#### Sample records for nonlinear iterative method

1. Advances in iterative methods for nonlinear equations

CERN Document Server

Busquier, Sonia

2016-01-01

This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

2. New methods of testing nonlinear hypothesis using iterative NLLS estimator

Science.gov (United States)

Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

2017-11-01

This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.

3. Variational iteration method for one dimensional nonlinear thermoelasticity

International Nuclear Information System (INIS)

2007-01-01

This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems

4. Various Newton-type iterative methods for solving nonlinear equations

Directory of Open Access Journals (Sweden)

Manoj Kumar

2013-10-01

Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

5. Variation Iteration Method for The Approximate Solution of Nonlinear ...

African Journals Online (AJOL)

In this study, we considered the numerical solution of the nonlinear Burgers equation using the Variational Iteration Method (VIM). The method seeks to examine the convergence of solutions of the Burgers equation at the expense of the parameters x and t of which the amount of errors depends. Numerical experimentation ...

6. Projection-iteration methods for solving nonlinear operator equations

International Nuclear Information System (INIS)

Nguyen Minh Chuong; Tran thi Lan Anh; Tran Quoc Binh

1989-09-01

In this paper, the authors investigate a nonlinear operator equation in uniformly convex Banach spaces as in metric spaces by using stationary and nonstationary generalized projection-iteration methods. Convergence theorems in the strong and weak sense were established. (author). 7 refs

7. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

Science.gov (United States)

Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

2018-06-01

This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

8. An iterative method for nonlinear demiclosed monotone-type operators

International Nuclear Information System (INIS)

Chidume, C.E.

1991-01-01

It is proved that a well known fixed point iteration scheme which has been used for approximating solutions of certain nonlinear demiclosed monotone-type operator equations in Hilbert spaces remains applicable in real Banach spaces with property (U, α, m+1, m). These Banach spaces include the L p -spaces, p is an element of [2,∞]. An application of our results to the approximation of a solution of a certain linear operator equation in this general setting is also given. (author). 19 refs

9. Iterative method of the parameter variation for solution of nonlinear functional equations

International Nuclear Information System (INIS)

Davidenko, D.F.

1975-01-01

The iteration method of parameter variation is used for solving nonlinear functional equations in Banach spaces. The authors consider some methods for numerical integration of ordinary first-order differential equations and construct the relevant iteration methods of parameter variation, both one- and multifactor. They also discuss problems of mathematical substantiation of the method, study the conditions and rate of convergence, estimate the error. The paper considers the application of the method to specific functional equations

10. Iterative Runge–Kutta-type methods for nonlinear ill-posed problems

International Nuclear Information System (INIS)

2008-01-01

We present a regularization method for solving nonlinear ill-posed problems by applying the family of Runge–Kutta methods to an initial value problem, in particular, to the asymptotical regularization method. We prove that the developed iterative regularization method converges to a solution under certain conditions and with a general stopping rule. Some particular iterative regularization methods are numerically implemented. Numerical results of the examples show that the developed Runge–Kutta-type regularization methods yield stable solutions and that particular implicit methods are very efficient in saving iteration steps

11. Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method

Directory of Open Access Journals (Sweden)

Uswah Qasim

2016-03-01

Full Text Available A homotopy method is presented for the construction of frozen Jacobian iterative methods. The frozen Jacobian iterative methods are attractive because the inversion of the Jacobian is performed in terms of LUfactorization only once, for a single instance of the iterative method. We embedded parameters in the iterative methods with the help of the homotopy method: the values of the parameters are determined in such a way that a better convergence rate is achieved. The proposed homotopy technique is general and has the ability to construct different families of iterative methods, for solving weakly nonlinear systems of equations. Further iterative methods are also proposed for solving general systems of nonlinear equations.

12. A study on linear and nonlinear Schrodinger equations by the variational iteration method

International Nuclear Information System (INIS)

Wazwaz, Abdul-Majid

2008-01-01

In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method

13. Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method

Directory of Open Access Journals (Sweden)

Eman M. A. Hilal

2014-01-01

Full Text Available The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the variational iteration method, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.

14. Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management

Science.gov (United States)

Koleva, M. N.

2011-11-01

In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.

15. Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution

Directory of Open Access Journals (Sweden)

Wilson Rodríguez Calderón

2015-04-01

Full Text Available When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive option as they do not require an initial interval enclosure. In general, we know open-methods are more efficient computationally though they do not always converge. In this paper we are presenting a divergence case analysis when we use the method of fixed point iteration to find the normal height in a rectangular channel using the Manning equation. To solve this problem, we propose applying two strategies (developed by authors that allow to modifying the iteration function making additional formulations of the traditional method and its convergence theorem. Although Manning equation is solved with other methods like Newton when we use the iteration method of fixed-point an interesting divergence situation is presented which can be solved with a convergence higher than quadratic over the initial iterations. The proposed strategies have been tested in two cases; a study of divergence of square root of real numbers was made previously by authors for testing. Results in both cases have been successful. We present comparisons because are important for seeing the advantage of proposed strategies versus the most representative open-methods.

16. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

Science.gov (United States)

Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

2017-11-01

In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

17. Acceleration of the AFEN method by two-node nonlinear iteration

Energy Technology Data Exchange (ETDEWEB)

Moon, Kap Suk; Cho, Nam Zin; Noh, Jae Man; Hong, Ser Gi [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

1998-12-31

A nonlinear iterative scheme developed to reduce the computing time of the AFEN method was tested and applied to two benchmark problems. The new nonlinear method for the AFEN method is based on solving two-node problems and use of two nonlinear correction factors at every interface instead of one factor in the conventional scheme. The use of two correction factors provides higher-order accurate interface fluxes as well as currents which are used as the boundary conditions of the two-node problem. The numerical results show that this new method gives exactly the same solution as that of the original AFEN method and the computing time is significantly reduced in comparison with the original AFEN method. 7 refs., 1 fig., 1 tab. (Author)

18. Acceleration of the AFEN method by two-node nonlinear iteration

Energy Technology Data Exchange (ETDEWEB)

Moon, Kap Suk; Cho, Nam Zin; Noh, Jae Man; Hong, Ser Gi [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

1999-12-31

A nonlinear iterative scheme developed to reduce the computing time of the AFEN method was tested and applied to two benchmark problems. The new nonlinear method for the AFEN method is based on solving two-node problems and use of two nonlinear correction factors at every interface instead of one factor in the conventional scheme. The use of two correction factors provides higher-order accurate interface fluxes as well as currents which are used as the boundary conditions of the two-node problem. The numerical results show that this new method gives exactly the same solution as that of the original AFEN method and the computing time is significantly reduced in comparison with the original AFEN method. 7 refs., 1 fig., 1 tab. (Author)

19. Boosting iterative stochastic ensemble method for nonlinear calibration of subsurface flow models

KAUST Repository

Elsheikh, Ahmed H.

2013-06-01

A novel parameter estimation algorithm is proposed. The inverse problem is formulated as a sequential data integration problem in which Gaussian process regression (GPR) is used to integrate the prior knowledge (static data). The search space is further parameterized using Karhunen-Loève expansion to build a set of basis functions that spans the search space. Optimal weights of the reduced basis functions are estimated by an iterative stochastic ensemble method (ISEM). ISEM employs directional derivatives within a Gauss-Newton iteration for efficient gradient estimation. The resulting update equation relies on the inverse of the output covariance matrix which is rank deficient.In the proposed algorithm we use an iterative regularization based on the ℓ2 Boosting algorithm. ℓ2 Boosting iteratively fits the residual and the amount of regularization is controlled by the number of iterations. A termination criteria based on Akaike information criterion (AIC) is utilized. This regularization method is very attractive in terms of performance and simplicity of implementation. The proposed algorithm combining ISEM and ℓ2 Boosting is evaluated on several nonlinear subsurface flow parameter estimation problems. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier B.V.

20. Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method

KAUST Repository

Elsheikh, Ahmed H.

2013-06-01

We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.

1. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

KAUST Repository

Desmal, Abdulla; Bagci, Hakan

2015-01-01

minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two

2. Iterative ensemble variational methods for nonlinear data assimilation: Application to transport and atmospheric chemistry

International Nuclear Information System (INIS)

Haussaire, Jean-Matthieu

2017-01-01

Data assimilation methods are constantly evolving to adapt to the various application domains. In atmospheric sciences, each new algorithm has first been implemented on numerical weather prediction models before being ported to atmospheric chemistry models. It has been the case for 4D variational methods and ensemble Kalman filters for instance. The new 4D ensemble variational methods (4D EnVar) are no exception. They were developed to take advantage of both variational and ensemble approaches and they are starting to be used in operational weather prediction centers, but have yet to be tested on operational atmospheric chemistry models. The validation of new data assimilation methods on these models is indeed difficult because of the complexity of such models. It is hence necessary to have at our disposal low-order models capable of synthetically reproducing key physical phenomena from operational models while limiting some of their hardships. Such a model, called L95-GRS, has therefore been developed. Il combines the simple meteorology from the Lorenz-95 model to a tropospheric ozone chemistry module with 7 chemical species. Even though it is of low dimension, it reproduces some of the physical and chemical phenomena observable in real situations. A data assimilation method, the iterative ensemble Kalman smoother (IEnKS), has been applied to this model. It is an iterative 4D EnVar method which solves the full non-linear variational problem. This application validates 4D EnVar methods in the context of non-linear atmospheric chemistry, but also raises the first limits of such methods, most noticeably when they are applied to weakly coupled stable models. After this experiment, results have been extended to a realistic atmospheric pollution prediction model. 4D EnVar methods, via the IEnKS, have once again shown their potential to take into account the non-linearity of the chemistry model in a controlled environment, with synthetic observations. However, the

3. A HIGH ORDER SOLUTION OF THREE DIMENSIONAL TIME DEPENDENT NONLINEAR CONVECTIVE-DIFFUSIVE PROBLEM USING MODIFIED VARIATIONAL ITERATION METHOD

Directory of Open Access Journals (Sweden)

Pratibha Joshi

2014-12-01

Full Text Available In this paper, we have achieved high order solution of a three dimensional nonlinear diffusive-convective problem using modified variational iteration method. The efficiency of this approach has been shown by solving two examples. All computational work has been performed in MATHEMATICA.

4. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

DEFF Research Database (Denmark)

Miansari, Mo; Miansari, Me; Barari, Amin

2009-01-01

In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...

5. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

Energy Technology Data Exchange (ETDEWEB)

Myers, N.J. [Univ. of Durham (United Kingdom)

1994-12-31

The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Vargas results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

6. Conformable variational iteration method

Directory of Open Access Journals (Sweden)

Omer Acan

2017-02-01

Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.

7. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids

International Nuclear Information System (INIS)

Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist

2007-01-01

This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable

8. Domain decomposition based iterative methods for nonlinear elliptic finite element problems

Energy Technology Data Exchange (ETDEWEB)

Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)

1994-12-31

The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newtons method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.

9. Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection

KAUST Repository

El-Amin, Mohamed

2017-08-29

Purpose In this paper, we introduce modeling, numerical simulation, and convergence analysis of the problem nanoparticles transport carried by a two-phase flow in a porous medium. The model consists of equations of pressure, saturation, nanoparticles concentration, deposited nanoparticles concentration on the pore-walls, and entrapped nanoparticles concentration in pore-throats. Design/methodology/approach Nonlinear iterative IMPES-IMC (IMplicit Pressure Explicit Saturation–IMplicit Concentration) scheme is used to solve the problem under consideration. The governing equations are discretized using the cell-centered finite difference (CCFD) method. The pressure and saturation equations are coupled to calculate the pressure, then the saturation is updated explicitly. Therefore, the equations of nanoparticles concentration, the deposited nanoparticles concentration on the pore walls and the entrapped nanoparticles concentration in pore throats are computed implicitly. Then, the porosity and the permeability variations are updated. Findings We stated and proved three lemmas and one theorem for the convergence of the iterative method under the natural conditions and some continuity and boundedness assumptions. The theorem is proved by induction states that after a number of iterations the sequences of the dependent variables such as saturation and concentrations approach solutions on the next time step. Moreover, two numerical examples are introduced with convergence test in terms of Courant–Friedrichs–Lewy (CFL) condition and a relaxation factor. Dependent variables such as pressure, saturation, concentration, deposited concentrations, porosity and permeability are plotted as contours in graphs, while the error estimations are presented in table for different values of number of time steps, number of iterations and mesh size. Research limitations/implications The domain of the computations is relatively small however, it is straightforward to extend this method

10. An approximate block Newton method for coupled iterations of nonlinear solvers: Theory and conjugate heat transfer applications

Science.gov (United States)

Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.

2009-12-01

A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss-Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.

11. Colorado Conference on iterative methods. Volume 1

Energy Technology Data Exchange (ETDEWEB)

NONE

1994-12-31

The conference provided a forum on many aspects of iterative methods. Volume I topics were:Session: domain decomposition, nonlinear problems, integral equations and inverse problems, eigenvalue problems, iterative software kernels. Volume II presents nonsymmetric solvers, parallel computation, theory of iterative methods, software and programming environment, ODE solvers, multigrid and multilevel methods, applications, robust iterative methods, preconditioners, Toeplitz and circulation solvers, and saddle point problems. Individual papers are indexed separately on the EDB.

12. Use Residual Correction Method and Monotone Iterative Technique to Calculate the Upper and Lower Approximate Solutions of Singularly Perturbed Non-linear Boundary Value Problems

Directory of Open Access Journals (Sweden)

Chi-Chang Wang

2013-09-01

Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.

13. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

KAUST Repository

Desmal, Abdulla; Bagci, Hakan

2015-01-01

A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

14. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

KAUST Repository

Desmal, Abdulla

2015-04-13

A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

15. Iterative nonlinear unfolding code: TWOGO

International Nuclear Information System (INIS)

Hajnal, F.

1981-03-01

a new iterative unfolding code, TWOGO, was developed to analyze Bonner sphere neutron measurements. The code includes two different unfolding schemes which alternate on successive iterations. The iterative process can be terminated either when the ratio of the coefficient of variations in terms of the measured and calculated responses is unity, or when the percentage difference between the measured and evaluated sphere responses is less than the average measurement error. The code was extensively tested with various known spectra and real multisphere neutron measurements which were performed inside the containments of pressurized water reactors

16. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

KAUST Repository

Desmal, Abdulla

2015-07-29

A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

17. Inverse Free Iterative Methods for Nonlinear Ill-Posed Operator Equations

Directory of Open Access Journals (Sweden)

Ioannis K. Argyros

2014-01-01

ill-posed operator equation F(x=y. The proposed method is a modified form of Tikhonov gradient (TIGRA method considered by Ramlau (2003. The regularization parameter is chosen according to the balancing principle considered by Pereverzev and Schock (2005. The error estimate is derived under a general source condition and is of optimal order. Some numerical examples involving integral equations are also given in this paper.

18. Nonlinear microwave imaging using Levenberg-Marquardt method with iterative shrinkage thresholding

KAUST Repository

Desmal, Abdulla; Bagci, Hakan

2014-01-01

Development of microwave imaging methods applicable in sparse investigation domains is becoming a research focus in computational electromagnetics (D.W. Winters and S.C. Hagness, IEEE Trans. Antennas Propag., 58(1), 145-154, 2010). This is simply due to the fact that sparse/sparsified domains naturally exist in many applications including remote sensing, medical imaging, crack detection, hydrocarbon reservoir exploration, and see-through-the-wall imaging.

19. Nonlinear microwave imaging using Levenberg-Marquardt method with iterative shrinkage thresholding

KAUST Repository

Desmal, Abdulla

2014-07-01

Development of microwave imaging methods applicable in sparse investigation domains is becoming a research focus in computational electromagnetics (D.W. Winters and S.C. Hagness, IEEE Trans. Antennas Propag., 58(1), 145-154, 2010). This is simply due to the fact that sparse/sparsified domains naturally exist in many applications including remote sensing, medical imaging, crack detection, hydrocarbon reservoir exploration, and see-through-the-wall imaging.

20. A Fibonacci-like Iterated Nonlinear Map

NARCIS (Netherlands)

Asveld, P.R.J.; van der Weele, J.P.; Valkering, T.P.

1990-01-01

We study a second-order Fibonacci-like iterated nonlinear map that contains two parameters of which one is kept fixed, whereas the other one varies from 0 to 1. This gives rise to some complicated behavior which is displayed in a few interesting pictures.

1. A Fibonacci-like Iterated Nonlinear Map

NARCIS (Netherlands)

Asveld, P.R.J.

1989-01-01

We study a second-order Fibonacci-like iterated nonlinear map that contains two parameters of which one is kept fixed, whereas the other one varies from 0 to 1. This gives rise to some complicated behavior which is displayed in a few interesting pictures.

International Nuclear Information System (INIS)

Beauwens, B.; Arkuszewski, J.; Boryszewicz, M.

1981-01-01

Results obtained in the field of linear iterative methods within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations are summarized. The general convergence theory of linear iterative methods is essentially based on the properties of nonnegative operators on ordered normed spaces. The following aspects of this theory have been improved: new comparison theorems for regular splittings, generalization of the notions of M- and H-matrices, new interpretations of classical convergence theorems for positive-definite operators. The estimation of asymptotic convergence rates was developed with two purposes: the analysis of model problems and the optimization of relaxation parameters. In the framework of factorization iterative methods, model problem analysis is needed to investigate whether the increased computational complexity of higher-order methods does not offset their increased asymptotic convergence rates, as well as to appreciate the effect of standard relaxation techniques (polynomial relaxation). On the other hand, the optimal use of factorization iterative methods requires the development of adequate relaxation techniques and their optimization. The relative performances of a few possibilities have been explored for model problems. Presently, the best results have been obtained with optimal diagonal-Chebyshev relaxation

3. On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations

International Nuclear Information System (INIS)

An Hengbin; Mo Zeyao; Xu Xiaowen; Liu Xu

2009-01-01

The 2-D 3-T heat conduction equations can be used to approximately describe the energy broadcast in materials and the energy swapping between electron and photon or ion. To solve the equations, a fully implicit finite volume scheme is often used as the discretization method. Because the energy diffusion and swapping coefficients have a strongly nonlinear dependence on the temperature, and some physical parameters are discontinuous across the interfaces between the materials, it is a challenge to solve the discretized nonlinear algebraic equations. Particularly, as time advances, the temperature varies so greatly in the front of energy that it is difficult to choose an effective initial iterate when the nonlinear algebraic equations are solved by an iterative method. In this paper, a method of choosing a nonlinear initial iterate is proposed for iterative solving this kind of nonlinear algebraic equations. Numerical results show the proposed initial iterate can improve the computational efficiency, and also the convergence behavior of the nonlinear iteration.

4. Strong convergence of modified Ishikawa iterations for nonlinear ...

interval [0, 1]. The second iteration process is referred to as Ishikawa's iteration process [11] which is .... Let E be a smooth Banach space with dual E∗ ..... and applications, in: Theory and Applications of Nonlinear Operators of Accretive and.

5. Bounds for nonlinear composites via iterated homogenization

Science.gov (United States)

Ponte Castañeda, P.

2012-09-01

Improved estimates of the Hashin-Shtrikman-Willis type are generated for the class of nonlinear composites consisting of two well-ordered, isotropic phases distributed randomly with prescribed two-point correlations, as determined by the H-measure of the microstructure. For this purpose, a novel strategy for generating bounds has been developed utilizing iterated homogenization. The general idea is to make use of bounds that may be available for composite materials in the limit when the concentration of one of the phases (say phase 1) is small. It then follows from the theory of iterated homogenization that it is possible, under certain conditions, to obtain bounds for more general values of the concentration, by gradually adding small amounts of phase 1 in incremental fashion, and sequentially using the available dilute-concentration estimate, up to the final (finite) value of the concentration (of phase 1). Such an approach can also be useful when available bounds are expected to be tighter for certain ranges of the phase volume fractions. This is the case, for example, for the "linear comparison" bounds for porous viscoplastic materials, which are known to be comparatively tighter for large values of the porosity. In this case, the new bounds obtained by the above-mentioned "iterated" procedure can be shown to be much improved relative to the earlier "linear comparison" bounds, especially at low values of the porosity and high triaxialities. Consistent with the way in which they have been derived, the new estimates are, strictly, bounds only for the class of multi-scale, nonlinear composites consisting of two well-ordered, isotropic phases that are distributed with prescribed H-measure at each stage in the incremental process. However, given the facts that the H-measure of the sequential microstructures is conserved (so that the final microstructures can be shown to have the same H-measure), and that H-measures are insensitive to length scales, it is conjectured

6. Nonlinear iterative strategy for NEM refinement and extension

International Nuclear Information System (INIS)

Engrand, P.R.; Maldonado, G.I.; Al-Chalabi, R.; Turinsky, P.J.

1992-01-01

The work discussed in this paper is related to the nonlinear iterative strategy developed by Smith to solve the nodal expansion method (NEM) representation of the neutron diffusion equations. The authors show how it is possible to save computation time by taking advantage of the reducibility of the matrices that have to be inverted when employing this strategy. In addition, they show how this strategy can be adapted in an easy and efficient manner to time-dependent problems

7. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark's Method with Netwon-Raphson Iteration Revisited

Science.gov (United States)

Markou, A. A.; Manolis, G. D.

2018-03-01

Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

8. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark’s Method with Netwon-Raphson Iteration Revisited

Directory of Open Access Journals (Sweden)

Markou A.A.

2018-03-01

Full Text Available Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark’s time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

9. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow

International Nuclear Information System (INIS)

Knoll, D.A.

1998-01-01

The authors study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. They use Newton's method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. They investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, mesh sequencing, and a pseudotransient continuation technique is used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with incomplete lower-upper (ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a mesh sequencing implementation provides significant CPU savings for fine grid calculations. Performance comparisons of modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented

10. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

KAUST Repository

Desmal, Abdulla

2015-10-26

Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting the nonlinear forward scattering operator into a sequence of linear ill-posed operations (for example using the Born iterative method) and applying sparsity constraints to the linear minimization problem of each iteration through the use of L0/L1-norm penalty term (A. Desmal and H. Bagci, IEEE Trans. Antennas Propag, 7, 3878–3884, 2014, and IEEE Trans. Geosci. Remote Sens., 3, 532–536, 2015). It has been shown that these techniques produce more accurate and sharper images than their counterparts which solve a minimization problem constrained with smoothness promoting L2-norm penalty term. But these existing techniques are only applicable to investigation domains involving weak scatterers because the linearization process breaks down for high values of dielectric permittivity.

11. Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography

Science.gov (United States)

Xu, Feng; Deshpande, Manohar

2012-01-01

Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.

12. Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method

KAUST Repository

Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim

2013-01-01

is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.

13. Iterative methods for nonlinear set-valued operators of the monotone type with applications to operator equations

International Nuclear Information System (INIS)

Chidume, C.E.

1989-06-01

The fixed points of set-valued operators satisfying a condition of monotonicity type in real Banach spaces with uniformly convex dual spaces are approximated by recursive averaging processes. Applications to important classes of linear and nonlinear operator equations are also presented. (author). 33 refs

14. Reformulation of nonlinear integral magnetostatic equations for rapid iterative convergence

International Nuclear Information System (INIS)

Bloomberg, D.S.; Castelli, V.

1985-01-01

The integral equations of magnetostatics, conventionally given in terms of the field variables M and H, are reformulated with M and B. Stability criteria and convergence rates of the eigenvectors of the linear iteration matrices are evaluated. The relaxation factor β in the MH approach varies inversely with permeability μ, and nonlinear problems with high permeability converge slowly. In contrast, MB iteration is stable for β 3 , the number of iterations is reduced by two orders of magnitude over the conventional method, and at higher permeabilities the reduction is proportionally greater. The dependence of MB convergence rate on β, degree of saturation, element aspect ratio, and problem size is found numerically. An analytical result for the MB convergence rate for small nonlinear problems is found to be accurate for βless than or equal to1.2. The results are generally valid for two- and three-dimensional integral methods and are independent of the particular discretization procedures used to compute the field matrix

15. Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection

KAUST Repository

El-Amin, Mohamed; Kou, Jisheng; Sun, Shuyu

2017-01-01

–IMplicit Concentration) scheme is used to solve the problem under consideration. The governing equations are discretized using the cell-centered finite difference (CCFD) method. The pressure and saturation equations are coupled to calculate the pressure

16. Iterative method for Amado's model

International Nuclear Information System (INIS)

Tomio, L.

1980-01-01

A recently proposed iterative method for solving scattering integral equations is applied to the spin doublet and spin quartet neutron-deuteron scattering in the Amado model. The method is tested numerically in the calculation of scattering lengths and phase-shifts and results are found better than those obtained by using the conventional Pade technique. (Author) [pt

17. The danger of iteration methods

International Nuclear Information System (INIS)

Villain, J.; Semeria, B.

1983-01-01

When a Hamiltonian H depends on variables phisub(i), the values of these variables which minimize H satisfy the equations deltaH/deltaphisub(i) = O. If this set of equations is solved by iteration, there is no guarantee that the solution is the one which minimizes H. In the case of a harmonic system with a random potential periodic with respect to the phisub(i)'s, the fluctuations have been calculated by Efetov and Larkin by means of the iteration method. The result is wrong in the case of a strong disorder. Even in the weak disorder case, it is wrong for a one-dimensional system and for a finite system of 2 particles. It is argued that the results obtained by iteration are always wrong, and that between 2 and 4 dimensions, spin-pair correlation functions decay like powers of the distance, as found by Aharony and Pytte for another model

18. A linear iterative unfolding method

International Nuclear Information System (INIS)

László, András

2012-01-01

A frequently faced task in experimental physics is to measure the probability distribution of some quantity. Often this quantity to be measured is smeared by a non-ideal detector response or by some physical process. The procedure of removing this smearing effect from the measured distribution is called unfolding, and is a delicate problem in signal processing, due to the well-known numerical ill behavior of this task. Various methods were invented which, given some assumptions on the initial probability distribution, try to regularize the unfolding problem. Most of these methods definitely introduce bias into the estimate of the initial probability distribution. We propose a linear iterative method (motivated by the Neumann series / Landweber iteration known in functional analysis), which has the advantage that no assumptions on the initial probability distribution is needed, and the only regularization parameter is the stopping order of the iteration, which can be used to choose the best compromise between the introduced bias and the propagated statistical and systematic errors. The method is consistent: 'binwise' convergence to the initial probability distribution is proved in absence of measurement errors under a quite general condition on the response function. This condition holds for practical applications such as convolutions, calorimeter response functions, momentum reconstruction response functions based on tracking in magnetic field etc. In presence of measurement errors, explicit formulae for the propagation of the three important error terms is provided: bias error (distance from the unknown to-be-reconstructed initial distribution at a finite iteration order), statistical error, and systematic error. A trade-off between these three error terms can be used to define an optimal iteration stopping criterion, and the errors can be estimated there. We provide a numerical C library for the implementation of the method, which incorporates automatic

19. Multi-Level iterative methods in computational plasma physics

International Nuclear Information System (INIS)

Knoll, D.A.; Barnes, D.C.; Brackbill, J.U.; Chacon, L.; Lapenta, G.

1999-01-01

Plasma physics phenomena occur on a wide range of spatial scales and on a wide range of time scales. When attempting to model plasma physics problems numerically the authors are inevitably faced with the need for both fine spatial resolution (fine grids) and implicit time integration methods. Fine grids can tax the efficiency of iterative methods and large time steps can challenge the robustness of iterative methods. To meet these challenges they are developing a hybrid approach where multigrid methods are used as preconditioners to Krylov subspace based iterative methods such as conjugate gradients or GMRES. For nonlinear problems they apply multigrid preconditioning to a matrix-few Newton-GMRES method. Results are presented for application of these multilevel iterative methods to the field solves in implicit moment method PIC, multidimensional nonlinear Fokker-Planck problems, and their initial efforts in particle MHD

20. Iterative solution for nonlinear integral equations of Hammerstein type

International Nuclear Information System (INIS)

Chidume, C.E.; Osilike, M.O.

1990-12-01

Let E be a real Banach space with a uniformly convex dual, E*. Suppose N is a nonlinear set-valued accretive map of E into itself with open domain D; K is a linear single-valued accretive map with domain D(K) in E such that Im(N) is contained in D(K); K -1 exists and satisfies -1 x-K -1 y,j(x-y)>≥β||x-y|| 2 for each x, y is an element of Im(K) and some constant β > 0, where j denotes the single-valued normalized duality map on E. Suppose also that for each h is an element Im(K) the equation h is an element x+KNx has a solution x* in D. An iteration method is constructed which converges strongly to x*. Explicit error estimates are also computed. (author). 25 refs

1. Geometric properties of Banach spaces and nonlinear iterations

CERN Document Server

Chidume, Charles

2009-01-01

Nonlinear functional analysis and applications is an area of study that has provided fascination for many mathematicians across the world. This monograph delves specifically into the topic of the geometric properties of Banach spaces and nonlinear iterations, a subject of extensive research over the past thirty years. Chapters 1 to 5 develop materials on convexity and smoothness of Banach spaces, associated moduli and connections with duality maps. Key results obtained are summarized at the end of each chapter for easy reference. Chapters 6 to 23 deal with an in-depth, comprehensive and up-to-date coverage of the main ideas, concepts and results on iterative algorithms for the approximation of fixed points of nonlinear nonexpansive and pseudo-contractive-type mappings. This includes detailed workings on solutions of variational inequality problems, solutions of Hammerstein integral equations, and common fixed points (and common zeros) of families of nonlinear mappings. Carefully referenced and full of recent,...

2. Iterative analysis of concrete gravity dam-nonlinear foundation ...

African Journals Online (AJOL)

The solution of the coupled system is accomplished by solving the two systems separately and then considering the interaction effects at the soil–structure interface enforced by a developed iterative scheme. Emphasis has been laid on the study of material nonlinearity of the foundation material in the interaction analysis.

3. Robust Multiscale Iterative Solvers for Nonlinear Flows in Highly Heterogeneous Media

KAUST Repository

Efendiev, Y.

2012-08-01

In this paper, we study robust iterative solvers for finite element systems resulting in approximation of steady-state Richards\\' equation in porous media with highly heterogeneous conductivity fields. It is known that in such cases the contrast, ratio between the highest and lowest values of the conductivity, can adversely affect the performance of the preconditioners and, consequently, a design of robust preconditioners is important for many practical applications. The proposed iterative solvers consist of two kinds of iterations, outer and inner iterations. Outer iterations are designed to handle nonlinearities by linearizing the equation around the previous solution state. As a result of the linearization, a large-scale linear system needs to be solved. This linear system is solved iteratively (called inner iterations), and since it can have large variations in the coefficients, a robust preconditioner is needed. First, we show that under some assumptions the number of outer iterations is independent of the contrast. Second, based on the recently developed iterative methods, we construct a class of preconditioners that yields convergence rate that is independent of the contrast. Thus, the proposed iterative solvers are optimal with respect to the large variation in the physical parameters. Since the same preconditioner can be reused in every outer iteration, this provides an additional computational savings in the overall solution process. Numerical tests are presented to confirm the theoretical results. © 2012 Global-Science Press.

4. Iterative algorithm for the volume integral method for magnetostatics problems

International Nuclear Information System (INIS)

Pasciak, J.E.

1980-11-01

Volume integral methods for solving nonlinear magnetostatics problems are considered in this paper. The integral method is discretized by a Galerkin technique. Estimates are given which show that the linearized problems are well conditioned and hence easily solved using iterative techniques. Comparisons of iterative algorithms with the elimination method of GFUN3D shows that the iterative method gives an order of magnitude improvement in computational time as well as memory requirements for large problems. Computational experiments for a test problem as well as a double layer dipole magnet are given. Error estimates for the linearized problem are also derived

5. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

Science.gov (United States)

Wei, Qinglai; Liu, Derong; Lin, Hanquan

2016-03-01

In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

6. Iterative solutions of nonlinear equations with strongly accretive or strongly pseudocontractive maps

International Nuclear Information System (INIS)

Chidume, C.E.

1994-03-01

Let E be a real q-uniformly smooth Banach space. Suppose T is a strongly pseudo-contractive map with open domain D(T) in E. Suppose further that T has a fixed point in D(T). Under various continuity assumptions on T it is proved that each of the Mann iteration process or the Ishikawa iteration method converges strongly to the unique fixed point of T. Related results deal with iterative solutions of nonlinear operator equations involving strongly accretive maps. Explicit error estimates are also provided. (author). 38 refs

7. Non-linear iterative strategy for nem refinement and extension

International Nuclear Information System (INIS)

Engrand, P.R.; Maldonado, G.I.; Al-Chalabi, R.; Turinsky, P.J.

