WorldWideScience

Sample records for nonlinear initially curved

  1. A theoretical and experimental study on geometric nonlinearity of initially curved cantilever beams

    Directory of Open Access Journals (Sweden)

    Sushanta Ghuku

    2016-03-01

    Full Text Available This paper presents a theoretical and experimental study on large deflection behavior of initially curved cantilever beams subjected to various types of loadings. The physical system as a straight cantilever beam subjected to a tip concentrated load is considered in this study. Nonlinear differential equations are obtained for large deflection analysis of such a straight cantilever beam, and this problem is known to involve geometrical nonlinearity. The equations are solved numerically with the help of MATLAB® computational platform to get deflection profiles of the concerned problem. These results are imposed subsequently on the center line of an initially curved beam to get theoretical load-deflection behavior of curved beam problems. To verify the theoretical model, experiment is carried out with the master leaf of a leaf spring bundle by modeling it as an initially curved cantilever beam. The effects of initial clamping and geometry variations in the eye-region are observed from experimental investigation which is commonly neglected in the mathematical formulation. Comparisons of the theoretical results with the experimental results are quite good, but the avenues for further improvement are also reported. The proposed approach is further extended to study large deflection behavior of an initially curved cantilever beam subjected to distributed and combined load. These results are successfully validated with existing results for straight beams and some new results are furnished for initially curved cantilever beams.

  2. Space curves, anholonomy and nonlinearity

    Indian Academy of Sciences (India)

    Radha Balakrishnan

    2005-04-01

    Using classical differential geometry, we discuss the phenomenon of anholonomy that gets associated with a static and a moving curve. We obtain the expressions for the respective geometric phases in the two cases and interpret them. We show that there is a close connection between anholonomy and nonlinearity in a wide class of nonlinear systems.

  3. Nonlinear Growth Curves in Developmental Research

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes, and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and…

  4. Geometrodynamics: The Nonlinear Dynamics of Curved Spacetime

    OpenAIRE

    Scheel, Mark A.; Thorne, Kip S.

    2017-01-01

    We review discoveries in the nonlinear dynamics of curved spacetime, largely made possible by numerical solutions of Einstein's equations. We discuss critical phenomena and self-similarity in gravitational collapse, the behavior of spacetime curvature near singularities, the instability of black strings in 5 spacetime dimensions, and the collision of four-dimensional black holes. We also discuss the prospects for further discoveries in geometrodynamics via observation of gravitational waves.

  5. INITIAL SLOPE OF THE HYSTERESIS CURVE

    OpenAIRE

    Gerritsma, G.J.; Stam, M.T.H.C.W.; Lodder, J. C.; Popma, Th.J.A.

    1988-01-01

    An analytical expression for the initial slope T of the hysteresis curve is derived for a stripe domain structure in a thin magnetic film, giving that T-1 is proportional to t-1/2 (t = film thickness). This is confirmed by measurements on RF sputtered CoCr films with 20 nm ≤ t ≤ 950 nm.

  6. Initial slope of the hysteresis curve

    NARCIS (Netherlands)

    Gerritsma, G.J.; Stam, M.T.H.C.W.; Lodder, J.C.; Popma, Th.J.A.

    1988-01-01

    An analytical expression for the initial slope T of the hysteresis curve is derived for a stripe domain structure in a thin magnetic film, giving that T-1 is proportional to t-1/2 (t = film thickness). This is confirmed by measurements on RF sputtered CoCr films with 20 nm £ t £ 950 nm.

  7. Identification of systems containing nonlinear stiffnesses using backbone curves

    Science.gov (United States)

    Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.

    2017-02-01

    This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.

  8. Localization of nonlinear excitations in curved waveguides

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.;

    2005-01-01

    numerical simulations of the nonlinear problem and in this case localized excitations are found to persist. We found also interesting relaxational dynamics. Analogies of the present problem in context related to atomic physics and particularly to Bose–Einstein condensation are discussed....

  9. Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method

    Science.gov (United States)

    Cigeroglu, Ender; Samandari, Hamed

    2014-11-01

    Nonlinear free vibration analysis of curved double-walled carbon nanotubes (DWNTs) embedded in an elastic medium is studied in this study. Nonlinearities considered are due to large deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner and outer tubes. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of motion. The effect of nonlinearities, different end conditions, initial curvature, and stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is studied. Results show that it is possible to detect different vibration modes occurring at a single vibration frequency when CNTs vibrate in the out-of-phase vibration mode. Moreover, it is observed that boundary conditions have significant effect on the nonlinear natural frequencies of the DWCNT including multiple solutions.

  10. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.;

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure load...... and results are compared to test data. A novel test arrangement utilizing a water filled cushion to create the uniform pressure load on curved panel specimen is used to obtain the experimental data. The panel is modeled with three different commercial finite element codes. Two implicit and one explicit code...... are used with various element types, modeling approaches and material models. The results show that the theoretical and experimental methods generally show fair agreement in panel non-linear behavior before collapse. It is also shown that special attention to detail has to be taken, because the predicted...

  11. Classical black holes: the nonlinear dynamics of curved spacetime.

    Science.gov (United States)

    Thorne, Kip S

    2012-08-03

    Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.

  12. ANALYTIC INVARIANT CURVES OF A NONLINEAR SECOND ORDER DIFFERENCE EQUATION

    Institute of Scientific and Technical Information of China (English)

    Wang Wusheng

    2009-01-01

    This article studies the existence of analytic invariant curves for a nonlinear second order difference equation which was modeled from macroeconomics of the business cycle. The author not only discusses the case of the eigenvalue off the unit circle S1 and the case on S1 with the Diophantine condition but also considers the case of the eigenvalue at a root of the unity, which obviously violates the Diophantine condition.

  13. Damage detection in initially nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Bornn, Luke [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    The primary goal of Structural Health Monitoring (SHM) is to detect structural anomalies before they reach a critical level. Because of the potential life-safety and economic benefits, SHM has been widely studied over the past decade. In recent years there has been an effort to provide solid mathematical and physical underpinnings for these methods; however, most focus on systems that behave linearly in their undamaged state - a condition that often does not hold in complex 'real world' systems and systems for which monitoring begins mid-lifecycle. In this work, we highlight the inadequacy of linear-based methodology in handling initially nonlinear systems. We then show how the recently developed autoregressive support vector machine (AR-SVM) approach to time series modeling can be used for detecting damage in a system that exhibits initially nonlinear response. This process is applied to data acquired from a structure with induced nonlinearity tested in a laboratory environment.

  14. Nonlinear stability analysis of double-curved shallow fgm panels on elastic foundations in thermal environments

    Science.gov (United States)

    Duc, Nguyen Dinh; Quan, Tran Quoc

    2012-09-01

    An analytical investigation into the nonlinear response of thick functionally graded double-curved shallow panels resting on elastic foundations and subjected to thermal and thermomechanical loads is presented. Young's modulus and Poisson's ratio are both graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of constituents. All formulations are based on the classical shell theory with account of geometrical nonlinearity and initial geometrical imperfection in the cases of Pasternak-type elastic foundations. By applying the Galerkin method, explicit relations for the thermal load-deflection curves of simply supported curved panels are found. The effects of material and geometrical properties and foundation stiffness on the buckling and postbuckling load-carrying capacity of the panels in thermal environments are analyzed and discussed.

  15. Nonlinear vibrations of functionally graded doubly curved shallow shells

    Science.gov (United States)

    Alijani, F.; Amabili, M.; Karagiozis, K.; Bakhtiari-Nejad, F.

    2011-03-01

    Nonlinear forced vibrations of FGM doubly curved shallow shells with a rectangular base are investigated. Donnell's nonlinear shallow-shell theory is used and the shell is assumed to be simply supported with movable edges. The equations of motion are reduced using the Galerkin method to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities. Using the multiple scales method, primary and subharmonic resonance responses of FGM shells are fully discussed and the effect of volume fraction exponent on the internal resonance conditions, softening/hardening behavior and bifurcations of the shallow shell when the excitation frequency is (i) near the fundamental frequency and (ii) near two times the fundamental frequency is shown. Moreover, using a code based on arclength continuation method, a bifurcation analysis is carried out for a special case with two-to-one internal resonance between the first and second doubly symmetric modes with respect to the panel's center ( ω13≈2 ω11). Bifurcation diagrams and Poincaré maps are obtained through direct time integration of the equations of motion and chaotic regions are shown by calculating Lyapunov exponents and Lyapunov dimension.

  16. Nonlinear analysis of doubly curved shells: An analytical approach

    Indian Academy of Sciences (India)

    Y Nath; K Sandeep

    2000-08-01

    Dynamic analogues of vin Karman-Donnell type shell equations for doubly curved, thin isotropic shells in rectangular planform are formulated and expressed in displacement components. These nonlinear partial differential equations of motion are linearized by using a quadratic extrapolation technique. The spatial and temporal discretization of differential equatoins have been carried out by finite-degree Chebyshev polynomials and implicit Houbolt time-marching techniques respectively. Multiple regression besed on the least square error norm is employed to eliminate the incompatability generated due to spatial discretization (equations > unknowns). Spatial convergence study revealed that nine term expansion of each displacement in and respectively, is sufficient to yield fairly accurate results. Clamped and simply supported immovable doubly curved shallow shells are analysed. Results have been compared with those obtained by other numerical methods. Considering uniformly distributed normal loading, the results of static and dynamic analyses are presented.

  17. Nonlinear Time Series Analysis of White Dwarf Light Curves

    Science.gov (United States)

    Jevtic, N.; Zelechoski, S.; Feldman, H.; Peterson, C.; Schweitzer, J.

    2001-12-01

    We use nonlinear time series analysis methods to examine the light intensity curves of white dwarf PG1351+489 obtained by the Whole Earth Telescope (WET). Though these methods were originally introduced to study chaotic systems, when a clear signature of determinism is found for the process generating an observable and it couples the active degrees of freedom of the system, then the notion of phase space provides a framework for exploring the system dynamics of nonlinear systems in general. With a pronounced single frequency, its harmonics and other frequencies of lower amplitude on a broadband background, the PG1351 light curve lends itself to the use of time delay coordinates. Our phase space reconstruction yields a triangular, toroidal three-dimensional shape. This differs from earlier results of a circular toroidal representation. We find a morphological similarity to a magnetic dynamo model developed for fast rotators that yields a union of both results: the circular phase space structure for the ascending portion of the cycle, and the triangular structure for the declining portion. The rise and fall of the dynamo cycle yield both different phase space representations and different correlation dimensions. Since PG1351 is known to have no significant fields, these results may stimulate the observation of light curves of known magnetic white dwarfs for comparison. Using other data obtained by the WET, we compare the phase space reconstruction of DB white dwarf PG1351 with that of GD 358 which has a more complex power spectrum. We also compare these results with those for PG1159. There is some general similarity between the results of the phase space reconstruction for the DB white dwarfs. As expected, the difference between the results for the DB white dwarfs and PG1159 is great.

  18. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Iman Eshraghi

    2016-09-01

    Full Text Available Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs.

  19. IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS:TIME-FREQUENCY FILTERING AND SKELETON CURVES

    Institute of Scientific and Technical Information of China (English)

    王丽丽; 张景绘

    2001-01-01

    The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O . F nonlinear system.A masking operator on definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system ( GSLS ). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. More over, an identification method is proposed through the skeleton curves and the time frequency filtering technique.

  20. Nonlinear Latent Curve Models for Multivariate Longitudinal Data

    Science.gov (United States)

    Blozis, Shelley A.; Conger, Katherine J.; Harring, Jeffrey R.

    2007-01-01

    Latent curve models have become a useful approach to analyzing longitudinal data, due in part to their allowance of and emphasis on individual differences in features that describe change. Common applications of latent curve models in developmental studies rely on polynomial functions, such as linear or quadratic functions. Although useful for…

  1. Nonlinear postbuckling of imperfect doubly curved thin shallow FGM shells resting on elastic foundations and subjected to mechanical loads

    Science.gov (United States)

    Duc, Nguyen Dinh; Quan, Tran Quoc

    2013-11-01

    The nonlinear response of buckling and posbuckling of imperfect thin functionally graded doubly curved thin shallow shells resting on elastic foundations and subjected to some mechanical loads is investigated analytically. The elastic moduli of materials, Young's modulus, and Poisson ratio are all graded in the shell thickness direction according to a simple power-law in terms of volume fractions of constituents. All formulations are based on the classical theory of shells with account of geometrical nonlinearity, an initial geometrical imperfection, and a Pasternak-type elastic foundation. By employing the Galerkin method, explicit relations for the load-deflection curves of simply supported doubly curved shallow FGM shells are determined. The effects of material and geometrical properties, foundation stiffness, and imperfection of shells on the buckling and postbuckling loadcarrying capacity of spherical and cylindrical shallow FGM shells are analyzed and discussed.

  2. HOPF BIFURCATION OF A NONLINEAR RESTRAINED CURVED PIPE CONVEYING FLUID BY DIFFERENTIAL QUADRATURE METHOD

    Institute of Scientific and Technical Information of China (English)

    WangLin; NiQiao; HuangYuying

    2003-01-01

    This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support. The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration. The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method. The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter,nonlinear spring stiffness. Based on this, the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness. The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.

  3. LDV measurement of small nonlinearities in flat and curved membranes. A model for eardrum nonlinear acoustic behaviour

    Science.gov (United States)

    Kilian, Gladiné; Pieter, Muyshondt; Joris, Dirckx

    2016-06-01

    Laser Doppler Vibrometry is an intrinsic highly linear measurement technique which makes it a great tool to measure extremely small nonlinearities in the vibration response of a system. Although the measurement technique is highly linear, other components in the experimental setup may introduce nonlinearities. An important source of artificially introduced nonlinearities is the speaker, which generates the stimulus. In this work, two correction methods to remove the effects of stimulus nonlinearity are investigated. Both correction methods were found to give similar results but have different pros and cons. The aim of this work is to investigate the importance of the conical shape of the eardrum as a source of nonlinearity in hearing. We present measurements on flat and indented membranes. The data shows that the curved membrane exhibit slightly higher levels of nonlinearity compared to the flat membrane.

  4. Seismic Fragility Curves of Industrial Buildings by Using Nonlinear Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed Nazri Fadzli

    2017-01-01

    Full Text Available This study presents the steel fragility curves and performance curves of industrial buildings of different geometries. The fragility curves were obtained for different building geometries, and the performance curves were developed based on lateral load, which is affected by the geometry of the building. Three records of far-field ground motion were used for incremental dynamic analysis (IDA, and the design lateral loads for pushover analysis (POA. All designs were based on British Standard (BS 5950; however, Eurocode 8 was preferred for seismic consideration in the analysis because BS 5950 does not specify any seismic provision. The five levels of performance stated by FEMA-273, namely, operational phase, immediate occupancy, damage control, life safety, and collapse prevention (CP were used as main guidelines for evaluating structural performance. For POA, Model 2 had highest base shear, followed by Model 1 and Model 3, even though Model 2 has a smaller structure compared with Model 3. Meanwhile, the fragility curves showed that the probability of reaching or exceeding the CP level of Model 2 is the highest, followed by that of Models 1 and 3.

  5. Edge detection of remote sensing image based on nonlinear intensity of curved surface

    Institute of Scientific and Technical Information of China (English)

    张连蓬; 刘国林; 江涛

    2003-01-01

    A new edge detector based on the nonlinear intensity of curved surface was proposed. The edge detector describes the largest curvature and the smallest curvature of curved surface, therefore it can reflect the real largest direction of image edge jump. By the new edge detector, it is convenient to calculate the curvature in any direction of the curved surface and the curvature can be used in the identification of edge direction and the feature extraction of objects on remote sensing image.

  6. Initially curved microplates under electrostatic actuation: theory and experiment

    KAUST Repository

    Saghir, S.

    2016-07-01

    Microplates are the building blocks of many micro-electro-mechanical systems. It is common for them to experience initial curvature imperfection due to residual stresses caused by the micro fabrication process. Such plates are essentially different from perfectly flat ones and cannot be modeled using flat plate models. In this paper, we adopt a dynamic analog of the von Karman governing equations of imperfect plates. These equations are then used to develop a reduced order model based on the Galerkin procedure, to simulate the static and dynamic behavior of the microplate under electrostatic actuation. To validate the simulation results, an initially curved imperfect microplate made of silicon nitride is fabricated and tested. The static behaviour of the microplate is investigated when applying a DC voltage Vdc. Then, the dynamic behaviour of the microplate is examined under the application of a harmonic AC voltage, Vac, superimposed to Vdc. The simulation results show good agreement with the experimentally measured responses. © 2016 IOP Publishing Ltd.

  7. PV Degradation Curves: Non-Linearities and Failure Modes

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill; Kurtz, Sarah R.

    2016-09-03

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually, in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.

  8. Improved Nonlinear Equation Method for Numerical Prediction of Jominy End-Quench Curves

    Institute of Scientific and Technical Information of China (English)

    SONG Yue-peng; LIU Guo-quan; LIU Sheng-xin; LIU Jian-tao; FENG Cheng-ming

    2007-01-01

    Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction results obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.

  9. Solutions to nonlinear Schrodinger equations for special initial data

    Directory of Open Access Journals (Sweden)

    Takeshi Wada

    2015-11-01

    Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.

  10. Fitting Nonlinear Curves by use of Optimization Techniques

    Science.gov (United States)

    Hill, Scott A.

    2005-01-01

    MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.

  11. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  12. A NONLINEAR TRANSFORMATION AND A BOUNDARY-INITIAL VALUE PROBLEM FOR ACLASS OF NONLINEAR CONVECTION-DIFFUSION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With the aid of a nonlinear transformation, a class of nonlinear convectiondiffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given

  13. On Fitting Nonlinear Latent Curve Models to Multiple Variables Measured Longitudinally

    Science.gov (United States)

    Blozis, Shelley A.

    2007-01-01

    This article shows how nonlinear latent curve models may be fitted for simultaneous analysis of multiple variables measured longitudinally using Mx statistical software. Longitudinal studies often involve observation of several variables across time with interest in the associations between change characteristics of different variables measured…

  14. Nonlinear Gompertz Curve Models of Achievement Gaps in Mathematics and Reading

    Science.gov (United States)

    Cameron, Claire E.; Grimm, Kevin J.; Steele, Joel S.; Castro-Schilo, Laura; Grissmer, David W.

    2015-01-01

    This study examined achievement trajectories in mathematics and reading from school entry through the end of middle school with linear and nonlinear growth curves in 2 large longitudinal data sets (National Longitudinal Study of Youth--Children and Young Adults and Early Childhood Longitudinal Study--Kindergarten Cohort [ECLS-K]). The S-shaped…

  15. Flow-Induced Vibration of A Nonlinearly Restrained Curved Pipe Conveying Fluid

    Institute of Scientific and Technical Information of China (English)

    王琳; 倪樵; 黄玉盈

    2004-01-01

    Investigated in this study is the flow-induced vibration of a nonlinearly restrained curved pipe conveying fluid. The nonlinear equation of motion is derived by equilibrium of forces on microelement of the system under consideration. The spatial coordinate of the system is discretized by DQM (differential quadrature method). On the basis of the boundary conditions, the dynamic equation is solved by the Newton-Raphson iteration method. The numerical solutions reveal several complex dynamic motions for the variation of the fluid velocity parameter, such as limit cycle motion, buckling and so on. The result obtained also shows that the sub parameter regions corresponding to the several motions may change with the variation of some parameters of the curved pipe. The present study supplies a new reference for investigating the nonlinear dynamic response of some other structures.

  16. INITIAL BOUNDARY VALUE PROBLEM FOR A DAMPED NONLINEAR HYPERBOLIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    陈国旺

    2003-01-01

    In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equationare proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.

  17. Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python

    Science.gov (United States)

    Newville, Matthew; Stensitzki, Till; Allen, Daniel B.; Rawlik, Michal; Ingargiola, Antonino; Nelson, Andrew

    2016-06-01

    Lmfit provides a high-level interface to non-linear optimization and curve fitting problems for Python. Lmfit builds on and extends many of the optimization algorithm of scipy.optimize, especially the Levenberg-Marquardt method from optimize.leastsq. Its enhancements to optimization and data fitting problems include using Parameter objects instead of plain floats as variables, the ability to easily change fitting algorithms, and improved estimation of confidence intervals and curve-fitting with the Model class. Lmfit includes many pre-built models for common lineshapes.

  18. Testing the Nonlinearity of the Phillips Curve. Implications for Monetary Policy

    Directory of Open Access Journals (Sweden)

    Georgiana BALABAN

    2010-04-01

    Full Text Available This paper studies the nonlinearity of the Phillips Curve and its implications for monetary policy. To investigate the trade-off between output gap and inflation volatility we used a backward-looking model type. The data for our empirical analysis is obtained from the Area Wide Model (AWM Database (from 1970 to 2008 for Euro area and National Institute of Statistics (from 2000 to 2009 for Romania and has quarterly frequency. The results of econometric tests indicate a significant estimated coefficient of the output gap for Romania, compared with the Eurozone; we find no significant evidence of nonlinearity of the Phillips curve in the European Monetary Union. This suggests that the optimal choice for European Central Bank should be a fixed inflation targeting, while the National Bank of Romania's monetary policy strategy should aim a flexible inflation targeting.

  19. The Nonlinearity of the New Keynesian Phillips Curve: The Case of Tunisia

    Directory of Open Access Journals (Sweden)

    Imen Kobbi

    2017-07-01

    Full Text Available This article seeks to check the nonlinearity of the Phillips curve in Tunisia for the 1993–2012 period, relying on a hybrid new Keynesian Phillips curve modeled via a Logistic Smooth Transition Regression (LSTR model with endogenous variables. We estimate this model using the nonlinear instrumental variables. The empirical results corroborate the new Keynesian assumption ofprice rigidity and show that the response of inflation to the output gap tends to be significant only if the inflation rate tends to be relatively high and exceeds a certain threshold. For a low inflation rate, the price rigidity dominates. This result is particularly evident in Tunisia, especially for the years following the 2011 revolution during which the elasticity of inflation rate to an excess demand has become highly important and the inflation rate experienced record levels.

  20. Intrinsic localized modes and nonlinear impurity modes in curved Fermi-Pasta-Ulam chain

    Indian Academy of Sciences (India)

    Ranja Sarkar; Bishwajyoti Dey

    2008-06-01

    We explore the nature of intrinsic localized modes (ILMs) in a curved FermiPasta-Ulam (FPU) chain and the effects of geometry and second-neighbor interaction on the localization and movability properties of such modes. We determine analytically the structure of the localized modes induced by an isotopic light-mass impurity in this chain. We further demonstrate that a nonlinear impurity mode may be treated as a bound state of an ILM with the impurity.

  1. Weakly nonlinear Schr\\"odinger equation with random initial data

    CERN Document Server

    Lukkarinen, Jani

    2009-01-01

    There is wide interest in weakly nonlinear wave equations with random initial data. A common approach is the approximation through a kinetic transport equation, which clearly poses the issue of understanding its validity in the kinetic limit. While for the general case a proof of the kinetic limit remains open, we report here on first progress. As wave equation we consider the nonlinear Schrodinger equation discretized on a hypercubic lattice. Since this is a Hamiltonian system, a natural choice of random initial data is distributing them according to a Gibbs measure with a chemical potential chosen so that the Gibbs field has exponential mixing. The solution psi_t(x) of the nonlinear Schrodinger equation yields then a stochastic process stationary in x in Z^d and t in R. If lambda denotes the strength of the nonlinearity, we prove that the space-time covariance of psi_t(x) has a limit as lambda -> 0 for t=lambda^{-2} tau, with tau fixed and |tau| sufficiently small. The limit agrees with the prediction from ...

  2. Tracing Analytic Ray Curves for Light and Sound Propagation in Non-Linear Media.

    Science.gov (United States)

    Mo, Qi; Yeh, Hengchin; Manocha, Dinesh

    2016-11-01

    The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over prior methods. We highlight the algorithm's application on simulation of visual and sound propagation in outdoor scenes.

  3. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  4. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    Directory of Open Access Journals (Sweden)

    H. Vazquez-Leal

    2014-01-01

    Full Text Available We present a homotopy continuation method (HCM for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation.

  5. Nonlinear Radiative Heat Transfer in Blasius and Sakiadis Flows Over a Curved Surface

    Science.gov (United States)

    Naveed, M.; Abbas, Z.; Sajid, M.

    2017-01-01

    This study investigates the heat transfer characteristics for Blasius and Sakiadis flows over a curved surface coiled in a circle of radius R having constant curvature. Effects of thermal radiation are also analyzed for nonlinear Rosseland approximation which is valid for all values of the temperature difference between the fluid and the surface. The considered physical situation is represented by a mathematical model using curvilinear coordinates. Similar solutions of the developed partial differential equations are evaluated numerically using a shooting algorithm. Fluid velocity, skin-friction coefficient, temperature and local Nusselt number are the quantities of interest interpreted for the influence of pertinent parameters. A comparison of the present and the published data for a flat surface validates the obtained numerical solution for the curved geometry.

  6. Nonlinear Analysis and Post-Test Correlation for a Curved PRSEUS Panel

    Science.gov (United States)

    Gould, Kevin; Lovejoy, Andrew E.; Jegley, Dawn; Neal, Albert L.; Linton, Kim, A.; Bergan, Andrew C.; Bakuckas, John G., Jr.

    2013-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, developed by The Boeing Company, has been extensively studied as part of the National Aeronautics and Space Administration's (NASA s) Environmentally Responsible Aviation (ERA) Program. The PRSEUS concept provides a light-weight alternative to aluminum or traditional composite design concepts and is applicable to traditional-shaped fuselage barrels and wings, as well as advanced configurations such as a hybrid wing body or truss braced wings. Therefore, NASA, the Federal Aviation Administration (FAA) and The Boeing Company partnered in an effort to assess the performance and damage arrestments capabilities of a PRSEUS concept panel using a full-scale curved panel in the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. Testing was conducted in the FASTER facility by subjecting the panel to axial tension loads applied to the ends of the panel, internal pressure, and combined axial tension and internal pressure loadings. Additionally, reactive hoop loads were applied to the skin and frames of the panel along its edges. The panel successfully supported the required design loads in the pristine condition and with a severed stiffener. The panel also demonstrated that the PRSEUS concept could arrest the progression of damage including crack arrestment and crack turning. This paper presents the nonlinear post-test analysis and correlation with test results for the curved PRSEUS panel. It is shown that nonlinear analysis can accurately calculate the behavior of a PRSEUS panel under tension, pressure and combined loading conditions.

  7. Genome association study through nonlinear mixed models revealed new candidate genes for pig growth curves

    Directory of Open Access Journals (Sweden)

    Fabyano Fonseca e Silva

    Full Text Available ABSTRACT: Genome association analyses have been successful in identifying quantitative trait loci (QTLs for pig body weights measured at a single age. However, when considering the whole weight trajectories over time in the context of genome association analyses, it is important to look at the markers that affect growth curve parameters. The easiest way to consider them is via the two-step method, in which the growth curve parameters and marker effects are estimated separately, thereby resulting in a reduction of the statistical power and the precision of estimates. One efficient solution is to adopt nonlinear mixed models (NMM, which enables a joint modeling of the individual growth curves and marker effects. Our aim was to propose a genome association analysis for growth curves in pigs based on NMM as well as to compare it with the traditional two-step method. In addition, we also aimed to identify the nearest candidate genes related to significant SNP (single nucleotide polymorphism markers. The NMM presented a higher number of significant SNPs for adult weight (A and maturity rate (K, and provided a direct way to test SNP significance simultaneously for both the A and K parameters. Furthermore, all significant SNPs from the two-step method were also reported in the NMM analysis. The ontology of the three candidate genes (SH3BGRL2, MAPK14, and MYL9 derived from significant SNPs (simultaneously affecting A and K allows us to make inferences with regards to their contribution to the pig growth process in the population studied.

  8. Analysis Approach to Durability Based on Material Initial Fatigue Quality and S-N Curve

    Institute of Scientific and Technical Information of China (English)

    Yang Moucun; Nie Hong

    2007-01-01

    Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then,the relation between S-N curve and crack propagation curve is studied. From the study, a new durability analysis method is presented. In this method, S-N curve is used to determine crack growth rate under constant amplitude.loading and evaluate the effects of different factors on durability and then the structural durability is analyzed. The tests and analyses indicate that this method has lower dependence on testing, and higher accuracy, reliability and generality and is convenient for application.

  9. Characterization of acid functional groups of carbon dots by nonlinear regression data fitting of potentiometric titration curves

    Science.gov (United States)

    Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.

    2016-05-01

    The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.

  10. High-resolution fiber optic temperature sensors using nonlinear spectral curve fitting technique

    Science.gov (United States)

    Su, Z. H.; Gan, J.; Yu, Q. K.; Zhang, Q. H.; Liu, Z. H.; Bao, J. M.

    2013-04-01

    A generic new data processing method is developed to accurately calculate the absolute optical path difference of a low-finesse Fabry-Perot cavity from its broadband interference fringes. The method combines Fast Fourier Transformation with nonlinear curve fitting of the entire spectrum. Modular functions of LabVIEW are employed for fast implementation of the data processing algorithm. The advantages of this technique are demonstrated through high performance fiber optic temperature sensors consisting of an infrared superluminescent diode and an infrared spectrometer. A high resolution of 0.01 °C is achieved over a large dynamic range from room temperature to 800 °C, limited only by the silica fiber used for the sensor.

  11. Variational principle and a perturbative solution of non-linear string equations in curved space

    CERN Document Server

    Roshchupkin, S N

    1999-01-01

    String dynamics in a curved space-time is studied on the basis of an action functional including a small parameter of rescaled tension constant. A rescaled slow worldsheet time $T=\\epsilon\\tau$ is introduced, and general covariant non-linear string equation are derived. It is shown that in the first order of an $\\epsilon $-expansion these equations are reduced to the known equation for geodesic derivation but complemented by a string oscillatory term. These equations are solved for the de Sitter and Friedmann -Robertson-Walker spaces. The primary string constraints are found to be split into a chain of perturbative constraints and their conservation and consistency are proved. It is established that in the proposed realization of the perturbative approach the string dynamics in the de Sitter space is stable for a large Hubble constant $H

  12. Nonlinear Free Vibration Analysis of Thin-walled Curved Beam with Non-symmetric Open Cross Section

    Institute of Scientific and Technical Information of China (English)

    DUAN Hai-juan; SONG Zhen-sen

    2008-01-01

    A finite element formulation was presented for the nonlinear free vibration of thin-walled curved beams with non-symmetric open across section. The kinetic and potential energies were derived by the virtual principle. The energy function includes the effect of flexural-torsional coupling, the torsion warping and the shear centre location. For finite element analysis, cubic polynomials were utilized as the shape functions of the two nodal thin-walled curved elements. Each node possesses seven degrees freedom including the warping degree of freedom. The nonlinear eigenvalue problem was solved by the direct iteration technique. The results are compared with those for straight beams as available in the literature. The results for nonlinear free vibration analysis of curved beams for various radii and subtended angle are presented.

  13. Growth curve by Gompertz nonlinear regression model in female and males in tambaqui (Colossoma macropomum).

    Science.gov (United States)

    De Mello, Fernanda; Oliveira, Carlos A L; Ribeiro, Ricardo P; Resende, Emiko K; Povh, Jayme A; Fornari, Darci C; Barreto, Rogério V; McManus, Concepta; Streit, Danilo

    2015-01-01

    Was evaluated the pattern of growth among females and males of tambaqui by Gompertz nonlinear regression model. Five traits of economic importance were measured on 145 animals during the three years, totaling 981 morphometric data analyzed. Different curves were adjusted between males and females for body weight, height and head length and only one curve was adjusted to the width and body length. The asymptotic weight (a) and relative growth rate to maturity (k) were different between sexes in animals with ± 5 kg; slaughter weight practiced by a specific niche market, very profitable. However, there was no difference between males and females up to ± 2 kg; slaughter weight established to supply the bigger consumer market. Females showed weight greater than males (± 280 g), which are more suitable for fish farming purposes defined for the niche market to larger animals. In general, males had lower maximum growth rate (8.66 g / day) than females (9.34 g / day), however, reached faster than females, 476 and 486 days growth rate, respectively. The height and length body are the traits that contributed most to the weight at 516 days (P <0.001).

  14. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.

    Science.gov (United States)

    Lin, Ying-Tsong; McMahon, Kara G; Lynch, James F; Siegmann, William L

    2013-01-01

    The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.

  15. Snap-through and pull-in analysis of an electro-dynamically actuated curved micro-beam using a nonlinear beam model

    Science.gov (United States)

    Hu, Y. J.; Yang, J.; Kitipornchai, S.

    2013-07-01

    This paper presents a geometrically nonlinear micro-beam model for the electro-dynamic analysis of an initially curved micro-beam under an applied voltage, with an emphasis on its snap-through and pull-in behaviors. The governing equations of motion and the associated boundary conditions are derived in an arc coordinate system without involving any assumptions on the nonlinear deformation. Differential quadrature method (DQM) and Petzold-Gear Backward Differentiation Formulas (BDF) are employed to solve the governing equations in the space and time domains respectively to obtain the nonlinear fundamental frequency, snap-through voltage, pull-in voltage and the corresponding mode shapes of a micro-beam clamped at both ends. The present analysis is validated through a direct comparison with the published experimental and numerical results. A parametric study is conducted to investigate the influences of the initial gap, base length, arc rise, and initial curved configuration on the snap-through and pull-in behaviors of the micro-beam.

  16. Curve Evolution in Subspaces and Exploring the Metameric Class of Histogram of Gradient Orientation based Features using Nonlinear Projection Methods

    DEFF Research Database (Denmark)

    Tatu, Aditya Jayant

    defined subspace, the N-links bicycle chain space, i.e. the space of curves with equidistant neighboring landmark points. This in itself is a useful shape space for medical image analysis applications. The Histogram of Gradient orientation based features are many in number and are widely used......This thesis deals with two unrelated issues, restricting curve evolution to subspaces and computing image patches in the equivalence class of Histogram of Gradient orientation based features using nonlinear projection methods. Curve evolution is a well known method used in various applications like...... specific requirements like shape priors or a given data model, and due to limitations of the computer, the computed curve evolution forms a path in some finite dimensional subspace of the space of curves. We give methods to restrict the curve evolution to a finite dimensional linear or implicitly defined...

  17. Combining biomarkers linearly and nonlinearly for classification using the area under the ROC curve.

    Science.gov (United States)

    Fong, Youyi; Yin, Shuxin; Huang, Ying

    2016-09-20

    In biomedical studies, it is often of interest to classify/predict a subject's disease status based on a variety of biomarker measurements. A commonly used classification criterion is based on area under the receiver operating characteristic curve (AUC). Many methods have been proposed to optimize approximated empirical AUC criteria, but there are two limitations to the existing methods. First, most methods are only designed to find the best linear combination of biomarkers, which may not perform well when there is strong nonlinearity in the data. Second, many existing linear combination methods use gradient-based algorithms to find the best marker combination, which often result in suboptimal local solutions. In this paper, we address these two problems by proposing a new kernel-based AUC optimization method called ramp AUC (RAUC). This method approximates the empirical AUC loss function with a ramp function and finds the best combination by a difference of convex functions algorithm. We show that as a linear combination method, RAUC leads to a consistent and asymptotically normal estimator of the linear marker combination when the data are generated from a semiparametric generalized linear model, just as the smoothed AUC method. Through simulation studies and real data examples, we demonstrate that RAUC outperforms smooth AUC in finding the best linear marker combinations, and can successfully capture nonlinear pattern in the data to achieve better classification performance. We illustrate our method with a dataset from a recent HIV vaccine trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Equilibrium equations for nonlinear buckling analysis of drill-strings in 3D curved well-bores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the development of drilling technology, the oil/gas well has evolved from its early vertical straight form to the inclined, horizontal, plane curved, or even 3D curved well-bore. Understanding of the buck- ling behavior of a drill-string in a well-bore is crucial for the success of a drilling operation. Therefore, equilibrium equations for analyzing the buckling behavior of a drill-string in a 3D curved well-bore are required. Based on Love’s equilibrium equations for a curved and twisted rod in space, a set of equi- librium equations for the nonlinear buckling analysis of a drill-string in a 3D curved well-bore are de- rived by introducing a radial constraint of the well-bore. The proposed formulae can account for the well curvature and tortuosity. Thus, it can be used to analyze the buckling behaviors of a drill-string constrained in a well-bore and subjected to axial compression, torsion at its upper end, and gravity simultaneously. It is worth noting that the existing equations in the literature for a drill-string in a straight and plane curved well-bore with a constant curvature are a special case of the proposed model. Thus, the present model can provide a theoretical basis for the nonlinear buckling analysis of a drill-string constrained in a 3D curved well-bore.

