwa, Kaishirou; Nosaka, Kenzaburou
2005-02-01
There exist various objects, such as pictures, music, texts, etc., around our environment. We have a view for these objects by looking, reading or listening. Our view is concerned with our behaviors deeply, and is very important to understand our behaviors. We have a view for an object, and decide the next action (data selection, etc.) with our view. Such a series of actions constructs a sequence. Therefore, we propose a method which acquires a view as a vector from several words for a view, and apply the vector to sequence generation. We focus on sequences of the data of which a user selects from a multimedia database containing pictures, music, movie, etc... These data cannot be stereotyped because user's view for them changes by each user. Therefore, we represent the structure of the multimedia database as the vector representing user's view and the stereotyped vector, and acquire sequences containing the structure as elements. Such a vector can be classified by SOM (Self-Organizing Map). Hidden Markov Model (HMM) is a method to generate sequences. Therefore, we use HMM of which a state corresponds to the representative vector of user's view, and acquire sequences containing the change of user's view. We call it Vector-state Markov Model (VMM). We introduce the rough set theory as a rule-base technique, which plays a role of classifying the sets of data such as the sets of "Tour".
Indian Academy of Sciences (India)
S K Pal; Jitendra Vaish; Sahadev Kumar; Abhay Kumar Bharti
2016-02-01
The present study deals with the coal fire mapping of East Basuria Colliery, Jharia coalfield, India, using the magnetic method. It is based on the fact that rise in temperature would result significant changes in magnetic susceptibility and thermo-remanent magnetization (TRM) of the overlying rocks. Magnetism increases slowly with the rise of temperature until the Curie temperature. Generally, rock/overburden loses magnetization and becomes paramagnetic due to heating to Curie temperature, which results with significant reduction in magnetic susceptibility. However, magnetism increases significantly after cooling below the Curie temperature. Several data processing methods such as diurnal correction, reduction to pole (RTP), first and second vertical derivatives have been used for analysis of magnetic data and their interpretation. It is observed that the total magnetic field intensity anomaly of the area varies approximately from 44850 to 47460 nT and the residual magnetic anomaly varies approximately from −1323 to 1253 nT. The range of the magnetic anomaly after RTP is approximately 1050–1450 nT. About 20 low magnetic anomaly zones have been identified associated with active coal fire regions and 11 high magnetic anomaly zones have been identified associated with non-coal fire regions using vertical derivative techniques.
Ibnian, Salem Saleh Khalaf
2010-01-01
The current study aimed at investigating the effect of using the story-mapping technique on developing tenth grade students' short story writing skills in EFL. The study attempted to answer the following questions: (1) What are the short story writing skills needed for tenth grade students in EFL?; and (2) What is the effect of the using the…
Ugodulunwa, Christiana; Wakjissa, Sayita
2015-01-01
This study investigated the use of portfolio assessment technique in teaching map sketching and location in geography in Jos, Nigeria. It adopted a quasi-experimental design. Two schools were selected using a table of random numbers from a population of 51 schools in Jos South and assigned to each of experimental and control group. The…
Directory of Open Access Journals (Sweden)
Madhanraj Kalyanasundaram
2017-01-01
Full Text Available Background: The traditional teaching learning methods involve a one way process of transmission of knowledge leaving the students lacking behind in creative abilities. Medical schools need to change their teaching strategies to keep the interest of students and empower them for future self- learning and critical thinking. Objective: To assess the impact of mind mapping technique in information retrieval among medical college students in Puducherry. Methods: A pilot study was conducted using experimental study design among sixth semester MBBS students (n = 64 at a medical college in Puducherry, India. One group (n = 32 followed the text reading method and another group (n = 32 followed the mind mapping technique to learn the same passage given to them. The knowledge about the topic was assessed using a pre designed questionnaire at baseline, day 0 and day 7. The knowledge gain is the primary outcome variable and is compared between two groups. The feedback regarding the teaching methods was obtained from the participants. Results: Mean knowledge score in the text group was lesser than the mind map group at baseline (2.6 Vs 3.5; p = 0.08. On Day 0, the mean score in text group was slightly lesser than the mind map group (8.7 Vs 9.0; p = 0.26. On Day 7, the mean score in mind map group is significantly more than the text group (8.9 Vs 8.5; p = 0.03. Conclusion: The mind mapping technique is an innovative and effective method in remembering things better than the routine way of reading texts.
Directory of Open Access Journals (Sweden)
Marcel Schwieder
2014-04-01
Full Text Available Anthropogenic interventions in natural and semi-natural ecosystems often lead to substantial changes in their functioning and may ultimately threaten ecosystem service provision. It is, therefore, necessary to monitor these changes in order to understand their impacts and to support management decisions that help ensuring sustainability. Remote sensing has proven to be a valuable tool for these purposes, and especially hyperspectral sensors are expected to provide valuable data for quantitative characterization of land change processes. In this study, simulated EnMAP data were used for mapping shrub cover fractions along a gradient of shrub encroachment, in a study region in southern Portugal. We compared three machine learning regression techniques: Support Vector Regression (SVR; Random Forest Regression (RF; and Partial Least Squares Regression (PLSR. Additionally, we compared the influence of training sample size on the prediction performance. All techniques showed reasonably good results when trained with large samples, while SVR always outperformed the other algorithms. The best model was applied to produce a fractional shrub cover map for the whole study area. The predicted patterns revealed a gradient of shrub cover between regions affected by special agricultural management schemes for nature protection and areas without land use incentives. Our results highlight the value of EnMAP data in combination with machine learning regression techniques for monitoring gradual land change processes.
Schadd, Frederik C.; Roos, Nico
2015-01-01
? 2014, Springer-Verlag Berlin Heidelberg.Ontology mapping is a crucial task for the facilitation of information exchange and data integration. A mapping system can use a variety of similarity measures to determine concept correspondences. This paper proposes the integration of word-sense disambigua
Directory of Open Access Journals (Sweden)
Garoui NASSREDDINE
2012-01-01
Full Text Available The idea of this paper is to determine the mental models of actors in the fi rm with respect to the cognitive approach of corporate governance. The paper takes a corporate governance perspective, discusses mental models and uses the cognitive map to view the diagrams showing the ways of thinking and the conceptualization of the cognitive approach. In addition, it employs a cognitive mapping technique. Returning to the systematic exploration of grids for each actor, it concludes that there is a balance of concepts expressing their cognitive orientation.