1994-10-01

The following work is related to the non-linear iterative strategy developed by K. Smith to solve the Nodal Expansion Method (NEM) representation of the neutron diffusion equations. We show how to improve this strategy and how to adapt it to time dependant problems. This work has been done in the NESTLE code, developed at North Carolina State University. When using Smith's strategy, one ends up with a two-node problem which corresponds to a matrix with a fixed structure and a size of 16 x 16 (for a 2 group representation). We show how to reduce this matrix into 2 equivalent systems which sizes are 4 x 4 and 8 x 8. The whole problem needs many of these 2 node problems solution. Therefore the gain in CPU time reaches 45% in the nodal part of the code. To adapt Smith's strategy to time dependent problems, the idea is to get the same structure of the 2 node problem system as in steady-state calculation. To achieve this, one has to approximate the values of the past time-step and of the previous by a second order polynomial and to treat it as a source term. We show here how to make this approximation consistent and accurate. (authors). 1 tab., 2 refs

8. Nonlinear Burn Control and Operating Point Optimization in ITER

Science.gov (United States)

Boyer, Mark; Schuster, Eugenio

2013-10-01

Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

9. Iterative Splitting Methods for Differential Equations

CERN Document Server

Geiser, Juergen

2011-01-01

Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

10. New concurrent iterative methods with monotonic convergence

Energy Technology Data Exchange (ETDEWEB)

Yao, Qingchuan [Michigan State Univ., East Lansing, MI (United States)

1996-12-31

This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.

11. Iterative solution of a nonlinear system arising in phase change problems

International Nuclear Information System (INIS)

Williams, M.A.

1987-01-01

We consider several iterative methods for solving the nonlinear system arising from an enthalpy formulation of a phase change problem. We present the formulation of the problem. Implicit discretization of the governing equations results in a mildly nonlinear system at each time step. We discuss solving this system using Jacobi, Gauss-Seidel, and SOR iterations and a new modified preconditioned conjugate gradient (MPCG) algorithm. The new MPCG algorithm and its properties are discussed in detail. Numerical results are presented comparing the performance of the SOR algorithm and the MPCG algorithm with 1-step SSOR preconditioning. The MPCG algorithm exhibits a superlinear rate of convergence. The SOR algorithm exhibits a linear rate of convergence. Thus, the MPCG algorithm requires fewer iterations to converge than the SOR algorithm. However in most cases, the SOR algorithm requires less total computation time than the MPCG algorithm. Hence, the SOR algorithm appears to be more appropriate for the class of problems considered. 27 refs., 11 figs

12. Iterative Brinkman penalization for remeshed vortex methods

DEFF Research Database (Denmark)

Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony

2015-01-01

We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time...

13. NITSOL: A Newton iterative solver for nonlinear systems

Energy Technology Data Exchange (ETDEWEB)

Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)

1996-12-31

Newton iterative methods, also known as truncated Newton methods, are implementations of Newtons method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.

14. Nonlinear ordinary differential equations analytical approximation and numerical methods

CERN Document Server

Hermann, Martin

2016-01-01

The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

15. Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing

Science.gov (United States)

Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng

2017-05-01

Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.

16. The Semianalytical Solutions for Stiff Systems of Ordinary Differential Equations by Using Variational Iteration Method and Modified Variational Iteration Method with Comparison to Exact Solutions

Directory of Open Access Journals (Sweden)

Mehmet Tarik Atay

2013-01-01

Full Text Available The Variational Iteration Method (VIM and Modified Variational Iteration Method (MVIM are used to find solutions of systems of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential equations, problems were solved by Adomian Decomposition Method and VIM and Homotopy Perturbation Method. Comparisons with exact solutions reveal that the Variational Iteration Method (VIM and the Modified Variational Iteration Method (MVIM are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.

17. Inexact Newton–Landweber iteration for solving nonlinear inverse problems in Banach spaces

International Nuclear Information System (INIS)

Jin, Qinian

2012-01-01

By making use of duality mappings, we formulate an inexact Newton–Landweber iteration method for solving nonlinear inverse problems in Banach spaces. The method consists of two components: an outer Newton iteration and an inner scheme providing the increments by applying the Landweber iteration in Banach spaces to the local linearized equations. It has the advantage of reducing computational work by computing more cheap steps in each inner scheme. We first prove a convergence result for the exact data case. When the data are given approximately, we terminate the method by a discrepancy principle and obtain a weak convergence result. Finally, we test the method by reporting some numerical simulations concerning the sparsity recovery and the noisy data containing outliers. (paper)

18. Iterative methods for weighted least-squares

Energy Technology Data Exchange (ETDEWEB)

Bobrovnikova, E.Y.; Vavasis, S.A. [Cornell Univ., Ithaca, NY (United States)

1996-12-31

A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

19. Nonlinear response matrix methods for radiative transfer

International Nuclear Information System (INIS)

Miller, W.F. Jr.; Lewis, E.E.

1987-01-01

A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs

20. Variational iteration method for solving coupled-KdV equations

International Nuclear Information System (INIS)

Assas, Laila M.B.

2008-01-01

In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations

1. Methods of nonlinear analysis

CERN Document Server

Bellman, Richard Ernest

1970-01-01

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

2. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems

International Nuclear Information System (INIS)

Di Dong; Yiming Long.

1994-10-01

In this paper, the iteration formula of the Maslov-type index theory for linear Hamiltonian systems with continuous periodic and symmetric coefficients is established. This formula yields a new method to determine the minimality of the period for solutions of nonlinear autonomous Hamiltonian systems via their Maslov-type indices. Applications of this formula give new results on the existence of periodic solutions with prescribed minimal period for such systems. (author). 40 refs

3. Natural Preconditioning and Iterative Methods for Saddle Point Systems

KAUST Repository

Pestana, Jennifer

2015-01-01

© 2015 Society for Industrial and Applied Mathematics. The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or the discrete setting, so saddle point systems arising from the discretization of partial differential equation problems, such as those describing electromagnetic problems or incompressible flow, lead to equations with this structure, as do, for example, interior point methods and the sequential quadratic programming approach to nonlinear optimization. This survey concerns iterative solution methods for these problems and, in particular, shows how the problem formulation leads to natural preconditioners which guarantee a fast rate of convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness - in terms of rapidity of convergence - is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends.

4. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

Energy Technology Data Exchange (ETDEWEB)

Knoll, D.A.; McHugh, P.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1996-12-31

We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newtons method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

5. Iterative solution of nonlinear equations with strongly accretive operators

International Nuclear Information System (INIS)

Chidume, C.E.

1991-10-01

Let E be a real Banach space with a uniformly convex dual, and let K be a nonempty closed convex and bounded subset of E. Suppose T:K→K is a strongly accretive map such that for each f is an element of K the equation Tx=f has a solution in K. It is proved that each of the two well known fixed point iteration methods (the Mann and Ishikawa iteration methods) converges strongly to a solution of the equation Tx=f. Furthermore, our method shows that such a solution is necessarily unique. Explicit error estimates are given. Our results resolve in the affirmative two open problems (J. Math. Anal. Appl. Vol 151(2) (1990), p. 460) and generalize important known results. (author). 32 refs

6. Study of a Biparametric Family of Iterative Methods

Directory of Open Access Journals (Sweden)

B. Campos

2014-01-01

Full Text Available The dynamics of a biparametric family for solving nonlinear equations is studied on quadratic polynomials. This biparametric family includes the c-iterative methods and the well-known Chebyshev-Halley family. We find the analytical expressions for the fixed and critical points by solving 6-degree polynomials. We use the free critical points to get the parameter planes and, by observing them, we specify some values of (α, c with clear stable and unstable behaviors.

7. Methods for Large-Scale Nonlinear Optimization.

Science.gov (United States)

1980-05-01

STANFORD, CALIFORNIA 94305 METHODS FOR LARGE-SCALE NONLINEAR OPTIMIZATION by Philip E. Gill, Waiter Murray, I Michael A. Saunden, and Masgaret H. Wright...typical iteration can be partitioned so that where B is an m X m basise matrix. This partition effectively divides the vari- ables into three classes... attention is given to the standard of the coding or the documentation. A much better way of obtaining mathematical software is from a software library

8. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

Science.gov (United States)

2017-03-01

In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

9. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

Energy Technology Data Exchange (ETDEWEB)

Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

1996-12-31

The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

10. Copper Mountain conference on iterative methods: Proceedings: Volume 1

Energy Technology Data Exchange (ETDEWEB)

NONE

1996-10-01

This volume (one of two) contains information presented during the first three days of the Copper Mountain Conference on Iterative Methods held April 9-13, 1996 at Copper Mountain, Colorado. Topics of the sessions held these three days included nonlinear systems, parallel processing, preconditioning, sparse matrix test collections, first-order system least squares, Arnoldis method, integral equations, software, Navier-Stokes equations, Euler equations, Krylov methods, and eigenvalues. The top three papers from a student competition are also included. Selected papers indexed separately for the Energy Science and Technology Database.

11. On varitional iteration method for fractional calculus

Directory of Open Access Journals (Sweden)

Wu Hai-Gen

2017-01-01

Full Text Available Modification of the Das’ variational iteration method for fractional differential equations is discussed, and its main shortcoming involved in the solution process is pointed out and overcome by using fractional power series. The suggested computational procedure is simple and reliable for fractional calculus.

12. Discounted Markov games : generalized policy iteration method

NARCIS (Netherlands)

Wal, van der J.

1978-01-01

In this paper, we consider two-person zero-sum discounted Markov games with finite state and action spaces. We show that the Newton-Raphson or policy iteration method as presented by Pollats-chek and Avi-Itzhak does not necessarily converge, contradicting a proof of Rao, Chandrasekaran, and Nair.

13. Preconditioning of iterative methods - theory and applications

Czech Academy of Sciences Publication Activity Database

Axelsson, Owe; Blaheta, Radim; Neytcheva, M.; Pultarová, I.

2015-01-01

Roč. 22, č. 6 (2015), s. 901-902 ISSN 1070-5325 Institutional support: RVO:68145535 Keywords : preconditioning * iterative methods * applications Subject RIV: BA - General Mathematics Impact factor: 1.431, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/nla.2016/epdf

14. Estimation of POL-iteration methods in fast running DNBR code

Energy Technology Data Exchange (ETDEWEB)

Kwon, Hyuk; Kim, S. J.; Seo, K. W.; Hwang, D. H. [KAERI, Daejeon (Korea, Republic of)

2016-05-15

In this study, various root finding methods are applied to the POL-iteration module in SCOMS and POLiteration efficiency is compared with reference method. On the base of these results, optimum algorithm of POL iteration is selected. The POL requires the iteration until present local power reach limit power. The process to search the limiting power is equivalent with a root finding of nonlinear equation. POL iteration process involved in online monitoring system used a variant bisection method that is the most robust algorithm to find the root of nonlinear equation. The method including the interval accelerating factor and escaping routine out of ill-posed condition assured the robustness of SCOMS system. POL iteration module in SCOMS shall satisfy the requirement which is a minimum calculation time. For this requirement of calculation time, non-iterative algorithm, few channel model, simple steam table are implemented into SCOMS to improve the calculation time. MDNBR evaluation at a given operating condition requires the DNBR calculation at all axial locations. An increasing of POL-iteration number increased a calculation load of SCOMS significantly. Therefore, calculation efficiency of SCOMS is strongly dependent on the POL iteration number. In case study, the iterations of the methods have a superlinear convergence for finding limiting power but Brent method shows a quardratic convergence speed. These methods are effective and better than the reference bisection algorithm.

15. Iterative Adaptive Dynamic Programming for Solving Unknown Nonlinear Zero-Sum Game Based on Online Data.

Science.gov (United States)

Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun

2017-03-01

H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.

16. Iteration of ultrasound aberration correction methods

Science.gov (United States)

Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

2004-05-01

Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

17. He's variational iteration method applied to the solution of the prey and predator problem with variable coefficients

International Nuclear Information System (INIS)

Yusufoglu, Elcin; Erbas, Baris

2008-01-01

In this Letter, a mathematical model of the problem of prey and predator is presented and He's variational iteration method is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The results are compared with the results obtained by Adomian decomposition method and homotopy perturbation method. Comparison of the methods show that He's variational iteration method is a powerful method for obtaining approximate solutions to nonlinear equations and their systems

18. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

Directory of Open Access Journals (Sweden)

Bapurao C. Dhage

2015-01-01

Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

19. Nonlinear Multiantenna Detection Methods

Directory of Open Access Journals (Sweden)

Chen Sheng

2004-01-01

20. Iterative Regularization with Minimum-Residual Methods

DEFF Research Database (Denmark)

Jensen, Toke Koldborg; Hansen, Per Christian

2007-01-01

subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

1. Iterative regularization with minimum-residual methods

DEFF Research Database (Denmark)

Jensen, Toke Koldborg; Hansen, Per Christian

2006-01-01

subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

2. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

KAUST Repository

Desmal, Abdulla; Bagci, Hakan

2015-01-01

Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting

3. Iterated interactions method. Realistic NN potential

International Nuclear Information System (INIS)

Gorbatov, A.M.; Skopich, V.L.; Kolganova, E.A.

1991-01-01

The method of iterated potential is tested in the case of realistic fermionic systems. As a base for comparison calculations of the 16 O system (using various versions of realistic NN potentials) by means of the angular potential-function method as well as operators of pairing correlation were used. The convergence of genealogical series is studied for the central Malfliet-Tjon potential. In addition the mathematical technique of microscopical calculations is improved: new equations for correlators in odd states are suggested and the technique of leading terms was applied for the first time to calculations of heavy p-shell nuclei in the basis of angular potential functions

4. A convergence analysis of the iteratively regularized Gauss–Newton method under the Lipschitz condition

International Nuclear Information System (INIS)

Jin Qinian

2008-01-01

In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense

5. Nonlinear programming analysis and methods

CERN Document Server

Avriel, Mordecai

2012-01-01

This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.

6. Comparison between the Variational Iteration Method and the Homotopy Perturbation Method for the Sturm-Liouville Differential Equation

Directory of Open Access Journals (Sweden)

R. Darzi

2010-01-01

Full Text Available We applied the variational iteration method and the homotopy perturbation method to solve Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods is the flexibility to give approximate and exact solutions to both linear and nonlinear problems without linearization or discretization. The results show that both methods are simple and effective.

7. Comparison between the Variational Iteration Method and the Homotopy Perturbation Method for the Sturm-Liouville Differential Equation

OpenAIRE

Darzi R; Neamaty A

2010-01-01

We applied the variational iteration method and the homotopy perturbation method to solve Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods is the flexibility to give approximate and exact solutions to both linear and nonlinear problems without linearization or discretization. The results show that both methods are simple and effective.

8. Iterative and range test methods for an inverse source problem for acoustic waves

International Nuclear Information System (INIS)

Alves, Carlos; Kress, Rainer; Serranho, Pedro

2009-01-01

We propose two methods for solving an inverse source problem for time-harmonic acoustic waves. Based on the reciprocity gap principle a nonlinear equation is presented for the locations and intensities of the point sources that can be solved via Newton iterations. To provide an initial guess for this iteration we suggest a range test algorithm for approximating the source locations. We give a mathematical foundation for the range test and exhibit its feasibility in connection with the iteration method by some numerical examples

9. Ishikawa iteration process for nonlinear Lipschitz strongly accretive mappings

International Nuclear Information System (INIS)

Chidume, C.E.; Osilike, M.O.

1994-05-01

Let E=L p , p≥2 and let T:E→ E be a Lipschitzian and strongly accretive mapping. Let S:E → E be defined by Sx=f-Tx+x. It is proved that under suitable conditions on the real sequences {α n } ∞ n=0 and {β n } ∞ n=0 , the iteration process, x 0 is an element of E, x n+1 =(1-α n ) x n +α n S[(1-β n ) x n +β n Sx n ], n≥0, converges strongly to the unique solution of Tx=f. A related result deals with the iterative approximation of fixed points for Lipschitz strongly pseudocontractive mappings in E. A consequence of our results gives an affirmative answer to a problem posed by one of the authors in 1990. (J. Math. Anal. Appl. 151, 2 (1990) p. 460). (author). 36 refs

10. Iterative solutions of nonlinear equations in smooth Banach spaces

International Nuclear Information System (INIS)

Chidume, C.E.

1994-05-01

Let E be a smooth Banach space over the real field, φ not= K is contained in E closed convex and bounded, T:K → K uniformly continuous and strongly pseudo-contractive. It is proved that the Ishikawa iteration process converges strongly to the unique fixed point of T. Applications of this result to the operator equations Au=f or u+Au=f where A is a strongly accretive mapping of E into itself and under various continuity assumptions on A are also given. (author). 41 refs

11. Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type

Directory of Open Access Journals (Sweden)

Abebe R. Tufa

2015-11-01

Full Text Available Let H be a real Hilbert space. Let F,K : H → H be Lipschitz monotone mappings with Lipschtiz constants L1and L2, respectively. Suppose that the Hammerstein type equation u + KFu = 0 has a solution in H. It is our purpose in this paper to construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein type equation. The results obtained in this paper improve and extend known results in the literature.

12. An approximation method for nonlinear integral equations of Hammerstein type

International Nuclear Information System (INIS)

Chidume, C.E.; Moore, C.

1989-05-01

The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs

13. Application of the perturbation iteration method to boundary layer type problems.

Science.gov (United States)

Pakdemirli, Mehmet

2016-01-01

The recently developed perturbation iteration method is applied to boundary layer type singular problems for the first time. As a preliminary work on the topic, the simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear problems are solved to outline the basic ideas of the new solution technique. The inner and outer solutions are determined with the iteration algorithm and matched to construct a composite expansion valid within all parts of the domain. The solutions are contrasted with the available exact or numerical solutions. It is shown that the perturbation-iteration algorithm can be effectively used for solving boundary layer type problems.

14. Iteration of some discretizations of the nonlinear Schroedinger equation

International Nuclear Information System (INIS)

Ross, K.A.; Thompson, C.J.

1986-01-01

We consider several discretizations of the nonlinear Schroedinger equation which lead naturally to the study of some symmetric difference equations of the form PHIsub(n+1) + PHIsub(n-1) = f(PHIsub(n)). We find a variety of interesting and exotic behaviour from simple closed orbits to intricate patterns of orbits and loops in the (PHIsub(n+1),PHIsub(n)) phase-plane. Some analytical results for a special case are also presented. (orig.)

15. New Efficient Fourth Order Method for Solving Nonlinear Equations

Directory of Open Access Journals (Sweden)

2013-12-01

Full Text Available In a paper [Appl. Math. Comput., 188 (2 (2007 1587--1591], authors have suggested and analyzed a method for solving nonlinear equations. In the present work, we modified this method by using the finite difference scheme, which has a quintic convergence. We have compared this modified Halley method with some other iterative of fifth-orders convergence methods, which shows that this new method having convergence of fourth order, is efficient.

16. Interactive Nonlinear Multiobjective Optimization Methods

OpenAIRE

Miettinen, Kaisa; Hakanen, Jussi; Podkopaev, Dmitry

2016-01-01

An overview of interactive methods for solving nonlinear multiobjective optimization problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory Pareto optimal solution can be found for her or his. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the...

17. Newton-sor iterative method for solving the two-dimensional porous ...

African Journals Online (AJOL)

In this paper, we consider the application of the Newton-SOR iterative method in obtaining the approximate solution of the two-dimensional porous medium equation (2D PME). The nonlinear finite difference approximation equation to the 2D PME is derived by using the implicit finite difference scheme. The developed ...

18. Polynomial factor models : non-iterative estimation via method-of-moments

NARCIS (Netherlands)

Schuberth, Florian; Büchner, Rebecca; Schermelleh-Engel, Karin; Dijkstra, Theo K.

2017-01-01

We introduce a non-iterative method-of-moments estimator for non-linear latent variable (LV) models. Under the assumption of joint normality of all exogenous variables, we use the corrected moments of linear combinations of the observed indicators (proxies) to obtain consistent path coefficient and

19. Determination of Periodic Solution for Tapered Beams with Modified Iteration Perturbation Method

Directory of Open Access Journals (Sweden)

2015-01-01

Full Text Available In this paper, we implemented the Modified Iteration Perturbation Method (MIPM for approximating the periodic behavior of a tapered beam. This problem is formulated as a nonlinear ordinary differential equation with linear and nonlinear terms. The solution is quickly convergent and does not need to complicated calculations. Comparing the results of the MIPM with the exact solution shows that this method is effective and convenient. Also, it is predicated that MIPM can be potentially used in the analysis of strongly nonlinear oscillation problems accurately.

20. Interpretation of the nonlinear mode excitation in the ITER gyrotron

International Nuclear Information System (INIS)

Nusinovich, G. S.; Sinitsyn, O. V.

2007-01-01

This study was motivated by an interesting physical effect observed in experiments with a 1 MW, 170 GHz, continuous-wave gyrotron developed at the Japan Atomic Energy Agency for plasma heating and current drive in ITER [see, e.g., Fusion Eng. Des. 55, issues 2-3 (2001)]. In these experiments, the gyrotron switching from a parasitic mode to the operating one was observed with the increase in external magnetic field in the region of hard self-excitation of the operating mode where it cannot be excited from the noise level in the absence of other modes. Below, the theory describing this effect is developed. The switching mechanism caused by merging and disappearance of two (one stable and another unstable) equilibrium states with nonzero amplitudes of both modes is proposed. It is found that the present theory can correctly interpret experimental results qualitatively, but the lack of experimental data does not let the authors carry out some simulations more adequate to experimental conditions

1. Statistical methods in nonlinear dynamics

Sensitivity to initial conditions in nonlinear dynamical systems leads to exponential divergence of trajectories that are initially arbitrarily close, and hence to unpredictability. Statistical methods have been found to be helpful in extracting useful information about such systems. In this paper, we review briefly some statistical ...

2. AIR Tools II: algebraic iterative reconstruction methods, improved implementation

DEFF Research Database (Denmark)

Hansen, Per Christian; Jørgensen, Jakob Sauer

2017-01-01

with algebraic iterative methods and their convergence properties. The present software is a much expanded and improved version of the package AIR Tools from 2012, based on a new modular design. In addition to improved performance and memory use, we provide more flexible iterative methods, a column-action method...

3. Phase reconstruction by a multilevel iteratively regularized Gauss–Newton method

International Nuclear Information System (INIS)

Langemann, Dirk; Tasche, Manfred

2008-01-01

In this paper we consider the numerical solution of a phase retrieval problem for a compactly supported, linear spline f : R → C with the Fourier transform f-circumflex, where values of |f| and |f-circumflex| at finitely many equispaced nodes are given. The unknown phases of complex spline coefficients fulfil a well-structured system of nonlinear equations. Thus the phase reconstruction leads to a nonlinear inverse problem, which is solved by a multilevel strategy and iterative Tikhonov regularization. The multilevel strategy concentrates the main effort of the solution of the phase retrieval problem in the coarse, less expensive levels and provides convenient initial guesses at the next finer level. On each level, the corresponding nonlinear system is solved by an iteratively regularized Gauss–Newton method. The multilevel strategy is motivated by convergence results of IRGN. This method is applicable to a wide range of examples as shown in several numerical tests for noiseless and noisy data

4. A fast method to emulate an iterative POCS image reconstruction algorithm.

Science.gov (United States)

Zeng, Gengsheng L

2017-10-01

Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.

5. Multicore Performance of Block Algebraic Iterative Reconstruction Methods

DEFF Research Database (Denmark)

Sørensen, Hans Henrik B.; Hansen, Per Christian

2014-01-01

Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely on semiconv......Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely...... on semiconvergence. Block versions of these methods, based on a partitioning of the linear system, are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT. These block methods separate into two classes: those that, in each iteration, access the blocks in a sequential manner...... a fixed relaxation parameter in each method, namely, the one that leads to the fastest semiconvergence. Computational results show that for multicore computers, the sequential approach is preferable....

6. Leapfrog variants of iterative methods for linear algebra equations

Science.gov (United States)

Saylor, Paul E.

1988-01-01

Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.

7. Milestones in the Development of Iterative Solution Methods

Directory of Open Access Journals (Sweden)

Owe Axelsson

2010-01-01

Full Text Available Iterative solution methods to solve linear systems of equations were originally formulated as basic iteration methods of defect-correction type, commonly referred to as Richardson's iteration method. These methods developed further into various versions of splitting methods, including the successive overrelaxation (SOR method. Later, immensely important developments included convergence acceleration methods, such as the Chebyshev and conjugate gradient iteration methods and preconditioning methods of various forms. A major strive has been to find methods with a total computational complexity of optimal order, that is, proportional to the degrees of freedom involved in the equation. Methods that have turned out to have been particularly important for the further developments of linear equation solvers are surveyed. Some of them are presented in greater detail.

8. A comparison between progressive extension method (PEM) and iterative method (IM) for magnetic field extrapolations in the solar atmosphere

Science.gov (United States)

Wu, S. T.; Sun, M. T.; Sakurai, Takashi

1990-01-01

This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.

9. NUMERICAL WITHOUT ITERATION METHOD OF MODELING OF ELECTROMECHANICAL PROCESSES IN ASYNCHRONOUS ENGINES

Directory of Open Access Journals (Sweden)

D. G. Patalakh

2018-02-01

Full Text Available Purpose. Development of calculation of electromagnetic and electromechanic transients is in asynchronous engines without iterations. Methodology. Numeral methods of integration of usual differential equations, programming. Findings. As the system of equations, describing the dynamics of asynchronous engine, contents the products of rotor and stator currents and product of rotation frequency of rotor and currents, so this system is nonlinear one. The numeral solution of nonlinear differential equations supposes an iteration process on every step of integration. Time-continuing and badly converging iteration process may be the reason of calculation slowing. The improvement of numeral method by the way of an iteration process removing is offered. As result the modeling time is reduced. The improved numeral method is applied for integration of differential equations, describing the dynamics of asynchronous engine. Originality. The improvement of numeral method allowing to execute numeral integrations of differential equations containing product of functions is offered, that allows to avoid an iteration process on every step of integration and shorten modeling time. Practical value. On the basis of the offered methodology the universal program of modeling of electromechanics processes in asynchronous engines could be developed as taking advantage on fast-acting.

10. Iterated non-linear model predictive control based on tubes and contractive constraints.

Science.gov (United States)

Murillo, M; Sánchez, G; Giovanini, L

2016-05-01

11. Implementation of non-linear filters for iterative penalized maximum likelihood image reconstruction

International Nuclear Information System (INIS)

Liang, Z.; Gilland, D.; Jaszczak, R.; Coleman, R.

1990-01-01

In this paper, the authors report on the implementation of six edge-preserving, noise-smoothing, non-linear filters applied in image space for iterative penalized maximum-likelihood (ML) SPECT image reconstruction. The non-linear smoothing filters implemented were the median filter, the E 6 filter, the sigma filter, the edge-line filter, the gradient-inverse filter, and the 3-point edge filter with gradient-inverse filter, and the 3-point edge filter with gradient-inverse weight. A 3 x 3 window was used for all these filters. The best image obtained, by viewing the profiles through the image in terms of noise-smoothing, edge-sharpening, and contrast, was the one smoothed with the 3-point edge filter. The computation time for the smoothing was less than 1% of one iteration, and the memory space for the smoothing was negligible. These images were compared with the results obtained using Bayesian analysis

12. A novel EMD selecting thresholding method based on multiple iteration for denoising LIDAR signal

Science.gov (United States)

Li, Meng; Jiang, Li-hui; Xiong, Xing-long

2015-06-01

Empirical mode decomposition (EMD) approach has been believed to be potentially useful for processing the nonlinear and non-stationary LIDAR signals. To shed further light on its performance, we proposed the EMD selecting thresholding method based on multiple iteration, which essentially acts as a development of EMD interval thresholding (EMD-IT), and randomly alters the samples of noisy parts of all the corrupted intrinsic mode functions to generate a better effect of iteration. Simulations on both synthetic signals and LIDAR signals from real world support this method.

13. Solution of problems in calculus of variations via He's variational iteration method

International Nuclear Information System (INIS)

Tatari, Mehdi; Dehghan, Mehdi

2007-01-01

In the modeling of a large class of problems in science and engineering, the minimization of a functional is appeared. Finding the solution of these problems needs to solve the corresponding ordinary differential equations which are generally nonlinear. In recent years He's variational iteration method has been attracted a lot of attention of the researchers for solving nonlinear problems. This method finds the solution of the problem without any discretization of the equation. Since this method gives a closed form solution of the problem and avoids the round off errors, it can be considered as an efficient method for solving various kinds of problems. In this research He's variational iteration method will be employed for solving some problems in calculus of variations. Some examples are presented to show the efficiency of the proposed technique

14. Variational Iteration Method for Fifth-Order Boundary Value Problems Using He's Polynomials

Directory of Open Access Journals (Sweden)

2008-01-01

Full Text Available We apply the variational iteration method using He's polynomials (VIMHP for solving the fifth-order boundary value problems. The proposed method is an elegant combination of variational iteration and the homotopy perturbation methods and is mainly due to Ghorbani (2007. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discritization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this algorithm over the decomposition method.

15. A hyperpower iterative method for computing the generalized Drazin ...

A quadratically convergent Newton-type iterative scheme is proposed for approximating the generalized Drazin inverse bd of the Banach algebra element b. Further, its extension into the form of the hyperpower iterative method of arbitrary order p ≤ 2 is presented. Convergence criteria along with the estimation of error ...

16. Iterative Refinement Methods for Time-Domain Equalizer Design

Directory of Open Access Journals (Sweden)

Evans Brian L

2006-01-01

Full Text Available Commonly used time domain equalizer (TEQ design methods have been recently unified as an optimization problem involving an objective function in the form of a Rayleigh quotient. The direct generalized eigenvalue solution relies on matrix decompositions. To reduce implementation complexity, we propose an iterative refinement approach in which the TEQ length starts at two taps and increases by one tap at each iteration. Each iteration involves matrix-vector multiplications and vector additions with matrices and two-element vectors. At each iteration, the optimization of the objective function either improves or the approach terminates. The iterative refinement approach provides a range of communication performance versus implementation complexity tradeoffs for any TEQ method that fits the Rayleigh quotient framework. We apply the proposed approach to three such TEQ design methods: maximum shortening signal-to-noise ratio, minimum intersymbol interference, and minimum delay spread.

17. Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems

Energy Technology Data Exchange (ETDEWEB)

Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)

1996-12-31

A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.

18. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods

DEFF Research Database (Denmark)

Hansen, Per Christian; Saxild-Hansen, Maria

2012-01-01

We present a MATLAB package with implementations of several algebraic iterative reconstruction methods for discretizations of inverse problems. These so-called row action methods rely on semi-convergence for achieving the necessary regularization of the problem. Two classes of methods are impleme......We present a MATLAB package with implementations of several algebraic iterative reconstruction methods for discretizations of inverse problems. These so-called row action methods rely on semi-convergence for achieving the necessary regularization of the problem. Two classes of methods...... are implemented: Algebraic Reconstruction Techniques (ART) and Simultaneous Iterative Reconstruction Techniques (SIRT). In addition we provide a few simplified test problems from medical and seismic tomography. For each iterative method, a number of strategies are available for choosing the relaxation parameter...

19. An Iterative Brinkman penalization for particle vortex methods

DEFF Research Database (Denmark)

Walther, Jens Honore; Hejlesen, Mads Mølholm; Leonard, A.

2013-01-01

We present an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in vortex particle methods. This is achieved by implementing a penalization of the velocity field using iteration of the penalized vorticity. We show that using the conventional Brinkman...... condition. These are: the impulsively started flow past a cylinder, the impulsively started flow normal to a flat plate, and the uniformly accelerated flow normal to a flat plate. The iterative penalization algorithm is shown to give significantly improved results compared to the conventional penalization...

20. Open-closed-loop iterative learning control for a class of nonlinear systems with random data dropouts

Science.gov (United States)

Cheng, X. Y.; Wang, H. B.; Jia, Y. L.; Dong, YH

2018-05-01

In this paper, an open-closed-loop iterative learning control (ILC) algorithm is constructed for a class of nonlinear systems subjecting to random data dropouts. The ILC algorithm is implemented by a networked control system (NCS), where only the off-line data is transmitted by network while the real-time data is delivered in the point-to-point way. Thus, there are two controllers rather than one in the control system, which makes better use of the saved and current information and thereby improves the performance achieved by open-loop control alone. During the transfer of off-line data between the nonlinear plant and the remote controller data dropout occurs randomly and the data dropout rate is modeled as a binary Bernoulli random variable. Both measurement and control data dropouts are taken into consideration simultaneously. The convergence criterion is derived based on rigorous analysis. Finally, the simulation results verify the effectiveness of the proposed method.

1. Numerov iteration method for second order integral-differential equation

International Nuclear Information System (INIS)

Zeng Fanan; Zhang Jiaju; Zhao Xuan

1987-01-01

In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics

2. A comparison theorem for the SOR iterative method

Science.gov (United States)

Sun, Li-Ying

2005-09-01

In 1997, Kohno et al. have reported numerically that the improving modified Gauss-Seidel method, which was referred to as the IMGS method, is superior to the SOR iterative method. In this paper, we prove that the spectral radius of the IMGS method is smaller than that of the SOR method and Gauss-Seidel method, if the relaxation parameter [omega][set membership, variant](0,1]. As a result, we prove theoretically that this method is succeeded in improving the convergence of some classical iterative methods. Some recent results are improved.

3. Stopping test of iterative methods for solving PDE

International Nuclear Information System (INIS)

Wang Bangrong

1991-01-01

In order to assure the accuracy of the numerical solution of the iterative method for solving PDE (partial differential equation), the stopping test is very important. If the coefficient matrix of the system of linear algebraic equations is strictly diagonal dominant or irreducible weakly diagonal dominant, the stopping test formulas of the iterative method for solving PDE is proposed. Several numerical examples are given to illustrate the applications of the stopping test formulas

4. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

KAUST Repository

Desmal, Abdulla

2015-03-01

A nonlinear inversion scheme for the electromagnetic microwave imaging of domains with sparse content is proposed. Scattering equations are constructed using a contrast-source (CS) formulation. The proposed method uses an inexact Newton (IN) scheme to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded Landweber iterations, and the convergence is significantly increased using a preconditioner that levels the FD matrix\\'s singular values associated with contrast and equivalent currents. To increase the accuracy, the weight of the regularization\\'s penalty term is reduced during the IN iterations consistently with the scheme\\'s quadratic convergence. At the end of each IN iteration, an additional thresholding, which removes small \\'ripples\\' that are produced by the IN step, is applied to maintain the solution\\'s sparsity. Numerical results demonstrate the applicability of the proposed method in recovering sparse and discontinuous dielectric profiles with high contrast values.

5. New Iterative Method for Fractional Gas Dynamics and Coupled Burger’s Equations

Directory of Open Access Journals (Sweden)

Mohamed S. Al-luhaibi

2015-01-01

Full Text Available This paper presents the approximate analytical solutions to solve the nonlinear gas dynamics and coupled Burger’s equations with fractional time derivative. By using initial values, the explicit solutions of the equations are solved by using a reliable algorithm. Numerical results show that the new iterative method is easy to implement and accurate when applied to time-fractional partial differential equations.

6. Properties of a class of block-iterative methods

International Nuclear Information System (INIS)

2009-01-01

We study a class of block-iterative (BI) methods proposed in image reconstruction for solving linear systems. A subclass, symmetric block-iteration (SBI), is derived such that for this subclass both semi-convergence analysis and stopping-rules developed for fully simultaneous iteration apply. Also results on asymptotic convergence are given, e.g., BI exhibit cyclic convergence irrespective of the consistency of the linear system. Further it is shown that the limit points of SBI satisfy a weighted least-squares problem. We also present numerical results obtained using a trained stopping rule on SBI

7. Construction of a path of MHD equilibrium solutions by an iterative method

International Nuclear Information System (INIS)

Kikuchi, Fumio.

1979-09-01

This paper shows a constructive proof of the existence of a path of solutions to a nonlinear eigenvalue problem expressed by -Δu = lambda u + in Ω, and u = -1 on deltaΩ where Ω is a two-dimensional domain with a boundary deltaΩ. This problem arises from the ideal MHD equilibria in tori. The existence proof is based on the principle of contraction mappings, which is widely employed in nonlinear problems such as those associated with bifurcation phenomena. Some comments are also given on the application of the present iteration techniques to numerical method. (author)

8. Iter

Science.gov (United States)

Iotti, Robert

2015-04-01

ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

9. Moment methods for nonlinear maps

International Nuclear Information System (INIS)

Pusch, G.D.; Atomic Energy of Canada Ltd., Chalk River, ON

1993-01-01

It is shown that Differential Algebra (DA) may be used to push moments of distributions through a map, at a computational cost per moment comparable to pushing a single particle. The algorithm is independent of order, and whether or not the map is symplectic. Starting from the known result that moment-vectors transform linearly - like a tensor - even under a nonlinear map, I suggest that the form of the moment transformation rule indicates that the moment-vectors are elements of the dual to DA-vector space. I propose several methods of manipulating moments and constructing invariants using DA. I close with speculations on how DA might be used to ''close the circle'' to solve the inverse moment problem, yielding an entirely DA-and-moment-based space-charge code. (Author)

10. On iterative solution of nonlinear functional equations in a metric space

Directory of Open Access Journals (Sweden)

Rabindranath Sen

1983-01-01

Full Text Available Given that A and P as nonlinear onto and into self-mappings of a complete metric space R, we offer here a constructive proof of the existence of the unique solution of the operator equation Au=Pu, where u∈R, by considering the iterative sequence Aun+1=Pun (u0 prechosen, n=0,1,2,…. We use Kannan's criterion [1] for the existence of a unique fixed point of an operator instead of the contraction mapping principle as employed in [2]. Operator equations of the form Anu=Pmu, where u∈R, n and m positive integers, are also treated.

11. A nonsmooth nonlinear conjugate gradient method for interactive contact force problems

DEFF Research Database (Denmark)

Silcowitz, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny

2010-01-01

of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...... and present experimental convergence behavior and properties of the new method. Our results show that the NNCG method has at least the same convergence rate as PGS, and in many cases better....

12. Copper Mountain conference on iterative methods: Proceedings: Volume 2

Energy Technology Data Exchange (ETDEWEB)

NONE

1996-10-01

This volume (the second of two) contains information presented during the last two days of the Copper Mountain Conference on Iterative Methods held April 9-13, 1996 at Copper Mountain, Colorado. Topics of the sessions held these two days include domain decomposition, Krylov methods, computational fluid dynamics, Markov chains, sparse and parallel basic linear algebra subprograms, multigrid methods, applications of iterative methods, equation systems with multiple right-hand sides, projection methods, and the Helmholtz equation. Selected papers indexed separately for the Energy Science and Technology Database.

13. Clustered iterative stochastic ensemble method for multi-modal calibration of subsurface flow models

KAUST Repository

Elsheikh, Ahmed H.

2013-05-01

A novel multi-modal parameter estimation algorithm is introduced. Parameter estimation is an ill-posed inverse problem that might admit many different solutions. This is attributed to the limited amount of measured data used to constrain the inverse problem. The proposed multi-modal model calibration algorithm uses an iterative stochastic ensemble method (ISEM) for parameter estimation. ISEM employs an ensemble of directional derivatives within a Gauss-Newton iteration for nonlinear parameter estimation. ISEM is augmented with a clustering step based on k-means algorithm to form sub-ensembles. These sub-ensembles are used to explore different parts of the search space. Clusters are updated at regular intervals of the algorithm to allow merging of close clusters approaching the same local minima. Numerical testing demonstrates the potential of the proposed algorithm in dealing with multi-modal nonlinear parameter estimation for subsurface flow models. © 2013 Elsevier B.V.

14. A New Monotone Iteration Principle in the Theory of Nonlinear Fractional Differential Equations

Directory of Open Access Journals (Sweden)

Bapurao C. Dhage

2015-08-01

Full Text Available In this paper the author proves the algorithms for the existence as well as approximations of the solutions for the initial value problems of nonlinear fractional diﬀerential equations using the operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration principle embodied in the recent hybrid ﬁxed point theorems of Dhage (2014 in a partially ordered normed linear space and the existence and approximations of the solutions of the considered nonlinear fractional diﬀerential equations are obtained under weak mixed partial continuity and partial Lipschitz conditions. Our hypotheses and existence and approximation results are also well illustrated by some numerical examples.

15. A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

OpenAIRE

Manton, Jonathan H.

2012-01-01

The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative m...

16. An iterative method for determination of a minimal eigenvalue

DEFF Research Database (Denmark)

Kristiansen, G.K.

1968-01-01

Kristiansen (1963) has discussed the convergence of a group of iterative methods (denoted the Equipoise methods) for the solution of reactor criticality problems. The main result was that even though the methods are said to work satisfactorily in all practical cases, examples of divergence can be...

17. On iteration-separable method on the multichannel scattering theory

International Nuclear Information System (INIS)

Zubarev, A.L.; Ivlieva, I.N.; Podkopaev, A.P.

1975-01-01

The iteration-separable method for solving the equations of the Lippman-Schwinger type is suggested. Exponential convergency of the method of proven. Numerical convergency is clarified on the e + H scattering. Application of the method to the theory of multichannel scattering is formulated

18. Optimal analytic method for the nonlinear Hasegawa-Mima equation

Science.gov (United States)

Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle

2014-05-01

The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.

19. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

Directory of Open Access Journals (Sweden)

H. Montazeri

2012-01-01

Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

20. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

International Nuclear Information System (INIS)

Wu, Huapeng; Wang, Yongbo; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

2014-01-01

Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance

1. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

Energy Technology Data Exchange (ETDEWEB)

Wu, Huapeng; Wang, Yongbo, E-mail: yongbo.wang@lut.fi; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

2014-10-15

Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance.

2. Analysis of the iteratively regularized Gauss-Newton method under a heuristic rule

Science.gov (United States)

Jin, Qinian; Wang, Wei

2018-03-01

The iteratively regularized Gauss-Newton method is one of the most prominent regularization methods for solving nonlinear ill-posed inverse problems when the data is corrupted by noise. In order to produce a useful approximate solution, this iterative method should be terminated properly. The existing a priori and a posteriori stopping rules require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper we propose a heuristic selection rule for this regularization method, which requires no information on the noise level. By imposing certain conditions on the noise, we derive a posteriori error estimates on the approximate solutions under various source conditions. Furthermore, we establish a convergence result without using any source condition. Numerical results are presented to illustrate the performance of our heuristic selection rule.

3. A novel iterative energy calibration method for composite germanium detectors

International Nuclear Information System (INIS)

Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S.

2004-01-01

An automatic method for energy calibration of the observed experimental spectrum has been developed. The method presented is based on an iterative algorithm and presents an efficient way to perform energy calibrations after establishing the weights of the calibration data. An application of this novel technique for data acquired using composite detectors in an in-beam γ-ray spectroscopy experiment is presented

4. A novel iterative energy calibration method for composite germanium detectors

Energy Technology Data Exchange (ETDEWEB)

Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S. E-mail: ssg@alpha.iuc.res.in

2004-07-01

An automatic method for energy calibration of the observed experimental spectrum has been developed. The method presented is based on an iterative algorithm and presents an efficient way to perform energy calibrations after establishing the weights of the calibration data. An application of this novel technique for data acquired using composite detectors in an in-beam {gamma}-ray spectroscopy experiment is presented.

5. Milestones in the Development of Iterative Solution Methods

Czech Academy of Sciences Publication Activity Database

Axelsson, Owe

2010-01-01

Roč. 2010, - (2010), s. 1-33 ISSN 2090-0147 Institutional research plan: CEZ:AV0Z30860518 Keywords : iterative solution methods * convergence acceleration methods * linear systems Subject RIV: JC - Computer Hardware ; Software http://www.hindawi.com/journals/jece/2010/972794.html

6. COMPARISON OF HOLOGRAPHIC AND ITERATIVE METHODS FOR AMPLITUDE OBJECT RECONSTRUCTION

Directory of Open Access Journals (Sweden)

I. A. Shevkunov

2015-01-01

Full Text Available Experimental comparison of four methods for the wavefront reconstruction is presented. We considered two iterative and two holographic methods with different mathematical models and algorithms for recovery. The first two of these methods do not use a reference wave recording scheme that reduces requirements for stability of the installation. A major role in phase information reconstruction by such methods is played by a set of spatial intensity distributions, which are recorded as the recording matrix is being moved along the optical axis. The obtained data are used consistently for wavefront reconstruction using an iterative procedure. In the course of this procedure numerical distribution of the wavefront between the planes is performed. Thus, phase information of the wavefront is stored in every plane and calculated amplitude distributions are replaced for the measured ones in these planes. In the first of the compared methods, a two-dimensional Fresnel transform and iterative calculation in the object plane are used as a mathematical model. In the second approach, an angular spectrum method is used for numerical wavefront propagation, and the iterative calculation is carried out only between closely located planes of data registration. Two digital holography methods, based on the usage of the reference wave in the recording scheme and differing from each other by numerical reconstruction algorithm of digital holograms, are compared with the first two methods. The comparison proved that the iterative method based on 2D Fresnel transform gives results comparable with the result of common holographic method with the Fourier-filtering. It is shown that holographic method for reconstructing of the object complex amplitude in the process of the object amplitude reduction is the best among considered ones.

7. Reproducing Kernel Method for Solving Nonlinear Differential-Difference Equations

Directory of Open Access Journals (Sweden)

Reza Mokhtari

2012-01-01

Full Text Available On the basis of reproducing kernel Hilbert spaces theory, an iterative algorithm for solving some nonlinear differential-difference equations (NDDEs is presented. The analytical solution is shown in a series form in a reproducing kernel space, and the approximate solution , is constructed by truncating the series to terms. The convergence of , to the analytical solution is also proved. Results obtained by the proposed method imply that it can be considered as a simple and accurate method for solving such differential-difference problems.

8. Solution of problems with material nonlinearities with a coupled finite element/boundary element scheme using an iterative solver. Yucca Mountain Site Characterization Project

International Nuclear Information System (INIS)

Koteras, J.R.

1996-01-01

The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region

9. Methods of stability analysis in nonlinear mechanics

International Nuclear Information System (INIS)

Warnock, R.L.; Ruth, R.D.; Gabella, W.; Ecklund, K.

1989-01-01

We review our recent work on methods to study stability in nonlinear mechanics, especially for the problems of particle accelerators, and compare our ideals to those of other authors. We emphasize methods that (1) show promise as practical design tools, (2) are effective when the nonlinearity is large, and (3) have a strong theoretical basis. 24 refs., 2 figs., 2 tabs

10. A transport synthetic acceleration method for transport iterations

International Nuclear Information System (INIS)

1997-01-01

A family of transport synthetic acceleration (TSA) methods for iteratively solving within group scattering problems is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation, which itself is a simplified transport problem. The method for isotropic-scattering problems in X-Y geometry is described. The Fourier analysis of a model problem for equations with no spatial discretization shows that a previously proposed TSA method is unstable in two dimensions but that the modifications make it stable and rapidly convergent. The same procedure for discretized transport equations, using the step characteristic and two bilinear discontinuous methods, shows that discretization enhances TSA performance. A conjugate gradient algorithm for the low-order problem is described, a crude quadrature set for the low-order problem is proposed, and the number of low-order iterations per high-order sweep is limited to a relatively small value. These features lead to simple and efficient improvements to the method. TSA is tested on a series of problems, and a set of parameters is proposed for which the method behaves especially well. TSA achieves a substantial reduction in computational cost over source iteration, regardless of discretization parameters or material properties, and this reduction increases with the difficulty of the problem

11. Comments on new iterative methods for solving linear systems

Directory of Open Access Journals (Sweden)

Wang Ke

2017-06-01

Full Text Available Some new iterative methods were presented by Du, Zheng and Wang for solving linear systems in [3], where it is shown that the new methods, comparing to the classical Jacobi or Gauss-Seidel method, can be applied to more systems and have faster convergence. This note shows that their methods are suitable for more matrices than positive matrices which the authors suggested through further analysis and numerical examples.

12. Solution of Fractional Partial Differential Equations in Fluid Mechanics by Extension of Some Iterative Method

Directory of Open Access Journals (Sweden)

A. A. Hemeda

2013-01-01

Full Text Available An extension of the so-called new iterative method (NIM has been used to handle linear and nonlinear fractional partial differential equations. The main property of the method lies in its flexibility and ability to solve nonlinear equations accurately and conveniently. Therefore, a general framework of the NIM is presented for analytical treatment of fractional partial differential equations in fluid mechanics. The fractional derivatives are described in the Caputo sense. Numerical illustrations that include the fractional wave equation, fractional Burgers equation, fractional KdV equation, fractional Klein-Gordon equation, and fractional Boussinesq-like equation are investigated to show the pertinent features of the technique. Comparison of the results obtained by the NIM with those obtained by both Adomian decomposition method (ADM and the variational iteration method (VIM reveals that the NIM is very effective and convenient. The basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems in fractional calculus.

13. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

Science.gov (United States)

Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

2014-12-29

Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

14. Optimized iterative decoding method for TPC coded CPM

Science.gov (United States)

Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

2018-05-01

Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

15. Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems

Czech Academy of Sciences Publication Activity Database

Bru, R.; Marín, J.; Mas, J.; Tůma, Miroslav

2014-01-01

Roč. 36, č. 4 (2014), A2002-A2022 ISSN 1064-8275 Institutional support: RVO:67985807 Keywords : preconditioned iterative methods * incomplete decompositions * approximate inverses * linear least squares Subject RIV: BA - General Mathematics Impact factor: 1.854, year: 2014

16. A hyperpower iterative method for computing the generalized Drazin ...

Shwetabh Srivastava

[6, 7]. A number of direct and iterative methods for com- putation of the Drazin inverse were developed in [8–12]. Its extension to Banach algebras is known as the generalized Drazin inverse and was established in [13]. Let J denote the complex. Banach algebra with the unit 1. The generalized Drazin inverse of an element ...

17. A block-iterative nodal integral method for forced convection problems

International Nuclear Information System (INIS)

Decker, W.J.; Dorning, J.J.

1992-01-01

A new efficient iterative nodal integral method for the time-dependent two- and three-dimensional incompressible Navier-Stokes equations has been developed. Using the approach introduced by Azmy and Droning to develop nodal mehtods with high accuracy on coarse spatial grids for two-dimensional steady-state problems and extended to coarse two-dimensional space-time grids by Wilson et al. for thermal convection problems, we have developed a new iterative nodal integral method for the time-dependent Navier-Stokes equations for mechanically forced convection. A new, extremely efficient block iterative scheme is employed to invert the Jacobian within each of the Newton-Raphson iterations used to solve the final nonlinear discrete-variable equations. By taking advantage of the special structure of the Jacobian, this scheme greatly reduces memory requirements. The accuracy of the overall method is illustrated by appliying it to the time-dependent version of the classic two-dimensional driven cavity problem of computational fluid dynamics

18. An hp symplectic pseudospectral method for nonlinear optimal control

Science.gov (United States)

Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

2017-01-01

An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

19. A Block Iterative Finite Element Model for Nonlinear Leaky Aquifer Systems

Science.gov (United States)

Gambolati, Giuseppe; Teatini, Pietro

1996-01-01

A new quasi three-dimensional finite element model of groundwater flow is developed for highly compressible multiaquifer systems where aquitard permeability and elastic storage are dependent on hydraulic drawdown. The model is solved by a block iterative strategy, which is naturally suggested by the geological structure of the porous medium and can be shown to be mathematically equivalent to a block Gauss-Seidel procedure. As such it can be generalized into a block overrelaxation procedure and greatly accelerated by the use of the optimum overrelaxation factor. Results for both linear and nonlinear multiaquifer systems emphasize the excellent computational performance of the model and indicate that convergence in leaky systems can be improved up to as much as one order of magnitude.

20. Scalable Nonlinear AUC Maximization Methods

OpenAIRE

Khalid, Majdi; Ray, Indrakshi; Chitsaz, Hamidreza

2017-01-01

The area under the ROC curve (AUC) is a measure of interest in various machine learning and data mining applications. It has been widely used to evaluate classification performance on heavily imbalanced data. The kernelized AUC maximization machines have established a superior generalization ability compared to linear AUC machines because of their capability in modeling the complex nonlinear structure underlying most real world-data. However, the high training complexity renders the kernelize...

1. Comparison of some nonlinear smoothing methods

International Nuclear Information System (INIS)

Bell, P.R.; Dillon, R.S.

1977-01-01

Due to the poor quality of many nuclear medicine images, computer-driven smoothing procedures are frequently employed to enhance the diagnostic utility of these images. While linear methods were first tried, it was discovered that nonlinear techniques produced superior smoothing with little detail suppression. We have compared four methods: Gaussian smoothing (linear), two-dimensional least-squares smoothing (linear), two-dimensional least-squares bounding (nonlinear), and two-dimensional median smoothing (nonlinear). The two dimensional least-squares procedures have yielded the most satisfactorily enhanced images, with the median smoothers providing quite good images, even in the presence of widely aberrant points

2. Computation of saddle-type slow manifolds using iterative methods

DEFF Research Database (Denmark)

Kristiansen, Kristian Uldall

2015-01-01

with respect to , appropriate estimates are directly attainable using the method of this paper. The method is applied to several examples, including a model for a pair of neurons coupled by reciprocal inhibition with two slow and two fast variables, and the computation of homoclinic connections in the Fitz......This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence...

3. A new non-iterative method for fitting Lorentzian to Moessbauer spectra

International Nuclear Information System (INIS)

Mukoyama, T.; Vegh, J.

1980-01-01

A new method for fitting a Lorentzian function without an iterative procedure is presented. The method is quicker and simpler than the previously proposed method of non-iterative fitting. Comparison with the previous method and with the conventional iterative method has been made. It is shown that the present method gives satisfactory results. (orig.)

4. Efficient Four-Parametric with-and-without-Memory Iterative Methods Possessing High Efficiency Indices

Directory of Open Access Journals (Sweden)

Alicia Cordero

2018-01-01

Full Text Available We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.

5. An iterative method for selecting degenerate multiplex PCR primers.

Science.gov (United States)

Souvenir, Richard; Buhler, Jeremy; Stormo, Gary; Zhang, Weixiong

2007-01-01

Single-nucleotide polymorphism (SNP) genotyping is an important molecular genetics process, which can produce results that will be useful in the medical field. Because of inherent complexities in DNA manipulation and analysis, many different methods have been proposed for a standard assay. One of the proposed techniques for performing SNP genotyping requires amplifying regions of DNA surrounding a large number of SNP loci. To automate a portion of this particular method, it is necessary to select a set of primers for the experiment. Selecting these primers can be formulated as the Multiple Degenerate Primer Design (MDPD) problem. The Multiple, Iterative Primer Selector (MIPS) is an iterative beam-search algorithm for MDPD. Theoretical and experimental analyses show that this algorithm performs well compared with the limits of degenerate primer design. Furthermore, MIPS outperforms an existing algorithm that was designed for a related degenerate primer selection problem.

6. Iterative methods for photoacoustic tomography in attenuating acoustic media

Science.gov (United States)

Haltmeier, Markus; Kowar, Richard; Nguyen, Linh V.

2017-11-01

The development of efficient and accurate reconstruction methods is an important aspect of tomographic imaging. In this article, we address this issue for photoacoustic tomography. To this aim, we use models for acoustic wave propagation accounting for frequency dependent attenuation according to a wide class of attenuation laws that may include memory. We formulate the inverse problem of photoacoustic tomography in attenuating medium as an ill-posed operator equation in a Hilbert space framework that is tackled by iterative regularization methods. Our approach comes with a clear convergence analysis. For that purpose we derive explicit expressions for the adjoint problem that can efficiently be implemented. In contrast to time reversal, the employed adjoint wave equation is again damping and, thus has a stable solution. This stability property can be clearly seen in our numerical results. Moreover, the presented numerical results clearly demonstrate the efficiency and accuracy of the derived iterative reconstruction algorithms in various situations including the limited view case.

7. Maxwell iteration for the lattice Boltzmann method with diffusive scaling

Science.gov (United States)

Zhao, Weifeng; Yong, Wen-An

2017-03-01

In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

8. Diffeomorphic Iterative Centroid Methods for Template Estimation on Large Datasets

OpenAIRE

Cury , Claire; Glaunès , Joan Alexis; Colliot , Olivier

2014-01-01

International audience; A common approach for analysis of anatomical variability relies on the stimation of a template representative of the population. The Large Deformation Diffeomorphic Metric Mapping is an attractive framework for that purpose. However, template estimation using LDDMM is computationally expensive, which is a limitation for the study of large datasets. This paper presents an iterative method which quickly provides a centroid of the population in the shape space. This centr...

9. Variable aperture-based ptychographical iterative engine method.

Science.gov (United States)

Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

2018-02-01

A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

10. Variable aperture-based ptychographical iterative engine method

Science.gov (United States)

Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

2018-02-01

A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches.

11. A Novel Nonlinear Parameter Estimation Method of Soft Tissues

Directory of Open Access Journals (Sweden)

Qianqian Tong

2017-12-01

Full Text Available The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM. Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt (LM algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.

12. Note: interpreting iterative methods convergence with diffusion point of view

OpenAIRE

Hong, Dohy

2013-01-01

In this paper, we explain the convergence speed of different iteration schemes with the fluid diffusion view when solving a linear fixed point problem. This interpretation allows one to better understand why power iteration or Jacobi iteration may converge faster or slower than Gauss-Seidel iteration.

13. Method for conducting nonlinear electrochemical impedance spectroscopy

Science.gov (United States)

Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

2015-06-02

A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

14. Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique

Directory of Open Access Journals (Sweden)

Omar Abu Arqub

2014-01-01

Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.

15. Information operator approach and iterative regularization methods for atmospheric remote sensing

International Nuclear Information System (INIS)

Doicu, A.; Hilgers, S.; Bargen, A. von; Rozanov, A.; Eichmann, K.-U.; Savigny, C. von; Burrows, J.P.

2007-01-01

In this study, we present the main features of the information operator approach for solving linear inverse problems arising in atmospheric remote sensing. This method is superior to the stochastic version of the Tikhonov regularization (or the optimal estimation method) due to its capability to filter out the noise-dominated components of the solution generated by an inappropriate choice of the regularization parameter. We extend this approach to iterative methods for nonlinear ill-posed problems and derive the truncated versions of the Gauss-Newton and Levenberg-Marquardt methods. Although the paper mostly focuses on discussing the mathematical details of the inverse method, retrieval results have been provided, which exemplify the performances of the methods. These results correspond to the NO 2 retrieval from SCIAMACHY limb scatter measurements and have been obtained by using the retrieval processors developed at the German Aerospace Center Oberpfaffenhofen and Institute of Environmental Physics of the University of Bremen

16. Comment on “Variational Iteration Method for Fractional Calculus Using He’s Polynomials”

Directory of Open Access Journals (Sweden)

Ji-Huan He

2012-01-01

boundary value problems. This note concludes that the method is a modified variational iteration method using He’s polynomials. A standard variational iteration algorithm for fractional differential equations is suggested.

17. An Automated Baseline Correction Method Based on Iterative Morphological Operations.

Science.gov (United States)

Chen, Yunliang; Dai, Liankui

2018-05-01

Raman spectra usually suffer from baseline drift caused by fluorescence or other reasons. Therefore, baseline correction is a necessary and crucial step that must be performed before subsequent processing and analysis of Raman spectra. An automated baseline correction method based on iterative morphological operations is proposed in this work. The method can adaptively determine the structuring element first and then gradually remove the spectral peaks during iteration to get an estimated baseline. Experiments on simulated data and real-world Raman data show that the proposed method is accurate, fast, and flexible for handling different kinds of baselines in various practical situations. The comparison of the proposed method with some state-of-the-art baseline correction methods demonstrates its advantages over the existing methods in terms of accuracy, adaptability, and flexibility. Although only Raman spectra are investigated in this paper, the proposed method is hopefully to be used for the baseline correction of other analytical instrumental signals, such as IR spectra and chromatograms.

18. Three dimensional iterative beam propagation method for optical waveguide devices

Science.gov (United States)

Ma, Changbao; Van Keuren, Edward

2006-10-01

The finite difference beam propagation method (FD-BPM) is an effective model for simulating a wide range of optical waveguide structures. The classical FD-BPMs are based on the Crank-Nicholson scheme, and in tridiagonal form can be solved using the Thomas method. We present a different type of algorithm for 3-D structures. In this algorithm, the wave equation is formulated into a large sparse matrix equation which can be solved using iterative methods. The simulation window shifting scheme and threshold technique introduced in our earlier work are utilized to overcome the convergence problem of iterative methods for large sparse matrix equation and wide-angle simulations. This method enables us to develop higher-order 3-D wide-angle (WA-) BPMs based on Pade approximant operators and the multistep method, which are commonly used in WA-BPMs for 2-D structures. Simulations using the new methods will be compared to the analytical results to assure its effectiveness and applicability.

19. Robust Multiscale Iterative Solvers for Nonlinear Flows in Highly Heterogeneous Media

KAUST Repository

Efendiev, Y.; Galvis, J.; Kang, S. Ki; Lazarov, R.D.

2012-01-01

needs to be solved. This linear system is solved iteratively (called inner iterations), and since it can have large variations in the coefficients, a robust preconditioner is needed. First, we show that under some assumptions the number of outer

20. Improved fixed point iterative method for blade element momentum computations

DEFF Research Database (Denmark)

Sun, Zhenye; Shen, Wen Zhong; Chen, Jin

2017-01-01

The blade element momentum (BEM) theory is widely used in aerodynamic performance calculations and optimization applications for wind turbines. The fixed point iterative method is the most commonly utilized technique to solve the BEM equations. However, this method sometimes does not converge...... are addressed through both theoretical analysis and numerical tests. A term from the BEM equations equals to zero at a critical inflow angle is the source of the convergence problems. When the initial inflow angle is set larger than the critical inflow angle and the relaxation methodology is adopted...

1. Fisher's method of scoring in statistical image reconstruction: comparison of Jacobi and Gauss-Seidel iterative schemes.

Science.gov (United States)

Hudson, H M; Ma, J; Green, P

1994-01-01

Many algorithms for medical image reconstruction adopt versions of the expectation-maximization (EM) algorithm. In this approach, parameter estimates are obtained which maximize a complete data likelihood or penalized likelihood, in each iteration. Implicitly (and sometimes explicitly) penalized algorithms require smoothing of the current reconstruction in the image domain as part of their iteration scheme. In this paper, we discuss alternatives to EM which adapt Fisher's method of scoring (FS) and other methods for direct maximization of the incomplete data likelihood. Jacobi and Gauss-Seidel methods for non-linear optimization provide efficient algorithms applying FS in tomography. One approach uses smoothed projection data in its iterations. We investigate the convergence of Jacobi and Gauss-Seidel algorithms with clinical tomographic projection data.

2. Numerical doubly-periodic solution of the (2+1)-dimensional Boussinesq equation with initial conditions by the variational iteration method

International Nuclear Information System (INIS)

Inc, Mustafa

2007-01-01

In this Letter, a scheme is developed to study numerical doubly-periodic solutions of the (2+1)-dimensional Boussinesq equation with initial condition by the variational iteration method. As a result, the approximate and exact doubly-periodic solutions are obtained. For different modulus m, comparison between the approximate solution and the exact solution is made graphically, revealing that the variational iteration method is a powerful and effective tool to non-linear problems

3. Entropy viscosity method for nonlinear conservation laws

KAUST Repository

Guermond, Jean-Luc

2011-05-01

A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

4. Entropy viscosity method for nonlinear conservation laws

KAUST Repository

Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan

2011-01-01

A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

5. Iterative and variational homogenization methods for filled elastomers

Science.gov (United States)

Goudarzi, Taha

Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly

6. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

Directory of Open Access Journals (Sweden)

Ai-Min Yang

2014-01-01

Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

7. Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems

Czech Academy of Sciences Publication Activity Database

Morikuni, Keiichi; Hayami, K.

2015-01-01

Roč. 36, č. 1 (2015), s. 225-250 ISSN 0895-4798 Institutional support: RVO:67985807 Keywords : least squares problem * iterative methods * preconditioner * inner-outer iteration * GMRES method * stationary iterative method * rank-deficient problem Subject RIV: BA - General Mathematics Impact factor: 1.883, year: 2015

8. New nonlinear methods for linear transport calculations

International Nuclear Information System (INIS)

1993-01-01

We present a new family of methods for the numerical solution of the linear transport equation. With these methods an iteration consists of an 'S N sweep' followed by an 'S 2 -like' calculation. We show, by analysis as well as numerical results, that iterative convergence is always rapid. We show that this rapid convergence does not depend on a consistent discretization of the S 2 -like equations - they can be discretized independently from the S N equations. We show further that independent discretizations can offer significant advantages over consistent ones. In particular, we find that in a wide range of problems, an accurate discretization of the S 2 -like equation can be combined with a crude discretization of the S N equations to produce an accurate S N answer. We demonstrate this by analysis as well as numerical results. (orig.)

9. Generalized multiscale finite element methods. nonlinear elliptic equations

KAUST Repository

Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael

2013-01-01

In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.

10. Parallel computation of multigroup reactivity coefficient using iterative method

Science.gov (United States)

Susmikanti, Mike; Dewayatna, Winter

2013-09-01

One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.

11. Iterative methods for dose reduction and image enhancement in tomography

Science.gov (United States)

Miao, Jianwei; Fahimian, Benjamin Pooya

2012-09-18

A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

12. A sparsity-regularized Born iterative method for reconstruction of two-dimensional piecewise continuous inhomogeneous domains

KAUST Repository

Sandhu, Ali Imran; Desmal, Abdulla; Bagci, Hakan

2016-01-01

A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile's derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.

13. A sparsity-regularized Born iterative method for reconstruction of two-dimensional piecewise continuous inhomogeneous domains

KAUST Repository

Sandhu, Ali Imran

2016-04-10

A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile\\'s derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.

14. Statistics of electron multiplication in multiplier phototube: iterative method

International Nuclear Information System (INIS)

Grau Malonda, A.; Ortiz Sanchez, J.F.

1985-01-01

An iterative method is applied to study the variation of dynode response in the multiplier phototube. Three different situations are considered that correspond to the following ways of electronic incidence on the first dynode: incidence of exactly one electron, incidence of exactly r electrons and incidence of an average anti-r electrons. The responses are given for a number of steps between 1 and 5, and for values of the multiplication factor of 2.1, 2.5, 3 and 5. We study also the variance, the skewness and the excess of jurtosis for different multiplication factors. (author)

15. Statistics of electron multiplication in a multiplier phototube; Iterative method

International Nuclear Information System (INIS)

Ortiz, J. F.; Grau, A.

1985-01-01

In the present paper an iterative method is applied to study the variation of dynode response in the multiplier phototube. Three different situation are considered that correspond to the following ways of electronic incidence on the first dynode: incidence of exactly one electron, incidence of exactly r electrons and incidence of an average r electrons. The responses are given for a number of steps between 1 and 5, and for values of the multiplication factor of 2.1, 2.5, 3 and 5. We study also the variance, the skewness and the excess of jurtosis for different multiplication factors. (Author) 11 refs

16. Variation Iteration Method for The Approximate Solution of Nonlinear ...

African Journals Online (AJOL)

Tonistar

Nigerian Journal of Basic and Applied Science (June, 2016, 24(1): 70-75 ... 1 Department of Mathematics, University of Ilorin, P.M.B 1515, Ilorin, Nigeria ... All computational framework of the research were performed with the aid of Maple 18 ...

17. Shrinkage-thresholding enhanced born iterative method for solving 2D inverse electromagnetic scattering problem

KAUST Repository

Desmal, Abdulla; Bagci, Hakan

2014-01-01

A numerical framework that incorporates recently developed iterative shrinkage thresholding (IST) algorithms within the Born iterative method (BIM) is proposed for solving the two-dimensional inverse electromagnetic scattering problem. IST

18. AN ITERATIVE SEGMENTATION METHOD FOR REGION OF INTEREST EXTRACTION

Directory of Open Access Journals (Sweden)

Volkan CETIN

2013-01-01

Full Text Available In this paper, a method is presented for applications which include mammographic image segmentation and region of interest extraction. Segmentation is a very critical and difficult stage to accomplish in computer aided detection systems. Although the presented segmentation method is developed for mammographic images, it can be used for any medical image which resembles the same statistical characteristics with mammograms. Fundamentally, the method contains iterative automatic thresholding and masking operations which is applied to the original or enhanced mammograms. Also the effect of image enhancement to the segmentation process was observed. A version of histogram equalization was applied to the images for enhancement. Finally, the results show that enhanced version of the proposed segmentation method is preferable because of its better success rate.

19. Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations

Directory of Open Access Journals (Sweden)

Wu Guo-Cheng

2012-01-01

Full Text Available This note presents a Laplace transform approach in the determination of the Lagrange multiplier when the variational iteration method is applied to time fractional heat diffusion equation. The presented approach is more straightforward and allows some simplification in application of the variational iteration method to fractional differential equations, thus improving the convergence of the successive iterations.

20. An iterative method for the canard explosion in general planar systems

DEFF Research Database (Denmark)

Brøns, Morten

2013-01-01

The canard explosion is the change of amplitude and period of a limit cycle born in a Hopf bifurcation in a very narrow parameter interval. The phenomenon is well understood in singular perturbation problems where a small parameter controls the slow/fast dynamics. However, canard explosions are a...... on the van der Pol equation, showing that the asymptotics of the method is correct, and on a templator model for a self-replicating system....... are also observed in systems where no such parameter can obviously be identied. Here we show how the iterative method of Roussel and Fraser, devised to construct regular slow manifolds, can be used to determine a canard point in a general planar system of nonlinear ODEs. We demonstrate the method...

1. Analytical Investigation of Beam Deformation Equation using Perturbation, Homotopy Perturbation, Variational Iteration and Optimal Homotopy Asymptotic Methods

DEFF Research Database (Denmark)

Farrokhzad, F.; Mowlaee, P.; Barari, Amin

2011-01-01

The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified...... Method (OHAM). The comparisons of the results reveal that these methods are very effective, convenient and quite accurate to systems of non-linear differential equation......., and this process produces noise in the obtained answers. This paper deals with solution of second order of differential equation governing beam deformation using four analytical approximate methods, namely the Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Optimal Homotopy Asymptotic...

2. An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs

Directory of Open Access Journals (Sweden)

Eman S. Alaidarous

2013-01-01

Full Text Available In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which is different from Adomain decomposition method (Motsa and Sibanda, 2013. The reported method is very general and can be extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013. In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension Bratu and Frank-Kamenetzkii equations.

3. An efficient iterative method for the generalized Stokes problem

Energy Technology Data Exchange (ETDEWEB)

Sameh, A. [Univ. of Minnesota, Twin Cities, MN (United States); Sarin, V. [Univ. of Illinois, Urbana, IL (United States)

1996-12-31

This paper presents an efficient iterative scheme for the generalized Stokes problem, which arises frequently in the simulation of time-dependent Navier-Stokes equations for incompressible fluid flow. The general form of the linear system is where A = {alpha}M + vT is an n x n symmetric positive definite matrix, in which M is the mass matrix, T is the discrete Laplace operator, {alpha} and {nu} are positive constants proportional to the inverses of the time-step {Delta}t and the Reynolds number Re respectively, and B is the discrete gradient operator of size n x k (k < n). Even though the matrix A is symmetric and positive definite, the system is indefinite due to the incompressibility constraint (B{sup T}u = 0). This causes difficulties both for iterative methods and commonly used preconditioners. Moreover, depending on the ratio {alpha}/{nu}, A behaves like the mass matrix M at one extreme and the Laplace operator T at the other, thus complicating the issue of preconditioning.

4. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

International Nuclear Information System (INIS)

Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

2013-01-01

Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss–Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates

5. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

KAUST Repository

Elsheikh, Ahmed H.

2013-06-01

Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss-Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier Inc.

6. A family of conjugate gradient methods for large-scale nonlinear equations

Directory of Open Access Journals (Sweden)

Dexiang Feng

2017-09-01

Full Text Available Abstract In this paper, we present a family of conjugate gradient projection methods for solving large-scale nonlinear equations. At each iteration, it needs low storage and the subproblem can be easily solved. Compared with the existing solution methods for solving the problem, its global convergence is established without the restriction of the Lipschitz continuity on the underlying mapping. Preliminary numerical results are reported to show the efficiency of the proposed method.

7. A family of conjugate gradient methods for large-scale nonlinear equations.

Science.gov (United States)

Feng, Dexiang; Sun, Min; Wang, Xueyong

2017-01-01

In this paper, we present a family of conjugate gradient projection methods for solving large-scale nonlinear equations. At each iteration, it needs low storage and the subproblem can be easily solved. Compared with the existing solution methods for solving the problem, its global convergence is established without the restriction of the Lipschitz continuity on the underlying mapping. Preliminary numerical results are reported to show the efficiency of the proposed method.

8. Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems

International Nuclear Information System (INIS)

Anistratov, Dmitriy Y.

2011-01-01

The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)

9. Iterative reconstruction methods for Thermo-acoustic Tomography

International Nuclear Information System (INIS)

Marinesque, Sebastien

2012-01-01

We define, study and implement various iterative reconstruction methods for Thermo-acoustic Tomography (TAT): the Back and Forth Nudging (BFN), easy to implement and to use, a variational technique (VT) and the Back and Forth SEEK (BF-SEEK), more sophisticated, and a coupling method between Kalman filter (KF) and Time Reversal (TR). A unified formulation is explained for the sequential techniques aforementioned that defines a new class of inverse problem methods: the Back and Forth Filters (BFF). In addition to existence and uniqueness (particularly for backward solutions), we study many frameworks that ensure and characterize the convergence of the algorithms. Thus we give a general theoretical framework for which the BFN is a well-posed problem. Then, in application to TAT, existence and uniqueness of its solutions and geometrical convergence of the algorithm are proved, and an explicit convergence rate and a description of its numerical behaviour are given. Next, theoretical and numerical studies of more general and realistic framework are led, namely different objects, speeds (with or without trapping), various sensor configurations and samplings, attenuated equations or external sources. Then optimal control and best estimate tools are used to characterize the BFN convergence and converging feedbacks for BFF, under observability assumptions. Finally, we compare the most flexible and efficient current techniques (TR and an iterative variant) with our various BFF and the VT in several experiments. Thus, robust, with different possible complexities and flexible, the methods that we propose are very interesting reconstruction techniques, particularly in TAT and when observations are degraded. (author) [fr

10. Policy Iteration for $H_\\infty$ Optimal Control of Polynomial Nonlinear Systems via Sum of Squares Programming.

Science.gov (United States)

Zhu, Yuanheng; Zhao, Dongbin; Yang, Xiong; Zhang, Qichao

2018-02-01

Sum of squares (SOS) polynomials have provided a computationally tractable way to deal with inequality constraints appearing in many control problems. It can also act as an approximator in the framework of adaptive dynamic programming. In this paper, an approximate solution to the optimal control of polynomial nonlinear systems is proposed. Under a given attenuation coefficient, the Hamilton-Jacobi-Isaacs equation is relaxed to an optimization problem with a set of inequalities. After applying the policy iteration technique and constraining inequalities to SOS, the optimization problem is divided into a sequence of feasible semidefinite programming problems. With the converged solution, the attenuation coefficient is further minimized to a lower value. After iterations, approximate solutions to the smallest -gain and the associated optimal controller are obtained. Four examples are employed to verify the effectiveness of the proposed algorithm.

11. TENSOLVE: A software package for solving systems of nonlinear equations and nonlinear least squares problems using tensor methods

Energy Technology Data Exchange (ETDEWEB)

Bouaricha, A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Schnabel, R.B. [Colorado Univ., Boulder, CO (United States). Dept. of Computer Science

1996-12-31

This paper describes a modular software package for solving systems of nonlinear equations and nonlinear least squares problems, using a new class of methods called tensor methods. It is intended for small to medium-sized problems, say with up to 100 equations and unknowns, in cases where it is reasonable to calculate the Jacobian matrix or approximate it by finite differences at each iteration. The software allows the user to select between a tensor method and a standard method based upon a linear model. The tensor method models F({ital x}) by a quadratic model, where the second-order term is chosen so that the model is hardly more expensive to form, store, or solve than the standard linear model. Moreover, the software provides two different global strategies, a line search and a two- dimensional trust region approach. Test results indicate that, in general, tensor methods are significantly more efficient and robust than standard methods on small and medium-sized problems in iterations and function evaluations.

12. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

KAUST Repository

Desmal, Abdulla; Bagci, Hakan

2015-01-01

to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded

13. Iterative Reconstruction Methods for Inverse Problems in Tomography with Hybrid Data

DEFF Research Database (Denmark)

Sherina, Ekaterina

. The goal of these modalities is to quantify physical parameters of materials or tissues inside an object from given interior data, which is measured everywhere inside the object. The advantage of these modalities is that large variations in physical parameters can be resolved and therefore, they have...... data is precisely the reason why reconstructions with a high contrast and a high resolution can be expected. The main contributions of this thesis consist in formulating the underlying mathematical problems with interior data as nonlinear operator equations, theoretically analysing them within...... iteration and the Levenberg-Marquardt method are employed for solving the problems. The first problem considered in this thesis is a problem of conductivity estimation from interior measurements of the power density, known as Acousto-Electrical Tomography. A special case of limited angle tomography...

14. Iterative methods for compressible Navier-Stokes and Euler equations

Energy Technology Data Exchange (ETDEWEB)

Tang, W.P.; Forsyth, P.A.

1996-12-31

This workshop will focus on methods for solution of compressible Navier-Stokes and Euler equations. In particular, attention will be focused on the interaction between the methods used to solve the non-linear algebraic equations (e.g. full Newton or first order Jacobian) and the resulting large sparse systems. Various types of block and incomplete LU factorization will be discussed, as well as stability issues, and the use of Newton-Krylov methods. These techniques will be demonstrated on a variety of model transonic and supersonic airfoil problems. Applications to industrial CFD problems will also be presented. Experience with the use of C++ for solution of large scale problems will also be discussed. The format for this workshop will be four fifteen minute talks, followed by a roundtable discussion.

15. Decentralized Gauss-Newton method for nonlinear least squares on wide area network

Science.gov (United States)

Liu, Lanchao; Ling, Qing; Han, Zhu

2014-10-01

This paper presents a decentralized approach of Gauss-Newton (GN) method for nonlinear least squares (NLLS) on wide area network (WAN). In a multi-agent system, a centralized GN for NLLS requires the global GN Hessian matrix available at a central computing unit, which may incur large communication overhead. In the proposed decentralized alternative, each agent only needs local GN Hessian matrix to update iterates with the cooperation of neighbors. The detail formulation of decentralized NLLS on WAN is given, and the iteration at each agent is defined. The convergence property of the decentralized approach is analyzed, and numerical results validate the effectiveness of the proposed algorithm.

16. Krylov iterative methods and synthetic acceleration for transport in binary statistical media

International Nuclear Information System (INIS)

Fichtl, Erin D.; Warsa, James S.; Prinja, Anil K.

2009-01-01

In particle transport applications there are numerous physical constructs in which heterogeneities are randomly distributed. The quantity of interest in these problems is the ensemble average of the flux, or the average of the flux over all possible material 'realizations.' The Levermore-Pomraning closure assumes Markovian mixing statistics and allows a closed, coupled system of equations to be written for the ensemble averages of the flux in each material. Generally, binary statistical mixtures are considered in which there are two (homogeneous) materials and corresponding coupled equations. The solution process is iterative, but convergence may be slow as either or both materials approach the diffusion and/or atomic mix limits. A three-part acceleration scheme is devised to expedite convergence, particularly in the atomic mix-diffusion limit where computation is extremely slow. The iteration is first divided into a series of 'inner' material and source iterations to attenuate the diffusion and atomic mix error modes separately. Secondly, atomic mix synthetic acceleration is applied to the inner material iteration and S 2 synthetic acceleration to the inner source iterations to offset the cost of doing several inner iterations per outer iteration. Finally, a Krylov iterative solver is wrapped around each iteration, inner and outer, to further expedite convergence. A spectral analysis is conducted and iteration counts and computing cost for the new two-step scheme are compared against those for a simple one-step iteration, to which a Krylov iterative method can also be applied.

17. An open-closed-loop iterative learning control approach for nonlinear switched systems with application to freeway traffic control

Science.gov (United States)

Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin

2017-10-01

For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.

18. Active-Set Reduced-Space Methods with Nonlinear Elimination for Two-Phase Flow Problems in Porous Media

KAUST Repository

Yang, Haijian

2016-07-26

Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.

19. Active-Set Reduced-Space Methods with Nonlinear Elimination for Two-Phase Flow Problems in Porous Media

KAUST Repository

Yang, Haijian; Yang, Chao; Sun, Shuyu

2016-01-01

Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.

20. The nonlinear response of the complex structural system in nuclear reactors using dynamic substructure method

International Nuclear Information System (INIS)

Zheng, Z.C.; Xie, G.; Du, Q.H.

1987-01-01

Because of the existence of nonlinear characteristics in practical engineering structures, such as large steam turbine-foundation system and offshore platform, it is necessary to predict nonlinear dynamic responses for these very large and complex structural systems subjected extreme load. Due to the limited storage and high executing cost of computers, there are still some difficulties in the analysis for such systems although the traditional finite element methods provide basic available methods to the problems. The dynamic substructure methods, which were developed as a branch of general structural dynamics in the past more than 20 years and have been widely used from aircraft, space vehicles to other mechanical and civil engineering structures, present a powerful method to the analysis of very large structural systems. The key to success is due to the considerable reduction in the number of degrees of freedom while not changing the physical essence of the problems investigated. The dynamic substructure method has been extended to nonlinear system and applicated to the analysis of nonlinear dynamic response of an offshore platform by Z.C. Zheng, et al. (1983, 1985a, b, c). In this paper, the method is presented to analyze dynamic responses of the systems contained intrinsic nonlinearities and with nonlinear attachments and nonlinear supports of nuclear structural systems. The efficiency of the method becomes more clear for nonlinear dynamic problems due to the adoption of iterating processes. For simplicity, the analysis procedure is demonstrated briefly. The generalized substructure method of nonlinear systems is similar to linear systems, only the nonlinear terms are treated as pseudo-forces. Interface coordinates are classified into two categories, the connecting interface coordinates which connect with each other directly in the global system and the linking interface coordinates which link to each other through attachments. (orig./GL)

1. A different approach to estimate nonlinear regression model using numerical methods

Science.gov (United States)

Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

2017-11-01

This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].

2. A fast iterative method for computing particle beams penetrating matter

International Nuclear Information System (INIS)

Boergers, C.

1997-01-01

Beams of microscopic particles penetrating matter are important in several fields. The application motivating our parameter choices in this paper is electron beam cancer therapy. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of this problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation (six if time independence is the only dimension-reducing assumption). If grid-based methods are to be practical at all, it is therefore necessary to develop fast solvers for the discretized problems. This is the subject of the present paper. For two-dimensional, mono-energetic, linear particle beam problems, we describe an iterative domain decomposition algorithm based on overlapping decompositions of the set of particle directions and computationally demonstrate its rapid, grid independent convergence. There appears to be no fundamental obstacle to generalizing the method to three-dimensional, energy dependent problems. 34 refs., 15 figs., 6 tabs

3. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems

Science.gov (United States)

Wang, Xue-Zhong; Huang, Ting-Zhu; Fu, Ying-Ding

2007-09-01

In this paper, we present some comparison theorems on preconditioned iterative method for solving Z-matrices linear systems, Comparison results show that the rate of convergence of the Gauss-Seidel-type method is faster than the rate of convergence of the SOR-type iterative method.

4. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

DEFF Research Database (Denmark)

Hoffmann, Kristoffer; Knudsen, Kim

2014-01-01

For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...

5. A combined modification of Newtons method for systems of nonlinear equations

Energy Technology Data Exchange (ETDEWEB)

Monteiro, M.T.; Fernandes, E.M.G.P. [Universidade do Minho, Braga (Portugal)

1996-12-31

To improve the performance of Newtons method for the solution of systems of nonlinear equations a modification to the Newton iteration is implemented. The modified step is taken as a linear combination of Newton step and steepest descent directions. In the paper we describe how the coefficients of the combination can be generated to make effective use of the two component steps. Numerical results that show the usefulness of the combined modification are presented.

6. Iterative methods for symmetric ill-conditioned Toeplitz matrices

Energy Technology Data Exchange (ETDEWEB)

Huckle, T. [Institut fuer Informatik, Muenchen (Germany)

1996-12-31

We consider ill-conditioned symmetric positive definite, Toeplitz systems T{sub n}x = b. If we want to solve such a system iteratively with the conjugate gradient method, we can use band-Toeplitz-preconditioners or Sine-Transform-peconditioners M = S{sub n}{Lambda}S{sub n}, S{sub n} the Sine-Transform-matrix and {Lambda} a diagonal matrix. A Toeplitz matrix T{sub n} = (t{sub i-j)}{sub i}{sup n},{sub j=1} is often related to an underlying function f defined by the coefficients t{sub j}, j = -{infinity},..,-1,0, 1,.., {infinity}. There are four cases, for which we want to determine a preconditioner M: - T{sub n} is related to an underlying function which is given explicitly; - T{sub n} is related to an underlying function that is given by its Fourier coefficients; - T{sub n} is related to an underlying function that is unknown; - T{sub n} is not related to an underlying function. Especially for the first three cases we show how positive definite and effective preconditioners based on the Sine-Transform can be defined for general nonnegative underlying function f. To define M, we evaluate or estimate the values of f at certain positions, and build a Sine-transform matrix with these values as eigenvalues. Then, the spectrum of the preconditioned system is bounded from above and away from zero.

7. A Versatile Nonlinear Method for Predictive Modeling

Science.gov (United States)

Liou, Meng-Sing; Yao, Weigang

2015-01-01

As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

8. Nonlinear Conservation Laws and Finite Volume Methods

Science.gov (United States)

Leveque, Randall J.

Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

9. Accuracy improvement of a hybrid robot for ITER application using POE modeling method

International Nuclear Information System (INIS)

Wang, Yongbo; Wu, Huapeng; Handroos, Heikki

2013-01-01

Highlights: ► The product of exponential (POE) formula for error modeling of hybrid robot. ► Differential Evolution (DE) algorithm for parameter identification. ► Simulation results are given to verify the effectiveness of the method. -- Abstract: This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial–parallel hybrid robot to improve its accuracy. The robot was designed to perform the assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor (ITER). By employing the product of exponentials (POEs) formula, we extended the POE-based calibration method from serial robot to redundant serial–parallel hybrid robot. The proposed method combines the forward and inverse kinematics together to formulate a hybrid calibration method for serial–parallel hybrid robot. Because of the high nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional iterative linear least-square algorithms cannot be used to identify the parameter errors. This paper employs a global optimization algorithm, Differential Evolution (DE), to identify parameter errors by solving the inverse kinematics of the hybrid robot. Furthermore, after the parameter errors were identified, the DE algorithm was adopted to numerically solve the forward kinematics of the hybrid robot to demonstrate the accuracy improvement of the end-effector. Numerical simulations were carried out by generating random parameter errors at the allowed tolerance limit and generating a number of configuration poses in the robot workspace. Simulation of the real experimental conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given external measurement device

10. Accuracy improvement of a hybrid robot for ITER application using POE modeling method

Energy Technology Data Exchange (ETDEWEB)

Wang, Yongbo, E-mail: yongbo.wang@hotmail.com [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland)

2013-10-15

Highlights: ► The product of exponential (POE) formula for error modeling of hybrid robot. ► Differential Evolution (DE) algorithm for parameter identification. ► Simulation results are given to verify the effectiveness of the method. -- Abstract: This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial–parallel hybrid robot to improve its accuracy. The robot was designed to perform the assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor (ITER). By employing the product of exponentials (POEs) formula, we extended the POE-based calibration method from serial robot to redundant serial–parallel hybrid robot. The proposed method combines the forward and inverse kinematics together to formulate a hybrid calibration method for serial–parallel hybrid robot. Because of the high nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional iterative linear least-square algorithms cannot be used to identify the parameter errors. This paper employs a global optimization algorithm, Differential Evolution (DE), to identify parameter errors by solving the inverse kinematics of the hybrid robot. Furthermore, after the parameter errors were identified, the DE algorithm was adopted to numerically solve the forward kinematics of the hybrid robot to demonstrate the accuracy improvement of the end-effector. Numerical simulations were carried out by generating random parameter errors at the allowed tolerance limit and generating a number of configuration poses in the robot workspace. Simulation of the real experimental conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given external measurement device.

11. A New General Iterative Method for a Finite Family of Nonexpansive Mappings in Hilbert Spaces

Directory of Open Access Journals (Sweden)

Singthong Urailuk

2010-01-01

Full Text Available We introduce a new general iterative method by using the -mapping for finding a common fixed point of a finite family of nonexpansive mappings in the framework of Hilbert spaces. A strong convergence theorem of the purposed iterative method is established under some certain control conditions. Our results improve and extend the results announced by many others.

12. More on Generalizations and Modifications of Iterative Methods for Solving Large Sparse Indefinite Linear Systems

Directory of Open Access Journals (Sweden)

Jen-Yuan Chen

2014-01-01

Full Text Available Continuing from the works of Li et al. (2014, Li (2007, and Kincaid et al. (2000, we present more generalizations and modifications of iterative methods for solving large sparse symmetric and nonsymmetric indefinite systems of linear equations. We discuss a variety of iterative methods such as GMRES, MGMRES, MINRES, LQ-MINRES, QR MINRES, MMINRES, MGRES, and others.

13. A connection between the asymptotic iteration method and the continued fractions formalism

International Nuclear Information System (INIS)

Matamala, A.R.; Gutierrez, F.A.; Diaz-Valdes, J.

2007-01-01

In this work, we show that there is a connection between the asymptotic iteration method (a method to solve second order linear ordinary differential equations) and the older method of continued fractions to solve differential equations

14. Evaluation of Continuation Desire as an Iterative Game Development Method

DEFF Research Database (Denmark)

Schoenau-Fog, Henrik; Birke, Alexander; Reng, Lars

2012-01-01

When developing a game it is always valuable to use feedback from players in each iteration, in order to plan the design of the next iteration. However, it can be challenging to devise a simple approach to acquiring information about a player's engagement while playing. In this paper we will thus...... concerning a crowd game which is controlled by smartphones and is intended to be played by audiences in cinemas and at venues with large screens. The case study demonstrates how the approach can be used to help improve the desire to continue when developing a game....

15. Picard iterations for nonlinear Lipschitz strong pseudo-contractions in uniformly smooth Banach spaces

International Nuclear Information System (INIS)

Chidume, C.E.

1995-06-01

Suppose E is a real uniformly smooth Banach space and K is a nonempty closed convex and bounded subset of E, T:K → K is a Lipschitz pseudo-contraction. It is proved that the Picard iterates of a suitably defined operator converges strongly to the unique fixed point of T. Furthermore, this result also holds for the slightly larger class of Lipschitz strong hemi-contractions. Related results deal with strong convergence of the Picard iterates to the unique solution of operator equations involving Lipschitz strongly accretive maps. Apart from establishing strong convergence, our theorems give existence, uniqueness and convergence-rate which is at least as fast as a geometric progression. (author). 51 refs

16. Efficacy of variational iteration method for chaotic Genesio system - Classical and multistage approach

International Nuclear Information System (INIS)

Goh, S.M.; Noorani, M.S.M.; Hashim, I.

2009-01-01

This is a case study of solving the Genesio system by using the classical variational iteration method (VIM) and a newly modified version called the multistage VIM (MVIM). VIM is an analytical technique that grants us a continuous representation of the approximate solution, which allows better information of the solution over the time interval. Unlike its counterpart, numerical techniques, such as the Runge-Kutta method, provide solutions only at two ends of the time interval (with condition that the selected time interval is adequately small for convergence). Furthermore, it offers approximate solutions in a discretized form, making it complicated in achieving a continuous representation. The explicit solutions through VIM and MVIM are compared with the numerical analysis of the fourth-order Runge-Kutta method (RK4). VIM had been successfully applied to linear and nonlinear systems of non-chaotic in nature and this had been testified by numerous scientists lately. Our intention is to determine whether VIM is also a feasible method in solving a chaotic system like Genesio. At the same time, MVIM will be applied to gauge its accuracy compared to VIM and RK4. Since, for most situations, the validity domain of the solutions is often an issue, we will consider a reasonably large time frame in our work.

17. Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method

International Nuclear Information System (INIS)

Belendez, A.; Hernandez, A.; Belendez, T.; Neipp, C.; Marquez, A.

2008-01-01

He's homotopy perturbation method is used to calculate higher-order approximate periodic solutions of a nonlinear oscillator with discontinuity for which the elastic force term is proportional to sgn(x). We find He's homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate period of less than 1.56% for all values of oscillation amplitude, while this relative error is 0.30% for the second iteration and as low as 0.057% when the third-order approximation is considered. Comparison of the result obtained using this method with those obtained by different harmonic balance methods reveals that He's homotopy perturbation method is very effective and convenient

18. Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations

Science.gov (United States)

2016-10-01

The Newton method has some shortcomings which includes computation of the Jacobian matrix which may be difficult or even impossible to compute and solving the Newton system in every iteration. Also, the common setback with some quasi-Newton methods is that they need to compute and store an n × n matrix at each iteration, this is computationally costly for large scale problems. To overcome such drawbacks, an improved Method for solving systems of nonlinear equations via PSB (Powell-Symmetric-Broyden) update is proposed. In the proposed method, the approximate Jacobian inverse Hk of PSB is updated and its efficiency has improved thereby require low memory storage, hence the main aim of this paper. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.

19. Convergence of hybrid methods for solving non-linear partial ...

African Journals Online (AJOL)

This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

20. Bifurcation methods of dynamical systems for handling nonlinear ...

physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.

1. The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces

Directory of Open Access Journals (Sweden)

Rabian Wangkeeree

2012-01-01

Full Text Available We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature.

2. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

International Nuclear Information System (INIS)

McCormick, Stephen F.

2016-01-01

This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

3. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

Energy Technology Data Exchange (ETDEWEB)

McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

2016-03-25

This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

4. Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems

Energy Technology Data Exchange (ETDEWEB)

Carey, G.F.; Young, D.M.

1993-12-31

The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.

5. Analysis of efficient preconditioned defect correction methods for nonlinear water waves

DEFF Research Database (Denmark)

Engsig-Karup, Allan Peter

2014-01-01

Robust computational procedures for the solution of non-hydrostatic, free surface, irrotational and inviscid free-surface water waves in three space dimensions can be based on iterative preconditioned defect correction (PDC) methods. Such methods can be made efficient and scalable to enable...... prediction of free-surface wave transformation and accurate wave kinematics in both deep and shallow waters in large marine areas or for predicting the outcome of experiments in large numerical wave tanks. We revisit the classical governing equations are fully nonlinear and dispersive potential flow...... equations. We present new detailed fundamental analysis using finite-amplitude wave solutions for iterative solvers. We demonstrate that the PDC method in combination with a high-order discretization method enables efficient and scalable solution of the linear system of equations arising in potential flow...

6. Block Iterative Methods for Elliptic and Parabolic Difference Equations.

Science.gov (United States)

1981-09-01

S V PARTER, M STEUERWALT N0OO14-7A-C-0341 UNCLASSIFIED CSTR -447 NL ENN.EEEEEN LLf SCOMPUTER SCIENCES c~DEPARTMENT SUniversity of Wisconsin- SMadison...suggests that iterative algorithms that solve for several points at once will converge more rapidly than point algorithms . The Gaussian elimination... algorithm is seen in this light to converge in one step. Frankel [14], Young [34], Arms, Gates, and Zondek [1], and Varga [32], using the algebraic structure

7. Method for nonlinear exponential regression analysis

Science.gov (United States)

Junkin, B. G.

1972-01-01

Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

8. Pseudoinverse preconditioners and iterative methods for large dense linear least-squares problems

Directory of Open Access Journals (Sweden)

Oskar Cahueñas

2013-05-01

Full Text Available We address the issue of approximating the pseudoinverse of the coefficient matrix for dynamically building preconditioning strategies for the numerical solution of large dense linear least-squares problems. The new preconditioning strategies are embedded into simple and well-known iterative schemes that avoid the use of the, usually ill-conditioned, normal equations. We analyze a scheme to approximate the pseudoinverse, based on Schulz iterative method, and also different iterative schemes, based on extensions of Richardson's method, and the conjugate gradient method, that are suitable for preconditioning strategies. We present preliminary numerical results to illustrate the advantages of the proposed schemes.

9. Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method

Directory of Open Access Journals (Sweden)

Fan Yuxin

2014-12-01

Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.

10. Mixed price and load forecasting of electricity markets by a new iterative prediction method

International Nuclear Information System (INIS)

2009-01-01

Load and price forecasting are the two key issues for the participants of current electricity markets. However, load and price of electricity markets have complex characteristics such as nonlinearity, non-stationarity and multiple seasonality, to name a few (usually, more volatility is seen in the behavior of electricity price signal). For these reasons, much research has been devoted to load and price forecast, especially in the recent years. However, previous research works in the area separately predict load and price signals. In this paper, a mixed model for load and price forecasting is presented, which can consider interactions of these two forecast processes. The mixed model is based on an iterative neural network based prediction technique. It is shown that the proposed model can present lower forecast errors for both load and price compared with the previous separate frameworks. Another advantage of the mixed model is that all required forecast features (from load or price) are predicted within the model without assuming known values for these features. So, the proposed model can better be adapted to real conditions of an electricity market. The forecast accuracy of the proposed mixed method is evaluated by means of real data from the New York and Spanish electricity markets. The method is also compared with some of the most recent load and price forecast techniques. (author)

11. Iterative methods for tomography problems: implementation to a cross-well tomography problem

Science.gov (United States)

Karadeniz, M. F.; Weber, G. W.

2018-01-01

The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz’s algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.

12. Non-iterative method to calculate the periodical distribution of temperature in reactors with thermal regeneration

International Nuclear Information System (INIS)

Sanchez de Alsina, O.L.; Scaricabarozzi, R.A.

1982-01-01

A matrix non-iterative method to calculate the periodical distribution in reactors with thermal regeneration is presented. In case of exothermic reaction, a source term will be included. A computer code was developed to calculate the final temperature distribution in solids and in the outlet temperatures of the gases. The results obtained from ethane oxidation calculation in air, using the Dietrich kinetic data are presented. This method is more advantageous than iterative methods. (E.G.) [pt

13. An iterative method for near-field Fresnel region polychromatic phase contrast imaging

Science.gov (United States)

Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.

2017-07-01

We present an iterative method for polychromatic phase contrast imaging that is suitable for broadband illumination and which allows for the quantitative determination of the thickness of an object given the refractive index of the sample material. Experimental and simulation results suggest the iterative method provides comparable image quality and quantitative object thickness determination when compared to the analytical polychromatic transport of intensity and contrast transfer function methods. The ability of the iterative method to work over a wider range of experimental conditions means the iterative method is a suitable candidate for use with polychromatic illumination and may deliver more utility for laboratory-based x-ray sources, which typically have a broad spectrum.

14. Homogenized description and retrieval method of nonlinear metasurfaces

Science.gov (United States)

Liu, Xiaojun; Larouche, Stéphane; Smith, David R.

2018-03-01

A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry

15. Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code

International Nuclear Information System (INIS)

Luk'yanov, K.V.

2008-01-01

Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented

16. An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

Science.gov (United States)

Kassa, Semu Mitiku; Tsegay, Teklay Hailay

2017-08-01

Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.

17. Power system state estimation using an iteratively reweighted least squares method for sequential L{sub 1}-regression

Energy Technology Data Exchange (ETDEWEB)

Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

2006-02-15

This paper presents an implementation of the least absolute value (LAV) power system state estimator based on obtaining a sequence of solutions to the L{sub 1}-regression problem using an iteratively reweighted least squares (IRLS{sub L1}) method. The proposed implementation avoids reformulating the regression problem into standard linear programming (LP) form and consequently does not require the use of common methods of LP, such as those based on the simplex method or interior-point methods. It is shown that the IRLS{sub L1} method is equivalent to solving a sequence of linear weighted least squares (LS) problems. Thus, its implementation presents little additional effort since the sparse LS solver is common to existing LS state estimators. Studies on the termination criteria of the IRLS{sub L1} method have been carried out to determine a procedure for which the proposed estimator is more computationally efficient than a previously proposed non-linear iteratively reweighted least squares (IRLS) estimator. Indeed, it is revealed that the proposed method is a generalization of the previously reported IRLS estimator, but is based on more rigorous theory. (author)

18. Two-Level Iteration Penalty Methods for the Navier-Stokes Equations with Friction Boundary Conditions

Directory of Open Access Journals (Sweden)

Yuan Li

2013-01-01

Full Text Available This paper presents two-level iteration penalty finite element methods to approximate the solution of the Navier-Stokes equations with friction boundary conditions. The basic idea is to solve the Navier-Stokes type variational inequality problem on a coarse mesh with mesh size H in combining with solving a Stokes, Oseen, or linearized Navier-Stokes type variational inequality problem for Stokes, Oseen, or Newton iteration on a fine mesh with mesh size h. The error estimate obtained in this paper shows that if H, h, and ε can be chosen appropriately, then these two-level iteration penalty methods are of the same convergence orders as the usual one-level iteration penalty method.

19. Auxiliary equation method for solving nonlinear partial differential equations

International Nuclear Information System (INIS)

Sirendaoreji,; Jiong, Sun

2003-01-01

By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

20. Iterative methods for overlap and twisted mass fermions

International Nuclear Information System (INIS)

Chiarappa, T.; Jansen, K.; Shindler, A.; Wetzorke, I.; Scorzato, L.; Urbach, C.; Wenger, U.

2006-09-01

We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

1. Iterative methods for overlap and twisted mass fermions

Energy Technology Data Exchange (ETDEWEB)

Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik

2006-09-15

We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

2. Iterative methods for distributed parameter estimation in parabolic PDE

Energy Technology Data Exchange (ETDEWEB)

Vogel, C.R. [Montana State Univ., Bozeman, MT (United States); Wade, J.G. [Bowling Green State Univ., OH (United States)

1994-12-31

The goal of the work presented is the development of effective iterative techniques for large-scale inverse or parameter estimation problems. In this extended abstract, a detailed description of the mathematical framework in which the authors view these problem is presented, followed by an outline of the ideas and algorithms developed. Distributed parameter estimation problems often arise in mathematical modeling with partial differential equations. They can be viewed as inverse problems; the forward problem is that of using the fully specified model to predict the behavior of the system. The inverse or parameter estimation problem is: given the form of the model and some observed data from the system being modeled, determine the unknown parameters of the model. These problems are of great practical and mathematical interest, and the development of efficient computational algorithms is an active area of study.

3. Design and fabrication methods of FW/blanket and vessel for ITER-FEAT

Energy Technology Data Exchange (ETDEWEB)

Ioki, K. E-mail: iokik@itereu.de; Barabash, V.; Cardella, A.; Elio, F.; Kalinin, G.; Miki, N.; Onozuka, M.; Osaki, T.; Rozov, V.; Sannazzaro, G.; Utin, Y.; Yamada, M.; Yoshimura, H

2001-11-01

Design has progressed on the vacuum vessel and FW/blanket for ITER-FEAT. The basic functions and structures are the same as for the 1998 ITER design. Detailed blanket module designs of the radially cooled shield block with flat separable FW panels have been developed. The ITER blanket R and D program covers different materials and fabrication methods in order make a final selection based on the results. Separate manifolds have been designed and analysed for the blanket cooling. The vessel design with flexible support housings has been improved to minimise the number of continuous poloidal ribs. Most of the R and D performed so far during EDA are still applicable.

4. Design and fabrication methods of FW/blanket and vessel for ITER-FEAT

International Nuclear Information System (INIS)

Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Kalinin, G.; Miki, N.; Onozuka, M.; Osaki, T.; Rozov, V.; Sannazzaro, G.; Utin, Y.; Yamada, M.; Yoshimura, H.

2001-01-01

Design has progressed on the vacuum vessel and FW/blanket for ITER-FEAT. The basic functions and structures are the same as for the 1998 ITER design. Detailed blanket module designs of the radially cooled shield block with flat separable FW panels have been developed. The ITER blanket R and D program covers different materials and fabrication methods in order make a final selection based on the results. Separate manifolds have been designed and analysed for the blanket cooling. The vessel design with flexible support housings has been improved to minimise the number of continuous poloidal ribs. Most of the R and D performed so far during EDA are still applicable

5. A MODIFIED DECOMPOSITION METHOD FOR SOLVING NONLINEAR PROBLEM OF FLOW IN CONVERGING- DIVERGING CHANNEL

Directory of Open Access Journals (Sweden)

MOHAMED KEZZAR

2015-08-01

Full Text Available In this research, an efficient technique of computation considered as a modified decomposition method was proposed and then successfully applied for solving the nonlinear problem of the two dimensional flow of an incompressible viscous fluid between nonparallel plane walls. In fact this method gives the nonlinear term Nu and the solution of the studied problem as a power series. The proposed iterative procedure gives on the one hand a computationally efficient formulation with an acceleration of convergence rate and on the other hand finds the solution without any discretization, linearization or restrictive assumptions. The comparison of our results with those of numerical treatment and other earlier works shows clearly the higher accuracy and efficiency of the used Modified Decomposition Method.

6. Iterative resonance self-shielding methods using resonance integral table in heterogeneous transport lattice calculations

International Nuclear Information System (INIS)

Hong, Ser Gi; Kim, Kang-Seog

2011-01-01

This paper describes the iteration methods using resonance integral tables to estimate the effective resonance cross sections in heterogeneous transport lattice calculations. Basically, these methods have been devised to reduce an effort to convert resonance integral table into subgroup data to be used in the physical subgroup method. Since these methods do not use subgroup data but only use resonance integral tables directly, these methods do not include an error in converting resonance integral into subgroup data. The effective resonance cross sections are estimated iteratively for each resonance nuclide through the heterogeneous fixed source calculations for the whole problem domain to obtain the background cross sections. These methods have been implemented in the transport lattice code KARMA which uses the method of characteristics (MOC) to solve the transport equation. The computational results show that these iteration methods are quite promising in the practical transport lattice calculations.

7. Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.

Science.gov (United States)

Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.

1997-08-01

A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.

8. A method for nonlinear exponential regression analysis

Science.gov (United States)

Junkin, B. G.

1971-01-01

A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

9. Robust methods and asymptotic theory in nonlinear econometrics

CERN Document Server

Bierens, Herman J

1981-01-01

This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

10. On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation

Science.gov (United States)

Şenol, Mehmet; Alquran, Marwan; Kasmaei, Hamed Daei

2018-06-01

In this paper, we present analytic-approximate solution of time-fractional Zakharov-Kuznetsov equation. This model demonstrates the behavior of weakly nonlinear ion acoustic waves in a plasma bearing cold ions and hot isothermal electrons in the presence of a uniform magnetic field. Basic definitions of fractional derivatives are described in the Caputo sense. Perturbation-iteration algorithm (PIA) and residual power series method (RPSM) are applied to solve this equation with success. The convergence analysis is also presented for both methods. Numerical results are given and then they are compared with the exact solutions. Comparison of the results reveal that both methods are competitive, powerful, reliable, simple to use and ready to apply to wide range of fractional partial differential equations.

11. Multiscale optical simulation settings: challenging applications handled with an iterative ray-tracing FDTD interface method.

Science.gov (United States)

Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian

2016-03-20

We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.

12. Numerical Methods for Nonlinear PDEs in Finance

DEFF Research Database (Denmark)

Mashayekhi, Sima

Nonlinear Black-Scholes equations arise from considering parameters such as feedback and illiquid markets eects or large investor preferences, volatile portfolio and nontrivial transaction costs into option pricing models to have more accurate option price. Here some nite dierence schemes have be...

13. Analyzing the Impacts of Alternated Number of Iterations in Multiple Imputation Method on Explanatory Factor Analysis

Directory of Open Access Journals (Sweden)

Duygu KOÇAK

2017-11-01

Full Text Available The study aims to identify the effects of iteration numbers used in multiple iteration method, one of the methods used to cope with missing values, on the results of factor analysis. With this aim, artificial datasets of different sample sizes were created. Missing values at random and missing values at complete random were created in various ratios by deleting data. For the data in random missing values, a second variable was iterated at ordinal scale level and datasets with different ratios of missing values were obtained based on the levels of this variable. The data were generated using “psych” program in R software, while “dplyr” program was used to create codes that would delete values according to predetermined conditions of missing value mechanism. Different datasets were generated by applying different iteration numbers. Explanatory factor analysis was conducted on the datasets completed and the factors and total explained variances are presented. These values were first evaluated based on the number of factors and total variance explained of the complete datasets. The results indicate that multiple iteration method yields a better performance in cases of missing values at random compared to datasets with missing values at complete random. Also, it was found that increasing the number of iterations in both missing value datasets decreases the difference in the results obtained from complete datasets.

14. Contribution to regularizing iterative method development for attenuation correction in gamma emission tomography

International Nuclear Information System (INIS)

Cao, A.

1981-07-01

This study is concerned with the transverse axial gamma emission tomography. The problem of self-attenuation of radiations in biologic tissues is raised. The regularizing iterative method is developed, as a reconstruction method of 3 dimensional images. The different steps from acquisition to results, necessary to its application, are described. Organigrams relative to each step are explained. Comparison notion between two reconstruction methods is introduced. Some methods used for the comparison or to bring about the characteristics of a reconstruction technique are defined. The studies realized to test the regularizing iterative method are presented and results are analyzed [fr

15. A modal method for finite amplitude, nonlinear sloshing

A modal method is used to calculate the two-dimensional sloshing motion of an inviscid liquid in a rectangular container. The full nonlinear problem is reduced to the solution of a system of nonlinear ordinary differential equations for the time varying coefﬁcients in the expansions of the interface and the potential. The effects ...

16. A modal method for finite amplitude, nonlinear sloshing

Abstract. A modal method is used to calculate the two-dimensional sloshing motion of an inviscid liquid in a rectangular container. The full nonlinear problem is reduced to the solution of a system of nonlinear ordinary differential equations for the time varying coefficients in the expansions of the interface and the potential.

17. Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers

Directory of Open Access Journals (Sweden)

Marinca Vasile

2017-10-01

Full Text Available Dynamic response time is an important feature for determining the performance of magnetorheological (MR dampers in practical civil engineering applications. The objective of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM to give approximate analytical solutions of the nonlinear differential equation of a modified Bingham model with non-viscous exponential damping. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. OHAM is very efficient in practice for ensuring very rapid convergence of the solution after only one iteration and with a small number of steps.

18. Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers

Science.gov (United States)

Marinca, Vasile; Ene, Remus-Daniel; Bereteu, Liviu

2017-10-01

Dynamic response time is an important feature for determining the performance of magnetorheological (MR) dampers in practical civil engineering applications. The objective of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to give approximate analytical solutions of the nonlinear differential equation of a modified Bingham model with non-viscous exponential damping. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. OHAM is very efficient in practice for ensuring very rapid convergence of the solution after only one iteration and with a small number of steps.

19. Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review

Directory of Open Access Journals (Sweden)

Mahmoud Bayat

Full Text Available This review features a survey of some recent developments in asymptotic techniques and new developments, which are valid not only for weakly nonlinear equations, but also for strongly ones. Further, the achieved approximate analytical solutions are valid for the whole solution domain. The limitations of traditional perturbation methods are illustrated, various modified perturbation techniques are proposed, and some mathematical tools such as variational theory, homotopy technology, and iteration technique are introduced to over-come the shortcomings.In this review we have applied different powerful analytical methods to solve high nonlinear problems in engineering vibrations. Some patterns are given to illustrate the effectiveness and convenience of the methodologies.

20. Adaptive Mesh Iteration Method for Trajectory Optimization Based on Hermite-Pseudospectral Direct Transcription

Directory of Open Access Journals (Sweden)

Humin Lei

2017-01-01

Full Text Available An adaptive mesh iteration method based on Hermite-Pseudospectral is described for trajectory optimization. The method uses the Legendre-Gauss-Lobatto points as interpolation points; then the state equations are approximated by Hermite interpolating polynomials. The method allows for changes in both number of mesh points and the number of mesh intervals and produces significantly smaller mesh sizes with a higher accuracy tolerance solution. The derived relative error estimate is then used to trade the number of mesh points with the number of mesh intervals. The adaptive mesh iteration method is applied successfully to the examples of trajectory optimization of Maneuverable Reentry Research Vehicle, and the simulation experiment results show that the adaptive mesh iteration method has many advantages.

1. SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

Directory of Open Access Journals (Sweden)

H. Jafari

2010-07-01

Full Text Available In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM.Comparisons are made between the Adomian decomposition method (ADM, the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

2. GHM method for obtaining rationalsolutions of nonlinear differential equations.

Science.gov (United States)

Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

2015-01-01

In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

3. Application of an iterative methodology for cross-section and variance/covariance data adjustment to the analysis of fast spectrum systems accounting for non-linearity

International Nuclear Information System (INIS)

Pelloni, Sandro

2014-01-01

Highlights: • Our data adjustment is based on a Generalized Linear Least-Squares approach. • The computed sensitivity coefficients are converged within an iterative procedure. • The corresponding multistep adjustment thus accounts for non-linearity. • It provides a more accurate simulation of fast-spectrum experiments. - Abstract: The data assimilation benchmark launched by the “Subgroup 33” on “Methods and issues for the combined use of integral experiments and covariance data” of the Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee is recalculated by means of a multistep adjustment procedure using the deterministic code system ERANOS in conjunction with a dedicated Generalized Linear Least-Squares approach based on the Bayesian parameter estimation method. Nuclear data in terms of multi-group cross-sections as well as their variances and covariances, are adjusted for 11 nuclides, namely 10 B, 16 O, 23 Na, 56 Fe, 52 Cr, 58 Ni, 235 U, 238 U, 239 Pu, 240 Pu and 241 Pu and 6 nuclear reactions which are elastic and inelastic scattering, lumped (n,2n) and (n,3n), capture, fission and ν ¯ . The adjustment is carried out by making use of experimental data for 19 integral parameters obtained in 7 different fast spectrum systems. In the determination of a posteriori values for these integral parameters including effective multiplication factors, spectral indices and void effects, along with their nuclear data uncertainty, the required adjusted data for these nuclides and reactions are generated in conjunction with pre-computed sensitivity coefficients of the analytical integral parameters to the nuclear data to adjust. The suggested multistep scheme aims at accounting for non-linear effects. Correspondingly, the sensitivity coefficients are recalculated within an iterative procedure on the basis of the a posteriori analytical values and adjusted cross-sections. The adjustment is thus repeated

4. Non-linear programming method in optimization of fast reactors

International Nuclear Information System (INIS)

Pavelesku, M.; Dumitresku, Kh.; Adam, S.

1975-01-01

Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

5. Analysis of Diffusion Problems using Homotopy Perturbation and Variational Iteration Methods

DEFF Research Database (Denmark)

Barari, Amin; Poor, A. Tahmasebi; Jorjani, A.

2010-01-01

In this paper, variational iteration method and homotopy perturbation method are applied to different forms of diffusion equation. The diffusion equations have found wide applications in heat transfer problems, theory of consolidation and many other problems in engineering. The methods proposed...

6. Application of He's variational iteration method to the fifth-order boundary value problems

International Nuclear Information System (INIS)

Shen, S

2008-01-01

Variational iteration method is introduced to solve the fifth-order boundary value problems. This method provides an efficient approach to solve this type of problems without discretization and the computation of the Adomian polynomials. Numerical results demonstrate that this method is a promising and powerful tool for solving the fifth-order boundary value problems

7. A Comparison of Iterative 2D-3D Pose Estimation Methods for Real-Time Applications

DEFF Research Database (Denmark)

Grest, Daniel; Krüger, Volker; Petersen, Thomas

2009-01-01

This work compares iterative 2D-3D Pose Estimation methods for use in real-time applications. The compared methods are available for public as C++ code. One method is part of the openCV library, namely POSIT. Because POSIT is not applicable for planar 3Dpoint congurations, we include the planar P...

8. ROTAX: a nonlinear optimization program by axes rotation method

International Nuclear Information System (INIS)

1977-09-01

A nonlinear optimization program employing the axes rotation method has been developed for solving nonlinear problems subject to nonlinear inequality constraints and its stability and convergence efficiency were examined. The axes rotation method is a direct search of the optimum point by rotating the orthogonal coordinate system in a direction giving the minimum objective. The searching direction is rotated freely in multi-dimensional space, so the method is effective for the problems represented with the contours having deep curved valleys. In application of the axes rotation method to the optimization problems subject to nonlinear inequality constraints, an improved version of R.R. Allran and S.E.J. Johnsen's method is used, which deals with a new objective function composed of the original objective and a penalty term to consider the inequality constraints. The program is incorporated in optimization code system SCOOP. (auth.)

9. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

Science.gov (United States)

Benhammouda, Brahim

2016-01-01

Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

10. On a new iterative method for solving linear systems and comparison results

Science.gov (United States)

Jing, Yan-Fei; Huang, Ting-Zhu

2008-10-01

In Ujevic [A new iterative method for solving linear systems, Appl. Math. Comput. 179 (2006) 725-730], the author obtained a new iterative method for solving linear systems, which can be considered as a modification of the Gauss-Seidel method. In this paper, we show that this is a special case from a point of view of projection techniques. And a different approach is established, which is both theoretically and numerically proven to be better than (at least the same as) Ujevic's. As the presented numerical examples show, in most cases, the convergence rate is more than one and a half that of Ujevic.

11. Iterative solution of the inverse Cauchy problem for an elliptic equation by the conjugate gradient method

Science.gov (United States)

Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.

2017-10-01

This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution

12. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

International Nuclear Information System (INIS)

Urbatsch, T.J.

1995-11-01

If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors

13. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

Energy Technology Data Exchange (ETDEWEB)

Urbatsch, T.J.

1995-11-01

If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

14. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

Energy Technology Data Exchange (ETDEWEB)

Sun, Y.; Borland, Michael

2017-06-25

Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

15. Inverse operator theory method and its applications in nonlinear physics

International Nuclear Information System (INIS)

Fang Jinqing

1993-01-01

Inverse operator theory method, which has been developed by G. Adomian in recent years, and its applications in nonlinear physics are described systematically. The method can be an unified effective procedure for solution of nonlinear and/or stochastic continuous dynamical systems without usual restrictive assumption. It is realized by Mathematical Mechanization by us. It will have a profound on the modelling of problems of physics, mathematics, engineering, economics, biology, and so on. Some typical examples of the application are given and reviewed

16. Iterative approach as alternative to S-matrix in modal methods

Science.gov (United States)

Semenikhin, Igor; Zanuccoli, Mauro

2014-12-01

The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.

17. A non-iterative method for fitting decay curves with background

International Nuclear Information System (INIS)

Mukoyama, T.

1982-01-01

A non-iterative method for fitting a decay curve with background is presented. The sum of an exponential function and a constant term is linearized by the use of the difference equation and parameters are determined by the standard linear least-squares fitting. The validity of the present method has been tested against pseudo-experimental data. (orig.)

18. An iterative method for the analysis of Cherenkov rings in the HERA-B RICH

International Nuclear Information System (INIS)

Staric, M.; Krizan, P.

1999-01-01

A new method is presented for the analysis of data recorded with a Ring Imaging Cherenkov (RICH) counter. The method, an iterative sorting of hits on the photon detector, is particularly useful for events where rings overlap considerably. The algorithm was tested on simulated data for the HERA-B experiment

19. Iterative Method of Regularization with Application of Advanced Technique for Detection of Contours

International Nuclear Information System (INIS)

Niedziela, T.; Stankiewicz, A.

2000-01-01

This paper proposes a novel iterative method of regularization with application of an advanced technique for detection of contours. To eliminate noises, the properties of convolution of functions are utilized. The method can be accomplished in a simple neural cellular network, which creates the possibility of extraction of contours by automatic image recognition equipment. (author)

20. Modified variational iteration method for an El Niño Southern Oscillation delayed oscillator

International Nuclear Information System (INIS)

Cao Xiao-Qun; Song Jun-Qiang; Zhu Xiao-Qian; Zhang Li-Lun; Zhang Wei-Min; Zhao Jun

2012-01-01

This paper studies a delayed air—sea coupled oscillator describing the physical mechanism of El Niño Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model. (general)

1. An iterated Radau method for time-dependent PDE's

NARCIS (Netherlands)

S. Pérez-Rodríguez; S. González-Pinto; B.P. Sommeijer (Ben)

2008-01-01

htmlabstractThis paper is concerned with the time integration of semi-discretized, multi-dimensional PDEs of advection-diffusion-reaction type. To cope with the stiffness of these ODEs, an implicit method has been selected, viz., the two-stage, third-order Radau IIA method. The main topic of this

2. A new ART iterative method and a comparison of performance among various ART methods

International Nuclear Information System (INIS)

Tan, Yufeng; Sato, Shunsuke

1993-01-01

Many algebraic reconstruction techniques (ART) image reconstruction algorithms, for instance, simultaneous iterative reconstruction technique (SIRT), the relaxation method and multiplicative ART (MART), have been proposed and their convergent properties have been studied. SIRT and the underrelaxed relaxation method converge to the least-squares solution, but the convergent speeds are very slow. The Kaczmarz method converges very quickly, but the reconstructed images contain a lot of noise. The comparative studies between these algorithms have been done by Gilbert and others, but are not adequate. In this paper, we (1) propose a new method which is a modified Kaczmarz method and prove its convergence property, (2) study performance of 7 algorithms including the one proposed here by computer simulation for 3 kinds of typical phantoms. The method proposed here does not give the least-square solution, but the root mean square errors of its reconstructed images decrease very quickly after few interations. The result shows that the method proposed here gives a better reconstructed image. (author)

3. The methods for generating tomographic images using transmition, emission and nuclear magnetic resonance techniques. II. Fourier method and iterative methods

International Nuclear Information System (INIS)

Ursu, I.; Demco, D.E.; Gligor, T.D.; Pop, G.; Dollinger, R.

1987-01-01

In a wide variety of applications it is necessary to infer the structure of a multidimensional object from a set of its projections. Computed tomography is at present largely extended in the medical field, but the industrial application may ultimately far exceed its medical applications. Two techniques for reconstructing objects from their projections are presented: Fourier methods and iterative techniques. The paper also contains a brief comparative study of the reconstruction algorithms. (authors)

4. A New Iterative Method for Equilibrium Problems and Fixed Point Problems

Directory of Open Access Journals (Sweden)

Abdul Latif

2013-01-01

Full Text Available Introducing a new iterative method, we study the existence of a common element of the set of solutions of equilibrium problems for a family of monotone, Lipschitz-type continuous mappings and the sets of fixed points of two nonexpansive semigroups in a real Hilbert space. We establish strong convergence theorems of the new iterative method for the solution of the variational inequality problem which is the optimality condition for the minimization problem. Our results improve and generalize the corresponding recent results of Anh (2012, Cianciaruso et al. (2010, and many others.

5. Plasma flow to a surface using the iterative Monte Carlo method

International Nuclear Information System (INIS)

Pitcher, C.S.

1994-01-01

The iterative Monte Carlo (IMC) method is applied to a number of one-dimensional plasma flow problems, which encompass a wide range of conditions typical of those present in the boundary of magnetic fusion devices. The kinetic IMC method of solving plasma flow to a surface consists of launching and following particles within a grid of 'bins' into which weights are left according to the time a particle spends within a bin. The density and potential distributions within the plasma are iterated until the final solution is arrived at. The IMC results are compared with analytical treatments of these problems and, in general, good agreement is obtained. (author)

6. Domain decomposition methods and deflated Krylov subspace iterations

NARCIS (Netherlands)

Nabben, R.; Vuik, C.

2006-01-01

The balancing Neumann-Neumann (BNN) and the additive coarse grid correction (BPS) preconditioner are fast and successful preconditioners within domain decomposition methods for solving partial differential equations. For certain elliptic problems these preconditioners lead to condition numbers which

7. APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS

Directory of Open Access Journals (Sweden)

2017-01-01

8. Deflation of eigenvalues for iterative methods in lattice QCD

International Nuclear Information System (INIS)

Darnell, Dean; Morgan, Ronald B.; Wilcox, Walter

2004-01-01

Work on generalizing the deflated, restarted GMRES algorithm, useful in lattice studies using stochastic noise methods, is reported. We first show how the multi-mass extension of deflated GMRES can be implemented. We then give a deflated GMRES method that can be used on multiple right-hand sides of Aχ = b in an efficient manner. We also discuss and give numerical results on the possibilty of combining deflated GMRES for the first right hand side with a deflated BiCGStab algorithm for the subsequent right hand sides

9. An iterative method to invert the LTSn matrix

Energy Technology Data Exchange (ETDEWEB)

Cardona, A.V.; Vilhena, M.T. de [UFRGS, Porto Alegre (Brazil)

1996-12-31

Recently Vilhena and Barichello proposed the LTSn method to solve, analytically, the Discrete Ordinates Problem (Sn problem) in transport theory. The main feature of this method consist in the application of the Laplace transform to the set of Sn equations and solve the resulting algebraic system for the transport flux. Barichello solve the linear system containing the parameter s applying the definition of matrix invertion exploiting the structure of the LTSn matrix. In this work, it is proposed a new scheme to invert the LTSn matrix, decomposing it in blocks and recursively inverting this blocks.

10. Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations

KAUST Repository

Giraldi, Loic; Nouy, Anthony

2017-01-01

This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.

11. Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations

KAUST Repository

Giraldi, Loic

2017-06-30

This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.

12. The iterative shrinkage method for impulsive noise reduction from images

International Nuclear Information System (INIS)

2012-01-01

In this paper, we present a novel scheme to compensate impulsive noise from images using the sparse shrinkage method. In this scheme, we assume the remaining noise after using a simple median filtering in place of corrupted pixels, found by boundary discriminative noise detection method, to be Gaussian additive noise. This assumption will later be verified by the means of simulation. Knowing that the pure image in the discrete wavelet transform (DWT) domain is a sparse vector, we define an optimization problem to minimize the l 0 -norm of the estimated image vector from the noisy one in the DWT domain. l 0 -norm makes the optimization problem a combinatorial optimization problem which is NP-hard to solve. To come up with a solution for our optimization problem, we convert the l 0 -norm problem to a continuous optimization problem which is then solved to find the estimated image with reduced noise. In the simulation and discussion part, the performance of our proposed method in reducing impulsive noise is compared to that of existing methods in the literature. We show that our proposed algorithm generally performs better in terms of both subjective and objective evaluations and is less complex. (paper)

13. LOO: a low-order nonlinear transport scheme for acceleration of method of characteristics

International Nuclear Information System (INIS)

Li, Lulu; Smith, Kord; Forget, Benoit; Ferrer, Rodolfo

2015-01-01

This paper presents a new physics-based multi-grid nonlinear acceleration method: the low-order operator method, or LOO. LOO uses a coarse space-angle multi-group method of characteristics (MOC) neutron transport calculation to accelerate the fine space-angle MOC calculation. LOO is designed to capture more angular effects than diffusion-based acceleration methods through a transport-based low-order solver. LOO differs from existing transport-based acceleration schemes in that it emphasizes simplified coarse space-angle characteristics and preserves physics in quadrant phase-space. The details of the method, including the restriction step, the low-order iterative solver and the prolongation step are discussed in this work. LOO shows comparable convergence behavior to coarse mesh finite difference on several two-dimensional benchmark problems while not requiring any under-relaxation, making it a robust acceleration scheme. (author)

14. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations

International Nuclear Information System (INIS)

Yomba, Emmanuel

2008-01-01

With the aid of symbolic computation, a generalized auxiliary equation method is proposed to construct more general exact solutions to two types of NLPDEs. First, we present new family of solutions to a nonlinear Klein-Gordon equation, by using this auxiliary equation method including a new first-order nonlinear ODE with six-degree nonlinear term proposed by Sirendaoreji. Then, we apply an indirect F-function method very close to the F-expansion method to solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully nonlinear convection C(l,n,p). Taking advantage of the new first-order nonlinear ODE with six degree nonlinear term, this indirect F-function method is used to map the solutions of C(l,n,p) equations to those of that nonlinear ODE. As a result, we can successfully obtain in a unified way, many exact solutions

15. The spectral cell method in nonlinear earthquake modeling

Science.gov (United States)

Giraldo, Daniel; Restrepo, Doriam

2017-12-01

This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.

16. Parallel iterative solvers and preconditioners using approximate hierarchical methods

Energy Technology Data Exchange (ETDEWEB)

Grama, A.; Kumar, V.; Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)

1996-12-31

In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Greens function. Experimental results on a 256 processor Cray T3D are presented.

17. Method and apparatus for iterative lysis and extraction of algae

Science.gov (United States)

Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

2015-12-01

A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

18. The Davidson Method as an alternative to power iterations for criticality calculations

International Nuclear Information System (INIS)

Subramanian, C.; Van Criekingen, S.; Heuveline, V.; Nataf, F.; Have, P.

2011-01-01

The Davidson method is implemented within the neutron transport core solver parafish to solve k-eigenvalue criticality transport problems. The parafish solver is based on domain decomposition, uses spherical harmonics (P_N method) for angular discretization, and nonconforming finite elements for spatial discretization. The Davidson method is compared to the traditional power iteration method in that context. Encouraging numerical results are obtained with both sequential and parallel calculations. (author)

19. Iteration and accelerator dynamics

International Nuclear Information System (INIS)

Peggs, S.

1987-10-01

Four examples of iteration in accelerator dynamics are studied in this paper. The first three show how iterations of the simplest maps reproduce most of the significant nonlinear behavior in real accelerators. Each of these examples can be easily reproduced by the reader, at the minimal cost of writing only 20 or 40 lines of code. The fourth example outlines a general way to iteratively solve nonlinear difference equations, analytically or numerically

20. NOLB: Nonlinear Rigid Block Normal Mode Analysis Method

OpenAIRE

Hoffmann , Alexandre; Grudinin , Sergei

2017-01-01

International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...

1. Dose rate evaluation of body phantom behind ITER bio-shield wall using Monte Carlo method

International Nuclear Information System (INIS)

Beheshti, A.; Jabbari, I.; Karimian, A.; Abdi, M.

2012-01-01

One of the most critical risks to humans in reactors environment is radiation exposure. Around the tokamak hall personnel are exposed to a wide range of particles, including neutrons and photons. International Thermonuclear Experimental Reactor (ITER) is a nuclear fusion research and engineering project, which is the most advanced experimental tokamak nuclear fusion reactor. Dose rates assessment and photon radiation due to the neutron activation of the solid structures in ITER is important from the radiological point of view. Therefore, the dosimetry considered in this case is based on the Deuterium-Tritium (DT) plasma burning with neutrons production rate at 14.1 MeV. The aim of this study is assessment the amount of radiation behind bio-shield wall that a human received during normal operation of ITER by considering neutron activation and delay gammas. To achieve the aim, the ITER system and its components were simulated by Monte Carlo method. Also to increase the accuracy and precision of the absorbed dose assessment a body phantom were considered in the simulation. The results of this research showed that total dose rates level near the outside of bio-shield wall of the tokamak hall is less than ten percent of the annual occupational dose limits during normal operation of ITER and It is possible to learn how long human beings can remain in that environment before the body absorbs dangerous levels of radiation. (authors)

2. A Modified Lindstedt–Poincaré Method for a Strongly Nonlinear System with Quadratic and Cubic Nonlinearities

Directory of Open Access Journals (Sweden)

S.H. Chen

1996-01-01

Full Text Available A modified Lindstedt–Poincaré method is presented for extending the range of the validity of perturbation expansion to strongly nonlinear oscillations of a system with quadratic and cubic nonlinearities. Different parameter transformations are introduced to deal with equations with different nonlinear characteristics. All examples show that the efficiency and accuracy of the present method are very good.

3. Identifying an unknown function in a parabolic equation with overspecified data via He's variational iteration method

International Nuclear Information System (INIS)

Dehghan, Mehdi; Tatari, Mehdi

2008-01-01

In this research, the He's variational iteration technique is used for computing an unknown time-dependent parameter in an inverse quasilinear parabolic partial differential equation. Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and physics, as they appear in various engineering models. The He's variational iteration method is an analytical procedure for finding solutions of differential equations, is based on the use of Lagrange multipliers for identification of an optimal value of a parameter in a functional. To show the efficiency of the new approach, several test problems are presented for one-, two- and three-dimensional cases

4. Solution of a few nonlinear problems in aerodynamics by the finite elements and functional least squares methods. Ph.D. Thesis - Paris Univ.; [mathematical models of transonic flow using nonlinear equations

Science.gov (United States)

Periaux, J.

1979-01-01

The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.

5. A Modified Conjugacy Condition and Related Nonlinear Conjugate Gradient Method

Directory of Open Access Journals (Sweden)

Shengwei Yao

2014-01-01

Full Text Available The conjugate gradient (CG method has played a special role in solving large-scale nonlinear optimization problems due to the simplicity of their very low memory requirements. In this paper, we propose a new conjugacy condition which is similar to Dai-Liao (2001. Based on this condition, the related nonlinear conjugate gradient method is given. With some mild conditions, the given method is globally convergent under the strong Wolfe-Powell line search for general functions. The numerical experiments show that the proposed method is very robust and efficient.

6. Perturbation method for periodic solutions of nonlinear jerk equations

International Nuclear Information System (INIS)

Hu, H.

2008-01-01

A Lindstedt-Poincare type perturbation method with bookkeeping parameters is presented for determining accurate analytical approximate periodic solutions of some third-order (jerk) differential equations with cubic nonlinearities. In the process of the solution, higher-order approximate angular frequencies are obtained by Newton's method. A typical example is given to illustrate the effectiveness and simplicity of the proposed method

7. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

Science.gov (United States)

Wang, Xiaogang; Chen, Wen; Chen, Xudong

2014-09-22

We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

8. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems

Czech Academy of Sciences Publication Activity Database

Axelsson, Owe; Farouq, S.; Neytcheva, M.

2017-01-01

Roč. 74, č. 1 (2017), s. 19-37 ISSN 1017-1398 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution method s * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016 https://link.springer.com/article/10.1007%2Fs11075-016-0136-5

9. Two New Iterative Methods for a Countable Family of Nonexpansive Mappings in Hilbert Spaces

Directory of Open Access Journals (Sweden)

Hu Changsong

2010-01-01

Full Text Available We consider two new iterative methods for a countable family of nonexpansive mappings in Hilbert spaces. We proved that the proposed algorithms strongly converge to a common fixed point of a countable family of nonexpansive mappings which solves the corresponding variational inequality. Our results improve and extend the corresponding ones announced by many others.

10. Monte Carlo methods in PageRank computation: When one iteration is sufficient

NARCIS (Netherlands)

Avrachenkov, K.; Litvak, Nelli; Nemirovsky, D.; Osipova, N.

2005-01-01

PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer and thus it reflects the popularity of a Web page. Google computes the PageRank using the power iteration method which requires

11. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems

Czech Academy of Sciences Publication Activity Database

Axelsson, Owe; Farouq, S.; Neytcheva, M.

2017-01-01

Roč. 74, č. 1 (2017), s. 19-37 ISSN 1017-1398 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution methods * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016 https://link.springer.com/article/10.1007%2Fs11075-016-0136-5

12. An iterative method for Tikhonov regularization with a general linear regularization operator

NARCIS (Netherlands)

Hochstenbach, M.E.; Reichel, L.

2010-01-01

Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan

13. A General Iterative Method for a Nonexpansive Semigroup in Banach Spaces with Gauge Functions

Directory of Open Access Journals (Sweden)

Kamonrat Nammanee

2012-01-01

Full Text Available We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping Jφ, where φ is a gauge function on [0,∞. Our results improve and extend those announced by G. Marino and H.-K. Xu (2006 and many authors.

14. A non-iterative twin image elimination method with two in-line digital holograms

Science.gov (United States)

Kim, Jongwu; Lee, Heejung; Jeon, Philjun; Kim, Dug Young

2018-02-01

We propose a simple non-iterative in-line holographic measurement method which can effectively eliminate a twin image in digital holographic 3D imaging. It is shown that a twin image can be effectively eliminated with only two measured holograms by using a simple numerical propagation algorithm and arithmetic calculations.

15. On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems

Czech Academy of Sciences Publication Activity Database

Bai, Z.-Z.; Rozložník, Miroslav

2015-01-01

Roč. 53, č. 4 (2015), s. 1716-1737 ISSN 0036-1429 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : matrix splitting * stationary iteration method * backward error * rounding error analysis Subject RIV: BA - General Mathematics Impact factor: 1.899, year: 2015

16. Monte Carlo methods in PageRank computation: When one iteration is sufficient

NARCIS (Netherlands)

Avrachenkov, K.; Litvak, Nelli; Nemirovsky, D.; Osipova, N.

PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer, and thus it reflects the popularity of a Web page. Google computes the PageRank using the power iteration method, which requires

17. Solving Ratio-Dependent Predatorprey System with Constant Effort Harvesting Using Variational Iteration Method

DEFF Research Database (Denmark)

Ghotbi, Abdoul R; Barari, Amin

2009-01-01

Due to wide range of interest in use of bio-economic models to gain insight in to the scientific management of renewable resources like fisheries and forestry, variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort...

18. On a method of numerical calculation of nonlinear radial pulsations of stars

International Nuclear Information System (INIS)

Kosovichev, A.G.

1984-01-01

Some features of using the finite difference method for numerical investigation of nonradial pulsations of stars were considered. The mathematical model of these pulsations is described by time-dependent gasdynaMic equations with gravity. A one-dimentional (spherically-symmetric) case is considered. It was obtained a two-parametric family of ultimate conservative difference schemes where the diffepence analogy of the main conservative laws as well as the additional relations for the balance to individual kinds of energy are performed. Such difference schemes provide more exact calculation of nonlinear flows with shocks as compared with the other difference schemes with the same order of approximation. The methods of numerical solution of implicit (absolute stable) difference schemes for a given family were considered. The coupled equations are solved through iterative Newton method Using martrix and separate successive eliminations. Numerical method can be used for calculation of large amplitude radial pulsations of stars

19. The iterative thermal emission method: A more implicit modification of IMC

Energy Technology Data Exchange (ETDEWEB)

Long, A.R., E-mail: arlong.ne@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77843 (United States); Gentile, N.A. [Lawrence Livermore National Laboratory, L-38, P.O. Box 808, Livermore, CA 94550 (United States); Palmer, T.S. [Nuclear Engineering and Radiation Health Physics, Oregon State University, 100 Radiation Center, Corvallis, OR 97333 (United States)

2014-11-15

For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of “pseudo-scattering” introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does

20. The iterative thermal emission method: A more implicit modification of IMC

International Nuclear Information System (INIS)

Long, A.R.; Gentile, N.A.; Palmer, T.S.

2014-01-01

For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of “pseudo-scattering” introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does

1. The iterative thermal emission method: A more implicit modification of IMC

Science.gov (United States)

Long, A. R.; Gentile, N. A.; Palmer, T. S.

2014-11-01

For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of ;pseudo-scattering; introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does however

2. An iterative method for obtaining the optimum lightning location on a spherical surface

Science.gov (United States)

Chao, Gao; Qiming, MA

1991-01-01

A brief introduction to the basic principles of an eigen method used to obtain the optimum source location of lightning is presented. The location of the optimum source is obtained by using multiple direction finders (DF's) on a spherical surface. An improvement of this method, which takes the distance of source-DF's as a constant, is presented. It is pointed out that using a weight factor of signal strength is not the most ideal method because of the inexact inverse signal strength-distance relation and the inaccurate signal amplitude. An iterative calculation method is presented using the distance from the source to the DF as a weight factor. This improved method has higher accuracy and needs only a little more calculation time. Some computer simulations for a 4DF system are presented to show the improvement of location through use of the iterative method.

3. A limited memory BFGS method for a nonlinear inverse problem in digital breast tomosynthesis

Science.gov (United States)

Landi, G.; Loli Piccolomini, E.; Nagy, J. G.

2017-09-01

Digital breast tomosynthesis (DBT) is an imaging technique that allows the reconstruction of a pseudo three-dimensional image of the breast from a finite number of low-dose two-dimensional projections obtained by different x-ray tube angles. An issue that is often ignored in DBT is the fact that an x-ray beam is polyenergetic, i.e. it is composed of photons with different levels of energy. The polyenergetic model requires solving a large-scale, nonlinear inverse problem, which is more expensive than the typically used simplified, linear monoenergetic model. However, the polyenergetic model is much less susceptible to beam hardening artifacts, which show up as dark streaks and cupping (i.e. background nonuniformities) in the reconstructed image. In addition, it has been shown that the polyenergetic model can be exploited to obtain additional quantitative information about the material of the object being imaged. In this paper we consider the multimaterial polyenergetic DBT model, and solve the nonlinear inverse problem with a limited memory BFGS quasi-Newton method. Regularization is enforced at each iteration using a diagonally modified approximation of the Hessian matrix, and by truncating the iterations.

4. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

Science.gov (United States)

Dean, Bruce H. (Inventor)

2012-01-01

According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

5. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

Energy Technology Data Exchange (ETDEWEB)

Kim, S. [Purdue Univ., West Lafayette, IN (United States)

1994-12-31

Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

6. Nonlinear Methods in Riemannian and Kählerian Geometry

CERN Document Server

Jost, Jürgen

1991-01-01

In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Düsseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature Ieads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second ordernonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more pro~inent röle in geometry. Let us Iist some of the most important ones: - harmonic maps ...

7. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

Science.gov (United States)

Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

2017-05-01

Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

8. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

Science.gov (United States)

Lavery, N.; Taylor, C.

1999-07-01

Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

9. Non-linear M -sequences Generation Method

Directory of Open Access Journals (Sweden)

Z. R. Garifullina

2011-06-01

Full Text Available The article deals with a new method for modeling a pseudorandom number generator based on R-blocks. The gist of the method is the replacement of a multi digit XOR element by a stochastic adder in a parallel binary linear feedback shift register scheme.

10. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods

International Nuclear Information System (INIS)

Dai, Y.-H.; Liao, L.-Z.

2001-01-01

Conjugate gradient methods are a class of important methods for unconstrained optimization, especially when the dimension is large. This paper proposes a new conjugacy condition, which considers an inexact line search scheme but reduces to the old one if the line search is exact. Based on the new conjugacy condition, two nonlinear conjugate gradient methods are constructed. Convergence analysis for the two methods is provided. Our numerical results show that one of the methods is very efficient for the given test problems

11. Interior Point Methods for Large-Scale Nonlinear Programming

Czech Academy of Sciences Publication Activity Database

2005-01-01

Roč. 20, č. 4-5 (2005), s. 569-582 ISSN 1055-6788 R&D Projects: GA AV ČR IAA1030405 Institutional research plan: CEZ:AV0Z10300504 Keywords : nonlinear programming * interior point methods * KKT systems * indefinite preconditioners * filter methods * algorithms Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2005

12. Nonlinear conjugate gradient methods in micromagnetics

Directory of Open Access Journals (Sweden)

J. Fischbacher

2017-04-01

Full Text Available Conjugate gradient methods for energy minimization in micromagnetics are compared. The comparison of analytic results with numerical simulation shows that standard conjugate gradient method may fail to produce correct results. A method that restricts the step length in the line search is introduced, in order to avoid this problem. When the step length in the line search is controlled, conjugate gradient techniques are a fast and reliable way to compute the hysteresis properties of permanent magnets. The method is applied to investigate demagnetizing effects in NdFe12 based permanent magnets. The reduction of the coercive field by demagnetizing effects is μ0ΔH = 1.4 T at 450 K.

13. Backtracking-Based Iterative Regularization Method for Image Compressive Sensing Recovery

Directory of Open Access Journals (Sweden)

Lingjun Liu

2017-01-01

Full Text Available This paper presents a variant of the iterative shrinkage-thresholding (IST algorithm, called backtracking-based adaptive IST (BAIST, for image compressive sensing (CS reconstruction. For increasing iterations, IST usually yields a smoothing of the solution and runs into prematurity. To add back more details, the BAIST method backtracks to the previous noisy image using L2 norm minimization, i.e., minimizing the Euclidean distance between the current solution and the previous ones. Through this modification, the BAIST method achieves superior performance while maintaining the low complexity of IST-type methods. Also, BAIST takes a nonlocal regularization with an adaptive regularizor to automatically detect the sparsity level of an image. Experimental results show that our algorithm outperforms the original IST method and several excellent CS techniques.

14. Analysis of Nonlinear Dynamics by Square Matrix Method

Energy Technology Data Exchange (ETDEWEB)

Yu, Li Hua [Brookhaven National Lab. (BNL), Upton, NY (United States). Energy and Photon Sciences Directorate. National Synchrotron Light Source II

2016-07-25

The nonlinear dynamics of a system with periodic structure can be analyzed using a square matrix. In this paper, we show that because the special property of the square matrix constructed for nonlinear dynamics, we can reduce the dimension of the matrix from the original large number for high order calculation to low dimension in the first step of the analysis. Then a stable Jordan decomposition is obtained with much lower dimension. The transformation to Jordan form provides an excellent action-angle approximation to the solution of the nonlinear dynamics, in good agreement with trajectories and tune obtained from tracking. And more importantly, the deviation from constancy of the new action-angle variable provides a measure of the stability of the phase space trajectories and their tunes. Thus the square matrix provides a novel method to optimize the nonlinear dynamic system. The method is illustrated by many examples of comparison between theory and numerical simulation. Finally, in particular, we show that the square matrix method can be used for optimization to reduce the nonlinearity of a system.

15. Bender-Dunne Orthogonal Polynomials, Quasi-Exact Solvability and Asymptotic Iteration Method for Rabi Hamiltonian

International Nuclear Information System (INIS)

Yahiaoui, S.-A.; Bentaiba, M.

2011-01-01

We present a method for obtaining the quasi-exact solutions of the Rabi Hamiltonian in the framework of the asymptotic iteration method (AIM). The energy eigenvalues, the eigenfunctions and the associated Bender-Dunne orthogonal polynomials are deduced. We show (i) that orthogonal polynomials are generated from the upper limit (i.e., truncation limit) of polynomial solutions deduced from AIM, and (ii) prove to have nonpositive norm. (authors)

16. Asymptotic iteration method solutions to the d-dimensional Schroedinger equation with position-dependent mass

International Nuclear Information System (INIS)

Yasuk, F.; Tekin, S.; Boztosun, I.

2010-01-01

In this study, the exact solutions of the d-dimensional Schroedinger equation with a position-dependent mass m(r)=1/(1+ζ 2 r 2 ) is presented for a free particle, V(r)=0, by using the method of point canonical transformations. The energy eigenvalues and corresponding wavefunctions for the effective potential which is to be a generalized Poeschl-Teller potential are obtained within the framework of the asymptotic iteration method.

17. A Modal-Based Substructure Method Applied to Nonlinear Rotordynamic Systems

Directory of Open Access Journals (Sweden)

Helmut J. Holl

2009-01-01

Full Text Available The discretisation of rotordynamic systems usually results in a high number of coordinates, so the computation of the solution of the equations of motion is very time consuming. An efficient semianalytic time-integration method combined with a substructure technique is given, which accounts for nonsymmetric matrices and local nonlinearities. The partitioning of the equation of motion into two substructures is performed. Symmetric and linear background systems are defined for each substructure. The excitation of the substructure comes from the given excitation force, the nonlinear restoring force, the induced force due to the gyroscopic and circulatory effects of the substructure under consideration and the coupling force of the substructures. The high effort for the analysis with complex numbers, which is necessary for nonsymmetric systems, is omitted. The solution is computed by means of an integral formulation. A suitable approximation for the unknown coordinates, which are involved in the coupling forces, has to be introduced and the integration results in Green's functions of the considered substructures. Modal analysis is performed for each linear and symmetric background system of the substructure. Modal reduction can be easily incorporated and the solution is calculated iteratively. The numerical behaviour of the algorithm is discussed and compared to other approximate methods of nonlinear structural dynamics for a benchmark problem and a representative example.

18. Non-linear analysis of skew thin plate by finite difference method

International Nuclear Information System (INIS)

Kim, Chi Kyung; Hwang, Myung Hwan

2012-01-01

This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed

19. Exponential function method for solving nonlinear ordinary ...

[14] introduced a new system of rational. 79 ..... Also, for k-power of function f (η), by induction, we have ..... reliability and efficiency of the method. .... electric field and the polarization effects are negligible and B(x) is assumed by Chaim [8] as.

20. Nonlinear structural analysis using integrated force method

A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.

1. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data

DEFF Research Database (Denmark)

Nielsen, Allan Aasbjerg

2007-01-01

This paper describes new extensions to the previously published multivariate alteration detection (MAD) method for change detection in bi-temporal, multi- and hypervariate data such as remote sensing imagery. Much like boosting methods often applied in data mining work, the iteratively reweighted...... to observations that show little change, i.e., for which the sum of squared, standardized MAD variates is small, and small weights are assigned to observations for which the sum is large. Like the original MAD method, the iterative extension is invariant to linear (affine) transformations of the original...... an agricultural region in Kenya, and hyperspectral airborne HyMap data from a small rural area in southeastern Germany are given. The latter case demonstrates the need for regularization....

2. A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers

Energy Technology Data Exchange (ETDEWEB)

Melboe, Hallgeir

2001-10-01

This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)

3. A necessary and sufficient condition for the convergence of an AOR iterative method

International Nuclear Information System (INIS)

Hu Jiagan

1992-01-01

In this paper, a necessary and sufficient condition for the convergence of an AOR iterative method is given under the condition that the coefficient matrix A is consistently ordered and the eigenvalues of the Jacobi matrix of A are all real. With the same method the condition for the convergence of t he extrapolation Gauss-Seidel (EGS) method is also obtained. As an example, the conditions for the model problem are given. The rate of convergence of the EGS method is about twice that of the GS method

4. Taylor's series method for solving the nonlinear point kinetics equations

International Nuclear Information System (INIS)

Nahla, Abdallah A.

2011-01-01

Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

5. Linear Algebraic Method for Non-Linear Map Analysis

International Nuclear Information System (INIS)

Yu, L.; Nash, B.

2009-01-01

We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

6. Iterative raw measurements restoration method with penalized weighted least squares approach for low-dose CT

Science.gov (United States)

Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu

2014-03-01

Statistical iterative reconstruction and post-log data restoration algorithms for CT noise reduction have been widely studied and these techniques have enabled us to reduce irradiation doses while maintaining image qualities. In low dose scanning, electronic noise becomes obvious and it results in some non-positive signals in raw measurements. The nonpositive signal should be converted to positive signal so that it can be log-transformed. Since conventional conversion methods do not consider local variance on the sinogram, they have difficulty of controlling the strength of the filtering. Thus, in this work, we propose a method to convert the non-positive signal to the positive signal by mainly controlling the local variance. The method is implemented in two separate steps. First, an iterative restoration algorithm based on penalized weighted least squares is used to mitigate the effect of electronic noise. The algorithm preserves the local mean and reduces the local variance induced by the electronic noise. Second, smoothed raw measurements by the iterative algorithm are converted to the positive signal according to a function which replaces the non-positive signal with its local mean. In phantom studies, we confirm that the proposed method properly preserves the local mean and reduce the variance induced by the electronic noise. Our technique results in dramatically reduced shading artifacts and can also successfully cooperate with the post-log data filter to reduce streak artifacts.

7. Environmental dose rate assessment of ITER using the Monte Carlo method

Directory of Open Access Journals (Sweden)

Karimian Alireza

2014-01-01

Full Text Available Exposure to radiation is one of the main sources of risk to staff employed in reactor facilities. The staff of a tokamak is exposed to a wide range of neutrons and photons around the tokamak hall. The International Thermonuclear Experimental Reactor (ITER is a nuclear fusion engineering project and the most advanced experimental tokamak in the world. From the radiobiological point of view, ITER dose rates assessment is particularly important. The aim of this study is the assessment of the amount of radiation in ITER during its normal operation in a radial direction from the plasma chamber to the tokamak hall. To achieve this goal, the ITER system and its components were simulated by the Monte Carlo method using the MCNPX 2.6.0 code. Furthermore, the equivalent dose rates of some radiosensitive organs of the human body were calculated by using the medical internal radiation dose phantom. Our study is based on the deuterium-tritium plasma burning by 14.1 MeV neutron production and also photon radiation due to neutron activation. As our results show, the total equivalent dose rate on the outside of the bioshield wall of the tokamak hall is about 1 mSv per year, which is less than the annual occupational dose rate limit during the normal operation of ITER. Also, equivalent dose rates of radiosensitive organs have shown that the maximum dose rate belongs to the kidney. The data may help calculate how long the staff can stay in such an environment, before the equivalent dose rates reach the whole-body dose limits.

8. MO-DE-207A-07: Filtered Iterative Reconstruction (FIR) Via Proximal Forward-Backward Splitting: A Synergy of Analytical and Iterative Reconstruction Method for CT

International Nuclear Information System (INIS)

Gao, H

2016-01-01

Purpose: This work is to develop a general framework, namely filtered iterative reconstruction (FIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality. Methods: FIR is formulated as a combination of filtered data fidelity and sparsity regularization, and then solved by proximal forward-backward splitting (PFBS) algorithm. As a result, the image reconstruction decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected to the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is in turn weighted together with previous image iterate to form next image iterate. Since the eigenvalues of AR-projection operator are close to the unity, PFBS based FIR has a fast convergence. Results: The proposed FIR method is validated in the setting of circular cone-beam CT with AR being FDK and total-variation sparsity regularization, and has improved image quality from both AR and IR. For example, AIR has improved visual assessment and quantitative measurement in terms of both contrast and resolution, and reduced axial and half-fan artifacts. Conclusion: FIR is proposed to incorporate AR into IR, with an efficient image reconstruction algorithm based on PFBS. The CBCT results suggest that FIR synergizes AR and IR with improved image quality and reduced axial and half-fan artifacts. The authors was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).

9. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

Directory of Open Access Journals (Sweden)

Jun Wang

2013-01-01

Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

10. Design and fabrication methods of FW/blanket, divertor and vacuum vessel for ITER

International Nuclear Information System (INIS)

Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Ibbott, C.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Tivey, R.; Utin, Y.; Yamada, M.

2000-01-01

Design has progressed on the vacuum vessel, FW/blanket and Divertor for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design [K. Ioki et al., J. Nucl. Mater. 258-263 (1998) 74]. Design and fabrication methods of the components have been improved to achieve ∼50% reduction of the construction cost. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R and D performed so far during the Engineering Design Activities (EDAs) are still applicable. Further cost reduction methods are also being investigated and additional R and D is being performed

11. Design and fabrication methods of FW/blanket, divertor and vacuum vessel for ITER

Energy Technology Data Exchange (ETDEWEB)

Ioki, K. E-mail: iokik@itereu.deiokik@ipp.mpg.de; Barabash, V.; Cardella, A.; Elio, F.; Ibbott, C.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Tivey, R.; Utin, Y.; Yamada, M

2000-12-01

Design has progressed on the vacuum vessel, FW/blanket and Divertor for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design [K. Ioki et al., J. Nucl. Mater. 258-263 (1998) 74]. Design and fabrication methods of the components have been improved to achieve {approx}50% reduction of the construction cost. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R and D performed so far during the Engineering Design Activities (EDAs) are still applicable. Further cost reduction methods are also being investigated and additional R and D is being performed.

12. Design and fabrication methods of FW/blanket, divertor and vacuum vessel for ITER

Science.gov (United States)

Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Ibbott, C.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Tivey, R.; Utin, Y.; Yamada, M.

2000-12-01

Design has progressed on the vacuum vessel, FW/blanket and Divertor for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design [K. Ioki et al., J. Nucl. Mater. 258-263 (1998) 74]. Design and fabrication methods of the components have been improved to achieve ˜50% reduction of the construction cost. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R&D performed so far during the Engineering Design Activities (EDAs) are still applicable. Further cost reduction methods are also being investigated and additional R&D is being performed.

13. An Iterative Method for Solving of Coupled Equations for Conductive-Radiative Heat Transfer in Dielectric Layers

Directory of Open Access Journals (Sweden)

Vasyl Chekurin

2017-01-01

Full Text Available The mathematical model for describing combined conductive-radiative heat transfer in a dielectric layer, which emits, absorbs, and scatters IR radiation both in its volume and on the boundary, has been considered. A nonlinear stationary boundary-value problem for coupled heat and radiation transfer equations for the layer, which exchanges by energy with external medium by convection and radiation, has been formulated. In the case of optically thick layer, when its thickness is much more of photon-free path, the problem becomes a singularly perturbed one. In the inverse case of optically thin layer, the problem is regularly perturbed, and it becomes a regular (unperturbed one, when the layer’s thickness is of order of several photon-free paths. An iterative method for solving of the unperturbed problem has been developed and its convergence has been tested numerically. With the use of the method, the temperature field and radiation fluxes have been studied. The model and method can be used for development of noncontact methods for temperature testing in dielectrics and for nondestructive determination of its radiation properties on the base of the data obtained by remote measuring of IR radiation emitted by the layer.

14. Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms

Energy Technology Data Exchange (ETDEWEB)

Feng, Wenqiang, E-mail: wfeng1@vols.utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States); Salgado, Abner J., E-mail: asalgad1@utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States); Wang, Cheng, E-mail: cwang1@umassd.edu [Department of Mathematics, The University of Massachusetts, North Dartmouth, MA 02747 (United States); Wise, Steven M., E-mail: swise1@utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States)

2017-04-01

We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems – including thin film epitaxy with slope selection and the square phase field crystal model – are carried out to verify the efficiency of the scheme.

15. Application of the trial equation method for solving some nonlinear ...

Therefore, our aim is just to find the function F. Liu has obtained a number of exact solutions to many nonlinear differential equations when F(u) is a polynomial or a rational function. ... In this study, we apply the trial equation method to seek exact solutions of the ... twice and setting the integration constant to zero, we have.

16. Nonlinear realizations, the orbit method and Kohn's theorem

OpenAIRE

Andrzejewski, K.; Gonera, J.; Kosinski, P.

2012-01-01

The orbit method is used to describe the centre of mass motion of the system of particles with fixed charge to mass ratio moving in homogeneous magnetic field and confined by harmonic potential. The nonlinear action of symmetry group on phase space is identified and compared with the one obtained with the help of Eisenhart lift.

17. Linear and nonlinear symmetrically loaded shells of revolution approximated with the finite element method

International Nuclear Information System (INIS)

Cook, W.A.

1978-10-01

Nuclear Material shipping containers have shells of revolution as a basic structural component. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Present models are limited to large displacements, small rotations, and nonlinear materials. This report discusses a first approach to developing a finite element nonlinear shell of revolution model that accounts for these nonlinear geometric effects. The approach uses incremental loads and a linear shell model with equilibrium iterations. Sixteen linear models are developed, eight using the potential energy variational principle and eight using a mixed variational principle. Four of these are suitable for extension to nonlinear shell theory. A nonlinear shell theory is derived, and a computational technique used in its solution is presented

18. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

International Nuclear Information System (INIS)

Wang, Jinguo; Zhao, Zhiqin; Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

2015-01-01

Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity

19. Convergence of spectral methods for nonlinear conservation laws. Final report

International Nuclear Information System (INIS)

1987-08-01

The convergence of the Fourier method for scalar nonlinear conservation laws which exhibit spontaneous shock discontinuities is discussed. Numerical tests indicate that the convergence may (and in fact in some cases must) fail, with or without post-processing of the numerical solution. Instead, a new kind of spectrally accurate vanishing viscosity is introduced to augment the Fourier approximation of such nonlinear conservation laws. Using compensated compactness arguments, it is shown that this spectral viscosity prevents oscillations, and convergence to the unique entropy solution follows

20. Method for Measuring Small Nonlinearities of Electric Characteristics

DEFF Research Database (Denmark)

Guldbrandsen, Tom; Meyer, Niels I; Schjær-Jacobsen, Jørgen

1965-01-01

A method is described for measuring very small deviations from linearity in electric characteristics. The measurement is based on the harmonics generated by the nonlinear element when subjected to a sine wave signal. A special bridge circuit is used to balance out the undesired harmonics...... of the signal generator together with the first harmonic frequency. The set-up measures the small-signal value and the first and second derivative with respect to voltage. The detailed circuits are given for measuring nonlinearities in Ohmic and capacitive components. In the Ohmic case, a sensitivity...

1. Nonlinear Least Square Based on Control Direction by Dual Method and Its Application

Directory of Open Access Journals (Sweden)

Zhengqing Fu

2016-01-01

Full Text Available A direction controlled nonlinear least square (NLS estimation algorithm using the primal-dual method is proposed. The least square model is transformed into the primal-dual model; then direction of iteration can be controlled by duality. The iterative algorithm is designed. The Hilbert morbid matrix is processed by the new model and the least square estimate and ridge estimate. The main research method is to combine qualitative analysis and quantitative analysis. The deviation between estimated values and the true value and the estimated residuals fluctuation of different methods are used for qualitative analysis. The root mean square error (RMSE is used for quantitative analysis. The results of experiment show that the model has the smallest residual error and the minimum root mean square error. The new estimate model has effectiveness and high precision. The genuine data of Jining area in unwrapping experiments are used and the comparison with other classical unwrapping algorithms is made, so better results in precision aspects can be achieved through the proposed algorithm.

2. Iterative methods used in overlap astrometric reduction techniques do not always converge

Science.gov (United States)

Rapaport, M.; Ducourant, C.; Colin, J.; Le Campion, J. F.

1993-04-01

In this paper we prove that the classical Gauss-Seidel type iterative methods used for the solution of the reduced normal equations occurring in overlapping reduction methods of astrometry do not always converge. We exhibit examples of divergence. We then analyze an alternative algorithm proposed by Wang (1985). We prove the consistency of this algorithm and verify that it can be convergent while the Gauss-Seidel method is divergent. We conjecture the convergence of Wang method for the solution of astrometric problems using overlap techniques.

3. An iterative method for accelerated degradation testing data of smart electricity meter

Science.gov (United States)

Wang, Xiaoming; Xie, Jinzhe

2017-01-01

In order to evaluate the performance of smart electricity meter (SEM), we must spend a lot of time censoring its status. For example, if we assess to the meter stability of the SEM which needs several years at least according to the standards. So accelerated degradation testing (ADT) is a useful method to assess the performance of the SEM. As we known, the Wiener process is a prevalent method to interpret the performance degradation. This paper proposes an iterative method for ADT data of SEM. The simulation study verifies the application and superiority of the proposed model than other ADT methods.

4. Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems.

Science.gov (United States)

Wang, An; Cao, Yang; Shi, Quan

2018-01-01

In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.

5. Application of the variational iteration method for system of initial value problems delay differential equations

Science.gov (United States)

Yousef, Hamood. M.; Ismail, A. I. B. MD.

2017-08-01

Many attempts have been presented to solve the system of Delay Differential Equations (DDE) with Initial Value Problem. As a result, it has shown difficulties when getting the solution or cannot be solved. In this paper, a Variational Iteration Method is employed to find out an approximate solution for the system of DDE with initial value problems. The example illustrates convenient and an efficiency comparison with the exact solution.

Science.gov (United States)

Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

2018-02-01

Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

7. Detailed Design and Fabrication Method of the ITER Vacuum Vessel Ports

International Nuclear Information System (INIS)

Hee-Jae Ahn; Kwon, T.H.; Hong, Y.S.

2006-01-01

The engineering design of the ITER vacuum vessel (VV) has been progressed by the ITER International Team (IT) with the cooperation of several participant teams (PT). The VV and ports are the components allocated to Korea for the construction of the ITER. Hyundai Heavy Industries has been involved in the structural analysis, detailed design and development of the fabrication method of the upper and lower ports within the framework of the ITER transitional arrangements (ITA). The design of the port structures has been investigated to validate and to improve the conceptual designs of the ITER IT and other PT. The special emphasis was laid on the flange joint between the port extension and the in-port plug to develop the design of the upper port. The modified design with a pure friction type flange with forty-eight pieces of bolts instead of the tangential key is recommended. Furthermore, the alternative flange designs developed by the ITER IT have been analyzed in detail to simplify the lip seal maintenance into the port flange. The structural analyses of the lower RH port have been also performed to verify the capacity for supporting the VV. The maximum stress exceeds the allowable value at the reinforcing block and basement. More elaborate local models have been developed to mitigate the stress concentration and to modify the component design. The fabrication method and the sequence of the detailed fabrication for the ports are developed focusing on the cost reduction as well as the simplification. A typical port structure includes a port stub, a stub extension and a port extension with a connecting duct. The fabrication sequence consists of surface treatment, cutting, forming, cleaning, welding, machining, and non-destructive inspection and test. Tolerance study has been performed to avoid the mismatch of each fabricated component and to obtain the suitable tolerances in the assembly at the shop and site. This study is based on the experience in the fabrication of

8. The nonlinear Galerkin method: A multi-scale method applied to the simulation of homogeneous turbulent flows

Science.gov (United States)

Debussche, A.; Dubois, T.; Temam, R.

1993-01-01

Using results of Direct Numerical Simulation (DNS) in the case of two-dimensional homogeneous isotropic flows, the behavior of the small and large scales of Kolmogorov like flows at moderate Reynolds numbers are first analyzed in detail. Several estimates on the time variations of the small eddies and the nonlinear interaction terms were derived; those terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, a multilevel scheme which treats differently the small and the large eddies was proposed. Using mathematical developments, estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptive procedure were derived. Finally, realistic simulations of (Kolmorov like) flows over several eddy-turnover times were performed. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.

9. Experimental results and validation of a method to reconstruct forces on the ITER test blanket modules

International Nuclear Information System (INIS)

Zeile, Christian; Maione, Ivan A.

2015-01-01

Highlights: • An in operation force measurement system for the ITER EU HCPB TBM has been developed. • The force reconstruction methods are based on strain measurements on the attachment system. • An experimental setup and a corresponding mock-up have been built. • A set of test cases representing ITER relevant excitations has been used for validation. • The influence of modeling errors on the force reconstruction has been investigated. - Abstract: In order to reconstruct forces on the test blanket modules in ITER, two force reconstruction methods, the augmented Kalman filter and a model predictive controller, have been selected and developed to estimate the forces based on strain measurements on the attachment system. A dedicated experimental setup with a corresponding mock-up has been designed and built to validate these methods. A set of test cases has been defined to represent possible excitation of the system. It has been shown that the errors in the estimated forces mainly depend on the accuracy of the identified model used by the algorithms. Furthermore, it has been found that a minimum of 10 strain gauges is necessary to allow for a low error in the reconstructed forces.

10. AN AUTOMATIC OPTICAL AND SAR IMAGE REGISTRATION METHOD USING ITERATIVE MULTI-LEVEL AND REFINEMENT MODEL

Directory of Open Access Journals (Sweden)

C. Xu

2016-06-01

Full Text Available Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.

11. Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method

International Nuclear Information System (INIS)

Arum Sari, Resita; Suparmi, A; Cari, C

2016-01-01

The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number n r causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. (paper)

12. Strength Reduction Method for Stability Analysis of Local Discontinuous Rock Mass with Iterative Method of Partitioned Finite Element and Interface Boundary Element

Directory of Open Access Journals (Sweden)

Tongchun Li

2015-01-01

element is proposed to solve the safety factor of local discontinuous rock mass. Slope system is divided into several continuous bodies and local discontinuous interface boundaries. Each block is treated as a partition of the system and contacted by discontinuous joints. The displacements of blocks are chosen as basic variables and the rigid displacements in the centroid of blocks are chosen as motion variables. The contact forces on interface boundaries and the rigid displacements to the centroid of each body are chosen as mixed variables and solved iteratively using the interface boundary equations. Flexibility matrix is formed through PFE according to the contact states of nodal pairs and spring flexibility is used to reflect the influence of weak structural plane so that nonlinear iteration is only limited to the possible contact region. With cohesion and friction coefficient reduced gradually, the states of all nodal pairs at the open or slip state for the first time are regarded as failure criterion, which can decrease the effect of subjectivity in determining safety factor. Examples are used to verify the validity of the proposed method.

13. Slope stability analysis using limit equilibrium method in nonlinear criterion.

Science.gov (United States)

Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

2014-01-01

In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

14. An iterative method to reconstruct the refractive index of a medium from time-of-flight measurements

Science.gov (United States)

Schröder, Udo; Schuster, Thomas

2016-08-01

The article deals with a classical inverse problem: the computation of the refractive index of a medium from ultrasound time-of-flight measurements. This problem is very popular in seismics but also for tomographic problems in inhomogeneous media. For example ultrasound vector field tomography needs a priori knowledge of the sound speed. According to Fermat’s principle ultrasound signals travel along geodesic curves of a Riemannian metric which is associated with the refractive index. The inverse problem thus consists of determining the index of refraction from integrals along geodesics curves associated with the integrand leading to a nonlinear problem. In this article we describe a numerical solver for this problem scheme based on an iterative minimization method for an appropriate Tikhonov functional. The outcome of the method is a stable approximation of the sought index of refraction as well as a corresponding set of geodesic curves. We prove some analytical convergence results for this method and demonstrate its performance by means of several numerical experiments. Another novelty in this article is the explicit representation of the backprojection operator for the ray transform in Riemannian geometry and its numerical realization relying on a corresponding phase function that is determined by the metric. This gives a natural extension of the conventional backprojection from 2D computerized tomography to inhomogeneous geometries. The authors dedicate this article to Prof Todd Quinto on the occasion of his 65th birthday.

15. Relaxation and decomposition methods for mixed integer nonlinear programming

CERN Document Server

Nowak, Ivo; Bank, RE

2005-01-01

This book presents a comprehensive description of efficient methods for solving nonconvex mixed integer nonlinear programs, including several numerical and theoretical results, which are presented here for the first time. It contains many illustrations and an up-to-date bibliography. Because on the emphasis on practical methods, as well as the introduction into the basic theory, the book is accessible to a wide audience. It can be used both as a research and as a graduate text.

16. An Iterative Regularization Method for Identifying the Source Term in a Second Order Differential Equation

Directory of Open Access Journals (Sweden)

Fairouz Zouyed

2015-01-01

Full Text Available This paper discusses the inverse problem of determining an unknown source in a second order differential equation from measured final data. This problem is ill-posed; that is, the solution (if it exists does not depend continuously on the data. In order to solve the considered problem, an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.

17. Three-Dimensional Induced Polarization Parallel Inversion Using Nonlinear Conjugate Gradients Method

Directory of Open Access Journals (Sweden)

Huan Ma

2015-01-01

Full Text Available Four kinds of array of induced polarization (IP methods (surface, borehole-surface, surface-borehole, and borehole-borehole are widely used in resource exploration. However, due to the presence of large amounts of the sources, it will take much time to complete the inversion. In the paper, a new parallel algorithm is described which uses message passing interface (MPI and graphics processing unit (GPU to accelerate 3D inversion of these four methods. The forward finite differential equation is solved by ILU0 preconditioner and the conjugate gradient (CG solver. The inverse problem is solved by nonlinear conjugate gradients (NLCG iteration which is used to calculate one forward and two “pseudo-forward” modelings and update the direction, space, and model in turn. Because each source is independent in forward and “pseudo-forward” modelings, multiprocess modes are opened by calling MPI library. The iterative matrix solver within CULA is called in each process. Some tables and synthetic data examples illustrate that this parallel inversion algorithm is effective. Furthermore, we demonstrate that the joint inversion of surface and borehole data produces resistivity and chargeability results are superior to those obtained from inversions of individual surface data.

18. The structure analysis of ITER cryostat based on the finite element method

International Nuclear Information System (INIS)

Liang Chao; Ye, M.Y.; Yao, D.M.; Cao, Lei; Zhou, Z.B.; Xu, Teijun; Wang Jian

2013-01-01

In the ITER project the cryostat is one of the most important components. Cryostat shall transfer all the loads that derive from the TOKAMAK inner basic machine, and from the cryostat itself, to the floor of the TOKAMAK pit (during the normal and off-normal operational regimes, and at specified accidental conditions). This paper researches the dynamic structure strength of the ITER cryostat during the operation of TOKAMAK. Firstly the paper introduces the types of loads and the importance of every type load to the research. Then it gives out the method of building model and principle of simplified model, boundary conditions and the way of applying loads on the cryostat. Finally the author discussed the analysis result and the strength questions of cryostat, also, the author pointed out the opinions according to the analysis results.

19. Worst-case Analysis of Strategy Iteration and the Simplex Method

DEFF Research Database (Denmark)

Hansen, Thomas Dueholm

In this dissertation we study strategy iteration (also known as policy iteration) algorithms for solving Markov decision processes (MDPs) and two-player turn-based stochastic games (2TBSGs). MDPs provide a mathematical model for sequential decision making under uncertainty. They are widely used...... to model stochastic optimization problems in various areas ranging from operations research, machine learning, artificial intelligence, economics and game theory. The class of two-player turn-based stochastic games is a natural generalization of Markov decision processes that is obtained by introducing...... in the size of the problem (the bounds have subexponential form). Utilizing a tight connection between MDPs and linear programming, it is shown that the same bounds apply to the corresponding pivoting rules for the simplex method for solving linear programs. Prior to this result no super-polynomial lower...

20. Shrinkage-thresholding enhanced born iterative method for solving 2D inverse electromagnetic scattering problem

KAUST Repository

Desmal, Abdulla

2014-07-01

A numerical framework that incorporates recently developed iterative shrinkage thresholding (IST) algorithms within the Born iterative method (BIM) is proposed for solving the two-dimensional inverse electromagnetic scattering problem. IST algorithms minimize a cost function weighted between measurement-data misfit and a zeroth/first-norm penalty term and therefore promote "sharpness" in the solution. Consequently, when applied to domains with sharp variations, discontinuities, or sparse content, the proposed framework is more efficient and accurate than the "classical" BIM that minimizes a cost function with a second-norm penalty term. Indeed, numerical results demonstrate the superiority of the IST-BIM over the classical BIM when they are applied to sparse domains: Permittivity and conductivity profiles recovered using the IST-BIM are sharper and more accurate and converge faster. © 1963-2012 IEEE.

1. KEELE, Minimization of Nonlinear Function with Linear Constraints, Variable Metric Method

International Nuclear Information System (INIS)

Westley, G.W.

1975-01-01

1 - Description of problem or function: KEELE is a linearly constrained nonlinear programming algorithm for locating a local minimum of a function of n variables with the variables subject to linear equality and/or inequality constraints. 2 - Method of solution: A variable metric procedure is used where the direction of search at each iteration is obtained by multiplying the negative of the gradient vector by a positive definite matrix which approximates the inverse of the matrix of second partial derivatives associated with the function. 3 - Restrictions on the complexity of the problem: Array dimensions limit the number of variables to 20 and the number of constraints to 50. These can be changed by the user

2. Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

Science.gov (United States)

Trujillo Bueno, Javier; Manso Sainz, Rafael

1999-05-01

This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.

3. Nonlinear dynamic analysis using Petrov-Galerkin natural element method

International Nuclear Information System (INIS)

Lee, Hong Woo; Cho, Jin Rae

2004-01-01

According to our previous study, it is confirmed that the Petrov-Galerkin Natural Element Method (PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin Natural Element Method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem

4. Numerical method for the nonlinear Fokker-Planck equation

International Nuclear Information System (INIS)

Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

1997-01-01

A practical method based on distributed approximating functionals (DAFs) is proposed for numerically solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numerical scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the method is compared with the accurate K-point Stirling interpolation formula finite-difference method. The approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which both the cumulant expansion and scaling theory have been found by Drozdov and Morillo [Phys. Rev. E 54, 931 (1996)] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard interpretation of the transient bimodality in terms of the flat region in the kinetic potential fails for the present case. An alternative analysis based on the effective potential of the Schroedinger-like Fokker-Planck equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are numerically much more challenging than other examples that have been previously reported for this problem. copyright 1997 The American Physical Society

5. Overlapping Schwarz for Nonlinear Problems. An Element Agglomeration Nonlinear Additive Schwarz Preconditioned Newton Method for Unstructured Finite Element Problems

Energy Technology Data Exchange (ETDEWEB)

Cai, X C; Marcinkowski, L; Vassilevski, P S

2005-02-10

This paper extends previous results on nonlinear Schwarz preconditioning ([4]) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The non-local finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in [8]. Then, the algebraic construction from [9] of the corresponding non-linear finite element subproblems is applied to generate the subspace based nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method. Numerical illustration is also provided.

6. On the orthogonalised reverse path method for nonlinear system identification

Science.gov (United States)

Muhamad, P.; Sims, N. D.; Worden, K.

2012-09-01

The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.

7. Multi-crack imaging using nonclassical nonlinear acoustic method

International Nuclear Information System (INIS)

Zhang Lue; Zhang Ying; Liu Xiao-Zhou; Gong Xiu-Fen

2014-01-01

Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

8. Multi-crack imaging using nonclassical nonlinear acoustic method

Science.gov (United States)

Zhang, Lue; Zhang, Ying; Liu, Xiao-Zhou; Gong, Xiu-Fen

2014-10-01

Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.

9. Iterative convergence acceleration of neutral particle transport methods via adjacent-cell preconditioners

International Nuclear Information System (INIS)

Azmy, Y.Y.

1999-01-01

The author proposes preconditioning as a viable acceleration scheme for the inner iterations of transport calculations in slab geometry. In particular he develops Adjacent-Cell Preconditioners (AP) that have the same coupling stencil as cell-centered diffusion schemes. For lowest order methods, e.g., Diamond Difference, Step, and 0-order Nodal Integral Method (ONIM), cast in a Weighted Diamond Difference (WDD) form, he derives AP for thick (KAP) and thin (NAP) cells that for model problems are unconditionally stable and efficient. For the First-Order Nodal Integral Method (INIM) he derives a NAP that possesses similarly excellent spectral properties for model problems. The two most attractive features of the new technique are:(1) its cell-centered coupling stencil, which makes it more adequate for extension to multidimensional, higher order situations than the standard edge-centered or point-centered Diffusion Synthetic Acceleration (DSA) methods; and (2) its decreasing spectral radius with increasing cell thickness to the extent that immediate pointwise convergence, i.e., in one iteration, can be achieved for problems with sufficiently thick cells. He implemented these methods, augmented with appropriate boundary conditions and mixing formulas for material heterogeneities, in the test code APID that he uses to successfully verify the analytical spectral properties for homogeneous problems. Furthermore, he conducts numerical tests to demonstrate the robustness of the KAP and NAP in the presence of sharp mesh or material discontinuities. He shows that the AP for WDD is highly resilient to such discontinuities, but for INIM a few cases occur in which the scheme does not converge; however, when it converges, AP greatly reduces the number of iterations required to achieve convergence

10. Lavrentiev regularization method for nonlinear ill-posed problems

International Nuclear Information System (INIS)

Kinh, Nguyen Van

2002-10-01

In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)

11. Adomian decomposition method for nonlinear Sturm-Liouville problems

Directory of Open Access Journals (Sweden)

Sennur Somali

2007-09-01

Full Text Available In this paper the Adomian decomposition method is applied to the nonlinear Sturm-Liouville problem-y" + y(tp=λy(t, y(t > 0, t ∈ I = (0, 1, y(0 = y(1 = 0, where p > 1 is a constant and λ > 0 is an eigenvalue parameter. Also, the eigenvalues and the behavior of eigenfuctions of the problem are demonstrated.

12. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

International Nuclear Information System (INIS)

Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

2005-01-01

Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

13. Calorimetric method for current sharing temperature measurements in ITER conductor samples in SULTAN

International Nuclear Information System (INIS)

Bagnasco, M.

2009-01-01

Several Toroidal Field Conductor short samples with slight layout variations have been assembled and tested in the SULTAN facility at CRPP. The measurement campaigns started in 2007 and are still ongoing. The performance of every conductor is expressed in terms of current sharing temperature (T cs ), i.e. the temperature at which a defined electric field, 10 μV/m, is detected in the cable due to the incipient superconducting-to-normal state transition. The T cs at specific operating conditions is the key design parameter for the ITER conductors and is the main object of the qualification tests. Typically, the average electric field is measured with voltage tap pairs attached on the jacket along the conductor. The inability however to explain observed premature voltage developments opened the discussion about possible alternative measuring methods. The He flow calorimetric method is based on the measurement of the resistive power generation in the conductor. It relies on the detection of very small temperature increases along the conductor in steady state operation. The accuracy and the reliability of the calorimetric method in SULTAN are critically discussed, with particular emphasis on the instrumentation requirements and test procedures. The application of the calorimetric method to the recent SULTAN test campaigns is described with its merits and limits. For future tests of ITER conductors in SULTAN, the calorimetric method for T cs test is proposed as a routine procedure.

14. The steady performance prediction of propeller-rudder-bulb system based on potential iterative method

International Nuclear Information System (INIS)

Liu, Y B; Su, Y M; Ju, L; Huang, S L

2012-01-01

A new numerical method was developed for predicting the steady hydrodynamic performance of propeller-rudder-bulb system. In the calculation, the rudder and bulb was taken into account as a whole, the potential based surface panel method was applied both to propeller and rudder-bulb system. The interaction between propeller and rudder-bulb was taken into account by velocity potential iteration in which the influence of propeller rotation was considered by the average influence coefficient. In the influence coefficient computation, the singular value should be found and deleted. Numerical results showed that the method presented is effective for predicting the steady hydrodynamic performance of propeller-rudder system and propeller-rudder-bulb system. Comparing with the induced velocity iterative method, the method presented can save programming and calculation time. Changing dimensions, the principal parameter—bulb size that affect energy-saving effect was studied, the results show that the bulb on rudder have a optimal size at the design advance coefficient.

15. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

Science.gov (United States)

Zhang, B.; Sang, Jun; Alam, Mohammad S.

2013-03-01

An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

16. On the Application of Iterative Methods of Nondifferentiable Optimization to Some Problems of Approximation Theory

Directory of Open Access Journals (Sweden)

Stefan M. Stefanov

2014-01-01

Full Text Available We consider the data fitting problem, that is, the problem of approximating a function of several variables, given by tabulated data, and the corresponding problem for inconsistent (overdetermined systems of linear algebraic equations. Such problems, connected with measurement of physical quantities, arise, for example, in physics, engineering, and so forth. A traditional approach for solving these two problems is the discrete least squares data fitting method, which is based on discrete l2-norm. In this paper, an alternative approach is proposed: with each of these problems, we associate a nondifferentiable (nonsmooth unconstrained minimization problem with an objective function, based on discrete l1- and/or l∞-norm, respectively; that is, these two norms are used as proximity criteria. In other words, the problems under consideration are solved by minimizing the residual using these two norms. Respective subgradients are calculated, and a subgradient method is used for solving these two problems. The emphasis is on implementation of the proposed approach. Some computational results, obtained by an appropriate iterative method, are given at the end of the paper. These results are compared with the results, obtained by the iterative gradient method for the corresponding “differentiable” discrete least squares problems, that is, approximation problems based on discrete l2-norm.

17. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction.

Science.gov (United States)

Nikazad, T; Davidi, R; Herman, G T

2012-03-01

We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.

18. Iteratively-coupled propagating exterior complex scaling method for electron-hydrogen collisions

International Nuclear Information System (INIS)

Bartlett, Philip L; Stelbovics, Andris T; Bray, Igor

2004-01-01

A newly-derived iterative coupling procedure for the propagating exterior complex scaling (PECS) method is used to efficiently calculate the electron-impact wavefunctions for atomic hydrogen. An overview of this method is given along with methods for extracting scattering cross sections. Differential scattering cross sections at 30 eV are presented for the electron-impact excitation to the n = 1, 2, 3 and 4 final states, for both PECS and convergent close coupling (CCC), which are in excellent agreement with each other and with experiment. PECS results are presented at 27.2 eV and 30 eV for symmetric and asymmetric energy-sharing triple differential cross sections, which are in excellent agreement with CCC and exterior complex scaling calculations, and with experimental data. At these intermediate energies, the efficiency of the PECS method with iterative coupling has allowed highly accurate partial-wave solutions of the full Schroedinger equation, for L ≤ 50 and a large number of coupled angular momentum states, to be obtained with minimal computing resources. (letter to the editor)

19. A holistic calibration method with iterative distortion compensation for stereo deflectometry

Science.gov (United States)

Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian

2018-07-01

This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.

20. PRIM: An Efficient Preconditioning Iterative Reweighted Least Squares Method for Parallel Brain MRI Reconstruction.

Science.gov (United States)

Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou

2018-02-08

The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.

1. Application of iterative method with dynamic weight based on observation equation's constant in NPP's surveying

International Nuclear Information System (INIS)

Chen Benfu; Guo Xianchun; Zou Zili

2009-01-01

It' s useful to identify the data with errors from the large number of observations during the process of adjustment to decrease the influence of the errors and to improve the quality of the final surveying result. Based on practical conditions of the nuclear power plant's plain control network, it has been given on how to simply calculate the threshold value which used to pre-weight each datum before adjustment calculation; it shows some superiorities in efficiency on data snooping and in quality of the final calculation compared with some traditional methods such as robust estimation, which process data with dynamic weight based the observation' s correction after each iteration. (authors)

2. Variational Iteration Method for Volterra Functional Integrodifferential Equations with Vanishing Linear Delays

Directory of Open Access Journals (Sweden)

Ali Konuralp

2014-01-01

Full Text Available Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay function θ(t vanishes inside the integral limits such that θ(t=qt for 0

3. A mixed finite element method for nonlinear diffusion equations

KAUST Repository

Burger, Martin; Carrillo, José ; Wolfram, Marie-Therese

2010-01-01

We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

4. Technical Note: Measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging

Energy Technology Data Exchange (ETDEWEB)

Yu, Lifeng, E-mail: yu.lifeng@mayo.edu; Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

2015-05-15

Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDI{sub vol} = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF{sub 50%} value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF{sub 50%} value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels.

5. A successive over-relaxation for slab geometry Simplified SN method with interface flux iteration

International Nuclear Information System (INIS)

Yavuz, M.

1995-01-01

A Successive Over-Relaxation scheme is proposed for speeding up the solution of one-group slab geometry transport problems using a Simplified S N method. The solution of the Simplified S N method that is completely free from all spatial truncation errors is based on the expansion of the angular flux in spherical-harmonics solutions. One way to obtain the (numerical) solution of the Simplified S N method is to use Interface Flux Iteration, which can be considered as the Gauss-Seidel relaxation scheme; the new information is immediately used in the calculations. To accelerate the convergence, an over relaxation parameter is employed in the solution algorithm. The over relaxation parameters for a number of cases depending on scattering ratios and mesh sizes are determined by Fourier analyzing infinite-medium Simplified S 2 equations. Using such over relaxation parameters in the iterative scheme, a significant increase in the convergence of transport problems can be achieved for coarse spatial cells whose spatial widths are greater than one mean-free-path

6. Solving nonlinear evolution equation system using two different methods

Science.gov (United States)

Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

2015-12-01

This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

7. The simplex method for nonlinear sliding mode control

Directory of Open Access Journals (Sweden)

Bartolini G.

1998-01-01

Full Text Available General nonlinear control systems described by ordinary differential equations with a prescribed sliding manifold are considered. A method of designing a feedback control law such that the state variable fulfills the sliding condition in finite time is based on the construction of a suitable simplex of vectors in the tangent space of the manifold. The convergence of the method is proved under an obtuse angle condition and a way to build the required simplex is indicated. An example of engineering interest is presented.

8. A Method for Speeding Up Value Iteration in Partially Observable Markov Decision Processes

OpenAIRE

Zhang, Nevin Lianwen; Lee, Stephen S.; Zhang, Weihong

2013-01-01

We present a technique for speeding up the convergence of value iteration for partially observable Markov decisions processes (POMDPs). The underlying idea is similar to that behind modified policy iteration for fully observable Markov decision processes (MDPs). The technique can be easily incorporated into any existing POMDP value iteration algorithms. Experiments have been conducted on several test problems with one POMDP value iteration algorithm called incremental pruning. We find that th...

9. Nonlinear wave equations

CERN Document Server

Li, Tatsien

2017-01-01

This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

10. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

Science.gov (United States)

2017-01-01

The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

11. SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT

International Nuclear Information System (INIS)

Wu, P; Mao, T; Gong, S; Wang, J; Niu, T; Sheng, K; Xie, Y

2016-01-01

Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimization trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R

12. SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT

Energy Technology Data Exchange (ETDEWEB)

Wu, P; Mao, T; Gong, S; Wang, J; Niu, T [Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Sheng, K [Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA (United States); Xie, Y [Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong (China)

2016-06-15

Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimization trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R

13. Iterative correction method for shift-variant blurring caused by collimator aperture in SPECT

International Nuclear Information System (INIS)

Ogawa, Koichi; Katsu, Haruto

1996-01-01

A collimation system in single photon computed tomography (SPECT) induces blurring on reconstructed images. The blurring varies with the collimator aperture which is determined by the shape of the hole (its diameter and length), and with the distance between the collimator surface and the object. The blurring has shift-variant properties. This paper presents a new iterative method for correcting the shift-variant blurring. The method estimates the ratio of 'ideal projection value' to 'measured projection value' at each sample point. The term 'ideal projection value' means the number of photons which enter the hole perpendicular to the collimator surface, and the term 'measured projection value' means the number of photons which enter the hole at acute angles to the collimator aperture axis. If the estimation is accurate, ideal projection value can be obtained as the product of the measured projection value and the estimated ratio. The accuracy of the estimation is improved iteratively by comparing the measured projection value with a weighted summation of several estimated projection value. The simulation results showed that spatial resolution was improved without amplification of artifacts due to statistical noise. (author)

14. Strong convergence with a modified iterative projection method for hierarchical fixed point problems and variational inequalities

Directory of Open Access Journals (Sweden)

Ibrahim Karahan

2016-04-01

Full Text Available Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T_{n}}:C›H be a sequence of nearly nonexpansive mappings such that F:=?_{i=1}^{?}F(T_{i}?Ø. Let V:C›H be a ?-Lipschitzian mapping and F:C›H be a L-Lipschitzian and ?-strongly monotone operator. This paper deals with a modified iterative projection method for approximating a solution of the hierarchical fixed point problem. It is shown that under certain approximate assumptions on the operators and parameters, the modified iterative sequence {x_{n}} converges strongly to x^{*}?F which is also the unique solution of the following variational inequality: ?0, ?x?F. As a special case, this projection method can be used to find the minimum norm solution of above variational inequality; namely, the unique solution x^{*} to the quadratic minimization problem: x^{*}=argmin_{x?F}?x?². The results here improve and extend some recent corresponding results of other authors.

15. Single photon emission computed tomography using a regularizing iterative method for attenuation correction

International Nuclear Information System (INIS)

Soussaline, Francoise; Cao, A.; Lecoq, G.

1981-06-01

An analytically exact solution to the attenuated tomographic operator is proposed. Such a technique called Regularizing Iterative Method (RIM) belongs to the iterative class of procedures where a priori knowledge can be introduced on the evaluation of the size and shape of the activity domain to be reconstructed, and on the exact attenuation distribution. The relaxation factor used is so named because it leads to fast convergence and provides noise filtering for a small number of iteractions. The effectiveness of such a method was tested in the Single Photon Emission Computed Tomography (SPECT) reconstruction problem, with the goal of precise correction for attenuation before quantitative study. Its implementation involves the use of a rotating scintillation camera based SPECT detector connected to a mini computer system. Mathematical simulations of cylindical uniformly attenuated phantoms indicate that in the range of a priori calculated relaxation factor a fast converging solution can always be found with a (contrast) accuracy of the order of 0.2 to 4% given that numerical errors and noise are or not, taken into account. The sensitivity of the (RIM) algorithm to errors in the size of the reconstructed object and in the value of the attenuation coefficient μ was studied, using the same simulation data. Extreme variations of +- 15% in these parameters will lead to errors of the order of +- 20% in the quantitative results. Physical phantoms representing a variety of geometrical situations were also studied

16. Radiation pattern synthesis of planar antennas using the iterative sampling method

Science.gov (United States)

Stutzman, W. L.; Coffey, E. L.

1975-01-01

A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

17. Use of the iterative solution method for coupled finite element and boundary element modeling

International Nuclear Information System (INIS)

Koteras, J.R.

1993-07-01

Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver

18. Comparing performance of standard and iterative linear unmixing methods for hyperspectral signatures

Science.gov (United States)

Gault, Travis R.; Jansen, Melissa E.; DeCoster, Mallory E.; Jansing, E. David; Rodriguez, Benjamin M.

2016-05-01

Linear unmixing is a method of decomposing a mixed signature to determine the component materials that are present in sensor's field of view, along with the abundances at which they occur. Linear unmixing assumes that energy from the materials in the field of view is mixed in a linear fashion across the spectrum of interest. Traditional unmixing methods can take advantage of adjacent pixels in the decomposition algorithm, but is not the case for point sensors. This paper explores several iterative and non-iterative methods for linear unmixing, and examines their effectiveness at identifying the individual signatures that make up simulated single pixel mixed signatures, along with their corresponding abundances. The major hurdle addressed in the proposed method is that no neighboring pixel information is available for the spectral signature of interest. Testing is performed using two collections of spectral signatures from the Johns Hopkins University Applied Physics Laboratory's Signatures Database software (SigDB): a hand-selected small dataset of 25 distinct signatures from a larger dataset of approximately 1600 pure visible/near-infrared/short-wave-infrared (VIS/NIR/SWIR) spectra. Simulated spectra are created with three and four material mixtures randomly drawn from a dataset originating from SigDB, where the abundance of one material is swept in 10% increments from 10% to 90%with the abundances of the other materials equally divided amongst the remainder. For the smaller dataset of 25 signatures, all combinations of three or four materials are used to create simulated spectra, from which the accuracy of materials returned, as well as the correctness of the abundances, is compared to the inputs. The experiment is expanded to include the signatures from the larger dataset of almost 1600 signatures evaluated using a Monte Carlo scheme with 5000 draws of three or four materials to create the simulated mixed signatures. The spectral similarity of the inputs to the

19. A nonlinear analytic function expansion nodal method for transient calculations

Energy Technology Data Exchange (ETDEWEB)

Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

1998-12-31

The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

20. Phase Plane Analysis Method of Nonlinear Traffic Phenomena

Directory of Open Access Journals (Sweden)

Wenhuan Ai

2015-01-01

Full Text Available A new phase plane analysis method for analyzing the complex nonlinear traffic phenomena is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the analysis in phase plane. According to the new model, various traffic phenomena, such as the well-known shock waves, rarefaction waves, and stop-and-go waves, are analyzed in the phase plane. From the phase plane diagrams, we can see the relationship between traffic jams and system instability. So the problem of traffic flow could be converted into that of system stability. The results show that the traffic phenomena described by the new method is consistent with that described by traditional methods. Moreover, the phase plane analysis highlights the unstable traffic phenomena we are chiefly concerned about and describes the variation of density or velocity with time or sections more clearly.

1. A nonlinear analytic function expansion nodal method for transient calculations

Energy Technology Data Exchange (ETDEWEB)

Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

1999-12-31

The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

2. Estimation methods for nonlinear state-space models in ecology

DEFF Research Database (Denmark)

Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

2011-01-01

The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

3. A Comparison of Sequential and GPU Implementations of Iterative Methods to Compute Reachability Probabilities

Directory of Open Access Journals (Sweden)

Elise Cormie-Bowins

2012-10-01

Full Text Available We consider the problem of computing reachability probabilities: given a Markov chain, an initial state of the Markov chain, and a set of goal states of the Markov chain, what is the probability of reaching any of the goal states from the initial state? This problem can be reduced to solving a linear equation Ax = b for x, where A is a matrix and b is a vector. We consider two iterative methods to solve the linear equation: the Jacobi method and the biconjugate gradient stabilized (BiCGStab method. For both methods, a sequential and a parallel version have been implemented. The parallel versions have been implemented on the compute unified device architecture (CUDA so that they can be run on a NVIDIA graphics processing unit (GPU. From our experiments we conclude that as the size of the matrix increases, the CUDA implementations outperform the sequential implementations. Furthermore, the BiCGStab method performs better than the Jacobi method for dense matrices, whereas the Jacobi method does better for sparse ones. Since the reachability probabilities problem plays a key role in probabilistic model checking, we also compared the implementations for matrices obtained from a probabilistic model checker. Our experiments support the conjecture by Bosnacki et al. that the Jacobi method is superior to Krylov subspace methods, a class to which the BiCGStab method belongs, for probabilistic model checking.

4. Invariant renormalization method for nonlinear realizations of dynamical symmetries

International Nuclear Information System (INIS)

Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.

1977-01-01

The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported

5. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

Science.gov (United States)

Miao, Linling; Young, Charles D.; Sing, Charles E.

2017-07-01

Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

6. A guidance law for UAV autonomous aerial refueling based on the iterative computation method

Directory of Open Access Journals (Sweden)

Luo Delin

2014-08-01

Full Text Available The rendezvous and formation problem is a significant part for the unmanned aerial vehicle (UAV autonomous aerial refueling (AAR technique. It can be divided into two major phases: the long-range guidance phase and the formation phase. In this paper, an iterative computation guidance law (ICGL is proposed to compute a series of state variables to get the solution of a control variable for a UAV conducting rendezvous with a tanker in AAR. The proposed method can make the control variable converge to zero when the tanker and the UAV receiver come to a formation flight eventually. For the long-range guidance phase, the ICGL divides it into two sub-phases: the correction sub-phase and the guidance sub-phase. The two sub-phases share the same iterative process. As for the formation phase, a velocity coordinate system is created by which control accelerations are designed to make the speed of the UAV consistent with that of the tanker. The simulation results demonstrate that the proposed ICGL is effective and robust against wind disturbance.

7. User input in iterative design for prevention product development: leveraging interdisciplinary methods to optimize effectiveness.

Science.gov (United States)

Guthrie, Kate M; Rosen, Rochelle K; Vargas, Sara E; Guillen, Melissa; Steger, Arielle L; Getz, Melissa L; Smith, Kelley A; Ramirez, Jaime J; Kojic, Erna M

2017-10-01

The development of HIV-preventive topical vaginal microbicides has been challenged by a lack of sufficient adherence in later stage clinical trials to confidently evaluate effectiveness. This dilemma has highlighted the need to integrate translational research earlier in the drug development process, essentially applying behavioral science to facilitate the advances of basic science with respect to the uptake and use of biomedical prevention technologies. In the last several years, there has been an increasing recognition that the user experience, specifically the sensory experience, as well as the role of meaning-making elicited by those sensations, may play a more substantive role than previously thought. Importantly, the role of the user-their sensory perceptions, their judgements of those experiences, and their willingness to use a product-is critical in product uptake and consistent use post-marketing, ultimately realizing gains in global public health. Specifically, a successful prevention product requires an efficacious drug, an efficient drug delivery system, and an effective user. We present an integrated iterative drug development and user experience evaluation method to illustrate how user-centered formulation design can be iterated from the early stages of preclinical development to leverage the user experience. Integrating the user and their product experiences into the formulation design process may help optimize both the efficiency of drug delivery and the effectiveness of the user.

8. An iterative algorithm for solving the multidimensional neutron diffusion nodal method equations on parallel computers

International Nuclear Information System (INIS)

Kirk, B.L.; Azmy, Y.Y.

1992-01-01

In this paper the one-group, steady-state neutron diffusion equation in two-dimensional Cartesian geometry is solved using the nodal integral method. The discrete variable equations comprise loosely coupled sets of equations representing the nodal balance of neutrons, as well as neutron current continuity along rows or columns of computational cells. An iterative algorithm that is more suitable for solving large problems concurrently is derived based on the decomposition of the spatial domain and is accelerated using successive overrelaxation. This algorithm is very well suited for parallel computers, especially since the spatial domain decomposition occurs naturally, so that the number of iterations required for convergence does not depend on the number of processors participating in the calculation. Implementation of the authors' algorithm on the Intel iPSC/2 hypercube and Sequent Balance 8000 parallel computer is presented, and measured speedup and efficiency for test problems are reported. The results suggest that the efficiency of the hypercube quickly deteriorates when many processors are used, while the Sequent Balance retains very high efficiency for a comparable number of participating processors. This leads to the conjecture that message-passing parallel computers are not as well suited for this algorithm as shared-memory machines

9. Iterative observer based method for source localization problem for Poisson equation in 3D

KAUST Repository

2017-07-10

A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data estimation problems for Laplace equation over the 3D domain. The solution of each of these boundary estimation problems involves writing down the mathematical problem in state-space-like representation using one of the space variables as time-like. First, system observability result for 3D boundary estimation problem is recalled in an infinite dimensional setting. Then, based on the observability result, the boundary estimation problem is decomposed into a set of independent 2D sub-problems. These 2D problems are then solved using an iterative observer to obtain the solution. Theoretical results are provided. The method is implemented numerically using finite difference discretization schemes. Numerical illustrations along with simulation results are provided.

10. A practical iterative PID tuning method for mechanical systems using parameter chart

Science.gov (United States)

Kang, M.; Cheong, J.; Do, H. M.; Son, Y.; Niculescu, S.-I.

2017-10-01

In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.

11. SPET reconstruction with a non-uniform attenuation coefficient using an analytical regularizing iterative method

International Nuclear Information System (INIS)

Soussaline, F.; LeCoq, C.; Raynaud, C.; Kellershohn, C.

1982-09-01

The aim of this study is to evaluate the potential of the RIM technique when used in brain studies. The analytical Regulatorizing Iterative Method (RIM) is designed to provide fast and accurate reconstruction of tomographic images when non-uniform attenuation is to be accounted for. As indicated by phantom studies, this method improves the contrast and the signal-to-noise ratio as compared to those obtained with FBP (Filtered Back Projection) technique. Preliminary results obtained in brain studies using AMPI-123 (isopropil-amphetamine I-123) are very encouraging in terms of quantitative regional cellular activity. However, the clinical usefulness of this mathematically accurate reconstruction procedure is going to be demonstrated in our Institution, in comparing quantitative data in heart or liver studies where control values can be obtained

12. SPET reconstruction with a non-uniform attenuation coefficient using an analytical regularizing iterative method

International Nuclear Information System (INIS)

Soussaline, F.; LeCoq, C.; Raynaud, C.; Kellershohn

1982-01-01

The potential of the Regularizing Iterative Method (RIM), when used in brain studies, is evaluated. RIM is designed to provide fast and accurate reconstruction of tomographic images when non-uniform attenuation is to be accounted for. As indicated by phantom studies, this method improves the contrast and the signal-to-noise ratio as compared to those obtained with Filtered Back Projection (FBP) technique. Preliminary results obtained in brain studies using isopropil-amphetamine I-123 (AMPI-123) are very encouraging in terms of quantitative regional cellular activity. However, the clinical usefulness of this mathematically accurate reconstruction procedure is going to be demonstrated, in comparing quantitative data in heart or liver studies where control values can be obtained

13. Iterative Dipole Moment Method for the Dielectrophoretic Particle-Particle Interaction in a DC Electric Field

Directory of Open Access Journals (Sweden)

Qing Zhang

2018-01-01

Full Text Available Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM method was used to calculate the dielectrophoretic (DEP forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.

14. Clinical correlative evaluation of an iterative method for reconstruction of brain SPECT images

International Nuclear Information System (INIS)

Nobili, Flavio; Vitali, Paolo; Calvini, Piero; Bollati, Francesca; Girtler, Nicola; Delmonte, Marta; Mariani, Giuliano; Rodriguez, Guido

2001-01-01

Background: Brain SPECT and PET investigations have showed discrepancies in Alzheimer's disease (AD) when considering data deriving from deeply located structures, such as the mesial temporal lobe. These discrepancies could be due to a variety of factors, including substantial differences in gamma-cameras and underlying technology. Mesial temporal structures are deeply located within the brain and the commonly used Filtered Back-Projection (FBP) technique does not fully take into account either the physical parameters of gamma-cameras or geometry of collimators. In order to overcome these limitations, alternative reconstruction methods have been proposed, such as the iterative method of the Conjugate Gradients with modified matrix (CG). However, the clinical applications of these methods have so far been only anecdotal. The present study was planned to compare perfusional SPECT data as derived from the conventional FBP method and from the iterative CG method, which takes into account the geometrical and physical characteristics of the gamma-camera, by a correlative approach with neuropsychology. Methods: Correlations were compared between perfusion of the hippocampal region, as achieved by both the FBP and the CG reconstruction methods, and a short-memory test (Selective Reminding Test, SRT), specifically addressing one of its function. A brain-dedicated camera (CERASPECT) was used for SPECT studies with 99m Tc-hexamethylpropylene-amine-oxime in 23 consecutive patients (mean age: 74.2±6.5) with mild (Mini-Mental Status Examination score ≥15, mean 20.3±3), probable AD. Counts from a hippocampal region in each hemisphere were referred to the average thalamic counts. Results: Hippocampal perfusion significantly correlated with the MMSE score with similar statistical significance (p<0.01) between the two reconstruction methods. Correlation between hippocampal perfusion and the SRT score was better with the CG method (r=0.50 for both hemispheres, p<0.01) than with

15. Clinical correlative evaluation of an iterative method for reconstruction of brain SPECT images

Energy Technology Data Exchange (ETDEWEB)

Nobili, Flavio E-mail: fnobili@smartino.ge.it; Vitali, Paolo; Calvini, Piero; Bollati, Francesca; Girtler, Nicola; Delmonte, Marta; Mariani, Giuliano; Rodriguez, Guido

2001-08-01

Background: Brain SPECT and PET investigations have showed discrepancies in Alzheimer's disease (AD) when considering data deriving from deeply located structures, such as the mesial temporal lobe. These discrepancies could be due to a variety of factors, including substantial differences in gamma-cameras and underlying technology. Mesial temporal structures are deeply located within the brain and the commonly used Filtered Back-Projection (FBP) technique does not fully take into account either the physical parameters of gamma-cameras or geometry of collimators. In order to overcome these limitations, alternative reconstruction methods have been proposed, such as the iterative method of the Conjugate Gradients with modified matrix (CG). However, the clinical applications of these methods have so far been only anecdotal. The present study was planned to compare perfusional SPECT data as derived from the conventional FBP method and from the iterative CG method, which takes into account the geometrical and physical characteristics of the gamma-camera, by a correlative approach with neuropsychology. Methods: Correlations were compared between perfusion of the hippocampal region, as achieved by both the FBP and the CG reconstruction methods, and a short-memory test (Selective Reminding Test, SRT), specifically addressing one of its function. A brain-dedicated camera (CERASPECT) was used for SPECT studies with {sup 99m}Tc-hexamethylpropylene-amine-oxime in 23 consecutive patients (mean age: 74.2{+-}6.5) with mild (Mini-Mental Status Examination score {>=}15, mean 20.3{+-}3), probable AD. Counts from a hippocampal region in each hemisphere were referred to the average thalamic counts. Results: Hippocampal perfusion significantly correlated with the MMSE score with similar statistical significance (p<0.01) between the two reconstruction methods. Correlation between hippocampal perfusion and the SRT score was better with the CG method (r=0.50 for both hemispheres, p<0

16. Accelerating Inexact Newton Schemes for Large Systems of Nonlinear Equations

NARCIS (Netherlands)

Fokkema, D.R.; Sleijpen, G.L.G.; Vorst, H.A. van der

Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general

17. Formulation of nonlinear chromaticity in circular accelerators by canonical perturbation method

International Nuclear Information System (INIS)

Takao, Masaru

2005-01-01

The formulation of nonlinear chromaticity in circular accelerators based on the canonical perturbation method is presented. Since the canonical perturbation method directly relates the tune shift to the perturbation Hamiltonian, it greatly simplifies the calculation of the nonlinear chromaticity. The obtained integral representation for nonlinear chromaticity can be systematically extended to higher orders

18. ITER...ation

International Nuclear Information System (INIS)

Troyon, F.

1997-01-01

Recurrent attacks against ITER, the new generation of tokamak are a mix of political and scientific arguments. This short article draws a historical review of the European fusion program. This program has allowed to build and manage several installations in the aim of getting experimental results necessary to lead the program forwards. ITER will bring together a fusion reactor core with technologies such as materials, superconductive coils, heating devices and instrumentation in order to validate and delimit the operating range. ITER will be a logical and decisive step towards the use of controlled fusion. (A.C.)

19. Kyropoulos method for growth of nonlinear optical organic crystal ABP (4-aminobenzophenone) from the melt

Science.gov (United States)

Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.

1993-03-01

The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.

20. Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics

Energy Technology Data Exchange (ETDEWEB)

Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)

1996-12-31

In the field of computational electrodynamics the discretization of Maxwells equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.

1. FINITE ELEMENT DISPLACEMENT PERTURBATION METHOD FOR GEOMETRIC NONLINEAR BEHAVIORS OF SHELLS OF REVOLUTION OVERALL BENDING IN A MERIDIONAL PLANE AND APPLICATION TO BELLOWS (Ⅰ)

Institute of Scientific and Technical Information of China (English)

朱卫平; 黄黔

2002-01-01

In order to analyze bellows effectively and practically, the finite-element-displacement-perturbation method (FEDPM) is proposed for the geometric nonlinearbehaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturba-tion that the nodal displacement vector and the nodal force vector of each finite elementare expanded by taking root-mean-square value of circumferential strains of the shells as aperturbation parameter. The load steps and the iteration times are not cs arbitrary andunpredictable as in usual nonlinear analysis. Instead, there are certain relations betweenthe load steps and the displacement increments, and no need of iteration for each loadstep. Besides, in the formulations, the shell is idealized into a series of conical frusta for the convenience of practice, Sander' s nonlinear geometric equations of moderate smallrotation are used, and the shell made of more than one material ply is also considered.

2. Joint 2D-DOA and Frequency Estimation for L-Shaped Array Using Iterative Least Squares Method

Directory of Open Access Journals (Sweden)

Ling-yun Xu

2012-01-01

Full Text Available We introduce an iterative least squares method (ILS for estimating the 2D-DOA and frequency based on L-shaped array. The ILS iteratively finds direction matrix and delay matrix, then 2D-DOA and frequency can be obtained by the least squares method. Without spectral peak searching and pairing, this algorithm works well and pairs the parameters automatically. Moreover, our algorithm has better performance than conventional ESPRIT algorithm and propagator method. The useful behavior of the proposed algorithm is verified by simulations.

3. Iterative methods for the detection of Hopf bifurcations in finite element discretisation of incompressible flow problems

International Nuclear Information System (INIS)

Cliffe, K.A.; Garratt, T.J.; Spence, A.

1992-03-01

This paper is concerned with the problem of computing a small number of eigenvalues of large sparse generalised eigenvalue problems arising from mixed finite element discretisations of time dependent equations modelling viscous incompressible flow. The eigenvalues of importance are those with smallest real part and can be used in a scheme to determine the stability of steady state solutions and to detect Hopf bifurcations. We introduce a modified Cayley transform of the generalised eigenvalue problem which overcomes a drawback of the usual Cayley transform applied to such problems. Standard iterative methods are then applied to the transformed eigenvalue problem to compute approximations to the eigenvalue of smallest real part. Numerical experiments are performed using a model of double diffusive convection. (author)

4. The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER

International Nuclear Information System (INIS)

Xu Xiufeng; Li Shiping; Cao Hongrui; Yin Zejie; Yuan Guoliang; Yang Qingwei

2013-01-01

The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count. (magnetically confined plasma)

5. High-order noise analysis for low dose iterative image reconstruction methods: ASIR, IRIS, and MBAI

Science.gov (United States)

Do, Synho; Singh, Sarabjeet; Kalra, Mannudeep K.; Karl, W. Clem; Brady, Thomas J.; Pien, Homer

2011-03-01

Iterative reconstruction techniques (IRTs) has been shown to suppress noise significantly in low dose CT imaging. However, medical doctors hesitate to accept this new technology because visual impression of IRT images are different from full-dose filtered back-projection (FBP) images. Most common noise measurements such as the mean and standard deviation of homogeneous region in the image that do not provide sufficient characterization of noise statistics when probability density function becomes non-Gaussian. In this study, we measure L-moments of intensity values of images acquired at 10% of normal dose and reconstructed by IRT methods of two state-of-art clinical scanners (i.e., GE HDCT and Siemens DSCT flash) by keeping dosage level identical to each other. The high- and low-dose scans (i.e., 10% of high dose) were acquired from each scanner and L-moments of noise patches were calculated for the comparison.

6. Method for simultaneous measurement of borehole and formation neutron decay-times employing iterative fitting

International Nuclear Information System (INIS)

Schultz, W.E.

1982-01-01

A method is described of making in situ measurements of the thermal neutron decay time of earth formations in the vicinity of a wellbore. The borehole and earth formations in its vicinity are repetitively irradiated with pulsed fast neutrons and, during the intervals between pulses, capture gamma radiation is measured in at least four, non-overlapping, contiguous time intervals. A background radiation measurement is made between successive pulses and used to correct count-rates representative of thermal neutron populations in the borehole and the formations, the count-rates being generated during each of the time intervals. The background-corrected count-rate measurements are iteratively fitted to exponential curves using a least squares technique to simultaneously derive signals representing borehole component and formation component of the thermal neutron decay time. The signals are recorded as a function of borehole depth. (author)

7. Iterative method to compute the Fermat points and Fermat distances of multiquarks

International Nuclear Information System (INIS)

Bicudo, P.; Cardoso, M.

2009-01-01

The multiquark confining potential is proportional to the total distance of the fundamental strings linking the quarks and antiquarks. We address the computation of the total string distance and of the Fermat points where the different strings meet. For a meson the distance is trivially the quark-antiquark distance. For a baryon the problem was solved geometrically from the onset by Fermat and by Torricelli, it can be determined just with a rule and a compass, and we briefly review it. However we also show that for tetraquarks, pentaquarks, hexaquarks, etc., the geometrical solution is much more complicated. Here we provide an iterative method, converging fast to the correct Fermat points and the total distances, relevant for the multiquark potentials.

8. Iterative method to compute the Fermat points and Fermat distances of multiquarks

Energy Technology Data Exchange (ETDEWEB)

Bicudo, P. [CFTP, Departamento de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: bicudo@ist.utl.pt; Cardoso, M. [CFTP, Departamento de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

2009-04-13

The multiquark confining potential is proportional to the total distance of the fundamental strings linking the quarks and antiquarks. We address the computation of the total string distance and of the Fermat points where the different strings meet. For a meson the distance is trivially the quark-antiquark distance. For a baryon the problem was solved geometrically from the onset by Fermat and by Torricelli, it can be determined just with a rule and a compass, and we briefly review it. However we also show that for tetraquarks, pentaquarks, hexaquarks, etc., the geometrical solution is much more complicated. Here we provide an iterative method, converging fast to the correct Fermat points and the total distances, relevant for the multiquark potentials.

9. Greens function of Maxwells equations and corresponding implications for iterative methods

Energy Technology Data Exchange (ETDEWEB)

Singer, B.S. [Macquarie Univ., Sydney (Australia); Fainberg, E.B. [Inst. of Physics of the Earth, Moscow (Russian Federation)

1996-12-31

Energy conservation law imposes constraints on the norm and direction of the Hilbert space vector representing a solution of Maxwells equations. In this paper, we derive these constrains and discuss the corresponding implications for the Greens function of Maxwells equations in a dissipative medium. It is shown that Maxwell`s equations can be reduced to an integral equation with a contracting kernel. The equation can be solved using simple iterations. Software based on this algorithm have successfully been applied to a wide range of problems dealing with high contrast models. The matrix corresponding to the integral equation has a well defined spectrum. The equation can be symmetrized and solved using different approaches, for instance one of the conjugate gradient methods.

10. The generalized approximation method and nonlinear heat transfer equations

Directory of Open Access Journals (Sweden)

Rahmat Khan

2009-01-01

Full Text Available Generalized approximation technique for a solution of one-dimensional steady state heat transfer problem in a slab made of a material with temperature dependent thermal conductivity, is developed. The results obtained by the generalized approximation method (GAM are compared with those studied via homotopy perturbation method (HPM. For this problem, the results obtained by the GAM are more accurate as compared to the HPM. Moreover, our (GAM generate a sequence of solutions of linear problems that converges monotonically and rapidly to a solution of the original nonlinear problem. Each approximate solution is obtained as the solution of a linear problem. We present numerical simulations to illustrate and confirm the theoretical results.

11. ARSTEC, Nonlinear Optimization Program Using Random Search Method

International Nuclear Information System (INIS)

Rasmuson, D. M.; Marshall, N. H.

1979-01-01

1 - Description of problem or function: The ARSTEC program was written to solve nonlinear, mixed integer, optimization problems. An example of such a problem in the nuclear industry is the allocation of redundant parts in the design of a nuclear power plant to minimize plant unavailability. 2 - Method of solution: The technique used in ARSTEC is the adaptive random search method. The search is started from an arbitrary point in the search region and every time a point that improves the objective function is found, the search region is centered at that new point. 3 - Restrictions on the complexity of the problem: Presently, the maximum number of independent variables allowed is 10. This can be changed by increasing the dimension of the arrays

12. Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy.

Science.gov (United States)

Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang

2018-01-01

Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

13. Management Optimization of Saguling Reservoir with Bellman Dynamic Programming and “Du Couloir” Iterative Method

Directory of Open Access Journals (Sweden)

Mariana Marselina

2016-08-01

Full Text Available The increasingly growth of population and industry sector have lead to an enhanced demand for electrical energy. One of the electricity providers in the area of Java-Madura Bali (Jamali is Saguling Reservoir. Saguling Reservoir is one of the three reservoirs that stem the flow of Citarum River in advance of to Jatiluhur and Cirata Reservoir. The average electricity production of Saguling Reservoir was 2,334,318.138 MWh/year in the period of 1986-2014. The water intake of Saguling Reservoir is the upstream Citarum Watershed with an area of 2340.88 km2 which also serves as the irrigation, inland fisheries, recreation, and other activities. An effort to improve the function of Saguling Reservoir in producing electrical energy is by optimizing the reservoir management. The optimization of Saguling Reservoir management in this study refers to Government Regulation No. 37/2010 on Dam/Reservoir Article 44 which states that the system of reservoir management consisting of the operation system in dry years, normal years, and wet years. In this research, the determination of the trajectory guideline in Saguling operation was divided in dry, normal and wet years. Trajectory guideline was conducted based on the electricity price of turbine inflow that various in every month. The determination of the trajectory guideline in various electricity price was done by using Program Dynamic Bellman (PD Bellman and “Du Couloir” iterative method which the objective to optimize the gain from electricity production. and “Du Couloir” iterative method was development of PD Bellman that can calculate the value of gain with a smaller discretization until 0,1 juta m3 effectively where PD Bellman just calculate until 10 million m3.  Smaller discretization can give maximum benefit from electricity production and the trajectory guideline will be closer to trajectory actual so optimization of Saguling operation will be achieved.

14. Perturbation methods and closure approximations in nonlinear systems

International Nuclear Information System (INIS)

Dubin, D.H.E.

1984-01-01

In the first section of this thesis, Hamiltonian theories of guiding center and gyro-center motion are developed using modern symplectic methods and Lie transformations. Littlejohn's techniques, combined with the theory of resonant interaction and island overlap, are used to explore the problem of adiabatic invariance and onset of stochasticity. As an example, the breakdown of invariance due to resonance between drift motion and gyromotion in a tokamak is considered. A Hamiltonian is developed for motion in a straight magnetic field with electrostatic perturbations in the gyrokinetic ordering, from which nonlinear gyrokinetic equations are constructed which have the property of phase-space preservation, useful for computer simulation. Energy invariants are found and various limits of the equations are considered. In the second section, statistical closure theories are applied to simple dynamical systems. The logistic map is used as an example because of its universal properties and simple quadratic nonlinearity. The first closure considered is the direct interaction approximation of Kraichnan, which is found to fail when applied to the logistic map because it cannot approximate the bounded support of the map's equilibrium distribution. By imposing a periodically constraint on a Langevin form of the DIA a new stable closure is developed

15. Novel manufacturing method by using stainless steel pipes expanded into aluminium profiles for the ITER Neutral Beam cryopumps

Energy Technology Data Exchange (ETDEWEB)

Dremel, Matthias, E-mail: matthias.dremel@iter.org; Boissin, Jean-Claude; Déléage, Vincent; Quinn, Eamonn; Pearce, Robert

2015-10-15

This paper describes the novel engineering and manufacturing solution of stainless steel pipe expansion into aluminium extrusion profiles for use at cryogenic temperatures up to 400 K. This fabrication method will be used for the thermal radiation shields and the cryopanels of the ITER Neutral Beam cryopumps. The use of stainless steel pipes expanded into aluminium extrusion profiles is a solution that combines standard stainless steel welding procedures for the manifolds of the cooling circuits with extended aluminium structures taking advantage of the high thermal conductivity of aluminium. The cryogenic cooling circuits of the pump are a first confinement barrier in the ITER vacuum vessel and the risk of a leakage needs to be minimized as far as possible. The expansion method avoids the need of joints of dissimilar materials in the primary confinement barrier. The fabrication method and results of the prototyping of full scaled components for the ITER Neutral Beam cryopumps are outlined in this paper.

16. Hand-Eye LRF-Based Iterative Plane Detection Method for Autonomous Robotic Welding

Directory of Open Access Journals (Sweden)

Sungmin Lee

2015-12-01

Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist's rotation to minimize a mechanical error caused by the manipulator's motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist's angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator's alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist's joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time's points of view.

17. Fuzzy based method for project planning of the infrastructure design for the diagnostic in ITER

International Nuclear Information System (INIS)

Piros, Attila; Veres, Gábor

2013-01-01

The long-term design projects need special preparation before the start of the execution. This preparation usually includes the drawing of the network diagram for the whole procedure. This diagram includes the time estimation of the individual subtasks and gives us information about the predicted dates of the milestones. The calculated critical path in this network characterizes a specific design project concerning to its duration very well. Several methods are available to support this step of preparation. This paper describes a new method to map the structure of the design process and clarify the milestones and predict the dates of these milestones. The method is based on the PERT (Project Evaluation and Review Technique) network but as a novelty it applies fuzzy logic to find out the concerning times in this graph. With the application of the fuzzy logic the handling of the different kinds of design uncertainties becomes feasible. Many kinds of design uncertainties exist from the possible electric blackout up to the illness of an engineer. In many cases these uncertainties are related with human errors and described with linguistic expressions. The fuzzy logic enables to transform these ambiguous expressions into numeric values for further mathematical evaluation. The method is introduced in the planning of the design project of the infrastructure for the diagnostic systems of ITER. The method not only helps the project in the planning phase, but it will be a powerful tool in mathematical modeling and monitoring of the project execution

18. Fuzzy based method for project planning of the infrastructure design for the diagnostic in ITER

Energy Technology Data Exchange (ETDEWEB)

Piros, Attila, E-mail: attila.piros@gt3.bme.hu [Department of Machine and Product Design, Budapest University of Technology and Economics, Budapest (Hungary); Veres, Gábor [Department of Plasma Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest (Hungary)

2013-10-15

The long-term design projects need special preparation before the start of the execution. This preparation usually includes the drawing of the network diagram for the whole procedure. This diagram includes the time estimation of the individual subtasks and gives us information about the predicted dates of the milestones. The calculated critical path in this network characterizes a specific design project concerning to its duration very well. Several methods are available to support this step of preparation. This paper describes a new method to map the structure of the design process and clarify the milestones and predict the dates of these milestones. The method is based on the PERT (Project Evaluation and Review Technique) network but as a novelty it applies fuzzy logic to find out the concerning times in this graph. With the application of the fuzzy logic the handling of the different kinds of design uncertainties becomes feasible. Many kinds of design uncertainties exist from the possible electric blackout up to the illness of an engineer. In many cases these uncertainties are related with human errors and described with linguistic expressions. The fuzzy logic enables to transform these ambiguous expressions into numeric values for further mathematical evaluation. The method is introduced in the planning of the design project of the infrastructure for the diagnostic systems of ITER. The method not only helps the project in the planning phase, but it will be a powerful tool in mathematical modeling and monitoring of the project execution.

19. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method

Science.gov (United States)

Kang, Yanyan; Ding, Xianrong; Xu, Fan; Zhang, Changkuan; Ge, Xiaoping

2017-05-01

Tidal flats, which are both a natural ecosystem and a type of landscape, are of significant importance to ecosystem function and land resource potential. Morphologic monitoring of tidal flats has become increasingly important with respect to achieving sustainable development targets. Remote sensing is an established technique for the measurement of topography over tidal flats; of the available methods, the waterline method is particularly effective for constructing a digital elevation model (DEM) of intertidal areas. However, application of the waterline method is more limited in large-scale, shifting tidal flats areas, where the tides are not synchronized and the waterline is not a quasi-contour line. For this study, a topographical map of the intertidal regions within the Radial Sand Ridges (RSR) along the Jiangsu Coast, China, was generated using an iterative approach on the waterline method. A series of 21 multi-temporal satellite images (18 HJ-1A/B CCD and three Landsat TM/OLI) of the RSR area collected at different water levels within a five month period (31 December 2013-28 May 2014) was used to extract waterlines based on feature extraction techniques and artificial further modification. These 'remotely-sensed waterlines' were combined with the corresponding water levels from the 'model waterlines' simulated by a hydrodynamic model with an initial generalized DEM of exposed tidal flats. Based on the 21 heighted 'remotely-sensed waterlines', a DEM was constructed using the ANUDEM interpolation method. Using this new DEM as the input data, it was re-entered into the hydrodynamic model, and a new round of water level assignment of waterlines was performed. A third and final output DEM was generated covering an area of approximately 1900 km2 of tidal flats in the RSR. The water level simulation accuracy of the hydrodynamic model was within 0.15 m based on five real-time tide stations, and the height accuracy (root mean square error) of the final DEM was 0.182 m

20. Boosting iterative stochastic ensemble method for nonlinear calibration of subsurface flow models

KAUST Repository

Elsheikh, Ahmed H.; Tavakoli, Reza; Wheeler, Mary Fanett; Hoteit, Ibrahim

2013-01-01

A novel parameter estimation algorithm is proposed. The inverse problem is formulated as a sequential data integration problem in which Gaussian process regression (GPR) is used to integrate the prior knowledge (static data). The search space