  19. Equilibrium equations for nonlinear buckling analysis of drill-strings in 3D curved well-bores

    Institute of Scientific and Technical Information of China (English)

    TAN MeiLan; GAN LiFei

    2009-01-01

    With the development of drilling technology, the oil/gas well has evolved from its early vertical straight form to the inclined, horizontal, plane curved, or even 3D curved well-bore. Understanding of the buck-ling behavior of a drill-string in a well-bore is crucial for the success of a drilling operation. Therefore, equilibrium equations for analyzing the buckling behavior of a drill-string in a 3D curved well-bore are required. Based on Love's equilibrium equations for a curved and twisted rod in space, s set of equi-librium equations for the nonlinear buckling analysis of a drill-string in a 3D curved well-bore are de-rived by introducing a radial constraint of the well-bore. The proposed formulae can account for the well curvature and tortuosity. Thus, it can be used to analyze the buckling behaviors of a drill-string constrained in a well-bore and subjected to axial compression, torsion at its upper end, and gravity simultaneously. It is worth noting that the existing equations in the literature for a drill-string in a straight and plane curved well-bore with a constant curvature are a special case of the proposed model. Thus, the present model can provide s theoretical basis for the nonlinear buckling analysis of a drill-string constrained in a 3D curved well-bore.

  20. The Nonlinear Predator-Prey Singularly Perturbed Robin Initial Boundary Value Problems for Reaction Diffusion System

    Institute of Scientific and Technical Information of China (English)

    莫嘉琪

    2003-01-01

    The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.

  1. Initial-boundary value problems for a class of nonlinear thermoelastic plate equations

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian-Wen; Rong Xiao-Liang; Wu Run-Heng

    2009-01-01

    This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions,it obtains an existence and uniqueness theorem of global weak solutions of the nonlinear thermoelstic plate equations,by means of the Galerkin method. Moreover,it also proves the existence of strong and classical solutions.

  2. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models.

    Science.gov (United States)

    Hossein-Zadeh, Navid Ghavi

    2016-08-01

    The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.

  3. Nonlinear time series analysis of the light curves from the black hole system GRS1915+105

    Institute of Scientific and Technical Information of China (English)

    K.P Harikrishnan; Ranjeev Misra; G.Ambika

    2011-01-01

    GRS 1915+105 is a prominent black hole system exhibiting variability over a wide range of time scales and its observed light curves have been classified into 12 temporal states. Here we undertake a complete analysis of these light curves from all the states using various quantifiers from nonlinear time series analysis, such as the correlation dimension (D2), the correlation entropy (K2), singular value decomposition (SVD) and the multifractal spectrum (f(α) spectrum). An important aspect of our analysis is that, for estimating these quantifiers, we use algorithmic schemes which we have recently proposed and successfully tested on synthetic as well as practical time series from various fields. Though the schemes are based on the conventional delay embedding technique, they are automated so that the above quantitative measures can be computed using conditions prescribed by the algorithm and without any intermediate subjective analysis. We show that nearly half of the 12 temporal states exhibit deviation from randomness and their complex temporal behavior could be approximated by a few (three or four) coupled ordinary nonlinear differential equations. These results could be important for a better understanding of the processes that generate the light curves and hence for modeling the temporal behavior of such complex systems.To our knowledge, this is the first complete analysis of an astrophysical object (let alone a black hole system) using various techniques from nonlinear dynamics.

  4. On using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applications

    KAUST Repository

    Ouakad, Hassen M.

    2014-01-01

    Numerical and experimental investigations of the dynamics of micromachined shallow arches (initially curved microbeams) and the possibility of using their dynamic snap-through motion for filtering purposes are presented. The considered MEMS arches are actuated by a DC electrostatic load along with an AC harmonic load. Their dynamics is examined numerically using a Galerkin-based reduced-order model when excited near both their first and third natural frequencies. Several simulation results are presented demonstrating interesting jumps and dynamic snap-through behavior of the MEMS arches and their attractive features for uses as band-pass filters, such as their sharp roll-off from pass-bands to stop-bands and their flat response. Experimental work is conducted to test arches realized of curved polysilicon microbeams when excited by DC and AC loads. Experimental data of the micromachined curved beams are shown for the softening and hardening behavior near the first and third natural frequencies, respectively, as well as dynamic snap-through motion. © 2013 Elsevier Ltd.

  5. NONLOCAL INITIAL PROBLEM FOR NONLINEAR NONAUTONOMOUS DIFFERENTIAL EQUATIONS IN A BANACH SPACE

    Institute of Scientific and Technical Information of China (English)

    M.I.Gil'

    2004-01-01

    The nonlocal initial problem for nonlinear nonautonomous evolution equations in a Banach space is considered. It is assumed that the nonlinearities have the local Lipschitz properties. The existence and uniqueness of mild solutions are proved. Applications to integro-differential equations are discussed. The main tool in the paper is the normalizing mapping (the generalized norm).

  6. Analysis of the nonlinear dynamics of a 2-axle freight wagon in curves

    DEFF Research Database (Denmark)

    Di Gialleonardo, Egidio; Bruni, Stefano; True, Hans

    2014-01-01

    and bifurcations are identified for some particular values of the curve radius. For the single car case, it is shown that depending on the curve radius and the vehicle speed the carbody may experience severe periodic oscillations at speeds lying in the operating range of the vehicle. For the car-assembly case...

  7. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  8. Initial Synthetic Diagnostics of Nonlinear Simulation of CSDX

    Science.gov (United States)

    Vaezi, Payam; Holland, Christopher; Thakur, Saikat; Tynan, George

    2015-11-01

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a simple system for nonlinear studies of coupled drift-wave/zonal flow dynamics. We present numerical simulations of a minimal model of 3D collisional drift-wave physics in CSDX which evolves density, vorticity and electron temperature perturbations, implemented in the BOUndary Turbulence (BOUT++) framework. Equilibrium electron density and temperature profiles are taken from experimental measurements. We have verified the model with both linear analytical theory and nonlinear energy balance analysis. Results show that retaining the radial profile variation of plasma parameters has a significant impact on the simulation results. Application of synthetic Langmuir probes to simulation results reveals that the effect of electron temperature fluctuations is significant for validation of model results against measurements of turbulence characteristics (e.g. fluctuation levels, flux, frequency spectra). Both of these effects are found to be needed for model predictions to be comparable to experimental observations. This work is supported by US DoE under DE-FG02-06ER54871.

  9. Nonlinear Vibration of Rotor Rubbing Stator Caused by Initial Perturbation

    Institute of Scientific and Technical Information of China (English)

    张小章; 隆锦胜; 李正光

    2001-01-01

    The vibration of a rotor rubbing a stator caused by an initial perturbation was studied analytically.The analytical model consists of a simple disc shaft rotor and a fixed stator. The perturbation is aninstantaneous change of the radial velocity when the rotor is operating in its normal steady state. The analysisshowed that the rotor may continue rubbing the stator for small clearance, even if the initial perturbation nolonger exists. For the interest of engineering applications, we investigated various rotating speeds,perturbation amplitudes and clearances between the rotor and the stator. Various friction coefficients on thecontact surface were also considered. The graphical results can be used for the design of rotating machines.``

  10. Nonlinear radiative heat transfer and Hall effects on a viscous fluid in a semi-porous curved channel

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Z.; Naveed, M., E-mail: rana.m.naveed@gmail.com [Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Sajid, M. [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)

    2015-10-15

    In this paper, effects of Hall currents and nonlinear radiative heat transfer in a viscous fluid passing through a semi-porous curved channel coiled in a circle of radius R are analyzed. A curvilinear coordinate system is used to develop the mathematical model of the considered problem in the form partial differential equations. Similarity solutions of the governing boundary value problems are obtained numerically using shooting method. The results are also validated with the well-known finite difference technique known as the Keller-Box method. The analysis of the involved pertinent parameters on the velocity and temperature distributions is presented through graphs and tables.

  11. The Nonlinear Phillips Curve and Inflation Forecast Targeting - Symmetric Versus Asymmetric Monetary Policy Rules

    NARCIS (Netherlands)

    Schaling, E.

    1998-01-01

    We extend the Svensson (1997a) inflation forecast targeting framework with a convex Phillips curve. We derive an asymmetric target rule, that implies a higher level of nominal interest rates than the Svensson (1997a) forward looking version of the reaction function popularised by Taylor (1993).

  12. The Nonlinear Phillips Curve and Inflation Forecast Targeting - Symmetric Versus Asymmetric Monetary Policy Rules

    NARCIS (Netherlands)

    Schaling, E.

    1998-01-01

    We extend the Svensson (1997a) inflation forecast targeting framework with a convex Phillips curve. We derive an asymmetric target rule, that implies a higher level of nominal interest rates than the Svensson (1997a) forward looking version of the reaction function popularised by Taylor (1993). Exte

  13. Nonlinear dynamics of initially imperfect functionally graded circular cylindrical shell under complex loads

    Science.gov (United States)

    Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.

    2015-07-01

    The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.

  14. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  15. Bi-Hamiltonian Structure of a Third-Order Nonlinear Evolution Equation on Plane Curve Motions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the present paper, we identify the integrability of the third-order nonlinear evolution equation ut = (1/2)((uxx + u)-2)x in a Hamiltonian viewpoint. We prove that the recursion operator obtained by S. Yu. Sakovich is hereditary, and then deduce a bi-Hamiltonian structure of the equation by using some decomposition of the hereditary operator. A hierarchy associated to the equation is also shown.

  16. ASYMPTOTIC THEORY OF INITIAL VALUE PROBLEMS FOR NONLINEAR PERTURBED KLEIN-GORDON EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    GAN Zai-hui; ZHANG Jian

    2005-01-01

    The asymptotic theory of initial value problems for a class of nonlinear perturbed Klein-Gordon equations in two space dimensions is considered. Firstly, using the contraction mapping principle, combining some priori estimates and the convergence of Bessel function, the well-posedness of solutions of the initial value problem in twice continuous differentiable space was obtained according to the equivalent integral equation of initial value problem for the Klein-Gordon equations. Next, formal approximations of initial value problem was constructed by perturbation method and the asymptotic validity of the formal approximation is got. Finally, an application of the asymptotic theory was given, the asymptotic approximation degree of solutions for the initial value problem of a specific nonlinear Klein-Gordon equation was analyzed by using the asymptotic approximation theorem.

  17. Unidirectional growth, rocking curve, linear and nonlinear optical properties of LPHCl single crystals

    Science.gov (United States)

    Kumar, P. Ramesh; Gunaseelan, R.; Raj, A. Antony; Selvakumar, S.; Sagayaraj, P.

    2012-06-01

    Nonlinear optical amino-acid single crystal of L-phenylalanine hydrochloride (LPHCl) was successfully grown by unidirectional Sankaranarayanan-Ramasamy (SR) method under ambient conditions for the first time. The grown single crystal was subjected to different characterization analyses in order to find out its suitability for device fabrication. The crystalline perfection was evaluated using high-resolution X-ray diffractometry. It is evident from the optical absorption study that crystal has excellent transmission in the entire visible region with its lower cut off wavelength around 290 nm.

  18. Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2016-10-01

    Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.

  19. Non-Linear Trans-Planckian Corrections of Spectra due to the Non-trivial Initial States

    CERN Document Server

    Yusofi, E

    2014-01-01

    Recent Planck results motivated us to use non-Bunch-Davies vacuum. In this paper, we use the excited-de Sitter mode as non-linear initial states during inflation to calculate the corrected spectra of the initial fluctuations of the scalar field. First, we consider the field in de Sitter space-time as background field and for the non-Bunch-Davies mode, we use the perturbation theory to the second order approximation. Also, unlike conventional renormalization method, we offer de Sitter space-time as the background instead Minkowski space-time. This approach preserve the symmetry of curved space-time and stimulate us to use excited mode. By taking into account this alternative mode and the effects of trans-Planckian physics, we calculate the power spectrum in standard approach and Danielsson argument. The calculated power spectrum with this method is finite, corrections of it is non-linear, and in de Sitter limit corrections reduce to linear form that obtained from several previous conventional methods.

  20. An efficient and simple approximate technique for solving nonlinear initial and boundary-value problems

    Science.gov (United States)

    Kounadis, A. N.

    1992-05-01

    An efficient and easily applicable, approximate analytic technique for the solution of nonlinear initial and boundary-value problems associated with nonlinear ordinary differential equations (O.D.E.) of any order and variable coefficients, is presented. Convergence, uniqueness and upper bound error estimates of solutions, obtained by the successive approximations scheme of the proposed technique, are thoroughly established. Important conclusions regarding the improvement of convergence for large time and large displacement solutions in case of nonlinear initial-value problems are also assessed. The proposed technique is much more efficient than the perturbations schemes for establishing the large postbuckling response of structural systems. The efficiency, simplicity and reliability of the proposed technique is demonstrated by two illustrative examples for which available numerical results exist.

  1. Numerical Simulation of Self-Pumped Phase Conjugate Plane-Curve Loop Mirror Based on Photorefractive Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Mehran Vahdani Moghaddam; Zeynab Chenari; Hamid Latifi; Vladimir Vladimirovich Shuvalov; Konestantin Valentinovich Rudenko

    2008-01-01

    @@ We deal with computer simulation of a transient process in a self-pumped phase conjugate plane-curve loop mirror based on BaTiO3. In optimal circumstances the nonlinear reflectivity and fidelity of such a mirror respectively achieve 0.80-0.90 and 0.95-0.98. The generation of conjugate wave-front occurs due to scattering from the dynamic hologram which is produced in the region of self-intersection of forward and backward beams. In such a model the scenario of passing to unstable generation regimes is similar to the self-pumped phase conjugate plane-plane loop mirror and substantially differs from a single-crystal double phase conjugate mirror.

  2. On the solvability of initial-value problems for nonlinear implicit difference equations

    Directory of Open Access Journals (Sweden)

    Yen Ha Thi Ngoc

    2004-01-01

    Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.

  3. On the solvability of initial-value problems for nonlinear implicit difference equations

    Directory of Open Access Journals (Sweden)

    Ha Thi Ngoc Yen

    2004-07-01

    Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.

  4. Initial value problem for a class of fourth-order nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    Guo-wang CHEN; Chang-shun HOU

    2009-01-01

    In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.

  5. High-precision 2MASS JHK{sub s} light curves and other data for RR Lyrae star SDSS J015450 + 001501: Strong constraints for nonlinear pulsation models

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, Róbert; Ivezić, Željko; Kiss, László L.; Kolláth, Zoltán [Konkoly Observatory, MTA CSFK, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Jones, Lynne; Becker, Andrew C.; Davenport, James R. A. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Cutri, Roc M., E-mail: rszabo@konkoly.hu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-01-01

    We present and discuss an extensive data set for the non-Blazhko ab-type RR Lyrae star SDSS J015450+001501, including optical Sloan Digital Sky Survey ugriz light curves and spectroscopic data, LINEAR and Catalina Sky Survey unfiltered optical light curves, and infrared Two Micron All Sky Survey (2MASS) JHK{sub s} and Wide-field Infrared Survey Explorer W1 and W2 light curves. Most notable is that light curves obtained by 2MASS include close to 9000 photometric measures collected over 3.3 yr and provide an exceedingly precise view of near-infrared variability. These data demonstrate that static atmosphere models are insufficient to explain multiband photometric light-curve behavior and present strong constraints for nonlinear pulsation models for RR Lyrae stars. It is a challenge to modelers to produce theoretical light curves that can explain data presented here, which we make publicly available.

  6. Local and Global Existence of Solutions to Initial Value Problems of Modified Nonlinear Kawahara Equations

    Institute of Scientific and Technical Information of China (English)

    Shuang Ping TAO; Shang Bin CUI

    2005-01-01

    This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation ()u/()t+ a u2()u/()m + β()3u/()x3 + γ()5u-()x5 = 0, (x, t) ∈ We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.

  7. COMP: a basic non-linear last squares curve fitting package. [Interactive program for PDP-11/34 or 11/70

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C. R.; Cochran, M. I.; Thomas, J. M.; Eberhardt, L. L

    1977-11-01

    To find a mathematical model which describes (fits) data from a process which is fundamentally nonlinear, one usually uses nonlinear least-squares techniques on maxicomputers. These usually run in batch mode with the user supplying a model and initial ''guesstimates'' of its parameters. However, fitting the model to the data can be considered an art because computer algorithms either converge to true solutions, or converge to erroneous solutions, or fail to converge, depending on the quality of the guesstimates. It is slow and expensive to try enough runs to obtain a logical solution (unless one makes lucky initial guesses). An interactive BASIC procedure was developed which runs on either the PDP-11/34 under RT-11 or the PDP-11/70 under IAS. These programs help the investigator quickly fit the model to the data and statistically evaluate the differences between the two. The parameter estimates thus determined may then be used as guesstimates for the more precise maxicomputer codes. The key to the system is the re-enterant nature of the curve fitting routine (allowed only with a language such as INTERPRETED BASIC). The user supplies estimates of the parameters for the selected model (18 are currently available, and users can easily write their own). The computer tries a few iterative refinements (by using Taylor series expansion of partial derivatives to obtain linearization) of the estimates in an attempt to minimize the deviations between the values predicted by the model and the observed data. The user can observe as the program executes whether the result is a logical solution. If not, he may stop the process, enter new guesstimates, and examine those results, try again, or select a new model.

  8. Nonlinear vibrations of cylindrical shells with initial imperfections in a supersonic flow

    Science.gov (United States)

    Kurilov, E. A.; Mikhlin, Yu. V.

    2007-09-01

    The paper studies the dynamics of nonlinear elastic cylindrical shells using the theory of shallow shells. The aerodynamic pressure on the shell in a supersonic flow is found using piston theory. The effect of the flow and initial deflections on the vibrations of the shell is analyzed in the flutter range. The normal modes of both perfect shells in a flow and shells with initial imperfections are studied. In the latter case, the trajectories of normal modes in the configuration space are nearly rectilinear, only one mode determined by the initial imperfections being stable

  9. Effects of sub-domain structure on initial magnetization curve and domain size distribution of stacked media

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S., E-mail: 231504@gmail.com; Kumagai, S.; Sugita, R.

    2015-03-01

    In this paper, in order to confirm the sub-domain structure in stacked media demagnetized with in-plane field, initial magnetization curves and magnetic domain size distribution were investigated. Both experimental and simulation results showed that an initial magnetization curve for the medium demagnetized with in-plane field (MDI) initially rose faster than that for the medium demagnetized with perpendicular field (MDP). It is inferred that this is because the MDI has a larger number of domain walls than the MDP due to the existence of the sub-domains, resulting in an increase in the probability of domain wall motion. Dispersion of domain size for the MDI was larger than that for the MDP. This is because sub-domains are formed not only inside the domain but also at the domain boundary region, and they change the position of the domain boundary to affect the domain size. - Highlights: • An initial magnetization curve for MDI initially rose faster than that for MDP. • Dispersion of domain size for the MDI was larger than that for the MDP. • Experimental and simulation results can be explained by existence of sub-domains.

  10. Effect of Pressure Gradients on the Initiation of PBX-9502 via Irregular (Mach) Reflection of Low Pressure Curved Shock Waves

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Lawrence Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Phillip Isaac [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moro, Erik Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.

  11. Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation

    Energy Technology Data Exchange (ETDEWEB)

    Naei, Mohammad Hassan; Rastgoo, Abbas [University of Tehran, Tehran (Iran, Islamic Republic of); Ebrahimi, Farzad [Faculty of Engineering and Technology, lmam Khomeini International University, Qazvin (Iran, Islamic Republic of)

    2009-08-15

    A theoretical model for geometrically nonlinear vibration analysis of piezoelectrically actuated circular plates made of functionally grade material (FGM) is presented based on Kirchhoff's-Love hypothesis with von-Karman type geometrical large nonlinear deformations. To determine the initial stress state and pre-vibration deformations of the smart plate a nonlinear static problem is solved followed by adding an incremental dynamic state to the pre-vibration state. The derived governing equations of the structure are solved by exact series expansion method combined with perturbation approach. The material properties of the FGM core plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents. Control of the FGM plate's nonlinear deflections and natural frequencies using high control voltages is studied and their nonlinear effects are evaluated. Numerical results for FG plates with various mixture of ceramic and metal are presented in dimensionless forms. In a parametric study the emphasis is placed on investigating the effect of varying the applied actuator voltage as well as gradient index of FGM plate on vibration characteristics of the smart structure

  12. Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bing Hu; Wen-Hua Chen

    2007-01-01

    This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods,this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI)and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.

  13. The design of predictive control with characterized set of initial condition for constrained switched nonlinear system

    Institute of Scientific and Technical Information of China (English)

    SU BaiLi; LI ShaoYuan; ZHU QuanMin

    2009-01-01

    Stabilization of the constrained switched nonlinear systems is an attractive research subject. Predictive control can handle variable constraints well and make the system stable. Its stability is typically based on an assumption of initial feasibility of the optimization problem; however the set of initial conditions, starting from where a given predictive formulation is guaranteed to be feasible, is not explicitly char-acterized. In this paper, a hybrid predictive control method is proposed for a class of switched nonlin-ear systems with input constraints and un-measurable states. The main idea is to design a mixed con-troller using Lyapunov functions and a state observer, which switches appropriately between a bounded feedback controller and a predictive controller, and to give an explicitly characterized set of initial conditions to stabilize each closed-loop subsystem. For the whole switched nonlinear system, a suitable switched law based on the state estimation is designed to orchestrate the transitions between the consistituent modes and their respective controllers, and to ensure the whole closed-loop system's stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.

  14. The design of predictive control with characterized set of initial condition for constrained switched nonlinear system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Stabilization of the constrained switched nonlinear systems is an attractive research subject. Predictive control can handle variable constraints well and make the system stable. Its stability is typically based on an assumption of initial feasibility of the optimization problem; however the set of initial conditions, starting from where a given predictive formulation is guaranteed to be feasible, is not explicitly characterized. In this paper, a hybrid predictive control method is proposed for a class of switched nonlinear systems with input constraints and un-measurable states. The main idea is to design a mixed controller using Lyapunov functions and a state observer, which switches appropriately between a bounded feedback controller and a predictive controller, and to give an explicitly characterized set of initial conditions to stabilize each closed-loop subsystem. For the whole switched nonlinear system, a suitable switched law based on the state estimation is designed to orchestrate the transitions between the consistituent modes and their respective controllers, and to ensure the whole closed-loop system’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.

  15. Initial-value problem for the Gardner equation applied to nonlinear internal waves

    Science.gov (United States)

    Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim

    2017-04-01

    The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of

  16. INITIAL LAYER PHENOMENA FOR A CLASS OF SINGULAR PERTURBED NONLINEAR SYSTEM WITH SLOW VARIABLES

    Institute of Scientific and Technical Information of China (English)

    黄蔚章; 陈育森

    2004-01-01

    The initial layer phenomena for a class of singular perturbed nonlinear system with slow variables are studied. By introducing stretchy variables with different quantity levels and constructing the correction term of initial layer with different "thickness", the Norder approximate expansion of perturbed solution concerning small parameter is obtained,and the "multiple layer" phenomena of perturbed solutions are revealed. Using the fixed point theorem, the existence of perturbed solution is proved, and the uniformly valid asymptotic expansion of the solutions is given as well.

  17. Study of Welding Distortion and Residual Stress Considering Nonlinear Yield Stress Curves and Multi-constraint Equations

    Science.gov (United States)

    Rong, Youmin; Zhang, Guojun; Huang, Yu

    2016-10-01

    Inherent strain analysis has been successfully applied to predict welding deformations of large-scale structural components, while thermal-elastic-plastic finite element method is rarely used for its disadvantages of long calculation period and large storage space. In this paper, a hybrid model considering nonlinear yield stress curves and multi-constraint equations to thermal-elastic-plastic analysis is further proposed to predict welding distortions and residual stresses of large-scale structures. For welding T-joint structural steel S355JR by metal active gas welding, the published experiment results of temperature and displacement fields are applied to illustrate the credibility of the proposed integration model. By comparing numerical results of four different cases with the experiment results, it is verified that prediction precision of welding deformations and residual stresses is apparently improved considering the power-law hardening model, and computational time is also obviously shortened about 30.14% using multi-constraint equations. On the whole, the proposed hybrid method can be further used to precisely and efficiently predict welding deformations and residual stresses of large-scale structures.

  18. Quantitative Evaluation of Cross-Peak Volumes in Multidimensional Spectra by Nonlinear-Least-Squares Curve Fitting

    Science.gov (United States)

    Sze, K. H.; Barsukov, I. L.; Roberts, G. C. K.

    A procedure for quantitative evaluation of cross-peak volumes in spectra of any order of dimensions is described; this is based on a generalized algorithm for combining appropriate one-dimensional integrals obtained by nonlinear-least-squares curve-fitting techniques. This procedure is embodied in a program, NDVOL, which has three modes of operation: a fully automatic mode, a manual mode for interactive selection of fitting parameters, and a fast reintegration mode. The procedures used in the NDVOL program to obtain accurate volumes for overlapping cross peaks are illustrated using various simulated overlapping cross-peak patterns. The precision and accuracy of the estimates of cross-peak volumes obtained by application of the program to these simulated cross peaks and to a back-calculated 2D NOESY spectrum of dihydrofolate reductase are presented. Examples are shown of the use of the program with real 2D and 3D data. It is shown that the program is able to provide excellent estimates of volume even for seriously overlapping cross peaks with minimal intervention by the user.

  19. Symbolic computation of analytic approximate solutions for nonlinear differential equations with initial conditions

    Science.gov (United States)

    Lin, Yezhi; Liu, Yinping; Li, Zhibin

    2012-01-01

    The Adomian decomposition method (ADM) is one of the most effective methods for constructing analytic approximate solutions of nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, and the two-step Adomian decomposition method (TSADM) combined with the Padé technique, a new algorithm is proposed to construct accurate analytic approximations of nonlinear differential equations with initial conditions. Furthermore, a MAPLE package is developed, which is user-friendly and efficient. One only needs to input a system, initial conditions and several necessary parameters, then our package will automatically deliver analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the validity of the package. Our program provides a helpful and easy-to-use tool in science and engineering to deal with initial value problems. Program summaryProgram title: NAPA Catalogue identifier: AEJZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4060 No. of bytes in distributed program, including test data, etc.: 113 498 Distribution format: tar.gz Programming language: MAPLE R13 Computer: PC Operating system: Windows XP/7 RAM: 2 Gbytes Classification: 4.3 Nature of problem: Solve nonlinear differential equations with initial conditions. Solution method: Adomian decomposition method and Padé technique. Running time: Seconds at most in routine uses of the program. Special tasks may take up to some minutes.

  20. Learning Curve of Robotic-assisted Radical Prostatectomy With 60 Initial Cases by a Single Surgeon

    Directory of Open Access Journals (Sweden)

    Yen-Chuan Ou

    2011-04-01

    Conclusion: After gaining experience by performing an initial 30 robotic-assisted laparoscopic radical prostatectomies, the subsequent 30 surgeries established proficiency as determined by vesicourethral anastomosis time and early continence rate.

  1. Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves

    Science.gov (United States)

    Shemer, Lev; Sergeeva, Anna; Liberzon, Dan

    2010-12-01

    Results of extensive experiments on propagation of unidirectional nonlinear random waves in a large wave tank are presented. The nonlinearity of the wavefield determined by the characteristic wave amplitude and the dominant wave length was retained constant in various series of experimental runs. In each experimental series, initial spectra of different shape and/or width were considered. Every series contained sufficient number of independent realizations to ensure reliable statistics. Evolution of various statistical parameters along the tank was investigated. It is demonstrated that the spectrum width plays an important role in the evolution of the random wavefield and strongly affects the variation of the wave spectrum as well as of parameters that characterize the deviation of the wavefield statistics from that corresponding to the Gaussian distribution. In particular, in a random wavefield that initially contains independent free harmonics within a narrow spectrum, extremely steep waves appear more often in the process of evolutions than predicted by a Rayleigh distribution, while for wider initial wave spectra the probability of those waves decreases sharply and is well below the Rayleigh values.

  2. Local and Global Existence of Solutions to Initial Value Problems of Nonlinear Kaup-Kupershmidt Equations

    Institute of Scientific and Technical Information of China (English)

    Shuang Ping TAO; Shang Bin CUI

    2005-01-01

    This paper is devoted to studying the initial value problems of the nonlinear KaupKupershmidt equations (e)u/(e)t + α1u(e)2u/(e)x2+β(e)3u/(e)x3+γ(e)5u/( )x5= 0, (x, t) ∈ R2, and (e)u/(e)t+α2 (e)u/(e)x (e)2u/(e)x2+β(e)3u/(e)x3+γ(e)5u/(e)x5 = 0, (x, t) ∈R2. Several important Strichartz type estimates for the fundamental solution of the corresponding linear problem are established. Then we apply such estimates to prove the local and global existence of solutions for the initial value problems of the nonlinear Kaup-Kupershmidt equations. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R), and s ≥ 5/4 for the first equation and s ≥ 301/108 for the second equation.

  3. Liver segmentation with new supervised method to create initial curve for active contour.

    Science.gov (United States)

    Zareei, Abouzar; Karimi, Abbas

    2016-08-01

    The liver performs a critical task in the human body; therefore, detecting liver diseases and preparing a robust plan for treating them are both crucial. Liver diseases kill nearly 25,000 Americans every year. A variety of image segmentation methods are available to determine the liver's position and to detect possible liver tumors. Among these is the Active Contour Model (ACM), a framework which has proven very sensitive to initial contour delineation and control parameters. In the proposed method based on image energy, we attempted to obtain an initial segmentation close to the liver's boundary, and then implemented an ACM to improve the initial segmentation. The ACM used in this work incorporates gradient vector flow (GVF) and balloon energy in order to overcome ACM limitations, such as local minima entrapment and initial contour dependency. Additionally, in order to adjust active contour control parameters, we applied a genetic algorithm to produce a proper parameter set close to the optimal solution. The pre-processing method has a better ability to segment the liver tissue during a short time with respect to other mentioned methods in this paper. The proposed method was performed using Sliver CT image datasets. The results show high accuracy, precision, sensitivity, specificity and low overlap error, MSD and runtime with few ACM iterations.

  4. Effect of non-linearity of a predictor on the shape and magnitude of its receiver-operating-characteristic curve in predicting a binary outcome.

    Science.gov (United States)

    Ho, Kwok M

    2017-08-31

    Area under a receiver-operating-characteristic (AUROC) curve is widely used in medicine to summarize the ability of a continuous predictive marker to predict a binary outcome. This study illustrated how a U-shaped or inverted U-shaped continuous predictor would affect the shape and magnitude of its AUROC curve in predicting a binary outcome by comparing the ROC curves of the worst first 24-hour arterial pH values of 9549 consecutive critically ill patients in predicting hospital mortality before and after centering the predictor by its mean or median. A simulation dataset with an inverted U-shaped predictor was used to assess how this would affect the shape and magnitude of the AUROC curve. An asymmetrical U-shaped relationship between pH and hospital mortality, resulting in an inverse-sigmoidal ROC curve, was observed. The AUROC substantially increased after centering the predictor by its mean (0.611 vs 0.722, difference = 0.111, 95% confidence interval [CI] 0.087-0.135), and was further improved after centering by its median (0.611 vs 0.745, difference = 0.133, 95%CI 0.110-0.157). A sigmoidal-shaped ROC curve was observed for an inverted U-shaped predictor. In summary, a non-linear predictor can result in a biphasic-shaped ROC curve; and centering the predictor can reduce its bias towards null predictive ability.

  5. Effect of initial densities in the lattice Boltzmann model for non-ideal fluid with curved interface

    Science.gov (United States)

    Gong, Jiaming; Oshima, Nobuyuki

    2017-06-01

    The effect of initial densities in a free energy based two-phase-flow lattice Boltzmann method for non-ideal fluids with a curved interface was investigated in the present work. To investigate this effect, the initial densities in the liquid and gas phases coming from the saturation points and the equilibrium state were adopted in the simulation of a static droplet in an open and a closed system. For the purpose of simplicity and easier comparison, the closed system is fabricated by the implementation of the periodic boundary condition at the inlet and outlet of a gas channel, and the open system is fabricated by the implementation of a constant flux boundary condition at the inlet and a free-out boundary condition at the outlet of the same gas channel. By comparing the simulation results from the two types of initial densities in the open and closed systems, it is proven that the commonly used saturation initial densities setting is the reason for droplet mass and volume variation which occurred in the simulation, particularly in the open system with a constant flux boundary condition. Such problems are believed to come from the curvature effect of the surface tension and can be greatly reduced by adopting the initial densities in the two phases from equilibrium state.

  6. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R., E-mail: rebello@ime.eb.br, E-mail: daltongirao@yahoo.com.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, Ademir X., E-mail: ademir@nuclear.ufrj.br [Corrdenacao dos Programas de Pos-Graduacao em Egenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into {sup i}nitial nuclear radiation{sup ,} referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10){sub n}{sup -}. (author)

  7. A Critical, Nonlinear Threshold Dictates Bacterial Invasion and Initial Kinetics During Influenza

    Science.gov (United States)

    Smith, Amber M.; Smith, Amanda P.

    2016-12-01

    Secondary bacterial infections increase morbidity and mortality of influenza A virus (IAV) infections. Bacteria are able to invade due to virus-induced depletion of alveolar macrophages (AMs), but this is not the only contributing factor. By analyzing a kinetic model, we uncovered a nonlinear initial dose threshold that is dependent on the amount of virus-induced AM depletion. The threshold separates the growth and clearance phenotypes such that bacteria decline for dose-AM depletion combinations below the threshold, stay constant near the threshold, and increase above the threshold. In addition, the distance from the threshold correlates to the growth rate. Because AM depletion changes throughout an IAV infection, the dose requirement for bacterial invasion also changes accordingly. Using the threshold, we found that the dose requirement drops dramatically during the first 7d of IAV infection. We then validated these analytical predictions by infecting mice with doses below or above the predicted threshold over the course of IAV infection. These results identify the nonlinear way in which two independent factors work together to support successful post-influenza bacterial invasion. They provide insight into coinfection timing, the heterogeneity in outcome, the probability of acquiring a coinfection, and the use of new therapeutic strategies to combat viral-bacterial coinfections.

  8. Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations

    Science.gov (United States)

    Kanoglu, U.; Aydin, B.

    2014-12-01

    The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV

  9. An algorithm of sequential systems of linear equations for nonlinear optimization problems with arbitrary initial point

    Institute of Scientific and Technical Information of China (English)

    高自友; 贺国平; 吴方

    1997-01-01

    For current sequential quadratic programming (SQP) type algorithms, there exist two problems; (i) in order to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the computation amount of this algorithm is very large. So they are not suitable for the large-scale problems; (ii) the SQP algorithms require that the related quadratic programming subproblems be solvable per iteration, but it is difficult to be satisfied. By using e-active set procedure with a special penalty function as the merit function, a new algorithm of sequential systems of linear equations for general nonlinear optimization problems with arbitrary initial point is presented This new algorithm only needs to solve three systems of linear equations having the same coefficient matrix per iteration, and has global convergence and local superlinear convergence. To some extent, the new algorithm can overcome the shortcomings of the SQP algorithms mentioned above.

  10. Multi-frequency harmonic arrays: initial experience with a novel transducer concept for nonlinear contrast imaging.

    Science.gov (United States)

    Forsberg, Flemming; Shi, William T; Jadidian, Bahram; Winder, Alan A

    2004-12-01

    Nonlinear contrast imaging modes such as second harmonic imaging (HI) and subharmonic imaging (SHI) are increasingly important for clinical applications. However, the performance of currently available transducers for HI and SHI is significantly constrained by their limited bandwidth. To bypass this constraint, a novel transducer concept termed multi-frequency harmonic transducer arrays (MFHA's) has been designed and a preliminary evaluation has been conducted. The MFHA may ultimately be used for broadband contrast enhanced HI and SHI with high dynamic range and consists of three multi-element piezo-composite sub-arrays (A-C) constructed so the center frequencies are 4f(A) = 2f(B) = f(C) (specifically 2.5/5.0/10.0 MHz and 1.75/3.5/7.0 MHz). In principle this enables SHI by transmitting on sub-array C receiving on B and, similarly, from B to A as well as HI by transmitting on A receiving on B and, likewise, from B to C. Initially transmit and receive pressure levels of the arrays were measured with the elements of each sub-array wired in parallel. Following contrast administration, preliminary in vitro HI and SHI signal-to-noise ratios of up to 40 dB were obtained. In conclusion, initial design and in vitro characterization of two MFHA's have been performed. They have an overall broad frequency bandwidth of at least two octaves. Due to the special design of the array assembly, the SNR for HI and SHI was comparable to that of regular B-mode and better than commercially available HI systems. However, further research on multi-element MFHA's is required before their potential for in vivo nonlinear contrast imaging can be assessed.