Directory of Open Access Journals (Sweden)
Saeid Gharechelou
2016-03-01
Full Text Available Soil moisture (SM plays a key role in many environmental processes and has a high spatial and temporal variability. Collecting sample SM data through field surveys (e.g., for validation of remote sensing-derived products can be very expensive and time consuming if a study area is large, and producing accurate SM maps from the sample point data is a difficult task as well. In this study, geospatial processing techniques are used to combine several geo-environmental layers relevant to SM (soil, geology, rainfall, land cover, etc. into a land unit area (LUA map, which delineates regions with relatively homogeneous geological/geomorphological, land use/land cover, and climate characteristics. This LUA map is used to guide the collection of sample SM data in the field, and the field data is finally spatially interpolated to create a wall-to-wall map of SM in the study area (Garmsar, Iran. The main goal of this research is to create a SM map in an arid area, using a land unit area (LUA approach to obtain the most appropriate sample locations for collecting SM field data. Several environmental GIS layers, which have an impact on SM, were combined to generate a LUA map, and then field surveying was done in each class of the LUA map. A SM map was produced based on LUA, remote sensing data indexes, and spatial interpolation of the field survey sample data. The several interpolation methods (inverse distance weighting, kriging, and co-kriging were evaluated for generating SM maps from the sample data. The produced maps were compared to each other and validated using ground truth data. The results show that the LUA approach is a reasonable method to create the homogenous field to introduce a representative sample for field soil surveying. The geostatistical SM map achieved adequate accuracy; however, trend analysis and distribution of the soil sample point locations within the LUA types should be further investigated to achieve even better results. Co
Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan
2016-09-01
In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.
Directory of Open Access Journals (Sweden)
Kalle Eerikäinen
2012-12-01
Full Text Available An approach based on the nearest neighbors techniques is presented for producing thematic maps of forest cover (forest/non-forest and total stand volume for the Terai region in southern Nepal. To create the forest cover map, we used a combination of Landsat TM satellite data and visual interpretation data, i.e., a sample grid of visual interpretation plots for which we obtained the land use classification according to the FAO standard. These visual interpretation plots together with the field plots for volume mapping originate from an operative forest inventory project, i.e., the Forest Resource Assessment of Nepal (FRA Nepal project. The field plots were also used in checking the classification accuracy. MODIS satellite data were used as a reference in a local correction approach conducted for the relative calibration of Landsat TM images. This study applied a non-parametric k-nearest neighbor technique (k-NN to the forest cover and volume mapping. A tree height prediction approach based on a nonlinear, mixed-effects (NLME modeling procedure is presented in the Appendix. The MODIS image data performed well as reference data for the calibration approach applied to make the Landsat image mosaic. The agreement between the forest cover map and the field observed values of forest cover was substantial in Western Terai (KHAT 0.745 and strong in Eastern Terai (KHAT 0.825. The forest cover and volume maps that were estimated using the k-NN method and the inventory data from the FRA Nepal project are already appropriate and valuable data for research purposes and for the planning of forthcoming forest inventories. Adaptation of the methods and techniques was carried out using Open Source software tools.
Scarselli, G.; Ciampa, F.; Ginzburg, D.; Meo, M.
2015-04-01
Nonlinear ultrasonic non-destructive evaluation (NDE) methods can be used for the identification of defects within adhesive bonds as they rely on the detection of nonlinear elastic features for the evaluation of the bond strength. In this paper the nonlinear content of the structural response of a single lap joint subjected to ultrasonic harmonic excitation is both numerically and experimentally evaluated to identify and characterize the defects within the bonded region. Different metallic samples with the same geometry were experimentally tested in order to characterize the debonding between two plates by using two surface bonded piezoelectric transducers in pitch-catch mode. The dynamic response of the damaged samples acquired by the single receiver sensor showed the presence of higher harmonics (2nd and 3rd) and subharmonics of the fundamental frequencies. These nonlinear elastic phenomena are clearly due to nonlinear effects induced by the poor adhesion between the two plates. A new constitutive model aimed at representing the nonlinear material response generated by the interaction of the ultrasonic waves with the adhesive joint is also presented. Such a model is implemented in an explicit FE software and uses a nonlinear user defined traction-displacement relationship implemented by means of a cohesive material user model interface. The developed model is verified for the different geometrical and material configurations. Good agreement between the experimental and numerical nonlinear response showed that this model can be used as a simple and useful tool for understanding the quality of the adhesive joint.
Wynn, L. K.
1985-01-01
The Image-Based Information System (IBIS) was used to automate the cross country movement (CCM) mapping model developed by the Defense Mapping Agency (DMA). Existing terrain factor overlays and a CCM map, produced by DMA for the Fort Lewis, Washington area, were digitized and reformatted into geometrically registered images. Terrain factor data from Slope, Soils, and Vegetation overlays were entered into IBIS, and were then combined utilizing IBIS-programmed equations to implement the DMA CCM model. The resulting IBIS-generated CCM map was then compared with the digitized manually produced map to test similarity. The numbers of pixels comprising each CCM region were compared between the two map images, and percent agreement between each two regional counts was computed. The mean percent agreement equalled 86.21%, with an areally weighted standard deviation of 11.11%. Calculation of Pearson's correlation coefficient yielded +9.997. In some cases, the IBIS-calculated map code differed from the DMA codes: analysis revealed that IBIS had calculated the codes correctly. These highly positive results demonstrate the power and accuracy of IBIS in automating models which synthesize a variety of thematic geographic data.
KRIGING-HDMR METAMODELING TECHNIQUE FOR NONLINEAR PROBLEMS%Kriging-HDMR非线性近似模型方法
Institute of Scientific and Technical Information of China (English)
汤龙; 李光耀; 王琥
2011-01-01
Some large-scale structural engineering problems need to be solved by metamodels.With the increasing of complexity and dimensionality,metamodeling techniques confront two major challenges.First, the size of sample points should be increase exponentially as the number of design variables increases.Second, it is difficult to give the explicit correlation relationships amongst design variables by popular metamodeling techniques.Therefore,a new high-dimension model representation（HDMR） based on the Kriging interpolation, Kriging-HDMR,is suggested in this paper.The most remarkable advantage of this method is its capacity to exploit relationships among variables of the underlying function.Furthermore,Kriging-HDMR can reduce the corresponding computational cost from exponential growth to polynomial level.Thus,the essence of the assigned problem could be presented efficiently.To prove the feasibility of this method,several high dimensional and nonlinear functions are tested.The algorithm is also applied to a simple engineering problem.Compared with the classical metamodeling techniques,the efficiency and accuracy are improved.%提出基于克里金（Kriging）插值的高维模型表示（high dimensional model representation,HDMR）方法,即Kriging-HDMR方法.Kriging-HDMR方法的最大优势在于：能够明确输入参数的耦合特性,将构造模型复杂度由指数级增长降阶为多项式级增长,进而用有限样本确定待求问题的物理实质.为了验证算法的建模性能,采用高维非线性函数成功地验证了该算法的可行性,并将该算法初步应用于简单的非线性工程问题,同传统算法相比,其精度和效率都得到了明显提升.
