Lyapunov based nonlinear control of electrical and mechanical systems
Behal, Aman
fusing a filtered tracking error transformation with the dynamic oscillator design presented in [20]. The proposed tracking controller yields a GUUB result for the regulation problem also. In the final chapter, a nonlinear controller is designed for the kinematic model of an underactuated rigid spacecraft that ensures uniform, ultimately bounded (UUB) tracking provided the initial errors are selected sufficiently small. The result is achieved via a judicious formulation of the spacecraft kinematics and the novel design of a Lyapunov-based controller. It is also demonstrated how standard backstepping control techniques can be fused with the kinematic controller to solve the full-order regulation problem for an axisymmetric spacecraft. Simulation results are included to demonstrate the efficacy of the proposed algorithm. 1It is to be noted that the controller presented in [16] was originally designed to obtain exponential rotor position /rotor flux tracking for the full-order induction motor model (i.e., stator current dynamics are included).
Eleiwi, Fadi
2015-07-01
This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.
A unifying Lyapunov-based framework for the event-triggered control of nonlinear systems
Postoyan, Romain; Nesic, Dragan; Tabuada, Paulo
2011-01-01
We present a prescriptive framework for the event-triggered control of nonlinear systems. Rather than closing the loop periodically, as traditionally done in digital control, in event-triggered implementations the loop is closed according to a state-dependent criterion. Event-triggered control is especially well suited for embedded systems and networked control systems since it reduces the amount of resources needed for control such as communication bandwidth. By modeling the event-triggered implementations as hybrid systems, we provide Lyapunov-based conditions to guarantee the stability of the resulting closed-loop system and explain how they can be utilized to synthesize event-triggering rules. We illustrate the generality of the approach by showing how it encompasses several existing event-triggering policies and by developing new strategies which further reduce the resources needed for control.
Nonlinear control for systems containing input uncertainty via a Lyapunov-based approach
Mackunis, William
Controllers are often designed based on the assumption that a control actuation can be directly applied to the system. This assumption may not be valid, however, for systems containing parametric input uncertainty or unmodeled actuator dynamics. In this dissertation, a tracking control methodology is proposed for aircaft and aerospace systems for which the corresponding dynamic models contain uncertainty in the control actuation. The dissertation will focus on five problems of interest: (1) adaptive CMG-actuated satellite attitude control in the presence of inertia uncertainty and uncertain CMG gimbal friction; (2) adaptive neural network (NN)-based satellite attitude control for CMG-actuated small-sats in the presence of uncertain satellite inertia, nonlinear disturbance torques, uncertain CMG gimbal friction, and nonlinear electromechanical CMG actuator disturbances; (3) dynamic inversion (DI) control for aircraft systems containing parametric input uncertainty and additive, nonlinearly parameterizable (non-LP) disturbances; (4) adaptive dynamic inversion (ADI) control for aircraft systems as described in (3); and (5) adaptive output feedback control for aircraft systems as described in (3) and (4).
Simon, J. S.; Valavani, L.
1991-01-01
The use of a closed-loop control to allow surge-free operation of a compression system beyond its uncontrolled surge line is addressed. In contrast to previous analyses which used a linearized model, the approach described directly addresses the nonlinear nature of the compressor characteristic using a Liapunov-based control law design formulation. The proposed approach is fairly generic and should be of interest for gas turbine engines as well as other applications.
Simon, J. S.; Valavani, L.
1991-01-01
The use of a closed-loop control to allow surge-free operation of a compression system beyond its uncontrolled surge line is addressed. In contrast to previous analyses which used a linearized model, the approach described directly addresses the nonlinear nature of the compressor characteristic using a Liapunov-based control law design formulation. The proposed approach is fairly generic and should be of interest for gas turbine engines as well as other applications.
A Lyapunov-based three-axis attitude intelligent control approach for unmanned aerial vehicle
Institute of Scientific and Technical Information of China (English)
A.H. Mazinan
2015-01-01
A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems. There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art. The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches, as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control. And the corresponding rotation angles are dealt with in the outer closed loop control. It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator (PD based LQR) approach under optimum coefficients, while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances. In order to complete the inner closed loop control, there is a pulse-width pulse-frequency (PWPF) modulator to be able to handle on-off thrusters. Furthermore, the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system, where the control allocation scheme is realized in the proposed strategy. It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results. At the end, the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.
Lyapunov-based control designs for flexible-link manipulators
Juang, Jer-Nan; Huang, Jen-Kuang; Yang, Li-Farn
1989-01-01
A feedback controller for the stabilization of closed-loop systems is proposed which is based on the Liapunov stability criterion. A feedback control law is first generated for the linear portion of the system equation using linear control theory. A feedback control is then designed for the nonlinear portion of the system equation by making negative the time derivative of a positive definite Liapunov function.
Lyapunov-based control designs for flexible-link manipulators
Juang, Jer-Nan; Huang, Jen-Kuang; Yang, Li-Farn
1989-01-01
A feedback controller for the stabilization of closed-loop systems is proposed which is based on the Liapunov stability criterion. A feedback control law is first generated for the linear portion of the system equation using linear control theory. A feedback control is then designed for the nonlinear portion of the system equation by making negative the time derivative of a positive definite Liapunov function.
Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters
Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.
2012-01-01
A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory p
Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters
Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.
2012-01-01
A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory p
Lyapunov based control of hybrid energy storage system in electric vehicles
DEFF Research Database (Denmark)
El Fadil, H.; Giri, F.; Guerrero, Josep M.
2012-01-01
This paper deals with a Lyapunov based control principle in a hybrid energy storage system for electric vehicle. The storage system consists on fuel cell (FC) as a main power source and a supercapacitor (SC) as an auxiliary power source. The power stage of energy conversion consists on a boost...
Direct Lyapunov-based control law design for spacecraft attitude maneuvers
Institute of Scientific and Technical Information of China (English)
HU Likun; ANG Qingchao
2006-01-01
A direct Lyapunov-based control law is presented to perform on-orbit stability for spacecraft attitude maneuvers. Spacecraft attitude kinematic equations and dynamic equations are coupled, nonlinear, multi-input multi-output(MIMO), which baffles controller design. Orbit angular rates are taken into account in kinematic equations and influence of gravity gradient moments and disturbance moments on the spacecraft attitude in dynamic equations is considered to approach the practical environment, which enhance the problem complexity to some extent. Based on attitude tracking errors and angular rates, a Lyapunov function is constructed, through which the stabilizing feedback control law is deduced via Lie derivation of the Lyapunov function. The proposed method can deal with the case that the spacecraft is subjected to mass property variations or centroidal inertia matrix variations due to fuel assumption or flexibility, and disturbance moments, which shows the proposed controller is robust for spacecraft attitude maneuvers. The unlimited controller and the limited controller are taken into account respectively in simulations. Simulation results are demonstrated to validate effectiveness and feasibility of the proposed method.
Lyapunov-Based Control for Switched Power Converters
1990-06-01
up-down converter of Figure 2 which has a state- V( space averaged model of the form MWny stabilizing control schemes can be obtained by in- S= Az...straigL -forward to specify a globally stabilizing control law for performing the described measurement process, it is possible the mcdel (6) of the form
A New Lyapunov Based Robust Control for Uncertain Mechanical Systems
Institute of Scientific and Technical Information of China (English)
ZHEN Sheng-Chao; ZHAO Han; CHEN Ye-Hwa; HUANG Kang
2014-01-01
We design a new robust controller for uncertain mechanical systems. The inertia matrix0s singularity and upper bound property are first analyzed. It is shown that the inertia matrix may be positive semi-definite due to over-simplified model. Further-more, the inertia matrix0s being uniformly bounded above is also limited. A robust controller is proposed to suppress the effect of uncertainty in mechanical systems with the assumption of uniform positive definiteness and upper bound of the inertia matrix. We theoretically prove that the robust control renders uniform boundedness and uniform ultimate boundedness. The size of the ultimate boundedness ball can be made arbitrarily small by the designer. Simulation results are presented and discussed.
Chu, Chia-Chi; Tsai, Hung-Chi; Chang, Wei-Neng
A Lyapunov-based recurrent neural networks unified power flow controller (UPFC) is developed for improving transient stability of power systems. First, a simple UPFC dynamical model, composed of a controllable shunt susceptance on the shunt side and an ideal complex transformer on the series side, is utilized to analyze UPFC dynamical characteristics. Secondly, we study the control configuration of the UPFC with two major blocks: the primary control, and the supplementary control. The primary control is implemented by standard PI techniques when the power system is operated in a normal condition. The supplementary control will be effective only when the power system is subjected by large disturbances. We propose a new Lyapunov-based UPFC controller of the classical single-machine-infinite-bus system for damping enhancement. In order to consider more complicated detailed generator models, we also propose a Lyapunov-based adaptive recurrent neural network controller to deal with such model uncertainties. This controller can be treated as neural network approximations of Lyapunov control actions. In addition, this controller also provides online learning ability to adjust the corresponding weights with the back propagation algorithm built in the hidden layer. The proposed control scheme has been tested on two simple power systems. Simulation results demonstrate that the proposed control strategy is very effective for suppressing power swing even under severe system conditions.
Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators
Sicard, Pierre; Wen, John T.; Lanari, Leonardo
1992-01-01
A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.
Lyapunov-based boundary feedback control in multi-reach canals
Institute of Scientific and Technical Information of China (English)
CEN LiHui; XI YuGeng
2009-01-01
This paper presents a Lyapunov-based approach to design the boundary feedback control for an open-channel network composed of a cascade of multi-reach canals, each described by a pair of Saint-Venant equations. The weighted sum of entropies of the multi-reaches is adopted to construct the Lyapunov function. The time derivative of the Lyapunov function is expressed by the water depth variations at the gate boundaries, based on which a class of boundary feedback controllers is presented to guarantee the local asymptotic closed-loop stability. The advantage of this approach is that only the water level depths at the gate boundaries are measured as the feedback.
Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza
2016-06-01
Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive suppression of the undesirable vibrations in the finite time. To compensate the supposed parametric uncertainties with unknown bands, proper adaption laws are introduced. To avoid the vibration devastating consequences as quickly as possible, appropriate control laws are designed. The vibration suppression in the finite time with supposed adaption and control laws is mathematically proved via Lyapunov finite time stability theory. Finally, to illustrate and validate the efficiency and robustness of the proposed finite time control scheme, a parametric case study with three piezoelectric actuators is performed. It is observed that the proposed active control strategy is more efficient and robust than the passive control methods.
Mazinan, A H
2016-03-01
The research addresses a Lyapunov-based constrained control strategy to deal with the autonomous space system in the presence of large disturbances. The aforementioned autonomous space system under control is first represented through a dynamics model and subsequently the proposed control strategy is fully investigated with a focus on the three-axis detumbling and the corresponding pointing mode control approaches. The three-axis detumbling mode control approach is designed to deal with the unwanted angular rates of the system to be zero, while the saturations of the actuators are taken into consideration. Moreover, the three-axis pointing mode control approach is designed in the similar state to deal with the rotational angles of the system to be desirable. The contribution of the research is mathematically made to propose a control law in connection with a new candidate of Lyapunov function to deal with the rotational angles and the related angular rates of the present autonomous space system with respect to state-of-the-art. A series of experiments are carried out to consider the efficiency of the proposed control strategy, as long as a number of benchmarks are realized in the same condition to verify and guarantee the strategy performance in both modes of control approaches.
Lyapunov-Based Control for Suppression of Wind-Induced Galloping in Suspension Bridges
Directory of Open Access Journals (Sweden)
Naif B. Almutairi
2011-01-01
Full Text Available This paper investigates the suppression of galloping in a suspension bridge due to wind loads. The galloping phenomenon can be destructive due to the high-amplitude oscillations of the structure. Two controllers are proposed to generate the control force needed to suppress the vertical galloping in the suspended cables and in the bridge deck. SIMULINK software is used to simulate the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a tuned mass damper.
Nguyen, Charles C.; Zhou, Zhen-Lei; Mosier, Gary E.
1993-01-01
This paper presents the design of a joint-space adaptive control scheme for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with seven degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Liupunov direct method, we derive an adaptation algorithm that adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly varying. The implementation of the derived control scheme does not require the computation of manipulator dynamics which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payload while tracking various test trajectories such as ramp or sinusoids with negligible position errors.
Nguyen, Charles C.; Zhou, Zhen-Lei; Mosier, Gary E.
1993-01-01
This paper presents the design of a joint-space adaptive control scheme for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with seven degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Liupunov direct method, we derive an adaptation algorithm that adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly varying. The implementation of the derived control scheme does not require the computation of manipulator dynamics which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payload while tracking various test trajectories such as ramp or sinusoids with negligible position errors.
Directory of Open Access Journals (Sweden)
Joaquim Monteiro
2017-06-01
Full Text Available This paper proposes a Direct Matrix Converter operating as a Unified Power Flow Controller (DMC-UPFC with an advanced control method for UPFC, based on the Lyapunov direct method, presenting good results in power quality assessment. This control method is used for real-time calculation of the appropriate matrix switching state, determining which switching state should be applied in the following sampling period. The control strategy takes into account active and reactive power flow references to choose the vector converter closest to the optimum. Theoretical principles for this new real-time vector modulation and control applied to the DMC-UPFC with input filter are established. The method needs DMC-UPFC dynamic equations to be solved just once in each control cycle, to find the required optimum vector, in contrast to similar control methods that need 27 vector estimations per control cycle. The designed controller’s performance was evaluated using Matlab/Simulink software. Controllers were also implemented using a digital signal processing (DSP system and matrix hardware. Simulation and experimental results show decoupled transmission line active (P and reactive (Q power control with zero theoretical error tracking and fast response. Output currents and voltages show small ripple and low harmonic content.
Lyapunov-based Low-thrust Optimal Orbit Transfer: An approach in Cartesian coordinates
Zhang, Hantian; Cao, Qingjie
2014-01-01
This paper presents a simple approach to low-thrust optimal-fuel and optimal-time transfer problems between two elliptic orbits using the Cartesian coordinates system. In this case, an orbit is described by its specific angular momentum and Laplace vectors with a free injection point. Trajectory optimization with the pseudospectral method and nonlinear programming are supported by the initial guess generated from the Chang-Chichka-Marsden Lyapunov-based transfer controller. This approach successfully solves several low-thrust optimal problems. Numerical results show that the Lyapunov-based initial guess overcomes the difficulty in optimization caused by the strong oscillation of variables in the Cartesian coordinates system. Furthermore, a comparison of the results shows that obtaining the optimal transfer solution through the polynomial approximation by utilizing Cartesian coordinates is easier than using orbital elements, which normally produce strongly nonlinear equations of motion. In this paper, the Eart...
DEFF Research Database (Denmark)
Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin
2017-01-01
This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement...... the proposed control strategy, first a general nonlinear modeling of a DC-Microgrid based on related DC-DC converters to each DC power sources is introduced. Secondly, a power management strategy based on fuzzy control for regulating the power flow between the hybrid DC sources, PEVs is proposed. Third...
Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems
Junhai Luo; Heng Liu
2014-01-01
This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of th...
DEFF Research Database (Denmark)
Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin
2017-01-01
This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement the p...
Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems
Directory of Open Access Journals (Sweden)
Junhai Luo
2014-01-01
Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.
Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids
Kabalan, Mahmoud
Microgrid stability studies have been largely based on small-signal linearization techniques. However, the validity and magnitude of the linearization domain is limited to small perturbations. Thus, there is a need to examine microgrids with large-signal nonlinear techniques to fully understand and examine their stability. Large-signal stability analysis can be accomplished by Lyapunov-based mathematical methods. These Lyapunov methods estimate the domain of asymptotic stability of the studied system. A survey of Lyapunov-based large-signal stability studies showed that few large-signal studies have been completed on either individual systems (dc/ac inverters, dc/dc rectifiers, etc.) or microgrids. The research presented in this thesis addresses the large-signal stability of droop-controlled dc/ac inverters and inverter-based microgrids. Dc/ac power electronic inverters allow microgrids to be technically feasible. Thus, as a prelude to examining the stability of microgrids, the research presented in Chapter 3 analyzes the stability of inverters. First, the 13 th order large-signal nonlinear model of a droop-controlled dc/ac inverter connected to an infinite bus is presented. The singular perturbation method is used to decompose the nonlinear model into 11th, 9th, 7th, 5th, 3rd and 1st order models. Each model ignores certain control or structural components of the full order model. The aim of the study is to understand the accuracy and validity of the reduced order models in replicating the performance of the full order nonlinear model. The performance of each model is studied in three different areas: time domain simulations, Lyapunov's indirect method and domain of attraction estimation. The work aims to present the best model to use in each of the three domains of study. Results show that certain reduced order models are capable of accurately reproducing the performance of the full order model while others can be used to gain insights into those three areas of
Controllability in nonlinear systems
Hirschorn, R. M.
1975-01-01
An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.
A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances
Xian, Bin; Zhang, Yao
2016-06-01
In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.
Adaptive and Nonlinear Control
1992-02-29
in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on
Chattering-Free Sliding-Mode Control for Electromechanical Actuator with Backlash Nonlinearity
Directory of Open Access Journals (Sweden)
Dongqi Ma
2017-01-01
Full Text Available Considering the backlash nonlinearity and parameter time-varying characteristics in electromechanical actuators, a chattering-free sliding-mode control strategy is proposed in this paper to regulate the rudder angle and suppress unknown external disturbances. Different from most existing backlash compensation methods, a special continuous function is addressed to approximate the backlash nonlinear dead-zone model. Regarding the approximation error, unmodeled dynamics, and unknown external disturbances as a disturbance-like term, a strict feedback nonlinear model is established. Based on this nonlinear model, a chattering-free nonsingular terminal sliding-mode controller is proposed to achieve the rudder angle tracking with a chattering elimination and tracking dynamic performance improvement. A Lyapunov-based proof ensures the asymptotic stability and finite-time convergence of the closed-loop system. Experimental results have verified the effectiveness of the proposed method.
2007-03-01
IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear
Controllability of nonlinear systems.
Sussmann, H. J.; Jurdjevic, V.
1972-01-01
Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-
Modular design of adaptive robust controller for strict-feedback stochastic nonlinear systems
Institute of Scientific and Technical Information of China (English)
WANG Jun; XI Hong-sheng; JI Hai-bo; KANG Yu
2006-01-01
A modular approach of the estimation-based design in adaptive linear control systems has been extended to the adaptive robust control of strict-feedback stochastic nonlinear systems with additive standard Wiener noises and constant unknown parameters.By using It(o)'s differentiation rule, nonlinear damping and adaptive Backstepping procedure,the input-to-state stable controller of global stabilization in probability is developed,which guarantees that system states are bounded and the system has a robust stabilization.According to Swapping technique,we develop two filters and convert dynamic parametric models into static ones to which the gradient update law is designed.Transient performance of the system is estimated by the norm of error.Results of simulation show the effectiveness of the control algorithms.The modular design,which has a concise hierarchy,is more flexible and versatile than a Lyapunov-based algorithm.
LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process
Haralambous, Michael G.
2002-01-01
Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.
LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process
Haralambous, Michael G.
2002-01-01
Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.
Nonlinear modeling and control of slosh in liquid container transfer via a PPR robot
Reyhanoglu, Mahmut; Rubio Hervas, Jaime
2013-06-01
This paper studies the point-to-point liquid container transfer control problem for a PPR robot. The robot manipulator is represented as three rigid links, and the liquid slosh dynamics are included using a multi-mass-spring model. It is assumed that two forces and a torque applied to the prismatic joints and the revolute joint, respectively, are available as control inputs. The objective is to control the robot end-effector movement while suppressing the sloshing modes. A nonlinear mathematical model that reflects all of these assumptions is first introduced. Then, Lyapunov-based feedback controllers are designed to achieve the control objective. Two cases are considered: partial-state feedback that does not use slosh state information and full-state feedback that uses both robot state and slosh state measurements or estimations. Computer simulations are included to illustrate the effectiveness of the proposed control laws.
Cooperative tracking control of nonlinear multiagent systems using self-structuring neural networks.
Chen, Gang; Song, Yong-Duan
2014-08-01
This paper considers a cooperative tracking problem for a group of nonlinear multiagent systems under a directed graph that characterizes the interaction between the leader and the followers. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network (NN) with flexible structure is used to approximate the unknown dynamics at each node. Considering that the leader is a neighbor of only a subset of the followers and the followers have only local interactions, we introduce a cooperative dynamic observer at each node to overcome the deficiency of the traditional tracking control strategies. An observer-based cooperative controller design framework is proposed with the aid of graph tools, Lyapunov-based design method, self-structuring NN, and separation principle. It is proved that each agent can follow the active leader only if the communication graph contains a spanning tree. Simulation results on networked robots are provided to show the effectiveness of the proposed control algorithms.
2009-11-18
analytic semigroup T(t) ~ eAl is exponentially stable (Notice that it is also a contraction semigroup ). 3. Be 3(U, Z) and P e £(W, 2) are bounded. 4. Ce...quite often in practice, .4 is self-adjoint. We also note that, since we assume (—A) is sectorial, we work with the semigroup exp(.4f) rather than...Uniform Output Regulation of Nonlinear Sys- tems: A convergent Dynamics Approach, Birkhauser, Boston, 2006. 23 135] A. Pazy, Semigroups of Linear
Nonlinear Control of Heartbeat Models
Directory of Open Access Journals (Sweden)
Witt Thanom
2011-02-01
Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.
Nonlinear Control of Magnetic Bearings
Institute of Scientific and Technical Information of China (English)
Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen
2010-01-01
In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.
DEFF Research Database (Denmark)
Han, Renke; Meng, Lexuan; Guerrero, Josep M.
2017-01-01
A distributed nonlinear controller is presented to achieve both accurate current-sharing and voltage regulation simultaneously in dc microgrids considering different line impedances’ effects among converters. Then, an improved event-triggered principle for the controller is introduced through...... combining the state-dependent tolerance with a nonnegative offset. In order to design the event-triggered principle and guarantee the global stability, a generalized dc microgrid model is proposed and proven to be positive definite, based on which Lyapunov-based approach is applied. Furthermore, considering...... the effects from constant power loads, the damping performance of proposed controller is further improved and compared with the traditional V-I droop controller. The proposed event-triggered-based communication strategy can considerably reduce the communication traffic and significantly relax the requirement...
Optimal low-thrust spiral trajectories using Lyapunov-based guidance
Yang, Da-lin; Xu, Bo; Zhang, Lei
2016-09-01
For an increasing number of electric propulsion systems used for real missions, it is very important to design optimal low-thrust spiral trajectories for these missions. However, it is particularly challenging to search for optimal low-thrust transfers. This paper describes an efficient optimal guidance scheme for the design of time-optimal and time-fixed fuel-optimal low-thrust spiral trajectories. The time-optimal solution is obtained with Lyapunov-based guidance, in which the artificial neural network (ANN) is adopted to implement control gains steering and the evolutionary algorithm is used as the learning algorithm for ANN. Moreover, the relative efficiency introduced in Q-law is analyzed and a periapis-and-apoapsis-centered burn structure is proposed for solving time-fixed fuel-optimal low-thrust orbit transfer problem. In this guidance scheme, the ANN is adopted to determine the burn structure within each orbital revolution and the optimal low-thrust orbit transfer problem is converted to the parameter optimization problem. This guidance scheme runs without an initial guess and provides closed form solutions. In addition, Earth J2 perturbation and Earth-shadow eclipse effects are considered in this paper. Finally, a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.
Nonlinear robust hierarchical control for nonlinear uncertain systems
Directory of Open Access Journals (Sweden)
Leonessa Alexander
1999-01-01
Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.
Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu
2015-09-01
In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.
Formation design and nonlinear control of spacecraft formation flying
Wong, Hong
reference control. Using a Lyapunov-based approach, a full state feedback control law, a parameter update algorithm, and a model reference control estimate are designed that facilitate the tracking of given periodic reference trajectories in the presence of unknown leader and follower spacecraft masses. Furthermore, using a discrete Lyapunov-type stability analysis, model reference control error is shown to converge to zero. Illustrative simulations are included to demonstrate the efficacy of the proposed controllers. The third part of this research explores the feasibility of using the effects of J2 perturbations as a mechanism to deploy pico-satellites (e.g., cubesats) to create a spacecraft constellation. Specifically, using two deployer spacecraft, both moving on polar Earth orbits, we insert one hundred cubesats into sparsely populated 60 degree inclination orbits around the Earth using a change in orbital inclination only. We also outline a proof-of-concept single stage propulsion system that provides necessary propulsive input for the velocity change needed for the orbital inclination change of cubesats. A series of illustrative simulations are given to demonstrate that sufficient and effective coverage of the Earth is achieved using the designed cubesat constellation. (Abstract shortened by UMI.)
A nonlinear plate control without linearization
Directory of Open Access Journals (Sweden)
Yildirim Kenan
2017-03-01
Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.
Biped control via nonlinear dynamics
Hmam, Hatem M.
1992-09-01
This thesis applies nonlinear techniques to actuate a biped system and provides a rigorous analysis of the resulting motion. From observation of human locomotion, it is believed that the 'complex' dynamics developed by the aggregation of multiple muscle systems can be generated by a reduced order system which captures the rough details of the locomotion process. The investigation is begun with a simple model of a biped system. Since the locomotion process is cyclic in nature, we focus on applying the topologically similar concept of limit cycles to the simple model in order to generate the desired gaits. A rigorous analysis of the biped dynamics shows that the controlled motion is robust against dynamical disturbances. In addition, different biped gaits are generated by merely adjusting some of the limit cycle parameters. More dynamical and actuation complexities are then added for realism. First, two small foot components are added and the overall biped motion under the same control actuation is analyzed. Due to the physical constraints on the feet, it is shown using singular perturbation theory how the gross behavior of the biped dynamics are dictated by those of the reduced model. Next, an analysis of the biped dynamics under added nonlinear elasticities in the legs is carried out. Moreover, using a slightly modified model, forward motion is generated in the sagittal plane. At each step, a small amount of energy is consistently derived from the vertical plane and converted into a forward motion. Stability of the forward dynamics is guaranteed by appropriate foot placement. Finally, the robustness of the controlled biped dynamics is rigorously analyzed and illustrated through extensive computer simulations.
Nonlinear Markov Control Processes and Games
2012-11-15
further research we indicated possible extensions to state spaces with nontrivial geometry, to the controlled nonlinear quantum dynamic semigroups and...space nonlinear Markov semigroup is a one-parameter semigroup of (possibly nonlinear) transformations of the unit simplex in n-dimensional Euclidean...certain mixing property of nonlinear transition probabilities. In case of the semigroup parametrized by continuous time one defines its generator as the
Boundary controllability for a nonlinear beam equation
Directory of Open Access Journals (Sweden)
Xiao-Min Cao
2015-09-01
Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.
Recursive design of nonlinear H∞ excitation controller
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This work is concerned with the problem of L2 gain disturbance attenuation for nonlinear systems and nonlinear robust control for power systems. In terms of the recurrence design approach proposed, the nonnegative solution of dissipative inequality and the storage function of nonlinear H∞ control for a generator excitation system are acquired. From this storage function, the excitation controller is constructed. Moreover, simulation results manifest the effectiveness of this design method.
Nonlinear feedback control of Timoshenko beam
Institute of Scientific and Technical Information of China (English)
冯德兴; 张维弢
1995-01-01
This note is concerned with nonlinear boundary feedback control of a Timoshenko beam. Under some nonlinear boundary feedback control, first the nonlinear semigroup theory is used to show the existence and uniqueness of solution for the corresponding closed loop system. Then by using the Lyapunov method, it is proved that the vibration of the beam under the proposed control action decays in a negative power of time t as t→.
NONLINEAR PREDICTIVE CONTROL FOR TERRAIN FOLLOWING
Institute of Scientific and Technical Information of China (English)
1998-01-01
A nonlinear continuous predictive control method was used for design of cruise missile terrain-following controller. A performance index which combined the tracking error and rate of tracking error is presented. Then an optimal nonlinear feedback control law is generated to minimize the performance index. The tracking performance and robustness of controller are discussed. The advantage of the control law is demonstrated by successfully designing cruise missile terrain following controllers. The results show that the controller exhibits robustness and excellent tracking performance.
Advances and applications in nonlinear control systems
Volos, Christos
2016-01-01
The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...
Robust control methods for nonlinear systems with uncertain dynamics and unknown control direction
Ton, Chau T.
Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly aects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
Economic model predictive control theory, formulations and chemical process applications
Ellis, Matthew; Christofides, Panagiotis D
2017-01-01
This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...
Discrete-time nonlinear sliding mode controller
African Journals Online (AJOL)
user
: Discrete-time delay system, Sliding mode control, nonlinear sliding ... The concept of the sliding mode control in recent years has drawn the ...... His area of interest is dc-dc converters, electrical vehicle and distributed generation application.
Observability and Controllability for Smooth Nonlinear Systems
Schaft, A.J. van der
1982-01-01
The definition of a smooth nonlinear system as proposed recently, is elaborated as a natural generalization of the more common definitions of a smooth nonlinear input-output system. Minimality for such systems can be defined in a very direct geometric way, and already implies a usual notion of observability, namely, local weak observability. As an application of this theory, it is shown that observable nonlinear Hamiltonian systems are necessarily controllable, and vice versa.