  11. Velocity Curve Analysis of the Spectroscopic Binary Stars PV Pup, HD 141929, EE Cet and V921 Her by Nonlinear Regression

    Indian Academy of Sciences (India)

    K. Karami; R. Mohebi

    2007-12-01

    We use the method introduced by Karami & Mohebi (2007), and Karami & Teimoorinia (2007) which enable us to derive the orbital parameters of the spectroscopic binary stars by the nonlinear least squares of observed . curve fitting (o–c). Using the measured experimental data for radial velocities of the four double-lined spectroscopic binary systems PV Pup, HD 141929, EE Cet and V921 Her, we find both the orbital and the combined spectroscopic elements of these systems. Our numerical results are in good agreement with those obtained using the method of Lehmann-Filhés.

  12. An experimental and theoretical investigation of the mechanical behavior of multilayer initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2017-04-07

    We investigate the static and dynamic behavior of a multilayer clamped-free-clamped-free (CFCF) microplate, which is made of polyimide, gold, chromium, and nickel. The microplate is slightly curved away from a stationary electrode and is electrostatically actuated. The free and forced vibrations of the microplate are examined. First, we experimentally investigate the variation of the first natural frequency under the electrostatic DC load. Then, the forced dynamic behavior is investigated by applying a harmonic AC voltage superimposed to a DC voltage. Results are shown demonstrating the transition of the dynamic response of the microplate from hardening to softening as the DC voltage is changed as well the dynamic pull-in phenomenon. For theoretical model, we adopt a dynamic analog of the von-Karman governing equations accounting for initial curvature imperfection. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the mechanical behavior of the microplate. We compare the theoretical results with experimental data and show excellent agreement among the results. We also examine the effect of the initial rise on the natural frequencies of first three symmetric-symmetric modes of the plate.

  13. Initial Magnetization Curve and Hardening Mechanism in the Nanocomposite Nd8Fe85Nb1B6 Ribbon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The melt-spun Nd8Fe85Nb1B6 ribbon was prepared by the single roller method with the tangential speed of 20 m/s. A mixture of Nd2Fe14B and α-Fe phases with the average crystalline grain size of about 20 nm was found to exist in the as-quenched ribbons. The initial magnetization curve of the nanocomposite Nd8Fe85Nb1B6 ribbon can be divided into four sections by the inflection points on it. The magnetically hardening mechanism corresponding to each section was investigated. The initial susceptibility of the Nd8Fe85Nb1B6 ribbon is higher than that of the Nd15Fe85B9 powder, which may be attributed to the reversible magnetization rotation in the central region not influenced by the exchange-coupling effect within the α-Fe grains.The above-mentioned magnetization rotation leads to the formation of equilibrium 180 deg. domain walls at the boundaries of the α-Fe grains. With the increase of applied field, these domain walls are compressed reversibly towards the Nd2Fe14B grains and eventually invade into them.The irreversible movement of the domain walls in the Nd2Fe14B grains accounts for the steepest growth of magnetization with the applied field. Finally, the magnetically inhomogeneous “core regions” are formed in the Nd2Fe14B grains, and the magnetization rotation in these“core regions”indicates the end of the whole initial saturation process.

  14. Scoliotic posture as the initial symptom in adolescents with lumbar disc herniation: its curve pattern and natural history after lumbar discectomy

    Directory of Open Access Journals (Sweden)

    Ding Yitao

    2011-09-01

    Full Text Available Abstract Background There have been few studies focusing on the curve pattern of scoliosis caused by lumbar disc herniation (LDH in adolescents and the natural history of scoliosis after discectomy. The current study was carried out to identify the curve pattern of scoliosis and investigate the effect of posterior discectomy on the curve improvement in adolescents with LDH. Methods This review focused on a group of 26 adolescents with LDH who initially presented to our clinic for evaluation of scoliosis, followed by posterior discectomy between 2000 and 2009. Radiographic measurements included curve pattern, specific curve features, trunk shift, and sagittal profile. The correlation between the side of disc herniation and the direction of lumbosacral curve and the trunk shift was evaluated. Results A typical curve pattern was initially identified in all of the patients as a short lumbosacral curve accompanied with a long thoracic or thoracolumbar curve toward the opposite side. 23 of 26 patients (88.5% had a trunk shift more than 2.0 cm away from the midline, showing a poor coronal balance. A relatively straight sagittal profile was noted in all the patients. 84.6% (22/26 patients had a disc herniation at the convex side of lumbosacral curve. Similarly, 73.1% (19/26 patients showed a trunk shift toward the opposite side of disc herniation. All of the patients had an marked curve improvement immediately after discectomy. In the 17 patients with a more than 2-year follow-up, only two had a residual lumbosacral curve greater than or equal to 20 degrees. The mean ODI improved from 21.4% before surgery to 7.3% at the final follow-up. Conclusions A short lumbosacral curve accompanied with a long thoracic or thoracolumbar curve toward the opposite side, and a relatively straight sagittal profile have been noted in all the patients. The direction of lumbosacral curve and trunk shift was related to the side of disc herniation. A majority of patients have

  15. Rayleigh wave modeling: A study of dispersion curve sensitivity and methodology for calculating an initial model to be included in an inversion algorithm

    Science.gov (United States)

    de Lucena, Rodrigo F.; Taioli, Fabio

    2014-09-01

    This paper presents a study on Rayleigh wave modeling. After model implementation using Matlab software, unpublished studies were conducted of dispersion curve sensitivity to percentage changes in parameter values, including S- and P-wave velocities, substrate density, and layer thickness. The study of the sensitivity of dispersion curves demonstrated that parameters such as S-wave velocity and layer thickness cannot be ignored as inversion parameters, while P-wave velocity and density can be considered as known parameters since their influence is minimal. However, the results showed limitations that should be considered and overcome when choosing the known and unknown parameters through determining a good initial model or/and by gathering a priori information. A methodology considering the sensitivity study of dispersion curves was developed and evaluated to generate initial values (initial model) to be included in the local search inversion algorithm, clearly establishing initial favorable conditions for data inversion.

  16. Effect of Initial Chirping and Pulse Shape on 10 Gb/s Optical Pulse Transmission in Birefringent Nonlinear Fibers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Numerical method to solve the problem related with theinteractive effect of dispersion (both chromatic dispersion and polarization mode dispersion) and nonlinearity on optical pulse transmission is present. Evolutions of pulses with various initial chirping and shape at bit-rate of 10 Gb/s are simulated and compared. Gaussian pulse with appropriate prechirping is propitious for high bit-rate transmission.

  17. Superconvergence of Continuous Finite Elements with Interpolated Coefficients for Initial Value Problems of Nonlinear Ordinary Differential Equation

    Institute of Scientific and Technical Information of China (English)

    Zhiguang Xiong; Chuanmiao Chen

    2007-01-01

    In this paper,n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u - uh = O(hn+2),n ≥ 2,at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.

  18. On Asymptotic Behavior and Blow-Up of Solutions for a Nonlinear Viscoelastic Petrovsky Equation with Positive Initial Energy

    Directory of Open Access Journals (Sweden)

    Gang Li

    2013-01-01

    Full Text Available This paper deals with the initial boundary value problem for the nonlinear viscoelastic Petrovsky equation utt+Δ2u−∫0tgt−τΔ2ux,τdτ−Δut−Δutt+utm−1ut=up−1u. Under certain conditions on g and the assumption that minitial energy.

  19. Velocity Curve Analysis of Spectroscopic Binary Stars AI Phe, GM Dra, HD 93917 and V502 Oph by Nonlinear Regression

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o - c). Using the measured radial velocity data of the four double lined spectroscopic binary systems,AI Phe,GM Dra,HD 93917 and V502 Oph,we derived both the orbital and combined spectroscopic elements of these systems.Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhés.

  20. Theoretical and experimental comparisons of the nonlinear energy method to the J-integral, R-curve and COD methods in fracture toughness testing

    Science.gov (United States)

    Liebowitz, H.; Jones, D. L.; Poulose, P. K.

    1974-01-01

    Because of the current high degree of interest in the development of a standard nonlinear test method, analytical and experimental comparisons have been made between the R-curve, COD, J-integral and nonlinear energy methods. A general definition of fracture toughness is proposed and the fundamental definitions of each method are compared to it. Experimental comparisons between the COD, J-integral, nonlinear energy and standard ASTM methods have been made for a series of compact tension tests on several aluminum alloys. Some of the tests were conducted according to the ASTM standard method E399-72, while the specimen thickness was reduced below the minimum requirement for plane strain fracture toughness testing for several other test series. The fracture toughness values obtained by the COD method were significantly higher than the toughness values obtained by the other three methods. All of the methods displayed a tendency to yield higher toughness values as the thickness was decreased below the ASTM plane strain requirement.

  1. Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber.

    Science.gov (United States)

    Moeser, J T; Wolchover, N A; Knight, J C; Omenetto, F G

    2007-04-15

    We present a theoretical and experimental analysis of supercontinuum generation in very short lengths of high-nonlinearity photonic crystal fibers. The Raman response function for Schott SF6 glass is presented for what is believed to be the first time and used for numerical modeling of pulse propagation. Simulation and experiments are in excellent agreement and demonstrate the rapid transition to regimes of spectral complexity due to higher-order nonlinear effects.

  2. Initial studies on the variations of load-displacement curves of in vivo human healthy heel pads

    DEFF Research Database (Denmark)

    Matteoli, Sara; Wilhjelm, Jens E.; Virga, Antonio;

    2011-01-01

    The aim of this study was to quantify on the measurement variation of in vivo load-displacement curves by using a group of human healthy heel pads. The recordings were done with a compression device measuring force and displacement. Twenty three heel pads, one from each of 23 subjects aged 20......-35 years, were tested. The load-displacement curves showed the hysteresis, typical for a visco-elastic tissue. Seven load-displacement curves were measured for each subject. Each hysteresis was approximated by a 3rd degree polynomial, which in turn was described by two parameters: the slope and the average...... curvature. No statistically significant tendency (increasing or decreasing) were found for the seven polynomials (chi2 test, P-values of 0.81 and 0.17 for the two parameters, respectively). The study revealed no systematic error in the recorded load-displacement curves. The mean slope and the average...

  3. The initial value problem, scattering and inverse scattering, for Schroedinger equations with a potential and a non-local nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Romero, MarIa de los Angeles Sandoval; Weder, Ricardo [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-726, Mexico DF 01000 (Mexico)

    2006-09-15

    We consider nonlinear Schroedinger equations with a potential, and non-local nonlinearities, that are models in mesoscopic physics, for example of a quantum capacitor, and that are also models of molecular structure. We study in detail the initial value problem for these equations, in particular, existence and uniqueness of local and global solutions, continuous dependence on the initial data and regularity. We allow for a large class of unbounded potentials. We have no restriction on the growth at infinity of the positive part of the potential. We also construct the scattering operator in the case of potentials that go to zero at infinity. Furthermore, we give a method for the unique reconstruction of the potential from the small amplitude limit of the scattering operator. In the case of the quantum capacitor, our method allows us to uniquely reconstruct all the physical parameters from the small amplitude limit of the scattering operator.

  4. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    Science.gov (United States)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and

  5. CHAOTIC TRANSIENTS IN A CURVED FLUID CONVEYING TUBE

    Institute of Scientific and Technical Information of China (English)

    Ni Qiao; Wang Lin; Qian Qin

    2005-01-01

    The chaotic transients of a curved fluid conveying tube subjected to a nonlinear foundation are investigated. The assumption of the inextensibility of the tube is applied to derive the nonlinear differential equation of motion via the Newtonian approach, with the differential quadrature method used to discretize the curved tube model in the spatial domain. And the nonlinear dynamic motion equation is obtained. The numerical analysis shows that, the final steady states are sensitive to the initial system conditions in a large parameter region of the fluid speed. This phenomenon of chaotic transients is infrequent for fluid conveying tubes.

  6. Evaluation of kinetic entropy of breast masses initially found on MRI using whole-lesion curve distribution data: Comparison with the standard kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, Akiko [University of Chicago, Department of Radiology, Chicago, IL (United States); Tohoku University, Department of Diagnostic Radiology, Graduate School of Medicine, Sendai, Miyagi (Japan); Abe, Hiroyuki; Schacht, David V.; Yulei, Jian; Pineda, Federico D.; Jansen, Sanaz A.; Ganesh, Rajiv; Newstead, Gillian M. [University of Chicago, Department of Radiology, Chicago, IL (United States)

    2015-08-15

    To quantify kinetic heterogeneity of breast masses that were initially detected with dynamic contrast-enhanced MRI, using whole-lesion kinetic distribution data obtained from computer-aided evaluation (CAE), and to compare that with standard kinetic curve analysis. Clinical MR images from 2006 to 2011 with breast masses initially detected with MRI were evaluated with CAE. The relative frequencies of six kinetic patterns (medium-persistent, medium-plateau, medium-washout, rapid-persistent, rapid-plateau, rapid-washout) within the entire lesion were used to calculate kinetic entropy (KE), a quantitative measure of enhancement pattern heterogeneity. Initial uptake (IU) and signal enhancement ratio (SER) were obtained from the most-suspicious kinetic curve. Mann-Whitney U test and ROC analysis were conducted for differentiation of malignant and benign masses. Forty benign and 37 malignant masses comprised the case set. IU and SER were not significantly different between malignant and benign masses, whereas KE was significantly greater for malignant than benign masses (p = 0.748, p = 0.083, and p < 0.0001, respectively). Areas under ROC curve for IU, SER, and KE were 0.479, 0.615, and 0.662, respectively. Quantification of kinetic heterogeneity of whole-lesion time-curve data with KE has the potential to improve differentiation of malignant from benign breast masses on breast MRI. (orig.)

  7. Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem

    Directory of Open Access Journals (Sweden)

    G. Sun

    2011-11-01

    Full Text Available Human activities and climate change are important factors that affect grassland ecosystems. A new optimization approach, the approach of conditional nonlinear optimal perturbation (CNOP related to initial and parameter perturbations, is employed to explore the nonlinearly combined impacts of human activities and climate change on a grassland ecosystem using a theoretical grassland model. In our study, it is assumed that the initial perturbations and parameter perturbations are regarded as human activities and climate change, respectively. Numerical results indicate that the climate changes causing the maximum effect in the grassland ecosystem are different under disparate intensities of human activities. This implies the pattern of climate change is very critical to the maintenance or degradation of grassland ecosystem in light of high intensity of human activities and that the grassland ecosystem should be rationally managed when the moisture index decreases. The grassland ecosystem influenced by the nonlinear combination of human activities and climate change undergoes abrupt change, while the grassland ecosystem affected by other types of human activities and climate change fails to show the abrupt change under a certain range of perturbations with the theoretical model. The further numerical analyses also indicate that the growth of living biomass and the evaporation from soil surface shaded by the wilted biomass may be crucial factors contributing to the abrupt change of the grassland equilibrium state within the theoretical model.

  8. Exact dynamic stiffness matrix of non-symmetric thin-walled curved beams subjected to initial axial force

    Science.gov (United States)

    Nam-Il, Kim; Moon-Young, Kim

    2005-06-01

    An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to uniform axial force. For this purpose, firstly equations of motion, boundary conditions and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by introducing 14 displacement parameters and transforming the fourth-order simultaneous differential equations into the first-order simultaneous equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact 14×14 element stiffness matrix is determined using force-deformation relations. In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to uniform compressive and tensile forces are evaluated and compared with analytical and finite element solutions using Hermitian curved beam elements or ABAQUS's shell element. In addition, some results by the parametric study are reported.

  9. Particle filter initialization in non-linear non-Gaussian radar target tracking

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    When particle filter is applied in radar target tracking,the accuracy of the initial particles greatly effects the results of filtering. For acquiring more accurate initial particles,a new method called"competition strategy algorithm"is presented.In this method,initial measurements give birth to several particle groups around them,regularly.Each of the groups is tested several times,separately,in the beginning periods,and the group that has the most number of efficient particles is selected as the initial particles.For this method,sample initial particles selected are on the basis of several measurements instead of only one first measurement,which surely improves the accuracy of initial particles.The method sacrifices initialization time and computation cost for accuracy of initial particles. Results of simulation show that it greely improves the accuracy of initial particles,which makes the effect of filtering much better.

  10. Dissimilar Metal Weld Probability of Detection Curve Fits from Performance Demonstration Initiative Data: A Comparison with Other Round-Robin Results

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, Patrick G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-20

    The NRC, in cooperation with industry, is developing a computerized simulation and analytical tool within the Extremely Low Probability of Rupture (xLPR) Project to provide insights for determining whether certain types of service degradation would be expected to challenge safety-related systems at operating nuclear power plants. One input for this tool is the probability of detection (POD) for the nondestructive examinations conducted during inservice inspections at these plants. EPRI produced a series of POD curves for ultrasonic testing with data from the industry’s Performance Demonstration Initiative. This report compares the POD curves developed from the EPRI data to other relevant attempts to quantify POD on similar component configurations. The objectives of this report are 1) to determine the reasonableness of the EPRI curves and 2) attempt to explain discrepancies noted with other recent POD studies.

  11. Numerical Solutions of Odd Order Linear and Nonlinear Initial Value Problems Using a Shifted Jacobi Spectral Approximations

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2012-01-01

    Full Text Available A shifted Jacobi Galerkin method is introduced to get a direct solution technique for solving the third- and fifth-order differential equations with constant coefficients subject to initial conditions. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. A quadrature Galerkin method is introduced for the numerical solution of these problems with variable coefficients. A new shifted Jacobi collocation method based on basis functions satisfying the initial conditions is presented for solving nonlinear initial value problems. Through several numerical examples, we evaluate the accuracy and performance of the proposed algorithms. The algorithms are easy to implement and yield very accurate results.

  12. Effects of Diameter on Initial Stiffness of P-Y Curves for Large-Diameter Piles in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo; Augustesen, Anders Hust

    2010-01-01

    For offshore wind turbines, monopile foundations with diameters of 4–6m are often employed. The Winkler model approach, where the soil resistance is modelled as uncoupled springs with spring stiffness’ given by p-y curves, is traditionally employed for the design of monopiles. However, this metho...... analyses by means of the commercial program FLAC3D incorporating a Mohr-Coulomb failure criterion. The numerical model is validated with laboratory tests in a pressure tank at Aalborg University....

  13. Method of construction spatial transition curve

    Directory of Open Access Journals (Sweden)

    S.V. Didanov

    2013-04-01

    Full Text Available Purpose. The movement of rail transport (speed rolling stock, traffic safety, etc. is largely dependent on the quality of the track. In this case, a special role is the transition curve, which ensures smooth insertion of the transition from linear to circular section of road. The article deals with modeling of spatial transition curve based on the parabolic distribution of the curvature and torsion. This is a continuation of research conducted by the authors regarding the spatial modeling of curved contours. Methodology. Construction of the spatial transition curve is numerical methods for solving nonlinear integral equations, where the initial data are taken coordinate the starting and ending points of the curve of the future, and the inclination of the tangent and the deviation of the curve from the tangent plane at these points. System solutions for the numerical method are the partial derivatives of the equations of the unknown parameters of the law of change of torsion and length of the transition curve. Findings. The parametric equations of the spatial transition curve are calculated by finding the unknown coefficients of the parabolic distribution of the curvature and torsion, as well as the spatial length of the transition curve. Originality. A method for constructing the spatial transition curve is devised, and based on this software geometric modeling spatial transition curves of railway track with specified deviations of the curve from the tangent plane. Practical value. The resulting curve can be applied in any sector of the economy, where it is necessary to ensure a smooth transition from linear to circular section of the curved space bypass. An example is the transition curve in the construction of the railway line, road, pipe, profile, flat section of the working blades of the turbine and compressor, the ship, plane, car, etc.

  14. Cauchy problem and initial traces for a doubly nonlinear degenerate parabolic equation

    Institute of Scientific and Technical Information of China (English)

    赵俊宁; 徐中海

    1996-01-01

    The Cauchy problem and initial traces for the doubly degenerate parabolic equationsare studied. Under certain growth condition on the initial datum u0(x) as the existence of solution is proved. The results obtained are optimal in the dass of nonnegative locally bounded solution, for which a Harnack-type inequality holds.

  15. Experimental Simulation of Closed Timelike Curves

    CERN Document Server

    Ringbauer, Martin; Myers, Casey R; White, Andrew G; Ralph, Timothy C

    2015-01-01

    Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into non-linearities and the emergence of causal structures in quantum mechanics-essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the non-linear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of t...

  16. Experimental simulation of closed timelike curves.

    Science.gov (United States)

    Ringbauer, Martin; Broome, Matthew A; Myers, Casey R; White, Andrew G; Ralph, Timothy C

    2014-06-19

    Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into nonlinearities and the emergence of causal structures in quantum mechanics--essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the nonlinear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction and the influence of decoherence.

  17. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    Science.gov (United States)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  18. The Nonlinear Singularly Perturbed Initial Boundary Value Problems of Nonlocal Reaction Diffusion Systems

    Institute of Scientific and Technical Information of China (English)

    Jia-qi Mo; Wan-tao Lin

    2006-01-01

    In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Using the iteration method and the comparison theorem, the existence and its asymptotic behavior of the solution for the problem are studied.

  19. Initial conditions, Discreteness and non-linear structure formation in cosmology

    CERN Document Server

    Sylos-Labini, F; Gabrielli, A; Joyce, M; Labini, Francesco Sylos; Baertschiger, Thierry; Gabrielli, Andrea; Joyce, Michael

    2002-01-01

    In this lecture we address three different but related aspects of the initial continuous fluctuation field in standard cosmological models. Firstly we discuss the properties of the so-called Harrison-Zeldovich like spectra. This power spectrum is a fundamental feature of all current standard cosmological models. In a simple classification of all stationary stochastic processes into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with $P(0)=0$, belong. In statistical physics language they are well described as glass-like. Secondly, the initial continuous density field with such small amplitude correlated Gaussian fluctuations must be discretised in order to set up the initial particle distribution used in gravitational N-body simulations. We discuss the main issues related to the effects of discretisation, particularly concerning the effect of particle induced fluctuations on the statistical properties of the initial conditions and on th...

  20. Identification of Nonlinear Dynamic Systems: Time_Frequency Filtering and Skeleton Curves%非线性动力学系统的辨识:时频 滤波与骨架曲线

    Institute of Scientific and Technical Information of China (English)

    王丽丽; 张景绘

    2001-01-01

    利用非平稳信号的时频分析方法研究了一类非线性系统的频率特性和阻尼特性随运动形态的变化规律,得到了能简洁、直观地反映系统基本非线性动力学特性的广义骨架线性系统(简称GSLS)和骨架曲线,在此基础上,利用时频滤波方法根据系统非平稳响应信号对非线性系统进行辨识,该项工作为非线性系统反问题的研究提供了一条新的途径,%The nonlinear behavior varying with the instantaneous response was analyzed through the joint time_frequency analysis method for a class of S.D.O.F nonlinear system. A masking operator on definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time_varying linear one, called the generalized skeleton linear system(GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non_linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time_frequency filtering technique.

  1. Shock Melting Temperature of Initially Porous Iron and Indication for Melting Curve of Iron at High Pressures

    Institute of Scientific and Technical Information of China (English)

    LI Xi-Jun; ZHANG Dai-Yu; LIU Fu-Sheng; JING Fu-Qian

    2004-01-01

    The melting curve ofiron is crucial for modelling of the earth's internal heat structures and to understand melting of solids at high pressures. However, the measured melting temperatures of iron at high pressures are disparate so far. We measured the shocked interface (porous iron/sapphire window) temperatures of a kind of porous iron. By using a model for shock temperature measurement [High Pressures Res. 2 (1990) 159] and the previous results of sound velocity measurements [Chin. Phys. Lett. 18 (2001) 852], we determine the melting temperatures of iron at shock compression high pressures of 145 and 171 Gpa. They are consistent with the results reported by other shock compression experiments. Based on the possible different melting mechanisms of iron in diamond anvil cell and in shock compression, the corrected melting temperatures of iron at high pressures become more consistent.

  2. The Crack Initiation and Propagation in threshold regime and S-N curves of High Strength Spring Steels

    Science.gov (United States)

    Gubeljak, N.; Predan, J.; Senčič, B.; Chapetti, M. D.

    2016-03-01

    An integrated fracture mechanics approach is proposed to account for the estimation of the fatigue resistance of component. Applications, estimations and results showed very good agreements with experimental results. The model is simple to apply, accounts for the main geometrical, mechanical and material parameters that define the fatigue resistance, and allows accurate predictions. It offers a change in design philosophy: It could be used for design, while simultaneously dealing with crack propagation thresholds. Furthermore, it allows quantification of the material defect sensitivity. In the case of the set of fatigue tests carried out by rotational bending of specimens without residual stresses, the estimated results showed good agreement and that an initial crack length of 0.5 mm can conservatively explain experimental data. In the case of fatigue tests carried out on the springs at their final condition with bending at R = 0.1 our data shows the influence of compressive residual stresses on fatigue strength. Results also showed that the procedures allow us to analyze the different combinations of initial crack length and residual stress levels, and how much the fatigue resistance can change by changing that configuration. For this set of tests, the fatigue resistance estimated for an initial crack length equal to 0.35 mm, can explain all testing data observed for the springs.

  3. Do We Need to Clamp the Renal Hilum Liberally during the Initial Phase of the Learning Curve of Robot-Assisted Nephron-Sparing Surgery?

    OpenAIRE

    Ömer Acar; Tarık Esen; Ahmet Musaoğlu; Metin Vural

    2014-01-01

    Research Article Do We Need to Clamp the Renal Hilum Liberally during the Initial Phase of the Learning Curve of Robot-Assisted Nephron-Sparing Surgery? Ömer Acar,1 TarJk Esen,1,2 AhmetMusaoLlu,1 andMetin Vural3 1 Department of Urology, VKF American Hospital, 34365 Istanbul, Turkey 2School ofMedicine, KocUniversity, 34450 Istanbul, Turkey 3Department of Radiology, VKF American Hospital, 34365 Istanbul, Turkey Correspondence should be addressed to ¨ Omer Acar; omer acar...

  4. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  5. Do We Need to Clamp the Renal Hilum Liberally during the Initial Phase of the Learning Curve of Robot-Assisted Nephron-Sparing Surgery?

    Directory of Open Access Journals (Sweden)

    Ömer Acar

    2014-01-01

    Full Text Available Objective. We aimed to compare the results of our initial robot-assisted nephron-sparing surgeries (RANSS performed with or without hilar clamping. Material and Method. Charts of the initial RANSSs (n=44, which were performed by a single surgeon, were retrospectively reviewed. R.E.N.A.L. nephrometry system, modified Clavien classification, and M.D.R.D. equation were used to record tumoral complexity, complications, and estimated glomerular filtration rate (eGFR, respectively. Outcomes of the clamped (group 1, n=14 versus off-clamp (group 2, n=30 RANSSs were compared. Results. The difference between the two groups was insignificant regarding mean patient age, mean tumor size, and mean R.E.N.A.L. nephrometry score. Mean operative time, mean estimated blood loss amount, and mean length of hospitalization were similar between groups. A total of 4 patients in each group suffered 11 Clavien grade ≥2 complications early postoperatively. Open conversion rates were similar. The difference between the 2 groups in terms of the mean postoperative change in eGFR was insignificant. We did not encounter any local recurrence after a mean follow-up of 18.9 months. Conclusions. Creating warm-ischemic conditions during RANSS should not be a liberal decision, even in the initial phases of the learning curve for a highly experienced open surgeon.

  6. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Seong; Lee, Ho-Joon; Ahn, Sung Soo; Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Seodaemun-gu, Seoul (Korea, Republic of); Chang, Jong Hee; Kang, Seok-Gu; Kim, Eui Hyun [Yonsei University College of Medicine, Department of Neurosurgery, Seoul (Korea, Republic of); Kim, Se Hoon [Yonsei University College of Medicine, Department of Pathology, Seoul (Korea, Republic of)

    2017-04-15

    To evaluate the ability of the initial area under the curve (IAUC) derived from dynamic contrast-enhanced MR imaging (DCE-MRI) and apparent diffusion coefficient (ADC) in differentiating between primary central nervous system lymphoma (PCNSL) and atypical glioblastoma (GBM). We retrospectively identified 19 patients with atypical GBM (less than 13 % necrosis of the enhancing tumour), and 23 patients with PCNSL. The histogram parameters of IAUC at 30, 60, 90 s (IAUC30, IAUC60, and IAUC90), and ADC were compared between PCNSL and GBM. The diagnostic performances and added values of the IAUC and ADC for differentiating between PCNSL and GBM were evaluated. Interobserver agreement was assessed via intraclass correlation coefficient (ICC). The IAUC and ADC parameters were higher in GBM than in PCNSL. The 90th percentile (p90) of IAUC30 and 10th percentile (p10) of ADC showed the best diagnostic performance. Adding p90 of IAUC30 to p10 of ADC improved the differentiation between PCNSL and GBM (area under the ROC curve [AUC] = 0.886), compared to IAUC30 or ADC alone (AUC = 0.789 and 0.744; P < 0.05 for all). The ICC was 0.96 for p90 of IAUC30. The IAUC may be a useful parameter together with ADC for differentiating between PCNSL and atypical GBM. (orig.)

  7. The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miles, A

    2004-04-27

    In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and

  8. The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Aaron R. [Univ. of Maryland, College Park, MD (United States)

    2004-01-01

    In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and

  9. Nonlinear Finite Element Analysis of Ocean Cables

    Institute of Scientific and Technical Information of China (English)

    Nam-Il KIM; Sang-Soo JEON; Moon-Young KIM

    2004-01-01

    This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.

  10. Practical Nonlinearities

    Science.gov (United States)

    2016-07-01

    Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9

  11. Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation-Maximization (SAEM) Algorithm.

    Science.gov (United States)

    Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu

    2016-03-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.

  12. Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves

    Directory of Open Access Journals (Sweden)

    Harter Klaus

    2006-11-01

    Full Text Available Abstract Background The discovery of cis-regulatory motifs still remains a challenging task even though the number of sequenced genomes is constantly growing. Computational analyses using pattern search algorithms have been valuable in phylogenetic footprinting approaches as have expression profile experiments to predict co-occurring motifs. Surprisingly little is known about the nature of cis-regulatory element (CRE distribution in promoters. Results In this paper we used the Motif Mapper open-source collection of visual basic scripts for the analysis of motifs in any aligned set of DNA sequences. We focused on promoter motif distribution curves to identify positional over-representation of DNA motifs. Using differentially aligned datasets from the model species Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces cerevisiae, we convincingly demonstrated the importance of the position and orientation for motif discovery. Analysis with known CREs and all possible hexanucleotides showed that some functional elements gather close to the transcription and translation initiation sites and that elements other than the TATA-box motif are conserved between eukaryote promoters. While a high background frequency usually decreases the effectiveness of such an enumerative investigation, we improved our analysis by conducting motif distribution maps using large datasets. Conclusion This is the first study to reveal positional over-representation of CREs and promoter motifs in a cross-species approach. CREs and motifs shared between eukaryotic promoters support the observation that an eukaryotic promoter structure has been conserved throughout evolutionary time. Furthermore, with the information on positional enrichment of a motif or a known functional CRE, it is possible to get a more detailed insight into where an element appears to function. This in turn might accelerate the in depth examination of known and yet unknown

  13. Non-linear effects of initial melt temperatures on microstructures and mechanical properties during quenching process of liquid Cu46Zr54 alloy

    Science.gov (United States)

    Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liang, Yong-Chao; Zhang, Hai-Tao; Hou, Zhao-Yang; Liu, Hai-Rong; Zhang, Ai-long; Zhou, Li-Li; Peng, Ping; Xie, Zhong

    2015-05-01

    A MD simulation of liquid Cu46Zr54 alloys has been performed for understanding the effects of initial melt temperatures on the microstructural evolution and mechanical properties during quenching process. By using several microstructural analyzing methods, it is found that the icosahedral and defective icosahedral clusters play a key role in the microstructure transition. All the final solidification structures obtained at different initial melt temperatures are of amorphous structures, and their structural and mechanical properties are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. Especially, there exists a best initial melt temperature, from which the glass configuration possesses the highest packing density, the optimal elastic constants, and the smaller extent of structural softening under deforming.

  14. The Initial Learning Curve for Robot-Assisted Sleeve Gastrectomy: A Surgeon's Experience While Introducing the Robotic Technology in a Bariatric Surgery Department.

    Science.gov (United States)

    Vilallonga, Ramon; Fort, José Manuel; Gonzalez, Oscar; Caubet, Enric; Boleko, Angeles; Neff, Karl John; Armengol, Manel

    2012-01-01

    Objective. Robot-assisted sleeve gastrectomy has the potential to treat patients with obesity and its comorbidities. To evaluate the learning curve for this procedure before undergoing Roux en-Y gastric bypass is the objective of this paper. Materials and Methods. Robot-assisted sleeve gastrectomy was attempted in 32 consecutive patients. A survey was performed in order to identify performance variables during completion of the learning curve. Total operative time (OT), docking time (DT), complications, and length of hospital stay were compared among patients divided into two cohorts according to the surgical experience. Scattergrams and continuous curves were plotted to develop a robotic sleeve gastrectomy learning curve. Results. Overall OT time decreased from 89.8 minutes in cohort 1 to 70.1 minutes in cohort 2, with less than 5% change in OT after case 19. Time from incision to docking decreased from 9.5 minutes in cohort 1 to 7.6 minutes in cohort 2. The time required to dock the robotic system also decreased. The complication rate was the same in the two cohorts. Conclusion. Our survey indicates that technique and outcomes for robot-assisted sleeve gastrectomy gradually improve with experience. We found that the learning curve for performing a sleeve gastrectomy using the da Vinci system is completed after about 20 cases.

  15. Nonlinear Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2016-01-01

    We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.

  16. The Migration Equation of the Moisture in Soil with Nonlinear Initial Boundary Value Problem%湿气迁移方程的非线性初边值问题

    Institute of Scientific and Technical Information of China (English)

    杨茂; 陈建军

    1999-01-01

    In this paper,combining Riemann's method with the fixed point theory effectively,we proved that the migration equation of the moisture in soil with nonlinear initial boundary value problem has unique classical solution.

  17. Incidence of Complications During Initial Experience with Revision of the Agility and Agility LP Total Ankle Replacement Systems: A Single Surgeon's Learning Curve Experience.

    Science.gov (United States)

    Roukis, Thomas S; Simonson, Devin C

    2015-10-01

    As the frequency in which foot and ankle surgeons are performing primary total ankle replacement (TAR) continues to build, revision TAR will likely become more commonplace, creating a need for an established benchmark by which to evaluate the safety of revision TAR as determined by the incidence of complications. Currently, no published data exist on the incidence of intraoperative and early postoperative complications during revision of the Agility or Agility LP Total Ankle Replacement Systems during the surgeon learning curve period; therefore, the authors sought to determine this incidence during the senior author's learning curve period.

  18. Synthesis of well-defined structurally silica-nonlinear polymer core-shell nanoparticles via the surface-initiated atom transfer radical polymerization

    Science.gov (United States)

    Chen, Jiucun; Hu, Min; Zhu, Wendong; Li, Yaping

    2011-05-01

    We report on the synthesis of the well-defined structurally silica-nonlinear polymer core-shell nanoparticles via the surface-initiated atom transfer radical polymerization. At first, 3-(2-bromoisobutyramido)propyl(triethoxy)-silane (the ATRP initiator) was prepared by the reaction of 3-aminopropyltriethoxysilane with 2-bromoisobutyryl bromide. The ATRP initiator was covalently attached onto the nanosilica surface. The subsequent ATRP of HEMA from the initiator-attached SiO 2 surface was carried out in order to afforded functional nanoparticles bearing a hydroxyl moiety at the chain end, SiO 2-g-PHEMA-Br. The esterification reaction of pendent hydroxyl moieties of PHEMA segment with 2-bromoisobutyryl bromide afforded the SiO 2-based multifunctional initiator, SiO 2-g-PHEMA(-Br)-Br, bearing one bromine moiety on each monomer repeating unit within the PHEMA segment. Finally, the synthesis of SiO 2-g-PHEMA(-g-PSt)-b-PSt was accomplished by the ATRP of St monomer using SiO 2-g-PHEMA(-Br)-Br as multifunctional initiator. These organic/inorganic hybrid materials have been extensively characterized by FT-IR, XPS, TG, and TEM.