Rasouli, Saifollah; Ghasemi, H; Tavassoly, M T; Khalesifard, H R
2011-06-01
In this paper, the application of "parallel" moiré deflectometry in measuring the nonlinear refractive index of materials is reported. In "parallel" moiré deflectometry the grating vectors are parallel, and the resulting moiré fringes are also parallel to the grating lines. Compared to "rotational" moiré deflectometry and the Z-scan technique, which cannot easily determine the moiré fringe's angle of rotation and is sensitive to power fluctuations, respectively, "parallel" moiré deflectometry is more reliable, which allows one to measure the radius of curvature of the light beam by measuring the moiré fringe spacing. The nonlinear refractive index of the sample, including the sense of the change, is obtained from the moiré fringe spacing curve. The method is applied for measuring the nonlinear refractive index of ferrofluids.
Page, Lance; Shen, C. N.
1991-01-01
This paper describes skyline-based terrain matching, a new method for locating the vantage point of laser range-finding measurements on a global map previously prepared by satellite or aerial mapping. Skylines can be extracted from the range-finding measurements and modelled from the global map, and are represented in parametric, cylindrical form with azimuth angle as the independent variable. The three translational parameters of the vantage point are determined with a three-dimensional matching of these two sets of skylines.
An automated technique for detailed ?-FTIR mapping of diamond and spectral deconvolution
Howell, Dan; Griffin, Bill; O'Neill, Craig; O'Reilly, Suzanne; Pearson, Norman; Handley, Heather
2010-05-01
other commonly found defects and impurities. Whether these are intrinsic defects like platelets, extrinsic defects like hydrogen or boron atoms, or inclusions of minerals or fluids. Recent technological developments in the field of spectroscopy allow detailed μ-FTIR analysis to be performed rapidly in an automated fashion. The Nicolet iN10 microscope has an integrated design that maximises signal throughput and allows spectra to be collected with greater efficiency than is possible with conventional μ-FTIR spectrometer-microscope systems. Combining this with a computer controlled x-y stage allows for the automated measuring of several thousand spectra in only a few hours. This affords us the ability to record 2D IR maps of diamond plates with minimal effort, but has created the need for an automated technique to process the large quantities of IR spectra and obtain quantitative data from them. We will present new software routines that can process large batches of IR spectra, including baselining, conversion to absorption coefficient, and deconvolution to identify and quantify the various nitrogen components. Possible sources of error in each step of the process will be highlighted so that the data produced can be critically assessed. The end result will be the production of various false colour 2D maps that show the distribution of nitrogen concentrations and aggregation states, as well as other identifiable components.
Kubiak, Marta; Mège, Daniel; Gurgurewicz, Joanna; Ciazela, Jakub
2015-04-01
Thermal inertia (P) is an important property of geologic surfaces that essentially describes the resistance to temperature (T) change as heat is added. Most remote sensing data describe the surface only. P is a volume property that is sensitive to the composition of the subsurface, down to a depth reached by the diurnal heating wave. As direct measurement of P is not possible on Mars, thermal inertia models (Fergason et al., 2006) and deductive methods (the Apparent Thermal Inertia: ATI and Differential Apparent Thermal Inertia: DATI) are used to estimate it. ATI is computed as (1 - A) / (Tday - Tnight), where A is albedo. Due to the lack of the thermal daytime images with maximum land surface temperature (LST) and nighttime images with minimum LST in Valles Marineris region, the ATI method is difficult to apply. Instead, we have explored the DATI technique (Sabol et al., 2006). DATI is calculated based on shorter time (t) intervals with a high |ΔT/Δt| gradient (in the morning or in the afternoon) and is proportional to the day/night temperature difference (ATI), and hence P. Mars, which exhibits exceptionally high |ΔT/Δt| gradients due to the lack of vegetation and thin atmosphere, is especially suitable for the DATI approach. Here we present a new deductive method for high-resolution differential apparent thermal inertia (DATI) mapping for areas of highly contrasted relief (e.g., Valles Marineris). Contrary to the thermal inertia models, our method takes local relief characteristics (slopes and aspects) into account. This is crucial as topography highly influences A and ΔT measurements. In spite of the different approach, DATI values in the flat areas are in the same range as the values obtained by Fergason et al. (2006). They provide, however, more accurate information for geological interpretations of hilly or mountainous terrains. Sabol, D. E., Gillespie, A. R., McDonald, E., and Danilina, I., 2006. Differential Thermal Inertia of Geological Surfaces. In
Energy Technology Data Exchange (ETDEWEB)
Faunt, C.C.; D`Agnese, F.A.; Turner, A.K.
1997-12-31
In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km{sup 2} along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing.
Seabed habitat mapping techniques: an overview of the performance of various systems
Directory of Open Access Journals (Sweden)
P.K. PANDIAN
2012-12-01
Full Text Available Seabed mapping has become vital for effective management of marine resources. An important role in moving towards ecosystem based management is played by the defining and understanding of the relationships among marine habitat characteristics, species distribution and human activities. Mapping seabed characteristics by means of remote acoustic sensing, using seabed seismic profiling, sidescan sonar, or echo-sounder based classification systems, is becoming of increasing importance. This paper gives a brief overview of existing marine habitat mapping technologies and their recent developments. In singlebeam echo-sounders, using multiple frequencies will be useful in classifying the seabed. It must be observed that the resolution of a sidescan sonar with narrower along-track beam width and higher range sampling rates will be better than a multi-beam echo-sounder, although the specifications of the newer systems are much improved. Airborne LIDAR bathymetry is very useful for shallow water seabed mapping, particularly in challenging rocky areas vulnerable for ship-based mapping operations. Seabed maps are essential in any case for siting of bottom mounted energy devices. The utmost care should be taken at all stages of the classification process, such as input data, control of interfering factors, seabed acoustic attributes, classification methods and ground-truth observations.