Chaos in nonlinear oscillations controlling and synchronization
Lakshamanan, M
1996-01-01
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM
Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance
Nonlinear estimation and control of automotive drivetrains
Chen, Hong
2014-01-01
Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...
Robust Nonlinear Regulation of Limit Cycle Oscillations in UAVs Using Synthetic Jet Actuators
Directory of Open Access Journals (Sweden)
Natalie Ramos Pedroza
2014-09-01
Full Text Available In this paper, a synthetic jet actuators (SJA-based nonlinear robust controller is developed, which is capable of completely suppressing limit cycle oscillations (LCO in UAV systems with parametric uncertainty in the SJA dynamics and unmodeled external disturbances. Specifically, the control law compensates for uncertainty in an input gain matrix, which results from the unknown airflow dynamics generated by the SJA. Challenges in the control design include compensation for input-multiplicative parametric uncertainty in the actuator dynamic model. The result was achieved via innovative algebraic manipulation in the error system development, along with a Lyapunov-based robust control law. A rigorous Lyapunov-based stability analysis is utilized to prove asymptotic LCO suppression, considering a detailed dynamic model of the pitching and plunging dynamics. Numerical simulation results are provided to demonstrate the robustness and practical performance of the proposed control law.
Boundary Controllability of Nonlinear Fractional Integrodifferential Systems
Directory of Open Access Journals (Sweden)
Ahmed HamdyM
2010-01-01
Full Text Available Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential systems in Banach space are established. The results are obtained by using fixed point theorems. We also give an application for integropartial differential equations of fractional order.
Active vibration control of nonlinear benchmark buildings
Institute of Scientific and Technical Information of China (English)
ZHOU Xing-de; CHEN Dao-zheng
2007-01-01
The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile,the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.
Advanced nonlinear engine speed control systems
DEFF Research Database (Denmark)
Vesterholm, Thomas; Hendricks, Elbert
1994-01-01
: accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model......Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one...
Nonlinear system compound inverse control method
Institute of Scientific and Technical Information of China (English)
Yan ZHANG; Zengqiang CHEN; Peng YANG; Zhuzhi YUAN
2005-01-01
A compound neural network is utilized to identify the dynamic nonlinear system.This network is composed of two parts: one is a linear neural network,and the other is a recurrent neural network.Based on the inverse theory a compound inverse control method is proposed.The controller has also two parts:a linear controller and a nonlinear neural network controller.The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated based on the Lyapunov theory.Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.
Nonlinear-dynamical arrhythmia control in humans.
Christini, D J; Stein, K M; Markowitz, S M; Mittal, S; Slotwiner, D J; Scheiner, M A; Iwai, S; Lerman, B B
2001-05-08
Nonlinear-dynamical control techniques, also known as chaos control, have been used with great success to control a wide range of physical systems. Such techniques have been used to control the behavior of in vitro excitable biological tissue, suggesting their potential for clinical utility. However, the feasibility of using such techniques to control physiological processes has not been demonstrated in humans. Here we show that nonlinear-dynamical control can modulate human cardiac electrophysiological dynamics by rapidly stabilizing an unstable target rhythm. Specifically, in 52/54 control attempts in five patients, we successfully terminated pacing-induced period-2 atrioventricular-nodal conduction alternans by stabilizing the underlying unstable steady-state conduction. This proof-of-concept demonstration shows that nonlinear-dynamical control techniques are clinically feasible and provides a foundation for developing such techniques for more complex forms of clinical arrhythmia.
Control methods for localization of nonlinear waves
Porubov, Alexey; Andrievsky, Boris
2017-03-01
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.
Nonlinear predictive control in the LHC accelerator
Blanco, E; Cristea, S; Casas, J
2009-01-01
This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
Discrete time learning control in nonlinear systems
Longman, Richard W.; Chang, Chi-Kuang; Phan, Minh
1992-01-01
In this paper digital learning control methods are developed primarily for use in single-input, single-output nonlinear dynamic systems. Conditions for convergence of the basic form of learning control based on integral control concepts are given, and shown to be satisfied by a large class of nonlinear problems. It is shown that it is not the gross nonlinearities of the differential equations that matter in the convergence, but rather the much smaller nonlinearities that can manifest themselves during the short time interval of one sample time. New algorithms are developed that eliminate restrictions on the size of the learning gain, and on knowledge of the appropriate sign of the learning gain, for convergence to zero error in tracking a feasible desired output trajectory. It is shown that one of the new algorithms can give guaranteed convergence in the presence of actuator saturation constraints, and indicate when the requested trajectory is beyond the actuator capabilities.
Noninteracting control of nonlinear systems based on relaxed control
Jayawardhana, B.
2010-01-01
In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to
Exact Controllability for a Class of Nonlinear Evolution Control Systems
Institute of Scientific and Technical Information of China (English)
L¨u Yue; Li Yong
2015-01-01
In this paper, we study the exact controllability of the nonlinear control systems. The controllability results by using the monotone operator theory are es-tablished. No compactness assumptions are imposed in the main results.
Polarization shaping for control of nonlinear propagation
Bouchard, Frédéric; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-01-01
We study the nonlinear optical propagation of two different classes of space-varying polarized light beams -- radially symmetric vector beams and Poincar\\'e beams with lemon and star topologies -- in a rubidium vapour cell. Unlike Laguerre-Gauss and other types of beams that experience modulational instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Polarization Shaping for Control of Nonlinear Propagation.
Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-12-02
We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Nonlinear Robust Control for Spacecraft Attitude
Directory of Open Access Journals (Sweden)
Wang Lina
2013-07-01
Full Text Available Nonlinear robust control of the spacecraft attitude with the existence of external disturbances is considered. A robust attitude controller is designed based on the passivity approach the quaternion representation, which introduces the suppression vector of external disturbance into the control law and does not need angular velocity measurement. Stability conditions of the robust attitude controller are given. And the numerical simulation results show the effectiveness of the attitude controller.
Controllability of nonlinear degenerate parabolic cascade systems
Directory of Open Access Journals (Sweden)
Mamadou Birba
2016-08-01
Full Text Available This article studies of null controllability property of nonlinear coupled one dimensional degenerate parabolic equations. These equations form a cascade system, that is, the solution of the first equation acts as a control in the second equation and the control function acts only directly on the first equation. We prove positive null controllability results when the control and a coupling set have nonempty intersection.
Gradient realization of nonlinear control systems
Cortes monforte, J.; Cortés, J.; Crouch, P.E.; Astolfi, A.; van der Schaft, Arjan; Gordillo, F.
2003-01-01
We investigate necessary and su?cient conditions under which a nonlinear afine control system with outputs can be written as a gradient control system corresponding to some pseudo-Riemannian metric defined on the state space. The results rely on a suitable notion of compatibility of the system with
Controller reconfiguration for non-linear systems
Kanev, S.; Verhaegen, M.
2000-01-01
This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m
A polynomial approach to nonlinear system controllability
Zheng, YF; Willems, JC; Zhang, CH
2001-01-01
This note uses a polynomial approach to present a necessary and sufficient condition for local controllability of single-input-single-output (SISO) nonlinear systems. The condition is presented in terms of common factors of a noncommutative polynomial expression. This result exposes controllability
Nonlinear feedback control of highly manoeuvrable aircraft
Garrard, William L.; Enns, Dale F.; Snell, S. A.
1992-01-01
This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.
Transmitting information by controlling nonlinear oscillators
Tôrres, Leonardo A. B.; Aguirre, Luis A.
2004-09-01
The transmission of information relying on the perturbation of nonlinear oscillators vector fields can be approached in a unified manner. This can be accomplished by making use of the Information Transmission Via Control principle, which is stated and proved in the present work. In short, this principle establishes that any controller used to identically synchronize pairs of nonlinear oscillators, including chaotic ones as a special case, can be actually employed as demodulator/decoder in the process of information recovery. Other theoretical results related to the practical realization of the ITVC principle are presented and experimental data is provided showing a good agreement with the proposed theory.
SUBOPTIMAL NONLINEAR CONTROL OF PACKAGING MACHINERY DRIVE
Kudin, V. F.; Toropov, A.V.
2013-01-01
This paper deals with the procedure of synthesis of a nonlinear position controller for the «feeder» of packaging mechanism. The mathematical model of «feeder» drive with regard to the restriction on the control output of external PLC. Linearization of nonlinear characteristic by the «secants» method is implemented and selected functional quality that defines the minimal time of transients is selected. Quality functional in the form of a quadratic functional with a variable weighting factor i...
Control of nonlinear flexible space structures
Shi, Jianjun
With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of
Cluster-based control of nonlinear dynamics
Kaiser, Eurika; Spohn, Andreas; Cattafesta, Louis N; Morzynski, Marek
2016-01-01
The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. Here, a cluster-based control framework is proposed to determine optimal control laws with respect to a cost function for unsteady flows. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a Markov model. The Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is de...
Nonlinear control of the Salnikov model reaction
DEFF Research Database (Denmark)
Recke, Bodil; Jørgensen, Sten Bay
1999-01-01
This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...... and Control Lyapunov Functions (CLF's). The results show that based on the lowest possible cost function and shortest settling time, the exact linearisation performs marginally better than the other methods....
Adaptive Control of Nonlinear Flexible Systems
1994-05-26
Proceedings of the American Control Conference , pp. 547-551, San Francisco, June 1993. 3 2 1.3 Personnel Dr. Robert Kosut and Dr. M. Giintekin Kabuli worked on...Control of Nonlinear Systems Under Matching Conditions," Proceedings of the American Control Conference , pp. 549-555, San Diego, CA, May 1990. [10] I...Poolla, P. Khargonekar, A. Tikku, J. Krause and K. Nagpal, "A time-domain ap- proach to model validation," Proceedings
Unmodeled Dynamics in Robust Nonlinear Control
2000-08-01
IEEE Transactions on Automatic Control , vol. 44, pp. 1975–1981, 1999. [6] D. Bestle...systems,” IEEE Transactions on Automatic Control , vol. 41, pp. 876–880, 1996. 95 [9] C.I. Byrnes and A. Isidori, “New results and examples in...Output-feedback stochastic nonlinear stabilization,” IEEE Transactions on Automatic Control , vol. 44, pp. 328–333, 1999. [14] J. Eker and K.J.
Optimization-Based Robust Nonlinear Control
2006-08-01
IEEE Transactions on Automatic Control , vol. 51, no. 4, pp. 661...systems with two time scales", A.R. Teel, L. Moreau and D. Nesic, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1526-1544, September 2003...Turner, L. Zaccarian, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1509- 1525, September 2003. 5. "Nonlinear Scheduled anti-windup
Control of nonlinear systems with applications
Pan, Haizhou
In practical applications of feedback control, most actuators exhibit physical constraints that limit the control amplitude and/or rate. The principal challenge of control design problem for linear systems with input constraints is to ensure closed-loop stability and yield a good transient performance in the presence of amplitude and/or rate-limited control. Since actuator saturation manifests itself as a nonlinear behavior in an otherwise linear system, the development of a nonconservative saturation control design methodology poses a significant challenge. In particular, it is well known that unstable linear systems can be stabilized using smooth controllers only in a local sense in the presence of actuator saturation. Thus, it is of paramount importance to develop a saturation control design methodology that yields a nonconservative estimate of the stability domain for closed-loop system. The first part of this research focuses on a numerically tractable formulation of the control synthesis problem for linear systems with actuator amplitude and rate saturation nonlinearity using a linear-matrix-inequality (LMI) framework. Following the recent trend in the actuator saturation control research, we (i) utilize absolute stability theory to ensure closed-loop stability and (ii) minimize a quadratic cost to account for the closed-loop system performance degradation. In order to reduce the inherent conservatism of the absolute stability based saturation control framework, we exploit stability multipliers (of, e.g., weighted circle criterion, Popov criterion, etc.). For the control of linear systems with simultaneous actuator amplitude and rate saturation nonlinearities, by virtue of a rate limiter that is predicated on designing the control amplitude and then computing the control rates, we directly account for rate constraints. Both continuous- and discrete-time systems with actuator saturation are considered. A number of design examples are presented to demonstrate
Nonlinear signal-based control with an error feedback action for nonlinear substructuring control
Enokida, Ryuta; Kajiwara, Koichi
2017-01-01
A nonlinear signal-based control (NSBC) method utilises the 'nonlinear signal' that is obtained from the outputs of a controlled system and its linear model under the same input signal. Although this method has been examined in numerical simulations of nonlinear systems, its application in physical experiments has not been studied. In this paper, we study an application of NSBC in physical experiments and incorporate an error feedback action into the method to minimise the error and enhance the feasibility in practice. Focusing on NSBC in substructure testing methods, we propose nonlinear substructuring control (NLSC), that is a more general form of linear substructuring control (LSC) developed for dynamical substructured systems. In this study, we experimentally and numerically verified the proposed NLSC via substructuring tests on a rubber bearing used in base-isolated structures. In the examinations, NLSC succeeded in gaining accurate results despite significant nonlinear hysteresis and unknown parameters in the substructures. The nonlinear signal feedback action in NLSC was found to be notably effective in minimising the error caused by nonlinearity or unknown properties in the controlled system. In addition, the error feedback action in NLSC was found to be essential for maintaining stability. A stability analysis based on the Nyquist criterion, which is used particularly for linear systems, was also found to be efficient for predicting the instability conditions of substructuring tests with NLSC and useful for the error feedback controller design.
Nonlinear System Control Using Neural Networks
Directory of Open Access Journals (Sweden)
Jaroslava Žilková
2006-10-01
Full Text Available The paper is focused especially on presenting possibilities of applying off-linetrained artificial neural networks at creating the system inverse models that are used atdesigning control algorithm for non-linear dynamic system. The ability of cascadefeedforward neural networks to model arbitrary non-linear functions and their inverses isexploited. This paper presents a quasi-inverse neural model, which works as a speedcontroller of an induction motor. The neural speed controller consists of two cascadefeedforward neural networks subsystems. The first subsystem provides desired statorcurrent components for control algorithm and the second subsystem providescorresponding voltage components for PWM converter. The availability of the proposedcontroller is verified through the MATLAB simulation. The effectiveness of the controller isdemonstrated for different operating conditions of the drive system.
Nonlinear Control of Delay and PDE Systems
Bekiaris-Liberis, Nikolaos
In this dissertation we develop systematic procedures for the control and analysis of general nonlinear systems with delays and of nonlinear PDE systems. We design predictor feedback laws (i.e., feedback laws that use the future, rather than the current state of the system) for the compensation of delays (i.e., after the control signal reaches the system for the first time, the system behaves as there were no delay at all) that can be time-varying or state-dependent, on the input and on the state of nonlinear systems. We also provide designs of predic- tor feedback laws for linear systems with constant distributed delays and known or unknown plant parameters, and for linear systems with simultaneous known or unknown constant delays on the input and the state. Moreover, we intro- duce infinite-dimensional backstepping transformations for each particular prob-lem, which enables us to construct Lyapunov-Krasovskii functionals. With the available Lyapunov-Krasovskii functionals we study stability, as well as, robust- ness of our control laws to plant uncertainties. We deal with coupled PDE-ODE systems. We consider nonlinear systems with wave actuator dynamics, for which we design a predictor inspired feedback law. We study stability of the closed-loop system either by constructing Lyapunov functionals, or using arguments of explicit solutions. We also consider linear sys- tems with distributed actuator and sensor dynamics governed by diffusion or wave PDEs, for which we design stabilizing feedback laws. We study stability of the closed-loop systems using Lyapunov functionals that we construct with the intro- duction of infinite-dimensional transformations of forwarding type. Finally, we develop a control design methodology for coupled nonlinear first-order hyperbolic PDEs through an application to automotive catalysts.
Controller Design of Complex System Based on Nonlinear Strength
Directory of Open Access Journals (Sweden)
Rongjun Mu
2015-01-01
Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.
Coordinated formation control of multiple nonlinear systems
Institute of Scientific and Technical Information of China (English)
Wei KANG; Ning XI; Jindong TAN; Yiwen ZHAO; Yuechao WANG
2005-01-01
A general method of controller design is developed for the purpose of formation keeping and reconfiguration of nonlinear systems with multiple subsystems,such as the formation of multiple aircraft,ground vehicles,or robot arms.The model consists of multiple nonlinear systems.Controllers are designed to keep the subsystems in a required formation and to coordinate the subsystems in the presence of environmental changes.A step-by-step algorithm of controller design is developed.Sufficient conditions for the stability of formation tracking are proved.Simulations and experiments are conducted to demonstrate some useful coordination strategies such as movement with a leader,simultaneous movement,series connection of formations,and human-machine interaction.
Tracking controller for robot manipulators via composite nonlinear feedback law
Institute of Scientific and Technical Information of China (English)
Peng Wendong; Su Jianbo
2009-01-01
A composite nonlinear feedback tracking controller for motion control of robot manipulators is de-scribed. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
Sun, Xifang; Chen, Weisheng; Wu, Jian
2016-12-01
In this paper, we address the global generalised exponential stabilisation problem for a class of lower-triangular systems with multiple unknown directions. Instead of the well-known Nussbaum-gain adaptive rule, a Lyapunov-based adaptive logic switching rule is proposed to seek the correct control directions for such systems. The main advantage of the proposed controller is that it can guarantee the global generalised exponential stability of closed-loop systems. Simulation examples are given to verify the effectiveness of the developed control approach.
Internal Decoupling in Nonlinear Process Control
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1988-07-01
Full Text Available A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.
Constrained tracking control for nonlinear systems.
Khani, Fatemeh; Haeri, Mohammad
2017-09-01
This paper proposes a tracking control strategy for nonlinear systems without needing a prior knowledge of the reference trajectory. The proposed method consists of a set of local controllers with appropriate overlaps in their stability regions and an on-line switching strategy which implements these controllers and uses some augmented intermediate controllers to ensure steering the system states to the desired set points without needing to redesign the controller for each value of set point changes. The proposed approach provides smooth transient responses despite switching among the local controllers. It should be mentioned that the stability regions of the proposed controllers could be estimated off-line for a range of set-point changes. The efficiencies of the proposed algorithm are illustrated via two example simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Immersion and Invariance Based Nonlinear Adaptive Flight Control
Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.
2010-01-01
In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is
Immersion and Invariance Based Nonlinear Adaptive Flight Control
Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.
2010-01-01
In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is co
Nonlinear and Variable Structure Excitation Controller for Power System Stability
Institute of Scientific and Technical Information of China (English)
Wang Ben; Ronnie Belmans
2006-01-01
A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.
Control of self-organizing nonlinear systems
Klapp, Sabine; Hövel, Philipp
2016-01-01
The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.
Synchronization between two different chaotic systems with nonlinear feedback control
Institute of Scientific and Technical Information of China (English)
Lü Ling; Guo Zhi-An; Zhang Chao
2007-01-01
This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
R. G. SILVA
1999-03-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
Adaptive control of nonlinear underwater robotic systems
Directory of Open Access Journals (Sweden)
Thor I. Fossen
1991-04-01
Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.
Neuromechanical tuning of nonlinear postural control dynamics
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Conditions on Structural Controllability of Nonlinear Systems: Polynomial Method
Directory of Open Access Journals (Sweden)
Qiang Ma
2011-03-01
Full Text Available In this paper the structural controllability of a class of a nonlinear system is investigated. The transfer function (matrix of nonlinear systems is obtained by putting the nonlinear system model on non-commutative ring. Conditions of structural controllability of nonlinear systems are presented according to the criterion of linear systems structural controllability in frequency domain. An example is used to testify the presented conditions finally.
μ Synthesis Method for Robust Control of Uncertain Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
μ synthesis method for robust control of uncertain nonlinear systems is propored, which is based on feedback linearization. First, nonlinear systems are linearized as controllable linear systems by I/O linearization,such that uncertain nonlinear systems are expressed as the linear fractional transformations (LFTs) on the generalized linearized plants and uncertainty.Then,linear robust controllers are obtained for the LFTs usingμsynthesis method based on H∞ optimization.Finally,the nonlinear robust controllers are constructed by combining the linear robust controllers and the nonlinear feedback.An example is given to illustrate the design.
Nonlinear control for dual quaternion systems
Price, William D.
The motion of rigid bodies includes three degrees of freedom (DOF) for rotation, generally referred to as roll, pitch and yaw, and 3 DOF for translation, generally described as motion along the x, y and z axis, for a total of 6 DOF. Many complex mechanical systems exhibit this type of motion, with constraints, such as complex humanoid robotic systems, multiple ground vehicles, unmanned aerial vehicles (UAVs), multiple spacecraft vehicles, and even quantum mechanical systems. These motions historically have been analyzed independently, with separate control algorithms being developed for rotation and translation. The goal of this research is to study the full 6 DOF of rigid body motion together, developing control algorithms that will affect both rotation and translation simultaneously. This will prove especially beneficial in complex systems in the aerospace and robotics area where translational motion and rotational motion are highly coupled, such as when spacecraft have body fixed thrusters. A novel mathematical system known as dual quaternions provide an efficient method for mathematically modeling rigid body transformations, expressing both rotation and translation. Dual quaternions can be viewed as a representation of the special Euclidean group SE(3). An eight dimensional representation of screw theory (combining dual numbers with traditional quaternions), dual quaternions allow for the development of control techniques for 6 DOF motion simultaneously. In this work variable structure nonlinear control methods are developed for dual quaternion systems. These techniques include use of sliding mode control. In particular, sliding mode methods are developed for use in dual quaternion systems with unknown control direction. This method, referred to as self-reconfigurable control, is based on the creation of multiple equilibrium surfaces for the system in the extended state space. Also in this work, the control problem for a class of driftless nonlinear systems is
Impulse position control algorithms for nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Sesekin, A. N., E-mail: sesekin@list.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation); Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation); Nepp, A. N., E-mail: anepp@urfu.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation)
2015-11-30
The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.
Impulse position control algorithms for nonlinear systems
Sesekin, A. N.; Nepp, A. N.
2015-11-01
The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.
On the exact controllability of a nonlinear stochastic heat equation
Directory of Open Access Journals (Sweden)
Bui An Ton
2006-01-01
Full Text Available The exact controllability of a nonlinear stochastic heat equation with null Dirichlet boundary conditions, nonzero initial and target values, and an interior control is established.
Robust Nonlinear Control of Tailless Fighter Aircraft
1999-02-01
also resulted in 1 book chapter and 12 refereed conference papers published, to appear and submitted. These papers are listed below. 1. A.R. Teel and L...Verlag, 1999, to appear. 4 Refereed Conference Publications 11. A.R. Teel. "A nonlinear control viewpoint on anti-windup and related problems", Preprints... Drc . TS"ThCH’WCAL R~PORT HAS qSN REViEWMAND IS APPRoVvOR 0 PLnUcBL EASE’WA APR 190-12, DISTRIBUTION I YONNE MASON S7T]NQ1pROORAJMMANAGE
Nonlinear Phase Control and Anomalous Phase Matching in Plasmonic Metasurfaces
Almeida, Euclides; Prior, Yehiam
2015-01-01
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute a particularly attractive set of materials. By means of modern nanolithographic fabrication techniques, flat, ultrathin optical elements may be constructed. However, in spite of their strong optical nonlinearities, plasmonic metasurfaces have so far been investigated mostly in the linear regime. Here we introduce full nonlinear phase control over plasmonic elements in metasurfaces. We show that for nonlinear interactions in a phase-gradient nonlinear metasurface a new anomalous nonlinear phase matching condition prevails, which is the nonlinear analog of the generalized Snell law demonstrated for linear metasurfaces. This phase matching condition is very different from the other known phase matching schemes. The subwavelength phase control of optical nonlinearities provides a foundation for the design of flat nonlinear optical elements based on metasurfaces. Our demonstrated flat nonlinear elements (i.e. lenses) act...
Success Stories in Control: Nonlinear Dynamic Inversion Control
Bosworth, John T.
2010-01-01
NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.
Boundary control of long waves in nonlinear dispersive systems
DEFF Research Database (Denmark)
Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten
2011-01-01
Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
The rigid-flexible nonlinear robotic manipulator: Modeling and control
Fenili, André; Balthazar, José Manoel
2011-05-01
The State-Dependent Riccati Equation (SDRE) control of a nonlinear rigid-flexible two link robotic manipulator is investigated. Different cases are considered assuming small deviations and large deviations from the desired final states. The nonlinear governing equations of motion are coupled, providing considerable excitation of all the nonlinear terms. The results present satisfactory final states but also undesirable overshoot.
Global satisfactory control for nonlinear integrator processes with long delay
Institute of Scientific and Technical Information of China (English)
Yiqun YANG; Guobo XIANG
2007-01-01
Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (GSC) of such processes with relay-type nonlinearity. An oscillatory control signal is injected into the nonlinear process; the amplitude and frequency of the oscillatory signal are designed to linearise the nonlinear process in the sense of harmonic analysis; and a state feedback controller is configured to implement GSC over the linearised process. An illustrative example is given to demonstrate the effectiveness of the proposed method.
Vibration suppression of speed-controlled robots with nonlinear control
Boscariol, Paolo; Gasparetto, Alessandro
2016-06-01
In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.
Optimal second order sliding mode control for nonlinear uncertain systems.
Das, Madhulika; Mahanta, Chitralekha
2014-07-01
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.
Recursive design of nonlinear H _∞ excitation controller
Institute of Scientific and Technical Information of China (English)
卢强; 梅生伟; 申铁龙; 胡伟
2000-01-01
This work is concerned with the problem of L2 gain disturbance attenuation for nonlinear systems and nonlinear robust control for power systems. In terms of the recurrence design approach proposed, the nonnegative solution of dissipative inequality and the storage function of nonlinear H∞ control for a generator excitation system are acquired. From this storage function, the excitation controller is constructed. Moreover, simulation results manifest the effectiveness of this design method.
Linear and Nonlinear Controllers Applied to Fixed-Wing UAV
Tadeo Espinoza; Alejandro Dzul; Miguel Llama
2013-01-01
This article presents a comparison of controllers which have been applied to a fixed‐wing Unmanned Aerial Vehicle (UAV). The comparison is realized between classical linear controllers and nonlinear control laws. The concerned linear controllers are: Proportional‐ Derivative (PD) and Proportional‐Integral‐Derivative (PID), while the nonlinear controllers are: backstepping, sliding modes, nested saturation and fuzzy control. These controllers are compared and analysed for altitude, yaw and rol...
Nonlinear and fault-tolerant flight control using multivariate splines
Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.
2015-01-01
This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear
Nonlinear and fault-tolerant flight control using multivariate splines
Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.
2015-01-01
This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear c
Robust nonlinear variable selective control for networked systems
Rahmani, Behrooz
2016-10-01
This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Dynamic decoupling nonlinear control method for aircraft gust alleviation
Lv, Yang; Wan, Xiaopeng; Li, Aijun
2008-10-01
A dynamic decoupling nonlinear control method for MIMO system is presented in this paper. The dynamic inversion method is used to decouple the multivariable system. The nonlinear control method is used to overcome the poor decoupling effect when the system model is inaccurate. The nonlinear control method has correcting function and is expressed in analytic form, it is easy to adjust the parameters of the controller and optimize the design of the control system. The method is used to design vertical transition mode of active control aircraft for gust alleviation. Simulation results show that the designed vertical transition mode improves the gust alleviation effect about 34% comparing with the normal aircraft.
Stability analysis of embedded nonlinear predictor neural generalized predictive controller
Directory of Open Access Journals (Sweden)
Hesham F. Abdel Ghaffar
2014-03-01
Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.
Explicit Nonlinear Model Predictive Control Theory and Applications
Grancharova, Alexandra
2012-01-01
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...
Nonlinear feedback control of spatiotemporal chaos in coupled map lattices
Directory of Open Access Journals (Sweden)
Jin-Qing Fang
1998-01-01
Full Text Available We describe a nonlinear feedback functional method for study both of control and synchronization of spatiotemporal chaos. The method is illustrated by the coupled map lattices with five different connection forms. A key issue addressed is to find nonlinear feedback functions. Two large types of nonlinear feedback functions are introduced. The efficient and robustness of the method based on the flexibility of choices of nonlinear feedback functions are discussed. Various numerical results of nonlinear control are given. We have not found any difficulty for study both of control and synchronization using nonlinear feedback functional method. The method can also be extended to time continuous dynamical systems as well as to society problems.
Control of an under activated unstable nonlinear object
DEFF Research Database (Denmark)
Andersen, Nils Axel; Skovgaard, L.; Ravn, Ole
2001-01-01
This paper presents a comprehensive comparative study of several nonlinear controllers for stabilisation of the under actuated unstable nonlinear object known as the Acrobot in the literature. The object is a two DOF robot arm only actuated at the elbow. The study compares several control...
Reconfigurable Control of Input Affine Nonlinear Systems under Actuator Fault
DEFF Research Database (Denmark)
Tabatabaeipour, Mojtaba; Galeazzi, Roberto
2015-01-01
This paper proposes a fault tolerant control method for input-affine nonlinear systems using a nonlinear reconfiguration block (RB). The basic idea of the method is to insert the RB between the plant and the nominal controller such that fault tolerance is achieved without re-designing the nominal...