  19. Photorefractive surface nonlinearly chirped waveguide arrays

    Science.gov (United States)

    Qi, Pengfei; Feng, Tianrun; Wang, Sainan; Han, Rong; Hu, Zhijian; Zhang, Tianhao; Tian, Jianguo; Xu, Jingjun

    2016-05-01

    We report an alternate type of nonlinear waveguides, photorefractive surface nonlinearly chirped waveguide arrays, which can be directly induced by photorefractive surface waves in virtue of diffusion and drift nonlinearities. The amplitude of such nonlinearly chirped waveguide arrays has an apodized envelope owing to the diffusion nonlinearity. The refractive-index change of the apodized tails converges to a nonzero value which can be handily adjusted by an external electric field. Moreover, the chirp parameters such as amplitude, sign (positive or negative), and initial position can be conveniently adjusted by an external electric field, background illumination, incident beam, etc. Then the guided-wave properties of this type of waveguide arrays are analyzed by using the transfer matrix method. Owing to the flexible tail and the nonlinear chirp, the dispersion curves of the index-guided modes can be tailored by an external electric field and the dispersion curves of ordinary and extraordinary Bragg guided modes couple, intertwine, and anticross with each other. Meanwhile, there is a clear "competition" in the coupling hybrid mode near anticrossing.

  20. The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in DKDP nonlinear crystals

    Energy Technology Data Exchange (ETDEWEB)

    DeMange, P; Negres, R A; Rubenchik, A M; Radousky, H B; Feit, M D; Demos, S G

    2007-09-25

    The bulk damage performance of potassium dihydrogen phosphate crystals under simultaneous exposure to 1064-, 532-, and 355-nm nanosecond-laser pulses is investigated in order to probe the laser-induced defect reactions leading to damage initiation during frequency conversion. The results provide insight into the mechanisms governing the behavior of the damage initiating defects under exposure to high power laser light. In addition, it is suggested that the damage performance can be directly related to and predicted from the damage behavior of the crystal at each wavelength separately.

  1. Interface-wave dispersion curves inversion based on nonlinear Bayesian theory%根据非线性贝叶斯理论的界面波频散曲线反演

    Institute of Scientific and Technical Information of China (English)

    李翠琳; Stan E Dosso; Hefeng Dong

    2012-01-01

    通过时频分析法从海底环境噪声数据中提取界面波频散曲线,进而采用非线性贝叶斯反演方法估算海底沉积物厚度、剪切波速度、压缩波速度和密度等参数及其不确定性.参数的最大后验概率(MAP)估计值和边缘概率分布分别通过自适应单纯形模拟退火法和Metropolis-Hastings采样法在各参数先验区间内搜索获得,采用贝叶斯信息准则(BIC)从不同参数化模型中选择最优模型.界面波频散曲线反演结果表明:满足实测数据的最优海底模型结构为3层均匀分布剪切波速度剖面结构,海底深度的反演精度在800 m以内,比起压缩波速度和密度,剪切波速度的不确定性更小,对界面波频散曲线更敏感.%This paper applies a dataset of ocean ambient noise data to extract interface-wave dispersion curves using time-frequency analysis. The nonlinear Bayesian inversion is applied to estimate seabed sediment parameters such as thickness, shear-wave velocity, compression wave velocity and density, and their uncertainties from interface-wave dispersion curves. The maximum a posterior (MAP) model and marginal probability distributions of parameters are estimated using posterior probability densities computed by adaptive simplex simulated annealing and Metropolis-Hastings sampling methods. The Bayesian information criterion is applied to determine the optimal model that fully explains the observed data by the different parameterizations. The inversion results indicate that 3-uniform-layer model is chosen as the preferred parameterization. The resolution of inversion is up to 800 m-depth. The shear-wave velocity and layer thickness have fewer uncertainties and are more sensitive to the interface wave dispersion than the compression wave velocity and density.

  2. Investigation on relationship between epicentral distance and growth curve of initial P-wave propagating in local heterogeneous media for earthquake early warning system

    Science.gov (United States)

    Okamoto, Kyosuke; Tsuno, Seiji

    2015-10-01

    In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. It has been empirically pointed out that the growth rate becomes smaller as epicentral distance becomes far regardless of the magnitude of earthquakes. So, the epicentral distance can be estimated from the growth rate using this empirical relationship. However, the growth rates calculated from different earthquakes at the same epicentral distance mark considerably different values from each other. Sometimes the growth rates of earthquakes having the same epicentral distance vary by 104 times. Qualitatively, it has been considered that the gap in the growth rates is due to differences in the local heterogeneities that the P-waves propagate through. In this study, we demonstrate theoretically how local heterogeneities in the subsurface disturb the relationship between the growth rate and the epicentral distance. Firstly, we calculate seismic scattered waves in a heterogeneous medium. First-ordered PP, PS, SP, and SS scatterings are considered. The correlation distance of the heterogeneities and fractional fluctuation of elastic parameters control the heterogeneous conditions for the calculation. From the synthesized waves, the growth rate of the initial P-wave is obtained. As a result, we find that a parameter (in this study, correlation distance) controlling heterogeneities plays a key role in the magnitude of the fluctuation of the growth rate. Then, we calculate the regional correlation distances in Japan that can account for the fluctuation of the growth rate of real earthquakes from 1997 to 2011 observed by K-NET and KiK-net. As a result, the spatial distribution of the correlation distance shows locality. So, it is revealed that the growth rates fluctuate according to the locality. When this local fluctuation is taken into account, the accuracy of the estimation of epicentral distances from initial P

  3. Herdabilidades de parâmetros de curvas de crescimento não-lineares em zebuínos, no estado de Pernambuco Heritabilities of nonlinear growth curve parameters in zebu breeds, in Pernambuco State, Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Kleber Régis Santoro

    2005-12-01

    Full Text Available Objetivou-se estimar parâmetros genéticos e fenotípicos de curvas de crescimento de modelos não-lineares. Foram analisados dados de pesagem constantes no banco de dados de Controle de Desenvolvimento Ponderal da Associação Brasileira de Criadores de Zebu (ABCZ, referentes a 24.028 animais Zebu, nascidos entre 1960 e 2000, das raças Guzerá, Nelore e Nelore Mocho. As pesagens ocorreram ao nascimento e em intervalos de 90 dias até dois anos de idade. Os seguintes modelos não-lineares foram utilizados na análise dos dados de peso-idade: Brody, Gompertz, Logístico, von Bertalanffy e Richards. Os efeitos fixos estudados no modelo misto foram sexo, rebanho, ano e mês de nascimento e regime de criação. As herdabilidades para os parâmetros foram de baixa a alta magnitude, em geral, para todos os modelos. As correlações genéticas entre peso assintótico e taxa de maturidade e entre peso assintótico e velocidade de crescimento foram negativas, enquanto aquelas entre taxa de maturidade e velocidade de crescimento foram positivas. As correlações fenotípicas foram negativas entre peso assintótico e taxa de crescimento e entre peso assintótico e velocidade de crescimento e positivas entre taxa e velocidade de crescimento. Encontrou-se variabilidade possível de ser explorada em um programa de melhoramento genético, especialmente para a raça Nelore, que apresentou amostra de dados e resultados mais consistentes.Weight records of 24.028 zebu animals from Guzerá, Nelore, and Polled Nelore breeds available from Brazilian Association of Zebu Breeders (ABCZ database were used to estimate heritabilities of growth curve parameters. Non-linear Brody, Gompertz, Logistic, Mitscherlich, von Bertalanffy, Richards, and Double Logistic models including sex, farm, year of birth, month of birth, raising system, and interaction sex*raising system as fixed effects and sire and dam, as random effects were adjusted using weight-age records of animals

  4. The effect of nonlinearity on unstable zones of Mathieu equation

    Indian Academy of Sciences (India)

    M GH SARYAZDI

    2017-03-01

    Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. However, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude of response leads to an increase in the unstable zone.

  5. Estimación de curvas de progreso de la incidencia de podredumbre blanca (Sclerotium cepivorum Berk. en cultivos de ajo mediante un modelo no lineal mixto Estimation of incidence progress curves of white rot (Sclerotium cepivorum Berk. in garlic crops using a nonlinear mixed model

    Directory of Open Access Journals (Sweden)

    M. Y. Conles

    2011-06-01

    Full Text Available En este trabajo se modela la curva de progreso de la podredumbre blanca en cultivos de ajo, mediante modelos no lineales mixtos que contemplan el efecto de factores concomitantes en el desarrollo de las epidemias. Entre 2001 y 2003 en Cruz del Eje y Jesús María, Argentina, se evaluaron la densidad inicial de esclerocios (DIE y la incidencia de la enfermedad quincenalmente hasta cosecha. Con DIE alta (>15 esclerocios/100 g de suelo la incidencia final fue alta (64-100% y con DIE baja (≤15 esclerocios/100 g de suelo varió entre 0-100%. El modelo logístico mixto seleccionado tuvo “interceptos” y pendientes aleatorias y diferentes para cada combinación de “ambiente” (localidad y año y categoría de DIE (altas y bajas. La representación de las curvas epidémicas se hizo mediante tres curvas específicas de sitio, la típica con efecto aleatorio cero, que expresa la forma general del modelo y las percentiles Q1 (0,25 y Q3 (0,75 que expresan la variabilidad. El 50% de las curvas tuvo pendientes entre r±0,67 v. La variabilidad de los “interceptos” y pendientes dependió solamente de la DIE, y fue menor en los “interceptos” con DIE “altas” que en aquellos con DIE “bajas”; en las pendientes se observó el efecto opuesto.This paper models the progress curve of white rot in garlic crops using nonlinear mixed models taking into account the effect of concomitant factors in the development of epidemics. Between 2001 and 2003 in Cruz del Eje and Jesus Maria, Argentina, the initial density of sclerotia (DIE and the incidence of the disease were evaluated every two weeks until harvest. With DIE high (>15 sclerotia/100 g of soil the final incidence was high (64-100%, while with DIE low (≤15 g soil sclerotia/100 the final incidence ranged from 0-100%. The mixed logistic model that was selected had random “intercepts” and rates which were different for each combination of “environment” (location and year and DIE category

  6. The sales learning curve.

    Science.gov (United States)

    Leslie, Mark; Holloway, Charles A

    2006-01-01

    When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.

  7. Does case selection and outcome following laparoscopic colorectal resection change after initial learning curve? Analysis of 235 consecutive elective laparoscopic colorectal resections

    Directory of Open Access Journals (Sweden)

    Kurumboor Prakash

    2013-01-01

    Full Text Available Introduction: Laparoscopic colorectal surgery is being widely practiced with an excellent short-term and equal long-term results for colorectal diseases including cancer. However, it is widely believed that as the experience of the surgeon/unit improves the results get better. This study aims to assess the pattern of case selection and short-term results of laparoscopic colorectal surgery in a high volume centre in two different time frames. Materials and Methods: This study was done from the prospective data of 265 elective laparoscopic colorectal resections performed in a single unit from December 2005 to April 2011. The group was subdivided into initial 132 patients (Group 1 from December 2005 to December 2008 and next 133 patients (Group 2 between December 2008 and April 2011 who underwent laparoscopic colorectal resections for cancer. The groups were compared for intraoperative and perioperative parameters, type of surgery, and the stage of the disease. Results: The age of patients was similar in Groups 1 and 2 (57.7 and 56.9, respectively. Patients with co-morbid illness were significantly more in Group 2 than in Group 1 (63.2% vs. 32.5%, respectively, P≤0.001. There were significantly more cases of right colonic cancers in Group 1 than in Group 2 (21.9% vs. 11.3%, respectively, P<0.02 and less number of low rectal lesions (20.4% vs. 33.8%, respectively, P≤0.02. The conversion rates were 3.7% and 2.2% in Groups 1 and 2, respectively. The operating time and blood loss were significantly more in Group 1 than in Group 2. The ICU stay was significantly different in Groups 1 and 2 (31.2± 19.1 vs. 24.7± 18.7 h, P≤0.005. The time for removal of the nasogastric tube was significantly earlier (P=0.005 in Group 2 compared to Group 1 (1.37± 1.1 vs. 2.63±1.01 days. The time to pass first flatus, resumption of oral liquids, semisolid diet, and complications were similar in both groups. The hospital stay was more in Group 1 than in Group 2

  8. HULL GIRDER PROGRESSIVE COLLAPSE ANALYSIS USING IACS PRESCRIBED AND NLFEM DERIVED LOAD - END SHORTENING CURVES

    Directory of Open Access Journals (Sweden)

    Stanislav Kitarović

    2016-06-01

    Full Text Available This paper considers the hull girder ultimate strength of a bulk carrier at its midship section, as determined by an incremental-iterative progressive collapse analysis method prescribed by the International Association of Classification Societies Common Structural Rules for Bulk Carriers. In addition to the originally prescribed load – end shortening curves, curves determined by the nonlinear finite element method analysis (considering the influence of the idealized initial geometrical imperfections are also considered. Results obtained by both sets of curves are compared and discussed on both local (structural components load – end shortening curve and global (hull girder ulti-mate bending capacity and collapse sequence level, for both sagging and hogging cases.

  9. Nonlinear hyperbolic waves in multidimensions

    CERN Document Server

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  10. Vibrational Analysis of Curved Single-Walled Carbon Nanotube on a Pasternak Elastic Foundation

    DEFF Research Database (Denmark)

    Mehdipour, I.; Barari, Amin; Kimiaeifar, Amin

    2012-01-01

    . By utilizing He’s Energy Balance Method (HEBM), the relationships of the nonlinear amplitude and frequency were expressed for a curved, single-walled carbon nanotube. The amplitude frequency response curves of the nonlinear free vibration were obtained for a curved, single-walled carbon nanotube embedded...

  11. Multiphasic growth curve analysis.

    NARCIS (Netherlands)

    Koops, W.J.

    1986-01-01

    Application of a multiphasic growth curve is demonstrated with 4 data sets, adopted from literature. The growth curve used is a summation of n logistic growth functions. Human height growth curves of this type are known as "double logistic" (n = 2) and "triple logistic" (n = 3) growth curves (Bock

  12. Principal Curves on Riemannian Manifolds.

    Science.gov (United States)

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  13. Koch Curves: Rewriting System, Geometry and Application

    Directory of Open Access Journals (Sweden)

    Mamta Rani

    2011-01-01

    Full Text Available Problem statement: Recently, new Koch curves have been generated by dividing the initiator into three unequal parts. There is no formal rewriting system to generate such kind of curves. Approach: It is required to measure the new changed geometrical properties. Generalized rewriting systems for the new Koch curves have been developed. Results: New formulas have been given to measure their geometrical properties. Conclusion/Recommendations: The geometrical properties of new Koch curves make them more suitable as antennas in wireless communication than the conventional Koch curve.

  14. Nonlinear pulsation masses

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.G.

    1990-01-01

    The advent of nonlinear pulsation theory really coincides with the development of the large computers after the second world war. Christy and Stobbie were the first to make use of finite difference techniques on computers to model the bumps'' observed in the classical Cepheid light and velocity curves, the so-called Hertzsprung'' sequence. Following this work a more sophisticated analysis of the light and velocity curves from the models was made by Simon and Davis using Fourier techniques. Recently a simpler amplitude equation formalism has been developed that helps explain this resonance mechanism. The determination of Population I Cepheid masses by nonlinear methods will be discussed. For the lower mass objects, such as RR Lyrae and BL Her. stars, we find general agreement using evolutionary masses and nonlinear pulsation theory. An apparent difficulty of nonlinear pulsation theory occurs in the understanding of double'' mode pulsation, which will also be discussed. Recent studies in nonlinear pulsation theory have dealt with the question of mode selection, period doubling and the trends towards chaotic behavior such as is observed in the transition from W Virginis to RV Tauri-like stars. 10 refs., 1 fig., 2 tabs.

  15. Spinal curves (image)

    Science.gov (United States)

    There are four natural curves in the spinal column. The cervical, thoracic, lumbar, and sacral curvature. The curves, along with the intervertebral disks, help to absorb and distribute stresses that occur from everyday activities such as walking or from ...

  16. Contractibility of curves

    Directory of Open Access Journals (Sweden)

    Janusz Charatonik

    1991-11-01

    Full Text Available Results concerning contractibility of curves (equivalently: of dendroids are collected and discussed in the paper. Interrelations tetween various conditions which are either sufficient or necessary for a curve to be contractible are studied.

  17. Parametrizing Algebraic Curves

    OpenAIRE

    Lemmermeyer, Franz

    2011-01-01

    We present the technique of parametrization of plane algebraic curves from a number theorist's point of view and present Kapferer's simple and beautiful (but little known) proof that nonsingular curves of degree > 2 cannot be parametrized by rational functions.

  18. Chaotic Feature in the Light Curve of 3C 273

    Institute of Scientific and Technical Information of China (English)

    Lei Liu

    2006-01-01

    Some nonlinear dynamical techniques, including state-space reconstruction and correlation integral, are used to analyze the light curve of 3C 273. The result is compared with a chaotic model. The similarities between them suggest there is a low-dimension chaotic attractor in the light curve of 3C 273.

  19. ECM using Edwards curves

    DEFF Research Database (Denmark)

    Bernstein, Daniel J.; Birkner, Peter; Lange, Tanja;

    2013-01-01

    This paper introduces EECM-MPFQ, a fast implementation of the elliptic-curve method of factoring integers. EECM-MPFQ uses fewer modular multiplications than the well-known GMP-ECM software, takes less time than GMP-ECM, and finds more primes than GMP-ECM. The main improvements above the modular......-arithmetic level are as follows: (1) use Edwards curves instead of Montgomery curves; (2) use extended Edwards coordinates; (3) use signed-sliding-window addition-subtraction chains; (4) batch primes to increase the window size; (5) choose curves with small parameters and base points; (6) choose curves with large...

  20. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  1. Nonlinear response of plain concrete shear walls with elastic-damaging behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, S.; Schreyer, H.L.

    1997-02-01

    This report summarizes the theoretical and computational efforts on the modeling of small scale shear walls. Small scale shear walls are used extensively in the study of shear wall behavior because the construction and testing of full size walls are rather expensive. A finite element code is developed which incorporates nonlinear constitutive relations of damage mechanics. The program is used to obtain nonlinear load-deformation curves and to address the initial loss of stiffness due to shrinkage cracking. The program can also be used to monitor the continuous degradation of the fundamental frequency due to progressive damage.

  2. Z-scan theory for nonlocal nonlinear media with simultaneous nonlinear refraction and nonlinear absorption.

    Science.gov (United States)

    Rashidian Vaziri, Mohammad Reza

    2013-07-10

    In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.

  3. Nonlinear supratransmission

    Energy Technology Data Exchange (ETDEWEB)

    Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)

    2003-05-07

    A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.

  4. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    Science.gov (United States)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity

  5. Closed timelike curves, superluminal signals, and "free will" in universal quantum mechanics

    CERN Document Server

    Nikolic, H

    2010-01-01

    We explore some implications of the hypothesis that quantum mechanics (QM) is universal, i.e., that QM does not merely describe information accessible to observers, but that it also describes the observers themselves. From that point of view, "free will" (FW) - the ability of experimentalists to make free choices of initial conditions - is merely an illusion. As a consequence, by entangling a part of brain (responsible for the illusion of FW) with a distant particle, one may create nonlocal correlations that can be interpreted as superluminal signals. In addition, if FW is an illusion, then QM on a closed timelike curve can be made consistent even without the Deutch nonlinear consistency constraint.

  6. Topological Field Theory and Rational Curves

    CERN Document Server

    Aspinwall, Paul S; Aspinwall, Paul S.; Morrison, David R.

    1993-01-01

    We analyze the superstring propagating on a Calabi-Yau threefold. This theory naturally leads to the consideration of Witten's topological non-linear sigma-model and the structure of rational curves on the Calabi-Yau manifold. We study in detail the case of the world-sheet of the string being mapped to a multiple cover of an isolated rational curve and we show that a natural compactification of the moduli space of such a multiple cover leads to a formula in agreement with a conjecture by Candelas, de la Ossa, Green and Parkes.

  7. Pencils on real curves

    CERN Document Server

    Coppens, Marc

    2011-01-01

    We consider coverings of real algebraic curves to real rational algebraic curves. We show the existence of such coverings having prescribed topological degree on the real locus. From those existence results we prove some results on Brill-Noether Theory for pencils on real curves. For coverings having topological degree 0 we introduce the covering number k and we prove the existence of coverings of degree 4 with prescribed covering number.

  8. JUMPING THE CURVE

    Directory of Open Access Journals (Sweden)

    René Pellissier

    2012-01-01

    Full Text Available This paper explores the notion ofjump ing the curve,following from Handy 's S-curve onto a new curve with new rules policies and procedures. . It claims that the curve does not generally lie in wait but has to be invented by leadership. The focus of this paper is the identification (mathematically and inferentially ofthat point in time, known as the cusp in catastrophe theory, when it is time to change - pro-actively, pre-actively or reactively. These three scenarios are addressed separately and discussed in terms ofthe relevance ofeach.

  9. Finite element model calibration of a nonlinear perforated plate

    Science.gov (United States)

    Ehrhardt, David A.; Allen, Matthew S.; Beberniss, Timothy J.; Neild, Simon A.

    2017-03-01

    This paper presents a case study in which the finite element model for a curved circular plate is calibrated to reproduce both the linear and nonlinear dynamic response measured from two nominally identical samples. The linear dynamic response is described with the linear natural frequencies and mode shapes identified with a roving hammer test. Due to the uncertainty in the stiffness characteristics from the manufactured perforations, the linear natural frequencies are used to update the effective modulus of elasticity of the full order finite element model (FEM). The nonlinear dynamic response is described with nonlinear normal modes (NNMs) measured using force appropriation and high speed 3D digital image correlation (3D-DIC). The measured NNMs are used to update the boundary conditions of the full order FEM through comparison with NNMs calculated from a nonlinear reduced order model (NLROM). This comparison revealed that the nonlinear behavior could not be captured without accounting for the small curvature of the plate from manufacturing as confirmed in literature. So, 3D-DIC was also used to identify the initial static curvature of each plate and the resulting curvature was included in the full order FEM. The updated models are then used to understand how the stress distribution changes at large response amplitudes providing a possible explanation of failures observed during testing.

  10. Soil Water Retention Curve

    Science.gov (United States)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  11. Synthesis and Nonlinear Optical Properties of a New Two-photon Polymerization Initiator: DPAMOB with a Large TPA Cross-section

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian; YU Xiao-Qiang; ZHANG Bao-Qin; FENG Yun-Guo; TAO Xu-Tang; JIANG Min-Hua

    2006-01-01

    E,E-1,4-Bis(4′-N,N-diphenylaminostyryl)-2,5-dimethoxybenzene (DPAMOB) has been synthesized by a simple and effective solid phase Wittig reaction and characterized by 1H NMR spectra and elemental analysis. Linear absorption, single-photon induced fluorescence and two-photon induced fluorescence spectra were experimentally studied. The new dye has a large two-photon absorption (TPA) cross-section of σr= 1007.2 GM [1 GM= 1 × 10-50results confirm that DPAMOB is a good TPA chromophore and can successfully initiate two-photon photopolymerization of ethoxylated trimethylolpropane triacrylate esters (SR454). Finally, a microstructure has been fabricated by use of DPAMOB as initiator.

  12. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  13. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  14. Nonlinear analysis

    CERN Document Server

    Nanda, Sudarsan

    2013-01-01

    "Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.

  15. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  16. Tempo curves considered harmful

    NARCIS (Netherlands)

    Desain, P.; Honing, H.

    1993-01-01

    In the literature of musicology, computer music research and the psychology of music, timing or tempo measurements are mostly presented in the form of continuous curves. The notion of these tempo curves is dangerous, despite its widespread use, because it lulls its users into the false impression th

  17. Pairings on hyperelliptic curves

    CERN Document Server

    Balakrishnan, Jennifer; Chisholm, Sarah; Eisentraeger, Kirsten; Stange, Katherine; Teske, Edlyn

    2009-01-01

    We assemble and reorganize the recent work in the area of hyperelliptic pairings: We survey the research on constructing hyperelliptic curves suitable for pairing-based cryptography. We also showcase the hyperelliptic pairings proposed to date, and develop a unifying framework. We discuss the techniques used to optimize the pairing computation on hyperelliptic curves, and present many directions for further research.

  18. Retrospectives: Engel Curves

    National Research Council Canada - National Science Library

    Andreas Chai; Alessio Moneta

    2010-01-01

    ..., Professor of Economics, University of Illinois, Chicago, at jpersky@uic.edu jpersky@uic.edu.. Introduction Introduction Engel curves describe how household expenditure on particular goods or Engel curves describe how household expenditure on particular goods or services depends on household income. The name comes from the German st...

  19. Tornado-Shaped Curves

    Science.gov (United States)

    Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio

    2017-01-01

    In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.

  20. The curve shortening problem

    CERN Document Server

    Chou, Kai-Seng

    2001-01-01

    Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson''s convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem.Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.

  1. Prediction of Single-Peak Flow Stress Curves at High Temperatures Using a New Logarithmic-Power Function

    Science.gov (United States)

    Shafiei, Ehsan; Dehghani, Kamran

    2016-09-01

    In this study, using a nonlinear estimation of strain hardening rate versus strain, a new phenomenological constitutive equation is developed. Utilizing the presented model, three new equations were presented to determine the peak strain, critical strain for initiation of dynamic recrystallization (DRX), and transition strain associated with the maximum softening rate of DRX. Also, two temperature and strain rate-sensitive parameters were introduced to generate flow stress curve at any desired deformation conditions. The predicted results were found to be in a good agreement with the ones measured experimentally. Maximum errors in prediction of peak strain, critical strain, and transition strain were about 8, 11, and 4%, respectively. In addition, evaluation of maximum errors in prediction of flow stress indicates that the presented constitutive equation gives a more precise estimation of flow stress curves in comparison with the previous models pertaining modeling of single-peak flow stress curves.

  2. Traction curves for the decohesion of covalent crystals

    Science.gov (United States)

    Enrique, Raúl A.; Van der Ven, Anton

    2017-01-01

    We study, by first principles, the energy versus separation curves for the cleavage of a family of covalent crystals with the diamond and zincblende structure. We find that there is universality in the curves for different materials which is chemistry independent but specific to the geometry of the particular cleavage plane. Since these curves do not strictly follow the universal binding energy relationship (UBER), we present a derivation of an extension to this relationship that includes non-linear force terms. This extended form of UBER allows for a flexible and practical mathematical description of decohesion curves that can be applied to the quantification of cohesive zone models.

  3. Relative Locality in Curved Space-time

    CERN Document Server

    Kowalski-Glikman, Jerzy

    2013-01-01

    In this paper we construct the action describing dynamics of the particle moving in curved spacetime, with a non-trivial momentum space geometry. Curved momentum space is the core feature of theories where relative locality effects are presents. So far aspects of nonlinearities in momentum space have been studied only for flat or constantly expanding (De Sitter) spacetimes, relying on the their maximally symmetric nature. The extension of curved momentum space frameworks to arbitrary spacetime geometries could be relevant for the opportunities to test Planck-scale curvature/deformation of particles momentum space. As a first example of this construction we describe the particle with kappa-Poincar\\'e momentum space on a circular orbit in Schwarzschild spacetime, where the contributes of momentum space curvature turn out to be negligible. The analysis of this problem relies crucially on the solution of the soccer ball problem.

  4. Learning Curve? Which One?

    Directory of Open Access Journals (Sweden)

    Paulo Prochno

    2004-07-01

    Full Text Available Learning curves have been studied for a long time. These studies provided strong support to the hypothesis that, as organizations produce more of a product, unit costs of production decrease at a decreasing rate (see Argote, 1999 for a comprehensive review of learning curve studies. But the organizational mechanisms that lead to these results are still underexplored. We know some drivers of learning curves (ADLER; CLARK, 1991; LAPRE et al., 2000, but we still lack a more detailed view of the organizational processes behind those curves. Through an ethnographic study, I bring a comprehensive account of the first year of operations of a new automotive plant, describing what was taking place on in the assembly area during the most relevant shifts of the learning curve. The emphasis is then on how learning occurs in that setting. My analysis suggests that the overall learning curve is in fact the result of an integration process that puts together several individual ongoing learning curves in different areas throughout the organization. In the end, I propose a model to understand the evolution of these learning processes and their supporting organizational mechanisms.

  5. Analysis of growth curve in Santa Ines females sheep

    Directory of Open Access Journals (Sweden)

    Elisa Junqueira Oliveira

    2013-12-01

    Full Text Available In a sheep production system, the growth-related characteristics have direct relationship to both, quantity and quality of meat. The objective of this study was to evaluate the application of non-linear models to report the growth curve of Santa Inês sheep. Weights of 140 females, born from2010 to 2012, from a single herd at Cravinhos- SP were used. The weights were measured from birth to about one year of age and the ages were grouped together in biweekly classes. The average weight observed at birth was of 3.77±0.92 kg. The non-linear models utilized in the data adjustment were the Brody, Gompertz, Logistic and Von Bertalanffy models, adjusted by the Gauss-Newton method by means of NLIN procedure, available in SAS software. The parameters which compose the functions, Wt (kg is the weight in time t (days; A (kg is the asymptotic weight when age tends to infinity; b is an integration constant, related to the initial weights of the animals and not well defined biological interpretation, and k is the maturity rate. The average estimates for A and k, are the most important from an zootechnical parameters point of view, mainly because heavier females tend to create faster growing sheep. All the models evaluated reached convergence. The quality of the models adjustment was done by error mean square (EMS means. From the EMS results , the Gompertz model showed the best adjustment, which indicates increased association between the observed and estimated weights, in spite of the EMS values being quite close in all models, pointing out that all were adequate to report the growth curve from birth to one year of age in females of Santa Inês breed.

  6. Nonlinear systems in medicine.

    Science.gov (United States)

    Higgins, John P

    2002-01-01

    Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states.

  7. Nonlinear Mechanism of Bed Load Transport

    Institute of Scientific and Technical Information of China (English)

    XU Haijue; BAI Yuchuan; NG Chiu-On

    2009-01-01

    From the group movement of the bed load within the bottom layer, details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper. Whether the sediment is initiated into motion cor-responds to whether the constant term in the equation is equal to zero. If constant term is zero and no dispersive force is considered, the equation represents the traditional Shields initiation curve, and if constant term is zero with-out the dispersive force being considered, then a new Shields curve which is much lower than the traditional one is got, The fixed point of the equation corresponds to the equilibrium sediment transport of bed load. In the mutation analysis, we have found that the inflection point is the demarcation point of breaking. In theory, the breaking point corresponds to the dividing boundary line, across which the bed form changes from flat bed to sand ripple or sand dune. Compared with the experimental data of Chatou Hydraulic Lab in France, the conclusions are verified.

  8. 用扰动Lyapunov函数研究非线性微分方程关于初始时刻偏差的稳定性%Practical Stability of Nonlinear Differential Equations Relative to Initial Time Difference via Perturbing Lyapunov Functions

    Institute of Scientific and Technical Information of China (English)

    李安; 宋新宇; 王志祥

    2011-01-01

    该文研究了非线性微分方程关于初始时刻偏差的实用稳定性,利用扰动Lyapunov函数得到了几个非线性动力系统关于初始时刻偏差的实用稳定性准则,所得结论丰富了非线性微分方程关于初始时刻偏差的实用稳定性理论.%In this paper, the practical stability of nonlinear differential equations with solutions starting off with different initial times is investigated. Several practical stability criteria of nonlinear dynamical systems relative to initial time difference are presented by perturbing Lyapunov functions. The results enrich the theory on practical stability of nonlinear differential equations relative to initial time difference.

  9. HYDRODYNAMICAL MODELS OF TYPE II-P SUPERNOVA LIGHT CURVES

    Directory of Open Access Journals (Sweden)

    M. C. Bersten

    2009-01-01

    Full Text Available We present progress in light curve models of type II-P supernovae (SNe II-P obtained using a newly devel- oped, one-dimensional hydrodynamic code. Using simple initial models (polytropes, we reproduced the global behavior of the observed light curves and we analyzed the sensitivity of the light curves to the variation of free parameters.

  10. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  11. ROBUST DECLINE CURVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sutawanir Darwis

    2012-05-01

    Full Text Available Empirical decline curve analysis of oil production data gives reasonable answer in hyperbolic type curves situations; however the methodology has limitations in fitting real historical production data in present of unusual observations due to the effect of the treatment to the well in order to increase production capacity. The development ofrobust least squares offers new possibilities in better fitting production data using declinecurve analysis by down weighting the unusual observations. This paper proposes a robustleast squares fitting lmRobMM approach to estimate the decline rate of daily production data and compares the results with reservoir simulation results. For case study, we usethe oil production data at TBA Field West Java. The results demonstrated that theapproach is suitable for decline curve fitting and offers a new insight in decline curve analysis in the present of unusual observations.

  12. Localized Turing patterns in nonlinear optical cavities

    Science.gov (United States)

    Kozyreff, G.

    2012-05-01

    The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.

  13. Large Curved Surface Measurement

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measurement principle of large curved surface through theodolite industry survey system is introduced. Two methods are suggested with respect to the distribution range of curved surface error. The experiments show that the measurement precision can be up to 0.15mm with relative precision of 3×10-5. Finally, something needed paying attention to and the application aspects on theodolite industry survey system are given.

  14. Counting curves on surfaces

    OpenAIRE

    2015-01-01

    In this paper we consider an elementary, and largely unexplored, combinatorial problem in low-dimensional topology. Consider a real 2-dimensional compact surface $S$, and fix a number of points $F$ on its boundary. We ask: how many configurations of disjoint arcs are there on $S$ whose boundary is $F$? We find that this enumerative problem, counting curves on surfaces, has a rich structure. For instance, we show that the curve counts obey an effective recursion, in the general framework of to...

  15. Arithmetic of Shimura curves

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This is the note for a series of lectures that the author gave at the Centre de Recerca Matemtica (CRM), Bellaterra, Barcelona, Spain on October 19–24, 2009. The aim is to give a comprehensive description of some recent work of the author and his students on generalisations of the Gross-Zagier formula, Euler systems on Shimura curves, and rational points on elliptic curves.

  16. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  17. Highly curved microchannel plates

    Science.gov (United States)

    Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.

    1990-01-01

    Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.

  18. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  19. Adaptive B-snake for planar curve approximation

    Institute of Scientific and Technical Information of China (English)

    CHENG Si-yuan; ZHANG Xiang-wei; HUANG Man-hui

    2005-01-01

    An adaptive B-spline active contour model for planar curve approximation is proposed. Starting with an initial B-spline curve, the finite element method is adopted to make the active B-spline curve converge towards the target curve without the need of data points parameterization. A strategy of automatic control point insertion during the B-spline active contour deformation, adaptive to the shape of the planar curve, is also given. Experimental results show that this method is efficient and accurate in planar curve approximation.

  20. Improved Z-scan adjustment to thermal nonlinearities by including nonlinear absorption

    Science.gov (United States)

    Severiano-Carrillo, I.; Alvarado-Méndez, E.; Trejo-Durán, M.; Méndez-Otero, M. M.

    2017-08-01

    We propose a modified mathematical model of thermal optical nonlinearities which allow us to obtain the nonlinear refraction index and the nonlinear absorption coefficient with only one measurement. This modification is motivated by the influence that nonlinear absorption has on the measurement of the nonlinear refraction index at far field, when the material presents a large nonlinearity. This model, where nonlinear absorption is considered to adjust the curves of nonlinear refraction index obtained by Z-scan technique, has the best agreement with experimental data. The model is validated with two ionic liquids and the organic material Eysenhardtia polystachya, in thin media. We present these results after comparing our proposed model to other reported models.

  1. Nonlinear Analysis of Buckling

    Directory of Open Access Journals (Sweden)

    Psotný Martin

    2014-06-01

    Full Text Available The stability analysis of slender web loaded in compression was presented. To solve this problem, a specialized computer program based on FEM was created. The nonlinear finite element method equations were derived from the variational principle of minimum of potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm was used. Corresponding levels of the total potential energy were defined. The peculiarities of the effects of the initial imperfections were investigated. Special attention was focused on the influence of imperfections on the post-critical buckling mode. The stable and unstable paths of the nonlinear solution were separated. Obtained results were compared with those gained using ANSYS system.