Using mind mapping techniques for rapid qualitative data analysis in public participation processes.
Burgess-Allen, Jilla; Owen-Smith, Vicci
2010-12-01
In a health service environment where timescales for patient participation in service design are short and resources scarce, a balance needs to be achieved between research rigour and the timeliness and utility of the findings of patient participation processes. To develop a pragmatic mind mapping approach to managing the qualitative data from patient participation processes. While this article draws on experience of using mind maps in a variety of participation processes, a single example is used to illustrate the approach. In this example mind maps were created during the course of patient participation focus groups. Two group discussions were also transcribed verbatim to allow comparison of the rapid mind mapping approach with traditional thematic analysis of qualitative data. The illustrative example formed part of a local alcohol service review which included consultation with local alcohol service users, their families and staff groups. The mind mapping approach provided a pleasing graphical format for representing the key themes raised during the focus groups. It helped stimulate and galvanize discussion and keep it on track, enhanced transparency and group ownership of the data analysis process, allowed a rapid dynamic between data collection and feedback, and was considerably faster than traditional methods for the analysis of focus groups, while resulting in similar broad themes. This study suggests that the use of a mind mapping approach to managing qualitative data can provide a pragmatic resolution of the tension between limited resources and quality in patient participation processes. © 2010 The Authors. Health Expectations © 2010 Blackwell Publishing Ltd.
Byrne, Jenny; Grace, Marcus
2010-03-01
Concept mapping is a technique used to provide a visual representation of an individual's ideas about a concept or set of related concepts. This paper describes a concept mapping tool using a photograph association technique (CoMPAT) that is considered to be a novel way of eliciting children's ideas. What children at 11 years of age know about particular concepts related to microbial activity is presented and discussed in relation to the effectiveness of CoMPAT as a tool to draw out their ideas. It is proposed that this tool could be used to explore ideas about this and other science concepts from children in other age groups, and where language may be a barrier to participation.
Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura
2014-05-01
Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (problem. As spatial databases evolve these 3D models should be readily importable into the database.
Characterization of nonlinear dynamic systems using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Urbina, A. [Univ. of Texas, El Paso, TX (United States); Hunter, N.F. [Los Alamos National Lab., NM (United States). Engineering Science and Analysis Div.; Paez, T.L. [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.
1998-12-01
The efficient characterization of nonlinear systems is an important goal of vibration and model testing. The authors build a nonlinear system model based on the acceleration time series response of a single input, multiple output system. A series of local linear models are used as a template to train artificial neutral networks (ANNs). The trained ANNs map measured time series responses into states of a nonlinear system. Another NN propagates response states in time, and a third ANN inverts the original map, transforming states into acceleration predictions in the measurement domain. The technique is illustrated using a nonlinear oscillator, in which quadratic and cubic stiffness terms play a major part in the system`s response. Reasonable maps are obtained for the states, and accurate, long-term response predictions are made for data outside the training data set.
Bizon, Nicu; Mahdavi Tabatabaei, Naser
2014-01-01
This book explains and analyzes the dynamic performance of linear and nonlinear systems, particularly for Power Systems including Hybrid Power Sources. Offers a detailed description of system stability using state space energy conservation principle, and more.
Energy Technology Data Exchange (ETDEWEB)
Hoppe, Sven; Quirbach, Sebastian; Krause, Fabian G.; Benneker, Lorin M. [Inselspital, Berne University Hospital, Department of Orthopaedic Surgery, Berne (Switzerland); Mamisch, Tallal C. [Inselspital, Berne University Hospital, Department of Radiology, Berne (Switzerland); Werlen, Stefan [Clinic Sonnenhof, Department of Radiology, Berne (Switzerland)
2012-09-15
To demonstrate the potential benefits of biochemical axial T2* mapping of intervertebral discs (IVDs) regarding the detection and grading of early stages of degenerative disc disease using 1.5-Tesla magnetic resonance imaging (MRI) in a clinical setting. Ninety-three patients suffering from lumbar spine problems were examined using standard MRI protocols including an axial T2* mapping protocol. All discs were classified morphologically and grouped as ''healthy'' or ''abnormal''. Differences between groups were analysed regarding to the specific T2* pattern at different regions of interest (ROIs). Healthy intervertebral discs revealed a distinct cross-sectional T2* value profile: T2* values were significantly lower in the annulus fibrosus compared with the nucleus pulposus (P = 0.01). In abnormal IVDs, T2* values were significantly lower, especially towards the centre of the disc representing the expected decreased water content of the nucleus (P = 0.01). In herniated discs, ROIs within the nucleus pulposus and ROIs covering the annulus fibrosus showed decreased T2* values. Axial T2* mapping is effective to detect early stages of degenerative disc disease. There is a potential benefit of axial T2* mapping as a diagnostic tool, allowing the quantitative assessment of intervertebral disc degeneration. circle Axial T2* mapping effective in detecting early degenerative disc disease. (orig.)
Jeyaraj, K. L.; Muralidharan, C.; Mahalingam, R.; Deshmukh, S. G.
2013-01-01
The purpose of this paper is to explain how value stream mapping (VSM) is helpful in lean implementation and to develop the road map to tackle improvement areas to bridge the gap between the existing state and the proposed state of a manufacturing firm. Through this case study, the existing stage of manufacturing is mapped with the help of VSM process symbols and the biggest improvement areas like excessive TAKT time, production, and lead time are identified. Some modifications in current state map are suggested and with these modifications future state map is prepared. Further TAKT time is calculated to set the pace of production processes. This paper compares the current state and future state of a manufacturing firm and witnessed 20 % reduction in TAKT time, 22.5 % reduction in processing time, 4.8 % reduction in lead time, 20 % improvement in production, 9 % improvement in machine utilization, 7 % improvement in man power utilization, objective improvement in workers skill level, and no change in the product and semi finished product inventory level. The findings are limited due to the focused nature of the case study. This case study shows that VSM is a powerful tool for lean implementation and allows the industry to understand and continuously improve towards lean manufacturing.
Directory of Open Access Journals (Sweden)
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Chen, Jianxin; Zhuo, Shuangmu; Luo, Tianshu; Liu, Dingzhong; Zhao, Jingjun
2008-08-01
Collagen and elastin are the most important proteins of the connective tissues in higher vertebrates. In this paper, we present a combined nonlinear optical imaging technique of second-harmonic generation and two-photon excited fluorescence to simultaneously observe the collagen and elastic fiber of dermis in a freshly excised human skin and rabbit aorta using a two-channel synchronized detection method. The obtained two-channel overlay image in the backward direction can clearly distinguish the morphological structure and distribution of collagen and elastic fibers. Tissue spectrum further confirms the obtained structural information. These results suggest that the combined nonlinear optical imaging technique coupled with two-channel synchronized detection method can be an effective tool for detecting collage and elastic fibers without any invasive tissue procedure of slicing, embedding, fixation and staining when two structural proteins are simultaneously present in the biological tissue.
Directory of Open Access Journals (Sweden)
S. Nakaoka
2013-09-01
Full Text Available This study uses a neural network technique to produce maps of the partial pressure of oceanic carbon dioxide (pCO2sea in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea distribution was computed using a self-organizing map (SOM originally utilized to map the pCO2sea in the North Atlantic. Four proxy parameters – sea surface temperature (SST, mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS – are used during the training phase to enable the network to resolve the nonlinear relationships between the pCO2sea distribution and biogeochemistry of the basin. The observed pCO2sea data were obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies (NIES. The reconstructed pCO2sea values agreed well with the pCO2sea measurements, with the root-mean-square error ranging from 17.6 μatm (for the NIES dataset used in the SOM to 20.2 μatm (for independent dataset. We confirmed that the pCO2sea estimates could be improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several time series locations in the North Pacific. The distributions of pCO2sea revealed by 7 yr averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology, allowing, however, for a more detailed analysis of biogeochemical conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.
Vested Madsen, Matias; Macario, Alex; Yamamoto, Satoshi; Tanaka, Pedro
2016-06-01
In this study, we examined the regularly scheduled, formal teaching sessions in a single anesthesiology residency program to (1) map the most common primary instructional methods, (2) map the use of 10 known teaching techniques, and (3) assess if residents scored sessions that incorporated active learning as higher quality than sessions with little or no verbal interaction between teacher and learner. A modified Delphi process was used to identify useful teaching techniques. A representative sample of each of the formal teaching session types was mapped, and residents anonymously completed a 5-question written survey rating the session. The most common primary instructional methods were computer slides-based classroom lectures (66%), workshops (15%), simulations (5%), and journal club (5%). The number of teaching techniques used per formal teaching session averaged 5.31 (SD, 1.92; median, 5; range, 0-9). Clinical applicability (85%) and attention grabbers (85%) were the 2 most common teaching techniques. Thirty-eight percent of the sessions defined learning objectives, and one-third of sessions engaged in active learning. The overall survey response rate equaled 42%, and passive sessions had a mean score of 8.44 (range, 5-10; median, 9; SD, 1.2) compared with a mean score of 8.63 (range, 5-10; median, 9; SD, 1.1) for active sessions (P = 0.63). Slides-based classroom lectures were the most common instructional method, and faculty used an average of 5 known teaching techniques per formal teaching session. The overall education scores of the sessions as rated by the residents were high.
Mapping snow avalanche risk using GIS technique and 3D modeling in Ceahlau Mountain
Covasnianu, A.; Grigoras, I. R.; State, L. E.; Balin, D.; Hogas, S.; Balin, I.
2009-04-01
This study consisted in a precise mapping project (GPS field campaign and on-screen digitization of the topographic maps at 1:5.000 scale) of the Ceahlau mountain area in Romanian Carpathians in order to address the snow avalanche risk management, surveying and monitoring. Thus we considered the slope, aspect, altitude, landforms and roughness derived from a high resolute numerical terrain model (31 km2 at 1: 5.000 scale resulted in a spatial resolution of 3 m by the help of Topo to Raster tool). These parameters were classified according to a model applied into Tatra Mountains and used over Ceahlau Massive. The results were adapted and interpreted considering to the European Avalanche Hazard Scale. This work was made in the context of the elaboration of Risk Map and is directly concerning both the security of tourism activities but also the management of the Natural Park Ceahlau. The extension of this method to similar mountain areas is ongoing.
Carreira, R J; Lodeiro, C; Reboiro-Jato, M; Glez-Peña, D; Fdez-Riverola, F; Capelo, J L
2010-07-15
We report in this work a fast protocol for protein quantification and for peptide mass mapping that rely on (18)O isotopic labeling through the decoupling procedure. It is demonstrated that the purity and source of trypsin do not compromise the labeling degree and efficiency of the decoupled labeling reaction, and that the pH of the labeling reaction is a critical factor to obtain a significant (18)O double labeling. We also show that the same calibration curve can be used for MALDI protein quantification during several days maintaining a reasonable accuracy, thus simplifying the handling of the quantification process. In addition we demonstrate that (18)O isotopic labeling through the decoupling procedure can be successfully used to elaborate peptide mass maps. BSA was successfully quantified using the same calibration curve in different days and plasma from a freshwater fish, Cyprinus carpio, was used to elaborate the peptide mass maps. Copyright 2010 Elsevier B.V. All rights reserved.
Kreunin, Paweena; Urquidi, Virginia; Lubman, David M; Goodison, Steve
2005-01-01
For most cancer cell types, the acquisition of metastatic ability leads to clinically incurable disease. The identification of molecules whose expression is specifically correlated with the metastatic spread of cancer would facilitate the design of therapeutic interventions to inhibit this lethal process. In order to facilitate metastasis gene discovery we have previously characterized a pair of monoclonal cell lines from the human breast carcinoma cell line MDA-MB-435 that have different metastatic phenotypes in immune-compromised mice. In this study, serum-free conditioned media was collected from the cultured monoclonal cell lines and a mass mapping technique was applied in order to profile a component of each cell line proteome. We utilized chromatofocusing in the first dimension to obtain a high resolution separation based on protein pI, and nonporous silica reverse-phase high performance liquid chromatography was used for the second dimension. Selected proteins were identified on the basis of electrospray ionization time of flight mass spectrometry (ESI-TOF MS) intact protein mapping and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting. Using this approach we were able to map over 400 proteins and plot them as a 2-D map of pI versus accurate Mr. This was performed over a pI range of 4.0–6.2, and a mass range of 6–80 kDa. ESI-TOF MS data and further analysis using MALDI-TOF MS confirmed and identified 27 differentially expressed proteins. Proteins associated with the metastatic phenotype included osteopontin and extracellular matrix protein 1, whereas the matrix metalloproteinase-1 and annexin 1 proteins were associated with the non-metastatic phenotype. These findings demonstrate that the mass mapping technique is a powerful tool for the detection and identification of proteins in complex biological samples and which are specifically associated with a cellular phenotype. PMID:15352249
Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data
Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masui, K. W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; Yadav, J.
2017-02-01
We present the first application of a new foreground removal pipeline to the current leading H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al. and Switzer et al., covering about 41 deg2 at 0.6 SVD) method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and FASTICA are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping data sets.
Constructive techniques for zeros of monotone mappings in certain Banach spaces.
Diop, C; Sow, T M M; Djitte, N; Chidume, C E
2015-01-01
Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux differentiable norm, and [Formula: see text] its dual space. Let [Formula: see text] be a bounded strongly monotone mapping such that [Formula: see text] For given [Formula: see text] let [Formula: see text] be generated by the algorithm: [Formula: see text]where J is the normalized duality mapping from E into [Formula: see text] and [Formula: see text] is a real sequence in (0, 1) satisfying suitable conditions. Then it is proved that [Formula: see text] converges strongly to the unique point [Formula: see text] Finally, our theorems are applied to the convex minimization problem.
Wang, Yanfei; Wu, Rong; Cho, Kathleen R; Shedden, Kerby A; Barder, Timothy J; Lubman, David M
2006-01-01
A two-dimensional liquid mapping method was used to map the protein expression of eight ovarian serous carcinoma cell lines and three immortalized ovarian surface epithelial cell lines. Maps were produced using pI as the separation parameter in the first dimension and hydrophobicity based upon reversed-phase HPLC separation in the second dimension. The method can be reproducibly used to produce protein expression maps over a pH range from 4.0 to 8.5. A dynamic programming method was used to correct for minor shifts in peaks during the HPLC gradient between sample runs. The resulting corrected maps can then be compared using hierarchical clustering to produce dendrograms indicating the relationship between different cell lines. It was found that several of the ovarian surface epithelial cell lines clustered together, whereas specific groups of serous carcinoma cell lines clustered with each other. Although there is limited information on the current biology of these cell lines, it was shown that the protein expression of certain cell lines is closely related to each other. Other cell lines, including one ovarian clear cell carcinoma cell line, two endometrioid carcinoma cell lines, and three breast epithelial cell lines, were also mapped for comparison to show that their protein profiles cluster differently than the serous samples and to study how they cluster relative to each other. In addition, comparisons can be made between proteins differentially expressed between cell lines that may serve as markers of ovarian serous carcinomas. The automation of the method allows reproducible comparison of many samples, and the use of differential analysis limits the number of proteins that might require further analysis by mass spectrometry techniques.
Ionic Current Mapping Techniques and Applications to Aluminum-Copper Corrosion
Energy Technology Data Exchange (ETDEWEB)
Isaacs, H. S.; Jeffcoate, C. S.; Missert, N. A.; Barbour, J. C.
1999-10-17
Measurements have been made of the aluminum/metal galvanic couple. A wide range of geometries were investigated varying the areas of anodic and cathodic surfaces and employing specially designed galvanic cells with crevices. In situ ionic current density mapping was used to monitor galvanic corrosion and currents flowing between separated metals was measured.
Creating High-Resolution Maps of Leaf Water Isotopes Using IM-CRDS and IRMS Techniques
Gerlein-Safdi, C.; Sinkler, C. J.; Caylor, K. K.
2014-12-01
Since the development of isotope ratio infrared spectroscopy (IRIS), the applications of water isotope analysis have been increasing. Here, we present a new protocol to create high-resolution maps of leaf water isotopes 18O and 2H. We use the Picarro induction module (IM-CRDS) combined with an isotope analyzer (L2130-i) to sample up to 25 locations in one half of each leaf. Each sampling location corresponds to four samples (6 mm outside diameter punched-holes) punched next to each other. In the induction module, an induction coil heats a metal holder containing the leaf sample. The sample will release water vapor that is then sent to the isotope analyzer. The IM-CRDS allows us to significantly reduce the sample size and therefore increase the sample density, compared to the traditional cryogenic extraction method. Using spatial analysis tools, we create high-resolution spatial maps of each isotope as well as d-excess maps. The water in the second half of the leaf is extracted by cryogenic extraction and analyzed using both IRIS and isotope ratio mass spectroscopy. The isotopic composition of the extracted water is compared to the average composition calculated from the maps and used for calibration. We present applications of this protocol to the analysis of the spatio-temporal evolution of foliar uptake in Colocasia esculenta under laboratory conditions.
Towards a Rigorous Formulation of the Space Mapping Technique for Engineering Design
DEFF Research Database (Denmark)
Koziel, Slawek; Bandler, John W.; Madsen, Kaj
2005-01-01
This paper deals with the Space Mapping (SM) approach to engineering design optimization. We attempt here a theoretical justification of methods that have already proven efficient in solving practical problems, especially in the RF and microwave area. A formal definition of optimization algorithms...
Nonlinear optical properties of cobalt and iron doped CdSe nanoparticles using Z-scan technique
Energy Technology Data Exchange (ETDEWEB)
Gaur, Poonam, E-mail: poonam.gaur612@gmail.com [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Malik, B.P. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Gaur, Arun [Department of Physics, Hindu College, Sonipat 131001, Haryana (India)
2015-01-15
The present work aims at the synthesis of pure, Cobalt (Co) and Iron (Fe) doped CdSe nanoparticles by the wet chemical method. The optical properties of synthesized nanoparticles have been characterized by X-ray diffraction (XRD), UV–vis spectroscopy to find the optical direct band gap and estimation of particle size by using Debye–Scherrer formula and HRTEM. The nonlinear optical properties such as nonlinear absorption co-efficient, nonlinear refraction co-efficient and third order nonlinear susceptibility χ{sup (3)} are investigated. The calculations have been performed with the help of Z-scan experimental set-up using Nd: YAG laser emitting 532 nm, 5 ns laser pulses with intensity maintained at 2.296 TW/cm{sup 2}. The nanoparticles clearly exhibit a negative value of nonlinear refraction, which is attributed to the two photon absorption and free carrier absorption. Further the optical limiting behavior is determined (figure of merit (FOM)). The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.
Groeneveld, G.; de Puit, M.; Bleay, S.; Bradshaw, R.; Francese, S.
2015-06-01
Despite the proven capabilities of Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI MS) in laboratory settings, research is still needed to integrate this technique into current forensic fingerprinting practice. Optimised protocols enabling the compatible application of MALDI to developed fingermarks will allow additional intelligence to be gathered around a suspect’s lifestyle and activities prior to the deposition of their fingermarks while committing a crime. The detection and mapping of illicit drugs and metabolites in latent fingermarks would provide intelligence that is beneficial for both police investigations and court cases. This study investigated MALDI MS detection and mapping capabilities for a large range of drugs of abuse and their metabolites in fingermarks; the detection and mapping of a mixture of these drugs in marks, with and without prior development with cyanoacrylate fuming or Vacuum Metal Deposition, was also examined. Our findings indicate the versatility of MALDI technology and its ability to retrieve chemical intelligence either by detecting the compounds investigated or by using their ion signals to reconstruct 2D maps of fingermark ridge details.
Directory of Open Access Journals (Sweden)
Katharine Glanville
2015-10-01
Full Text Available Illegal disposal of waste is a significant management issue for contemporary governments with waste posing an economic, social, and environmental risk. An improved understanding of the distribution of illegal waste disposal sites is critical to enhance the cost-effectiveness and efficiency of waste management efforts. Remotely sensed data has the potential to address this knowledge gap. However, the literature regarding the use of remote sensing to map illegal waste disposal sites is incomplete. This paper aims to analyze existing remote sensing methods and sensors used to monitor and map illegal waste disposal sites. The purpose of this paper is to support the evaluation of existing remote sensing methods for mapping illegal domestic waste sites in Queensland, Australia. Recent advances in technology and the acquisition of very high-resolution remote sensing imagery provide an important opportunity to (1 revisit established analysis techniques for identifying illegal waste disposal sites, (2 examine the applicability of different remote sensors for illegal waste disposal detection, and (3 identify opportunities for future research to increase the accuracy of any illegal waste disposal mapping products.
Energy Technology Data Exchange (ETDEWEB)
Baik, I.C.; Kim, K.H.; Cho, K.Y.; Youn, M.J. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-04-01
A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor (PMSM) which is robust to unknown parameter variations and speed measurement error is presented. The model reference adaptive system (MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the Lyapunov stability theory. For the disturbances or quickly varying parameters, a quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme. (author). 19 refs., 14 figs., 6 tabs.
Zidan, M. D.; Al-Ktaifani, M. M.; Allahham, A.
2017-05-01
Z-scan measurements were performed with a CW diode laser at 635 nm to investigate the nonlinear optical properties of Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate in ethanol at two concentrations. Theoretical fit was carried out to evaluate the nonlinear absorption coefficient (β) and the negative nonlinear refractive index (n2) for the studied complex. Furthermore, the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient were also estimated. The investigations show large NLO response, which is predominantly associated with substantial conjugation between the aromatic ring π-electron system and d-electron set metal center. The obtained results give a strong indication that Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate have a potential application in optical domain.
Tan, Zhiyuan; Jamdagni, Aruna; He, Xiangjian; Nanda, Priyadarsi; Liu, Ren Ping; Qing, Sihan; Susilo, Willy; Wang, Guilin; Liu, Dongmei
2011-01-01
The quality of feature has significant impact on the performance of detection techniques used for Denial-of-Service (DoS) attack. The features that fail to provide accurate characterization for network traffic records make the techniques suffer from low accuracy in detection. Although researches hav
Hoque, M. A. A.; Phinn, S. R.; Roelfsema, C. M.; Childs, I.
2015-12-01
Cyclones are one of the most catastrophic natural disasters. Globally, many coastal regions are vulnerable to different categories cyclones. In Bangladesh, disasters from tropical cyclones are annual occurrences in coastal areas. The intensity and extent of damage due to tropical cyclones are very high. An appropriate mapping approach is essential for producing detail vulnerability assessments to deliver useful information for reducing the impacts of cyclones on people, property and environment. The present study developed and tested a vulnerability mapping approach for tropical cyclone impacts in Sarankhola upazila a 151 km2 local government area located in coastal Bangladesh. The study applied the approach by integrating remote sensing, field data and multi-criteria evaluation at regional scales covering Bangladesh to tropical cyclones.
Digital Repository Service at National Institute of Oceanography (India)
Loveson, V.J.; Gujar, A.R.
data over an area under study. The gap between sample locations are to be either simulated or manipulated through various statistical methods. Under such conditions, mapping of the area may not yield the reality of the subsurface features in between... continuous profiles along with 200 MHz antenna and measuring wheel. Some times for confirmation, 400 MHz antenna was also used. GPR system was initialized in the field so that the ground reality, related to geo-electrical conditions of the field...
Hosseiny, S. M. H.; Zarzar, C.; Gomez, M.; Siddique, R.; Smith, V.; Mejia, A.; Demir, I.
2016-12-01
The National Water Model (NWM) provides a platform for operationalize nationwide flood inundation forecasting and mapping. The ability to model flood inundation on a national scale will provide invaluable information to decision makers and local emergency officials. Often, forecast products use deterministic model output to provide a visual representation of a single inundation scenario, which is subject to uncertainty from various sources. While this provides a straightforward representation of the potential inundation, the inherent uncertainty associated with the model output should be considered to optimize this tool for decision making support. The goal of this study is to produce ensembles of future flood inundation conditions (i.e. extent, depth, and velocity) to spatially quantify and visually assess uncertainties associated with the predicted flood inundation maps. The setting for this study is located in a highly urbanized watershed along the Darby Creek in Pennsylvania. A forecasting framework coupling the NWM with multiple hydraulic models was developed to produce a suite ensembles of future flood inundation predictions. Time lagged ensembles from the NWM short range forecasts were used to account for uncertainty associated with the hydrologic forecasts. The forecasts from the NWM were input to iRIC and HEC-RAS two-dimensional software packages, from which water extent, depth, and flow velocity were output. Quantifying the agreement between output ensembles for each forecast grid provided the uncertainty metrics for predicted flood water inundation extent, depth, and flow velocity. For visualization, a series of flood maps that display flood extent, water depth, and flow velocity along with the underlying uncertainty associated with each of the forecasted variables were produced. The results from this study demonstrate the potential to incorporate and visualize model uncertainties in flood inundation maps in order to identify the high flood risk zones.
Log Mining Based on Hadoop’s Map and Reduce Technique
Directory of Open Access Journals (Sweden)
Anuja Pandit
2013-04-01
Full Text Available In the world of cloud and grid computing Virtual Database Technology (VDB is one of the effective solutions for integration of data from heterogeneous sources. Hadoop is a large-scale distributed batchprocessing infrastructure and also designed to efficiently distribute large amounts of work across a set of machines. Hadoop is an implementation of Map Reduce. This paper proposes application forinauguration of new branch of pizza in particular area according to hits from customers. In this paper we will take the log files for the particular website which will be stored on web mining server. These data will be passed on to the cloud server for region wise distribution on the virtual servers. Mapping and reduction will be done on these region wise data. The final output is then sent back to the server and client. This paper utilizes the parallel and distributed processing capability of Hadoop Map Reduce for handling heterogeneous query execution on large datasets. So Virtual Database Engine built on top of this will result in effective high performance distributed data integration
Directory of Open Access Journals (Sweden)
David F. Attaway
2014-11-01
Full Text Available Outbreaks, epidemics and endemic conditions make dengue a disease that has emerged as a major threat in tropical and sub-tropical countries over the past 30 years. Dengue fever creates a growing burden for public health systems and has the potential to affect over 40% of the world population. The problem being investigated is to identify the highest and lowest areas of dengue risk. This paper presents “Similarity Search”, a geospatial analysis aimed at identifying these locations with- in Kenya. Similarity Search develops a risk map by combining environmental susceptibility analysis and geographical infor- mation systems, and then compares areas with dengue prevalence to all other locations. Kenya has had outbreaks of dengue during the past 3 years, and we identified areas with the highest susceptibility to dengue infection using bioclimatic variables, elevation and mosquito habitat as input to the model. Comparison of the modelled risk map with the reported dengue epi- demic cases obtained from the open source reporting ProMED and Government news reports from 1982-2013 confirmed the high-risk locations that were used as the Similarity Search presence cells. Developing the risk model based upon the bio- climatic variables, elevation and mosquito habitat increased the efficiency and effectiveness of the dengue fever risk mapping process.
Mapping and evaluation of snow avalanche risk using GIS technique in Rodnei National Park
Covǎsnianu, Adrian; Grigoraş, Ioan-Rǎducu; Covǎsnianu, Liliana-Elena; Iordache, Iulian; Balin, Daniela
2010-05-01
The study consisted in a precise mapping project (GPS field campaign, on-screen digitization of the topographic maps at 1:25.000 scale and updated with ASTER mission) of the Rodnei National Park area (Romanian Carpathians) with a focus on snow avalanche risk survey. Parameters taken into account were slope, aspect, altitude, landforms and roughness resulted from a high resolute numerical terrain model obtained by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) mission. The resulted digital surface model with a spatial resolution of 10 m covered a total area of 187 square kilometers and was improved by the help of Topo to Raster tool. All these parameters were calibrated after a model applied onto Tatra Massive and also Ceahlău Mountain. The results were adapted and interpreted in accordance with European avalanche hazard scale. This work was made in the context of the elaboration of Risk Map and is directly concerning both the security of tourism activities but also the management of the Rodnei Natural Park. The extension of this method to similar mountain areas is ongoing.
Attaway, David F; Jacobsen, Kathryn H; Falconer, Allan; Manca, Germana; Rosenshein Bennett, Lauren; Waters, Nigel M
2014-11-01
Outbreaks, epidemics and endemic conditions make dengue a disease that has emerged as a major threat in tropical and sub-tropical countries over the past 30 years. Dengue fever creates a growing burden for public health systems and has the potential to affect over 40% of the world population. The problem being investigated is to identify the highest and lowest areas of dengue risk. This paper presents "Similarity Search", a geospatial analysis aimed at identifying these locations within Kenya. Similarity Search develops a risk map by combining environmental susceptibility analysis and geographical information systems, and then compares areas with dengue prevalence to all other locations. Kenya has had outbreaks of dengue during the past 3 years, and we identified areas with the highest susceptibility to dengue infection using bioclimatic variables, elevation and mosquito habitat as input to the model. Comparison of the modelled risk map with the reported dengue epidemic cases obtained from the open source reporting ProMED and Government news reports from 1982-2013 confirmed the high-risk locations that were used as the Similarity Search presence cells. Developing the risk model based upon the bioclimatic variables, elevation and mosquito habitat increased the efficiency and effectiveness of the dengue fever risk mapping process.
Senthil, K.; Kalainathan, S.; Kondo, Y.; Hamada, F.; Yamada, M.
2017-05-01
Organic 2-[2-(4-Ethoxy-phenyl)-vinyl]-1-ethyl-stilbazolium iodide (EESI), a derivative of the stilbazolium family single crystal was synthesized by condensation method. Nearly perfect as-gown single crystals of EESI structure was confirmed by single-crystal X-ray diffraction studies. The crystal has a triclinic system with the space group P-1, the molecule consists of one pyridinium cation, one iodide anion, and 0·5H2O molecules. The nature of charge transfer, molecular properties, electrostatic potential map, and HOMO-LUMO energy gap of EESI have been theoretically investigated by Sparton'10 V1.0.1 program. The optical transparency of EESI was studied by Uv-Visible spectral analysis. The growth features were observed during the etching studies using a Carl Zeiss optical microscope (50X magnification). The mechanical behavior of the crystal was estimated by Vickers microhardness test, which shows reverse indentation size effect (RISE) with good mechanical stability. Both the dielectric constant and dielectric loss increases with the increasing temperature and attain almost constant at higher frequencies, which justify the crystal quality and essential parameter for electro-optic device applications. The complex impedance analysis explains the electrical property of EESI. TGA and DTA measurements determined the thermal stability of the grown crystal. Laser-induced damage threshold energy measurements exhibit that the excellent resistance with good threshold energy up to 2.08 GW/cm2 that was found to be more than that of some known organic and inorganic NLO crystals. Photoconductivity of EESI crystal confirms that the positive photoconductivity nature. Also, the third-order nonlinear optical (NLO) properties of EESI were investigated by using the single beam Z-scan technique under the Visible light (632.8 nm) region. The results show that EESI has effective third-order nonlinear optical property with the nonlinear refractive index n2 =1.787×10-11m2/W, third