Analysis and Design Methods for Nonlinear Control Systems
1990-03-01
entitled "Design of Nonlinear PID Controllers ." In this paper it is demonstrated that the extended linearization approach can be applied to standard...Sciences and Systems, Baltimore, Maryland, pp. 675-680, 1987. [3] WJ. Rugh, "Design of Nonlinear PID Controllers ," AIChE Journa Vol. 33, No. 10, pp. 1738
Nonlinear superheat and capacity control of a refrigeration plant
DEFF Research Database (Denmark)
Rasmussen, Henrik; Larsen, Lars F. S.
2009-01-01
This paper proposes a novel method for superheat and capacity control of refrigeration systems. A new low order nonlinear model of the evaporator is developed and used in a backstepping design of a nonlinear controller. The stability of the proposed method is validated theoretically by Lyapunov a...
ABSOLUTE STABILITY OF GENERAL LURIE DISCRETE NONLINEAR CONTROL SYSTEMS
Institute of Scientific and Technical Information of China (English)
GAN Zuoxin; HAN Jingqing; ZHAO Suxia; WU Yongxian
2002-01-01
In the present paper, the absolute stability of general Lurie discrete nonlinear control systems has been discussed by Lyapunov function approach. A sufficient condition of absolute stability for the general Lurie discrete nonlinear control systems is derived, and some necessary and sufficient conditions are obtained in special cases. Meanwhile, we give a simple example to illustrate the effectiveness of the results.
Control of an under activated unstable nonlinear object
DEFF Research Database (Denmark)
Andersen, Nils Axel; Skovgaard, L.; Ravn, Ole
2001-01-01
This paper presents a comprehensive comparative study of several nonlinear controllers for stabilisation of the under actuated unstable nonlinear object known as the Acrobot in the literature. The object is a two DOF robot arm only actuated at the elbow. The study compares several control...
Shahnazi, Reza
2015-01-01
An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations.
Non-linear controllers in ship tracking control system
Institute of Scientific and Technical Information of China (English)
LESZEK M
2005-01-01
The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.
Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver
2016-01-01
In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.
Control mechanisms for a nonlinear model of international relations
Energy Technology Data Exchange (ETDEWEB)
Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.
1997-07-15
Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.
Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.
2016-01-01
Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...
The Life-Changing Magic of Nonlinearity in Network Control
Cornelius, Sean
The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.
On the Improved Nonlinear Tracking Differentiator based Nonlinear PID Controller Design
Directory of Open Access Journals (Sweden)
Ibraheem Kasim Ibraheem
2016-10-01
Full Text Available This paper presents a new improved nonlinear tracking differentiator (INTD with hyperbolic tangent function in the state-space system. The stability and convergence of the INTD are thoroughly investigated and proved. Through the error analysis, the proposed INTD can extract differentiation of any piecewise smooth nonlinear signal to reach a high accuracy. The improved tracking differentiator (INTD has the required filtering features and can cope with the nonlinearities caused by the noise. Through simulations, the INTD is implemented as a signal’s derivative generator for the closed-loop feedback control system with a nonlinear PID controller for the nonlinear Mass-Spring-Damper system and showed that it could achieve the signal tracking and differentiation faster with a minimum mean square error.
Active Nonlinear Feedback Control for Aerospace Systems. Processor
1990-12-01
Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply Existence of a Linear Stabilizing Control ," IEEE Trans...799-802, 1985. 13. I. R. Petersen, "Quadratic Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply...Existence of a Linear Stabilizing Control ," IEEE Trans. Autom. Contr., Vol. AC-30, pp. 291-293, 1985. 14. B. R. Barmish and A. R. Galimidi
Nonlinear and cooperative control of multiple hovercraft with input constraints
Dunbar, William B.; Olfati-Saber, Reza; Richard M Murray
2003-01-01
In this paper, we introduce an approach for distributed nonlinear control of multiple hovercraft-type underactuated vehicles with bounded and unidirectional inputs. First, a bounded nonlinear controller is given for stabilization and tracking of a single vehicle, using a cascade backstepping method. Then, this controller is combined with a distributed gradient-based control for multi-vehicle formation stabilization using formation potential functions previously constructed. The vehicles are u...
Nonlinear Dynamics and Control of Flexible Structures
1991-03-01
Freedom," Ph.D. Thesis, Department of Theoretical and Applied Mechanics, Cornell University, in preparation. 5I I URI Reorts Islam , Saiful and Mircea...Theoretical and Applied Mechanics I S. Islam Civil and Environmental Engineering I 2! I 3 URI Accomplishments 3 -Nonlinear Dynamics and Chaos in Flexible...Structures with Symmetry," 31 (1991) 265-285. Islam , S. and M. Grigoriu, "Nonlinear Random Vibration of Pin-Jointed Trusses with Imperfections," in
Nonlinear terahertz metamaterials with active electrical control
Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.
2017-09-01
We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.
Analysis and design of robust decentralized controllers for nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Schoenwald, D.A.
1993-07-01
Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.
Nonlinear system identification and control based on modular neural networks.
Puscasu, Gheorghe; Codres, Bogdan
2011-08-01
A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.
Impulsive control of nonlinear systems with time-varying delays
Institute of Scientific and Technical Information of China (English)
Yu Yong-Bin; Bao Jing-Fu; Zhang Hong-Bin; Zhong Qi-Shui; Liao Xiao-Feng; Yu Jue-Sang
2008-01-01
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.
Implementation of Nonlinear Control Laws for an Optical Delay Line
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
On stability of randomly switched nonlinear systems
Chatterjee, Debasish
2007-01-01
This article is concerned with stability analysis and stabilization of randomly switched nonlinear systems. These systems may be regarded as piecewise deterministic stochastic systems: the discrete switches are triggered by a stochastic process which is independent of the state of the system, and between two consecutive switching instants the dynamics are deterministic. Our results provide sufficient conditions for almost sure global asymptotic stability using Lyapunov-based methods when individual subsystems are stable and a certain ``slow switching'' condition holds. This slow switching condition takes the form of an asymptotic upper bound on the probability mass function of the number of switches that occur between the initial and current time instants. This condition is shown to hold for switching signals coming from the states of finite-dimensional continuous-time Markov chains; our results therefore hold for Markov jump systems in particular. For systems with control inputs we provide explicit control s...
L2-gain and passivity techniques in nonlinear control
van der Schaft, Arjan
2017-01-01
This standard text gives a unified treatment of passivity and L2-gain theory for nonlinear state space systems, preceded by a compact treatment of classical passivity and small-gain theorems for nonlinear input-output maps. The synthesis between passivity and L2-gain theory is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this standpoint. The connection between L2-gain and passivity via scattering is detailed. Feedback equivalence to a passive system and resulting stabilization strategies are discussed. The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasising the close relations with physical modeling and control by interconnection, and leading to novel control methodologies going beyond passivity. The potential of L2-gain techniques in nonlinear control, including a theory of all-pass factorizations of nonlinear systems, and of parametrization...
Robust receding horizon control for networked and distributed nonlinear systems
Li, Huiping
2017-01-01
This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel ...
Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
Xiao-Yuan Luo; Zhi-Hao Zhu; Xin-Ping Guan
2009-01-01
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globaily uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
Nonlinear Control Structure of Grid Connected Modular Multilevel Converters
DEFF Research Database (Denmark)
Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza
2017-01-01
in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab/Simulink...
Nonlinear Control Structure of Grid Connected Modular Multilevel Converters
DEFF Research Database (Denmark)
Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza
2017-01-01
in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab...
Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control
Domínguez, Luis F.
2011-01-19
In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.
Adaptive control method for nonlinear time-delay processes
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two complex properties,varying time-delay and block-oriented nonlinearity,are very common in chemical engineering processes and not easy to be controlled by routine control methods.Aimed at these two complex properties,a novel adaptive control algorithm the basis of nonlinear OFS(orthonormal functional series) model is proposed.First,the hybrid model which combines OFS and Volterra series is introduced.Then,a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors.Finally,control simulations and experiments on a nonlinear process with varying time-delay are presented.A number of experimental results validate the efficiency and superiority of this algorithm.
A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings
Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.
1996-01-01
A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.
Primary exploration of nonlinear information fusion control theory
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By introducing information fusion techniques into a control field, a new theory of information fusion control (IFC) is proposed. Based on the theory of information fusion estimation, optimal control of nonlinear discrete control system is investigated. All information on control strategy, including ideal control strategy, expected object trajectory and dynamics of system, are regarded as measuring information of control strategy. Therefore, the problem of optimal control is transferred into the one of information fusion estimation. Firstly, the nonlinear information fusion estimation theorems are described. Secondly, an algorithm of nonlinear IFC theory is detailedly deduced. Finally, the simulation results of manipulator shift control are given, which show the feasibility and effectiveness of the presented algorithm.
Controllable spatiotemporal nonlinear effects in multimode fibres
Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.
2015-05-01
Multimode fibres are of interest for next-generation telecommunications systems and the construction of high-energy fibre lasers. However, relatively little work has explored nonlinear pulse propagation in multimode fibres. Here, we consider highly nonlinear ultrashort pulse propagation in the anomalous-dispersion regime of a graded-index multimode fibre. Low modal dispersion and strong nonlinear coupling between the fibre's many spatial modes result in interesting behaviour. We observe spatiotemporal effects reminiscent of nonlinear optics in bulk media—self-focusing and multiple filamentation—at a fraction of the usual power. By adjusting the spatial initial conditions, we generate on-demand, megawatt, ultrashort pulses tunable between 1,550 and 2,200 nm dispersive waves over one octave; intense combs of visible light; and a multi-octave-spanning supercontinuum. Our results indicate that multimode fibres present unique opportunities for observing new spatiotemporal dynamics and phenomena. They also enable the realization of a new type of tunable, broadband fibre source that could be useful for many applications.
Stabilization and Control Models of Systems With Hysteresis Nonlinearities
Directory of Open Access Journals (Sweden)
Mihail E. Semenov
2012-05-01
Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.
Approximate viability for nonlinear evolution inclusions with application to controllability
Directory of Open Access Journals (Sweden)
Omar Benniche
2016-12-01
Full Text Available We investigate approximate viability for a graph with respect to fully nonlinear quasi-autonomous evolution inclusions. As application, an approximate null controllability result is given.
Robust adaptive control of nonlinearly parameterized systems with unmodeled dynamics
Institute of Scientific and Technical Information of China (English)
LIU Yu-sheng; CHEN Jiang; LI Xing-yuan
2006-01-01
Many physical systems such as biochemical processes and machines with friction are of nonlinearly parameterized systems with uncertainties.How to control such systems effectively is one of the most challenging problems.This paper presents a robust adaptive controller for a significant class of nonlinearly parameterized systems.The controller can be used in cases where there exist parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The design of the controller is based on the control Lyapunov function method.A dynamic signal is introduced and adaptive nonlinear damping terms are used to restrain the effects of unmodeled dynamics,nonlinear uncertainties and unknown bounded disturbances.The backstepping procedure is employed to overcome the complexity in the design.With the proposed method,the estimation of the unknown parameters of the system is not required and there is only one adaptive parameter no matter how high the order of the system is and how many unknown parameters.there are.It is proved theoretically that the proposed robust adaptive control scheme guarantees the stability of nonlinearly parameterized system.Furthermore,all the states approach the equilibrium in arbitrary precision by choosing some design constants appropriately.Simulation results illustrate the effectiveness of the proposed robust adaptive controller.
Nonlinear Observers for Gyro Calibration Coupled with a Nonlinear Control Algorithm
Thienel, Julie; Sanner, Robert M.
2003-01-01
Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The observers are then combined. The convergence properties of all three observers, and the combined observers, are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.
Optimal nonlinear feedback control of quasi-Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
朱位秋; 应祖光
1999-01-01
An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.
Nonlinear systems techniques for dynamical analysis and control
Lefeber, Erjen; Arteaga, Ines
2017-01-01
This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participan...
Nonlinear inversion flight control for a supermaneuverable aircraft
Snell, S. Antony; Garrard, William L., Jr.; Enns, Dale F.
1990-01-01
This paper describes the use of nonlinear dynamic inversion for the design of a flight control system for a supermaneuverable aircraft. First, the dynamics to be controlled were separated into fast and slow variables. The fast variables were the angular rates and the slow variables were the attitude angles. Then a nonlinear inversion controller was designed for the fast variables. This stabilized the longitudinal short-period and improved the lateral-directional responses over a wide range of angle of attack by making use of a combination for aerodynamic surfaces and thrust vectoring control. Outer loops were then closed to allow the pilot to control the slow dynamics, the angle of attack, side-slip angle and the velocity bank angle. Nonlinear inversion was also used to design of the outer loop control laws. The dynamic inversion control laws were compared with more conventional, gain-scheduled control laws and were shown to yield much better performance.
Aircraft nonlinear optimal control using fuzzy gain scheduling
Nusyirwan, I. F.; Kung, Z. Y.
2016-10-01
Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly nonlinear region of flight dynamics is determined throughout the examination of eigenvalues and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the optimal control for command tracking, the pitch rate stability augmented system is constructed and the longitudinal flight control system is established. The outputs of optimal control for 21 linear systems are fed into the fuzzy gain scheduler. This research explores the capability in using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is carried out to determine the effectiveness and performance of the entire flight control system. The simulation results show that the fuzzy gain scheduling technique is able to perform in real time to find near optimal control law in various flying conditions.
Nonlinear identification and control a neural network approach
Liu, G P
2001-01-01
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies . . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series otTers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The time for nonlinear control to enter routine application seems to be approaching. Nonlinear control has had a long gestation period but much ofthe past has been concerned with methods that involve formal nonlinear functional model representations. It seems more likely that the breakthough will come through the use of other more flexible and ame...
Nonlinear Spectral-Spatial Control and Localization of Supercontinuum Radiation
Neshev, Dragomir N.; Sukhorukov, Andrey A.; Dreischuh, Alexander; Fischer, Robert; Ha, Sangwoo; Bolger, Jeremy; Bui, Lam; Krolikowski, Wieslaw; Eggleton, Benjamin J.; Mitchell, Arnan; Austin, Michael W.; Kivshar, Yuri S.
2007-09-01
We present the first observation of spatiospectral control and localization of supercontinuum light through the nonlinear interaction of spectral components in extended periodic structures. We use an array of optical waveguides in a LiNbO3 crystal and employ the interplay between diffraction and nonlinearity to dynamically control the output spectrum of the supercontinuum radiation. This effect presents an efficient scheme for optically tunable spectral filtering of supercontinua.
A Unified Pseudospectral Framework for Nonlinear Controller and Observer Design
Gong, Qi; Ross, I. Michael; Kang,Wei
2007-01-01
Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square New York City, USA, July 11-13, 2007 As a result of significant progress in pseudospectral methods for real-time dynamic optimization, it has become apparent in recent years that it is possible to present a unified framework for both controller and observer design. In this paper, we present such an approach for nonlinear systems. The method can be applied to a wide variety of nonlinear systems....
Research on Robust Control of Nonlinear Fuzzy VSS for Spacecraft
Institute of Scientific and Technical Information of China (English)
DONG Shou-quan; BI Kai-bo
2007-01-01
The nonlinear dynamic system of spacecraft with uncertainty and coupling is analyzed and its general dynamical equation is given. The decoupling-ability and controllability are proved. Aiming at this system, a new nonlinear decoupling controlling method is put forward by synthetically using the variable structure and fuzzy theory. The simulation results show that this method is effective in tracking performances under the existence of uncertainty and outer disturbance.
Fuzzy Sliding Mode Control for Discrete Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
F.Qiao.Q.M.Zhu; A.Winfield; C.Melhuish
2003-01-01
Sliding mode control is introduced into classical model free fuzzy logic control for discrete time nonlinear systems with uncertainty to the design of a novel fuzzy sliding mode control to meet the requirement of necessary and sufficient reaching conditions of sliding mode control. The simulation results show that the proposed controller outperforms the original fuzzy sliding mode controller and the classical fuzzy logic controller in stability, convergence and robustness.
Nonlinear Integral Sliding Mode Control for a Second Order Nonlinear System
Directory of Open Access Journals (Sweden)
Xie Zheng
2015-01-01
Full Text Available A nonlinear integral sliding-mode control (NISMC scheme is proposed for second order nonlinear systems. The new control scheme is characterized by a nonlinear integral sliding manifold which inherits the desired properties of the integral sliding manifold, such as robustness to system external disturbance. In particular, compared with four kinds of sliding mode control (SMC, the proposed control scheme is able to provide better transient performances. Furthermore, the proposed scheme ensures the zero steady-state error in the presence of a constant disturbance or an asymptotically constant disturbance is proved by Lyapunov stability theory and LaSalle invariance principle. Finally, both the theoretical analysis and simulation examples demonstrate the validity of the proposed scheme.
Lyapunov-Based Feedback Preparation of GHZ Entanglement of N-Qubit Systems.
Liu, Yanan; Kuang, Sen; Cong, Shuang
2016-07-09
The Greenberger-Horne-Zeilinger (GHZ) entangled states are a typical class of entangled states in multiparticle systems and play an important role in the applications of quantum communication and quantum computation. For a general quantum system of N qubits, degenerate measurement operators are often met, which cause the convergence obstacle in the state preparation or stabilization problem. This paper first generalizes the traditional quantum state continuous reduction theory to the case of a degenerate measurement operator and chooses a measurement operator for an arbitrarily given target GHZ entangled state, then presents a state stabilization control strategy based on the Lyapunov method and achieves the feedback preparation of the target GHZ state. In our stabilization strategy, we separate the target GHZ state and all the other GHZ states that often form the equilibrium points of the closed-loop system by dividing the state space into several different regions; and formally design a switching control law between the regions, which contains the control Hamiltonians to be constructed. By analyzing the stability of the closed-loop system in the different regions, we propose a systematic method for constructing the control Hamiltonians and solve the convergence problem caused by the degenerate measurement operator. The global stability of the whole closed-loop stochastic system is strictly proved. Also, we perform some simulation experiments on a three-qubit system and prepare a three-qubit GHZ entangled state. At the same time, the simulation results show the effectiveness of the switching control law and the construction method for the control Hamiltonians proposed in this paper.
Nonlinear propagation and control of acoustic waves in phononic superlattices
Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J
2015-01-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.
Contribution to stability analysis of nonlinear control systems
Directory of Open Access Journals (Sweden)
varc Ivan
2003-12-01
Full Text Available The Popov criterion for the stability of nonlinear control systems is considered. The Popov criterion gives sufficient conditions for stability of nonlinear systems in the frequency domain. It has a direct graphical interpretation and is convenient for both design and analysis. In the article presented, a table of transfer functions of linear parts of nonlinear systems is constructed. The table includes frequency response functions and offers solutions to the stability of the given systems. The table makes a direct stability analysis of selected nonlinear systems possible. The stability analysis is solved analytically and graphically.Then it is easy to find out if the nonlinear system is or is not stable; the task that usually ranks among the difficult task in engineering practice.
Nonlinear control of chaotic systems:A switching manifold approach
Directory of Open Access Journals (Sweden)
Jin-Qing Fang
2000-01-01
Full Text Available In this paper, a switching manifold approach is developed for nonlinear feed-back control of chaotic systems. The design strategy is straightforward, and the nonlinear control law is the simple bang–bang control. Yet, this control method is very effective; for instance, several desired equilibria can be stabilized by using one control law with different initial conditions. Its effectiveness is verified by both theoretical analysis and numerical simulations. The Lorenz system simulation is shown for the purpose of illustration.
Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.
Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua
2016-11-14
In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.
Quantized pressure control in large-scale nonlinear hydraulic networks
Persis, Claudio De; Kallesøe, Carsten Skovmose; Jensen, Tom Nørgaard
2010-01-01
It was shown previously that semi-global practical pressure regulation at designated points of a large-scale nonlinear hydraulic network is guaranteed by distributed proportional controllers. For a correct implementation of the control laws, each controller, which is located at these designated poin
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...
Nonlinear Control of Heart Rate Variability in Human Infants
Sugihara, George; Allan, Walter; Sobel, Daniel; Allan, Kenneth D.
1996-03-01
Nonlinear analyses of infant heart rhythms reveal a marked rise in the complexity of the electrocardiogram with maturation. We find that normal mature infants (gestation >= 35 weeks) have complex and distinctly nonlinear heart rhythms (consistent with recent reports for healthy adults) but that such nonlinearity is lacking in preterm infants (gestation parasympathetic-sympathetic interaction and function are presumed to be less well developed. Our study further shows that infants with clinical brain death and those treated with atropine exhibit a similar lack of nonlinear feedback control. These three lines of evidence support the hypothesis championed by Goldberger et al. [Goldberger, A. L., Rigney, D. R. & West, B. J. (1990) Sci. Am. 262, 43-49] that autonomic nervous system control underlies the nonlinearity and possible chaos of normal heart rhythms. This report demonstrates the acquisition of nonlinear heart rate dynamics and possible chaos in developing human infants and its loss in brain death and with the administration of atropine. It parallels earlier work documenting changes in the variability of heart rhythms in each of these cases and suggests that nonlinearity may provide additional power in characterizing physiological states.
Tracking Control for Switched Cascade Nonlinear Systems
Directory of Open Access Journals (Sweden)
Xiaoxiao Dong
2015-01-01
Full Text Available The issue of H∞ output tracking for switched cascade nonlinear systems is discussed in this paper, where not all the linear parts of subsystems are stabilizable. The conditions of the solvability for the issue are given by virtue of the structural characteristics of the systems and the average dwell time method, in which the total activation time for stabilizable subsystems is longer than that for the unstabilizable subsystems. At last, a simulation example is used to demonstrate the validity and advantages of the proposed approach.
Nonlinear Predictive Control for PEMFC Stack Operation Temperature
Institute of Scientific and Technical Information of China (English)
LI Xi; CAO Guang-yi; ZHU Xin-jian
2005-01-01
Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.
Nonlinear Direct Robust Adaptive Control Using Lyapunov Method
Directory of Open Access Journals (Sweden)
Chunbo Xiu
2013-07-01
Full Text Available The problem of robust adaptive stabilization of a class of multi-input nonlinear systems with arbitrary unknown parameters and unknown structure of bounded variation have been considered. By employing the direct adaptive and control Lyapunov function method, a robust adaptive controller is designed to complete the globally adaptive stability of the system states. By employing our result, a kind of nonlinear system is analyzed, the concrete form of the control law is given and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of parallel manipulator is provided to illustrate the effectiveness of the proposed method.
A non-linear UAV altitude PSO-PD control
Orlando, Calogero
2015-12-01
In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.
Robust stabilization for a class of nonlinear networked control systems
Institute of Scientific and Technical Information of China (English)
Jinfeng GAO; Hongye SU; Xiaofu JI; Jian CHU
2008-01-01
The problem of robust stabilization for a class of uncertain networked control systems(NCSs)with nonlinearities satisfying a given sector condition is investigated in this paper.By introducing a new model of NCSs with parameter uncertainty,network.induced delay,nonlinearity and data packet dropout in the transmission,a strict linear matrix inequality(LMI)criterion is proposed for robust stabilization of the uncenmn nonlinear NCSs based on the Lyapunov stability theory.The maximum allowable transfer interval(MATI)can be derived by solving the feasibility problem of the corresponding LMI.Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.
Control design approaches for nonlinear systems using multiple models
Institute of Scientific and Technical Information of China (English)
Junyong ZHAI; Shumin FEI; Feipeng DA
2007-01-01
It is difficult to realize control for some complex nonlinear systems operated in different operating regions.Based on developing local models for different operating regions of the process, a novel algorithm using multiple models is proposed. It utilizes dynamic model bank to establish multiple local models, and their membership functions are defined according to respective regions. Then the nonlinear system is approximated to a weighted combination of the local models.The stability of the nonlinear system is proven. Finally, simulations are given to demonstrate the validity of the proposed method.
Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.
Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G
2016-07-01
We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.
Variable structure control of nonlinear systems through simplified uncertain models
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
Mathematical Systems Theory : from Behaviors to Nonlinear Control
Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien
2015-01-01
This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Hierarchical robust nonlinear switching control design for propulsion systems
Leonessa, Alexander
1999-09-01
The desire for developing an integrated control system- design methodology for advanced propulsion systems has led to significant activity in modeling and control of flow compression systems in recent years. In this dissertation we develop a novel hierarchical switching control framework for addressing the compressor aerodynamic instabilities of rotating stall and surge. The proposed control framework accounts for the coupling between higher-order modes while explicitly addressing actuator rate saturation constraints and system modeling uncertainty. To develop a hierarchical nonlinear switching control framework, first we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. Using the generalized Lyapunov and invariant set theorems, a nonlinear control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving system equilibria is developed. Specifically, using equilibria- dependent Lyapunov functions, a hierarchical nonlinear control strategy is developed that stabilizes a given nonlinear system by stabilizing a collection of nonlinear controlled subsystems. The switching nonlinear controller architecture is designed based on a generalized lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized system equilibria. The proposed framework provides a
Certainty equivalence adaptation combined with super-twisting sliding-mode control
Barth, A.; Reichhartinger, M.; Wulff, K.; Horn, M.; Reger, J.
2016-09-01
In this paper, a Lyapunov-based control concept is presented that combines variable structure and adaptive control. The considered system class consists of nonlinear single input systems which are affected by matched structured and unstructured uncertainties. Resorting to the certainty equivalence principle, the controller exploits advantages of both the sliding-mode and the adaptive control methodology. It is demonstrated that the gains of the discontinuous control action may be reduced remarkably when compared with pure sliding-mode-based approaches. The efficiency of the presented concept is demonstrated in detail, using results of numerical simulations.
Output Feedback Control for a Class of Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
Keylan Alimhan; Hiroshi Inaba
2006-01-01
This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly known. Using a feedback domination design method, we explicitly construct a dynamic output compensator which globally stabilizes such an uncertain nonlinear system. The usefulness of our result is illustrated with an example.
Digital set point control of nonlinear stochastic systems
Moose, R. L.; Vanlandingham, H. F.; Zwicke, P. E.
1978-01-01
A technique for digital control of nonlinear stochastic plants is presented. The development achieves a practical digital algorithm with which the closed-loop system behaves in a classical Type I manner even with gross nonlinearities in the plant structure and low signal-to-noise power ratios. The design procedure is explained in detail and illustrated by an example whose simulated responses testify to the practicality of the approach.
Nonlinear analysis and control of a continuous fermentation process
DEFF Research Database (Denmark)
Szederkényi, G.; Kristensen, Niels Rode; Hangos, K.M
2002-01-01
open-loop system properties, to explore the possible control difficulties and to select the system output to be used in the control structure. A wide range of controllers are tested including pole placement and LQ controllers, feedback and input–output linearization controllers and a nonlinear...... controller based on direct passivation. The comparison is based on time-domain performance and on investigating the stability region, robustness and tuning possibilities of the controllers. Controllers using partial state feedback of the substrate concentration and not directly depending on the reaction rate...... are recommended for the simple fermenter. Passivity based controllers have been found to be globally stable, not very sensitive to the uncertainties in the reaction rate and controller parameter but they require full nonlinear state feedback....
Nonlinear Robust Control Theory and Applications
1997-01-18
IEEE Transactions on Automatic Control , pp. 228-238...34Robustness in the presence of mixed parametric uncertainty and unmodelled dynamics," IEEE Transactions on Automatic Control , pp. 25-38, 1991. 8 [10...Letter, 1994. [14] B. Moore, "Principal component analysis of linear systems: Controllability, observ- ability and model reduction," IEEE Transactions on Automatic Control ,
Theory, Methods, and Applications of Nonlinear Control
2012-08-29
IEEE Transactions on Automatic Control , Volume...tracking control using input-to-state stability,” IEEE Transactions on Automatic Control , Volume 57, Number 5, May 2012, pp. 1320-1326. [MZ12a... Transactions on Automatic Control , Volume 55, Number 4, April 2010, pp. 841-854. 4 [MM10b] Mazenc, F., and M. Malisoff, “Stabilization of
Dichotomy of nonlinear systems: Application to chaos control of nonlinear electronic circuit
Energy Technology Data Exchange (ETDEWEB)
Wang Jinzhi [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)]. E-mail: jinzhiw@pku.edu.cn; Duan Zhisheng [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China); Huang Lin [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)
2006-02-27
In this Letter a new method of chaos control for Chua's circuit and the modified canonical Chua's electrical circuit is proposed by using the results of dichotomy in nonlinear systems. A linear feedback control based on linear matrix inequality (LMI) is given such that chaos oscillation or hyperchaos phenomenon of circuit systems injected control signal disappear. Numerical simulations are presented to illustrate the efficiency of the proposed method.
Nonlinear Control and Discrete Event Systems
Meyer, George; Null, Cynthia H. (Technical Monitor)
1995-01-01
As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possesses much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.
Active control of chirality in nonlinear metamaterials
Energy Technology Data Exchange (ETDEWEB)
Zhu, Yu; Chai, Zhen; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)
2015-03-02
An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm{sup 2} weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors.
Terminal Sliding Modes In Nonlinear Control Systems
Venkataraman, Subramanian T.; Gulati, Sandeep
1993-01-01
Control systems of proposed type called "terminal controllers" offers increased precision and stability of robotic operations in presence of unknown and/or changing parameters. Systems include special computer hardware and software implementing novel control laws involving terminal sliding modes of motion: closed-loop combination of robot and terminal controller converge, in finite time, to point of stable equilibrium in abstract space of velocity and/or position coordinates applicable to particular control problem.