  2. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t

  3. Nonlinear stability of centered rarefaction waves of the Jin-Xin relaxation model for 2X2 conservation laws

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Wang

    2002-06-01

    Full Text Available We study the asymptotic equivalence of the Jin-Xin relaxation model and its formal limit for genuinely nonlinear $2imes 2$ conservation laws. The initial data is allowed to have jump discontinuities corresponding to centered rarefaction waves, which includes Riemann data connected by rarefaction curves. We show that, as long as the initial data is a small perturbation of a constant state, the solution for the relaxation system exists globally in time and converges, in the zero relaxation limit, to the solution of the corresponding conservation law uniformly except for an initial layer.

  4. Moduli of Trigonal Curves

    CERN Document Server

    Stankova-Frenkel, Z E

    1997-01-01

    We study the moduli of trigonal curves. We establish the exact upper bound of ${36(g+1)}/(5g+1)$ for the slope of trigonal fibrations. Here, the slope of any fibration $X\\to B$ of stable curves with smooth general member is the ratio Hodge class $\\lambda$ on the moduli space $\\bar{\\mathfrak{M}}_g$ to the base $B$. We associate to a trigonal family $X$ a canonical rank two vector bundle $V$, and show that for Bogomolov-semistable $V$ the slope satisfies the stronger inequality ${\\delta_B}/{\\lambda_B}\\leq 7+{6}/{g}$. We further describe the rational Picard group of the {trigonal} locus $\\bar{\\mathfrak T}_g$ in the moduli space $\\bar{\\mathfrak{M}}_g$ of genus $g$ curves. In the even genus case, we interpret the above Bogomolov semistability condition in terms of the so-called Maroni divisor in $\\bar{\\mathfrak T}_g$.

  5. Power Curve Measurements REWS

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere......This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  6. Algebraic curves and cryptography

    CERN Document Server

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  7. Power Curve Measurements REWS

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  8. Power curve investigation

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Vesth, Allan

    are not performed according to IEC 61400-12-1 [1]. Therefore, the results presented in this report cannot be considered a power curve according to the reference standard, and are referred to as “power curve investigation” instead. The measurements have been performed by a customer and the data analysis has been......This report describes the analysis carried out with data from a given turbine in a wind farm and a chosen period. The purpose of the analysis is to correlate the power output of the wind turbine to the wind speed measured by a nacelle-mounted anemometer. The measurements and analysis...

  9. Banach空间中二阶混合型脉冲积分-微分方程初值问题解的存在性%The Existence of Solutions of Initial Value Problems for Nonlinear Second Order Impulsive Integro-Differential Equations of Mixed Type in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    俞卫琴; 陈芳启

    2008-01-01

    By the use of Monch fixed point theorem and a new comparison result, the solutions of initial value problems for nonlinear second order impulsive integro-differential equations of mixed type in Banach spaces are investigated and the existence theorem is obtained.

  10. Paths of algebraic hyperbolic curves

    Institute of Scientific and Technical Information of China (English)

    Ya-juan LI; Li-zheng LU; Guo-zhao WANG

    2008-01-01

    Cubic algebraic hyperbolic (AH) Bezier curves and AH spline curves are defined with a positive parameter α in the space spanned by {1, t, sinht, cosht}. Modifying the value of α yields a family of AH Bezier or spline curves with the family parameter α. For a fixed point on the original curve, it will move on a defined curve called "path of AH curve" (AH Bezier and AH spline curves) when α changes. We describe the geometric effects of the paths and give a method to specify a curve passing through a given point.

  11. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  12. Nacelle lidar power curve

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  13. Graphs, Curves and Dynamics

    NARCIS (Netherlands)

    Kool, J.

    2013-01-01

    This thesis has three main subjects. The first subject is Measure-theoretic rigidity of Mumford Curves. One can describe isomorphism of two compact hyperbolic Riemann surfaces of the same genus by a measure-theoretic property: a chosen isomorphism of their fundamental groups corresponds to a homeomo

  14. Power Curve Measurements

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present anal...

  15. Power Curve Measurements

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  16. Power Curve Measurements FGW

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  17. Fitting a Gompertz curve

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1994-01-01

    textabstractIn this paper, a simple Gompertz curve-fitting procedure is proposed. Its advantages include the facts that the stability of the saturation level over the sample period can be checked, and that no knowledge of its value is necessary for forecasting. An application to forecasting the stoc

  18. Gompertz curves with seasonality

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1994-01-01

    textabstractThis paper considers an extension of the usual Gompertz curve by allowing the parameters to vary over the seasons. This means that, for example, saturation levels can be different over the year. An estimation and testing method is proposed and illustrated with an example.

  19. Power Curve Measurements

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  20. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Vesth, Allan; Yordanova, Ginka

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  1. Graphing Polar Curves

    Science.gov (United States)

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  2. Power Curve Measurements, REWS

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere...

  3. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  4. Straightening Out Learning Curves

    Science.gov (United States)

    Corlett, E. N.; Morecombe, V. J.

    1970-01-01

    The basic mathematical theory behind learning curves is explained, together with implications for clerical and industrial training, evaluation of skill development, and prediction of future performance. Brief studies of textile worker and typist training are presented to illustrate such concepts as the reduction fraction (a consistent decrease in…

  5. Carbon Lorenz Curves

    NARCIS (Netherlands)

    Groot, L.F.M.

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across

  6. Power Curve Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Federici, Paolo

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  7. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  8. Nonlinear acoustic propagation in two-dimensional ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.

  9. Quantum fields in curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Hollands, Stefan, E-mail: stefan.hollands@uni-leipzig.de [Universität Leipzig, Institut für Theoretische Physik, Brüderstrasse 16, D-04103 Leipzig (Germany); Wald, Robert M., E-mail: rmwa@uchicago.edu [Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637 (United States)

    2015-04-16

    We review the theory of quantum fields propagating in an arbitrary, classical, globally hyperbolic spacetime. Our review emphasizes the conceptual issues arising in the formulation of the theory and presents known results in a mathematically precise way. Particular attention is paid to the distributional nature of quantum fields, to their local and covariant character, and to microlocal spectrum conditions satisfied by physically reasonable states. We review the Unruh and Hawking effects for free fields, as well as the behavior of free fields in deSitter spacetime and FLRW spacetimes with an exponential phase of expansion. We review how nonlinear observables of a free field, such as the stress–energy tensor, are defined, as well as time-ordered-products. The “renormalization ambiguities” involved in the definition of time-ordered products are fully characterized. Interacting fields are then perturbatively constructed. Our main focus is on the theory of a scalar field, but a brief discussion of gauge fields is included. We conclude with a brief discussion of a possible approach towards a nonperturbative formulation of quantum field theory in curved spacetime and some remarks on the formulation of quantum gravity.

  10. The Existence and Uniqueness of Global Solutions to the Initial Value Problem for the System of Nonlinear Integropartial Differential Equations in Spatial Economics: The Dynamic Continuous Dixit-Stiglitz-Krugman Model in an Urban-Rural Setting

    Directory of Open Access Journals (Sweden)

    Minoru Tabata

    2015-01-01

    Full Text Available Assume that economic activities are conducted in a bounded continuous domain where workers move toward regions that offer higher real wages and away from regions that offer below-average real wages. The density of real wages is calculated by solving the nominal wage equation of the continuous Dixit-Stiglitz-Krugman model in an urban-rural setting. The evolution of the density of workers is described by an unknown function of the replicator equation whose growth rate is equal to the difference between the density of real wages and the average real wage. Hence, the evolution of the densities of workers and real wages is described by the system of the nominal wage equation and the replicator equation. This system of equations is an essentially new kind of system of nonlinear integropartial differential equations in the theory of functional equations. The purpose of this paper is to obtain a sufficient condition for the initial value problem for this system to have a unique global solution.

  11. Nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)

    1989-01-01

    Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.

  12. Cubication of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-09-15

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  13. Asymptotic expansions in nonlinear rotordynamics

    Science.gov (United States)

    Day, William B.

    1987-01-01

    This paper is an examination of special nonlinearities of the Jeffcott equations in rotordynamics. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot-firing ground testing. Deadband, side force, and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency, is defined and used to develop the solutions of the nonlinear Jeffcott equations as singular asymptotic expansions. This nonlinear natural frequency, which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies.

  14. Análise de agrupamento na seleção de modelos de regressão não-lineares para curvas de crescimento de ovinos cruzados Cluster analysis applied to nonlinear regression models selection to growth curves of crossed lambs

    Directory of Open Access Journals (Sweden)

    Fernanda Gomes da Silveira

    2011-04-01

    Full Text Available Este estudo teve como objetivo utilizar a análise de agrupamento para classificar modelos de regressão não-lineares usados para descrever a curva de crescimento de ovinos cruzados, tendo em vista os resultados de diferentes avaliadores de qualidade de ajuste. Para tanto, utilizaram-se dados de peso-idade dos seguintes cruzamentos entre raças de ovinos de corte: Dorper x Morada Nova, Dorper x Rabo Largo e Dorper x Santa Inês. Após a indicação do melhor modelo, objetivou-se ainda aplicar a técnica de identidade de modelos a fim de identificar o cruzamento mais produtivo. Foram ajustados doze modelos não-lineares, cuja qualidade de ajuste foi medida pelo coeficiente de determinação ajustado, critérios de informação de Akaike e Bayesiano, erro quadrático médio de predição e coeficiente de determinação de predição. A análise de agrupamento indicou o modelo Richards como o mais adequado para descrever as curvas de crescimento dos três grupos genéticos considerados, e os testes de identidade de modelos indicaram o cruzamento Dorper x Santa Inês como sendo o mais indicado para a pecuária local.This study had the objectives to use the cluster analysis in order to classify nonlinear regression models used to describe the growth curve in relation to different quality fit evaluators. Were utilized weight-age data from the following crossbred beef lambs Dorper x Morada Nova, Dorper x Rabo Largo e Dorper x Santa Inês. After the choice of the best model, we aimed also to apply the model identity in order to identify the most efficient crossbred group. Eleven nonlinear models were used, whose fit quality was measured by determination coefficient, Akaike information criterion, Bayesian information criterion, mean quadratic error of prediction and predicted determination coefficient. The cluster analysis indicated the Richards as the best model for the three data sets, and the model identity tests revealed that the Dorper x Santa In

  15. Influence of Nonlinear Absorption on Z-Scan Measurements of Nonlinear Refraction

    Institute of Scientific and Technical Information of China (English)

    刘智波; 田建国; 臧维平; 周文远; 张春平; 张光寅

    2003-01-01

    A simple division of close-aperture Z-scan curve by open-aperture Z-scan is conveniently used to obtain the nonlinear refractive index. It usually causes an error, which even reaches up to over 50% for Z-scan measurements with a pinhole or a medium with a high nonlinear absorption. Here the influence of nonlinear absorption on the determination of nonlinear refraction by Z-scan is analysed. We suggest that the error can be reduced greatly by a simple analysis of the symmetric features (symmetric method) of Z-scan curves from the closed-aperture Z-scan curve. As an example, experiments were carried out on CS2 solution of Ceo derivative, symmetric method agrees well with exact simulation.

  16. A curve shortening flow rule for closed embedded plane curves with a prescribed rate of change in enclosed area.

    Science.gov (United States)

    Dallaston, Michael C; McCue, Scott W

    2016-01-01

    Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior.

  17. Least-squares fitting Gompertz curve

    Science.gov (United States)

    Jukic, Dragan; Kralik, Gordana; Scitovski, Rudolf

    2004-08-01

    In this paper we consider the least-squares (LS) fitting of the Gompertz curve to the given nonconstant data (pi,ti,yi), i=1,...,m, m≥3. We give necessary and sufficient conditions which guarantee the existence of the LS estimate, suggest a choice of a good initial approximation and give some numerical examples.

  18. Carbon Lorenz Curves

    Energy Technology Data Exchange (ETDEWEB)

    Groot, L. [Utrecht University, Utrecht School of Economics, Janskerkhof 12, 3512 BL Utrecht (Netherlands)

    2008-11-15

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across countries. These tools allow policy-makers and the general public to grasp at a single glance the impact of conventional distribution rules such as equal caps or grandfathering, or more sophisticated ones, on the distribution of greenhouse gas emissions. Second, using the Samuelson rule for the optimal provision of a public good, the Pareto-optimal distribution of carbon emissions is compared with the distribution that follows if countries follow Nash-Cournot abatement strategies. It is shown that the Pareto-optimal distribution under the Samuelson rule can be approximated by the equal cap division, represented by the diagonal in the Lorenz curve diagram.

  19. Managing curved canals

    Directory of Open Access Journals (Sweden)

    Iram Ansari

    2012-01-01

    Full Text Available Dilaceration is the result of a developmental anomaly in which there has been an abrupt change in the axial inclination between the crown and the root of a tooth. Dilaceration can be seen in both the permanent and deciduous dentitions, and is more commonly found in posterior teeth and in maxilla. Periapical radiographs are the most appropriate way to diagnose the presence of root dilacerations. The controlled regularly tapered preparation of the curved canals is the ultimate challenge in endodontics. Careful and meticulous technique will yield a safe and sufficient enlargement of the curved canals. This article gives a review of the literature and three interesting case reports of root dilacerations.

  20. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  1. Semiparametric analysis to estimate the deal effect curve

    NARCIS (Netherlands)

    Van Heerde, HJ; Leeflang, PSH; Wittink, DR

    2001-01-01

    The marketing literature suggests several phenomena that may contribute to the nature of the relationship between sales and price discounts. These phenomena can produce complex nonlinearities and interactions in the deal effect curve that are best captured with a flexible approach. Because a fully n

  2. Semiparametric analysis to estimate the deal effect curve

    NARCIS (Netherlands)

    Heerde, Harald J. van; Leeflang, Peter S.H.; Wittink, Dick R.

    1999-01-01

    The marketing literature suggests several phenomena that may contribute to the shape of the relationship between sales and price discounts. These phenomena can produce severe nonlinearities and interactions in the curves, and we argue that those are best captured with a flexible approach. Since a fu

  3. LCC: Light Curves Classifier

    Science.gov (United States)

    Vo, Martin

    2017-08-01

    Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

  4. Dynamics of curved fronts

    CERN Document Server

    Pelce, Pierre

    1989-01-01

    In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.

  5. Estimating Corporate Yield Curves

    OpenAIRE

    Antionio Diaz; Frank Skinner

    2001-01-01

    This paper represents the first study of retail deposit spreads of UK financial institutions using stochastic interest rate modelling and the market comparable approach. By replicating quoted fixed deposit rates using the Black Derman and Toy (1990) stochastic interest rate model, we find that the spread between fixed and variable rates of interest can be modeled (and priced) using an interest rate swap analogy. We also find that we can estimate an individual bank deposit yield curve as a spr...

  6. A solution to the problems of cusps and rotation curves in dark matter halos in the cosmological standard model

    CERN Document Server

    Doroshkevich, A G; Mikheeva, E V; 10.3367/UFNr.0182.201201a.0003

    2012-01-01

    We discuss various aspects of the inner structure formation in virialized dark matter (DM) halos that form as primordial density inhomogeneities evolve in the cosmological standard model. The main focus is on the study of central cusps/cores and of the profiles of DM halo rotation curves, problems that reveal disagreements among the theory, numerical simulations, and observations. A method that was developed by the authors to describe equilibrium DM systems is presented, which allows investigating these complex nonlinear structures analytically and relating density distribution profiles within a halo both to the parameters of the initial small-scale inhomogeneity field and to the nonlinear relaxation characteristics of gravitationally compressed matter. It is shown that cosmological random motions of matter `heat up' the DM particles in collapsing halos, suppressing cusp-like density profiles within developing halos, facilitating the formation of DM cores in galaxies, and providing an explanation for the diff...

  7. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    Energy Technology Data Exchange (ETDEWEB)

    Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)

    2015-03-31

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.

  8. Nonlinear Resonance of the Rotating Circular Plate under Static Loads in Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    HU Yuda; WANG Tong

    2015-01-01

    The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.

  9. Atypical Light Curves

    CERN Document Server

    Steenwyk, Steven D; Molnar, Lawrence A

    2013-01-01

    We have identified some two-hundred new variable stars in a systematic study of a data archive obtained with the Calvin-Rehoboth observatory. Of these, we present five close binaries showing behaviors presumably due to star spots or other magnetic activity. For context, we first present two new RS CVn systems whose behavior can be readily attribute to star spots. Then we present three new close binary systems that are rather atypical, with light curves that are changing over time in ways not easily understood in terms of star spot activity generally associated with magnetically active binary systems called RS CVn systems. Two of these three are contact binaries that exhibit gradual changes in average brightness without noticeable changes in light curve shape. A third system has shown such large changes in light curve morphology that we speculate this may be a rare instance of a system that transitions back and forth between contact and noncontact configurations, perhaps driven by magnetic cycles in at least o...

  10. Lactation Curve Fittings of Wood's Nonlinear Model for Milk Yield, Milk Fat,Milk Protein and Somatic Cell Score for Chinese Holstein in Southern China%用Wood模型拟合南方中国荷斯坦牛产奶量、乳脂率、乳蛋白率和体细胞评分及其效果分析

    Institute of Scientific and Technical Information of China (English)

    毛永江; 张美荣; 许兆君; 刘姗; 张亚琴; 陈丹; 王杏龙; 杨章平

    2012-01-01

    旨在了解南方中国荷斯坦牛测定日产奶量、乳脂率、乳蛋白率和体细胞评分(Somatic cell score,SCS)变化趋势,并进行准确预测.利用Wood模型对南方5个大中型奶牛场(2008-2010年1~3胎)中国荷斯坦牛的33 194条测定日产奶量、乳脂率、乳蛋白率和SCS数据进行曲线拟合.结果表明,测定日产奶量为标准泌乳曲线,乳脂率、乳蛋白率和SCS变化与标准泌乳曲线正好相反.Wood模型对乳蛋白率和产奶量变化曲线拟合度最高,各胎次拟合度均为0.99,误差均方也较低;其次为乳脂率,各胎次拟合度均为0.98,而对SCS的拟合度最低,均在0.7以下,同时误差均方也最大.各胎次产奶高峰日出现的时间与乳蛋白率和SCS最低值出现的时间相近,而最低乳脂率出现的时间较晚.一胎牛高峰产奶量相对较低(30.4 kg·d-1),但泌乳后期泌乳持续力及维持低SCS能力较强;二胎和三胎牛高峰产奶量较大,分别为35.9和36.2 kg·d-1,二胎奶牛在泌乳后期同时维持高乳脂率和乳蛋白率的能力较强.Wood模型适合于南方中国荷斯坦牛测定日产奶量、乳脂率、乳蛋白率变化曲线的拟合分析,而不适合于SCS的拟合分析.%This study aimed to reveal the variations of daily milk yield, milk fat percentage, milk protein percentage and somatic cell score (SCS) , and to establish the prediction models for these parameters in the lactation period for Chinese Holstein in southern China. A 33194-test-day dairy herd complete data from 5 Chinese Holstein dairy farms were collected in the southern China from first lactation to third lactation between 2008 to 2010 and fitted to nonlinear curve of test-day milk yield, milk fat percentage, milk protein percentage and SCS with the Wood's incomplete gamma function model. The curve of test-day milk yield for Chinese Holstein was the standard lactation curve, and the curves of milk fat percentage, milk protein percentage and SCS were

  11. FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM

    Science.gov (United States)

    Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance

  12. Theory of nonlinear elastic behavior in rock

    Energy Technology Data Exchange (ETDEWEB)

    McCall, K.R.

    1993-04-01

    We study plane wave propagation in an isotropic, homogeneous solid with cubic and quartic anharmonicity. Attenuation is introduced through use of a retarded displacement response. We develop a Green function technique to exhibit the solution for the displacement field as a systematic hierarchy in the nonlinear parameters. This solution is applied to three problems: propagation from monochromatic and broadband sources, and the shape of nonlinear stress curves.

  13. Theory of nonlinear elastic behavior in rock

    Energy Technology Data Exchange (ETDEWEB)

    McCall, K.R.

    1993-01-01

    We study plane wave propagation in an isotropic, homogeneous solid with cubic and quartic anharmonicity. Attenuation is introduced through use of a retarded displacement response. We develop a Green function technique to exhibit the solution for the displacement field as a systematic hierarchy in the nonlinear parameters. This solution is applied to three problems: propagation from monochromatic and broadband sources, and the shape of nonlinear stress curves.

  14. Curved PVDF airborne transducer.

    Science.gov (United States)

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  15. Magnetism in curved geometries

    Science.gov (United States)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  16. On the prediction of stress relaxation from known creep of nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Touati, D.; Cederbaum, G. [Ben-Gurion Univ. of the Negev, Beer Sheva (Israel)

    1997-04-01

    A method to predict the nonlinear relaxation behavior from creep experiments of nonlinear viscoelastic materials is presented. It is shown that for given nonlinear creep properties, and creep compliance represented by the Prony series, the Schapery creep model can be transformed into a set of first order nonlinear equations. The solution of these equations enables the obtaining of the nonlinear stress relaxation curves. The strain-dependent constitutive equation can then be constructed for a given nonlinear viscoelastic model, as needed for engineering applications. A comparison example of the calculated stress relaxation curves, with test data for polyurethane demonstrates the very good accuracy of the proposed method.

  17. Nonlinear PDEs

    OpenAIRE

    2015-01-01

    From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...

  18. Suitable Conditions of Reservoir Simulation for Searching Rule Curves

    Science.gov (United States)

    Kangrang, Anongrit; Chaleeraktrakoon, Chavalit

    The objective of this study is to carry out a suitable length of inflow record using in the simulation model. The second objective is to find an effect of initial reservoir capacity of reservoir simulation for searching the optimal rule curves. The reservoir simulation model was connected with genetic algorithms to search the optimal rule curves quickly. The model has been applied to determine the optimal rule curves of the Bhumibol and Sirikit Reservoirs (the Chao Phraya River Basin, Thailand). The optimal rule curves of each condition were used to assess by a Monte Carlo simulation. The results show that the shortest period of dry inflow record using in the simulation model in order to search the optimal rule curves is 10 year. Furthermore, the minimum initial capacity of reservoir for searching optimal rule curves is 10% of full capacity.

  19. Nonlinear magnetohydrodynamics of edge localized mode precursors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)

    2015-02-15

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.

  20. Curve interpolation based on Catmull-Clark subdivision scheme

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An efficient algorithm for curve interpolation is proposed. The algorithm can produce a subdivision surface that can interpolate the predefined cubic B-spline curves by applying the Catmull-Clark scheme to a polygonal mesh containing "symmetric zonal meshes", which possesses some special properties. Many kinds of curve interpolation problems can be dealt with by this algorithm, such as interpolating single open curve or closed curve, a mesh of nonintersecting or intersecting curve. The interpolating surface is C2 everywhere excepting at a finite number of points. At the same time, sharp creases can also be modeled on the limit subdivision surface by duplicating the vertices of the tagged edges of initial mesh, i.e. the surface is only C0 along the cubic B-spline curve that is defined by the tagged edges. Because of being simple and easy to implement, this method can be used for product shape design and graphic software development.

  1. Moving non-null curves according to Bishop frame in Minkowski 3-space

    Science.gov (United States)

    Gürbüz, Nevin

    2015-04-01

    In this paper, we introduce three new transformations and establish connections between moving non-null curves and soliton equations according to Bishop frame in Minkowski 3-space. Later we find formulas for differentials of these three new transformations associated with the nonlinear heat system and repulsive type nonlinear Schrödinger equation.

  2. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  3. Mathematical design of a highway exit curve

    Science.gov (United States)

    Pakdemirli, Mehmet

    2016-01-01

    A highway exit curve is designed under the assumption that the tangential and normal components of the acceleration of the vehicle remain constant throughout the path. Using fundamental principles of physics and calculus, the differential equation determining the curve function is derived. The equation and initial conditions are cast into a dimensionless form first for universality of the results. It is found that the curves are effected by only one dimensionless parameter which is the ratio of the tangential acceleration to the normal acceleration. For no tangential acceleration, the equation can be solved analytically yielding a circular arc solution as expected. For nonzero tangential acceleration, the function is complicated and no closed-form solutions exist for the differential equation. The equation is solved numerically for various acceleration ratios. Discussions for applications to highway exits are given.

  4. The genus curve of the Abell clusters

    Science.gov (United States)

    Rhoads, James E.; Gott, J. Richard, III; Postman, Marc

    1994-01-01

    We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).

  5. Modeling of Z-scan characteristics for one-dimensional nonlinear photonic bandgap materials.

    Science.gov (United States)

    Chen, Shuqi; Zang, Weiping; Schülzgen, Axel; Liu, Xin; Tian, Jianguo; Moloney, Jerome V; Peyghambarian, Nasser

    2009-12-01

    We propose a Z-scan theory for one-dimensional nonlinear photonic bandgap materials. The Z-scan characteristics for this material are analyzed. Results show that the Z-scan curves for photonic bandgap materials with nonlinear refraction are similar to those of uniform materials exhibiting both nonlinear refraction and nonlinear absorption simultaneously. Effects of nonlinear absorption on reflected and transmitted Z-scan results are also discussed.

  6. A curve flow evolved by a fourth order parabolic equation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We study a fourth order curve flow, which is the gradient flow of a functional describing the shapes of human red blood cells. We prove that for any smooth closed initial curve in R2, the flow has a smooth solution for all time and the solution subconverges to a critical point of the functional.

  7. A curve flow evolved by a fourth order parabolic equation

    Institute of Scientific and Technical Information of China (English)

    LIU YanNan; JIAN HuaiYu

    2009-01-01

    We study a fourth order curve flow,which is the gradient flow of a functional describing the shapes of human red blood cells.We prove that for any smooth closed initial curve in R2,the flow has a smooth solution for all time and the solution subconverges to a critical point of the functional.

  8. Long-term evolution of strongly nonlinear internal solitary waves in a rotating channel

    Directory of Open Access Journals (Sweden)

    J. C. Sánchez-Garrido

    2009-09-01

    Full Text Available The evolution of internal solitary waves (ISWs propagating in a rotating channel is studied numerically in the framework of a fully-nonlinear, nonhydrostatic numerical model. The aim of modelling efforts was the investigation of strongly-nonlinear effects, which are beyond the applicability of weakly nonlinear theories. Results reveal that small-amplitude waves and sufficiently strong ISWs evolve differently under the action of rotation. At the first stage of evolution an initially two-dimensional ISW transforms according to the scenario described by the rotation modified Kadomtsev-Petviashvili equation, namely, it starts to evolve into a Kelvin wave (with exponential decay of the wave amplitude across the channel with front curved backwards. This transition is accompanied by a permanent radiation of secondary Poincaré waves attached to the leading wave. However, in a strongly-nonlinear limit not all the energy is transmitted to secondary radiated waves. Part of it returns to the leading wave as a result of nonlinear interactions with secondary Kelvin waves generated in the course of time. This leads to the formation of a slowly attenuating quasi-stationary system of leading Kelvin waves, capable of propagating for several hundreds hours as a localized wave packet.

  9. Superfluids in Curved Spacetime

    CERN Document Server

    Villegas, Kristian Hauser A

    2015-01-01

    Superfluids under an intense gravitational field are typically found in neutron star and quark star cores. Most treatments of these superfluids, however, are done in a flat spacetime background. In this paper, the effect of spacetime curvature on superfluidity is investigated. An effective four-fermion interaction is derived by integrating out the mediating scalar field. The fermions interacting via the mediating gauge vector bosons is also discussed. Two possible cases are considered in the mean-field treatment: antifermion-fermion and fermion-fermion pairings. An effective action, quadratic in fermion field, and a self-consistent equation are derived for both cases. The effective Euclidean action and the matrix elements of the heat kernel operator, which are very useful in curved-spacetime QFT calculations, are derived for the fermion-fermion pairing. Finally, explicit numerical calculation of the gravitational correction to the pairing order parameter is performed for the scalar superfluid case. It is foun...

  10. Polymers in Curved Boxes

    CERN Document Server

    Yaman, K; Solis, F J; Witten, T A

    1996-01-01

    We apply results derived in other contexts for the spectrum of the Laplace operator in curved geometries to the study of an ideal polymer chain confined to a spherical annulus in arbitrary space dimension D and conclude that the free energy compared to its value for an uncurved box of the same thickness and volume, is lower when $D < 3$, stays the same when $D = 3$, and is higher when lowers the effective bending elasticity of the walls, and might induce spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned results show that {\\em {any}} shell in $D = 3$ induces this effect, except for a spherical shell). We compute the contribution of this effect to the bending rigidities in the Helfrich free energy expression.

  11. Evolutes of Hyperbolic Plane Curves

    Institute of Scientific and Technical Information of China (English)

    Shyuichi IZUMIYA; Dong He PEI; Takashi SANO; Erika TORII

    2004-01-01

    We define the notion of evolutes of curves in a hyperbolic plane and establish the relationships between singularities of these subjects and geometric invariants of curves under the action of the Lorentz group. We also describe how we can draw the picture of an evolute of a hyperbolic plane curve in the Poincar(e) disk.

  12. The Arithmetic of Elliptic Curves

    CERN Document Server

    Silverman, Joseph H

    2009-01-01

    Treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. This book discusses the necessary algebro-geometric results, and offers an exposition of the geometry of elliptic curves, and the formal group of an elliptic curve.

  13. Curved-Duct

    Directory of Open Access Journals (Sweden)

    Je Hyun Baekt

    2000-01-01

    Full Text Available A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a 90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a 90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.

  14. Learning curves and collaboration in reconceiving refugee settlements

    Directory of Open Access Journals (Sweden)

    Mariano-Florentino Cuéllar

    2014-09-01

    Full Text Available A collaboration between UNHCR, Ennead Architects and Stanford University uses settlement design to promote innovation and further development in the refugee protection model but collaborators initially face a steep learning curve.

  15. Critical Factors for Inducing Curved Somatosensory Saccades

    Directory of Open Access Journals (Sweden)

    Tamami Nakano

    2011-10-01

    Full Text Available We are able to make a saccade toward a tactile stimuli to one hand, but trajectories of many saccades curved markedly when the arms were crossed (Groh & Sparks, 2006. However, it remains unknown why some curved and others did not. We therefore examined critical factors for inducing the curved somatosensory saccades. Participants made a saccade as soon as possible from a central fixation point toward a tactile stimulus delivered to one of the two hands, and switched between arms-crossed and arms-uncrossed postures every 6 trials. Trajectories were generally straight when the arms were uncrossed, but all participants made curved saccades when the arms were crossed (12–64%. We found that the probability of curved saccades depended critically on the onset latency: the probability was less than 5% when the latency was larger than 250 ms, but the probability increased up to 70–80% when the onset latency was 160 ms. This relationship was shared across participants. The results suggest that a touch in the arms-crossed posture was always mapped to the wrong hand in the initial phase up to 160 ms, and then remapped to the correct hand during the next 100 ms by some fundamental neural mechanisms shared across participants.

  16. Stress-strain curves of aluminum nanowires: Fluctuations in the plastic regime and absence of hardening

    Science.gov (United States)

    Pastor-Abia, L.; Caturla, M. J.; Sanfabián, E.; Chiappe, G.; Louis, E.

    2008-10-01

    The engineering stress-strain curves of aluminum nanowires have been investigated by means of molecular dynamics. Nanowires were stretched at constant strain rate and at a temperature of 4.2 K. Atoms at fixed positions with velocities randomly distributed according to Maxwell distribution were taken as initial conditions. Averaging over at least 1500 realizations allows the conclusion that, beyond the yield point, the system does not harden, in line with experimental results for larger nanowires of gold measured at room temperature. Fluctuations of the heat exchanged in the nonlinear regime have been investigated by analyzing around 1.5 million data. The results indicate the presence of non-Gaussian tails in the heat probability distribution.

  17. Curvature-induced symmetry breaking in nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth

    2000-01-01

    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states decrea...

  18. Closed time like curves enable perfect state distinguishability

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, James William [Los Alamos National Laboratory; Wilde, Mark M [USC; Brun, Todd A [USC

    2008-01-01

    The causal self-consistency condition for closed timelike curves can give rise to nonlinear interactions on chronology-respecting qubits. We demonstrate that particular unitary interactions between closed timelike curve qubits and chronology-respecting qubits allow perfect distinguishability of nonorthogonal states, and provide a constructive proof for an arbitrary number of nonorthogonal states. This has a number of highly significant consequences. For example, an adversary with access to closed timelike curves can break the B92, BB84, and SARG04 quantum key distribution protocols, or any prepare-and-measure quantum key distribution scheme. Our result also implies that a party with access to closed timelike curves can violate the Holevo bound by accessing more than log(N) bits of information from an N-dimensional quantum state. In principle, he can transmit an arbitrarily large amount of classical information with a quantum system of fixed size. We discuss the implications of this for quantum cloning.

  19. Cosmological effects of nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)

    2007-06-07

    It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.

  20. Linearization of Systems of Nonlinear Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    KANG Jing; QU Chang-Zheng

    2007-01-01

    We investigate the linearization of systems of n-component nonlinear diffusion equations; such systems have physical applications in soil science, mathematical biology and invariant curve flows. Equivalence transformations of their auxiliary systems are used to identify the systems that can be linearized. We also provide several examples of systems with two-component equations, and show how to linearize them by nonlocal mappings.

  1. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi;

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations ar...... are included in the analysis. The full nonlinear stress-strain curves up to failure will be considered for the polymer foams at different temperatures to study the effect of material nonlinearity in detail....

  2. ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-peng; SHI Wei-hui

    2008-01-01

    The stability of nonlinear barotropic vorticity equation was proved. The necessary and sufficient conditions for the initial value problem to be well-posed were presented. Under the conditions of well-posedness, the corresponding analytical solution was also gained.

  3. Analysis of Nonlinear Fractional Nabla Difference Equations

    Directory of Open Access Journals (Sweden)

    Jagan Mohan Jonnalagadda

    2015-01-01

    Full Text Available In this paper, we establish sufficient conditions on global existence and uniqueness of solutions of nonlinear fractional nabla difference systems and investigate the dependence of solutions on initial conditions and parameters.

  4. Non-linear magnetorheological behaviour of an inverse ferrofluid

    NARCIS (Netherlands)

    de Gans, B.J.; Hoekstra, Hans; Mellema, J.

    1999-01-01

    The non-linear magnetorheological behaviour is studied of a model system consisting of monodisperse silica particles suspended in a ferrofluid. The stress/strain curve as well as the flow curve was measured as a function of volume fraction silica particles and field strength, using a home-made

  5. Cubic B-spline curve approximation by curve unclamping

    OpenAIRE

    Chen, Xiao-Diao; Ma, Weiyin; Paul, Jean-Claude

    2010-01-01

    International audience; A new approach for cubic B-spline curve approximation is presented. The method produces an approximation cubic B-spline curve tangent to a given curve at a set of selected positions, called tangent points, in a piecewise manner starting from a seed segment. A heuristic method is provided to select the tangent points. The first segment of the approximation cubic B-spline curve can be obtained using an inner point interpolation method, least-squares method or geometric H...

  6. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  7. Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.

  8. On the exact controllability of a nonlinear stochastic heat equation

    Directory of Open Access Journals (Sweden)

    Bui An Ton

    2006-01-01

    Full Text Available The exact controllability of a nonlinear stochastic heat equation with null Dirichlet boundary conditions, nonzero initial and target values, and an interior control is established.

  9. Introduction to nonlinear dispersive equations

    CERN Document Server

    Linares, Felipe

    2015-01-01

    This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...

  10. Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs

    Science.gov (United States)

    Bessaih, Hakima; Coghi, Michele; Flandoli, Franco

    2017-03-01

    Families of N interacting curves are considered, with long range, mean field type, interaction. They generalize models based on classical interacting point particles to models based on curves. In this new set-up, a mean field result is proven, as N→ ∞. The limit PDE is vector valued and, in the limit, each curve interacts with a mean field solution of the PDE. This target is reached by a careful formulation of curves and weak solutions of the PDE which makes use of 1-currents and their topologies. The main results are based on the analysis of a nonlinear Lagrangian-type flow equation. Most of the results are deterministic; as a by-product, when the initial conditions are given by families of independent random curves, we prove a propagation of chaos result. The results are local in time for general interaction kernel, global in time under some additional restriction. Our main motivation is the approximation of 3D-inviscid flow dynamics by the interacting dynamics of a large number of vortex filaments, as observed in certain turbulent fluids; in this respect, the present paper is restricted to smoothed interaction kernels, instead of the true Biot-Savart kernel.

  11. Reproducing Kernel Particle Method for Non-Linear Fracture Analysis

    Institute of Scientific and Technical Information of China (English)

    Cao Zhongqing; Zhou Benkuan; Chen Dapeng

    2006-01-01

    To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.

  12. From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM

    Directory of Open Access Journals (Sweden)

    Akemi Gálvez

    2013-01-01

    Full Text Available Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor’s method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.

  13. Nonlinear dynamic vibration absorbers with a saturation

    Science.gov (United States)

    Febbo, M.; Machado, S. P.

    2013-03-01

    The behavior of a new type of nonlinear dynamic vibration absorber is studied. A distinctive characteristic of the proposed absorber is the impossibility to extend the system to infinity. The mathematical formulation is based on a finite extensibility nonlinear elastic potential to model the saturable nonlinearity. The absorber is attached to a single degree-of-freedom linear/nonlinear oscillator subjected to a periodic external excitation. In order to solve the equations of motion and to analyze the frequency-response curves, the method of averaging is used. The performance of the FENE absorber is evaluated considering a variation of the nonlinearity of the primary system, the damping and the linearized frequency of the absorber and the mass ratio. The numerical results show that the proposed absorber has a very good efficiency when the nonlinearity of the primary system increases. When compared with a cubic nonlinear absorber, for a large nonlinearity of the primary system, the FENE absorber shows a better effectiveness for the whole studied frequency range. A complete absence of quasi-periodic oscillations is also found for an appropriate selection of the parameters of the absorber. Finally, direct integrations of the equations of motion are performed to verify the accuracy of the proposed method.

  14. Nonlinear acoustic techniques for landmine detection.

    Science.gov (United States)

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  15. Tunable Resonators for Nonlinear Modal Interactions

    KAUST Repository

    Ramini, Abdallah

    2016-10-04

    Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.

  16. Tunable Resonators for Nonlinear Modal Interactions

    Science.gov (United States)

    Ramini, Abdallah H.; Hajjaj, Amal Z.; Younis, Mohammad I.

    2016-10-01

    Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.

  17. POSSIBLE RECESSION CURVE APPLICATIONS FOR RETENTION EVALUATION

    Directory of Open Access Journals (Sweden)

    Daniel Liberacki

    2015-11-01

    Full Text Available The objective of the article was to present possible applications of recession flow curve in a small lowland watershed retention discharge size evaluation. The examined woodland micro catchment area of 0.52 sq km is located in Puszcza Zielonka in central Wielkopolska. The Hutka catchment is typically woody with high retention abilities. The catchment of the Hutka watercourse is forested in 89%, the other 11% is covered by swamps and wasteland. The predominant sites are fresh mixed coniferous forest (BMśw, fresh coniferous forest (Bśw and alder carr forest (Ol. Landscape in catchment is characterized by a large number of interior depressions, filled partly with rainwater or peatbogs, with poorly developed natural drainage. The watercourses do not exceed 1 km in length, the mean width is approx. 0.5 m, while mean depth ranges from 0.2 to 0.3 m. During hydrological research conducted in 1997/1998–1999/2000, 35 major (characteristic raised water stages were observed in Hutka after substantial precipitation. The recession curve dating from 18–24 September 2000 has the α and n rates nearest to average. Comparing the model curve and the curve created by observing watercourse flow, one can notice their resemblance and that they have similar ordinate values as well as shape. In the case of other recession curves, the maximum differences of ordinate values are also about 0.1–0.2 l/s/km2. The measuured α and n rates do not reveal any regularities. There are no significant statistical Horton model parameter (for recession flow curves dependencies between α and n and e.g. initial flows (Qo or the whole period of high water waves (Qp. Consequently, calculated relation between these parameters is only an approximation for the general evaluation of the retention discharge in the catchment area towards retention with flow function.

  18. State-variable analysis of non-linear circuits with a desk computer

    Science.gov (United States)

    Cohen, E.

    1981-01-01

    State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.

  19. A nonlinear plate control without linearization

    Directory of Open Access Journals (Sweden)

    Yildirim Kenan

    2017-03-01

    Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

  20. Reflection of curved shock waves

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  1. Reflection of curved shock waves

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  2. Heegner modules and elliptic curves

    CERN Document Server

    Brown, Martin L

    2004-01-01

    Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields; this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields.

  3. Closed planar curves without inflections

    CERN Document Server

    Ohno, Shuntaro; Umehara, Masaaki

    2011-01-01

    We define a computable topological invariant $\\mu(\\gamma)$ for generic closed planar regular curves $\\gamma$, which gives an effective lower bound for the number of inflection points on a given generic closed planar curve. Using it, we classify the topological types of locally convex curves (i.e. closed planar regular curves without inflections) whose numbers of crossings are less than or equal to five. Moreover, we discuss the relationship between the number of double tangents and the invariant $\\mu(\\gamma)$ on a given $\\gamma$.

  4. Control methods for localization of nonlinear waves

    Science.gov (United States)

    Porubov, Alexey; Andrievsky, Boris

    2017-03-01

    A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.

  5. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  6. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    initially curved microplates. Microplates often experience an initial curvature imperfection, due to the micro fabrication process, which affects significantly their mechanical behavior. In this case a clamped-free-clamped-free microplate is considered. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model. As case studies, we consider two commonly encountered profiles of the initial curvature imperfection and study their effects on both the static and dynamic responses of the microplates. Next, an initially curved microplate made of silicon nitride is studied. The static behavior of the microplate is investigated when applying a DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage, superimposed to a DC voltage. Simulation results calculated by the reduced order model are compared with experimental data for model validation purpose, which show good agreement.

  7. Fermi-Pasta-Ulam, solitons and the fabric of nonlinear and computational science: history, synergetics, and visiometrics.

    Science.gov (United States)

    Zabusky, Norman J

    2005-03-01

    This paper is mostly a history of the early years of nonlinear and computational physics and mathematics. I trace how the counterintuitive result of near-recurrence to an initial condition in the first scientific digital computer simulation led to the discovery of the soliton in a later computer simulation. The 1955 report by Fermi, Pasta, and Ulam (FPU) described their simulation of a one-dimensional nonlinear lattice which did not show energy equipartition. The 1965 paper by Zabusky and Kruskalshowed that the Korteweg-de Vries (KdV) nonlinear partial differential equation, a long wavelength model of the alpha-lattice (or cubic nonlinearity), derived by Kruskal, gave quantitatively the same results obtained by FPU. In 1967, Zabusky and Deem showed that a localized short wavelength initial excitation (then called an "optical" and now a "zone-boundary mode" excitation ) of the alpha-lattice revealed "n-curve" coherent states. If the initial amplitude was sufficiently large energy equipartition followed in a short time. The work of Kruskal and Miura (KM), Gardner and Greene (GG), and myself led to the appreciation of the infinity of denumerable invariants (conservation laws) for Hamiltonian systems and to a procedure by GGKM in 1967 for solving KdV exactly. The nonlinear science field exponentiated in diversity of linkages (as described in Appendix A). Included were pure and applied mathematics and all branches of basic and applied physics, including the first nonhydrodynamic application to optical solitons, as described in a brief essay (Appendix B) by Hasegawa. The growth was also manifest in the number of meetings held and institutes founded, as described briefly in Appendix D. Physicists and mathematicians in Japan, USA, and USSR (in the latter two, people associated with plasma physics) contributed to the diversification of the nonlinear paradigm which continues worldwide to the present. The last part of the paper (and Appendix C) discuss visiometrics: the

  8. Nonlinear Forced Vibration Analysis for Thin Rectangular Plate on Nonlinear Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Zhong Zhengqiang

    2013-02-01

    Full Text Available Nonlinear forced vibration is analyzed for thin rectangular plate with four free edges on nonlinear elastic foundation. Based on Hamilton variation principle, equations of nonlinear vibration motion for thin rectangular plate under harmonic loads on nonlinear elastic foundation are established. In the case of four free edges, viable expressions of trial functions for this specification are proposed, satisfying all boundary conditions. Then, equations are transformed to a system of nonlinear algebraic equations by using Galerkin method and are solved by using harmonic balance method. In the analysis of numerical computations, the effect on the amplitude-frequency characteristic curve due to change of the structural parameters of plate, parameters of foundation and parameters of excitation force are discussed.

  9. A solution to the problems of cusps and rotation curves in dark matter halos in the cosmological standard model

    Science.gov (United States)

    Doroshkevich, Andrei G.; Lukash, Vladimir N.; Mikheeva, Elena V.

    2012-01-01

    We discuss various aspects of the inner structure formation in virialized dark matter (DM) halos that form as primordial density inhomogeneities evolve in the cosmological standard model. The main focus is on the study of central cusps/cores and of the profiles of DM halo rotation curves, problems that reveal disagreements among the theory, numerical simulations, and observations. A method that was developed by the authors to describe equilibrium DM systems is presented, which allows investigating these complex nonlinear structures analytically and relating density distribution profiles within a halo both to the parameters of the initial small-scale inhomogeneity field and to the nonlinear relaxation characteristics of gravitationally compressed matter. It is shown that cosmological random motions of matter 'heat up' the DM particles in collapsing halos, suppressing cusp-like density profiles within developing halos, facilitating the formation of DM cores in galaxies, and providing an explanation for the difference between observed and simulated galactic rotation curves. The analytic conclusions obtained within this approach can be confirmed by the N-body model simulation once improved spatial resolution is achieved for central halo regions.

  10. Nonlinear singular vectors and nonlinear singular values

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.

  11. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    according to the standards of the journal. The selection of papers in this issue aims to bring together recent developments and findings, even though it consists of only a fraction of the impressive developments in recent years which have affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular automata, representations of quantum groups, symmetries of difference equations, discrete geometry, among others. The special issue begins with four review papers: Integrable models in nonlinear optics and soliton solutions Degasperis [1] reviews integrable models in nonlinear optics. He presents a number of approximate models which are integrable and illustrates the links between the mathematical and applicative aspects of the theory of integrable dynamical systems. In particular he discusses the recent impact of boomeronic-type wave equations on applications arising in the context of the resonant interaction of three waves. Hamiltonian PDEs: deformations, integrability, solutions Dubrovin [2] presents classification results for systems of nonlinear Hamiltonian partial differential equations (PDEs) in one spatial dimension. In particular he uses a perturbative approach to the theory of integrability of these systems and discusses their solutions. He conjectures universality of the critical behaviour for the solutions, where the notion of universality refers to asymptotic independence of the structure of solutions (at the point of gradient catastrophe) from the choice of generic initial data as well as from the choice of a generic PDE. KP solitons in shallow water Kodama [3] presents a survey of recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. A large variety of exact soliton solutions of the KP equation are presented and classified. The study includes numerical analysis of the stability of the found solution as well as numerical simulations of the initial value problems which

  12. Migration and the Wage Curve:

    DEFF Research Database (Denmark)

    Brücker, Herbert; Jahn, Elke J.

      Based on a wage curve approach we examine the labor market effects of migration in Germany. The wage curve relies on the assumption that wages respond to a change in the unemployment rate, albeit imperfectly. This allows one to derive the wage and employment effects of migration simultaneously...

  13. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...

  14. Integrable systems and symmetric products of curves

    CERN Document Server

    Vanhaecke, P

    1994-01-01

    show how there is associated to each non-constant polynomial F(x,y) a completely integrable system with polynomial invariants on \\Rd and on \\C{2d} for each d\\geq1; in fact the invariants are not only in involution for one Poisson bracket, but for a large class of polynomial Poisson brackets, indexed by the family of polynomials in two variables. We show that the complex invariant manifolds are isomorphic to affine parts of d-fold symmetric products of a deformation of the algebraic curve F(x,y)=0, and derive the structure of the real invariant manifolds from it. We also exhibit Lax equations for the hyperelliptic case (i.e., when F(x,y) is of the form y^2+f(x)) and we show that in this case the invariant manifolds are affine parts of distinguished (non-linear) subvarieties of the Jacobians of the curves. As an application the geometry of the H\\'enon-Heiles hierarchy --- a family of superimposable integrable polynomial potentials on the plane --- is revealed and Lax equations for the hierarchy are given.

  15. NURBS curve blending using extension

    Institute of Scientific and Technical Information of China (English)

    Yong-jin LIU; Rong-qi QIU; Xiao-hui LIANG

    2009-01-01

    Curve and surface blending is an important operation in CAD systems, in which a non-uniform rational B-spline (NURBS) has been used as the de facto standard. In local comer blending, two curves intersecting at that comer are first made disjoint, and then the third blending curve is added-in to smoothly join the two curves with G1-or G2-continuity. In this paper we present a study to solve the joint problem based on curve extension. The following nice properties of this extension algorithm are exploited in depth: (1) The parameterization of the original shapes does not change; (2) No additional fragments are created.Various examples are presented to demonstrate that our solution is simple and efficient.

  16. Arrangement Computation for Planar Algebraic Curves

    CERN Document Server

    Berberich, Eric; Kobel, Alexander; Sagraloff, Michael

    2011-01-01

    We present a new certified and complete algorithm to compute arrangements of real planar algebraic curves. Our algorithm provides a geometric-topological analysis of the decomposition of the plane induced by a finite number of algebraic curves in terms of a cylindrical algebraic decomposition of the plane. Compared to previous approaches, we improve in two main aspects: Firstly, we significantly reduce the amount of exact operations, that is, our algorithms only uses resultant and gcd as purely symbolic operations. Secondly, we introduce a new hybrid method in the lifting step of our algorithm which combines the usage of a certified numerical complex root solver and information derived from the resultant computation. Additionally, we never consider any coordinate transformation and the output is also given with respect to the initial coordinate system. We implemented our algorithm as a prototypical package of the C++-library CGAL. Our implementation exploits graphics hardware to expedite the resultant and gcd...

  17. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?

    KAUST Repository

    Gadelha, H.

    2010-05-12

    Throughout biology, cells and organisms use flagella and cilia to propel fluid and achieve motility. The beating of these organelles, and the corresponding ability to sense, respond to and modulate this beat is central to many processes in health and disease. While the mechanics of flagellum-fluid interaction has been the subject of extensive mathematical studies, these models have been restricted to being geometrically linear or weakly nonlinear, despite the high curvatures observed physiologically. We study the effect of geometrical nonlinearity, focusing on the spermatozoon flagellum. For a wide range of physiologically relevant parameters, the nonlinear model predicts that flagellar compression by the internal forces initiates an effective buckling behaviour, leading to a symmetry-breaking bifurcation that causes profound and complicated changes in the waveform and swimming trajectory, as well as the breakdown of the linear theory. The emergent waveform also induces curved swimming in an otherwise symmetric system, with the swimming trajectory being sensitive to head shape-no signalling or asymmetric forces are required. We conclude that nonlinear models are essential in understanding the flagellar waveform in migratory human sperm; these models will also be invaluable in understanding motile flagella and cilia in other systems.

  18. Tracking stochastic resonance curves using an assisted reference model

    Energy Technology Data Exchange (ETDEWEB)

    Calderón Ramírez, Mario; Rico Martínez, Ramiro [Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Av. Tecnológico y A. García Cubas S/N, Celaya, Guanajuato, 38010 (Mexico); Ramírez Álvarez, Elizeth [Nonequilibrium Chemical Physics, Physik-Department, TU-München, James-Franck-Str. 1, 85748 Garching bei München (Germany); Parmananda, P. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2015-06-15

    The optimal noise amplitude for Stochastic Resonance (SR) is located employing an Artificial Neural Network (ANN) reference model with a nonlinear predictive capability. A modified Kalman Filter (KF) was coupled to this reference model in order to compensate for semi-quantitative forecast errors. Three manifestations of stochastic resonance, namely, Periodic Stochastic Resonance (PSR), Aperiodic Stochastic Resonance (ASR), and finally Coherence Resonance (CR) were considered. Using noise amplitude as the control parameter, for the case of PSR and ASR, the cross-correlation curve between the sub-threshold input signal and the system response is tracked. However, using the same parameter the Normalized Variance curve is tracked for the case of CR. The goal of the present work is to track these curves and converge to their respective extremal points. The ANN reference model strategy captures and subsequently predicts the nonlinear features of the model system while the KF compensates for the perturbations inherent to the superimposed noise. This technique, implemented in the FitzHugh-Nagumo model, enabled us to track the resonance curves and eventually locate their optimal (extremal) values. This would yield the optimal value of noise for the three manifestations of the SR phenomena.

  19. Numerical computation of fragility curves for NPP equipment

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, I., E-mail: irmela.zentner@edf.f [LaMSID, Laboratory for the Mechanics of Aging Industrial Structures, UMR EDF/CNRS, 1, av. du General de Gaulle, 92141 Clamart (France)

    2010-06-15

    The seismic probabilistic risk assessment (PRA) methodology is a popular approach for evaluating the risk of failure of engineering structures due to earthquake. In this framework, fragility curves express the conditional probability of failure of a structure or component for a given seismic input motion parameter A, such as peak ground acceleration (PGA) or spectral acceleration. The failure probability due to a seismic event is obtained by convolution of fragility curves with seismic hazard curves. In general, a log-normal model is used in order to estimate fragilities. In nuclear engineering practice, these fragilities are determined using safety factors with respect to design earthquake. This approach allows to determine fragility curves based on design study but largely draws on expert judgement and simplifying assumptions. When a more realistic assessment of seismic fragility is needed, simulation-based statistical estimation of fragility curves is more appropriate. In this paper, we will discuss statistical estimation of parameters of fragility curves and present results obtained for a reactor coolant system of nuclear power plant. We have performed non-linear dynamic response analyses using artificially generated strong motion time histories. Uncertainties due to seismic loads as well as model uncertainties are taken into account and propagated using Monte Carlo simulation.

  20. Fragility curves of concrete bridges retrofitted by column jacketing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans' bridges not retrofitted by column jacketing. In this respect, this study represents results of fragility curve development for two (2) sample bridges typical in southern California, strengthened for seismic retrofit by means of steel jacketing of bridge columns. Monte Carlo simulation is performed to study nonlinear dynamic responses of the bridges before and after column retrofit. Fragility curves in this study are represented by Iognormal distribution functions with two parameters and developed as a function of PGA. The sixty (60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agcncy (FEMA) SAC (SEAOC-ATC-CUREe) steel project are used for the dynamic analysis of the bridges.The improvement in the fiagility with steel jacketing is quantified by comparing fragility curves of the bridge before and after column retrofit. In this first attempt to formulate the problem of fragility enhancement, the quantification is made by comparing the median values of the fragility curves before and after the retrofit. Under the hypothesis that this quantification also applies to empirical fragility curves developed on the basis of Northridge earthquake damage, the enhanced version of the empirical curves is developed for the ensuing analysis to determine the enhancement of transportation network performance due to the retrofit.

  1. Fragility curves of concrete bridges retrofitted by column jacketing

    Science.gov (United States)

    Shinozuka, Masanobu; Kim, Sang-Hoon; Kushiyama, Shigeru; Yi, Jin-Hak

    2002-12-01

    The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans’ bridges not retrofitted by column jacketing. In this respect, this study represents results of fragility curve development for two (2) sample bridges typical in southern California, strengthened for seismic retrofit by means of steel jacketing of bridge columns. Monte Carlo simulation is performed to study nonlinear dynamic responses of the bridges before and after column retrofit. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. The sixty (60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agcncy (FEMA) SAC (SEAOC-ATC-CUREe) steel project are used for the dynamic analysis of the bridges. The improvement in the fragility with steel jacketing is quantified by comparing fragility curves of the bridge before and after column retrofit. In this first attempt to formulate the problem of fragility enhancement, the quantification is made by comparing the median values of the fragility curves before and after the retrofit. Under the hypothesis that this quantification also applies to empirical fragility curves developed on the basis of Northridge earthquake damage, the enhanced version of the empirical curves is developed for the ensuing analysis to determine the enhancement of transportation network performance due to the retrofit.

  2. Current-voltage curves of gold quantum point contacts revisited

    DEFF Research Database (Denmark)

    Hansen, K.; Nielsen, S K.; Brandbyge, Mads;

    2000-01-01

    We present measurements of current-voltage (I-V) curves on gold quantum point contacts (QPCs) with a conductance up to 4 G(0) (G(0) = 2e(2)/h is the conductance quantum) and voltages up to 2 V. The QPCs are formed between the gold tip of a scanning tunneling microscope and a Au(110) surface under...... clean ultra-high-vacuum conditions at room temperature. The I - V curves are found to he almost linear in contrast to previous reports. Tight-binding calculations of I - V curves for one- and two-atom contacts are in excellent agreement with our measurements. On the other hand, clearly nonlinear I - V...

  3. Gompertz - A program for evaluation and comparison of survival curves.

    Science.gov (United States)

    Klemera, P; Doubal, S

    2000-07-01

    Principles, properties and use of a program for evaluation of survival curves are described. Parameters of Gompertzian mortality curves are computed from survival data of two populations by help of nonlinear regression. The differences in parameters of both curves are evaluated statistically. This method evaluates effectively even survival data of very small populations. The results are presented in numeric, verbal and graphic forms. Finally, reading of the results is offered to distinguish changes corresponding to altered aging rate from changes caused by influences not affecting the basic mechanism of aging. Program GOMPERTZ in the form of Microsoft Excel workbook equipped with Visual Basic procedures is offered free through e-mail (klemera@faf.cuni.cz).

  4. Inner detached frequency response curves: an experimental study

    Science.gov (United States)

    Gatti, Gianluca; Brennan, Michael J.

    2017-05-01

    Certain nonlinear vibrating systems have frequency response curves (FRCs), in which isolated detached curves exist inside the main continuous FRC. The behavior of these systems has hitherto been studied analytically and numerically, but to the authors' knowledge, there is no record of an inner detached FRC being detected experimentally. These curves may be hidden by numerical or experimental analysis, particularly when a system is subject to swept or stepped-sine excitation. Their existence may thus lead to unexpected dramatic changes in the amplitude of the system response. This paper presents an experimental study that involves the design, construction and testing of a specific system that has an isolated detached FRC inside the main continuous FRC. The experimental design of the test rig is supported by multibody dynamic simulations, and in the experimental tests the existence of a detached FRC was verified.

  5. Shaping the learning curve: epigenetic dynamics in neural plasticity

    Directory of Open Access Journals (Sweden)

    Zohar Ziv Bronfman

    2014-07-01

    Full Text Available A key characteristic of learning and neural plasticity is state-dependent acquisition dynamics reflected by the non-linear learning curve that links increase in learning with practice. Here we propose that the manner by which epigenetic states of individual cells change during learning contributes to the shape of the neural and behavioral learning curve. We base our suggestion on recent studies showing that epigenetic mechanisms such as DNA methylation, histone acetylation and RNA-mediated gene regulation are intimately involved in the establishment and maintenance of long-term neural plasticity, reflecting specific learning-histories and influencing future learning. Our model, which is the first to suggest a dynamic molecular account of the shape of the learning curve, leads to several testable predictions regarding the link between epigenetic dynamics at the promoter, gene-network and neural-network levels. This perspective opens up new avenues for therapeutic interventions in neurological pathologies.

  6. The Gompertzian curve reveals fractal properties of tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Waliszewski, Przemyslaw; Konarski, Jerzy

    2003-06-01

    The normalized Gompertzian curve reflecting growth of experimental malignant tumors in time can be fitted by the power function y(t)=at{sup b} with the coefficient of nonlinear regression r{>=}0.95, in which the exponent b is a temporal fractal dimension, (i.e., a real number), and time t is a scalar. This curve is a fractal, (i.e., fractal dimension b exists, it changes along the time scale, the Gompertzian function is a contractable mapping of the Banach space R of the real numbers, holds the Banach theorem about the fix point, and its derivative is {<=}1). This denotes that not only space occupied by the interacting cancer cells, but also local, intrasystemic time, in which tumor growth occurs, possesses fractal structure. The value of the mean temporal fractal dimension decreases along the curve approaching eventually integer values; a fact consistent with our hypothesis that the fractal structure is lost during tumor progression.

  7. Nonlinear dynamics by mode superposition

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.

    1976-01-01

    A mode superposition technique for approximately solving nonlinear initial-boundary-value problems of structural dynamics is discussed, and results for examples involving large deformation are compared to those obtained with implicit direct integration methods such as the Newmark generalized acceleration and Houbolt backward-difference operators. The initial natural frequencies and mode shapes are found by inverse power iteration with the trial vectors for successively higher modes being swept by Gram-Schmidt orthonormalization at each iteration. The subsequent modal spectrum for nonlinear states is based upon the tangent stiffness of the structure and is calculated by a subspace iteration procedure that involves matrix multiplication only, using the most recently computed spectrum as an initial estimate. Then, a precise time integration algorithm that has no artificial damping or phase velocity error for linear problems is applied to the uncoupled modal equations of motion. Squared-frequency extrapolation is examined for nonlinear problems as a means by which these qualities of accuracy and precision can be maintained when the state of the system (and, thus, the modal spectrum) is changing rapidly. The results indicate that a number of important advantages accrue to nonlinear mode superposition: (a) there is no significant difference in total solution time between mode superposition and implicit direct integration analyses for problems having narrow matric half-bandwidth (in fact, as bandwidth increases, mode superposition becomes more economical), (b) solution accuracy is under better control since the analyst has ready access to modal participation factors and the ratios of time step size to modal period, and (c) physical understanding of nonlinear dynamic response is improved since the analyst is able to observe the changes in the modal spectrum as deformation proceeds.

  8. Wavenumber selection for small-wavelength Goertler vortices in curved channel flows

    Science.gov (United States)

    Dando, Andrew; Hall, Philip

    1995-04-01

    The problem of wavenumber selection for fully nonlinear, small-wavelength Goertler vortices in a curved channel flow is considered. These types of Goertler vortices were first considered by Hall & Lakin (1988) for an external boundary layer flow. They proved particularly amenable to asymptotic description, it was possible to consider vortices large enough so that the mean flow correction driven by them is as large as the basic state, and this prompted the authors to consider them in a curved channel flow as an initial application of the phase-equation approach to Goertler vortices. This involves the assumption that the phase variable of these Goertler vortices varies on slow spanwise and time scales, then an analysis of both inside and outside the core region, to which vortex activity is restricted, leads to a system of partial differential equations which can be solved numerically for the wavenumber. The authors consider in particular the effect on the wavenumber of the outer channel wall varying on the same slow spanwise scale as the phase variable.

  9. Equations of hyperelliptic Shimura curves

    CERN Document Server

    Molina, Santiago

    2010-01-01

    We describe an algorithm that computes explicit models of hyperelliptic Shimura curves attached to an indefnite quaternion algebra over Q and Atkin-Lehner quotients of them. It exploits Cerednik-Drinfeld's non-archimedean uniformisation of Shimura curves, a formula of Gross and Zagier for the endomorphism ring of Heegner points over Artinian rings and the connection between Ribet's bimodules and the specialization of Heegner points. As an application, we provide a list of equations of Shimura curves and quotients of them obtained by our algorithm that had been conjectured by Kurihara.

  10. Poiseuille flow in curved spaces

    CERN Document Server

    Debus, J -D; Succi, S; Herrmann, H J

    2015-01-01

    We investigate Poiseuille channel flow through intrinsically curved (campylotic) media, equipped with localized metric perturbations (campylons). To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the campylon parameters (amplitude, range and density). We find that the flux depends only on a specific combination of campylon parameters, which we identify as the average campylon strength, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.

  11. Properties of GH4169 Superalloy Characterized by Nonlinear Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Hongjuan Yan

    2015-01-01

    Full Text Available The nonlinear wave motion equation is solved by the perturbation method. The nonlinear ultrasonic coefficients β and δ are related to the fundamental and harmonic amplitudes. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing and bending fatigue testing of GH4169 superalloy. The results show that the curves of nonlinear ultrasonic parameters as a function of tensile stress or fatigue life are approximately saddle. There are two stages in relationship curves of relative nonlinear coefficients β′ and δ′ versus stress and fatigue life. The relative nonlinear coefficients β′ and δ′ increase with tensile stress when tensile stress is lower than 65.8% of the yield strength, and they decrease with tensile stress when tensile stress is higher than 65.8% of the yield strength. The nonlinear coefficients have the extreme values at 53.3% of fatigue life. For the second order relative nonlinear coefficient β′, there is good agreement between the experimental data and the comprehensive model. For the third order relative nonlinear coefficient δ′, however, the experiment data does not accord with the theoretical model.

  12. NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS

    Institute of Scientific and Technical Information of China (English)

    PENG SHIGE

    2005-01-01

    This paper deals with nonlinear expectations. The author obtains a nonlinear generalization of the well-known Kolmogorov's consistent theorem and then use it to construct filtration-consistent nonlinear expectations via nonlinear Markov chains. Compared to the author's previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probability measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations.The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.

  13. Design with Nonlinear Constraints

    KAUST Repository

    Tang, Chengcheng

    2015-12-10

    Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.

  14. Negative longitudinal electrostriction in polycrystalline ferroelectrics: a nonlinear approach

    Energy Technology Data Exchange (ETDEWEB)

    Turik, A V [Department of Physics, Rostov State University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Yesis, A A [Institute of Physics, Rostov State University, Stachki 194, 344090 Rostov-on-Don (Russian Federation); Reznitchenko, L A [Institute of Physics, Rostov State University, Stachki 194, 344090 Rostov-on-Don (Russian Federation)

    2006-05-24

    The longitudinal strains {xi}{sub 3} of initially unpoled polycrystalline (ceramic) ferroelectrics having different composition were measured as a function of the electric field strength E. The electric field dependences of the longitudinal piezoelectric coefficients d{sub 33}(E) and longitudinal electrostriction coefficients M{sub 33}(E) were calculated from the virgin {xi}{sub 3}(E) curves and analysed. It was shown that taking into account the polarization nonlinearity (that is, the dependence of dielectric susceptibility on E) leads to nonmonotonic field dependences d{sub 33}(E) and M{sub 33}(E). In a nonlinear system, the electrostrictive effect is due not only to polarization but also to the dependence of dielectric susceptibility on the electric field strength. The large magnitude of the dielectric susceptibility of soft and relaxor ferroelectric ceramics is responsible for the giant electrostriction being positive in low electric fields and negative in strong ones. The possibility of giant negative electrostriction existing has been found for the first time. In strong electric fields, the strain gain has a limitation because of the competition between the positive contribution of the piezoelectric effect and the negative contribution of electrostriction to the strain.

  15. Description of dose response curve

    OpenAIRE

    Al-Samarai, Firas

    2011-01-01

    The book included several methods to estimate LD50, in addition to explain how to use several programs to estimate LD50. Moreover the book illustrate the description of the dose response curves. Firas Al-Samarai

  16. Normal origamis of Mumford curves

    CERN Document Server

    Kremer, Karsten

    2010-01-01

    An origami (also known as square-tiled surface) is a Riemann surface covering a torus with at most one branch point. Lifting two generators of the fundamental group of the punctured torus decomposes the surface into finitely many unit squares. By varying the complex structure of the torus one obtains easily accessible examples of Teichm\\"uller curves in the moduli space of Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves. A p-adic origami is defined as a covering of Mumford curves with at most one branch point, where the bottom curve has genus one. A classification of all normal non-trivial p-adic origamis is presented and used to calculate some invariants. These can be used to describe p-adic origamis in terms of glueing squares.

  17. Template Reproduction of GRB Pulse Light Curves

    Science.gov (United States)

    Hakkila, Jon E.; Preece, R. D.; Loredo, T. J.; Wolpert, R. L.; Broadbent, M. E.

    2014-01-01

    A study of well-isolated pulses in gamma ray burst light curves indicates that simple models having smooth and monotonic pulse rises and decays are inadequate. Departures from the Norris et al. (2005) pulse shape are in the form of a wave-like pre-peak residual that is mirrored and stretched following the peak. Pulse shape departures are present in GRB pulses of all durations, but placement of the departures relative to pulse peaks correlates with asymmetry. This establishes an additional link between temporal structure and spectral evolution, as pulse asymmetry is related to initial hardness while pulse duration indicates the rate of hard-to-soft pulse evolution.

  18. The Bell Curve: An Essay Review

    Directory of Open Access Journals (Sweden)

    John C. Culbertson

    1995-02-01

    Full Text Available Occasionally a book out of academia will break from scholarly circles and enter into the mainstream market. On even rarer occasions, it will gain considerable notoriety before its initial publication. Richard Herrnstein and Charles Murray's The Bell Curve: Intelligence and Class Structure in American Life is such a book. Currently, it has entered the New York Times best- sellers list and appeared in most academic and mainstream periodical book reviews. Direct publicity for the book has also been strong. Although Herrnstein died September 24 of the past year, Murray has appeared on many popular television and radio talk shows.

  19. String networks as tropical curves

    CERN Document Server

    Ray, Koushik

    2008-01-01

    A prescription for obtaining supergravity solutions for planar (p,q)-string networks is presented, based on earlier results. It shows that networks may be looked upon as tropical curves emerging as the spine of the amoeba of a holomorphic curve in M-theory. The Kaehler potential of supergravity is identified with the corresponding Ronkin function. Implications of this identification in counting dyons is discussed.

  20. Growth curves for Laron syndrome.

    OpenAIRE

    Laron, Z; Lilos, P; Klinger, B.

    1993-01-01

    Growth curves for children with Laron syndrome were constructed on the basis of repeated measurements made throughout infancy, childhood, and puberty in 24 (10 boys, 14 girls) of the 41 patients with this syndrome investigated in our clinic. Growth retardation was already noted at birth, the birth length ranging from 42 to 46 cm in the 12/20 available measurements. The postnatal growth curves deviated sharply from the normal from infancy on. Both sexes showed no clear pubertal spurt. Girls co...

  1. Flow over riblet curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  2. Linear Systems on Tropical Curves

    CERN Document Server

    Haase, Christian; Yu, Josephine

    2009-01-01

    A tropical curve \\Gamma is a metric graph with possibly unbounded edges, and tropical rational functions are continuous piecewise linear functions with integer slopes. We define the complete linear system |D| of a divisor D on a tropical curve \\Gamma analogously to the classical counterpart. We investigate the structure of |D| as a cell complex and show that linear systems are quotients of tropical modules, finitely generated by vertices of the cell complex. Using a finite set of generators, |D| defines a map from \\Gamma to a tropical projective space, and the image can be extended to a tropical curve of degree equal to \\deg(D). The tropical convex hull of the image realizes the linear system |D| as a polyhedral complex. We show that curves for which the canonical divisor is not very ample are hyperelliptic. We also show that the Picard group of a \\Q-tropical curve is a direct limit of critical groups of finite graphs converging to the curve.

  3. Learning curve for radical retropubic prostatectomy

    Directory of Open Access Journals (Sweden)

    Fernando J. A. Saito

    2011-02-01

    Full Text Available PURPOSE: The learning curve is a period in which the surgical procedure is performed with difficulty and slowness, leading to a higher risk of complications and reduced effectiveness due the surgeon's inexperience. We sought to analyze the residents' learning curve for open radical prostatectomy (RP in a training program. MATERIALS AND METHODS: We conducted a prospective study from June 2006 to January 2008 in the academic environment of the University of São Paulo. Five residents operated on 184 patients during a four-month rotation in the urologic oncology division, mentored by the same physician assistants. We performed sequential analyses according to the number of surgeries, as follows: = 10, 11 to 19, 20 to 28, and = 29. RESULTS: The residents performed an average of 37 RP each. The average psa was 9.3 ng/mL and clinical stage T1c in 71% of the patients. The pathological stage was pT2 (73%, pT3 (23%, pT4 (4%, and 46% of the patients had a Gleason score 7 or higher. In all surgeries, the average operative time and estimated blood loss was 140 minutes and 488 mL. Overall, 7.2% of patients required blood transfusion, and 23% had positive surgical margins. CONCLUSION: During the initial RP learning curve, we found a significant reduction in the operative time; blood transfusion during the procedures and positive surgical margin rate were stable in our series.

  4. Shape optimization of self-avoiding curves

    Science.gov (United States)

    Walker, Shawn W.

    2016-04-01

    This paper presents a softened notion of proximity (or self-avoidance) for curves. We then derive a sensitivity result, based on shape differential calculus, for the proximity. This is combined with a gradient-based optimization approach to compute three-dimensional, parameterized curves that minimize the sum of an elastic (bending) energy and a proximity energy that maintains self-avoidance by a penalization technique. Minimizers are computed by a sequential-quadratic-programming (SQP) method where the bending energy and proximity energy are approximated by a finite element method. We then apply this method to two problems. First, we simulate adsorbed polymer strands that are constrained to be bound to a surface and be (locally) inextensible. This is a basic model of semi-flexible polymers adsorbed onto a surface (a current topic in material science). Several examples of minimizing curve shapes on a variety of surfaces are shown. An advantage of the method is that it can be much faster than using molecular dynamics for simulating polymer strands on surfaces. Second, we apply our proximity penalization to the computation of ideal knots. We present a heuristic scheme, utilizing the SQP method above, for minimizing rope-length and apply it in the case of the trefoil knot. Applications of this method could be for generating good initial guesses to a more accurate (but expensive) knot-tightening algorithm.