Controlling nonlinear waves in excitable media
Energy Technology Data Exchange (ETDEWEB)
Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)
2009-01-30
A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.
Nonlinear State Space Modeling and System Identification for Electrohydraulic Control
Directory of Open Access Journals (Sweden)
Jun Yan
2013-01-01
Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.
Variable universe stable adaptive fuzzy control of nonlinear system
Institute of Scientific and Technical Information of China (English)
李洪兴; 苗志宏; 王加银
2002-01-01
A kind of stable adaptive fuzzy control of nonlinear system is implemented using variable universe method. First of all, the basic structure of variable universe adaptive fuzzy controllers is briefly introduced. Then the contraction-expansion factor that is a key tool of variable universe method is defined by means of integral regulation idea, and a kind of adaptive fuzzy controllers is designed by using such a contraction-expansion factor. The simulation on first order nonlinear system is done. Secondly, it is proved that the variable universe adaptive fuzzy control is asymptotically stable by use of Lyapunov theory. The simulation on the second order nonlinear system shows that its simulation effect is also quite good. Finally a useful tool, called symbolic factor, is proposed, which may be of universal significance. It can greatly reduce the settling time and enhance the robustness of the system.
Controlling chaos based on an adaptive nonlinear compensator mechanism
Institute of Scientific and Technical Information of China (English)
Tian Ling-Ling; Li Dong-Hai; Sun Xian-Fang
2008-01-01
The control problems of chaotic systems are investigated in the presence of parametric uncertainty and persistent external disturbances based on nonlinear control theory.By using a designed nonlinear compensator mechanism,the system deterministic nonlinearity,parametric uncertainty and disturbance effect can be compensated effectively.The renowned chaotic Lorenz system subjected to parametric variations and external disturbances is studied as an illustrative example.From the Lyapunov stability theory,sufficient conditions for choosing control parameters to guarantee chaos control are derived.Several experiments are carried out,including parameter change experiments,set-point change experiments and disturbance experiments.Simulation results indicate that the chaotic motion can be regulated not only to steady states but also to any desired periodic orbits with great immunity to parametric variations and external disturbances.
Neural networks for function approximation in nonlinear control
Linse, Dennis J.; Stengel, Robert F.
1990-01-01
Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.
Nonlinear H-infinity control of nuclear steam generators
Ramalho, Fernando Pinto
Motivated by the fact that problems related to the control of steam generators are responsible for a significant amount of downtime in nuclear power plants, this thesis investigates the applicability of linear and nonlinear Hinfinity theory to the control of nuclear steam generators. A nonlinear model based on mass, energy, and momentum balances was developed for a U-tube steam generator, with the water level and steam quality at the exit of the riser considered as state variables. In this model the steam flow to the turbines and the heat flow from the primary to the secondary side are represented as disturbances affecting the system, while the feedwater flow is used to compensate for changes in the water level. The performance specifications for the feedback loop are encoded using weight functions incorporated into an augmented plant, and the control problem is formulated to minimize the effects of disturbances on the controlled variables. The solution of the optimization problem is reduced to the solution of a set of differential equations, which, in the linear case, is equivalent to the solution of Riccati equations. The linear Hinfinity controller and filter were obtained for the U-tube steam generator with and without weight functions, and simulations for a 50 s ramp transient resulting in 50% decrease in the heat and steam flows were performed over 300 s. The use of weights provided less variation in the water level, and an excellent noise rejection capability was observed. For the nonlinear Hinfinity formulation a finite-difference method was used to solve the state and costate equations numerically for optimal feedwater flow minimizing water level variations. The combined solution of the state equation in the forward direction and the costate equations in the backward direction converged in 10 iteractions. The nonlinear controller results in less variation in the water level than the corresponding linear Hinfinity controller, demonstrating the feasibility
Robust Adaptive Control of Multivariable Nonlinear Systems
2011-03-28
IEEE Transactions on Automatic Control , 42(9): 1200-1221, 1997. 6. D. Li, N. Hovakimyan...limitations of performance,” IEEE Transactions on Automatic Control , vol. 52, no. 7, pp. 1604–1615, 2008. 8. X. Wang, N. Hovakimyan, 1L Adaptive...550-564, 2010. 5. C. Cao, N. Hovakimyan, Stability Margins of 1L Adaptive Control Architecture, IEEE Transactions on Automatic Control , vol. 55,
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
UAV Formation Flight Based on Nonlinear Model Predictive Control
Directory of Open Access Journals (Sweden)
Zhou Chao
2012-01-01
Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.
Exact controllability for a nonlinear stochastic wave equation
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are L 2 ( G × H −1 ( G with G being a bounded open subset of R 3 and the nonlinear terms having at most a linear growth.
Control Lyapunov Stabilization of Nonlinear Systems with Structural Uncertainty
Institute of Scientific and Technical Information of China (English)
CAI Xiu-shan; HAN Zheng-zhi; TANG Hou-jun
2005-01-01
This paper deals with global stabilization problem for the nonlinear systems with structural uncertainty.Based on control Lyapunov function, a sufficient and necessary condition for the globally and asymptotically stabilizing the equailibrium of the closed system is given. Moreovery, an almost smooth state feedback control law is constructed. The simulation shows the effectiveness of the method.
Nonlinear Passive Control and Observer Design for Ships
Directory of Open Access Journals (Sweden)
Thor Inge Fossen
2000-07-01
Full Text Available Starting with passivity of the ambient water-ship system this article proceeds with nonlinear observer design, design of dynamic ship positioning systems and weather optimal positioning control systems exploiting the passivity properties of the vessel and the surrounding water. The article gives an overview of methods for passive ship control and observer design.
On a state space approach to nonlinear H∞ control
Schaft, van der A.J.
1991-01-01
We study the standard H∞ optimal control problem using state feedback for smooth nonlinear control systems. The main theorem obtained roughly states that the L2-induced norm (from disturbances to inputs and outputs) can be made smaller than a constant γ > 0 if the corresponding H∞ norm for the syste
Discontinuous stabilization of nonlinear systems : Quantized and switching controls
Ceragioli, Francesca; De Persis, Claudio
2007-01-01
In this paper we consider the classical problem of stabilizing nonlinear systems in the case the control laws take values in a discrete set. First, we present a robust control approach to the problem. Then, we focus on the class of dissipative systems and rephrase classical results available for thi
Nonlinear Superheat Control of a Refrigeration Plant using Backstepping
DEFF Research Database (Denmark)
Rasmussen, Henrik
2008-01-01
This paper proposes a novel method for superheat and capacity control of refrigeration systems. The main idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...
GA-Based Fuzzy Sliding Mode Controller for Nonlinear Systems
Directory of Open Access Journals (Sweden)
W. L. Chiang
2008-11-01
Full Text Available Generally, the greatest difficulty encountered when designing a fuzzy sliding mode controller (FSMC or an adaptive fuzzy sliding mode controller (AFSMC capable of rapidly and efficiently controlling complex and nonlinear systems is how to select the most appropriate initial values for the parameter vector. In this paper, we describe a method of stability analysis for a GA-based reference adaptive fuzzy sliding model controller capable of handling these types of problems for a nonlinear system. First, we approximate and describe an uncertain and nonlinear plant for the tracking of a reference trajectory via a fuzzy model incorporating fuzzy logic control rules. Next, the initial values of the consequent parameter vector are decided via a genetic algorithm. After this, an adaptive fuzzy sliding model controller, designed to simultaneously stabilize and control the system, is derived. The stability of the nonlinear system is ensured by the derivation of the stability criterion based upon Lyapunov's direct method. Finally, an example, a numerical simulation, is provided to demonstrate the control methodology.
Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2015-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952
Dielectric Optical-Controlled Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Zheng, Yuanlin; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2014-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive index. Recent advancements in nanotechnology enable novel lenses, such as, superlens, hyperlens, Luneburg lens, with sub-wavelength resolution capabilities by specially designing materials' refractive indices with meta-materials and transformation optics. However, these artificially nano/micro engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here we experimentally demonstrate for the first time a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applicat...
Control Configuration Selection for Multivariable Nonlinear Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza; Komareji, Mohammad
2012-01-01
Control configuration selection is the procedure of choosing the appropriate input and output pairs for the design of SISO (or block) controllers. This step is an important prerequisite for a successful industrial control strategy. In industrial practices, it is often the case that systems, which...
Control of Non-linear Marine Cooling System
DEFF Research Database (Denmark)
Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon
2011-01-01
We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....
Nonlinear vibration with control for flexible and adaptive structures
Wagg, David
2015-01-01
This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...
Nonlinear control for a class of hydraulic servo system
Institute of Scientific and Technical Information of China (English)
余宏; 冯正进; 王旭永
2004-01-01
The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.
Nonlinear control for a class of hydraulic servo system
Institute of Scientific and Technical Information of China (English)
余宏; 冯正进; 王旭永
2004-01-01
The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening,friction,etc. Aside from the nonlinear nature of hydraulic dynamics,hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues,a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well,and all signals in the closed-loop system remain bounded. Moreover,a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers,this paper's robust controller based on backstepping recursive design method is easier to design,and is more suitable for implementation.
Controlling ultrafast currents by the non-linear photogalvanic effect
Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim
2015-01-01
We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.
Robust adaptive output feedback control of nonlinearly parameterized systems
Institute of Scientific and Technical Information of China (English)
LIU Yusheng; LI Xingyuan
2007-01-01
The ideas of adaptive nonlinear damping and changing supply functions were used to counteract the effects of parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The high-gain observer was used to estimate the state of the system.A robust adaptive output feedback control scheme was proposed for nonlinearly parameterized systems represented by inputoutput models.The scheme does not need to estimate the unknown parameters nor add a dynamical signal to dominate the effects of unmodeled dynamics.It is proven that the proposed control scheme guarantees that all the variables in the closed-loop system are bounded and the mean-square tracking error can be made arbitrarily small by choosing some design parameters appropriately.Simulation results have illustrated the effectiveness of the proposed robust adaptive control scheme.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Parameterized design of nonlinear feedback controllers for servo positioning systems
Institute of Scientific and Technical Information of China (English)
Cheng Guoyang; Jin Wenguang
2006-01-01
To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.
Transient stability improvement by nonlinear controllers based on tracking
Energy Technology Data Exchange (ETDEWEB)
Ramirez, Juan M. [Centro de Investigacion y Estudios Avanzados, Guadalajara, Mexico. Av. Cientifica 1145. Col. El Bajio. Zapopan, Jal. 45015 (Mexico); Arroyave, Felipe Valencia; Correa Gutierrez, Rosa Elvira [Universidad Nacional de Colombia, Sede Medellin. Facultad de Minas, Escuela de Mecatronica (Colombia)
2011-02-15
This paper deals with the control problem in multi-machine electric power systems, which represent complex great scale nonlinear systems. Thus, the controller design is a challenging problem. These systems are subjected to different perturbations, such as short circuits, connection and/or disconnection of loads, lines, or generators. Then, the utilization of controllers which guarantee good performance under those perturbations is required in order to provide electrical energy to the loads with admissible stability margins. The proposed controllers are based on a systematic strategy, which calculate nonlinear controllers for generating units in a power plant, both for voltage and velocity regulation. The formulation allows designing controllers in a multi-machine power system without intricate calculations. Results on a power system of the open research indicate the proposition's suitability. The problem is formulated as a tracking problem. The designed controllers may be implemented in any electric power system. (author)
Optimization of nonlinear controller with an enhanced biogeography approach
Directory of Open Access Journals (Sweden)
Mohammed Salem
2014-07-01
Full Text Available This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced Biogeography Based Optimization (BBO approach. Indeed, The BBO is combined to a predator and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and BBO.
Nonlinear Dynamics and Control of Flexible Structures
1990-10-10
control problem is to drive the outputs asymptotically to zero. Since output regulation problem seeks to enforce the set of constraints I hi() = , i = 1...K an m x m constant matrix, solves the output regulation problem if sliding can be achieved. In sliding the equivalent control is, Uq = -B(x)-KAz - B
Motor Control Research Requires Nonlinear Dynamics
Guastello, Stephen J.
2006-01-01
The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…
Motor Control Research Requires Nonlinear Dynamics
Guastello, Stephen J.
2006-01-01
The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…
Nonlinear Control Strategies for Bioprocesses: Sliding Mode Control versus Vibrational Control
Selisteanu, Dan; Petre, Emil; Popescu, Dorin; Bobasu, Eugen
2008-01-01
In this work, two nonlinear high-frequency control strategies for bioprocesses are proposed: a feedback sliding mode control law and a vibrational control strategy. In order to implement these strategies, a prototype bioprocess that is carried out in a Continuous Stirred Tank Bioreactor was considered. First, a discontinuous feedback law was designed using the exact linearization and by imposing a SMC that stabilizes the output of the bioprocess. When some state variables used in the control ...
A nonlinear regression model-based predictive control algorithm.
Dubay, R; Abu-Ayyad, M; Hernandez, J M
2009-04-01
This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....
Adaptive Fuzzy Containment Control for Uncertain Nonlinear Multiagent Systems
Directory of Open Access Journals (Sweden)
Yang Yu
2014-01-01
Full Text Available This paper considers the containment control problem for uncertain nonlinear multiagent systems under directed graphs. The followers are governed by nonlinear systems with unknown dynamics while the multiple leaders are neighbors of a subset of the followers. Fuzzy logic systems (FLSs are used to identify the unknown dynamics and a distributed state feedback containment control protocol is proposed. This result is extended to the output feedback case, where observers are designed to estimate the unmeasurable states. Then, an output feedback containment control scheme is presented. The developed state feedback and output feedback containment controllers guarantee that the states of all followers converge to the convex hull spanned by the dynamic leaders. Based on Lyapunov stability theory, it is proved that the containment control errors are uniformly ultimately bounded (UUB. An example is provided to show the effectiveness of the proposed control method.
Adaptive Control of Nonlinear Flexible Systems
1993-01-18
disturbances. The following example illustrates the need for a robust state-feedback law and the sensi- tivity of the exact - linearization based control law... exact linearization , one can bring an input-output approach to a particular case of certainty- equivalence based adaptive control design. We now...are available for this model, exact linearization can be performed. Let C(s) be the compensator that is being used so far in the previous three
INTERVAL ROBUST CONTROL FOR NONLINEAR FLAT SYSTEMS
2013-01-01
Esta tesis se enfoca principalmente en el control robusto de sistemas no lineales planos. El objetivo principal es determinar una familia de controladores robustos con la finalidad de asegurar el cumplimiento de un conjunto de especificaciones deseadas bajo incertidumbre paramétrica en el proceso. La familia de controladores robustos se determina con un nuevo enfoque de control robusto posibilistico conjuntamente con la teoría de los sistemas planos. Las especificaciones e incertidumbre param...
Model algorithm control using neural networks for input delayed nonlinear control system
Institute of Scientific and Technical Information of China (English)
Yuanliang Zhang; Kil To Chong
2015-01-01
The performance of the model algorithm control method is partial y based on the accuracy of the system’s model. It is diffi-cult to obtain a good model of a nonlinear system, especial y when the nonlinearity is high. Neural networks have the ability to“learn”the characteristics of a system through nonlinear mapping to rep-resent nonlinear functions as wel as their inverse functions. This paper presents a model algorithm control method using neural net-works for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one pro-duces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to il ustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.
Grid-connected of photovoltaic module using nonlinear control
DEFF Research Database (Denmark)
El Fadil, H.; Giri, F.; Guerrero, Josep M.
2012-01-01
The problem of controlling single-phase grid connected photovoltaic (PV) system is considered. The control objective is fourfold: (i) asymptotic stability of the closed loop system, (ii) maximum power point tracking (MPPT) of PV module (iii) tight regulation of the DC bus voltage, and (iv) unity......, for the nonlinear characteristic of PV panel. It is formally shown, through theoretical analysis and simulation results, that the proposed controller does achieve its objectives....
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....
Nonlinear Control of Induction Motors: A Performance Study
DEFF Research Database (Denmark)
Rasmussen, Henrik; Vadstrup, P.; Børsting, H.
1998-01-01
A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers...... for the field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance...
Controller Design of High Order Nonholonomic System with Nonlinear Drifts
Institute of Scientific and Technical Information of China (English)
Xiu-Yun Zheng; Yu-Qiang Wu
2009-01-01
A controller design is proposed for a class of high order nonholonomic systems with nonlinear drifts. The purpose is to ensure a solution for the closed-loop system regulated to zero. Adding a power integrator backstepping technique and the switching control strategy are employed to design the controller. The state scaling is applied to the recursive manipulation. The simulation example demonstrates the effectiveness and robust features of the proposed method.
Neuro-fuzzy predictive control for nonlinear application
Institute of Scientific and Technical Information of China (English)
CHEN Dong-xiang; WANG Gang; LV Shi-xia
2008-01-01
Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to re-duce the model errors caused by changes of the process under control. To cope with the difficult problem of non-linear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition.
Input-output-controlled nonlinear equation solvers
Padovan, Joseph
1988-01-01
To upgrade the efficiency and stability of the successive substitution (SS) and Newton-Raphson (NR) schemes, the concept of input-output-controlled solvers (IOCS) is introduced. By employing the formal properties of the constrained version of the SS and NR schemes, the IOCS algorithm can handle indefiniteness of the system Jacobian, can maintain iterate monotonicity, and provide for separate control of load incrementation and iterate excursions, as well as having other features. To illustrate the algorithmic properties, the results for several benchmark examples are presented. These define the associated numerical efficiency and stability of the IOCS.
Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient
Directory of Open Access Journals (Sweden)
Zaiyue Yang
2014-01-01
Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.
Bounded Nonlinear Control of a Rotating Pendulum System
Luyckx, L.; Loccufier, M.; Noldus, E.
2004-08-01
We are interested in the output feedback control of mechanical systems governed by the Euler-Lagrange formalism. The systems are collocated actuator-sensor controlled and underactuated. We present a design method by means of a specific example : the set point control of a rotating pendulum. We use constrained output feedback, whereby the control inputs satisfy a priori imposed upper bounds. The closed loop stability analysis relies on the direct method of Liapunov. This results in a frequency criterion on the controller's linear dynamic component and some restrictions on its nonlinearities. The control parameters are tuned for maximizing closed loop damping.
Nonlinear system PID-type multi-step predictive control
Institute of Scientific and Technical Information of China (English)
Yan ZHANG; Zengqiang CHEN; Zhuzhi YUAN
2004-01-01
A compound neural network was constructed during the process of identification and multi-step prediction. Under the PlD-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller' s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.
Nonlinear H-ininity state feedback controllers:
DEFF Research Database (Denmark)
Cromme, Marc; Møller-Pedersen, Jens; Pagh Petersen, Martin
1997-01-01
From a general point of view the state feedback H∞ suboptimal control problem is reasonably well understood. Important problems remain with regard to a priori information of the size of the neighbourhood where the local state feedback H∞ problem is solvable. This problem is solved regionally (sem...
Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The proton exchange membrane generation technology is highly efficient, and clean and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online.This paper analyzed the characters of the PEMFC; and used the approach and self-study ability of artificial neural networks to build the model of nonlinear system, and adopted the adaptive neural-networks fuzzy infer system to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment.The results of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system.
Chaos Control in Nonlinear Systems Using the Generalized Backstopping Method
Directory of Open Access Journals (Sweden)
A. R. Sahab
2008-01-01
Full Text Available One of the most important nonlinear systems for checking the abilities of control methods is chaos. In this study chaos in Lorenz system was used for checking abilities of new control method. This new method to control nonlinear systems was called Generalized Backstepping method because of its similarity to Backstepping but its abilities to control more systems than Backstepping. This new method was applied to Lorenz system in three ways: 1.Stabilized states of equations. 2. Track step response. 3. Track sinusoidal response. In every way, simulations proved abilities of method. Comparing this new method with Backstepping showed that in this method, states stabilize at zero in shorter time than Backstepping and input control is more limited. So new method not only is used in more systems but also has better response.
Incremental approximate dynamic programming for nonlinear flight control design
Zhou, Y.; Van Kampen, E.J.; Chu, Q.P.
2015-01-01
A self-learning adaptive flight control design for non-linear systems allows reliable and effective operation of flight vehicles in a dynamic environment. Approximate dynamic programming (ADP) provides a model-free and computationally effective process for designing adaptive linear optimal
Networked control of nonlinear systems under Denial-of-Service
De Persis, C.; Tesi, P.
2016-01-01
We investigate the analysis and design of a control strategy for nonlinear systems under Denial-of-Service attacks. Based on an ISS-Lyapunov function analysis, we provide a characterization of the maximal percentage of time that feedback information can be lost without resulting in instability of th
Identification of uncertain nonlinear systems for robust fuzzy control.
Senthilkumar, D; Mahanta, Chitralekha
2010-01-01
In this paper, we consider fuzzy identification of uncertain nonlinear systems in Takagi-Sugeno (T-S) form for the purpose of robust fuzzy control design. The uncertain nonlinear system is represented using a fuzzy function having constant matrices and time varying uncertain matrices that describe the nominal model and the uncertainty in the nonlinear system respectively. The suggested method is based on linear programming approach and it comprises the identification of the nominal model and the bounds of the uncertain matrices and then expressing the uncertain matrices into uncertain norm bounded matrices accompanied by constant matrices. It has been observed that our method yields less conservative results than the other existing method proposed by Skrjanc et al. (2005). With the obtained fuzzy model, we showed the robust stability condition which provides a basis for different robust fuzzy control design. Finally, different simulation examples are presented for identification and control of uncertain nonlinear systems to illustrate the utility of our proposed identification method for robust fuzzy control.
On global asymptotic controllability of planar affine nonlinear systems
Institute of Scientific and Technical Information of China (English)
SUN Yimin; GUO Lei
2005-01-01
In this paper, we present a necessary and sufficient condition for globally asymptotic controllability of the general planar affine nonlinear systems with single-input.This result is obtained by introducing a new method in the analysis, which is based on the use of some basic results in planar topology and in the geometric theory of ordinary differential equations.
Distributed control design for nonlinear output agreement in convergent systems
Weitenberg, Erik; De Persis, Claudio
2015-01-01
This work studies the problem of output agreement in homogeneous networks of nonlinear dynamical systems under time-varying disturbances using controllers placed at the nodes of the networks. For the class of contractive systems, necessary and sufficient conditions for output agreement are derived,
Modeling and nonlinear heading control for sailing yachts
DEFF Research Database (Denmark)
Xiao, Lin; Jouffroy, Jerome
2011-01-01
This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen's compact notation for marine vehicles, we first describe a nonlinear 4-DOF dynamic model for a sailing yacht, including roll. Starting from this model, we then design ...
Modeling and nonlinear heading control for sailing yachts
DEFF Research Database (Denmark)
Xiao, Lin; Jouffroy, Jerome
2014-01-01
This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen’s compact notation for marine vehicles, we first describe a nonlinear four-degree-of-freedom (DOF) dynamic model for a sailing yacht, including roll. Our model also inc...
Multiple nonlinear parameter estimation using PI feedback control
Lith, van P. F.; Witteveen, H.; Betlem, B.H.L.; Roffel, B.
2001-01-01
Nonlinear parameters often need to be estimated during the building of chemical process models. To accomplish this, many techniques are available. This paper discusses an alternative view to parameter estimation, where the concept of PI feedback control is used to estimate model parameters. The appr
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller.
Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor
Energy Technology Data Exchange (ETDEWEB)
Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control.
Nonlinear control of high purity distillation columns
Groebel, Markus; Allgöwer, Frank; Storz, Markus; Gilles, Ernst Dieter
1994-01-01
Two simple models of distillation columns are studied to investigate their suitability for the practical use with exact I/O-linearization. An extension of exact I/O-linearization, the asymptotically exact I/O-linearization is applied to the control of a high purity distillation column, using one of these models to derive the static state feedback law. Simulation studies demonstrate the advantage of asymptotically exact I/O-linearization versus classical exact I/O-linearization techniques. Exp...
Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin, Jiu-Li; Zhao, Liu-Wei; Tian, Li-Xin
2014-02-01
The nonlinear Schrödinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the distortion in the process of information transmission. We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller. With the increase of intensity, the fiber-optic signal can stay in a stable state in some regions. When the strength is suppressed to a certain value, an unstable phenomenon of the fiber-optic signal occurs. Moreover we discuss the sensitivities of the parameters to be controlled. The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission. Meanwhile the phenomena of vibration, attenuation and escape occur in some regions.
Non-linear controls on the persistence of La Nina
Di Nezio, P. N.; Deser, C.
2013-12-01
Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that
Machine learning control taming nonlinear dynamics and turbulence
Duriez, Thomas; Noack, Bernd R
2017-01-01
This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...
Nonlinear time-series-based adaptive control applications
Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.
1991-01-01
A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.
Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter
DEFF Research Database (Denmark)
Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan
2010-01-01
for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...
Nonlinear control techniques for an atomic force microscope system
Institute of Scientific and Technical Information of China (English)
Yongchun FANG; Matthew FEEMSTER; Darren DAWSON; Nader M.JALILI
2005-01-01
Two nonlinear control techniques are proposed for an atomic force microscope system.Initially,a learning-based control algorithm is developed for the microcantilever-sample system that achieves asymptotic cantilever tip tracking for periodic trajectories.Specifically,the control approach utilizes a learning-based feedforward term to compensate for periodic dynamics and high-gain terms to account for non-periodic dynamics.An adaptive control algorithm is then developed to achieve asymptotic cantilever tip tracking for bounded tip trajectories despite uncertainty throughout the system parameters.Simulation results are provided to illustrate the efficacy and performance of the control strategies.
IMPULSIVE CONTROL OF CHAOTIC ATTRACTORS IN NONLINEAR CHAOTIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
马军海; 任彪; 陈予恕
2004-01-01
Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asymptotically stable condition of impulsive control on chaotic attractors in such kind of nonlinear chaotic system has been deduced, and with it, the upper bond of the impulse interval for asymptotically stable control was given. Numerical results are presented, which are considered with important reference value for control of chaotic attractors.
Fractional Order Nonlinear Feedback Controller Design for PMSM Drives
Directory of Open Access Journals (Sweden)
Jian-Ping Wen
2013-01-01
Full Text Available Fractional order integral is introduced into active disturbance rejection controller (ADRC to establish the structure of fractional order proportional integral controller (FPI. Fractional order ADRC (FADRC is designed by replacing the nonlinear state error feedback control law using nonlinear function combination in ADRC with FPI, which can combine the high performance of ADRC estimating disturbances with the characteristics of fractional order calculus more really describing the physical object and spreading the stable region of the system parameters. The proposed FADRC is applied to permanent magnet synchronous motor (PMSM speed servo system in order to improve robustness of system against the disturbances. Compared with ADRC, simulation results verify that the proposed control method has given very good robust results and fast speed tracking performance.
From linear to nonlinear control means: a practical progression.
Gao, Zhiqiang
2002-04-01
With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.
Nonlinear model predictive control of a packed distillation column
Energy Technology Data Exchange (ETDEWEB)
Patwardhan, A.A.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)
1993-10-01
A rigorous dynamic model based on fundamental chemical engineering principles was formulated for a packed distillation column separating a mixture of cyclohexane and n-heptane. This model was simplified to a form suitable for use in on-line model predictive control calculations. A packed distillation column was operated at several operating conditions to estimate two unknown model parameters in the rigorous and simplified models. The actual column response to step changes in the feed rate, distillate rate, and reboiler duty agreed well with dynamic model predictions. One unusual characteristic observed was that the packed column exhibited gain-sign changes, which are very difficult to treat using conventional linear feedback control. Nonlinear model predictive control was used to control the distillation column at an operating condition where the process gain changed sign. An on-line, nonlinear model-based scheme was used to estimate unknown/time-varying model parameters.
Structure-based control of complex networks with nonlinear dynamics
Zañudo, Jorge G T; Albert, Réka
2016-01-01
Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...
Robust Nonlinear Control with Compensation Operator for a Peltier System
Directory of Open Access Journals (Sweden)
Sheng-Jun Wen
2014-01-01
Full Text Available Robust nonlinear control with compensation operator is presented for a Peltier actuated system, where the compensation operator is designed by using a predictive model on heat radiation. For the Peltier system, the heat radiation is related to the fourth power of temperature. So, the heat radiation is affected evidently by the temperature when it is high and temperature difference between the system and environment is large. A new nonlinear model with the heat radiation is set up for the system according to some thermal conduction laws. To ensure robust stability of the nonlinear system, operator based robust right coprime factorization design is considered. Also, a compensation operator based on a predictive model is proposed to cancel effect of the heat radiation, where the predictive model is set up by using radial basis kernel function based SVM (support vector machine method. Finally, simulation results are given to show the effectiveness of the proposed scheme.
Backstepping tracking control for nonlinear time-delay systems
Institute of Scientific and Technical Information of China (English)
Chen Weisheng; Li Junmin
2006-01-01
Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the references signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.
Nonlinear burn condition control in tokamaks using isotopic fuel tailoring
Boyer, Mark D.; Schuster, Eugenio
2015-08-01
One of the fundamental problems in tokamak fusion reactors is how to control the plasma density and temperature in order to regulate the amount of fusion power produced by the device. Control of these parameters will be critical to the success of burning plasma experiments like ITER. The most previous burn condition control efforts use either non-model based control designs or techniques based on models linearized around particular operating points. Such strategies limit the potential operational space and must be carefully retuned or redesigned to accommodate changes in operating points or plasma parameters. In this work, a nonlinear dynamic model of the spatial averages of energy and ion species densities is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The nonlinear model-based control strategy guarantees a much larger operational space than previous linear controllers. Because it is not designed around a particular operating point, the controller can be used to move from one burn condition to another. The proposed scheme first attempts to use regulation of the auxiliary heating power to reject temperature perturbations, then, if necessary, uses isotopic fuel tailoring as a way to reduce fusion heating during positive temperature perturbations. A global model of hydrogen recycling is incorporated into the model used for design and simulation, and the proposed control scheme is tested for a range of recycling model parameters. As we find the possibility of changing the isotopic mix can be limited for certain unfavorable recycling conditions, we also consider impurity injection as a back-up method for controlling the system. A simple supervisory control strategy is proposed to switch between the primary and back-up control schemes based on stability and performance criteria. A zero-dimensional simulation study is used to study the performance of the control scheme for several scenarios and model parameters. Finally, a one
Fault detection and fault-tolerant control for nonlinear systems
Li, Linlin
2016-01-01
Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...
Controlling near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Kundu, Anjan
2016-01-01
Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.
Stabilization of discrete nonlinear systems based on control Lyapunov functions
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The stabilization of discrete nonlinear systems is studied.Based on control Lyapunov functions,asufficient and necessary condition for a quadratic function to be a control Lyapunov function is given.From this condition,a continuous state feedback law is constructed explicitly.It can globally asymptotically stabilize the equilibrium of the closed-loop system.A simulation example shows the effectiveness of the proposed method.
Nonlinear Control and Synchronization with Time Delays of Multiagent Robotic Systems
Directory of Open Access Journals (Sweden)
Yassine Bouteraa
2011-01-01
Full Text Available We investigate the cooperative control and global asymptotic synchronization Lagrangian system groups, such as industrial robots. The proposed control approach works to accomplish multirobot systems synchronization under an undirected connected communication topology. The control strategy is to synchronize each robot in position and velocity to others robots in the network with respect to the common desired trajectory. The cooperative robot network only requires local neighbor-to-neighbor information exchange between manipulators and does not assume the existence of an explicit leader in the team. It is assumed that network robots have the same number of joints and equivalent joint work spaces. A combination of the lyapunov-based technique and the cross-coupling method has been used to establish the multirobot system asymptotic stability. The developed control combines trajectory tracking and coordination algorithms. To address the time-delay problem in the cooperative network communication, the suggested synchronization control law is shown to synchronize multiple robots as well as to track given trajectory, taking into account the presence of the time delay. To this end, Krasovskii functional method has been used to deal with the delay-dependent stability problem.
Nonlinear Control of a Reusable Rocket Engine for Life Extension
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.
Central suboptimal H ∞ control design for nonlinear polynomial systems
Basin, Michael V.; Shi, Peng; Calderon-Alvarez, Dario
2011-05-01
This article presents the central finite-dimensional H ∞ regulator for nonlinear polynomial systems, which is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the article reduces the original H ∞ control problem to the corresponding optimal H 2 control problem, using this technique proposed in Doyle et al. [Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H 2 and H ∞ Control Problems', IEEE Transactions on Automatic Control, 34, 831-847]. This article yields the central suboptimal H ∞ regulator for nonlinear polynomial systems in a closed finite-dimensional form, based on the optimal H 2 regulator obtained in Basin and Calderon-Alvarez [Basin, M.V., and Calderon-Alvarez, D. (2008b), 'Optimal Controller for Uncertain Stochastic Polynomial Systems', Journal of the Franklin Institute, 345, 293-302]. Numerical simulations are conducted to verify performance of the designed central suboptimal regulator for nonlinear polynomial systems against the central suboptimal H ∞ regulator available for the corresponding linearised system.
A nonlinear robust PI controller for an uncertain system
Aguilar-Ibañez, Carlos; Mendoza-Mendoza, Julio A.; Suarez-Castanon, Miguel S.; Davila, Jorge
2014-05-01
This paper presents a smooth control strategy for the regulation problem of an uncertain system, which assures uniform ultimate boundedness of the closed-loop system inside of the zero-state neighbourhood. This neighbourhood can be made arbitrarily small. To this end, a class of nonlinear proportional integral controllers or PI controllers was designed. The behaviour of this controller emulates very close a sliding mode controller. To accomplish this behaviour saturation functions were combined with traditional PI controller. The controller did not need a high-gain controller or a sliding mode controller to accomplish robustness against unmodelled persistent perturbations. The obtained closed-solution has a finite time of convergence in a small vicinity. The corresponding stability convergence analysis was done applying the traditional Lyapunov method. Numerical simulations were carried out to assess the effectiveness of the obtained controller.
Adaptive control of Hammerstein-Wiener nonlinear systems
Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong
2016-07-01
The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.
Three-Dimensional Passivity-Based Dynamic Control for Tendon-Driven Catheters
Directory of Open Access Journals (Sweden)
Soltani Minou Kouh
2016-01-01
Full Text Available This paper presents a three-dimensional dynamic model for active catheters commonly implemented in cardiac ablation, and introduces nonlinear closed-form model-based control scheme. The dynamic model includes rotational, translational and bending effects, moreover entails simple formulation to be implemented in real-time clinical application. Then, Lyapunov-based position control strategy is developed to locate the catheter tip at the desired position. Results verify the viability of the introduced approach for its applicability in robot-assisted cardiac ablation.
Neural Network Based Modeling and Analysis of LP Control Surface Allocation
Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen
2003-01-01
This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.
A Nonlinear Flow Control Scheme Under Capacity Constraints
Institute of Scientific and Technical Information of China (English)
Yi Fan; Zhong-Ping Jiang
2005-01-01
We present a nonlinear flow control scheme based on a buffer management model with physical constraints. It extends previous result of Pitsillides et al. in [6] by improving the queue length regulation for better service of network traffics. Besides a single node system, we also address the decentralized control of many cascaded nodes. The proposed discontinuous controller asymptotically regulates the buffer queue length at the output port of a router/switch to a constant reference value, under unknown time varying interfering traffics and saturation constraints on control input and states. Its continuous approximation achieves practical regulation with an ultimate bound on the regulation error tunable by a design parameter.
Control of terahertz nonlinear transmission with electrically gated graphene metadevices
Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. K.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki
2017-02-01
Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.
Control of terahertz nonlinear transmission with electrically gated graphene metadevices
Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. k.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki
2017-01-01
Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms. PMID:28216677
Nonlinear model predictive control of managed pressure drilling.
Nandan, Anirudh; Imtiaz, Syed
2017-07-01
A new design of nonlinear model predictive controller (NMPC) is proposed for managed pressure drilling (MPD) system. The NMPC is based on output feedback control architecture and employs offset-free formulation proposed in [1]. NMPC uses active set method for computing control inputs. The controller implements an automatic switching from constant bottom hole pressure (CBHP) regulation to flow control mode in the event of a reservoir kick. In the flow control mode the controller automatically raises the bottom hole pressure setpoint, and thereby keeps the reservoir fluid flow to the surface within a tunable threshold. This is achieved by exploiting constraint handling capability of NMPC. In addition to kick mitigation the controller demonstrated good performance in containing the bottom hole pressure (BHP) during the pipe connection sequence. The controller also delivered satisfactory performance in the presence of measurement noise and uncertainty in the system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear Analysis and Intelligent Control of Integrated Vehicle Dynamics
Directory of Open Access Journals (Sweden)
C. Huang
2014-01-01
Full Text Available With increasing and more stringent requirements for advanced vehicle integration, including vehicle dynamics and control, traditional control and optimization strategies may not qualify for many applications. This is because, among other factors, they do not consider the nonlinear characteristics of practical systems. Moreover, the vehicle wheel model has some inadequacies regarding the sideslip angle, road adhesion coefficient, vertical load, and velocity. In this paper, an adaptive neural wheel network is introduced, and the interaction between the lateral and vertical dynamics of the vehicle is analyzed. By means of nonlinear analyses such as the use of a bifurcation diagram and the Lyapunov exponent, the vehicle is shown to exhibit complicated motions with increasing forward speed. Furthermore, electric power steering (EPS and active suspension system (ASS, which are based on intelligent control, are used to reduce the nonlinear effect, and a negotiation algorithm is designed to manage the interdependences and conflicts among handling stability, driving smoothness, and safety. Further, a rapid control prototype was built using the hardware-in-the-loop simulation platform dSPACE and used to conduct a real vehicle test. The results of the test were consistent with those of the simulation, thereby validating the proposed control.
Study of Super-Twisting sliding mode control for U model based nonlinear system
Zhang, Jianhua; Li, Yang; Xueli WU; Jianan HUO; Shenyang ZHUANG
2016-01-01
The Super-Twisting control algorithm is adopted to analyze the U model based nonlinear control system in order to solve the controller design problems of non-affine nonlinear systems. The non-affine nonlinear systems are studied, the neural network approximation of the nonlinear function is performed, and the Super-Twisting control algorithm is used to control. The convergence of the Super-Twisting algorithm is proved by selecting an appropriate Lyapunov function. The Matlab simulation is car...
Weissel, Florian; Huber, Marco F.; Hanebeck, Uwe D.
2007-01-01
Model identification and measurement acquisition is always to some degree uncertain. Therefore, a framework for Nonlinear Model Predictive Control (NMPC) is proposed that explicitly considers the noise influence on nonlinear dynamic systems with continuous state spaces and a finite set of control inputs in order to significantly increase the control quality. Integral parts of NMPC are the prediction of system states over a finite horizon as well as the problem specific modeling of reward func...
Discrete state space modeling and control of nonlinear unknown systems.
Savran, Aydogan
2013-11-01
A novel procedure for integrating neural networks (NNs) with conventional techniques is proposed to design industrial modeling and control systems for nonlinear unknown systems. In the proposed approach, a new recurrent NN with a special architecture is constructed to obtain discrete-time state-space representations of nonlinear dynamical systems. It is referred as the discrete state-space neural network (DSSNN). In the DSSNN, the outputs of the hidden layer neurons of the DSSNN represent the system's (pseudo) state. The inputs are fed to output neurons and the delayed outputs of the hidden layer neurons are fed to their inputs via adjustable weights. The discrete state space model of the actual system is directly obtained by training the DSSNN with the input-output data. A training procedure based on the back-propagation through time (BPTT) algorithm is developed. The Levenberg-Marquardt (LM) method with a trust region approach is used to update the DSSNN weights. Linear state space models enable to use well developed conventional analysis and design techniques. Thus, building a linear model of a system has primary importance in industrial applications. Thus, a suitable linearization procedure is proposed to derive the linear state space model from the nonlinear DSSNN representation. The controllability, observability and stability properties are examined. The state feedback controllers are designed with both the linear quadratic regulator (LQR) and the pole placement techniques. The regulator and servo control problems are both addressed. A full order observer is also designed to estimate the state variables. The performance of the proposed procedure is demonstrated by applying for both single-input single-output (SISO) and multiple-input multiple-output (MIMO) nonlinear control problems. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Self-Organized Biological Dynamics and Nonlinear Control
Walleczek, Jan
2006-04-01
The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological
FBFN-based adaptive repetitive control of nonlinearly parameterized systems
Institute of Scientific and Technical Information of China (English)
Wenli Sun; Hong Cai; Fu Zhao
2013-01-01
An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy ba-sis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mecha-nism. Based on the Lyapunov stability theory, an adaptive repeti-tive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the control er singularity problem is solved. The proposed approach does not require an exact structure of the sys-tem dynamics, and the proposed control er is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simula-tion results demonstrate the effectiveness of the proposed method.
Nonlinear Dynamics of Controlled Synchronizations of Manipulator System
Directory of Open Access Journals (Sweden)
Qingkai Han
2014-01-01
Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.
On discrete control of nonlinear systems with applications to robotics
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
Nonlinear spin control by terahertz-driven anisotropy fields
Baierl, S.; Hohenleutner, M.; Kampfrath, T.; Zvezdin, A. K.; Kimel, A. V.; Huber, R.; Mikhaylovskiy, R. V.
2016-11-01
Future information technologies, such as ultrafast data recording, quantum computation or spintronics, call for ever faster spin control by light. Intense terahertz pulses can couple to spins on the intrinsic energy scale of magnetic excitations. Here, we explore a novel electric dipole-mediated mechanism of nonlinear terahertz-spin coupling that is much stronger than linear Zeeman coupling to the terahertz magnetic field. Using the prototypical antiferromagnet thulium orthoferrite (TmFeO3), we demonstrate that resonant terahertz pumping of electronic orbital transitions modifies the magnetic anisotropy for ordered Fe3+ spins and triggers large-amplitude coherent spin oscillations. This mechanism is inherently nonlinear, it can be tailored by spectral shaping of the terahertz waveforms and its efficiency outperforms the Zeeman torque by an order of magnitude. Because orbital states govern the magnetic anisotropy in all transition-metal oxides, the demonstrated control scheme is expected to be applicable to many magnetic materials.
Non-linear and adaptive control of a refrigeration system
DEFF Research Database (Denmark)
Rasmussen, Henrik; Larsen, Lars F. S.
2011-01-01
In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed...
Stabilization of nonlinear systems based on robust control Lyapunov function
Institute of Scientific and Technical Information of China (English)
CAI Xiu-shan; HAN Zheng-zhi; LU Gan-yun
2007-01-01
This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunov function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.
Boundary control of nonlinear coupled heat systems using backstepping
Bendevis, Paul
2016-10-20
A state feedback boundary controller is designed for a 2D coupled PDE system modelling heat transfer in a membrane distillation system for water desalination. Fluid is separated into two compartments with nonlinear coupling at a membrane boundary. The controller sets the temperature on one boundary in order to track a temperature difference across the membrane boundary. The control objective is achieved by an extension of backstepping methods to these coupled equations. Stability of the target system via Lyapunov like methods, and the invertibility of the integral transformation are used to show the stability of the tracking error.
A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control
DEFF Research Database (Denmark)
Jensen, P. B.; Olsen, M. B.; Poulsen, J.;
1997-01-01
The paper treats a newly developed set of nonlinear observers for advanced spark ignition engine control.......The paper treats a newly developed set of nonlinear observers for advanced spark ignition engine control....
Limits of localized control in extended nonlinear systems
Handel, Andreas
We investigate the limits of localized linear control in spatially extended, nonlinear systems. Spatially extended, nonlinear systems can be found in virtually every field of engineering and science. An important category of such systems are fluid flows. Fluid flows play an important role in many commercial applications, for instance in the chemical, pharmaceutical and food-processing industries. Other important fluid flows include air- or water flows around cars, planes or ships. In all these systems, it is highly desirable to control the flow of the respective fluid. For instance control of the air flow around an airplane or car leads to better fuel-economy and reduced noise production. Usually, it is impossible to apply control everywhere. Consider an airplane: It would not be feasibly to cover the whole body of the plane with control units. Instead, one can place the control units at localized regions, such as points along the edge of the wings, spaced as far apart from each other as possible. These considerations lead to an important question: For a given system, what is the minimum number of localized controllers that still ensures successful control? Too few controllers will not achieve control, while using too many leads to unnecessary expenses and wastes resources. To answer this question, we study localized control in a class of model equations. These model equations are good representations of many real fluid flows. Using these equations, we show how one can design localized control that renders the system stable. We study the properties of the control and derive several expressions that allow us to determine the limits of successful control. We show how the number of controllers that are needed for successful control depends on the size and type of the system, as well as the way control is implemented. We find that especially the nonlinearities and the amount of noise present in the system play a crucial role. This analysis allows us to determine under
An open plus nonlinear closed loop control of chaotic oscillators
Institute of Scientific and Technical Information of China (English)
陈立群
2002-01-01
An open plus nonlinear closed loop control law is presented for chaotic oscillations described by a set of non-autonomous second-order ordinary differential equations. It is proven that the basins of entrainment are global whenthe right-hand sides of the equations are given by arbitrary polynomial functions. The forced Duffing oscillator and theforced van der Pol oscillator are treated as numerical examples to demonstrate the applications of the method.
Controlled opacity in a class of nonlinear dielectric media
Bittencourt, Eduardo; De Lorenci, Vitorio A; Klippert, Renato
2016-01-01
Motivated by new technologies on designing and tailoring metamaterials, we seek for properties of certain classes of nonlinear optical materials that allow room for a reversibly controlled opacityto-transparency phase transition through the application of external electromagnetic fields. We examine some mathematically simple models for the dielectric parameters of the medium, and compute the relevant geometric quantities that describe the speed and polarization of light rays.
Controlled opacity in a class of nonlinear dielectric media
Bittencourt, E.; Camargo, G. H. S.; De Lorenci, V. A.; Klippert, R.
2017-03-01
Motivated by new technologies for designing and tailoring metamaterials, we seek properties for certain classes of nonlinear optical materials that allow room for a reversibly controlled opacity-to-transparency phase transition through the application of external electromagnetic fields. We examine some mathematically simple models for the dielectric parameters of the medium and compute the relevant geometric quantities that describe the speed and polarization of light rays.
OUTPUT FEEDBACK CONTROL FOR MIMO NONLINEAR SYSTEMS WITH EXOGENOUS SIGNALS
Institute of Scientific and Technical Information of China (English)
Ying ZHOU; Yuqiang WU
2006-01-01
The paper addresses the global output tracking of a class of multi-input multi-output(MIMO) nonlinear systems affected by disturbances, which are generated by a known exosystem. An adaptive controller is designed based on the proposed observer and the backstepping approach to asymptotically track arbitrary reference signal and to guarantee the boundedness of all the signals in the closed loop system. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.
Tracking control of a flexible beam by nonlinear boundary feedback
Directory of Open Access Journals (Sweden)
Bao-Zhu Guo
1995-01-01
Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.
Discrete-Time Nonlinear Control of VSC-HVDC System
Directory of Open Access Journals (Sweden)
TianTian Qian
2015-01-01
Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.
Fuzzy fractional order sliding mode controller for nonlinear systems
Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.
2010-04-01
In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.
Sensor Fault Tolerant Generic Model Control for Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on-line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three-tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.
Extending satisficing control strategy to slowly varying nonlinear systems
Binazadeh, T.; Shafiei, M. H.
2013-04-01
Based on the satisficing control strategy, a novel approach to design a stabilizing control law for nonlinear time varying systems with slowly varying parameters (slowly varying systems) is presented. The satisficing control strategy has been originally introduced for time-invariant systems; however, this technique does not have any stability proof for time varying systems. In this paper, first, a parametric version of the satisficing control strategy is developed. Then, by considering the time as a frozen parameter, the parametric satisficing control strategy is utilized. Finally, a theorem is presented which suggested a stabilizing satisficing control law for the slowly varying control systems. Moreover, in this theorem, the maximum admissible rate of change of the system dynamics is evaluated. The efficiency of the proposed approach is demonstrated by a computer simulation.
Robust direct adaptive fuzzy control for nonlinear MIMO systems
Institute of Scientific and Technical Information of China (English)
ZHANG Huaguang; ZHANG Mingjun
2006-01-01
For a class of nonlinear multi-input multi-output systems with uncertainty, a robust direct adaptive fuzzy control scheme was proposed. The feedback control law and adaptive law for parameters were derived based on Lyapunov design approach. The overall control scheme can guarantee that the tracking error converges in the small neighborhood of origin, and all signals of the closed-loop system are uniformly bounded. The main advantage of the proposed control scheme is that in each subsystem only one parameter vector needs to be adjusted on-line in the adaptive mechanism, and so the on-line computing burden is reduced. In addition, the proposed control scheme is a smooth control with no chattering phenomena. A simulation example was proposed to demonstrate the effectiveness of the proposed control algorithm.
PI controller based model reference adaptive control for nonlinear ...
African Journals Online (AJOL)
user
which can deal effectively for real-time online computer control. The NN of the ..... applications such as machine tools, industrial robot control, position control, and other engineering practices. .... Transactions on Mechatronics, vol.1, no.2, pp.
Controlling ultrafast currents by the nonlinear photogalvanic effect
Wachter, Georg; Sato, Shunsuke A.; Floss, Isabella; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim
2015-12-01
We investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femtosecond optical laser pulses. Ab initio simulations based on time-dependent density functional theory predict ultrafast direct currents that can be viewed as a nonlinear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity of about {I}{{c}}˜ 3× {10}13 W cm-2. We trace this switching to the transition from nonlinear polarisation currents to the tunnelling excitation regime. The latter is found to be sensitive to the relative orientation between laser polarisation and chemical bonds. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. While two temporally separated laser pulses lead to currents along one direction their temporal overlap can reverse the current. We find the ultrafast current control by the nonlinear photogalvanic effect to be remarkably robust and insensitive to the laser-pulse shape and the carrier-envelope phase.
A simple nonlinear PD controller for integrating processes.
Dey, Chanchal; Mudi, Rajani K; Simhachalam, Dharmana
2014-01-01
Many industrial processes are found to be integrating in nature, for which widely used Ziegler-Nichols tuned PID controllers usually fail to provide satisfactory performance due to excessive overshoot with large settling time. Although, IMC (Internal Model Control) based PID controllers are capable to reduce the overshoot, but little improvement is found in the load disturbance response. Here, we propose an auto-tuning proportional-derivative controller (APD) where a nonlinear gain updating factor α continuously adjusts the proportional and derivative gains to achieve an overall improved performance during set point change as well as load disturbance. The value of α is obtained by a simple relation based on the instantaneous values of normalized error (eN) and change of error (ΔeN) of the controlled variable. Performance of the proposed nonlinear PD controller (APD) is tested and compared with other PD and PID tuning rules for pure integrating plus delay (IPD) and first-order integrating plus delay (FOIPD) processes. Effectiveness of the proposed scheme is verified on a laboratory scale servo position control system.
Nonlinear control of ships minimizing the position tracking errors
Directory of Open Access Journals (Sweden)
Svein P. Berge
1999-07-01
Full Text Available In this paper, a nonlinear tracking controller with integral action for ships is presented. The controller is based on state feedback linearization. Exponential convergence of the vessel-fixed position and velocity errors are proven by using Lyapunov stability theory. Since we only have two control devices, a rudder and a propeller, we choose to control the longship and the sideship position errors to zero while the heading is stabilized indirectly. A Virtual Reference Point (VRP is defined at the bow or ahead of the ship. The VRP is used for tracking control. It is shown that the distance from the center of rotation to the VRP will influence on the stability of the zero dynamics. By selecting the VRP at the bow or even ahead of the bow, the damping in yaw can be increased and the zero dynamics is stabilized. Hence, the heading angle will be less sensitive to wind, currents and waves. The control law is simulated by using a nonlinear model of the Japanese training ship Shiojimaru with excellent results. Wind forces are added to demonstrate the robustness and performance of the integral controller.
Passive Control and ε-Bound Estimation of Singularly Perturbed Systems with Nonlinear Nonlinearities
Directory of Open Access Journals (Sweden)
Linna Zhou
2013-01-01
Full Text Available This paper considers the problems of passivity analysis and synthesis of singularly perturbed systems with nonlinear uncertainties. By a novel storage function depending on the singular perturbation parameter ε, a new method is proposed to estimate the ε-bound, such that the system is passive when the singular perturbation parameter is lower than the ε-bound. Furthermore, a controller design method is proposed to achieve a predefined ε-bound. The proposed results are shown to be less conservative than the existing ones because the adopted storage function is more general. Finally, an RLC circuit is presented to illustrate the advantages and effectiveness of the proposed methods.
A geometrical approach to control and controllability of nonlinear dynamical networks.
Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng
2016-04-14
In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.
Robust adaptive fuzzy control scheme for nonlinear system with uncertainty
Institute of Scientific and Technical Information of China (English)
Mingjun ZHANG; Huaguang ZHANG
2006-01-01
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.
Multivariable nonlinear control of STATCOM for synchronous generator stabilization
Energy Technology Data Exchange (ETDEWEB)
Sahoo, N.C. [Multimedia Univ., Melaka (Malaysia). Faculty of Engineering and Technology; Panigrahi, B.K.; Panda, G. [Multimedia Univ., Selangor (Malaysia); Dash, P.K. [National Inst. of Technology, Rourkela (India)
2004-01-01
A static synchronous compensator (STATCOM) is a typical flexible ac transmission system device playing a vital role as a stability aid for small and large transient disturbances in an interconnected power system. This article deals with design and evaluation of a feedback linearizing nonlinear controller for STATCOM installed in a single-machine infinite-bus power system. In addition to the coordinated control of ac and dc bus voltages, the proposed controller also provides good damping to the electromechanical oscillation of the synchronous generator under transient disturbances. The efficiency of the control strategy is evaluated by computer simulation studies. The comparative study of these results with the conventional cascade control structure establishes the elegance of the proposed control scheme. (author)
Energy Technology Data Exchange (ETDEWEB)
Nayfeh, A.H.; Burns, J.A.; Cliff, E.M.
1990-05-18
The report summarizes results of experimental and theoretical investigations into the nonlinear response and control of structural elements. Methods for the analysis and design of control procedures applicable to certain nonlinear distributed parameter systems were investigated. Analytical and computational techniques were developed for evaluating the nonlinear effects on control designs. Bench-type experiments were conducted for validating some of the theoretical results.
Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor
Vojtesek, Jiri; Dostal, Petr
2015-01-01
Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878
Towards a Generic Constructive Nonlinear Control Design Tool using Relaxed Control
Jayawardhana, Bayu
2015-01-01
In this paper, we revisit a control design approach for general (non-affine) nonlinear systems using relaxed control. Using the notion of relaxed input, where the ordinary real-valued control input is replaced by a measure-valued control input, we are able to manipulate the original system such that
Nonlinear Control of Large Disturbances in Magnetic Bearing Systems
Jiang, Yuhong; Zmood, R. B.
1996-01-01
In this paper, the nonlinear operation of magnetic bearing control methods is reviewed. For large disturbances, the effects of displacement constraints and power amplifier current and di/dt limits on bearing control system performance are analyzed. The operation of magnetic bearings exhibiting self-excited large scale oscillations have been studied both experimentally and by simulation. The simulation of the bearing system has been extended to include the effects of eddy currents in the actuators, so as to improve the accuracy of the simulation results. The results of these experiments and simulations are compared, and some useful conclusions are drawn for improving bearing system robustness.
The simplex method for nonlinear sliding mode control
Directory of Open Access Journals (Sweden)
Bartolini G.
1998-01-01
Full Text Available General nonlinear control systems described by ordinary differential equations with a prescribed sliding manifold are considered. A method of designing a feedback control law such that the state variable fulfills the sliding condition in finite time is based on the construction of a suitable simplex of vectors in the tangent space of the manifold. The convergence of the method is proved under an obtuse angle condition and a way to build the required simplex is indicated. An example of engineering interest is presented.
A new nonlinear output tracking controller via output-feedback
Institute of Scientific and Technical Information of China (English)
Yun ZHANG; Yungang LIU; Yuqin DING
2006-01-01
In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded.Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.
On-line control of the nonlinear dynamics for synchrotrons
Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.
2015-07-01
We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.
Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.
Nagarale, Ravindrakumar M; Patre, B M
2014-05-01
This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.
Fuzzy Mixed-Sensitivity Control of Uncertain Nonlinear Induction Motor
Directory of Open Access Journals (Sweden)
Vahid Azimi
2014-06-01
Full Text Available In this article we investigate on robust mixed-sensitivity H∞ control for speed and torque control of inductional motor (IM. In order to simplify the design procedure the Takagi–Sugeno (T–S fuzzy approach is introduced to solve the nonlinear model Problem. Loop-shaping methodology and Mixed-sensitivity problem are developed to formulate frequency-domain specifications. Then a regional pole-placement output feedback H∞ controller is employed by using linear matrix inequalities(LMIs teqnique for each linear subsystem of IM T-S fuzzy model. Parallel Distributed Compensation (PDC is used to design the controller for the overall system . Simulation results are presented to validate the effectiveness of the proposed controller even in the presence of motor parameter variations and unknown load disturbance.
Nonlinear model predictive control for chemical looping process
Energy Technology Data Exchange (ETDEWEB)
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
2017-08-22
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.
Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.
El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z
2014-01-01
The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.
Improvements and applications of entrainment control for nonlinear dynamical systems.
Liu, Fang; Song, Qiang; Cao, Jinde
2008-12-01
This paper improves the existing entrainment control approaches and develops unified schemes to chaos control and generalized (lag, anticipated, and complete) synchronization of nonlinear dynamical systems. By introducing impulsive effects to the open-loop control method, we completely remove its restrictions on goal dynamics and initial conditions, and derive a sufficient condition to estimate the upper bound of impulsive intervals to ensure the global asymptotic stability. We then propose two effective ways to implement the entrainment strategy which combine open-loop and closed-loop control, and we prove that the feedback gains can be chosen according to a lower bound or be tuned with an adaptive control law. Numerical examples are given to verify the theoretical results and to illustrate their applications.
Design and Control of Nonlinear Mechanical Systems for Minimum Time
Directory of Open Access Journals (Sweden)
J.B. Cardoso
2008-01-01
Full Text Available This paper presents an integrated methodology for optimal design and control of nonlinear flexible mechanical systems, including minimum time problems. This formulation is implemented in an optimum design code and it is applied to the nonlinear behavior dynamic response. Damping and stiffness characteristics plus control driven forces are considered as decision variables. A conceptual separation between time variant and time invariant design parameters is presented, this way including the design space into the control space and considering the design variables as control variables not depending on time. By using time integrals through all the derivations, design and control problems are unified. In the optimization process we can use both types of variables simultaneously or by interdependent levels. For treating minimum time problems, a unit time interval is mapped onto the original time interval, then treating equally time variant and time invariant problems. The dynamic response and its sensitivity are discretized via space-time finite elements, and may be integrated either by at-once integration or step-by-step. Adjoint system approach is used to calculate the sensitivities.
Nonlinear control for global stabilization of multiple-integrator system by bounded controls
Institute of Scientific and Technical Information of China (English)
Bin ZHOU; Guangren DUAN; Liu ZHANG
2008-01-01
The global stabilization problem of the multiple-integrator system by bounded controls is considered.A nonlinear feedback law consisting of nested saturation functions is proposed.This type of nonlinear feedback law that is a modification and generalization of the result given in[1] needs only[(n+1)/2](n is the dimensions of the system)saturation elements,which is fewer than that which the other nonlinear laws need.Funhermore.the poles of the closedloop system Can be placed on any location on the left real axis when none of the saturafion elements in the control laws is saturated.This type of nonlinear control law exhibits a simpler structure and call significantly improve the transient performances of the closed-loop system,and is very superior to the other existing methods.Simulation on a fourth-order system is used to validate the proposed method.
CONTROL ÓPTIMO INVERSO PARA SISTEMAS NO LINEALES EN TIEMPO CONTINUO
Directory of Open Access Journals (Sweden)
Carlos Vega-Pérez
2014-01-01
Full Text Available Background: Optimization theory applied to automatic control allows governing actions reaching desired conditions but minimizing a given performance index. Such optimization tasks imply to solve complicated mathematical expressions. The inverse optimal control appears as alternative to find the optimal control law without the explicit solution for the Hamilton-Jacobi-Bellman equation. Objective: To show the potential of the inverse optimal control for solving complex optimization problems in control theory. Methods: A general description of the optimal control problem is performed, followed by the justification of an inverse optimal approach. Examples for illustration are properly selected. Results: Mathematical formulations given are applied to solve analytically the cases of a linear optimal quadratic regulator (LQR and a nonlinear inverse optimal Lyapunov-based control problem (CLF. Conclusion: It is possible to solve optimal control problems for nonlinear systems, without explicitly facing the Hamilton-Jacobi-Bellman equation, by means of the inverse optimal control approach.
Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.
2014-05-01
The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects
Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.
Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong
2015-11-01
The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.
Nonlinear Magnetic Circuit Analysis of SMART Control Rod Drive Actuator
Energy Technology Data Exchange (ETDEWEB)
Noh, Myounggyu; Gi, Myung Ju; Kim, Myounggon; Park, Youngwoo [Chungnam Nat' l Univ., Daejeon (Korea, Republic of); Lee, Jaeseon; Kim, Jongwook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this paper, we derive a nonlinear magnetic circuit model of an electromagnetic control-rod actuator in the SMART. The results of the nonlinear model are compared with those by linear circuit model and finite-element analyses. gnetic circuit modeling is a useful tool when designing an electromagnetic actuator, as it allows fast calculations and enables parametric studies. It is particularly essential when the actuator is to be used in a very complex system such as a nuclear reactor. Important design parameters must be identified at the early stage of the design process. Once the design space is narrowed down, more accurate methods such finite-element analyses (FEA) can be employed for detailed design. Magnetic circuit modeling is based on the assumption that a flux path consists of sections in each of which field quantities are constant with linear constitutive relations. This assumption fails to hold when portions of the flux path become saturated. The magnetic circuit must be modified in order to accurately describe the nonlinear behavior of saturation.
Indirect Adaptive Fuzzy and Impulsive Control of Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
Hai-Bo Jiang
2010-01-01
The problem of indirect adaptive fuzzy and impulsive control for a class of nonlinear systems is investigated.Based on the approximation capability of fuzzy systems,a novel adaptive fuzzy and impulsive control strategy with supervisory controller is developed.With the help of a supervisory controller,global stability of the resulting closed-loop system is established in the sense that all signals involved are uniformly bounded.Furthermore,the adaptive compensation term of the upper bound function of the sum of residual and approximation error is adopted to reduce the effects of modeling error.By the generalized Barbalat's lemma,the tracking error between the output of the system and the reference signal is proved to be convergent to zero asymptotically.Simulation results illustrate the effectiveness of the proposed approach.
Advanced nonlinear control of three phase series active power filter
Directory of Open Access Journals (Sweden)
Abouelmahjoub Y.
2014-01-01
Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.
Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.
Su, Shize; Lin, Zongli; Garcia, Alfredo
2016-01-01
This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.
Connected cruise control: modelling, delay effects, and nonlinear behaviour
Orosz, Gábor
2016-08-01
Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.
Sensitivity and chaos control for the forced nonlinear oscillations
Energy Technology Data Exchange (ETDEWEB)
Bashkirtseva, Irina [Department of Mathematics, Ural State University, 620083 Ekaterinburg (Russian Federation); Ryashko, Lev [Department of Mathematics, Ural State University, 620083 Ekaterinburg (Russian Federation)] e-mail: lev.ryashko@usu.ru
2005-12-01
This paper is devoted to study the problem of controlling chaos for forced nonlinear dynamic systems. We suggest a new control technique based on sensitivity analysis. With the help of approximation of nonequilibrium quasipotential, stochastic sensitivity function (SSF) is constructed. This function is used as basic tool of a quantitative description for a system response on the random external disturbances. The possibilities of SSF to predict chaotic dynamics for the periodic and stochastic forced Brusselator are shown. The problem of chaos control based on SSF is considered. A design of attractors with the desired features by feedback regulator is discussed. Analysis of controllability and effective technique for regulator synthesis is presented. An example of suppressing chaos for Brusselator is considered.
Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps
Directory of Open Access Journals (Sweden)
Deep Parikh
2015-08-01
Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM. Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.
Miyamoto, Hiroyuki; Ohmori, Hiromitsu
This work considers an adaptive servosystem design for a class of nonlinear systems that can be transformed into a canonical form. Although our proposed compensator is based on nonlinear internal model principle, overall control system structure adopts plug-in manner, i.e. the compensator to achieve tracking and disturbance rejection is placed outside the existed feedback controller. Moreover such compensator can be designed by solving error feedback nonlinear regulation problem and by using recursive procedure. An adaptation mechanism is introduced to cope with the unknown parameters of exosystem.
Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems
Blackmore, Lars; Acikmese, Behcet; Carson, John M.,III
2012-01-01
In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field.
Nonlinear stochastic systems with incomplete information filtering and control
Shen, Bo; Shu, Huisheng
2013-01-01
Nonlinear Stochastic Processes addresses the frequently-encountered problem of incomplete information. The causes of this problem considered here include: missing measurements; sensor delays and saturation; quantization effects; and signal sampling. Divided into three parts, the text begins with a focus on H∞ filtering and control problems associated with general classes of nonlinear stochastic discrete-time systems. Filtering problems are considered in the second part, and in the third the theory and techniques previously developed are applied to the solution of issues arising in complex networks with the design of sampled-data-based controllers and filters. Among its highlights, the text provides: · a unified framework for handling filtering and control problems in complex communication networks with limited bandwidth; · new concepts such as random sensor and signal saturations for more realistic modeling; and · demonstration of the use of techniques such...
An hp symplectic pseudospectral method for nonlinear optimal control
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant
Directory of Open Access Journals (Sweden)
Xiangjie Liu
2014-01-01
Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.
Control of an extending nonlinear elastic cable with an active vibration control strategy
Dai, L.; Sun, L.; Chen, C.
2014-10-01
An active control strategy based on the fuzzy sliding mode control (FSMC) is developed in this research for controlling the large-amplitude vibrations of an extending nonlinear elastic cable. The geometric nonlinearity of the cable and the fixed-fixed boundary of the cable are considered. For effectively and accurately control the motion of the cable with the active control strategy developed, the governing equation of the elastic cable is established and transformed into a multi-dimensional dynamic system with the 3rd order Galerkin method. The active control strategy is developed on the basis of the dynamic system, and the control strategy is applicable to multi-dimensional dynamic systems. In the numerical simulation, large-amplitude vibrations of the cable are effectively controlled with the control strategy. The results of the research demonstrate significances for controlling the cable vibrations of an elevator in practice.
Nonlinear Model Predictive Control for Oil Reservoirs Management
DEFF Research Database (Denmark)
Capolei, Andrea
. With this objective function we link the optimization problem in production optimization to the Markowitz portfolio optimization problem in finance or to the the robust design problem in topology optimization. In this study we focus on open-loop configuration, i.e. without measurement feedback. We demonstrate......, the research community is working on improving current feedback model-based optimal control technologies. The topic of this thesis is production optimization for water flooding in the secondary phase of oil recovery. We developed numerical methods for nonlinear model predictive control (NMPC) of an oil field....... Further, we studied the use of robust control strategies in both open-loop, i.e. without measurement feedback, and closed-loop, i.e. with measurement feedback, configurations. This thesis has three main original contributions: The first contribution in this thesis is to improve the computationally...
Nonlinear system identification and control using state transition algorithm
Yang, Chunhua; Gui, Weihua
2012-01-01
This paper presents a novel optimization method named state transition algorithm (STA) to solve the problem of identification and control for nonlinear system. In the proposed algorithm, a solution to optimization problem is considered as a state, and the updating of a solution equates to the process of state transition, which makes the STA easy to understand and convenient to be implemented. First, the STA is applied to identify the optimal parameters of the estimated system with previously known structure. With the accurate estimated model, an off-line PID controller is then designed optimally by using the STA as well. Experimental results demonstrate the validity of the methodology, and comparison to STA with other optimization algorithms confirms that STA is a promising alternative method for system identification and control due to its stronger search ability, faster convergence speed and more stable performance.
Nonlinear Field Oriented Control of Induction Motors using the Backstepping Design
DEFF Research Database (Denmark)
Rasmussen, Henrik; Vadstrup, P.; Børsting, H.
1999-01-01
Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s......Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stabilioty with garanteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....
Nonlinear phononics and structural control of strongly correlated materials
Energy Technology Data Exchange (ETDEWEB)
Mankowsky, Roman
2016-01-20
Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal
Design of nonlinear discrete-time controllers using a parameter space sampling procedure
Young, G. E.; Auslander, D. M.
1983-01-01
The design of nonlinear discrete-time controllers is investigated where the control algorithm assumes a special form. State-dependent control actions are obtained from tables whose values are the design parameters. A new design methodology capable of dealing with nonlinear systems containing parameter uncertainty is used to obtain the controller design. Various controller strategies are presented and illustrated through an example.
Robust Control Design for Uncertain Nonlinear Dynamic Systems
Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.
2012-01-01
Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.
Nonlinear MIMO Control of a Continuous Cooling Crystallizer
Directory of Open Access Journals (Sweden)
Pedro Alberto Quintana-Hernández
2012-01-01
Full Text Available In this work, a feedback control algorithm was developed based on geometric control theory. A nonisothermal seeded continuous crystallizer model was used to test the algorithm. The control objectives were the stabilization of the third moment of the crystal size distribution (μ3 and the crystallizer temperature (T; the manipulated variables were the stirring rate and the coolant flow rate. The nonlinear control (NLC was tested at operating conditions established within the metastable zone. Step changes of magnitudes ±0.0015 and ±0.5°C were introduced into the set point values of the third moment and crystallizer temperature, respectively. In addition, a step change of ±1°C was introduced as a disturbance in the feeding temperature. Closed-loop stability was analyzed by calculating the eigenvalues of the internal dynamics. The system presented a stable dynamic behavior when the operation conditions maintain the crystallizer concentration within the metastable zone. Closed-loop simulations with the NLC were compared with simulations that used a classic PID controller. The PID controllers were tuned by minimizing the integral of the absolute value of the error (IAE criterion. The results showed that the NLC provided a suitable option for continuous crystallization control. For all analyzed cases, the IAEs obtained with NLC were smaller than those obtained with the PID controller.
A novel sliding mode nonlinear proportional-integral control scheme for controlling chaos
Institute of Scientific and Technical Information of China (English)
Yu Dong-Chuan; Wu Ai-Guo; Yang Chao-Ping
2005-01-01
A novel sliding mode nonlinear proportional-integral control (SMNPIC) scheme is proposed for driving a class of time-variant chaotic systems with uncertainty to arbitrarily desired trajectory with high accuracy. The SMNPIC differs from the previous sliding mode techniques in the sense that a nonlinear proportional-integral action of sliding function is involved in control law, so that both the steady-state error and the high-frequency chattering are reduced,and meanwhile, robustness and fastness are guaranteed. In addition, the proposed SMNPIC actually acts as a class of nonlinear proportional-integral-differential (PID) controller, in which the tracking error and its derivatives up to (n-1)thorder as well as the integral of tracking error are considered, so that more useful information than traditional PID can be implemented and better dynamic and static characteristics can obtained. Its good performance for chaotic control is illustrated through a During-Holmes system with uncertainty.
CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Dr.A.TRIVEDI
2011-04-01
Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.
Energy Technology Data Exchange (ETDEWEB)
Etchepareborda, Andres [Department of Nuclear Engineering, Argentine National Atomic Energy Commission, Centro Atomico Bariloche, Av. E. Bustillo 9500, Bariloche 8400 (Argentina)]. E-mail: etche@cab.cnea.gov.ar; Lolich, Jose [INVAP S.E., Moreno 1089, Bariloche 8400 (Argentina)
2007-02-15
A constrained, output feedback nonlinear receding horizon control (NRHC) method is applied to design a research reactor power controller. The method uses a nonlinear plant model subject to state, control and terminal set constraints; a nonlinear cost function; and a high gain observer. The controller regulates reactor power from 1% to 100% of full power; considers known disturbances, such as reactivity insertions and changes in core inlet flow and temperature; and includes upper limits constraints on neutron flux, neutron flux rate, core outlet temperature and core inlet-outlet temperature difference. Simulation results show an excellent performance for power regulation and known disturbances rejection: all process variables are kept within the admissible limits avoiding the actuation of the safety systems.
Directory of Open Access Journals (Sweden)
Shuiqing Yu
2013-01-01
Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.
Kvitko, Alexander
2016-06-01
By constructing a Luenberger-type asymptotic observer, a method of finding the control function, that ensures the translation of a class of nonlinear stationary control systems of ordinary differential equations from the initial state to a given final state taking into account the actual measured values, was developed. A constructive criterion guaranteeing the existence of solution of this problem was found. An algorithm is proposed for constructing a control function that transfer wide class of nonlinear systems of ordinary differential equations from an initial state to an fixed state. The algorithm is convenient for numerical implementation. A constructive condition is obtained for which this transfer is possible.
Rigatos, Gerasimos G
2015-01-01
This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The bo...
Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M
2011-01-01
We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.
Stabilizing model predictive control for constrained nonlinear distributed delay systems.
Mahboobi Esfanjani, R; Nikravesh, S K Y
2011-04-01
In this paper, a model predictive control scheme with guaranteed closed-loop asymptotic stability is proposed for a class of constrained nonlinear time-delay systems with discrete and distributed delays. A suitable terminal cost functional and also an appropriate terminal region are utilized to achieve asymptotic stability. To determine the terminal cost, a locally asymptotically stabilizing controller is designed and an appropriate Lyapunov-Krasoskii functional of the locally stabilized system is employed as the terminal cost. Furthermore, an invariant set for locally stabilized system which is established by using the Razumikhin Theorem is used as the terminal region. Simple conditions are derived to obtain terminal cost and terminal region in terms of Bilinear Matrix Inequalities. The method is illustrated by a numerical example.
Computational models of signalling networks for non-linear control.
Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M
2013-05-01
Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.
Numerical solution of control problems governed by nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Heinkenschloss, M. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)
1994-12-31
In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.
Global path following control for underactuated stratospheric airship
Zheng, Zewei; Wu, Zhe
2013-10-01
This paper develops a nonlinear path following control method that drives an underactuated stratospheric airship onto a predefined planar path with a given speed profile. The dynamic model of the airship used for controller design is first introduced with kinematics and dynamics equations. In order to render good pilot behavior for the control action, a guidance controller by referring to the guidance-based path following principle is derived. Then the controller is extended to cope with the airship attitude and velocity by resorting to the backstepping and Lyapunov-based techniques. The designed control system finally possesses a cascaded structure which consists of guidance loop, attitude control loop and velocity control loop. Stability analysis shows that the controlled closed-loop system is globally asymptotically stable, and the sway velocity which cannot be directly controlled is bounded. Simulation results for the airship following typical paths are illustrated to verify effectiveness of the proposed approach.
Control Law Design for Twin Rotor MIMO System with Nonlinear Control Strategy
Directory of Open Access Journals (Sweden)
M. Ilyas
2016-01-01
Full Text Available Modeling of complex air vehicles is a challenging task due to high nonlinear behavior and significant coupling effect between rotors. Twin rotor multi-input multioutput system (TRMS is a laboratory setup designed for control experiments, which resembles a helicopter with unstable, nonlinear, and coupled dynamics. This paper focuses on the design and analysis of sliding mode control (SMC and backstepping controller for pitch and yaw angle control of main and tail rotor of the TRMS under parametric uncertainty. The proposed control strategy with SMC and backstepping achieves all mentioned limitations of TRMS. Result analysis of SMC and backstepping control schemes elucidates that backstepping provides efficient behavior with the parametric uncertainty for twin rotor system. Chattering and oscillating behaviors of SMC are removed with the backstepping control scheme considering the pitch and yaw angle for TRMS.
Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell
2016-01-01
This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques.
Nonlinear Adaptive Regulation Control of A Quadrotor Unmanned Aerial Vehicle%四旋翼无人飞行器的非线性自适应镇定控制器设计
Institute of Scientific and Technical Information of China (English)
曾伟; 鲜斌; 刁琛; 殷强; 李浩涛; 杨云高
2011-01-01
本文采用在线参数辨识与反馈控制相结合的方法，针对具有欠驱动特性的四旋翼无人飞行器，设计了一种非线性自适应镇定控制器，并且在进行控制器设计时，考虑到了飞行器转动惯量，空气阻尼，以及其他系统参数的不确定性。利用Lyapunov稳定性分析方法理论证明了四旋翼无人飞行器的镇定误差最终趋于零。仿真结果进一步验证了文中所提出的控制器具有良好的镇定效果。%In this paper, a nonlinear adaptive regulation controller is presented for a class of underactuated quadrotor unmanned aerial vehicle (UAV). The vehicle’s dynamics is sub ject to modeling impression associated with the inertia matrix, aerodynamic damping coefficients, and some other system parameters. The on-line parameter estimation scheme is combined with feedback control to develop the adaptive control laws. Lyapunov based approaches are utilized to prove that the quadrotor UAV’s position and yaw angle regulation errors are ultimately driven to zero under parametric uncertainties. Simulation results are included to demonstrate the performance of the control strategy.
Automated control of optical polarization for nonlinear microscopy
Brideau, Craig; Stys, Peter K.
2012-03-01
Laser-scanning non-linear optical techniques such as multi-photon fluorescence excitation microscopy (MPM), Second/ Third Harmonic Generation (SHG/THG), and Coherent Anti-Stokes Raman Scattering (CARS) are being utilized in research laboratories worldwide. The efficiencies of these non-linear effects are dependent on the polarization state of the excitation light relative to the orientation of the sample being imaged. In highly ordered anisotropic biological samples this effect can become pronounced and the excitation polarization can have a dramatic impact on imaging experiments. Therefore, controlling the polarization state of the exciting light is important; however this is challenging when the excitation light passes through a complex optical system. In a typical laser-scanning microscope, components such as the dichroic filters, lenses, and even mirrors can alter the polarization state of a laser beam before it reaches the sample. We present an opto-mechanical solution to compensate for the polarization effects of an optical path, and to precisely program the polarization state of the exciting laser light. The device and accompanying procedures allow the delivery of precise laser polarization states at constant average power levels to a sample during an imaging experiment.
On nonlinear control design for autonomous chaotic systems of integer and fractional orders
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Wajdi M. E-mail: wajdi@sharjah.ac.ae; Harb, Ahmad M. E-mail: aharb@just.edu.jo
2003-11-01
In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations.
Bentaallah, Abderrahim; Massoum, Ahmed; Benhamida, Farid; Meroufel, Abdelkader
2012-03-01
This paper studies the nonlinear adaptive control of an induction motor with natural dynamic complete nonlinear observer. The aim of this work is to develop a nonlinear control law and adaptive performance for an asynchronous motor with two main objectives: to improve the continuation of trajectories and the stability, robustness to parametric variations and disturbances rejection. This control law will independently control the speed and flux into the machine by restricting supply. A complete nonlinear observer for dynamic nature ensuring closed loop stability of the entire control and observer has been developed. Several simulations have also been carried out to demonstrate system performance.
Position control of nonlinear hydraulic system using an improved PSO based PID controller
Ye, Yi; Yin, Chen-Bo; Gong, Yue; Zhou, Jun-jing
2017-01-01
This paper addresses the position control of valve-controlled cylinder system employed in hydraulic excavator. Nonlinearities such as dead zone, saturation, discharge coefficient and friction existed in the system are highlighted during the mathematical modeling. On this basis, simulation model is established and then validated against experiments. Aim for achieving excellent position control performances, an improved particle swarm optimization (PSO) algorithm is presented to search for the optimal proportional-integral-derivative (PID) controller gains for the nonlinear hydraulic system. The proposed algorithm is a hybrid based on the standard PSO algorithm but with the addition of selection and crossover operators from genetic algorithm in order to enhance the searching efficiency. Furthermore, a nonlinear decreasing scheme for the inertia weight of the improved PSO algorithm is adopted to balance global exploration and local exploration abilities of particles. Then a co-simulation platform combining the simulation model with the improved PSO tuning based PID controller is developed. Comparisons of the improved PSO, standard PSO and Phase Margin (PM) tuning methods are carried out with three position references as step signal, ramp signal and sinusoidal wave using the co-simulation platform. The results demonstrated that the improved PSO algorithm can perform well in PID control for positioning of nonlinear hydraulic system.
Adaptation with disturbance attenuation in nonlinear control systems
Energy Technology Data Exchange (ETDEWEB)
Basar, T. [Univ. of Illinois, Urbana, IL (United States)
1997-12-31
We present an optimization-based adaptive controller design for nonlinear systems exhibiting parametric as well as functional uncertainty. The approach involves the formulation of an appropriate cost functional that places positive weight on deviations from the achievement of desired objectives (such as tracking of a reference trajectory while the system exhibits good transient performance) and negative weight on the energy of the uncertainty. This cost functional also translates into a disturbance attenuation inequality which quantifies the effect of the presence of uncertainty on the desired objective, which in turn yields an interpretation for the optimizing control as one that optimally attenuates the disturbance, viewed as the collection of unknown parameters and unknown signals entering the system dynamics. In addition to this disturbance attenuation property, the controllers obtained also feature adaptation in the sense that they help with identification of the unknown parameters, even though this has not been set as the primary goal of the design. In spite of this adaptation/identification role, the controllers obtained are not of certainty-equivalent type, which means that the identification and the control phases of the design are not decoupled.
Nonlinear equations on controlling interface patterns during solidification of a dilute binary alloy
Institute of Scientific and Technical Information of China (English)
王自东; 周永利; 常国威; 胡汉起
1999-01-01
In nonequilibrium nonlinear region, by assuming that there is local equilibrium at the solid/liquid interface, and considering that curvature, temperature and composition at the solid/liquid interface which are related to perturbation amplitude are nonlinear, nonlinear equations of the time dependence of the perturbation amplitude of the solid/liquid interface during solidification of a dilute binary alloy are established. Crystal growth from nonsteady state to steady state can be controlled by these nonlinear equations.
Robust Absolute Stability of General Interval Lur'e Type Nonlinear Control Systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, Lyapunov function method isused to study the robust absolute stability of general interval Lur'e type nonlinear control systems. As a result, algebraically sufficient conditions with interval matrix inequality form are obtained for the general interval Lur'e type nonlinear control systems, thus the relationship between the stability of symmetrical interval matrix and the robust absolute stability of general interval Lur'e type nonlinear control systems is established.
Direct adaptive control for nonlinear uncertain system based on control Lyapunov function method
Institute of Scientific and Technical Information of China (English)
Chen Yimei; Han Zhengzhi; Tang Houjun
2006-01-01
The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.
Nonlinear model predictive control based on collective neurodynamic optimization.
Yan, Zheng; Wang, Jun
2015-04-01
In general, nonlinear model predictive control (NMPC) entails solving a sequential global optimization problem with a nonconvex cost function or constraints. This paper presents a novel collective neurodynamic optimization approach to NMPC without linearization. Utilizing a group of recurrent neural networks (RNNs), the proposed collective neurodynamic optimization approach searches for optimal solutions to global optimization problems by emulating brainstorming. Each RNN is guaranteed to converge to a candidate solution by performing constrained local search. By exchanging information and iteratively improving the starting and restarting points of each RNN using the information of local and global best known solutions in a framework of particle swarm optimization, the group of RNNs is able to reach global optimal solutions to global optimization problems. The essence of the proposed collective neurodynamic optimization approach lies in the integration of capabilities of global search and precise local search. The simulation results of many cases are discussed to substantiate the effectiveness and the characteristics of the proposed approach.
Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators
Lakshmanan, M
1997-01-01
In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.
Theory of nonlinear phononics for coherent light control of solids
Subedi, Alaska; Cavalleri, Andrea; Georges, Antoine
2014-06-01
We present a microscopic theory for ultrafast control of solids with high-intensity terahertz frequency optical pulses. When resonant with selected infrared-active vibrations, these pulses transiently modify the crystal structure and lead to new collective electronic properties. The theory predicts the dynamical path taken by the crystal lattice using first-principles calculations of the energy surface and classical equations of motion, as well as symmetry considerations. Two classes of dynamics are identified. In the perturbative regime, displacements along the normal mode coordinate of symmetry-preserving Raman active modes can be achieved by cubic anharmonicities. This explains the light-induced insulator-to-metal transition reported experimentally in manganites. We predict a regime in which ultrafast instabilities that break crystal symmetry can be induced. This nonperturbative effect involves a quartic anharmonic coupling and occurs above a critical threshold, below which the nonlinear dynamics of the driven mode displays softening and dynamical stabilization.
Online prediction and control in nonlinear stochastic systems
DEFF Research Database (Denmark)
Nielsen, Torben Skov
2002-01-01
of systems which are inherently non-stationary. The third part concerns the issue of predicting the power production from wind turbines in the presence of Numerical Weather Predictions (NWP) of selected climatical variables. Here the transformation through the wind turbines from (primarily) wind speed....... The papers G , H and J investigate models and methods for predicting wind power from a wind farm on basis of observations and numerical weather predictions. All three papers consider multistep prediction models, but uses di erent estimation methods as well as dierent models for the diurnal variation of wind......The present thesis consists of a summary report and ten research papers. The subject of the thesis is on-line prediction and control of non-linear and non-stationary systems based on stochastic modelling. The thesis consists of three parts where the rst part deals with on-line estimation in linear...
Nonlinear Burn Control and Operating Point Optimization in ITER
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
Wu, Li-Bing; Yang, Guang-Hong
2017-03-01
This paper investigates the problem of adaptive output neural network (NN) control for a class of stochastic nonaffine and nonlinear systems with actuator dead-zone inputs. First, based on the intermediate value theorem, a novel design scheme that converts the nonaffine system into the corresponding affine system is developed. In particular, the priori knowledge of the bound of the derivative of the nonaffine and nonlinear functions is removed; then, by employing NNs to approximate the appropriate nonlinear functions, the corresponding adaptive NN tracking controller with the adjustable parameter updated laws is designed through a backstepping technique. Furthermore, it is shown that all the closed-loop signals are bounded in probability, and the system output tracking error can converge to a small neighborhood in the sense of a mean quartic value. Finally, experimental simulations are provided to demonstrate the efficiency of the proposed adaptive NN tracking control method.
Global adaptive output feedback control for a class of nonlinear time-delay systems.
Zhai, Jun-yong; Zha, Wen-ting
2014-01-01
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.
Modeling and Non-Linear Self-Tuning Robust Trajectory Control of an Autonomous Underwater Vehicle
Directory of Open Access Journals (Sweden)
Thor Inge Fossen
1988-10-01
Full Text Available A non-linear self-tuning algorithm is demonstrated for an autonomous underwater vehicle. Tighter control is achieved by a non-linear parameter identification algorithm which reduces the parameter uncertainty bounds. Expensive hydrodynamic tests for parameter determination can thus be avoided. Excellent tracking performance and robustness to parameter uncertainty are guaranteed through a robust control strategy based on the estimated parameters. The nonlinear control law is highly robust for imprecise models and the neglected dynamics. The non-linear self-tuning control strategy is simulated for the horizontal positioning of an underwater vehicle.
Institute of Scientific and Technical Information of China (English)
WANG Yan-bo; BAO Gang
2008-01-01
By applying a nonlinear control and arranging a transient process, the initiative error of the pneumatic servo positioning system is reduced largely, and a larger gain of the controller is used to improve the responding speed of the system at the same damping ratio. Therefore, a compromise is made among the responding speed, overshoot, robustness, adaptability and stability. In addition, a dynamic output feedback controller, including position velocity and acceleration (PVA) feedback, is designed to improve the performance of the system. And a nonlinear controller is reconstructed based on the linear output feedback controller to decrease noises and disturbances. The dynamic responses of the system are simulated and tested. Results show that the error is kept within 0.02 mm under different mass loads and the positioning transient process is smooth, without overshoot and speedy.
Energy Technology Data Exchange (ETDEWEB)
Cloutier, J.R.; D`Souza, C.N.; Mracek, C.P. [Air Force Armament Directorate, Eglin, FL (United States)
1994-12-31
A little known technique for systematically designing nonlinear regulators is analyzed. The technique consists of first using direct parameterization to bring the nonlinear system to a linear structure having state-dependent coefficients (SDC). A state-dependent Riccati equation (SDRE) is then solved at each point x along the trajectory to obtain a nonlinear feedback controller of the form u = -R{sup -1}(x)B{sup T}(x)P(x)x, where P(x) is the solution of the SDRE. In the case of scalar x, it is shown that the SDRE approach yields a control solution which satisfies all of the necessary conditions for optimality even when the state and control weightings are functions of the state. It is also shown that the solution is globally asymptotically stable. In the multivariable case, the optimality, suboptimality and stability properties of the SDRE method are investigated. Under various mild assumptions of controllability and observability, the following is shown: (a) concerning the necessary conditions for optimality, where H is the Hamiltonian of the system, H{sub u} = 0 is always satisfied and, under stability, {lambda} = -H{sub x} is asymptotically satisfied at a quadratic rate as the states are driven toward the origin, (b) if it exists, a parameter-dependent SDC parameterization can be computed such that the multivariable SDRE closed loop solution satisfies all of the necessary conditions for optimality for a given initial condition, and (c) the method is locally asymptotically stable. A general nonlinear minimum-energy (nonlinear H{sub {infinity}}) problem is then posed. For this problem, the SDRF, method involves the solution of two coupled state-dependent Riccati equations at each point x along the trajectory. In the case of full state information, again under mild assumptions of controllability and observability, it is shown that the SDRE non-linear H{sub {infinity}} controller is internally locally asymptotically stable.
On the estimation of the attainability set of nonlinear control systems
Energy Technology Data Exchange (ETDEWEB)
Ekimov, A.V.; Balykina, Yu.E.; Svirkin, M.V. [Saint Petersburg State University, 198504, Universitetskii pr., 35, Saint Petersburg (Russian Federation)
2015-03-10
Analysis of the attainability set and construction of its estimates greatly facilitates the solution of a variety of problems in mathematical control theory. In the paper, the problem of boundedness of the integral funnel of nonlinear controlled system is considered. Some estimates of the attainability sets for a nonlinear controlled system are presented. Theorems on the boundedness of considered integral funnels are proved.
Directory of Open Access Journals (Sweden)
S. I. Samsudin
2014-01-01
Full Text Available The wastewater treatment plant (WWTP is highly known with the nonlinearity of the control parameters, thus it is difficult to be controlled. In this paper, the enhancement of nonlinear PI controller (ENon-PI to compensate the nonlinearity of the activated sludge WWTP is proposed. The ENon-PI controller is designed by cascading a sector-bounded nonlinear gain to linear PI controller. The rate variation of the nonlinear gain kn is automatically updated based on adaptive interaction algorithm. Initiative to simplify the ENon-PI control structure by adapting kn has been proved by significant improvement under various dynamic influents. More than 30% of integral square error and 14% of integral absolute error are reduced compared to benchmark PI for DO control and nitrate in nitrogen removal control. Better average effluent qualities, less number of effluent violations, and lower aeration energy consumption resulted.
Stabilization and utilization of nonlinear phenomena based on bifurcation control for slow dynamics
Yabuno, Hiroshi
2008-08-01
Mechanical systems may experience undesirable and unexpected behavior and instability due to the effects of nonlinearity of the systems. Many kinds of control methods to decrease or eliminate the effects have been studied. In particular, bifurcation control to stabilize or utilize nonlinear phenomena is currently an active topic in the field of nonlinear dynamics. This article presents some types of bifurcation control methods with the aim of realizing vibration control and motion control for mechanical systems. It is also indicated through every control method that slowly varying components in the dynamics play important roles for the control and the utilizations of nonlinear phenomena. In the first part, we deal with stabilization control methods for nonlinear resonance which is the 1/3-order subharmonic resonance in a nonlinear spring-mass-damper system and the self-excited oscillation (hunting motion) in a railway vehicle wheelset. The second part deals with positive utilizations of nonlinear phenomena by the generation and the modification of bifurcation phenomena. We propose the amplitude control method of the cantilever probe of an atomic force microscope (AFM) by increasing the nonlinearity in the system. Also, the motion control of a two link underactuated manipulator with a free link and an active link is considered by actuating the bifurcations produced under high-frequency excitation. This article is a discussion on the bifurcation control methods presented by the author and co-researchers by focusing on the actuation of the slowly varying components included in the original dynamics.
STABILIZATION OF NONLINEAR TIME-VARYING SYSTEMS: A CONTROL LYAPUNOV FUNCTION APPROACH
Institute of Scientific and Technical Information of China (English)
Zhongping JIANG; Yuandan LIN; Yuan WANG
2009-01-01
This paper presents a control Lyapunov function approach to the global stabilization problem for general nonlinear and time-varying systems. Explicit stabilizing feedback control laws are proposed based on the method of control Lyapunov functions and Sontag's universal formula.
Dsp-based Robust Nonlinear Speed Control of PM Synchronous Motor
Energy Technology Data Exchange (ETDEWEB)
Baik, I.C.; Kim, K.H.; Youn, M.J. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-02-01
A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) is presented. A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme. (author). 17 refs., 10 figs.
Linear and nonlinear schemes applied to pitch control of wind turbines.
Geng, Hua; Yang, Geng
2014-01-01
Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters.
Directory of Open Access Journals (Sweden)
Alessandro Ferrarini
2016-06-01
Full Text Available Evolutionary Network Control (ENC has been first introduced in 2013 to effectively subdue network-like systems. ENC opposes the idea, very common in the scientific literature, that controllability of networks should be based on the identification of the set of driver nodes that can guide the system's dynamics, in other words on the choice of a subset of nodes that should be selected to be permanently controlled. ENC has proven to be effective in the global control (i.e. the focus is on mastery of the final state of network dynamics of linear and nonlinear networks, and in the local (i.e. the focus is on the step-by-step ascendancy of network dynamics control of linear networks. In this work, ENC is applied to the local control of nonlinear networks. Using the Lotka-Volterra model as a case study, I show here that ENC is capable of locally driving nonlinear networks as well, so that also intermediate steps (not only the final state are under our strict control. ENC can be readily applied to any kind of ecological, biological, economic and network-like system.
Control synthesis for polynomial nonlinear systems and application in attitude control
Institute of Scientific and Technical Information of China (English)
Chang-fei TONG; Hui ZHANG; You-xian SUN
2008-01-01
A method for positive polynomial validation based on polynomial decomposition is proposed to deal with control synthesis problems. Detailed algorithms for decomposition are given which mainly consider how to convert coefficients of a polynomial to a matrix with free variables. Then, the positivity of a polynomial is checked by the decomposed matrix with semidefinite programming solvers. A nonlinear control law is presented for single input polynomial systems based on the Lyapunov stability theorem. The control synthesis method is advanced to multi-input systems further. An application in attitude control is finally presented. The proposed control law achieves effective performance as illustrated by the numerical example.
A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators
Smith, Ralph C.
1998-01-01
This paper addresses the development of a nonlinear optimal control methodology for magnetostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommodated by models and control laws to utilize the full capabilities of the actuators. A characterization based upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady state actuator dynamics under a variety of operating conditions. The control method consists of a linear perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offline. The feedback control is constructed through linearization of the perturbed system about the optimal system and is efficient for online implementation. As demonstrated through numerical examples, the combined hybrid control is robust and can be readily implemented in linear PDE-based structural models.
Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control
Institute of Scientific and Technical Information of China (English)
Xiao-Bing Hu; Wen-Hua Chen
2007-01-01
This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods,this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI)and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.
Errouissi, Rachid; Yang, Jun; Chen, Wen-Hua; Al-Durra, Ahmed
2016-08-01
In this paper, a robust nonlinear generalised predictive control (GPC) method is proposed by combining an integral sliding mode approach. The composite controller can guarantee zero steady-state error for a class of uncertain nonlinear systems in the presence of both matched and unmatched disturbances. Indeed, it is well known that the traditional GPC based on Taylor series expansion cannot completely reject unknown disturbance and achieve offset-free tracking performance. To deal with this problem, the existing approaches are enhanced by avoiding the use of the disturbance observer and modifying the gain function of the nonlinear integral sliding surface. This modified strategy appears to be more capable of achieving both the disturbance rejection and the nominal prescribed specifications for matched disturbance. Simulation results demonstrate the effectiveness of the proposed approach.
Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings
Institute of Scientific and Technical Information of China (English)
ZHAO Min; LI Ning; LI ShaoYuan
2009-01-01
A min-max model predictive control strategy is proposed for a class of constrained nonlinear system whose trajectories can be embedded within those of a bank of linear parameter varying (LPV) models. The embedding LPV models can yield much better approximation of the nonlinear system dynamics than a single LTV model. For each LPV model, a parameter-dependent Lyapunov function is introduced to obtain poly-quadratically stable control law and to guarantee the feasibility and stability of the original nonlinear system. This approach can greatly reduce computational burden in traditional nonlinear predictive control strategy. Finally a simulation example illustrating the strategy is presented.
Recent results on nonlinear delay control systems in honor of Miroslav Krstic
Pepe, Pierdomenico; Mazenc, Frederic; Karafyllis, Iasson
2016-01-01
This volume collects recent advances in nonlinear delay systems, with an emphasis on constructive generalized Lyapunov and predictive approaches that certify stability properties. The book is written by experts in the field and includes two chapters by Miroslav Krstic, to whom this volume is dedicated. This volume is suitable for all researchers in mathematics and engineering who deal with nonlinear delay control problems and students who would like to understand the current state of the art in the control of nonlinear delay systems.
2013-01-01
A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropria...
Integral Terminal Sliding Mode Control for a Class of Nonaffine Nonlinear Systems with Uncertainty
Qiang Zhang; Hongliang Yu; Xiaohong Wang
2013-01-01
This paper is concerned with an integral terminal sliding mode tracking control for a class of uncertain nonaffine nonlinear systems. Firstly, the nonaffine nonlinear systems is approximated to facilitate the desired control design via a novel dynamic modeling technique. Next, for the unmeasured disturbance of nonlinear systems, integral terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to ...
Enokida, Ryuta; Takewaki, Izuru; Stoten, David
2014-12-01
The problem of control system design can be conceptualised as identifying an input signal to a plant (the system to be controlled) so that the corresponding output matches that of a pre-defined reference signal. Primarily, this problem is solved via well-known techniques based upon the principle of feedback design, an essential component for ensuring stability and robustness of the controlled system. However, feedforward design techniques also have a large part to play, whereby (in the absence of feedback control and assuming that the plant is stable) a model of the plant dynamics can be used to modify the reference signal so that the resultant feedforward input signal generates a plant output signal that is sufficiently close to the original reference signal. The principal objective of this paper is to introduce a new nonlinear control method, called nonlinear signal-based control (NSBC) that can be executed as an on-line technique of feedforward compensation (used synonymously here with the phrase 'input identification') and an off-line technique of feedback compensation. NSBC determines the feedforward input signal to the plant by using an error signal, determined from the difference between the output signals from a linear model of the plant and from the nonlinear plant, under the same input signal. The efficacy of NSBC is examined via numerical examples using Matlab/Simulink and compared with alternative well-known methods based upon inverse transfer function compensation and also the method of high gain feedback control. NSBC was found to provide the most accurate input identification in all the examined cases of linear or nonlinear single-input, single-output and single-input, multi-output (SIMO) systems. Furthermore, in problems of structural and earthquake engineering, NSBC was also found to be particularly effective in estimating the original ground motion from a nonlinear SIMO system and its response.
Directory of Open Access Journals (Sweden)
Taochang Li
2014-01-01
Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-01-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity. PMID:28218249
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-02-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
Indian Academy of Sciences (India)
L Emir Sakman; Rahmi Guclu; Nurkan Yagiz
2005-10-01
We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of the vertical velocities of the suspension ends and accelerations of the points of connection of the suspension to the body have been used as input variables. The study clearly demonstrates the effectiveness of the fuzzy logic controller for active suspension systems. Suspension working space degeneration is the most important problem in various applications. Decreasing the amplitudes of vehicle body vibrations improves ride comfort. Body bounce and pitch motion of the vehicle are presented both in time domain when travelling over a ramp-step road proﬁle and in frequency domain. The results are compared with those of uncontrolled systems. At the end of this study, the performance and the advantage of the suggested approach and the improvement in ride comfort are discussed.
Control on a 2-D Wing Flutter Using an AdaptiveNonlinear Neural Controller
Directory of Open Access Journals (Sweden)
Hayder S. Abd Al-Amir
2011-01-01
Full Text Available An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO. The structure of the controller consists of two models :the modified Elman neural network (MENN and the feed forward multi-layer Perceptron (MLP. The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. The feed forward neural controller is trained off-line and adaptive weights are implemented on-line to find the flap angles, which controls the plunge and pitch motion of the wing. The general back propagation algorithm is used to learn the feed forward neural controller and the neural identifier. The simulation results show the effectiveness of the proposed control algorithm; this is demonstrated by the minimized tracking error to zero approximation with very acceptable settling time even with the existence of bounded external disturbances.
Nonlinear controller design for an unmanned aerial vehicle with a slung-load%无人机吊挂飞行的非线性控制方法设计
Institute of Scientific and Technical Information of China (English)
鲜斌; 张旭; 杨森
2016-01-01
This article presents a novel nonlinear control strategy for a quadrotor unmanned aerial vehicle (UAV) with a slung-load. The dynamic model for a quadrotor UAV system with slung-load is firstly obtained. The load is considered as a mass point, with a rigid link connected to the centre of gravity of the quadrotor UAV. Then, a nonlinear control strategy for the considered system is designed via the energy-based methodology. The proposed control design is able to move the quadrotor UAV to its desired position while suppress the swing of the load. The Lyapunov-based stability analysis and the LaSalle Invariance Theorem are employed to prove the stability of the closed-loop system. The control performance of the proposed control strategy is compared with that of a linear-quadratic regulator (LQR) controller via numerical simulation of stabilization control and regulation control.%针对四旋翼无人机吊挂飞行系统,本文设计了一种新型控制策略。本文首先建立了四旋翼无人机吊挂系统的数学模型。其中负载被看作由刚性绳悬挂在四旋翼无人机重心位置的质点。之后本文通过能量分析的方法设计了针对此系统的非线性控制器。本文提出的控制方法可以在抑制吊挂负载摆动的同时将四旋翼无人机移动到目标位置。本文运用李雅普诺夫稳定性分析和拉塞尔不变性原理对闭环系统的稳定性进行了证明。最后,通过数值仿真,分别将本控制器镇定控制和调节控制的控制效果与线性二次调节器(linear-quadratic regulator, LQR)控制器进行了对比。
Nonlinear Model Algorithmic Control of a pH Neutralization Process
Institute of Scientific and Technical Information of China (English)
ZOU Zhiyun; YU Meng; WANG Zhizhen; LIU Xinghong; GUO Yuqing; ZHANG Fengbo; GUO Ning
2013-01-01
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity.In this paper,the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element.A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail.The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller.Further simulation experiment demonstrates that NLH-MAC not only gives good control response,but also possesses good stability and robustness even with large modeling errors.
Modeling and Backstepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter
Institute of Scientific and Technical Information of China (English)
Ashfaq Ahmad Mian; Wang Daobo
2008-01-01
In this article,a nonlinear model of an underactuated six degrees of freedom (6 DOF) quadrotor helicopter is derived on the basis of the Newton-Euler formalism.The derivation comprises determining equations of the motion of the quadrotor in three dimensions andapproximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics.The derived modelcomposed of translatioual and rotational subsystems is dynamically unstable,so a sequential nonlinear control strategy is used.The con-trol strategy includes feedback linearization coupled with a PD controller for the translational subsystem and a backstepping-based PID nonlinear controller for the rotational subsystem of the quadrotor.The performances of the nonlinear control method are evaluated by nonlinear simulation and the results demonstrate the effectiveness of the proposed control strategy for the quadrotor helicopter inquasi-stationary flights.
Multiple-model-and-neural-network-based nonlinear multivariable adaptive control
Institute of Scientific and Technical Information of China (English)
Yue FU; Tianyou CHAI
2007-01-01
A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.
Observer-based fault-tolerant control for a class of nonlinear networked control systems
Mahmoud, M. S.; Memon, A. M.; Shi, Peng
2014-08-01
This paper presents a fault-tolerant control (FTC) scheme for nonlinear systems which are connected in a networked control system. The nonlinear system is first transformed into two subsystems such that the unobservable part is affected by a fault and the observable part is unaffected. An observer is then designed which gives state estimates using a Luenberger observer and also estimates unknown parameter of the system; this helps in fault estimation. The FTC is applied in the presence of sampling due to the presence of a network in the loop. The controller gain is obtained using linear-quadratic regulator technique. The methodology is applied on a mechatronic system and the results show satisfactory performance.
Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps
Deep Parikh; Jignesh Patel; Jayesh Barve
2015-01-01
This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current) motors used in quad-copter UAV (Unmanned Aerial Vehicles). The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM). Traditionally, quad-copter BLDC motor speed control uses simple linear motor-cont...
H∞ Control for Nonlinear Stochastic Systems with Time-Delay and Multiplicative Noise
Directory of Open Access Journals (Sweden)
Ming Gao
2015-01-01
Full Text Available This paper studies the infinite horizon H∞ control problem for a general class of nonlinear stochastic systems with time-delay and multiplicative noise. The exponential/asymptotic mean square H∞ control design of delayed nonlinear stochastic systems is presented by solving Hamilton-Jacobi inequalities. Two numerical examples are provided to show the effectiveness of the proposed design method.
Robust Non-Linear Control of a 400 kW Wind Turbine
DEFF Research Database (Denmark)
Tøffner-Clausen, S.; Andersen, Palle; Knudsen, Torben
1996-01-01
The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine.......The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine....
Integral input-to-state stability of nonlinear control systems with delays
Energy Technology Data Exchange (ETDEWEB)
Zhu Wenli [Department of Economics Mathematics, South Western University of Finance and Economics, Chengdu 610074 (China)]. E-mail: zhuwl@swufe.edu.cn; Yi Zhang [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)]. E-mail: zhangyi@uestc.edu.cn
2007-10-15
Integral input-to-state stability is an interesting concept that has been recently introduced to nonlinear control systems. This paper generalizes this concept to nonlinear control systems with delays. These delays can be bounded, unbounded, and even infinite. Theorems for integral input-to-state stability are derived by developing the method of Razumikhin technique in the theory of functional differential equations.
A nonlinear model reference adaptive inverse control algorithm with pre-compensator
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In this paper, the reduced-order modeling (ROM)technology and its corresponding linear theory are expanded from the linear dynamic system to the nonlinear one, and H∞ control theory is employed in the frequency domain to design some nonlinear system' s pre-compensator in some special way. The adaptive model inverse control (AMIC)theory coping with nonlinear system is improved as well. Such is the model reference adaptive inverse control with pre-compensator (PCMRAIC). The aim of that algorithm is to construct a strategy of control as a whole. As a practical example of the application, the numerical simulation has been given on matlab software packages. The numerical result is given. The proposed strategy realizes the linearization control of nonlinear dynamic system. And it carries out a good performance to deal with the nonlinear system.
Xu, Hao; Jagannathan, Sarangapani
2013-03-01
The stochastic optimal controller design for the nonlinear networked control system (NNCS) with uncertain system dynamics is a challenging problem due to the presence of both system nonlinearities and communication network imperfections, such as random delays and packet losses, which are not unknown a priori. In the recent literature, neuro dynamic programming (NDP) techniques, based on value and policy iterations, have been widely reported to solve the optimal control of general affine nonlinear systems. However, for realtime control, value and policy iterations-based methodology are not suitable and time-based NDP techniques are preferred. In addition, output feedback-based controller designs are preferred for implementation. Therefore, in this paper, a novel NNCS representation incorporating the system uncertainties and network imperfections is introduced first by using input and output measurements for facilitating output feedback. Then, an online neural network (NN) identifier is introduced to estimate the control coefficient matrix, which is subsequently utilized for the controller design. Subsequently, the critic and action NNs are employed along with the NN identifier to determine the forward-in-time, time-based stochastic optimal control of NNCS without using value and policy iterations. Here, the value function and control inputs are updated once a sampling instant. By using novel NN weight update laws, Lyapunov theory is used to show that all the closed-loop signals and NN weights are uniformly ultimately bounded in the mean while the approximated control input converges close to its target value with time. Simulation results are included to show the effectiveness of the proposed scheme.
Exact control of parity-time symmetry in periodically modulated nonlinear optical couplers
Yang, Baiyuan; Hu, QiangLin; Yu, XiaoGuang
2016-01-01
We propose a mechanism for realization of exact control of parity-time (PT) symmetry by using a periodically modulated nonlinear optical coupler with balanced gain and loss. It is shown that for certain appropriately chosen values of the modulation parameters, we can construct a family of exact analytical solutions for the two-mode equations describing the dynamics of such nonlinear couplers. These exact solutions give explicit examples that allow us to precisely manipulate the system from nonlinearity-induced symmetry breaking to PT symmetry, thus providing an analytical approach to the all-optical signal control in nonlinear PT-symmetric structures.
Institute of Scientific and Technical Information of China (English)
张家树; 肖先赐; 万继宏
2001-01-01
An adaptive nonlinear feedback-control method is proposed to control continuous-time chaotic dynamical systems,where the adaptive nonlinear controller acts on only one-dimensional error signals between the desired state and the observed chaotic state of a system. The reduced parameter adaptive quadratic predictor used in adaptive feedback cancellation of the nonlinear terms can control the system at any desired state. Computer simulation results on the Lorenz system are shown to demonstrate the effectiveness of this feedback-control method.
Approximation-Based Adaptive Tracking Control for MIMO Nonlinear Systems With Input Saturation.
Zhou, Qi; Shi, Peng; Tian, Yang; Wang, Mingyu
2015-10-01
In this paper, an approximation-based adaptive tracking control approach is proposed for a class of multiinput multioutput nonlinear systems. Based on the method of neural network, a novel adaptive controller is designed via backstepping design process. Furthermore, by introducing Nussbaum function, the issue of unknown control directions is handled. In the backstepping design process, the dynamic surface control technique is employed to avoid differentiating certain nonlinear functions repeatedly. Moreover, in order to reduce the number of adaptation laws, we do not use the neural networks to directly approximate the unknown nonlinear functions but the desired control signals. Finally, we provide two examples to illustrate the effectiveness of the proposed approach.
Directory of Open Access Journals (Sweden)
Mourad Kchaou
2017-01-01
Full Text Available This paper addresses the problem of sliding mode control (SMC design for a class of uncertain switched descriptor systems with state delay and nonlinear input. An integral sliding function is designed and an adaptive sliding mode controller for the reaching motion is then synthesised such that the trajectories of the resulting closed-loop system can be driven onto a prescribed sliding surface and maintained there for all subsequent times. Moreover, based on a new Lyapunov-Krasovskii functional, a delay-dependent sufficient condition is established such that the admissibility as well as the H∞ performance requirement of the sliding mode dynamics can be guaranteed in the presence of time delay, external disturbances, and nonlinear input which comprises dead-zones and/or sector nonlinearities. The major contributions of this paper of this approach include (i the closed-loop system exhibiting strong robustness against nonlinear dynamics and (ii the control scheme enjoying the chattering-free characteristic. Finally, two representative examples are given to illustrate the theoretical developments.
Institute of Scientific and Technical Information of China (English)
刁琛; 鲜斌; 古训; 赵勃; 郭建川
2012-01-01
A new nonlinear tracking controller is presented for an underactuated quadrotor unmanned aerial vehicle(UAV)subjected to parametric uncertainties.A continuous nonlinear robust control design is combined with an on-line parameter estimation scheme to develop the control law.A Lyapunov based stability analysis is used to prove that asymptotic tracking of the quadrotor UAV's position and regulation of yaw orientation are achieved under parametric uncertainties.Compared with the sliding mode based control approaches,the proposed control design is free of chattering.Numerical simulation results of a 6 DOF quadrotor UAV model show that the proposed control strategy has good tracking performance.%针对具有参数不确定性的欠驱动四旋翼无人飞行器,设计了一种非线性飞行控制器.该控制器主要采用非线性鲁棒以及在线参数估计算法.利用基于李亚普诺夫稳定性分析方法,证明了这种控制器可以使四旋翼无人飞行器的x,y,z方向的位移跟踪参考轨迹,偏航角ψ稳定到任意点,并且达到全局最终稳定的控制效果.同时相对于一般的滑模控制算法,本文提出的控制器消除了颤振现象.数值仿真结果表明,本文提出的控制设计具有良好的控制效果.
Frye, Michael Takaichi
This dissertation examines the problem of global decentralized control by output feedback for large-scale uncertain nonlinear systems whose subsystems are interconnected not only by their outputs but also by their unmeasurable states. Several innovative techniques will be developed to create decentralized output feedback controllers rendering the closed-loop systems globally asymptotically stable. This is accomplished by extending an output feedback domination design that requires only limited information about the nonlinear system. We will apply our design to lower, upper, and non-triangular nonlinear systems. A time-varying output feedback controller is also constructed for use with large-scale systems that have unknown parameters. Furthermore, a mixed large-scale system consisting of both lower and upper triangular systems is shown to be stabilizable by employing a combined high and low gain domination technique. The significance of our results is that we do not need to have prior information about the nonlinearities of the system. In addition, a new design technique was developed using homogeneous system theory, which allows for the design of nonsmooth controllers and observers to stabilize a class of feedforward system with uncontrollable and unobservable linearization. An example of a large-scale system is a group of autonomous airships performing the function of a temporary mobile cell phone network. An airship mobile cell phone network is a novel solution to the problem of maintaining communication during the advent of extensive damage to the communication infrastructure; be it from a flood, earthquake, hurricane, or terrorist attack. A first principle force-based dynamic model for the Tri-Turbofan Airship was developed and will be discussed in detail. The mathematical model was based on actual flight test data that has been collected at the Gait Analysis and Innovative Technologies Laboratory. This model was developed to research autonomous airship
Directory of Open Access Journals (Sweden)
Deyuan Meng
2014-05-01
Full Text Available The dynamics of pneumatic systems are highly nonlinear, and there normally exists a large extent of model uncertainties; the precision motion trajectory tracking control of pneumatic cylinders is still a challenge. In this paper, two typical nonlinear controllers—adaptive controller and deterministic robust controller—are constructed firstly. Considering that they have both benefits and limitations, an adaptive robust controller (ARC is further proposed. The ARC is a combination of the first two controllers; it employs online recursive least squares estimation (RLSE to reduce the extent of parametric uncertainties, and utilizes the robust control method to attenuate the effects of parameter estimation errors, unmodeled dynamics, and disturbances. In order to solve the conflicts between the robust control design and the parameter adaption law design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Theoretically, ARC possesses the advantages of the adaptive control and the deterministic robust control, and thus an even better tracking performance can be expected. Extensive comparative experimental results are presented to illustrate the achievable performance of the three proposed controllers and their performance robustness to the parameter variations and sudden disturbance.
Boiler-turbine control system design using continuous-time nonlinear model predictive control
Institute of Scientific and Technical Information of China (English)
ZHUO Xu-sheng; ZHOU Huai-chun
2008-01-01
A continuous-time nonlinear model predictive controller (NMPC) was designed for a boiler-turbine unit. The controller was designed by optimizing a receding-horizon performance index, with the nonlinear system approximated by its Taylor series expansion with a certain order, the magnitude saturation constraints on the inputs satisfied by increasing the predictive time, and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor. Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances. Comparison of the NMPC scheme with the generic model control (GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level, fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.
A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes
Directory of Open Access Journals (Sweden)
Qi-Zhi Zhang
2005-01-01
Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.
Limit cycle analysis of active disturbance rejection control system with two nonlinearities.
Wu, Dan; Chen, Ken
2014-07-01
Introduction of nonlinearities to active disturbance rejection control algorithm might have high control efficiency in some situations, but makes the systems with complex nonlinearity. Limit cycle is a typical phenomenon that can be observed in the nonlinear systems, usually causing failure or danger of the systems. This paper approaches the problem of the existence of limit cycles of a second-order fast tool servo system using active disturbance rejection control algorithm with two fal nonlinearities. A frequency domain approach is presented by using describing function technique and transfer function representation to characterize the nonlinear system. The derivations of the describing functions for fal nonlinearities and treatment of two nonlinearities connected in series are given to facilitate the limit cycles analysis. The effects of the parameters of both the nonlinearity and the controller on the limit cycles are presented, indicating that the limit cycles caused by the nonlinearities can be easily suppressed if the parameters are chosen carefully. Simulations in the time domain are performed to assess the prediction accuracy based on the describing function.
Analysis and control of nonlinear systems a flatness-based approach
Levine, Jean
2009-01-01
This book examines control of nonlinear systems. Coverage ranges from mathematical system theory to practical industrial control applications. The author offers web-based videos illustrating some dynamical aspects and case studies in simulation.
Study of Super-Twisting sliding mode control for U model based nonlinear system
Directory of Open Access Journals (Sweden)
Jianhua ZHANG
2016-08-01
Full Text Available The Super-Twisting control algorithm is adopted to analyze the U model based nonlinear control system in order to solve the controller design problems of non-affine nonlinear systems. The non-affine nonlinear systems are studied, the neural network approximation of the nonlinear function is performed, and the Super-Twisting control algorithm is used to control. The convergence of the Super-Twisting algorithm is proved by selecting an appropriate Lyapunov function. The Matlab simulation is carried out to verify the feasibility and effectiveness of the described method. The result shows that the output of the controlled system can be tracked in a very short time by using the designed Super-Twisting controller, and the robustness of the controlled system is significantly improved as well.
Nonlinear variable structure excitation and steam valving controllers for power system stability
Institute of Scientific and Technical Information of China (English)
Ben WANG; Zongyuan MAO
2009-01-01
A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper.On the basis of the classical dynamic equations of a generator,excitation control and steam valving control are si-multaneously considered.Design of these controllers combines the differential geometry theory with the variable structure controlling theory.The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant.The dynamic performance of the nonlinear variable structure controllers proposed for a single ma-chine connected to an infinite bus power system is simulated.Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.
Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces
Almeida, Euclides; Shalem, Guy; Prior, Yehiam
2016-01-01
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal.
Directory of Open Access Journals (Sweden)
Guowei Cai
2014-01-01
Full Text Available As to strong nonlinearity of doubly fed induction generators (DFIG and uncertainty of its model, a novel rotor current controller with nonlinearity and robustness is proposed to enhance fault ride-though (FRT capacities of grid-connected DFIG. Firstly, the model error, external disturbances, and the uncertain factors were estimated by constructing extended state observer (ESO so as to achieve linearization model, which is compensated dynamically from nonlinear model. And then rotor current controller of DFIG is designed by using terminal sliding mode variable structure control theory (TSMC. The controller has superior dynamic performance and strong robustness. The simulation results show that the proposed control approach is effective.
Observer-Based Nonlinear Control of A Torque Motor with Perturbation Estimation
Institute of Scientific and Technical Information of China (English)
J Chen; E Prempain; Q H Wu
2006-01-01
This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is based on a robust nonlinear observer, which is used to estimate system states and perturbations and then employ input-output feedback linearization to compensate for the system nonlinearities and uncertainties. The estimation of system states and perturbations allows input-output linearization of the nonlinear system without an accurate mathematical model of nominal plant. The simulation results show that the observer-based nonlinear control method is superior in comparison with the conventional model-based state feedback linearizing controller.
Nonlinear Model Predictive Control of A Gasoline HCCI Engine Using Extreme Learning Machines
Janakiraman, Vijay Manikandan; Nguyen, XuanLong; Assanis, Dennis
2015-01-01
Homogeneous charge compression ignition (HCCI) is a futuristic combustion technology that operates with a high fuel efficiency and reduced emissions. HCCI combustion is characterized by complex nonlinear dynamics which necessitates a model based control approach for automotive application. HCCI engine control is a nonlinear, multi-input multi-output problem with state and actuator constraints which makes controller design a challenging task. Typical HCCI controllers make use of a first princi...
A hyperstable neural network for the modelling and control of nonlinear systems
Indian Academy of Sciences (India)
K Warwick; Q M Zhu; Z Ma
2000-04-01
A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.
NECESSARY AND SUFFICIENT CONDITION FOR GLOBAL CONTROLLABILITY OF A CLASS OF AFFINE NONLINEAR SYSTEMS
Institute of Scientific and Technical Information of China (English)
Yimin SUN; Shengwei MEI; Qiang LU
2007-01-01
In this paper, we investigate the global controllability of a class of n-dimensional affine nonlinear systems with n - 1 controls and constant control matrix. A necessary and sufficient condition for its global controllability has been obtained by using the methods recently developed. Furthermore,we generalize the above result to a class of affine nonlinear systems with a block-triangular-like structure.Finally, we will give three examples to show the applications of our results.
Directory of Open Access Journals (Sweden)
Chuanjing Hou
2015-01-01
Full Text Available An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.
Rodrigo, M A; Seco, A; Ferrer, J; Penya-roja, J M; Valverde, J L
1999-01-01
In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy membership functions and fuzzy rules of the fuzzy PID controller.
Nonlinear Multiscale Transformations: From Synchronization to Error Control
2001-07-01
Donat Dept. Matematica Aplicada, University of Valencia, Spain. arandiga@uv. es donat uv. es Abstract Data-dependent interpolatory techniques can be used...Numer. Algorith. 23, 175-216, 2000. 5. F. Arhndiga, R. Donat, and A. Harten. Multiresolution based on weighted averages of the hat function II : Nonlinear...transforms for image coding via lifting scheme. submitted to IEEE Trans. on Image Nonlinear multiscale transformations 313 Method II ’ 1 I ŕ, 11蕀 r
Wang, Gang; Wang, Chaoli; Du, Qinghui; Cai, Xuan
2016-10-01
In this paper, we address the output consensus problem of tracking a desired trajectory for a group of second-order agents on a directed graph with a fixed topology. Each agent is modelled by a second-order non-linear system with unknown non-linear dynamics and unknown non-linear control gains. Only a subset of the agents is given access to the desired trajectory information directly. A distributed adaptive consensus protocol driving all agents to track the desired trajectory is presented using the backstepping technique and approximation technique of Fourier series (FSs). The FS structure is taken not only for tracking the non-linear dynamics but also the unknown portion in the controller design procedure, which can avoid virtual controllers containing the uncertain terms. Stability analysis and parameter convergence of the proposed algorithm are conducted based on the Lyapunov theory and the algebraic graph theory. It is also demonstrated that arbitrary small tracking errors can be achieved by appropriately choosing design parameters. Though the proposed work is applicable for second-order non-linear systems containing unknown non-linear control gains, the proposed controller design can be easily extended to higher-order non-linear systems containing unknown non-linear control gains. Simulation results show the effectiveness of the proposed schemes.
Design of nonlinear adaptive steam valve controllers for a turbo-generator system
Energy Technology Data Exchange (ETDEWEB)
Bekiaris-Liberis, N.K.; Paraskevopoulos, P.N. [National Technical Univ. of Athens Zographou, Athens (Greece); Boglou, A.K. [Technology Education Inst. of Kavala Agios Loukas, Kavala (Greece); Arvanitis, K.G.; Pasgianos, G.D. [Agricultural Univ. of Athens, Athens (Greece)
2008-07-01
This paper reported on a study that investigated the control of power systems consisting of interconnected networks of transmission lines linking generators and loads. Improving both small and large perturbation stability and dynamic performance is important because power systems have become less stable in the past 15 years due to the use of controllers that have been designed on the basis of linearized synchronous generators and turbine models. The high nonlinear nature of power system models and the resulting disturbances render conventional linear controller design techniques obsolete for use in power systems control. Power system engineers are becoming aware of the role of turbine steam valves in improving the dynamic stability of power systems and damping low frequency oscillations. Advanced nonlinear control strategies are needed since the conventional steam valve control theory cannot guarantee transient stability in cases where operational conditions and parameters vary considerably. A design approach to a nonlinear adaptive control system with unknown parameters was developed and applied to the turbine main steam valve control of a power system. A fourth order machine model was used along with an adaptive backstepping method to construct the Lyapunov function in order to obtain a nonlinear adaptive controller to solve the turbine fast valving nonlinear control problem. The newly designed nonlinear adaptive controller can make the resulting adaptive system asymptotically stable. The proposed controller is accompanied by a dynamic estimator of parameters and includes nonlinear damping terms, which guarantee input-output stability even without the use of the adaptive law. Simulation results showed that the proposed nonlinear adaptive controller performs better than other turbine main steam valve control techniques. It can face large parametric uncertainty and results in a closed-loop system that is able to face large and smaller disturbances, providing a
An extended harmonic balance method based on incremental nonlinear control parameters
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
Control Law Design for Propofol Infusion to Regulate Depth of Hypnosis: A Nonlinear Control Strategy
Khaqan, Ali; Bilal, Muhammad; Ilyas, Muhammad; Ijaz, Bilal; Ali Riaz, Raja
2016-01-01
Maintaining the depth of hypnosis (DOH) during surgery is one of the major objectives of anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but increases the undue load of an anesthetist in operating room working in a multitasking setup. Manual and target controlled infusion (TCI) systems are not good at handling instabilities like blood pressure changes and heart rate variability arising due to interpatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors to motivate automation in anesthesia. The idea of automated system for Propofol infusion excites the control engineers to come up with a more sophisticated and safe system that handles optimum delivery of drug during surgery and avoids postoperative effects. In contrast to most of the investigations with linear control strategies, the originality of this research work lies in employing a nonlinear control technique, backstepping, to track the desired hypnosis level of patients during surgery. This effort is envisioned to unleash the true capabilities of this nonlinear control technique for anesthesia systems used today in biomedical field. The working of the designed controller is studied on the real dataset of five patients undergoing surgery. The controller tracks the desired hypnosis level within the acceptable range for surgery. PMID:27293475
Control Law Design for Propofol Infusion to Regulate Depth of Hypnosis: A Nonlinear Control Strategy
Directory of Open Access Journals (Sweden)
Ali Khaqan
2016-01-01
Full Text Available Maintaining the depth of hypnosis (DOH during surgery is one of the major objectives of anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but increases the undue load of an anesthetist in operating room working in a multitasking setup. Manual and target controlled infusion (TCI systems are not good at handling instabilities like blood pressure changes and heart rate variability arising due to interpatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors to motivate automation in anesthesia. The idea of automated system for Propofol infusion excites the control engineers to come up with a more sophisticated and safe system that handles optimum delivery of drug during surgery and avoids postoperative effects. In contrast to most of the investigations with linear control strategies, the originality of this research work lies in employing a nonlinear control technique, backstepping, to track the desired hypnosis level of patients during surgery. This effort is envisioned to unleash the true capabilities of this nonlinear control technique for anesthesia systems used today in biomedical field. The working of the designed controller is studied on the real dataset of five patients undergoing surgery. The controller tracks the desired hypnosis level within the acceptable range for surgery.
Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method
Energy Technology Data Exchange (ETDEWEB)
Souza de Paula, Aline [COPPE - Department of Mechanical Engineering, Universidade Federal do Rio de Janeiro, P.O. Box 68503, 21.941-972 Rio de Janeiro, RJ (Brazil)], E-mail: alinesp@ufrj.br; Savi, Marcelo Amorim [COPPE - Department of Mechanical Engineering, Universidade Federal do Rio de Janeiro, P.O. Box 68503, 21.941-972 Rio de Janeiro, RJ (Brazil)], E-mail: savi@mecanica.ufrj.br
2009-12-15
Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.
Directory of Open Access Journals (Sweden)
Pedro A. Galvani
2016-08-01
Full Text Available The work presented in this paper has two major aspects: (i investigation of a simple, yet efficient model of the NREL (National Renewable Energy Laboratory 5-MW reference wind turbine; (ii nonlinear control system development through a real-time nonlinear receding horizon control methodology with application to wind turbine control dynamics. In this paper, the results of our simple wind turbine model and a real-time nonlinear control system implementation are shown in comparison with conventional control methods. For this purpose, the wind turbine control problem is converted into an optimization problem and is directly solved by the nonlinear backwards sweep Riccati method to generate the control protocol, which results in a non-iterative algorithm. One main contribution of this paper is that we provide evidence through simulations, that such an advanced control strategy can be used for real-time control of wind turbine dynamics. Examples are provided to validate and demonstrate the effectiveness of the presented scheme.
Nonlinear analysis of vehicle control actuations based on controlled invariant sets
Directory of Open Access Journals (Sweden)
Németh Balázs
2016-03-01
Full Text Available In the paper, an analysis method is applied to the lateral stabilization problem of vehicle systems. The aim is to find the largest state-space region in which the lateral stability of the vehicle can be guaranteed by the peak-bounded control input. In the analysis, the nonlinear polynomial sum-of-squares programming method is applied. A practical computation technique is developed to calculate the maximum controlled invariant set of the system. The method calculates the maximum controlled invariant sets of the steering and braking control systems at various velocities and road conditions. Illustration examples show that, depending on the environments, different vehicle dynamic regions can be reached and stabilized by these controllers. The results can be applied to the theoretical basis of their interventions into the vehicle control system.
Computer-aided Nonlinear Control System Design Using Describing Function Models
Nassirharand, Amir
2012-01-01
A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mecha...
Observer-Based Robust Tracking Control for a Class of Switched Nonlinear Cascade Systems
Directory of Open Access Journals (Sweden)
Ben Niu
2013-01-01
Full Text Available This paper is devoted to robust output feedback tracking control design for a class of switched nonlinear cascade systems. The main goal is to ensure the global input-to-state stable (ISS property of the tracking error nonlinear dynamics with respect to the unknown structural system uncertainties and external disturbances. First, a nonlinear observer is constructed through state transformation to reconstruct the unavailable states, where only one parameter should be determined. Then, by virtue of the nonlinear sliding mode control (SMC, a discontinuous nonlinear output feedback controller is designed using a backstepping like design procedure to ensure the ISS property. Finally, an example is provided to show the effectiveness of the proposed approach.
Recent advance in nonlinear aeroelastic analysis and control of the aircraft
Directory of Open Access Journals (Sweden)
Xiang Jinwu
2014-02-01
Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.
Recent advance in nonlinear aeroelastic analysis and control of the aircraft
Institute of Scientific and Technical Information of China (English)
Xiang Jinwu; Yan Yongju; Li Daochun
2014-01-01
A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different non-linearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Var-ious structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are dis-cussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE) and fight aircrafts are studied separately. Finally, conclusions and the chal-lenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.
Coordinated nonlinear robust control of TCSC and excitation for multi-machine systems
Institute of Scientific and Technical Information of China (English)
Shengwei MEI; Juming CHEN; Qiang LU; Akihiko YOKOYAMA; Masuo GOTO
2004-01-01
An advanced nonlinear robust control scheme is proposed for multi-machine power systems equipped with thyristor-controlled series compensation (TCSC). First, a decentralized nonlinear robust control approach based on the feedback linearization and H∞ theory is introduced to eliminate the nonlinearities and interconnections of the studied system, and to attenuate the exogenous disturbances that enter the system. Then, a system model uilt up, which has considered all the generators' and TCSC's dynamics, and the effects of uncertainties such as disturbances. Next, a decentralized nonlinear robust coordinated control law is developed based on this model. Simulation results on a six-machine power system show that the transient stability of the power system is obviously improved and the power transfer capacity of long distance transmission lines is enhanced regardless of fault locahons and system operation points. In addition, the control law has engineering practicality since all the variables in the expression of he control strategy can be measured locally.
Nonlinear Multivariate Spline-Based Control Allocation for High-Performance Aircraft
Tol, H.J.; De Visser, C.C.; Van Kampen, E.; Chu, Q.P.
2014-01-01
High performance flight control systems based on the nonlinear dynamic inversion (NDI) principle require highly accurate models of aircraft aerodynamics. In general, the accuracy of the internal model determines to what degree the system nonlinearities can be canceled; the more accurate the model,
1989-10-30
In this Phase I SBIR study, new methods are developed for the system identification and stochastic filtering of nonlinear controlled Markov processes...state space Markov process models and canonical variate analysis (CVA) for obtaining optimal nonlinear procedures for system identification and stochastic
Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients.
Ge, Shuzhi Sam; Hong, Fan; Lee, Tong Heng
2004-02-01
In this paper, adaptive neural control is presented for a class of strict-feedback nonlinear systems with unknown time delays. The proposed design method does not require a priori knowledge of the signs of the unknown virtual control coefficients. The unknown time delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. It is proved that the proposed backstepping design method is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop. In addition, the output of the system is proven to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.
Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines
DEFF Research Database (Denmark)
Nielsen, Kræn Vodder; Blanke, Mogens; Vejlgaard-Laursen, Morten
2015-01-01
A nonlinear adaptive controller is proposed for the exhaust gas recirculation systemon large two-stroke diesel engines. The control design is based on a control oriented model ofthe nonlinear dynamics at hand that incorporates load and engine speed changes as knowndisturbances to the exhaust gas...... will make the system converge exponentiallyto the best achievable state. Simulation examples confirm convergence and good disturbancerejection over relevant operational ranges of the engine....
EXACT LINEARIZATION BASED MULTIPLE-SUBSPACE ITERATIVE RESOLUTION TO AFFINE NONLINEAR CONTROL SYSTEM
Institute of Scientific and Technical Information of China (English)
XU Zi-xiang; ZHOU De-yun; DENG Zi-chen
2006-01-01
To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control,multiple-substructure method was inducted to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.
Impulsive control for synchronization of nonlinear R(o)ssler chaotic systems
Institute of Scientific and Technical Information of China (English)
Li Yang; Liao Xiao-Feng; Li Chuan-Dong; Chen Guo
2006-01-01
This paper reports that an impulsive control theory for synchronization of nonlinear R(o)ssler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which makes the synchronization error system a linear impulsive control system. Therefore, it is easy to derive the impulsive synchronization law. The proposed impulsive control scheme is illustrated by nonlinear R(o)ssler chaotic systems and the simulation results demonstrate the effectiveness of the method.
Dual PD Control Regulation with Nonlinear Compensation for a Ball and Plate System
Directory of Open Access Journals (Sweden)
Sergio Galvan-Colmenares
2014-01-01
Full Text Available The normal proportional derivative (PD control is modified to a new dual form for the regulation of a ball and plate system. First, to analyze this controller, a novel complete nonlinear model of the ball and plate system is obtained. Second, an asymptotic stable dual PD control with a nonlinear compensation is developed. Finally, the experimental results of ball and plate system are provided to verify the effectiveness of the proposed methodology.
Zhang, Tian-Ping; Zhu, Qing; Yang, Yue-Quan
2012-04-01
In this article, two robust adaptive control schemes are investigated for a class of completely non-affine pure-feedback non-linear systems with input non-linearity and perturbed uncertainties using radial basis function neural networks (RBFNNs). Based on the dynamic surface control (DSC) technique and using the quadratic Lyapunov function, the explosion of complexity in the traditional backstepping design is avoided when the gain signs are known. In addition, the unknown virtual gain signs are dealt with using the Nussbaum functions. Using the mean value theorem and Young's inequality, only one learning parameter needs to be tuned online at each step of recursion. It is proved that the proposed design method is able to guarantee semi-global uniform ultimate boundedness (SGUUB) of all signals in the closed-loop system. Simulation results verify the effectiveness of the proposed approach.
Directory of Open Access Journals (Sweden)
Yacouba Simporé
2016-01-01
Full Text Available We first prove a null controllability result for a nonlinear system derived from a nonlinear population dynamics model. In order to tackle the controllability problem we use an adapted Carleman inequality. Next we consider the nonlinear population dynamics model with a source term called the pollution term. In order to obtain information on the pollution term we use the method of sentinel.
Nonlinear control of high-frequency phonons in spider silk
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Singh, S. N.
1982-03-01
Using the invariance principle of LaSalle (1962) sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.
Nonlinear platoon control of Arduino cars with range-limited sensors
Yue, Wei; Guo, Ge; Wang, Liyuan; Wang, Wei
2015-05-01
This paper investigates the problem of platoon control with sensor range limitation. A nonlinear vehicular platoon model is established, in which the sensing range constraint described by a piecewise nonlinear function is involved. Then a robust nonlinear control design method is proposed based on a disturbance observer and the backstepping technique. The results are obtained in the context of both individual vehicle stability and platoon string stability analysis, which can lead to substantially enhanced platoon control performance with a guaranteed level of attenuation of the disturbance caused by lead vehicle acceleration and wind gust. The effectiveness of the method has been shown by numerical simulations and experiments carried out with Arduino cars.
Breakdown of nonlinear elasticity in stress-controlled thermal amorphous solids
Dailidonis, Vladimir; Ilyin, Valery; Procaccia, Itamar; Shor, Carmel A. B. Z.
2017-03-01
In recent work it was clarified that amorphous solids under strain control do not possess nonlinear elastic theory in the sense that the shear modulus exists but nonlinear moduli exhibit sample-to-sample fluctuations that grow without bound with the system size. More relevant, however, for experiments are the conditions of stress control. In the present Rapid Communication we show that also under stress control the shear modulus exists, but higher-order moduli show unbounded sample-to-sample fluctuation. The unavoidable consequence is that the characterization of stress-strain curves in experiments should be done with a stress-dependent shear modulus rather than with nonlinear expansions.
Control design for the nonlinear benchmark problem via the output regulation method
Institute of Scientific and Technical Information of China (English)
Jie HUANG; Guoqiang HU
2004-01-01
The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, which has been an intensive research subject since 1995. In this paper, we will further investigate the solvability of the robust disturbance rejection problem of the RTAC system by the measurement output feedback control based on the robust output regulation method. We have obtained a design by overcoming two major obstacles: find a closed-form solution of the regulator equations; and devise a nonlinear internal model to account for non-polynomial nonlinearities.
Nonlinear adaptive control using the Fourier integral and its application to CSTR systems.
Zhang, Huaguang; Cai, Lilong
2002-01-01
This paper presents a new nonlinear adaptive tracking controller for a class of general time-variant nonlinear systems. The control system consists of an inner loop and an outer loop. The inner loop is a fuzzy sliding mode control that is used as the feedback controller to overcome random instant disturbances. The stability of the inner loop is designed by the sliding mode control method. The other loop is a Fourier integral-based control that is used as the feedforward controller to overcome the deterministic type of uncertain disturbance. The asymptotic convergence condition of the nonlinear adaptive control system is guaranteed by the Lyapunov direct method. The effectiveness of the proposed controller is illustrated by its application to composition control in a continuously stirred tank reactor system.
Institute of Scientific and Technical Information of China (English)
Zhiyun Zou; Dandan Zhao; Xinghong Liu; Yuqing Guo; Chen Guan; Wenqiang Feng; Ning Guo
2015-01-01
By taking advantage of the separation characteristics of nonlinear gain and dynamic sector inside a Hammerstein model, a novel pole placement self tuning control scheme for nonlinear Hammerstein system was put forward based on the linear system pole placement self tuning control algorithm. And the nonlinear Hammerstein system pole placement self tuning control (NL-PP-STC) algorithm was presented in detail. The identification ability of its parameter estimation algorithm of NL-PP-STC was analyzed, which was always identifiable in closed loop. Two particular problems including the selection of poles and the on-line estimation of model parameters, which may be met in applications of NL-PP-STC to real process control, were discussed. The control simulation of a strong nonlinear pH neutralization process was carried out and good control performance was achieved.
Uncertain Unified Chaotic Systems Control with Input Nonlinearity via Sliding Mode Control
Directory of Open Access Journals (Sweden)
Zhi-ping Shen
2016-01-01
Full Text Available This paper studies the stabilization problem for a class of unified chaotic systems subject to uncertainties and input nonlinearity. Based on the sliding mode control theory, we present a new method for the sliding mode controller design and the control law algorithm for such systems. In order to achieve the goal of stabilization unified chaotic systems, the presented controller can make the movement starting from any point in the state space reach the sliding mode in limited time and asymptotically reach the origin along the switching surface. Compared with the existing literature, the controller designed in this paper has many advantages, such as small chattering, good stability, and less conservative. The analysis of the motion equation and the simulation results all demonstrate that the method is effective.
Adaptive Control for Nonlinear Systems with Time-Varying Control Gain
Directory of Open Access Journals (Sweden)
Alejandro Rincon
2012-01-01
Full Text Available We propose a scheme for nonlinear plants with time-varying control gain and time-varying plant coefficients, on the basis of a plant model consisting of a Brunovsky-type model with polynomials as approximators. We develop an adaptive robust control scheme for this plant, under the following assumptions: (i the plant terms involve time-varying but bounded coefficients, being its upper bound unknown; (ii the control gain is unknown, not necessarily bounded, and only its signum is known. To achieve robustness, we use a combination of robustifying control inputs and dead zone-type update laws. We apply this methodology to the speed control of a permanent magnet synchronous motor (PMSM, and we achieve proper tracking results.
Receding horizon control of nonlinear systems: A control Lyapunov function approach
Jadbabaie, Ali
With the advent of faster and cheaper computers, optimization based control methodologies have become a viable candidate for control of nonlinear systems. Over the past twenty years, a group of such control schemes have, been successfully used in the process control industry where the processes are either intrinsically stable or have very large time constants. The purpose of this thesis is to provide a theoretical framework for synthesis of a class of optimization based control schemes, known as receding horizon control techniques for nonlinear systems such as unmanned aerial vehicles. It is well known that unconstrained infinite horizon optimal control may be used to construct a stabilizing controller for a nonlinear system. In this thesis, we show that similar stabilization results may be achieved using unconstrained finite horizon optimal control. The key idea is to approximate the tail of the infinite horizon cost-to-go using, as terminal cost, an appropriate control Lyapunov function (CLF). A CLF can be thought of as generalization of the concept of a Lyapunov function to systems with inputs. Roughly speaking, the terminal CLF should provide an (incremental) upper bound on the cost. In this fashion, important stability characteristics may be retained without the use of terminal constraints such as those employed by a number of other researchers. The absence of constraints allows a significant speedup in computation. Furthermore, it is shown that in order to guarantee stability, it suffices to satisfy an improvement property, thereby, relaxing the requirement, that truly optimal trajectories be found. We provide a complete analysis of the stability and region of attraction/operation properties of receding horizon control strategies that utilize finite horizon approximations in the proposed class. It is shown that the guaranteed region of operation contains that of the CLF controller and may be made as large as desired by increasing the optimization horizon
Lei, Jing; Jiang, Zuo; Li, Ya-Li; Li, Wu-Xin
2014-10-01
The problem of nonlinear vibration control for active vehicle suspension systems with actuator delay is considered. Through feedback linearization, the open-loop nonlinearity is eliminated by the feedback nonlinear term. Based on the finite spectrum assignment, the quarter-car suspension system with actuator delay is converted into an equivalent delay-free one. The nonlinear control includes a linear feedback term, a feedforward compensator, and a control memory term, which can be derived from a Riccati equation and a Sylvester equation, so that the effects produced by the road disturbances and the actuator delay are compensated, respectively. A predictor is designed to implement the predictive state in the designed control. Moreover, a reduced-order observer is constructed to solve its physical unrealisability problem. The stability proofs for the zero dynamics and the closed-loop system are provided. Numerical simulations illustrate the effectiveness and the simplicity of the designed control.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Getting inspiration from the constraint forces in the classical mechanics, we presented the nonlinear control method of multiple spacecraft formation flying to accurately keep the desired formation arrays. Considering nonlinearity and perturbation, we changed the question of the formation array control to the Lagrange equations with the holonomic constraints and the differential algebraic equations (DAE), and developed the nonlinear control for design of the follower spacecraft tracking control laws by solving the DAE. Because of using the idea of the constraint forces, this approach can adequately utilize the characteristic of the dynamic equations, i.e., the space natural forces, and accurately keep the arbitrary formation array. Simulation results of the circular formation keeping with the linear and nonlinear dynamical equations were included to illuminate the control performance.
Nonlinear tracking control of a 3-D overhead crane with friction and payload compensations
Directory of Open Access Journals (Sweden)
Anh-Huy Vo
2016-07-01
Full Text Available In this paper, a nonlinear adaptive control of a 3D overhead crane is investigated. A dynamic model of the overhead crane was developed, where the crane system is assumed as a lumped mass model. Under the mutual effects of the sway motions of the payload and the hoisting motion, the nonlinear behavior of the crane system is considered. A nonlinear control model-based scheme was designed to achieve the three objectives: (i drive the crane system to the desired positions, (ii suppresses the vibrations of the payload, and (iii velocity tracking of hoisting motion. The nonlinear control scheme employs adaptation laws that estimate unknown system parameters, friction forces and the mass of the payload. The estimated values were used to compute control forces applied to the trolley of the crane. The asymptotic stability of the crane system is investigated by using the Lyapunov method. The effectiveness of the proposed control scheme is verified by numerical simulation results.
Electrostatic Suspension System Nonlinear Character Analysis and Its Internal Model Control
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Nonlinearity is an important characteristic in electrostatic suspension system (ESS). This paper concludes the nonlinear parts in ESS, which generally result from the relationships between rotor displacement and capacitance, rotor displacement and electrostatic force, and control voltage and electrostatic force. In terms of the nonlinearities, a new control method with modified internal model control (IMC) was proposed to analyze the ESS, deduce the transfer function of the modified IMC controller in ESS, and simulate this new application in ESS. Comparing with proportional integral derivative (PID)control, IMC has only a parameter, and has better performance. As a result, IMC solves nonlinearity error well in ESS with only one uncertain parameter, and performs well when the rotor has large displacement.