  5. Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...

  6. SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.

  7. Statistical methods in nonlinear dynamics

    Indian Academy of Sciences (India)

    K P N Murthy; R Harish; S V M Satyanarayana

    2005-03-01

    Sensitivity to initial conditions in nonlinear dynamical systems leads to exponential divergence of trajectories that are initially arbitrarily close, and hence to unpredictability. Statistical methods have been found to be helpful in extracting useful information about such systems. In this paper, we review briefly some statistical methods employed in the study of deterministic and stochastic dynamical systems. These include power spectral analysis and aliasing, extreme value statistics and order statistics, recurrence time statistics, the characterization of intermittency in the Sinai disorder problem, random walk analysis of diffusion in the chaotic pendulum, and long-range correlations in stochastic sequences of symbols.

  8. Curve Digitizer – A software for multiple curves digitizing

    Directory of Open Access Journals (Sweden)

    Florentin ŞPERLEA

    2010-06-01

    Full Text Available The Curve Digitizer is software that extracts data from an image file representing a graphicand returns them as pairs of numbers which can then be used for further analysis and applications.Numbers can be read on a computer screen stored in files or copied on paper. The final result is adata set that can be used with other tools such as MSEXCEL. Curve Digitizer provides a useful toolfor any researcher or engineer interested in quantifying the data displayed graphically. The image filecan be obtained by scanning a document

  9. The Mathematical Analysis for Peristaltic Flow of Hyperbolic Tangent Fluid in a Curved Channel

    Institute of Scientific and Technical Information of China (English)

    S.Nadeem; E.N.Maraj

    2013-01-01

    In the present paper,we have investigated the peristaltic flow of hyperbolic tangent fluid in a curved channel.The governing equations of hyperbolic tangent fluid model for curved channel are derived including the effects of curvature.The highly nonlinear partial differential equations are simplified by using the wave frame transformation,long wave length and low Reynolds number assumptions.The reduced nonlinear partial differential equation is solved analytically with the help of homotopy perturbation method (HPM).The physical features of pertinent parameters have been discussed by plotting the graphs of pressure rise and stream functions.

  10. The mathematical description of lactation curves in dairy cattle

    Directory of Open Access Journals (Sweden)

    Giuseppe Pulina

    2011-10-01

    Full Text Available This review gives an overview of the mathematical modelling of lactation curves in dairy cattle. Over the last ninety years, the development of this field of study has followed the main requirements of the dairy cattle industry. Non-linear parametric functions have represented the preferred tools for modelling average curves of homogeneous groups of animals, with the main aim of predicting yields for management purposes. The increased availability of records per individual lactations and the genetic evaluation based on test day records has shifted the interest of modellers towards more flexible and general linear functions, as polynomials or splines. Thus the main interest of modelling is no longer the reconstruction of the general pattern of the phenomenon but the fitting of individual deviations from an average curve. Other specific approaches based on the modelling of the correlation structure of test day records within lactation, such as mixed linear models or principal component analysis, have been used to test the statistical significance of fixed effects in dairy experiments or to create new variables expressing main lactation curve traits. The adequacy of a model is not an absolute requisite, because it has to be assessed according to the specific purpose it is used for. Occurrence of extended lactations and of new productive and functional traits to be described and the increase of records coming from automatic milking systems likely will represent some of the future challenges for the mathematical modelling of the lactation curve in dairy cattle.

  11. Non-linear Growth Models in Mplus and SAS.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam

    2009-10-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included.

  12. Elasticity in Amorphous Solids: Nonlinear or Piecewise Linear?

    Science.gov (United States)

    Dubey, Awadhesh K; Procaccia, Itamar; Shor, Carmel A B Z; Singh, Murari

    2016-02-26

    Quasistatic strain-controlled measurements of stress versus strain curves in macroscopic amorphous solids result in a nonlinear-looking curve that ends up either in mechanical collapse or in a steady state with fluctuations around a mean stress that remains constant with increasing strain. It is therefore very tempting to fit a nonlinear expansion of the stress in powers of the strain. We argue here that at low temperatures the meaning of such an expansion needs to be reconsidered. We point out the enormous difference between quenched and annealed averages of the stress versus strain curves and propose that a useful description of the mechanical response is given by a stress (or strain) -dependent shear modulus for which a theoretical evaluation exists. The elastic response is piecewise linear rather than nonlinear.

  13. Converting HAZUS capacity curves to seismic hazard-compatible building fragility functions: effect of hysteretic models

    Science.gov (United States)

    Ryu, Hyeuk; Luco, Nicolas; Baker, Jack W.; Karaca, Erdem

    2008-01-01

    A methodology was recently proposed for the development of hazard-compatible building fragility models using parameters of capacity curves and damage state thresholds from HAZUS (Karaca and Luco, 2008). In the methodology, HAZUS curvilinear capacity curves were used to define nonlinear dynamic SDOF models that were subjected to the nonlinear time history analysis instead of the capacity spectrum method. In this study, we construct a multilinear capacity curve with negative stiffness after an ultimate (capping) point for the nonlinear time history analysis, as an alternative to the curvilinear model provided in HAZUS. As an illustration, here we propose parameter values of the multilinear capacity curve for a moderate-code low-rise steel moment resisting frame building (labeled S1L in HAZUS). To determine the final parameter values, we perform nonlinear time history analyses of SDOF systems with various parameter values and investigate their effects on resulting fragility functions through sensitivity analysis. The findings improve capacity curves and thereby fragility and/or vulnerability models for generic types of structures.

  14. Effects of Tangential Edge Constraints on the Postbuckling Behavior of Flat and Curved Panels Subjected to Thermal and Mechanical Loads

    Science.gov (United States)

    Lin, W.; Librescu, L.; Nemeth, M. P.; Starnes, J. H. , Jr.

    1994-01-01

    A parametric study of the effects of tangential edge constraints on the postbuckling response of flat and shallow curved panels subjected to thermal and mechanical loads is presented. The mechanical loads investigated are uniform compressive edge loads and transverse lateral pressure. The temperature fields considered are associated with spatially nonuniform heating over the panels, and a linear through-the-thickness temperature gradient. The structural model is based on a higher-order transverse-shear-deformation theory of shallow shells that incorporates the effects of geometric nonlinearities, initial geometric imperfections, and tangential edge motion constraints. Results are presented for three-layer sandwich panels made from transversely isotropic materials. Simply supported panels are considered in which the tangential motion of the unloaded edges is either unrestrained, partially restrained, or fully restrained. These results focus on the effects of the tangential edge restraint on the postbuckling response. The results of this study indicate that tangentially restraining the edges of a curved panel can make the panel insensitive to initial geometric imperfections in some cases.

  15. Topological recursion and mirror curves

    CERN Document Server

    Bouchard, Vincent

    2012-01-01

    We study the constant contributions to the free energies obtained through the topological recursion applied to the complex curves mirror to toric Calabi-Yau threefolds. We show that the recursion reproduces precisely the corresponding Gromov-Witten invariants, which can be encoded in powers of the MacMahon function. As a result, we extend the scope of the "remodeling conjecture" to the full free energies, including the constant contributions. In the process we study how the pair of pants decomposition of the mirror curves plays an important role in the topological recursion. We also show that the free energies are not, strictly speaking, symplectic invariants, and that the recursive construction of the free energies does not commute with certain limits of mirror curves.

  16. Laffer Curves and Home Production

    Directory of Open Access Journals (Sweden)

    Kotamäki Mauri

    2017-06-01

    Full Text Available In the earlier related literature, consumption tax rate Laffer curve is found to be strictly increasing (see Trabandt and Uhlig (2011. In this paper, a general equilibrium macro model is augmented by introducing a substitute for private consumption in the form of home production. The introduction of home production brings about an additional margin of adjustment – an increase in consumption tax rate not only decreases labor supply and reduces the consumption tax base but also allows a substitution of market goods with home-produced goods. The main objective of this paper is to show that, after the introduction of home production, the consumption tax Laffer curve exhibits an inverse U-shape. Also the income tax Laffer curves are significantly altered. The result shown in this paper casts doubt on some of the earlier results in the literature.

  17. Rational points on elliptic curves

    CERN Document Server

    Silverman, Joseph H

    2015-01-01

    The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and ...

  18. Canonical curves with low apolarity

    CERN Document Server

    Ballico, Edoardo; Notari, Roberto

    2010-01-01

    Let $k$ be an algebraically closed field and let $C$ be a non--hyperelliptic smooth projective curve of genus $g$ defined over $k$. Since the canonical model of $C$ is arithmetically Gorenstein, Macaulay's theory of inverse systems allows to associate to $C$ a cubic form $f$ in the divided power $k$--algebra $R$ in $g-2$ variables. The apolarity of $C$ is the minimal number $t$ of linear form in $R$ needed to write $f$ as sum of their divided power cubes. It is easy to see that the apolarity of $C$ is at least $g-2$ and P. De Poi and F. Zucconi classified curves with apolarity $g-2$ when $k$ is the complex field. In this paper, we give a complete, characteristic free, classification of curves $C$ with apolarity $g-1$ (and $g-2$).

  19. Curved spacetimes in the lab

    CERN Document Server

    Szpak, Nikodem

    2014-01-01

    We present some new ideas on how to design analogue models of quantum fields living in curved spacetimes using ultra-cold atoms in optical lattices. We discuss various types of static and dynamical curved spacetimes achievable by simple manipulations of the optical setup. Examples presented here contain two-dimensional spaces of positive and negative curvature as well as homogeneous cosmological models and metric waves. Most of them are extendable to three spatial dimensions. We mention some interesting phenomena of quantum field theory in curved spacetimes which might be simulated in such optical lattices loaded with bosonic or fermionic ultra-cold atoms. We also argue that methods of differential geometry can be used, as an alternative mathematical approach, for dealing with realistic inhomogeneous optical lattices.

  20. The New Keynesian Phillips Curve

    DEFF Research Database (Denmark)

    Ólafsson, Tjörvi

    This paper provides a survey on the recent literature on the new Keynesian Phillips curve: the controversies surrounding its microfoundation and estimation, the approaches that have been tried to improve its empirical fit and the challenges it faces adapting to the open-economy framework. The new...... Keynesian Phillips curve has been severely criticized for poor empirical dynamics. Suggested improvements involve making some adjustments to the standard sticky price framework, e.g. introducing backwardness and real rigidities, or abandoning the sticky price model and relying on models of inattentiveness......, learning or state-dependant pricing. The introduction of openeconomy factors into the new Keynesian Phillips curve complicate matters further as it must capture the nexus between price setting, inflation and the exchange rate. This is nevertheless a crucial feature for any model to be used for inflation...

  1. Algebraic curves of maximal cyclicity

    Science.gov (United States)

    Caubergh, Magdalena; Dumortier, Freddy

    2006-01-01

    The paper deals with analytic families of planar vector fields, studying methods to detect the cyclicity of a non-isolated closed orbit, i.e. the maximum number of limit cycles that can locally bifurcate from it. It is known that this multi-parameter problem can be reduced to a single-parameter one, in the sense that there exist analytic curves in parameter space along which the maximal cyclicity can be attained. In that case one speaks about a maximal cyclicity curve (mcc) in case only the number is considered and of a maximal multiplicity curve (mmc) in case the multiplicity is also taken into account. In view of obtaining efficient algorithms for detecting the cyclicity, we investigate whether such mcc or mmc can be algebraic or even linear depending on certain general properties of the families or of their associated Bautin ideal. In any case by well chosen examples we show that prudence is appropriate.

  2. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  3. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...

  4. Noncommutative Nonlinear Supersymmetry

    CERN Document Server

    Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash

    2002-01-01

    We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).

  5. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind P. Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..

  6. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind; P.; Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..

  7. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  8. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  9. Caloric Curves and Nuclear Expansion

    CERN Document Server

    Natowitz, J B; Ma, Y; Murray, M; Qin, L; Shlomo, S; Wada, R; Wang, J

    2002-01-01

    Nuclear caloric curves have been analyzed using an expanding Fermi gas hypothesis to extract average nuclear densities. In this approach the observed flattening of the caloric curves reflects progressively increasing expansion with increasing excitation energy. This expansion results in a corresponding decrease in the density and Fermi energy of the excited system. For nuclei of medium to heavy mass apparent densities $~0.3\\rho_0$ are reached at the higher excitation energies. The average densities derived in this manner are in good agreement with those derived using other, more complicated, techniques.

  10. Curved branes with regular support

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universites, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, ITP, Bern (Switzerland); Cotsakis, Spiros; Klaoudatou, Ifigeneia [American University of the Middle East, Department of Mathematics, P. O. Box 220, Dasman (Kuwait)

    2016-09-15

    We study spacetime singularities in a general five-dimensional braneworld with curved branes satisfying four-dimensional maximal symmetry. The bulk is supported by an analog of perfect fluid with the time replaced by the extra coordinate. We show that contrary to the existence of finite-distance singularities from the brane location in any solution with flat (Minkowski) branes, in the case of curved branes there are singularity-free solutions for a range of equations of state compatible with the null energy condition. (orig.)

  11. Wave-packet dynamics in one-dimensional nonlinear Schroedinger lattices: local vs. nonlocal nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)

    2014-02-15

    We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.

  12. Maturity assessment and curve progression in girls with idiopathic scoliosis.

    Science.gov (United States)

    Sanders, James O; Browne, Richard H; McConnell, Sharon J; Margraf, Susan A; Cooney, Timothy E; Finegold, David N

    2007-01-01

    Scoliosis progression during adolescence is closely related to patient maturity. Maturity has various indicators, including chronological age, height and weight changes, and skeletal and sexual maturation. It is not certain which of these indicators correlates most strongly with scoliosis progression. The purpose of the present study was to evaluate various maturity measurements and how they relate to scoliosis progression. Physically immature girls with idiopathic scoliosis were evaluated every six months through their growth spurt with serial spinal radiographs; hand skeletal ages; Oxford pelvic scores; Risser sign determinations; height; weight; sexual staging; and serologic studies of the levels of selected growth factors, estradiol, bone-specific alkaline phosphatase, and osteocalcin. These measurements were then correlated with the curve-acceleration phase. The period and pattern of curve acceleration began during Risser stage 0 for all patients. Skeletal maturation scores derived with the use of the Tanner-Whitehouse-III RUS method, particularly those for the metacarpals and phalanges, were superior to all other indicators of maturity. Regression of the scores provided good estimates of maturity relative to the period of curve progression (Pearson r = 0.93). The initiation of this period occurred simultaneously with digital changes from Tanner-Whitehouse-III stage F to G. At this stage, curves also separated into rapid, moderate, and low-acceleration patterns, with specific curve types in the rapid and moderate-acceleration groups. The low-acceleration group was not confined to a specific curve type. The curve-acceleration phase separates curves into various types of curve progression. The Tanner-Whitehouse-III RUS scores are highly correlated with timing relative to the curve-acceleration phase and provide better maturity determination and prognosis determination during adolescence than the other parameters tested. Accurate skeletal maturity determination

  13. PBH tests for nonlinear systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit

  14. A nonlinear constitutive model for magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    Xin'en Liu; Xiaojing Zheng

    2005-01-01

    A general nonlinear constitutive model is proposed for magnetostrictive materials, based on the important physical fact that a nonlinear part of the elastic strain produced by a pre-stress is related to the magnetic domain rotation or movement and is responsible for the change of the maximum magnetostrictive strain with the pre-stress. To avoid the complicity of determining the tensor function describing the nonlinear elastic strain part, this paper proposes a simplified model by means of linearizing the nonlinear function.For the convenience of engineering applications, the expressions of the 3-D (bulk), 2-D (film) and 1-D (rod) models are, respectively, given for an isotropic material and their applicable ranges are also discussed. By comparison with the experimental data of a Terfenol-D rod, it is found that the proposed model can accurately predict the magnetostrictive strain curves in low, moderate and high magnetic field regions for various compressive pre-stress levels. The numerical simulation further illustrates that, for either magnetostrictive rods or thin films, the proposed model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves, while none of the known models can capture all of them. Therefore, the proposed model enjoys higher precision and wider applicability than the previous models, especially in the region of the high field.

  15. Collapse of solitary excitations in the nonlinear Schrödinger equation with nonlinear damping and white noise

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead in an exponenti......We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead...

  16. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  17. Interpolation and Polynomial Curve Fitting

    Science.gov (United States)

    Yang, Yajun; Gordon, Sheldon P.

    2014-01-01

    Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…

  18. Variability among polysulphone calibration curves

    Energy Technology Data Exchange (ETDEWEB)

    Casale, G R [University of Rome ' La Sapienza' , Physics Department, P.le A. Moro 2, I-00185, Rome (Italy); Borra, M [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Colosimo, A [University of Rome ' La Sapienza' , Department of Human Physiology and Pharmacology, P.le A. Moro 2, I-00185, Rome (Italy); Colucci, M [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Militello, A [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Siani, A M [University of Rome ' La Sapienza' , Physics Department, P.le A. Moro 2, I-00185, Rome (Italy); Sisto, R [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy)

    2006-09-07

    Within an epidemiological study regarding the correlation between skin pathologies and personal ultraviolet (UV) exposure due to solar radiation, 14 field campaigns using polysulphone (PS) dosemeters were carried out at three different Italian sites (urban, semi-rural and rural) in every season of the year. A polysulphone calibration curve for each field experiment was obtained by measuring the ambient UV dose under almost clear sky conditions and the corresponding change in the PS film absorbance, prior and post exposure. Ambient UV doses were measured by well-calibrated broad-band radiometers and by electronic dosemeters. The dose-response relation was represented by the typical best fit to a third-degree polynomial and it was parameterized by a coefficient multiplying a cubic polynomial function. It was observed that the fit curves differed from each other in the coefficient only. It was assessed that the multiplying coefficient was affected by the solar UV spectrum at the Earth's surface whilst the polynomial factor depended on the photoinduced reaction of the polysulphone film. The mismatch between the polysulphone spectral curve and the CIE erythemal action spectrum was responsible for the variability among polysulphone calibration curves. The variability of the coefficient was related to the total ozone amount and the solar zenith angle. A mathematical explanation of such a parameterization was also discussed.

  19. The New Keynesian Phillips Curve

    DEFF Research Database (Denmark)

    Ólafsson, Tjörvi

    , learning or state-dependant pricing. The introduction of openeconomy factors into the new Keynesian Phillips curve complicate matters further as it must capture the nexus between price setting, inflation and the exchange rate. This is nevertheless a crucial feature for any model to be used for inflation...... forecasting in a small open economy like Iceland....

  20. S-shaped learning curves

    NARCIS (Netherlands)

    Murre, J.M.J.

    2014-01-01

    In this article, learning curves for foreign vocabulary words are investigated, distinguishing between a subject-specific learning rate and a material-specific parameter that is related to the complexity of the items, such as the number of syllables. Two experiments are described, one with Turkish w

  1. The soil reference shrinkage curve

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    A recently proposed model showed how a clay shrinkage curve is transformed to the soil shrinkage curve at the soil clay content higher than a critical one. The objective of the present work was to generalize this model to the soil clay content lower a critical one. I investigated (i) the reference shrinkage curve, that is, one without cracks; (ii) the superficial layer of aggregates, with changed pore structure compared with the intraaggregate matrix; and (iii) soils with sufficiently low clay content where there are large pores inside the intraaggregate clay (so-called lacunar pores). The methodology is based on detail accounting for different contributions to the soil volume and water content during shrinkage. The key point is the calculation of the lacunar pore volume variance at shrinkage. The reference shrinkage curve is determined by eight physical soil parameters: (1) oven-dried specific volume; (2) maximum swelling water content; (3) mean solid density; (4) soil clay content; (5) oven-dried structural...

  2. Variation of curve number with storm depth

    Science.gov (United States)

    Banasik, K.; Hejduk, L.

    2012-04-01

    The NRCS Curve Number (known also as SCS-CN) method is well known as a tool in predicting flood runoff depth from small ungauged catchment. The traditional way of determination the CNs, based on soil characteristics, land use and hydrological conditions, seemed to have tendency to overpredict the floods in some cases. Over 30 year rainfall-runoff data, collected in two small (A=23.4 & 82.4 km2), lowland, agricultural catchments in Center of Poland (Banasik & Woodward 2010), were used to determine runoff Curve Number and to check a tendency of changing. The observed CN declines with increasing storm size, which according recent views of Hawkins (1993) could be classified as a standard response of watershed. The analysis concluded, that using CN value according to the procedure described in USDA-SCS Handbook one receives representative value for estimating storm runoff from high rainfall depths in the analyzes catchments. This has been confirmed by applying "asymptotic approach" for estimating the watershed curve number from the rainfall-runoff data. Furthermore, the analysis indicated that CN, estimated from mean retention parameter S of recorded events with rainfall depth higher than initial abstraction, is also approaching the theoretical CN. The observed CN, ranging from 59.8 to 97.1 and from 52.3 to 95.5, in the smaller and the larger catchment respectively, declines with increasing storm size, which has been classified as a standard response of watershed. The investigation demonstrated also changeability of the CN during a year, with much lower values during the vegetation season. Banasik K. & D.E. Woodward (2010). "Empirical determination of curve number for a small agricultural watrshed in Poland". 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1, 2010 (http://acwi.gov/sos/pubs/2ndJFIC/Contents/10E_Banasik_ 28_02_10. pdf). Hawkins R. H. (1993). "Asymptotic determination of curve numbers from data". Journal of Irrigation and Drainage

  3. Dynamic constitutive model for soils considering asymmetry of skeleton curve

    Institute of Scientific and Technical Information of China (English)

    Guoxing Chen; Hua Pan; Hui Long; Xiaojun Li

    2013-01-01

    Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils, a func-tion with double asymptotes is proposed for describing the dynamic constitutive relations of soils. The hysteresis loops observed during unloading and reloading show the same form as the skeleton curve and are constructed by taking the ultimate stress as the corresponding asymptote. The coefficient of initial unloading modulus is used to ensure that the constructed hysteresis loop fits well with the experimental data. Then, a new dynamic constitutive model considering the asymmetry of skeleton curve is elaborated. The verification tests on saturated Nanjing fine sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model. It is found that the predicted curves by the UD model agree well with the test data.

  4. A visual basic spreadsheet macro for recession curve analysis.

    Science.gov (United States)

    Posavec, Kristijan; Bacani, Andrea; Nakić, Zoran

    2006-01-01

    A Visual Basic program for an Excel spreadsheet was written to construct a master recession curve (MRC), using the adapted matching strip method, for recession analysis of ground water level time series. The program uses five different linear/nonlinear regression models to adjust individual recession segments to their proper positions in the MRC. The program can also be used to analyze the recession segments of other time series, such as daily stream discharge or stage. Some examples of field data from Croatia are used to illustrate the usefulness of its application.

  5. Optimal Aging and Death: Understanding the Preston Curve

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Strulik, Holger

    2014-01-01

    Does prosperity lead to greater longevity? If so, what is the strength of the income channel? To address these questions we develop a life cycle model in which households are subject to physiological aging. In modeling aging we draw on recent research in the fields of biology and medicine. The sp....... The speed of the aging process, and thus the age of death, are endogenously determined by optimal health investments. A calibrated version of the model accounts well for the observed nonlinear cross-country link between longevity and income, also known as the Preston curve...

  6. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei

    2001-11-01

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).

  7. Bayesian modeling growth curves for quail assuming skewness in errors

    Directory of Open Access Journals (Sweden)

    Robson Marcelo Rossi

    2014-06-01

    Full Text Available Bayesian modeling growth curves for quail assuming skewness in errors - To assume normal distributions in the data analysis is common in different areas of the knowledge. However we can make use of the other distributions that are capable to model the skewness parameter in the situations that is needed to model data with tails heavier than the normal. This article intend to present alternatives to the assumption of the normality in the errors, adding asymmetric distributions. A Bayesian approach is proposed to fit nonlinear models when the errors are not normal, thus, the distributions t, skew-normal and skew-t are adopted. The methodology is intended to apply to different growth curves to the quail body weights. It was found that the Gompertz model assuming skew-normal errors and skew-t errors, respectively for male and female, were the best fitted to the data.

  8. Mediation Analysis in a Latent Growth Curve Modeling Framework

    Science.gov (United States)

    von Soest, Tilmann; Hagtvet, Knut A.

    2011-01-01

    This article presents several longitudinal mediation models in the framework of latent growth curve modeling and provides a detailed account of how such models can be constructed. Logical and statistical challenges that might arise when such analyses are conducted are also discussed. Specifically, we discuss how the initial status (intercept) and…

  9. Generation of Closed Timelike Curves with Rotating Superconductors

    CERN Document Server

    De Matos, C J

    2006-01-01

    The spacetime metric around a rotating SuperConductive Ring (SCR) is deduced from the gravitomagnetic London moment in rotating superconductors. It is shown that Closed Timelike Curves (CTC) are present inside the superconductive ring's hole. The possibility to use these CTC's to travel in time as initially idealized by G\\"{o}del is investigated.

  10. A flexible mold for double curved precast concrete elements

    NARCIS (Netherlands)

    Schipper, H.R.; Vambersky, J.N.J.A.

    2010-01-01

    The manufacturing of double curved precast concrete elements is still expensive, due to the high costs and limited possibilities for repetitive use of the molds or formwork. The goal of a PhD project recently initiated at TU Delft is to develop a production method that overcomes these difficulties b

  11. Nonlinear modeling of thermoacoustically driven energy cascade

    Science.gov (United States)

    Gupta, Prateek; Scalo, Carlo; Lodato, Guido

    2016-11-01

    We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.

  12. Weakly nonlinear stability of ultra-thin slipping films

    Institute of Scientific and Technical Information of China (English)

    HU Guohui

    2005-01-01

    A weakly nonlinear theory is presented to study the effects of slippage on the stability of the ultra-thin polymer films.The nonlinear mathematical model is constructed for perturbations of small finite amplitude based on hydrodynamic equations with the long wave approximation. Results reveal that the nonlinearity always accelerates the rupture of the films. The influences of the slip length, film thickness, and initial amplitude of perturbations on the rupture of the films are investigated.

  13. A catalog of special plane curves

    CERN Document Server

    Lawrence, J Dennis

    2014-01-01

    Among the largest, finest collections available-illustrated not only once for each curve, but also for various values of any parameters present. Covers general properties of curves and types of derived curves. Curves illustrated by a CalComp digital incremental plotter. 12 illustrations.

  14. Dynamics of Nonlinear Waves on Bounded Domains

    CERN Document Server

    Maliborski, Maciej

    2016-01-01

    This thesis is concerned with dynamics of conservative nonlinear waves on bounded domains. In general, there are two scenarios of evolution. Either the solution behaves in an oscillatory, quasiperiodic manner or the nonlinear effects cause the energy to concentrate on smaller scales leading to a turbulent behaviour. Which of these two possibilities occurs depends on a model and the initial conditions. In the quasiperiodic scenario there exist very special time-periodic solutions. They result for a delicate balance between dispersion and nonlinear interaction. The main body of this dissertation is concerned with construction (by means of perturbative and numerical methods) of time-periodic solutions for various nonlinear wave equations on bounded domains. While turbulence is mainly associated with hydrodynamics, recent research in General Relativity has also revealed turbulent phenomena. Numerical studies of a self-gravitating massless scalar field in spherical symmetry gave evidence that anti-de Sitter space ...

  15. On a Nonlinear Model in Adiabatic Evolutions

    Science.gov (United States)

    Sun, Jie; Lu, Song-Feng

    2016-08-01

    In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041

  16. Reliability-based design optimization for nonlinear energy harvesters

    Science.gov (United States)

    Seong, Sumin; Lee, Soobum; Hu, Chao

    2015-03-01

    The power output of a vibration energy harvesting device is highly sensitive to uncertainties in materials, manufacturing, and operating conditions. Although the use of a nonlinear spring (e.g., snap-through mechanism) in energy harvesting device has been reported to reduce the sensitivity of power output with respect to the excitation frequency, the nonlinear spring characteristic remains significantly sensitive and it causes unreliable power generation. In this paper, we present a reliability-based design optimization (RBDO) study of vibration energy harvesters. For a nonlinear harvester, a purely mechanical nonlinear spring design implemented in the middle of cantilever beam harvester is considered in the study. This design has the curved section in the center of beam that causes bi-stable configuration. When vibrating, the inertia of the tip mass activates the curved shell to cause snap-through buckling and make the nature of vibration nonlinear. In this paper, deterministic optimization (DO) is performed to obtain deterministic optimum of linear and nonlinear energy harvester configuration. As a result of the deterministic optimization, an optimum bi-stable vibration configuration of nonlinear harvester can be obtained for reliable power generation despite uncertainty on input vibration condition. For the linear harvester, RBDO is additionally performed to find the optimum design that satisfies a target reliability on power generation, while accounting for uncertainty in material properties and geometric parameters.

  17. Principal Curves on Riemannian Manifolds

    DEFF Research Database (Denmark)

    Hauberg, Søren

    2015-01-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only...... in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimize a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend...... from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls...

  18. Invariance for Single Curved Manifold

    KAUST Repository

    Castro, Pedro Machado Manhaes de

    2012-08-01

    Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.

  19. Optical conductivity of curved graphene.

    Science.gov (United States)

    Chaves, A J; Frederico, T; Oliveira, O; de Paula, W; Santos, M C

    2014-05-07

    We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far- and mid-infrared frequencies for periodicities ∼100 nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthermore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.

  20. Supersymmetric Spacetimes from Curved Superspace

    CERN Document Server

    Kuzenko, Sergei M

    2015-01-01

    We review the superspace technique to determine supersymmetric spacetimes in the framework of off-shell formulations for supergravity in diverse dimensions using the case of 3D N=2 supergravity theories as an illustrative example. This geometric formalism has several advantages over other approaches advocated in the last four years. Firstly, the infinitesimal isometry transformations of a given curved superspace form, by construction, a finite-dimensional Lie superalgebra, with its odd part corresponding to the rigid supersymmetry transformations. Secondly, the generalised Killing spinor equation, which must be obeyed by the supersymmetry parameters, is a consequence of the more fundamental superfield Killing equation. Thirdly, general rigid supersymmetric theories on a curved spacetime are readily constructed in superspace by making use of the known off-shell supergravity-matter couplings and restricting them to the background chosen. It is the superspace techniques which make it possible to generate arbitra...

  1. Curved canals: Ancestral files revisited

    Directory of Open Access Journals (Sweden)

    Jain Nidhi

    2008-01-01

    Full Text Available The aim of this article is to provide an insight into different techniques of cleaning and shaping of curved root canals with hand instruments. Although a plethora of root canal instruments like ProFile, ProTaper, LightSpeed ® etc dominate the current scenario, the inexpensive conventional root canal hand files such as K-files and flexible files can be used to get optimum results when handled meticulously. Special emphasis has been put on the modifications in biomechanical canal preparation in a variety of curved canal cases. This article compiles a series of clinical cases of root canals with curvatures in the middle and apical third and with S-shaped curvatures that were successfully completed by employing only conventional root canal hand instruments.

  2. A Study of Hyperelliptic Curves in Cryptography

    Directory of Open Access Journals (Sweden)

    Reza Alimoradi

    2016-08-01

    Full Text Available Elliptic curves are some specific type of curves known as hyper elliptic curves. Compared to the integer factorization problem(IFP based systems, using elliptic curve based cryptography will significantly decrease key size of the encryption. Therefore, application of this type of cryptography in systems that need high security and smaller key size has found great attention. Hyperelliptic curves help to make key length shorter. Many investigations are done with regard to improving computations, hardware and software implementation of these curves, their security and resistance against attacks. This paper studies and analyzes researches done about security and efficiency of hyperelliptic curves.

  3. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  4. Elastic Curves on the Sphere

    Science.gov (United States)

    1992-12-16

    12 = (K,, + )- (29) K 2 (see [3]). The parameter KM represents the amplitude of the periodic curva - ture function and sm denotes the value at which K...Additamentum De curvis elasticis. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Ser. 1., Vol. 24, Lausanne 1744. 17 [10...Mathematical Theory of Elasticity. 4th. ed., Cambridge University Press, 1927. [12] G. Nielson. Bernstein/ Bezier Curves and Splines on Spheres based upon

  5. Accelerating Around an Unbanked Curve

    Science.gov (United States)

    Mungan, Carl E.

    2006-02-01

    The December 2004 issue of TPT presented a problem concerning how a car should accelerate around an unbanked curve of constant radius r starting from rest if it is to avoid skidding. Interestingly enough, two solutions were proffered by readers.2 The purpose of this note is to compare and contrast the two approaches. Further experimental investigation of various turning strategies using a remote-controlled car and overhead video analysis could make for an interesting student project.

  6. Identification of Nonlinearities in Joints of a Wing Structure

    Directory of Open Access Journals (Sweden)

    Sani M.S.M.

    2016-01-01

    Full Text Available Nonlinear structural identification is essential in engineering. As new materials are being used andstructures become slender and lighter, nonlinear behaviour of structures becomes more important. There have been many studies into the development and application of system identification methods for structural nonlinearity based on changes in natural frequencies, mode shapes and damping ratios. A great challenge is to identify nonlinearity in large structural systems. Much work has been undertaken in the development of nonlinear system identification methods (e.g. Hilbert Transform, NARMAX, and Proper Orthogonal Decomposition, however, it is arguable that most of these methods are cumbersome when applied to realistic large structures that contain mostly linear modes with some local nonlinearity (e.g. aircraft engine pylon attachment to a wing. In this paper, a multi-shaker force appropriation method is developed to determine the underlying linear and nonlinear structural properties through the use of the measurement and generation of restoring force surfaces. One undamped mode is excited in each multi-shaker test. Essentially, this technique is a derivative of the restoring surface method and involves a non-linear curve fitting performed in modal space. A reduced finite element model is established and its effectiveness in revealing the nonlinear characteristics of the system is discussed. The method is demonstrated through both numerical simulations and experiments on a simple jointed laboratory structure with seeded faults, which represents an engine pylon structure that consists of a rectangular wing with two stores suspended underneath.

  7. Higher Toda Mechanics and Spectral Curves

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liu; LIU Wang-Yun

    2004-01-01

    For each of the Lie algebras gln and gl~n., we construct a family of integrable generalizations of the Toda chains characterized by two integers m+ and m-. The Lax matrices and the equations of motion are given explicitly, and the integrals of motion can be calculated in terms of the trace of powers of the Lax matrix L. For the case of m+ = m-,we find a symmetric reduction for each generalized Toda chain we found, and the solution to the initial value problems of the reduced systems is outlined. We also studied the spectral curves of the periodic (m+,m-)-Toda chains, which turns out to be very different for different pairs of m+ and m-. Finally we also obtain thenonabelian generalizations of the (m+, m-)-Toda chains in an explicit form.

  8. Higher Toda Mechanics and Spectral Curves

    Institute of Scientific and Technical Information of China (English)

    ZHAOLiu; LIUWang-Yun

    2004-01-01

    For each of the Lie algebras gln and g~ln we construct a family of integrable generalizations of the Toda chains characterized by two integers m+ and m_. The Lax matrices and the equations of motion are given explicitly, and the integrals of motion can be calculated in terms of the trace of powers of the Lax matrix L. For the case of m+=m_,we find a symmetric reduction for each generalized Toda chain we found, and the solution to the initial value problems of the reduced systems is outlined. We also studied the spectral curves of the periodic (m+,m_)-Toda chains, which turns out to be very different for different pairs of m+ and m_. Finally we also obtain the nonabelian generalizations of the (m+,m_)-Toda chains in an explicit form.

  9. On the Cauchy problem for a doubly nonlinear degenerate parabolic equation with strongly nonlinear sources

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f|||h and h, we give the suffcient and necessary conditions on the initial value to the existence of local solution of doubly nonlinear equation. Moreover some results on the global existence and nonexistence of solutions are considered.

  10. Macdonald formula for curves with planar singularities

    CERN Document Server

    Maulik, Davesh

    2011-01-01

    We generalize Macdonald's formula for the cohomology of Hilbert schemes of points on a curve from smooth curves to curves with planar singularities: we relate the cohomology of the Hilbert schemes to the cohomology of the compactified Jacobian of the curve. The new formula is a consequence of a stronger identity between certain perverse sheaves defined by a family of curves satisfying mild conditions, whose proof makes an essential use of Ng\\^o's support theorem for compactified Jacobians.

  11. Analysis of driver's characteristics on a curved road in a lattice model

    Science.gov (United States)

    Kaur, Ramanpreet; Sharma, Sapna

    2017-04-01

    The present paper investigates the effect of driver's behavior on the curved road via lattice hydrodynamic approach. The basic model for straight road is extended for the curved road and the characteristics of driver's behavior is incorporated in the lattice model. The extended model is investigated theoretically by the means of linear stability analysis and the effect of curved road and intensity of influence of driver's behavior on the traffic flow stability is examined. Through nonlinear stability analysis, the modified Korteweg-de Vries (MKdV) equation near the critical point is derived to describe the evolution properties of traffic density waves by applying the reductive perturbation method. Furthermore, the numerical simulation is carried out to validate the theoretical results which indicates that the curved road has a negative influence on the stability of the traffic flow. It is also seen that the traffic jam on a curved road can be suppressed efficiently via taking into account aggressive drivers.

  12. On nonlocal characteristics of curved inhomogeneous Euler-Bernoulli nanobeams under different temperature distributions

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this paper, thermo-mechanical buckling analysis of curved functionally graded (FG) nanobeams is carried out via an analytical solution method. Curved FG nanobeam is subjected to uniform, linear and nonlinear temperature distributions across the thickness. Three kinds of boundary condition namely, simply supported-simply supported, simply supported-clamped and clamped-clamped are investigated. Thermo-elastic properties of curved FG beam change in radial direction according to the power-law model. Nonlocal elasticity theory is adopted to capture the size effects. Nonlocal governing equations of curved FG nanobeam are obtained from Hamilton's principle based on Euler-Bernoulli beam model. Finally, the influences of thermal loadings, nonlocal parameter, opening angle, material composition, slenderness ratio and boundary conditions on the thermal buckling behavior of nanosize curved FG beams are explored.

  13. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  14. Nonlinear Cross Gramians

    Science.gov (United States)

    Ionescu, Tudor C.; Scherpen, Jacquelien M. A.

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.

  15. Nonlinear functional analysis

    Directory of Open Access Journals (Sweden)

    W. L. Fouché

    1983-03-01

    Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.

  16. Nonlinear Electrodynamics and QED

    OpenAIRE

    2003-01-01

    The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...

  17. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    J Banerji

    2001-02-01

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.

  18. Global Well-Posedness for Cubic NLS with Nonlinear Damping

    KAUST Repository

    Antonelli, Paolo

    2010-11-04

    We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.

  19. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  20. Nonlinear magnetic metamaterials.

    Science.gov (United States)

    Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S

    2008-12-08

    We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America

  1. Organic nonlinear optical materials

    Science.gov (United States)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  2. Nonlinearity-reduced interferometer

    Science.gov (United States)

    Wu, Chien-ming

    2007-12-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.

  3. Next generation seismic fragility curves for California bridges incorporating the evolution in seismic design philosophy

    Science.gov (United States)

    Ramanathan, Karthik Narayan

    Quantitative and qualitative assessment of the seismic risk to highway bridges is crucial in pre-earthquake planning, and post-earthquake response of transportation systems. Such assessments provide valuable knowledge about a number of principal effects of earthquakes such as traffic disruption of the overall highway system, impact on the regions’ economy and post-earthquake response and recovery, and more recently serve as measures to quantify resilience. Unlike previous work, this study captures unique bridge design attributes specific to California bridge classes along with their evolution over three significant design eras, separated by the historic 1971 San Fernando and 1989 Loma Prieta earthquakes (these events affected changes in bridge seismic design philosophy). This research developed next-generation fragility curves for four multispan concrete bridge classes by synthesizing new knowledge and emerging modeling capabilities, and by closely coordinating new and ongoing national research initiatives with expertise from bridge designers. A multi-phase framework was developed for generating fragility curves, which provides decision makers with essential tools for emergency response, design, planning, policy support, and maximizing investments in bridge retrofit. This framework encompasses generational changes in bridge design and construction details. Parameterized high-fidelity three-dimensional nonlinear analytical models are developed for the portfolios of bridge classes within different design eras. These models incorporate a wide range of geometric and material uncertainties, and their responses are characterized under seismic loadings. Fragility curves were then developed considering the vulnerability of multiple components and thereby help to quantify the performance of highway bridge networks and to study the impact of seismic design principles on the performance within a bridge class. This not only leads to the development of fragility relations

  4. Multivariate curve resolution-alternating least squares and kinetic modeling applied to near-infrared data from curing reactions of epoxy resins: mechanistic approach and estimation of kinetic rate constants.

    Science.gov (United States)

    Garrido, M; Larrechi, M S; Rius, F X

    2006-02-01

    This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.

  5. Exact Coupling Of Event Horizons In Curved Spacetime Heterostructures. Application To Black-Hole Physics

    CERN Document Server

    Michael, Fredrick

    2010-01-01

    Recently we have discussed the generalized parametrized Klein-Gordon equation for curved spacetime. We have also discussed its derivation from several approaches, the direct Feynman parametrization, the state function entropy or equivalently the information theory approach, and the stochastic differential equation approach. We have even suggested a generalization of the statistics of the entropy to the generalized entropies and derived the particular nonextensive statistics parametrized Klein-Gordon equation, and discussed its nonlinear FPE replacement of the complicated Gibbs-Boltzmann statistics entropy derived analog with complicated nonlinear potential or drift and diffusion coefficients. In this article we apply these previously derived results to the quantum transport in abruptly coupled curved space-time heterostructures, applied here specifically to Black-Hole event horizon coupling to normal curved space-time. We derive the coupling self energy, and the Garcia-Molliner surface Green's functions from ...

  6. Analytical reliability analysis of soil-water characteristic curve

    Directory of Open Access Journals (Sweden)

    Johari A.

    2016-01-01

    Full Text Available The Soil Water Characteristic Curve (SWCC, also known as the soil water-retention curve, is an important part of any constitutive relationship for unsaturated soils. Deterministic assessment of SWCC has received considerable attention in the past few years. However the uncertainties of the parameters which affect SWCC dictate that the problem is of a probabilistic nature rather than being deterministic. In this research, a Gene Expression Programming (GEP-based SWCC model is employed to assess the reliability of SWCC. For this purpose, the Jointly Distributed Random Variables (JDRV method is used as an analytical method for reliability analysis. All input parameters of the model which are initial void ratio, initial water content, silt and clay contents are set to be stochastic and modelled using truncated normal probability density functions. The results are compared with those of the Monte Carlo (MC simulation. It is shown that the initial water content is the most effective parameter in SWCC.

  7. Effects of Elastic Edge Restraints and Initial Prestress on the Buckling Response of Compression-Loaded Composite Panels

    Science.gov (United States)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2004-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should also be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  8. Iterative initial condition reconstruction

    Science.gov (United States)

    Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias

    2017-07-01

    Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.

  9. ESTIMATING ERROR BOUNDS FOR TERNARY SUBDIVISION CURVES/SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ghulam Mustafa; Jiansong Deng

    2007-01-01

    We estimate error bounds between ternary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that depend on the subdivision mask. The bound is independent of the process of subdivision and can be evaluated without recursive subdivision.Our technique is independent of parametrization therefore it can be easily and efficiently implemented. This is useful and important for pre-computing the error bounds of subdivision curves/surfaces in advance in many engineering applications such as surface/surface intersection, mesh generation, NC machining, surface rendering and so on.

  10. PROFILE TOLERANCE EVALUATION OF PARAMETRIC CURVES AND SURFACES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The profile error evaluation of complex curves and surfaces expressed in parametric form is considered. The linear error model is established on the base of two hypotheses firstly. Then the profile error evaluation is converted into one of these optimal formulations:MINIMAX, MAXMIN and MINIDEX problems, which are easier to be solved than the initial form. To each one of them, geometric condition and algebraic condition are presented to arbitrate whether the ideal element reaches to the optimal position. Exchange algorithm is proven highly effective in searching for solutions to these optimization problems. At last some key problems in tolerance evaluation of freeform surfaces and curves in B spline method are discussed.

  11. Bolometric Light Curves of Peculiar Type II-P Supernovae

    Science.gov (United States)

    Lusk, Jeremy A.; Baron, E.

    2017-04-01

    We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ∼5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.

  12. Peristaltic motion of third grade fluid in curved channel

    Institute of Scientific and Technical Information of China (English)

    S.HINA; M.MUSTAFA; T.HAYAT; F.E.ALSAADI

    2014-01-01

    Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.

  13. LINS Curve in Romanian Economy

    Directory of Open Access Journals (Sweden)

    Emilian Dobrescu

    2016-02-01

    Full Text Available The paper presents theoretical considerations and empirical evidence to test the validity of the Laffer in Narrower Sense (LINS curve as a parabola with a maximum. Attention is focused on the so-called legal-effective tax gap (letg. The econometric application is based on statistical data (1990-2013 for Romania as an emerging European economy. Three cointegrating regressions (fully modified least squares, canonical cointegrating regression and dynamic least squares and three algorithms, which are based on instrumental variables (two-stage least squares, generalized method of moments, and limited information maximum likelihood, are involved.

  14. Principal -bundles on Nodal Curves

    Indian Academy of Sciences (India)

    Usha N Bhosle

    2001-08-01

    Let be a connected semisimple affine algebraic group defined over . We study the relation between stable, semistable -bundles on a nodal curve and representations of the fundamental group of . This study is done by extending the notion of (generalized) parabolic vector bundles to principal -bundles on the desingularization of and using the correspondence between them and principal -bundles on . We give an isomorphism of the stack of generalized parabolic bundles on with a quotient stack associated to loop groups. We show that if is simple and simply connected then the Picard group of the stack of principal -bundles on is isomorphic to ⊕ , being the number of components of .

  15. Sound propagation over curved barriers

    Science.gov (United States)

    Pierce, Allan D.; Main, Geoffrey L.; Kearns, James A.; Hsieh, H.-A.

    1986-01-01

    Wide barriers with curved tops are studied with emphasis placed on circumstances whereby the local radius of curvature R of the barrier is continuous along the surface and is large compared to a wavelength. Results analogous to those given by Hayek et al. (1978) are reviewed and extended to cases where the radius of curvature and the surface impedance may vary with position. Circumstances not easily interpreted within the framework of the model proposed by Keller (1956) and Hayek et al. are also considered.

  16. Reconfigurable Double-Curved Mould

    DEFF Research Database (Denmark)

    Raun, Christian; Kirkegaard, Poul Henning

    2012-01-01

    . This happens fast, automatic and without production of waste, and the manipulated surface is fair and robust, eliminating the need for additional, manual treatment. Limitations to the possibilities of the flexible form are limited curvature and limited level of detail, making it especially suited for larger......, double curved surfaces like facades or walls, where the curvature of each element is relatively small in comparison to the overall shape. In the proposed dynamic mould system, where only a set of points is defined, a stiff membrane interpolates the surface between points. To function as a surface...

  17. Membranes Wrapped on Holomorphic Curves

    CERN Document Server

    Gauntlett, J P; Pakis, S; Waldram, D; Gauntlett, Jerome P.; Kim, Nakwoo; Pakis, Stathis; Waldram, Daniel

    2002-01-01

    We construct supergravity solutions dual to the twisted field theories arising when M-theory membranes wrap holomorphic curves in Calabi-Yau n-folds. The solutions are constructed in an Abelian truncation of maximal D=4 gauged supergravity and then uplifted to D=11. For four-folds and five-folds we find new smooth AdS/CFT examples and for all cases we analyse the nature of the singularities that arise. Our results provide an interpretation of certain charged topological AdS black holes. We also present the generalised calibration two-forms for the solutions.

  18. STUDIES ON NONLINEAR STABILITY OF THREE-DIMENSIONAL H-TYPE DISTURBANCE

    Institute of Scientific and Technical Information of China (English)

    王伟志; 唐登斌

    2003-01-01

    The three-dimensional H-type nonlinear evolution process for the problem of boundary layer stability is studied by using a newly developed method called parabolic stability equations (PSE).The key initial conditions for sub-harmonic disturbances are obtained by means of the secondary instability theory. The initial solutions of two-dimensional harmonic waves are expressed in Landau expansions. The numerical techniques developed in this paper, including the higher order spectrum method and the more effective algebraic mapping for dealing with the problem of an infinite region,increase the numerical accuracy and the rate of convergence greatly. With the predictor-corrector approach in the marching procedure, the normalization, which is very important for PSE method, is satisfied and the stability of the numerical calculation can be assured. The effects of different pressure gradients, including the favorable and adverse pressure gradients of the basic flow, on the "H-type"evolution are studied in detail. The results of the three-dimensional nonlinear "H-type" evolution are given accurately and show good agreement with the data of the experiment and the results of the DNS from the curves of the amplitude variation, disturbance velocity profile and the evolution of velocity.

  19. Nonlinear dynamics of a sliding beam on two supports under sinusoidal excitation

    Indian Academy of Sciences (India)

    R J Somnay; R A Ibrahim

    2006-08-01

    This study deals with the nonlinear dynamics associated with large deformation of a beam sliding on two-knife edge supports under external excitation. The beam is referred to as a Gospodnetic–Frisch-Fay beam, after the researchers who reported its static deformation in closed form. The freedom of the beam to slide on its supports imparts a nonlinear characteristic to the force-deflection response. The restoring elastic force of the beam possesses characteristics similar to those of the roll-restoring moment of ships. The Gospodnetic–Frisch-Fay exact solution is given in terms of elliptic functions. A curve fit of the exact solution up to eleventh-order is constructed to establish the governing equation of motion under external excitation. The dynamic stability of the unperturbed beam is examined for the damped and undamped cases. The undamped case reveals periodic orbits and one homoclinic orbit depending on the value of the initial conditions. The response to a sinusoidal excitation at a frequency below the linear natural frequency is numerically estimated for different excitation amplitude and different values of initial conditions covered by the area of the homoclinic orbit. The safe basins of attraction are plotted for different values of excitation amplitude. It is found that the safe region of operation is reduced as the excitation amplitude increases.

  20. GLOBAL ATTRACTOR FOR THE NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES

    Institute of Scientific and Technical Information of China (English)

    戴正德; 杜先云

    2001-01-01

    In this paper the authors consider the initial boundary value problems of the generalized nonlinear strain waves in elastic waveguides and prove the existence of global attractors and thefiniteness of the Hausdorff and the fractal dimensions of the attractors.

  1. NONLINEAR SINGULARLY PERTURBED PREDATOR-PREY REACTION DIFFUSION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    MoJiaqi; TangRongrong

    2004-01-01

    A class of nonlinear predator-prey reaction diffusion systems for singularly perturbedproblems are considered. Under suitable conditions, by using theory of differential inequalitiesthe existence and asymptotic behavior of solution for initial boundary value problems arestudied.

  2. Nonlinear damped Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Tarek Saanouni

    2015-04-01

    Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.

  3. Differential geometry and topology of curves

    CERN Document Server

    Animov, Yu

    2001-01-01

    Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.

  4. Smarandache Curves in Minkowski Space-time

    OpenAIRE

    Turgut, Melih; Yilmaz, Suha

    2008-01-01

    A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache Curve. In this paper, we define a special case of such curves and call it Smarandache TB2 Curves in the space E41. Moreover, we compute formulas of its Frenet apparatus according to base curve via the method expressed in [3]. By this way, we obtain an another orthonormal frame of E41.

  5. Avaliação de modelos não-lineares e da relação do consumo voluntário de vacas primíparas e de bezerros com a curva de lactação de vacas Nelore Evaluation of non-linear models and the effects of primiparous cows and calves intake on the lactation curve of Nelore cows

    Directory of Open Access Journals (Sweden)

    Lara Toledo Henriques

    2011-06-01

    Full Text Available Procurou-se avaliar a precisão de cinco modelos não-lineares em descrever a forma da curva de produção de leite de vacas Nelore e o efeito do consumo voluntário (CV da vaca e do bezerro sobre a produção de leite (PL. Foram testados os modelos de Sikka, Nelder, Wood, Jenkins & Ferrell, e Jenkins & Ferrell com um parâmetro de ajustamento. Foram utilizadas 12 vacas primíparas com peso corporal médio de 359 kg (± 8 e seus respectivos bezerros. A produção de leite foi estimada pela pesagem do bezerro antes e após a mamada, do nascimento aos 180 dias de idade. As pesagens foram efetuadas duas vezes ao dia, semanalmente, após 6 horas de jejum de líquido e sólidos. Os modelos não-lineares de Sikka, Jenkins & Ferrell, Nelder e Wood não descreveram a curva de lactação apropriada devido ao excesso ou subestimação d o pico da produção de leite. O melhor ajustamento foi encontrado para o modelo de Jenkins & Ferrell com um parâmetro de ajustamento. O efeito do consumo voluntário da vaca e do bezerro, avaliado separadamente, não se correlacionou com a produção de leite. Entretanto, ao avaliar o consumo da vaca e do bezerro conjuntamente, foi encontrada uma correlação positiva e negativa com a produção de leite, respectivamente. A produção de leite está intimamente correlacionada com o consumo da vaca e do bezerro, e a capacidade de ingerir sólidos não lácteos reulta na redução da necessidade de leite da mãe.This research was carried out to evaluate five non-linear mathematical models to describe lactation curves of Nelore cows and effect of the cow and calf intake on milk yield. In this study we compared the models of Sikka (1950, Nelder (1966, Wood (1967, Jenkins & Ferrell (1984 and Jenkins & Ferrell (1984 with a fit parameter. Data of production were collected from 12 primiparous cows with a mean live weight of 359 kg (± 8 and its offspring. The milk production was estimated weighing the calf before and after

  6. Nonlinear calculating method of pile settlement

    Institute of Scientific and Technical Information of China (English)

    贺炜; 王桂尧; 王泓华

    2008-01-01

    To study calculating method of settlement on top of extra-long large-diameter pile, the relevant research results were summarized. The hyperbola model, a nonlinear load transfer function, was introduced to establish the basic differential equation with load transfer method. Assumed that the displacement of pile shaft was the high order power series of buried depth, through merging the same orthometric items and arranging the relevant coefficients, the solution which could take the nonlinear pile-soil interaction and stratum properties of soil into account was solved by power series. On the basis of the solution, by determining the load transfer depth with criterion of settlement on pile tip, the method by making boundary conditions compatible was advised to solve the load-settlement curve of pile. The relevant flow chart and mathematic expressions of boundary conditions were also listed. Lastly, the load transfer methods based on both two-broken-line model and hyperbola model were applied to analyzing a real project. The related coefficients of fitting curves by hyperbola were not less than 0.96, which shows that the hyperbola model is truthfulness, and is propitious to avoid personal error. The calculating value of load-settlement curve agrees well with the measured one, which indicates that it can be applied in engineering practice and making the theory that limits the design bearing capacity by settlement on pile top comes true.

  7. Lasers for nonlinear microscopy.

    Science.gov (United States)

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  8. Nonlinear optical materials.

    Science.gov (United States)

    Eaton, D F

    1991-07-19

    The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.

  9. Estimating nonlinear models

    Science.gov (United States)

    Billings, S. A.

    1988-03-01

    Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.

  10. Nonlinear Cross Gramians

    NARCIS (Netherlands)

    Ionescu, T. C.; Scherpen, J. M. A.; Korytowski, A; Malanowski, K; Mitkowski, W; Szymkat, M

    2009-01-01

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain

  11. Engineered nonlinear lattices

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.

    1999-01-01

    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...

  12. Controllability in nonlinear systems

    Science.gov (United States)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  13. Nonlinear Maneuver Autopilot

    Science.gov (United States)

    Menon, P. K. A.; Badgett, M. E.; Walker, R. A.

    1992-01-01

    Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.

  14. Generalized non-linear strength theory and transformed stress space

    Institute of Scientific and Technical Information of China (English)

    YAO Yangping; LU Dechun; ZHOU Annan; ZOU Bo

    2004-01-01

    Based on the test data of frictional materials and previous research achievements in this field, a generalized non-linear strength theory (GNST) is proposed. It describes non-linear strength properties on the π-plane and the meridian plane using a unified formula, and it includes almost all the present non-linear strength theories, which can be used in just one material. The shape of failure function of the GNST is a smooth curve between the SMP criterion and the Mises criterion on the π-plane, and an exponential curve on the meridian plane. Through the transformed stress space based on the GNST, the combination of the GNST and various constitutive models using p and q as stress parameters can be realized simply and rationally in three-dimensional stress state.

  15. Non-linear growth analysis of Sumatera thin tail sheep and its cross breds

    Directory of Open Access Journals (Sweden)

    Agus Suparyanto

    2001-12-01

    Full Text Available Growth curve is a figure of individual ability to express its genetic potential to maximum size under the existingenvironmental condition. Three non-linear growth curves, von Bertalanffy, Logistic and Gompertz, were used to analyze the weight-age relationship for five genotypes of sheep. The data were collected from IP2TP Sei Putih, North Sumatera. Num ber of animals which were collected consisted of five genotypes i.e, indigenous Sumatera (n=275, St. Croix (n=571, St. Croix Cross (n=899, Barbados Blackbelly Cross (n=471 and composite (n=740. The three non-linear growth curves were compared to obtain the most suitable curve for describing the shape of growth curves among sheep genotypes. The growth curves of von Bertalanffy fitted better than the others. The results showed that regression parameters of B or M (integral constante were significantly different (P0.05. The data show that there was correlation between A and k.

  16. Flow characteristics of curved ducts

    Directory of Open Access Journals (Sweden)

    Rudolf P.

    2007-10-01

    Full Text Available Curved channels are very often present in real hydraulic systems, e.g. curved diffusers of hydraulic turbines, S-shaped bulb turbines, fittings, etc. Curvature brings change of velocity profile, generation of vortices and production of hydraulic losses. Flow simulation using CFD techniques were performed to understand these phenomena. Cases ranging from single elbow to coupled elbows in shapes of U, S and spatial right angle position with circular cross-section were modeled for Re = 60000. Spatial development of the flow was studied and consequently it was deduced that minor losses are connected with the transformation of pressure energy into kinetic energy and vice versa. This transformation is a dissipative process and is reflected in the amount of the energy irreversibly lost. Least loss coefficient is connected with flow in U-shape elbows, biggest one with flow in Sshape elbows. Finally, the extent of the flow domain influenced by presence of curvature was examined. This isimportant for proper placement of mano- and flowmeters during experimental tests. Simulations were verified with experimental results presented in literature.

  17. Capacity theory on algebraic curves

    CERN Document Server

    Rumely, Robert S

    1989-01-01

    Capacity is a measure of size for sets, with diverse applications in potential theory, probability and number theory. This book lays foundations for a theory of capacity for adelic sets on algebraic curves. Its main result is an arithmetic one, a generalization of a theorem of Fekete and Szegö which gives a sharp existence/finiteness criterion for algebraic points whose conjugates lie near a specified set on a curve. The book brings out a deep connection between the classical Green's functions of analysis and Néron's local height pairings; it also points to an interpretation of capacity as a kind of intersection index in the framework of Arakelov Theory. It is a research monograph and will primarily be of interest to number theorists and algebraic geometers; because of applications of the theory, it may also be of interest to logicians. The theory presented generalizes one due to David Cantor for the projective line. As with most adelic theories, it has a local and a global part. Let /K be a smooth, complet...

  18. Miniature curved artificial compound eyes.

    Science.gov (United States)

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas

    2013-06-04

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories.

  19. Effective integration of ultra-elliptic solutions of the focusing nonlinear Schrödinger equation

    Science.gov (United States)

    Wright, O. C.

    2016-05-01

    An effective integration method based on the classical solution of the Jacobi inversion problem, using Kleinian ultra-elliptic functions and Riemann theta functions, is presented for the quasi-periodic two-phase solutions of the focusing cubic nonlinear Schrödinger equation. Each two-phase solution with real quasi-periods forms a two-real-dimensional torus, modulo a circle of complex-phase factors, expressed as a ratio of theta functions associated with the Riemann surface of the invariant spectral curve. The initial conditions of the Dirichlet eigenvalues satisfy reality conditions which are explicitly parametrized by two physically-meaningful real variables: the squared modulus and a scalar multiple of the wavenumber. Simple new formulas for the maximum modulus and the minimum modulus are obtained in terms of the imaginary parts of the branch points of the Riemann surface.

  20. Curve Length Estimation using Vertix Chain Code Curve Length Estimation

    Directory of Open Access Journals (Sweden)

    Habibollah Haron

    2010-09-01

    Full Text Available Most of the applications in image analysis are based on Freeman chain code. In this paper, for the first time, vertex chain code (VCC proposed by Bribiesca is applied to improve length estimation of the 2D digitized curve. The chain code has some preferences such as stable in shifting, turning, mirroring movement of image and has normalized starting point. Due to the variety of length estimator methods, we focused on the three specific techniques. First, the way Bribiesca proposed which is based on counting links between vertices; second, based on maximum length digital straight segments (DSSs and lastly local metrics. The results of these length estimators with the real perimeter are compared. Results thus obtained exhibits thatlength estimation using VCC is nearest to the actual length.

  1. Dynamic J sub I-R Curve Testing of HY-130 Steel.

    Science.gov (United States)

    1981-10-01

    286-292 (Nov 1974). 18. Joyce, J.A., "Application of the Key Curve Method to Determining J,-R Curves for A533B Steel," NUREG /CR- 1290 U.S. Nuclear...1 -R Curve of High Strength Steels," U.S. Nuclear Regulatory Commission Report NUREG /CR- 1813 (Nov 1980). 26 i26 , I gINITIAL DISTRIBUTION CENTER

  2. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  3. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  4. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    Science.gov (United States)

    Kandel, Tanka P.; Lærke, Poul Erik; Elsgaard, Lars

    2016-09-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment fluxes by linear regression techniques. Thus, usually the cumulative flux curve becomes downward concave due to the decreased gas diffusion rate. Non-linear models based on biophysical theory usually fit to such curvatures and may reduce the underestimation of fluxes. In this study, we examined the effect of increasing chamber enclosure time on SR flux rates calculated using a linear, an exponential and a revised Hutchinson and Mosier model (HMR). Soil respiration rates were measured with a closed chamber in combination with an infrared gas analyzer. During SR flux measurements the chamber was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15-300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation was only about 10% after 45 min for regular flux curves. For irregular flux curves with a rapid increase in CO2 concentration immediately after chamber deployment it was shown that short enclosure times were prone to overestimation of pre-deployment fluxes, but this was mitigated by longer enclosure times (>10-15 min).

  5. Interpreting 'dose-response' curves using homeodynamic data: with an improved explanation for hormesis.

    Science.gov (United States)

    Stebbing, A R D

    2009-04-15

    A re-interpretation of the 'dose-response' curve is given that accommodates homeostasis. The outcome, or overall effect, of toxicity is the consequence of toxicity that is moderated by homeodynamic responses. Equilibrium is achieved by a balance of opposing forces of toxic inhibition countered by a stimulatory response. A graphical model is given consisting of two linked curves (response vs concentration and effect vs concentration), which provide the basis for a re-interpretation of the 'dose-response' curve. The model indicates that such relationships are non-linear with a threshold, which is due to homeodynamic responses. Subthreshold concentrations in 'dose-response' curves provide the sum of toxic inhibition minus the homeodynamic response; the response itself is unseen in serving its purpose of neutralizing perturbation. This interpretation suggests why the alpha- and beta-curves are non-linear. The beta-curve indicates adaptive overcorrection to toxicity that confers greater resistance to subsequent toxic exposure, with hormesis as an epiphenomenon.

  6. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  7. Role of curvatures in determining the characteristics of a string vibrating against a doubly curved obstacle

    Science.gov (United States)

    Singh, Harkirat; Wahi, Pankaj

    2017-08-01

    The motion of a string in the presence of a doubly curved obstacle is investigated. A mathematical model has been developed for a general shape of the obstacle. However, detailed analysis has been performed for a shape relevant to the Indian stringed musical instruments like Tanpura and Sitar. In particular, we explore the effect of obstacle's curvature in the plane perpendicular to the string axis on its motion. This geometrical feature of the obstacle introduces a coupling between motions in mutually perpendicular directions over and above the coupling due to the stretching nonlinearity. We find that only one planar motion is possible for our system. Small amplitude planar motions are stable to perturbations in the perpendicular direction resulting in non-whirling motions while large amplitude oscillations lead to whirling motions. The critical amplitude of oscillations, across which there is a transition in the qualitative behavior of the non-planar trajectories, is determined using Floquet theory. Our analysis reveals that a small obstacle curvature in a direction perpendicular to the string axis leads to a considerable reduction in the critical amplitudes required for initiation of whirling motions. Hence, this obstacle curvature has a destabilizing effect on the planar motions in contrast to the curvature along the string axis which stabilizes planar motions.

  8. Assessing Trust and Effectiveness in Virtual Teams: Latent Growth Curve and Latent Change Score Models

    Directory of Open Access Journals (Sweden)

    Michael D. Coovert

    2017-08-01

    Full Text Available Trust plays a central role in the effectiveness of work groups and teams. This is the case for both face-to-face and virtual teams. Yet little is known about the development of trust in virtual teams. We examined cognitive and affective trust and their relationship to team effectiveness as reflected through satisfaction with one’s team and task performance. Latent growth curve analysis reveals both trust types start at a significant level with individual differences in that initial level. Cognitive trust follows a linear growth pattern while affective trust is overall non-linear, but becomes linear once established. Latent change score models are utilized to examine change in trust and also its relationship with satisfaction with the team and team performance. In examining only change in trust and its relationship to satisfaction there appears to be a straightforward influence of trust on satisfaction and satisfaction on trust. However, when incorporated into a bivariate coupling latent change model the dynamics of the relationship are revealed. A similar pattern holds for trust and task performance; however, in the bivariate coupling change model a more parsimonious representation is preferred.

  9. Predicting the pressure-volume curve of an elastic microsphere composite

    CERN Document Server

    De Pascalis, Riccardo; Parnell, William J

    2012-01-01

    The effective macroscopic response of nonlinear elastomeric inhomogeneous materials is of great interest in many applications including nonlinear composite materials and soft biological tissues. The interest of the present work is associated with a microsphere composite material, which is modelled as a matrix-inclusion composite. The matrix phase is a homogeneous isotropic nonlinear rubber-like material and the inclusion phase is more complex, consisting of a distribution of sizes of stiff thin spherical shells filled with gas. Experimentally, such materials have been shown to undergo complex deformation under cyclic loading. Here, we consider microspheres embedded in an unbounded host material and assume that a hydrostatic pressure is applied in the "far-field". Taking into account a variety of effects including buckling of the spherical shells, large deformation of the host phase and evolving microstructure, we derive a model predicting the pressure-relative volume change load curves. Nonlinear constitutive...

  10. Transition curves for highway geometric design

    CERN Document Server

    Kobryń, Andrzej

    2017-01-01

    This book provides concise descriptions of the various solutions of transition curves, which can be used in geometric design of roads and highways. It presents mathematical methods and curvature functions for defining transition curves. .

  11. Atlas of stress-strain curves

    CERN Document Server

    2002-01-01

    The Atlas of Stress-Strain Curves, Second Edition is substantially bigger in page dimensions, number of pages, and total number of curves than the previous edition. It contains over 1,400 curves, almost three times as many as in the 1987 edition. The curves are normalized in appearance to aid making comparisons among materials. All diagrams include metric (SI) units, and many also include U.S. customary units. All curves are captioned in a consistent format with valuable information including (as available) standard designation, the primary source of the curve, mechanical properties (including hardening exponent and strength coefficient), condition of sample, strain rate, test temperature, and alloy composition. Curve types include monotonic and cyclic stress-strain, isochronous stress-strain, and tangent modulus. Curves are logically arranged and indexed for fast retrieval of information. The book also includes an introduction that provides background information on methods of stress-strain determination, on...

  12. Curved Gabor Filters for Fingerprint Image Enhancement

    CERN Document Server

    Gottschlich, Carsten

    2011-01-01

    Gabor filters play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved Gabor filters which locally adapt their shape to the direction of flow. These curved Gabor filters enable the choice of filter parameters which increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved Gabor filters are applied to the curved ridge and valley structure of low-quality fingerprint images. First, we combine two orientation field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation and they are used for estimating the local ridge frequency. Lastly, curved Gabor filters are defined based on curved regions and they are applied for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004...

  13. Electromagnetic field limits set by the V-Curve.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jorgenson, Roy Eberhardt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hudson, Howard Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  14. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

  15. Whitney's formulas for curves on surfaces

    CERN Document Server

    Burman, Yurii

    2009-01-01

    The classical Whitney formula relates the number of times an oriented plane curve cuts itself to its rotation number and the index of a base point. In this paper we generalize Whitney's formula to curves on an oriented punctured surface. To define analogs of the rotation number and the index of a base point of a curve, we fix an arbitrary vector field on the surface. Similar formulas are obtained for non-based curves.

  16. Large-Amplitude Free Flexural Vibrations of Laminated Composite Curved Panels using Shear-Flexible Shell Element

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-01-01

    Full Text Available Using degree centigrade continuous, QUAD-8 shear-flexible shell element, based on field consistency principle, the nonlinear free flexural vibrations of anisotropic laminated curved panels are studied. The formulation includes transverse shear deformation, in-plane and rotary inertia effects and geometrical nonlinearity. The element is employed to study the large amplitude dynamic behaviour of cylindrical and spherical shells. The frequency versus amplitude curves are obtained from the dynamic response history. The nonlinear governing equations are solved using Wilson-Theta numerical integration scheme with Theta = 1.4. For each time step, modified Newton-Raphson iterations are employed to achieve equilibrium at the end of that time step. Detailed numerical results are presented, showing the effects of thickness, lamination scheme, material properties and boundary conditions, on nonlinear behaviour.

  17. 熔体初始温度对液态Mg7Zn3合金凝固过程中微观结构非线性影响的模拟研究%Simulation study on non-linear effects of initial melt temperatures on microstructures during solidification process of liquid Mg7Zn3 alloy

    Institute of Scientific and Technical Information of China (English)

    刘让苏; 梁永超; 刘海蓉; 郑乃超; 莫云飞; 侯兆阳; 周丽丽; 彭平

    2013-01-01

    采用分子动力学方法对不同熔体初始温度对液态Mg-Zn合金凝固过程中微观结构演变的非线性影响进行了模拟研究,并采用多种方法对微观结构的转变机制进行了分析.结果发现:系统在不同熔体初始温度下以同—冷速1×1012 K/s凝固时,均形成非晶态结构,其中1551、1541和1431键型或二十面体基本原子团(12 0 12 0)对凝固微结构的转变起决定性作用;不同熔体初始温度对凝固微结构有显著不同影响,但这种影响只有在玻璃化转变温度Tg以下才能充分地展现出来,非常有意义的是,发现其影响程度的大小是与熔体初始温度的高低呈非线性变化关系,且在一定的范围内涨落.然而,系统的平均原子能量的变化却是与熔体初始温度成线性关系的,即熔体的初始温度越高,形成的非晶态结构越稳定,即非晶形成能力越强.%The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation.The microstructure transformation mechanisms were analyzed by several methods.The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×1012 K/s,and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0) played a key role in the microstructure transition.Different initial melt temperatures had significant effects on the final microstructures.These effects only can be clearly observed below the glass transition temperaturc Tg; and these effects are non-linearly related to the initial melt temperatures,and fluctuated in a certain range.However,the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures,namely,the higher the initial melt temperature is,the more stable the amorphous structure is and the stronger the glass forming

  18. Gelfond–Bézier curves

    KAUST Repository

    Ait-Haddou, Rachid

    2013-02-01

    We show that the generalized Bernstein bases in Müntz spaces defined by Hirschman and Widder (1949) and extended by Gelfond (1950) can be obtained as pointwise limits of the Chebyshev–Bernstein bases in Müntz spaces with respect to an interval [a,1][a,1] as the positive real number a converges to zero. Such a realization allows for concepts of curve design such as de Casteljau algorithm, blossom, dimension elevation to be transferred from the general theory of Chebyshev blossoms in Müntz spaces to these generalized Bernstein bases that we termed here as Gelfond–Bernstein bases. The advantage of working with Gelfond–Bernstein bases lies in the simplicity of the obtained concepts and algorithms as compared to their Chebyshev–Bernstein bases counterparts.

  19. Bacterial streamers in curved microchannels

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  20. Counting rational points on cubic curves

    Institute of Scientific and Technical Information of China (English)

    HEATH-BROWN; Roger; TESTA; Damiano

    2010-01-01

    We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve.