WorldWideScience

Sample records for nonlinear heat front

  1. Asymptotic analysis of solution to the nonlinear problem of non-stationary heat conductivity of layered anisotropic non-uniform shells at low Biot numbers on the front surfaces

    Science.gov (United States)

    Yankovskii, A. P.

    2017-03-01

    The nonlinear problem of non-stationary heat conductivity of the layered anisotropic heat-sensitive shells was formulated taking into account the linear dependence of thermal-physical characteristics of the materials of phase compositions on the temperature. The initial-boundary-value problem is formulated in the dimensionless form, and four small parameters are identified: thermal-physical, characterizing the degree of heat sensitivity of the layer material; geometric, characterizing the relative thickness of the thin-walled structure, and two small Biot numbers on the front surfaces of shells. A sequential recursion of dimensionless equations is carried out, at first, using the thermalphysical small parameter, then, small Biot numbers and, finally, geometrical small parameter. The first type of recursion allowed us to linearize the problem of heat conductivity, and on the basis of two latter types of recursion, the outer asymptotic expansion of solution to the problem of non-stationary heat conductivity of the layered anisotropic non-uniform shells and plates under boundary conditions of the II and III kind and small Biot numbers on the facial surfaces was built, taking into account heat sensitivity of the layer materials. The resulting two-dimensional boundary problems were analyzed, and asymptotic properties of solutions to the heat conductivity problem were studied. The physical explanation was given to some aspects of asymptotic temperature decomposition.

  2. Instability of coupled geostrophic density fronts and its nonlinear evolution

    Science.gov (United States)

    Scherer, Emilie; Zeitlin, Vladimir

    Instability of coupled density fronts, and its fully nonlinear evolution are studied within the idealized reduced-gravity rotating shallow-water model. By using the collocation method, we benchmark the classical stability results on zero potential vorticity (PV) fronts and generalize them to non-zero PV fronts. In both cases, we find a series of instability zones intertwined with the stability regions along the along-front wavenumber axis, the most unstable modes being long wave. We then study the nonlinear evolution of the unstable modes with the help of a high-resolution well-balanced finite-volume numerical scheme by initializing it with the unstable modes found from the linear stability analysis. The most unstable long-wave mode evolves as follows: after a couple of inertial periods, the coupled fronts are pinched at some location and a series of weakly connected co-rotating elliptic anticyclonic vortices is formed, thus totally changing the character of the flow. The characteristics of these vortices are close to known rodon lens solutions. The shorter-wave unstable modes from the next instability zones are strongly concentrated in the frontal regions, have sharp gradients, and are saturated owing to dissipation without qualitatively changing the flow pattern.

  3. Analytical and numerical modeling of front propagation and interaction of fronts in nonlinear thermoviscous

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2008-01-01

    A wave equation, that governs nite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. In contrast to the model known as the Kuznetsov equation, the proposed nonlinear wave equation preserves the Hamiltonian structure...... of the fundamental fluid dynamical equations in the non-dissipative limit. An exact traveling front solution is obtained from a generalized traveling wave assumption. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation...... with respect to the fluid ahead of it, and subsonic speed with respect to the fluid behind it, similarly to the fluid dynamical shock. Linear stability analysis reveals that the front is stable when the acoustic pressure belongs to a critical interval, and is otherwise unstable. These results are veried...

  4. Nonlinear hydrodynamic corrections to supersonic F-KPP wave fronts

    Science.gov (United States)

    Antoine, C.; Dumazer, G.; Nowakowski, B.; Lemarchand, A.

    2012-03-01

    We study the hydrodynamic corrections to the dynamics and structure of an exothermic chemical wave front of Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) type which travels in a one-dimensional gaseous medium. We show in particular that its long time dynamics, cut-off sensitivity and leading edge behavior are almost entirely controlled by the hydrodynamic front speed correction δUh which characterizes the pushed nature of the front. Reducing the problem to an effective comoving heterogeneous F-KPP equation, we determine two analytical expressions for δUh: an accurate one, derived from a variational method, and an approximate one, from which one can assess the δUh sensitivity to the shear viscosity and heat conductivity of the fluid of interest.

  5. Nonlinear Dynamics of Ionization Fronts in HII Regions

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, A; Kane, J O; Pound, M W; Remington, B A; Ryutov, D D; Takabe, H

    2006-04-20

    Hydrodynamic instability of an accelerating ionization front (IF) is investigated with 2D hydrodynamic simulations, including absorption of incident photoionizing photons, recombination in the HII region, and radiative molecular cooling. When the amplitude of the perturbation is large enough, nonlinear dynamics of the IF triggered by the separation of the IF from the cloud surface is observed. This causes the second harmonic of the imposed perturbation to appear on the cloud surfaces, whereas the perturbation in density of ablated gas in the HII region remains largely single mode. This mismatch of modes between the IF and the density perturbation in the HII region prevents the strong stabilization effect seen in the linear regime. Large growth of the perturbation caused by Rayleigh-Taylor-like instability is observed late in time.

  6. 2D wave-front shaping in optical superlattices using nonlinear volume holography.

    Science.gov (United States)

    Yang, Bo; Hong, Xu-Hao; Lu, Rong-Er; Yue, Yang-Yang; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-07-01

    Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO3 crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology.

  7. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  8. Nonlinear volume holography for wave-front engineering.

    Science.gov (United States)

    Hong, Xu-Hao; Yang, Bo; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2014-10-17

    The concept of volume holography is applied to the design of an optical superlattice for the nonlinear harmonic generation. The generated harmonic wave can be considered as a holographic image caused by the incident fundamental wave. Compared with the conventional quasi-phase-matching method, this new method has significant advantages when applied to complicated nonlinear processes such as the nonlinear generation of special beams. As an example, we experimentally realized a second-harmonic Airy beam, and the results are found to agree well with numerical simulations.

  9. Nonlinear phenomena in quantum thermoelectrics and heat

    Science.gov (United States)

    Sánchez, David; López, Rosa

    2016-12-01

    We review recent developments in nonlinear quantum transport through nanostructures and mesoscopic systems driven by thermal gradients or in combination with voltage biases. Low-dimensional conductors are excellent platforms for analyzing both the thermoelectric and heat dynamics beyond the linear response because, due to their small size, a small temperature difference applied across regions gives rise to large thermal biases. We offer a theoretical discussion based on the scattering approach to highlight the differences between the linear and the nonlinear regimes of transport. We discuss recent experiments on quantum dots and molecular junctions subjected to strong temperature differences. Theoretical predictions concerning the Kondo effect and heat rectification proposals are briefly examined. An important issue is the calculation of thermoelectric efficiencies including nonlinearities. Cross Seebeck effects and nonlinear spin filtering arise in superconductors and topological insulators, while mixed noises between charge and heat currents are also considered. Finally, we provide an outlook on the possible future directions of the field. xml:lang="fr"

  10. Front spreading with nonlinear sorption for oscillating flow

    NARCIS (Netherlands)

    Cirkel, D.G.; Zee, van der S.E.A.T.M.; Meeussen, J.C.L.

    2015-01-01

    In this paper, we consider dispersive and chromatographic mixing at an interface, under alternating flow conditions. In case of a nonreactive or linearly sorbing solute, mixing is in complete analogy with classical dispersion theory. For nonlinear exchange, however, oscillating convective flow leads

  11. Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts

    Science.gov (United States)

    Fedotov, Sergei

    2010-01-01

    The main aim of the paper is to incorporate the nonlinear kinetic term into non-Markovian transport equations described by a continuous time random walk (CTRW) with nonexponential waiting time distributions. We consider three different CTRW models with reactions. We derive nonlinear Master equations for the mesoscopic density of reacting particles corresponding to CTRW with arbitrary jump and waiting time distributions. We apply these equations to the problem of front propagation in the reaction-transport systems with Kolmogorov-Petrovskii-Piskunov kinetics and anomalous diffusion. We have found an explicit expression for the speed of a propagating front in the case of subdiffusive transport.

  12. A Cauchy problem in nonlinear heat conduction

    Energy Technology Data Exchange (ETDEWEB)

    De Lillo, S [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia (Italy); Sanchini, G [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy)

    2006-06-09

    A Cauchy problem on the semiline for a nonlinear diffusion equation is considered, with a boundary condition corresponding to a prescribed thermal conductivity at the origin. The problem is mapped into a moving boundary problem for the linear heat equation with a Robin-type boundary condition. Such a problem is then reduced to a linear integral Volterra equation of II type which admits a unique solution.

  13. On the sharp front-type solution of the Nagumo equation with nonlinear diffusion and convection

    Indian Academy of Sciences (India)

    M B A Mansour

    2013-03-01

    This paper is concerned with the Nagumo equation with nonlinear degenerate diffusion and convection which arises in several problems of population dynamics, chemical reactions and others. A sharp front-type solution with a minimum speed to this model equation is analysed using different methods. One of the methods is to solve the travelling wave equations and compute an exact solution which describes the sharp travelling wavefront. The second method is to solve numerically an initial-moving boundary-value problem for the partial differential equation and obtain an approximation for this sharp front-type solution.

  14. Existence of Wave Front Solutions of an Integral Differential Equation in Nonlinear Nonlocal Neuronal Network

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2014-01-01

    Full Text Available An integral-differential model equation arising from neuronal networks with very general kernel functions is considered in this paper. The kernel functions we study here include pure excitations, lateral inhibition, lateral excitations, and more general synaptic couplings (e.g., oscillating kernel functions. The main goal of this paper is to prove the existence and uniqueness of the traveling wave front solutions. The main idea we apply here is to reduce the nonlinear integral-differential equation into a solvable differential equation and test whether the solution we get is really a wave front solution of the model equation.

  15. On the exact controllability of a nonlinear stochastic heat equation

    Directory of Open Access Journals (Sweden)

    Bui An Ton

    2006-01-01

    Full Text Available The exact controllability of a nonlinear stochastic heat equation with null Dirichlet boundary conditions, nonzero initial and target values, and an interior control is established.

  16. Mitigating RF Front-End Nonlinearity of Sensor Nodes to Enhance Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Lin Hu

    2016-11-01

    Full Text Available The cognitive radio wireless sensor network (CR-WSN has gained worldwide attention in recent years for its potential applications. Reliable spectrum sensing is the premise for opportunistic access to sensor nodes. However, as a result of the radio frequency (RF front-end nonlinearity of sensor nodes, distortion products can easily degrade the spectrum sensing performance by causing false alarms and degrading the detection probability. Given the limitations of the widely-used adaptive interference cancellation (AIC algorithm, this paper develops several details to avoid these limitations and form a new mitigation architecture to alleviate nonlinear distortions. To demonstrate the efficiency of the proposed algorithm, verification tests for both simulations and actual RF front-end measurements are presented and discussed. The obtained results show that distortions can be suppressed significantly, thus improving the reliability of spectrum sensing. Moreover, compared to AIC, the proposed algorithm clearly shows better performance, especially at the band edges of the interferer signal.

  17. Mitigating RF Front-End Nonlinearity of Sensor Nodes to Enhance Spectrum Sensing.

    Science.gov (United States)

    Hu, Lin; Ma, Hong; Zhang, Hua; Zhao, Wen

    2016-11-25

    The cognitive radio wireless sensor network (CR-WSN) has gained worldwide attention in recent years for its potential applications. Reliable spectrum sensing is the premise for opportunistic access to sensor nodes. However, as a result of the radio frequency (RF) front-end nonlinearity of sensor nodes, distortion products can easily degrade the spectrum sensing performance by causing false alarms and degrading the detection probability. Given the limitations of the widely-used adaptive interference cancellation (AIC) algorithm, this paper develops several details to avoid these limitations and form a new mitigation architecture to alleviate nonlinear distortions. To demonstrate the efficiency of the proposed algorithm, verification tests for both simulations and actual RF front-end measurements are presented and discussed. The obtained results show that distortions can be suppressed significantly, thus improving the reliability of spectrum sensing. Moreover, compared to AIC, the proposed algorithm clearly shows better performance, especially at the band edges of the interferer signal.

  18. Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects.

    Science.gov (United States)

    Gendelman, O V; Zolotarevskiy, V; Savin, A V; Bergman, L A; Vakakis, A F

    2016-03-01

    We describe and explore accelerating oscillatory fronts in sonic vacua with nonlocal interactions. As an example, a chain of particles oscillating in the plane and coupled by linear springs, with fixed ends, is considered. When one end of this system is harmonically excited in the transverse direction, one observes accelerated propagation of the excitation front, accompanied by an almost monochromatic oscillatory tail. Position of the front obeys the scaling law l(t) ∼ t(4/3). The frequency of the oscillatory tail remains constant, and the wavelength scales as λ ∼ t(1/3). These scaling laws result from the nonlocal effects; we derive them analytically (including the scaling coefficients) from a continuum approximation. Moreover, a certain threshold excitation amplitude is required in order to initiate the front propagation. The initiation threshold is evaluated on the basis of a simplified discrete model, further reduced to a completely integrable nonlinear system. Given their simplicity, nonlinear sonic vacua of the type considered herein should be common in periodic lattices.

  19. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  20. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  1. Does laser-driven heat front propagation depend on material microstructure?

    Science.gov (United States)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  2. Nonlinear Aspects of Heat Pump Utilization

    Directory of Open Access Journals (Sweden)

    R. Najman

    2010-01-01

    Full Text Available This work attempts to answer the question: How much can we believe that the coefficient of performance provided by the manufacturer is correct, when a heat pump is required to face the real load coming from changes of temperature? The paper summarizes some basics of heat pump theory and describes the results of numerical models.

  3. Cumulants of heat transfer across nonlinear quantum systems

    Science.gov (United States)

    Li, Huanan; Agarwalla, Bijay Kumar; Li, Baowen; Wang, Jian-Sheng

    2013-12-01

    We consider thermal conduction across a general nonlinear phononic junction. Based on two-time observation protocol and the nonequilibrium Green's function method, heat transfer in steady-state regimes is studied, and practical formulas for the calculation of the cumulant generating function are obtained. As an application, the general formalism is used to study anharmonic effects on fluctuation of steady-state heat transfer across a single-site junction with a quartic nonlinear on-site pinning potential. An explicit nonlinear modification to the cumulant generating function exact up to the first order is given, in which the Gallavotti-Cohen fluctuation symmetry is found still valid. Numerically a self-consistent procedure is introduced, which works well for strong nonlinearity.

  4. Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids : Interacting fronts and rarefaction waves

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2011-01-01

    A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...

  5. Thermal fronts and cross-frontal heat flux in the southern Huanghai Sea and the East China Sea

    Institute of Scientific and Technical Information of China (English)

    PARK Sunghyea; CHU Peter C

    2008-01-01

    Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai/Yellow Sea and East China Sea(HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m( from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows: (1) multiple boundaries of cold water, asymmetric thermochne intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju-Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsnshima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju-Tsushima front; and (4) multistructure of Kuroshio front. In the Kureshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts.The southern Cheju-Changjiang front and Cheju-Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju-Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.

  6. Regularity and stability of transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity

    Science.gov (United States)

    Shen, Wenxian; Shen, Zhongwei

    2017-03-01

    The present paper is devoted to the investigation of various properties of transition fronts in one-dimensional nonlocal equations in heterogeneous media of ignition type, whose existence has been established by the authors of the present paper in a previous work. It is first shown that transition fronts are continuously differentiable in space with uniformly bounded and uniformly Lipschitz continuous space partial derivative. This is the first time that space regularity of transition fronts in nonlocal equations is ever studied. It is then shown that transition fronts are uniformly steep. Finally, asymptotic stability, in the sense of exponentially attracting front-like initial data, of transition fronts is studied.

  7. Eddy heat fluxes from direct current measurements of the Antarctic Polar Front in Shag Rocks Passage

    OpenAIRE

    Walkden, GJ; Heywood, Kj; Stevens, DP

    2008-01-01

    Determining meridional heat flux in the Southern Ocean is critical to the accurate understanding and model simulation of the global ocean. Mesoscale eddies provide a significant but poorly-defined contribution to this transport. An eighteen-month deep-water current meter array deployment in Shag Rocks Passage (53°S, 48°W) between May 2003 and November 2004 provides estimates of the eddy flux of heat across the Polar Front. We calculate a statistically nonzero (99% level), vertically coherent ...

  8. Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission I. Curvature Radiation Pair Fronts

    CERN Document Server

    Harding, A K; Harding, Alice K.; Muslimov, Alexander G.

    2001-01-01

    We investigate the effect of pulsar polar cap (PC) heating produced by positrons returning from the upper pair formation front. Our calculations are based on a self-consistent treatment of the pair dynamics and the effect of electric field screening by the returning positrons. We calculate the resultant X-ray luminosities, and discuss the dependence of the PC heating efficiencies on pulsar parameters, such as characteristic spin-down age, spin period, and surface magnetic field strength. In this study we concentrate on the regime where the pairs are produced in a magnetic field by curvature photons emitted by accelerating electrons. Our theoretical results are not in conflict with the available observational X-ray data and suggest that the effect of PC heating should significantly contribute to the thermal X-ray fluxes from middle-aged and old pulsars. The implications for current and future X-ray observations of pulsars are briefly outlined.

  9. Marangoni mixed convection flow with Joule heating and nonlinear radiation

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    2015-07-01

    Full Text Available Marangoni mixed convective flow of Casson fluid in a thermally stratified medium is addressed. Flow analysis has been carried out in presence of inclined magnetic field. Heat transfer analysis is discussed in the presence of viscous dissipation, Joule heating and nonlinear thermal radiation. The governing nonlinear partial differential equations are first converted into ordinary differential systems and then developed the convergent series solutions. Flow pattern with the influence of pertinent parameters namely the magnetic parameter, Casson fluid parameter, temperature ratio parameter, stratification parameter, Prandtl number, Eckert number and radiation parameter is investigated. Expression of local Nusselt number is computed and analyzed. It is found that the Nusselt number decreases by increasing magnetic parameter, temperature ratio parameter, angle of inclination and stratification parameter. Moreover the effect of buoyancy parameter on the velocity distribution is opposite in both the opposing and assisting flow phenomena. Thermal field and associated layer thickness are enhanced for larger radiation parameter.

  10. Application of genetic algorithms in nonlinear heat conduction problems.

    Science.gov (United States)

    Kadri, Muhammad Bilal; Khan, Waqar A

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.

  11. Nonlinear Dynamics of the Parker Scenario for Coronal Heating

    CERN Document Server

    Rappazzo, A F; Einaudi, G; Dahlburg, R B

    2007-01-01

    The Parker or field line tangling model of coronal heating is studied comprehensively via long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry within the framework of reduced magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cascade dominated by magnetic energy. In physical space this corresponds to a magnetic topology where magnetic field lines are barely entangled, nevertheless current sheets (corresponding to the original tangential discontinuities hypothesized by Parker) are continuously formed and dissipated. Current sheets are the result of the nonlinear cascade that transfers energy from the scale of convective motions ($\\sim 1,000 km$) down to the dissipative scales, where it is finally converted to heat and/or particle acceleration. Current sheets constitute the dissipative structure of the system, and the associated magnetic reconnection gives rise to impulsive ``bursty'' heating ...

  12. DOUBLE TRIALS METHOD FOR NONLINEAR PROBLEMS ARISING IN HEAT TRANSFER

    Directory of Open Access Journals (Sweden)

    Chun-Hui He

    2011-01-01

    Full Text Available According to an ancient Chinese algorithm, the Ying Buzu Shu, in about second century BC, known as the rule of double false position in West after 1202 AD, two trial roots are assumed to solve algebraic equations. The solution procedure can be extended to solve nonlinear differential equations by constructing an approximate solution with an unknown parameter, and the unknown parameter can be easily determined using the Ying Buzu Shu. An example in heat transfer is given to elucidate the solution procedure.

  13. Boundary control of nonlinear coupled heat systems using backstepping

    KAUST Repository

    Bendevis, Paul

    2016-10-20

    A state feedback boundary controller is designed for a 2D coupled PDE system modelling heat transfer in a membrane distillation system for water desalination. Fluid is separated into two compartments with nonlinear coupling at a membrane boundary. The controller sets the temperature on one boundary in order to track a temperature difference across the membrane boundary. The control objective is achieved by an extension of backstepping methods to these coupled equations. Stability of the target system via Lyapunov like methods, and the invertibility of the integral transformation are used to show the stability of the tracking error.

  14. Automatic Pressure Stabilization in Front of the Evaporators in the Multifunctional Heat Pump

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2017-04-01

    Full Text Available The aim of the article is to elaborate and to investigate the automatic control system of pressure in front of evaporators of the multifunctional heat pump, which has several condensers and several evaporators. The control system must reduce the value of pressure perturbations acting on evaporators and decrease the value of pressure pulsations before them. To solve this problem, a hydraulic scheme has been developed in which this parameter is stabilized by using fine and coarse adjustment valves in hydraulic circuits of condensers and compressors using a pressure control system for a static flow mixer. The system for control of the flow of the refrigerant consists of two groups of compressors with automatic control drives installed in the lines of each of the condensers. The pressure control system uses a model of control valve with proportional-integral – derivative (PID controller in the direct line of the controller loop. This solution allowed simplifying the heat pump control system by eliminating the necessity of matching the pressure and flow control valves in each line and controlling the flow in the line over a wider range as well. A mathematical model of the static mixer of flows installed after the pressure control valves is obtained. The proposed pressure control system gives a possibility to reduce the amplitude of pulsations of pressure before the evaporators up to 14-16 times.

  15. Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback.

    Science.gov (United States)

    Aulbach, Jochen; Gjonaj, Bergin; Johnson, Patrick; Lagendijk, Ad

    2012-12-31

    We experimentally demonstrate spatiotemporal focusing of light on single nanocrystals embedded inside a strongly scattering medium. Our approach is based on spatial wave front shaping of short pulses, using second harmonic generation inside the target nanocrystals as the feedback signal. We successfully develop a model both for the achieved pulse duration as well as the observed enhancement of the feedback signal. The approach enables exciting opportunities for studies of light propagation in the presence of strong scattering as well as for applications in imaging, micro- and nanomanipulation, coherent control and spectroscopy in complex media.

  16. Demonstration of leapfrogging for implementing nonlinear model predictive control on a heat exchanger.

    Science.gov (United States)

    Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell

    2016-01-01

    This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques.

  17. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  18. Computation of traveling wave fronts for a nonlinear diffusion-advection model.

    Science.gov (United States)

    Mansour, M B A

    2009-01-01

    This paper utilizes a nonlinear reaction-diffusion-advection model for describing the spatiotemporal evolution of bacterial growth. The traveling wave solutions of the corresponding system of partial differential equations are analyzed. Using two methods, we then find such solutions numerically. One of the methods involves the traveling wave equations and solving an initial-value problem, which leads to accurate computations of the wave profiles and speeds. The second method is to construct time-dependent solutions by solving an initial-moving boundary-value problem for the PDE system, showing another approximation for such wave solutions.

  19. Nonlinear heat-transport equation beyond Fourier law: application to heat-wave propagation in isotropic thin layers

    Science.gov (United States)

    Sellitto, A.; Tibullo, V.; Dong, Y.

    2017-03-01

    By means of a nonlinear generalization of the Maxwell-Cattaneo-Vernotte equation, on theoretical grounds we investigate how nonlinear effects may influence the propagation of heat waves in isotropic thin layers which are not laterally isolated from the external environment. A comparison with the approach of the Thermomass Theory is made as well.

  20. Nonlinear Dissipation Heat Devices in Finite-Time Thermodynamics: An Analysis of the Trade-Off Optimization

    Science.gov (United States)

    Lu, Can-can; Bai, Long

    2017-06-01

    The nonlinear dissipation heat devices are proposed by means of generalizing the low-dissipation heat devices to the quadratic order case. The dimensionless formulas of the output (input) power and the efficiency (coefficient of performance) for the nonlinear dissipation heat engines (refrigerators) are derived in terms of characteristic parameters for heat devices and the dimensional analysis. Based on the trade-off criterion, the optimal performance of the nonlinear dissipation heat devices is discussed in depth, and some system-specific properties for the nonlinear dissipation heat devices under the trade-off optimization are also uncovered. Our results may provide practical insight for designing actual heat engines and refrigerators.

  1. Nonlinear Rayleigh--Taylor instability of the cylindrical fluid flow with mass and heat transfer

    Indian Academy of Sciences (India)

    ALY R SEADAWY; K EL-RASHIDY

    2016-08-01

    The nonlinear Rayleigh--Taylor stability of the cylindrical interface between the vapour and liquid phases of a fluid is studied. The phases enclosed between two cylindrical surfaces coaxial with mass and heat transfer is derived from nonlinear Ginzburg--Landau equation. The F-expansion method is used to get exactsolutions for a nonlinear Ginzburg--Landau equation. The region of solutions is displayed graphically.

  2. Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (Al-Mg-Si-Cu

    Directory of Open Access Journals (Sweden)

    JongBeom Kim

    2013-01-01

    Full Text Available The nonlinear ultrasonic technique has been known to be more sensitive to minute variation of elastic properties in material than the conventional linear ultrasonic method. In this study, the ultrasonic nonlinear characteristics in the heat-treated aluminum alloy (Al-Mg-Si-Cu have been evaluated. For this, the specimens were heat treated for various heating period up to 50 hours at three different heating temperatures: 250°C, 300°C, and 350°C. The ultrasonic nonlinear characteristics of each specimen were evaluated by measuring the ultrasonic nonlinear parameter β from the amplitudes of fundamental and second harmonic frequency components in the transmitted ultrasonic wave. After the ultrasonic test, tensile strengths and elongations were obtained by the tensile test to compare with the parameter β. The heating time showing a peak in the parameter β was identical to that showing critical change in the tensile strength and elongation, and such peak appeared at the earlier heating time in the higher heating temperature. These results suggest that the ultrasonic nonlinear parameter β can be used for monitoring the variations in elastic properties of aluminum alloys according to the heat treatment.

  3. Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law

    Science.gov (United States)

    López, Rosa; Sánchez, David

    2013-07-01

    We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.

  4. Dissipation Effects on MHD Nonlinear Flow and Heat Transfer Past a Porous Surface with Prescribed Heat Flux

    Directory of Open Access Journals (Sweden)

    S.P. Anjali Devi

    2010-01-01

    Full Text Available Viscous and Joule dissipation effects are considered on MHD nonlinear flow and heat transfer past a stretching porous surface embedded in a porous medium under a transverse magnetic field. Analytical solutions of highly nonlinear momentum equation and confluent hypergeometric similarity solution of heat transfer equations in the case when the plate stretches with velocity varying linearly with distance are obtained. The effect of various parameters like suction parameter, Prandtl number, Magnetic parameter, and Eckert number entering into the velocity field, temperature distribution and skin friction co-efficient at the wall are discussed with the aid of graphs.

  5. Influence of nonlinearities on the power output of the Self-Oscillating Fluidic Heat Engine (SOFHE)

    Science.gov (United States)

    Tessier-Poirier, A.; Monin, T.; Léveillé, E.; Formosa, F.; Monfray, S.; Fréchette, L. G.

    2016-11-01

    In this paper, it is shown that two non-linearities drive the oscillations amplitude and the potential power density of the Self-Oscillating Fluidic Heat Engine (SOFHE). This new type of engine converts thermal energy into mechanical energy by producing self-sustained oscillations of a liquid column from a continuous heat source to power wireless sensors from waste heat. The underlying theoretical modeling shows that the pressure and the temperature nonlinearities limit the final oscillations amplitude, hence its achievable power density.

  6. Solitary heat waves in nonlinear lattices with squared on-site potential

    Indian Academy of Sciences (India)

    Rovinita Perseus; M M Latha

    2013-06-01

    A model Hamiltonian is proposed for heat conduction in a nonlinear lattice with squared on-site potential using the second quantized operators and averaging the same using a suitable wave function, equations are derived in discrete form for the field amplitude and the properties of heat transfer are examined theoretically. Numerical analysis shows that the propagation of heat is in the form of solitons. Furthermore, a systemized version of tanh method is carried out to extract solutions for the resulting nonlinear equations in the continuum case and the effect of inhomogeneity is studied for different temperatures.

  7. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano;

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  8. Nonlinear Nanofluid Flow over Heated Vertical Surface with Sinusoidal Wall Temperature Variations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available The nonlinear density temperature variations in two-dimensional nanofluid flow over heated vertical surface with a sinusoidal wall temperature are investigated. The model includes the effects of Brownian motion and thermophoresis. Using the boundary layer approximation, the two-dimensional momentum, heat, and mass transfer equations are transferred to nonlinear partial differential equations form and solved numerically using a new method called spectral local linearisation method. The effects of the governing parameters on the fluid properties and on the heat and nanomass transfer coefficients are determined and shown graphically.

  9. Nonlinear solution for radiation boundary condition of heat transfer process in human eye.

    Science.gov (United States)

    Dehghani, A; Moradi, A; Dehghani, M; Ahani, A

    2011-01-01

    In this paper we propose a new method based on finite element method for solving radiation boundary condition of heat equation inside the human eye and other applications. Using this method, we can solve heat equation inside human eye without need to model radiation boundary condition to a robin boundary condition. Using finite element method we can obtain a nonlinear equation, and finally we use nonlinear algorithm to solve it. The human eye is modeled as a composition of several homogeneous regions. The Ritz method in the finite element method is used for solving heat differential equation. Applying the boundary conditions, the heat radiation condition and the robin condition on the cornea surface of the eye and on the outer part of sclera are used, respectively. Simulation results of solving nonlinear boundary condition show the accuracy of the proposed method.

  10. Effects of disordered microstructure and heat release on propagation of combustion front

    Directory of Open Access Journals (Sweden)

    Naine Tarun Bharath

    2016-05-01

    Full Text Available Numerical experiments for diagnosis of combustion of actual heterogeneous systems is performed on a one dimensional chain. The internal microstructure of actual heterogeneous systems is apriori unknown, various distributions like uniform, beta and normal have been considered for distributing neighboring reaction cells. Two cases, for the nature of distribution of heat release of reaction cells are taken into account, one with identical heat release and the other with disordered heat release. Role of different random distributions in describing heterogeneous combustion process are established in present paper. Particularly the normal distribution of arranging neighboring reaction cells has been found to be powerful methodology in explaining the combustion process of an actual heterogeneous system at higher ignition temperatures for both cases of distributing heat release. Validation of developed model with the experimental data of combustion of the CMDB propellants, gasless Ti+xSi system and different thermite mixtures is performed. Our results show that the experimental burning rates at higher ignition temperatures (ε>0.32 of the heterogeneous system are better reproduced theoretically with present model. We have also shown that different combustion limit for different thermite systems are the consequences of disordered heat release. Experimental data for thermite systems that have lower inflammability limits are analyzed in the view of disordered heat releases of cells. The model developed in the view of disordered heat releases reproduces the experimental burn rates and experimental combustion limit.

  11. Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface

    Directory of Open Access Journals (Sweden)

    anjali devi

    2015-01-01

    Full Text Available The effects of nonlinear radiation on hydromagnetic boundary layer flow and heat transfer over a shrinking surface is investigated in the present work. Using suitable similarity transformations, the governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations. The resultant equations which are highly nonlinear are solved numerically using Nachtsheim Swigert shooting iteration scheme together with Fourth Order Runge Kutta method. Numerical solutions for velocity, skin friction coefficient and temperature are obtained for various values of physical parameters involved in the study namely Suction parameter, Magnetic parameter, Prandtl number, Radiation parameter and Temperature ratio parameter. Numerical values for dimensionless rate of heat transfer are also obtained for various physical parameters and are shown through tables. The analytical solution of the energy equation when the radiation term is taken in linear form is obtained using Confluent hypergeometric function.

  12. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet.

    Science.gov (United States)

    Hady, Fekry M; Ibrahim, Fouad S; Abdel-Gaied, Sahar M; Eid, Mohamed R

    2012-04-22

    In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles.

  13. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  14. Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, M.C.; Tran, P.X.

    2006-01-01

    We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.

  15. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Science.gov (United States)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2016-04-01

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  16. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es; Solis, Javier; Siegel, Jan, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2016-04-25

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  17. Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law

    OpenAIRE

    López, Rosa; Sánchez, David

    2013-01-01

    We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two...

  18. A NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    YANJINHAI

    1996-01-01

    The existenoe and limit hehaviour of the solution for a kind of nonloeal noulinear boundary value condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the function of the total flux. When this part of boundary shrinks to a point in a certain way, this condition either results in a Dirac measure or simply disappears in the corresponding problem.

  19. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    Science.gov (United States)

    Nafari, F.; Ghoranneviss, M.

    2016-08-01

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.

  20. COYOTE: a finite-element computer program for nonlinear heat-conduction problems

    Energy Technology Data Exchange (ETDEWEB)

    Gartling, D.K.

    1982-10-01

    COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.

  1. Nonlinear heat conduction equations with memory: Physical meaning and analytical results

    Science.gov (United States)

    Artale Harris, Pietro; Garra, Roberto

    2017-06-01

    We study nonlinear heat conduction equations with memory effects within the framework of the fractional calculus approach to the generalized Maxwell-Cattaneo law. Our main aim is to derive the governing equations of heat propagation, considering both the empirical temperature-dependence of the thermal conductivity coefficient (which introduces nonlinearity) and memory effects, according to the general theory of Gurtin and Pipkin of finite velocity thermal propagation with memory. In this framework, we consider in detail two different approaches to the generalized Maxwell-Cattaneo law, based on the application of long-tail Mittag-Leffler memory function and power law relaxation functions, leading to nonlinear time-fractional telegraph and wave-type equations. We also discuss some explicit analytical results to the model equations based on the generalized separating variable method and discuss their meaning in relation to some well-known results of the ordinary case.

  2. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    Science.gov (United States)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  3. Instability of oxidation front during laser heating of metals in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, D.T.; Bunkin, V.F.; Edvabnyj, I.V.; Kirichenko, N.A.; Luk' yanchuk, B.S.; Khabibullaev, P.K. (AN SSSR, Moscow. Fizicheskij Inst.)

    1982-09-01

    Consideration is given to the features of a heterogeneous reaction - oxidation of metals by laser heating in the air. It is shown that even at uniform distribution of irradiation along the metal surface there can be local instabilities leading to nonuniformities of the oxide layer thickness. The development of localized (axially symmetric) perturbations is investigated. The role of surface and thermal diffusion in the development of instabilities is analysed in detail. In particular, it is shown that diffusion processes can lead to stabilization of instabilities of spatial scale considerably differing from the characteristic length of reagent diffusion up to the moment of a reaction.

  4. Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission. II. Inverse Compton Radiation Pair Fronts

    CERN Document Server

    Muslimov, A G; Muslimov, Alice K. Harding & Alexander

    2002-01-01

    We investigate the production of electron-positron pairs by inverse Compton scattered (ICS) photons above a pulsar polar cap (PC) and surface heating by returning positrons. This paper is a continuation of our self-consistent treatment of acceleration, pair dynamics and electric field screening above pulsar PCs. We calculate the altitude of the inverse Compton pair formation fronts, the flux of returning positrons and present the heating efficiencies and X-ray luminosities. We revise pulsar death lines implying cessation of pair formation, and present them in surface magnetic field-period space. We find that virtually all known radio pulsars are capable of producing pairs by resonant and non-resonant ICS photons radiated by particles accelerated above the PC in a pure star-centered dipole field, so that our ICS pair death line coincides with empirical radio pulsar death. Our calculations show that ICS pairs are able to screen the accelerating electric field only for high neutron star surface temperatures and ...

  5. New analytical method for solving Burgers' and nonlinear heat transfer equations and comparison with HAM

    Science.gov (United States)

    Rashidi, M. M.; Erfani, E.

    2009-09-01

    In this study, we present a numerical comparison between the differential transform method (DTM) and the homotopy analysis method (HAM) for solving Burgers' and nonlinear heat transfer problems. The first differential equation is the Burgers' equation serves as a useful model for many interesting problems in applied mathematics. The second one is the modeling equation of a straight fin with a temperature dependent thermal conductivity. In order to show the effectiveness of the DTM, the results obtained from the DTM is compared with available solutions obtained using the HAM [M.M. Rashidi, G. Domairry, S. Dinarvand, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 708-717; G. Domairry, M. Fazeli, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 489-499] and whit exact solutions. The method can easily be applied to many linear and nonlinear problems. It illustrates the validity and the great potential of the differential transform method in solving nonlinear partial differential equations. The obtained results reveal that the technique introduced here is very effective and convenient for solving nonlinear partial differential equations and nonlinear ordinary differential equations that we are found to be in good agreement with the exact solutions.

  6. Hybrid transfinite element modeling/analysis of nonlinear heat conduction problems involving phase change

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

  7. Directed motion generated by heat bath nonlinearly driven by external noise

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, J Ray [Department of Physics, Katwa College, Katwa, Burdwan 713 130, West Bengal (India); Barik, D [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Banik, S K [Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435 (United States)

    2007-12-07

    Based on the heat bath system approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation, we construct a Langevin equation with multiplicative noise- and space-dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase-induced current as a consequence of state-dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise.

  8. Numerical identification of boundary conditions on nonlinearly radiating inverse heat conduction problems

    Science.gov (United States)

    Murio, Diego A.

    1991-01-01

    An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.

  9. Nonlinear thermal convection in a layer of nanofluid under G-jitter and internal heating effects

    Directory of Open Access Journals (Sweden)

    Bhadauria B. S.

    2014-01-01

    Full Text Available This paper deals with a mathematical model of controlling heat transfer in nanofluids. The time-periodic vertical vibrations of the system are considered to effect an external control of heat transport along with internal heating effects. A weakly non-linear stability analysis is based on the five-mode Lorenz model using which the Nusselt number is obtained as a function of the thermal Rayleigh number, nano-particle concentration based Rayleigh number, Prandtl number, Lewis number, modified diffusivity ratio, amplitude and frequency of modulation. It is shown that modulation can be effectively used to control convection and thereby heat transport. Further, it is found that the effect of internal Rayleigh number is to enhance the heat and nano-particles transport.

  10. Casson fluid flow and heat transfer over a nonlinearly stretching surface

    Institute of Scientific and Technical Information of China (English)

    Swati Mukhopadhyay

    2013-01-01

    A boundary layer analysis is presented for non-Newtonian fluid flow and heat transfer over a nonlinearly stretching surface.The Casson fluid model is used to characterize the non-Newtonian fluid behavior.By using suitable transformations,the governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations.Numerical solutions of these equations are obtained with the shooting method.The effect of increasing Casson parameter is to suppress the velocity field.However the temperature is enhanced with the increasing Casson parameter.

  11. Reconstruction of a nonlinear heat transfer law from uncomplete boundary data by means of infrared thermography

    Science.gov (United States)

    Clarelli, Fabrizio; Inglese, Gabriele

    2016-11-01

    Heat exchange between a conducting plate and the environment is described here by means of an unknown nonlinear function F of the temperature u. In this paper we construct a method for recovering F by means of polynomial expansion, perturbation theory and the toolbox of thermal inverse problems. We test our method on two examples: In the first one, we heat the plate (initially at 20 ^\\circ {{C}}) from one side, read the temperature on the same side and identify the heat exchange law on the opposite side (active thermography); in the second example we measure the temperature of one side of the plate (initially at 1500 ^\\circ {{C}}) and study the heat exchange while cooling (passive thermography).

  12. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: rabiamalik.qau@gmail.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)

    2016-05-15

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  13. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet

    OpenAIRE

    Masood Khan; Hashim

    2015-01-01

    This article studies the Carreau viscosity model (which is a generalized Newtonian model) and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical ...

  14. Nonlinear Adaptive Dynamic Output-Feedback Power-Level Control of Nuclear Heating Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-01-01

    Full Text Available Due to the high safety performance of small nuclear reactors, there is a promising future for small reactors. Nuclear heating reactor (NHR is a small reactor that has many advanced safety features such as the integrated arrangement, natural circulation at any power levels, self-pressurization, hydraulic control rod driving, and passive residual heating removing and can be applied to the fields of district heating, seawater desalination, and electricity production. Since the NHR dynamics has strong nonlinearity and uncertainty, it is meaningful to develop the nonlinear adaptive power-level control technique. From the idea of physically based control design method, a novel nonlinear adaptive power-level control is given for the NHR in this paper. It is theoretically proved that this newly built controller does not only provide globally asymptotic closed-loop stability but is also adaptive to the system uncertainty. Numerical simulation results show the feasibility of this controller and the relationship between the performance and controller parameters.

  15. Co-operation, Competition and Crowding: A Discrete Framework Linking Allee Kinetics, Nonlinear Diffusion, Shocks and Sharp-Fronted Travelling Waves

    Science.gov (United States)

    Johnston, Stuart T.; Baker, Ruth E.; McElwain, D. L. Sean; Simpson, Matthew J.

    2017-01-01

    Invasion processes are ubiquitous throughout cell biology and ecology. During invasion, individuals can become isolated from the bulk population and behave differently. We present a discrete, exclusion-based description of the birth, death and movement of individuals. The model distinguishes between individuals that are part of, or are isolated from, the bulk population by imposing different rates of birth, death and movement. This enables the simulation of various co-operative or competitive mechanisms, where there is either a positive or negative benefit associated with being part of the bulk population, respectively. The mean-field approximation of the discrete process gives rise to 22 different classes of partial differential equation, which can include Allee kinetics and nonlinear diffusion. Here we examine the ability of each class of partial differential equation to support travelling wave solutions and interpret the long time behaviour in terms of the individual-level parameters. For the first time we show that the strong Allee effect and nonlinear diffusion can result in shock-fronted travelling waves. We also demonstrate how differences in group and individual motility rates can influence the persistence of a population and provide conditions for the successful invasion of a population. PMID:28195135

  16. Co-operation, Competition and Crowding: A Discrete Framework Linking Allee Kinetics, Nonlinear Diffusion, Shocks and Sharp-Fronted Travelling Waves

    Science.gov (United States)

    Johnston, Stuart T.; Baker, Ruth E.; McElwain, D. L. Sean; Simpson, Matthew J.

    2017-02-01

    Invasion processes are ubiquitous throughout cell biology and ecology. During invasion, individuals can become isolated from the bulk population and behave differently. We present a discrete, exclusion-based description of the birth, death and movement of individuals. The model distinguishes between individuals that are part of, or are isolated from, the bulk population by imposing different rates of birth, death and movement. This enables the simulation of various co-operative or competitive mechanisms, where there is either a positive or negative benefit associated with being part of the bulk population, respectively. The mean-field approximation of the discrete process gives rise to 22 different classes of partial differential equation, which can include Allee kinetics and nonlinear diffusion. Here we examine the ability of each class of partial differential equation to support travelling wave solutions and interpret the long time behaviour in terms of the individual-level parameters. For the first time we show that the strong Allee effect and nonlinear diffusion can result in shock-fronted travelling waves. We also demonstrate how differences in group and individual motility rates can influence the persistence of a population and provide conditions for the successful invasion of a population.

  17. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    Science.gov (United States)

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method.

  18. First integrals and analytical solutions of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient

    Indian Academy of Sciences (India)

    EMRULLAH YA¸SAR; YAKUP YILDIRIM; ILKER BURAK GIRESUNLU

    2016-08-01

    Fin materials can be observed in a variety of engineering applications. They are used to ease the dissipation of heat from a heated wall to the surrounding environment. In this work, we consider a nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. The equation(s) under study are highly nonlinear. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. Firstly, we consider the Lie group analysis for different cases of thermal conductivity and the heat transfer coefficients. These classifications are obtained from the Lie group analysis. Then, the first integrals of the nonlinear straight fin problem are constructed by three methods, namely, Noether’s classical method, partial Noether approach and Ibragimov’s nonlocal conservation method. Some exact analytical solutions are also constructed. The obtained result is also compared with the result obtained by other methods.

  19. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  20. Forced Convective Heat Transfer in Boundary Layer Flow of Sisko Fluid over a Nonlinear Stretching Sheet

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden’s method in the domain. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature. PMID:24949738

  1. Analysis and Application of Advanced Control Strategies to a Heating Element Nonlinear Model

    Science.gov (United States)

    Turhan, C.; Simani, S.; Zajic, I.; Gokcen Akkurt, G.

    2017-01-01

    This paper presents the design of different control strategies applied to a heating element nonlinear model. The description of this heating element was obtained exploiting a data-driven and physically meaningful nonlinear continuous-time model, which represents a test-bed used in passive air conditioning for sustainable housing applications. This model has low complexity while achieving high simulation performance. The physical meaningfulness of the model provides an enhanced insight into the performance and functionality of the system. In return, this information can be used during the system simulation and improved model- based and data-driven control designs for tight temperature regulation. The main purpose of this study is thus to give several examples of viable and practical designs of control schemes with application to this heating element model. Moreover, extensive simulations and Monte- Carlo analysis are the tools for assessing experimentally the main features of the proposed control schemes, in the presence of modelling and measurement errors. These developed control methods are also compared in order to evaluate advantages and drawbacks of the considered solutions. Finally, the exploited simulation tools can serve to highlight the potential application of the proposed control strategies to real air conditioning systems.

  2. Nonlinear phenomena arising from radio wave heating of the lower ionosphere

    Science.gov (United States)

    Tomko, A. A.

    1981-08-01

    This document describes a theoretical and experimental study of the interaction of high power, high frequency radio waves with the lower ionosphere. The theoretical calculations presented here show that the electron temperature of the ionospheric plasma can be greatly enhanced when the plasma is irradiated by a powerful groundbased HF transmitter with an effective radiated power of the order of 100 MW. If this plasma heating is maintained for times exceeding a few seconds, the composition of the plasma can also be altered. These temperature and composition modifications cause significant changes in the plasma conductivity and wave absorption in the medium. Two experiments were conducted in order to test for the predicted absorption and conductivity modifications: a vertical incidence plus absorption experiment and a nonlinear demodulation experiment. Data from the absorption experiment clearly show a large (9 dB) increase in wave absorption at 2.4 MHz due to a high power (60 MW ERP) HF heating of the ionosphere. The nonlinear demodulation experiment generated strong VLF radiation when the ionosphere was irradiated by a powerful modulated HF wave. These VLF signals are believed to be due to HF heating induced conductivity modulation of the dynamo current system.

  3. Nonlinear Lyapunov-based boundary control of distributed heat transfer mechanisms in membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2015-07-01

    This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.

  4. Blow-up in p-Laplacian heat equations with nonlinear boundary conditions

    Science.gov (United States)

    Ding, Juntang; Shen, Xuhui

    2016-10-01

    In this paper, we investigate the blow-up of solutions to the following p-Laplacian heat equations with nonlinear boundary conditions: {l@{quad}l}(h(u))_t =nabla\\cdot(|nabla u|pnabla u)+k(t)f(u) &{in } Ω×(0,t^{*}), |nabla u|ppartial u/partial n=g(u) &on partialΩ×(0,t^{*}), u(x,0)=u0(x) ≥ 0 & {in } overline{Ω},. where {p ≥ 0} and {Ω} is a bounded convex domain in {RN}, {N ≥ 2} with smooth boundary {partialΩ}. By constructing suitable auxiliary functions and using a first-order differential inequality technique, we establish the conditions on the nonlinearities and data to ensure that the solution u( x, t) blows up at some finite time. Moreover, the upper and lower bounds for the blow-up time, when blow-up does occur, are obtained.

  5. Fully coupled heat conduction and deformation analyses of nonlinear viscoelastic composites

    KAUST Repository

    Khan, Kamran

    2012-05-01

    This study presents an integrated micromechanical model-finite element framework for analyzing coupled heat conduction and deformations of particle-reinforced composite structures. A simplified micromechanical model consisting of four sub-cells, i.e., one particle and three matrix sub-cells is formulated to obtain the effective thermomechanical properties and micro-macro field variables due to coupled heat conduction and nonlinear thermoviscoelastic deformation of a particulate composite that takes into account the dissipation of energy from the viscoelastic constituents. A time integration algorithm for simultaneously solving the equations that govern heat conduction and thermoviscoelastic deformations of isotropic homogeneous materials is developed. The algorithm is then integrated to the proposed micromechanical model. A significant temperature generation due to the dissipation effect in the viscoelastic matrix was observed when the composite body is subjected to cyclic mechanical loadings. Heat conduction due to the dissipation of the energy cannot be ignored in predicting the factual temperature and deformation fields within the composite structure, subjected to cyclic loading for a long period. A higher creep resistant matrix material or adding elastic particles can lower the temperature generation. Our analyses suggest that using particulate composites and functionally graded materials can reduce the heat generation due to energy dissipation. © 2012 Elsevier Ltd.

  6. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  7. Self-similar solutions for a superdiffusive heat equation with gradient nonlinearity

    Directory of Open Access Journals (Sweden)

    Marcelo Fernandes de Almeida

    2016-09-01

    Full Text Available This article studies the existence, stability, self-similarity and symmetries of solutions for a superdiffusive heat equation with superlinear and gradient nonlinear terms with initial data in new homogeneous Besov-Morrey type spaces. Unlike in previous works on such time-fractional partial differential equations of order $\\alpha\\in(1,2$, we take non null initial velocities into consideration, where new difficulties arise from. We overcome them by developing an appropriate decomposition of the two-parametric Mittag-Leffler function to obtain Mikhlin-type estimates and obtain our existence theorem.

  8. Solution of Nonlinear Coupled Heat and Moisture Transport Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    T. Krejčí

    2004-01-01

    Full Text Available This paper deals with a numerical solution of coupled of heat and moisture transfer using the finite element method. The mathematical model consists of balance equations of mass, energy and linear momentum and of the appropriate constitutive equations. The chosen macroscopic field variables are temperature, capillary pressures, gas pressure and displacement. In contrast with pure mechanical problems, there are several difficulties which require special attention. Systems of algebraic equations arising from coupled problems are generally nonlinear, and the matrices of such systems are nonsymmetric and indefinite. The first experiences of solving complicated coupled problems are mentioned in this paper. 

  9. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J. [ITER Organisation, 13607 St. Paul-Lez-Durance Cedex (France); Dlougach, E.; Krylov, A. [RRC Kurchatov institute, 1, Kurchatov Sq, Moscow, 123182 (Russian Federation)

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  10. Stagnation-Point Flow toward a Vertical, Nonlinearly Stretching Sheet with Prescribed Surface Heat Flux

    Directory of Open Access Journals (Sweden)

    Sin Wei Wong

    2013-01-01

    Full Text Available An analysis is carried out to study the steady two-dimensional stagnation-point flow of an incompressible viscous fluid towards a stretching vertical sheet. It is assumed that the sheet is stretched nonlinearly, with prescribed surface heat flux. This problem is governed by three parameters: buoyancy, velocity exponent, and velocity ratio. Both assisting and opposing buoyant flows are considered. The governing partial differential equations are transformed into a system of ordinary differential equations and solved numerically by finite difference Keller-box method. The flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Dual solutions are found in the opposing buoyant flows, while the solution is unique for the assisting buoyant flows.

  11. Some exact solutions of nonlinear fin problem for steady heat transfer in longitudinal fin with different profiles

    CSIR Research Space (South Africa)

    Mhlongo, MD

    2014-05-01

    Full Text Available Solutions of Nonlinear Fin Problem for Steady Heat Transfer in Longitudinal Fin with Different Profiles M. D. Mhlongo1 and R. J. Moitsheki2 1 Defence, Peace, Safety and Security, Landward Sciences, Council for Scientific and Industrial Research, P.O. Box 395... efficiency are studied. 1. Introduction Heat transfer through extended surfaces has been studied quite extensively [1], perhaps because of its frequent applica- tions in engineering. Through the process of mathematical modeling, heat transfer problems...

  12. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    Science.gov (United States)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the

  13. Weak Nonlinear Thermal Instability Under Vertical Magnetic Field, Temperature Modulation And Heat Source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-02-01

    Full Text Available The present paper deals with a weak nonlinear stability problem of magneto-convection in an electrically conducting Newtonian liquid, confined between two horizontal surfaces, under a constant vertical magnetic field, and subjected to an imposed time-periodic boundary temperature (ITBT along with internal heating effects. In the case of (ITBT, the temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent oscillatory part. The temperature of both walls is modulated in this case. The disturbance is expanded in terms of power series of amplitude of convection, which is assumed to be small. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Using Ginzburg-Landau equation, the effect of modulations on heat transport is analyzed. Effect of various parameters on the heat transport is also discussed. Further, it is found that the heat transport can be controlled by suitably adjusting the external parameters of the system.

  14. Flow and Heat Transfer to Sisko Nanofluid over a Nonlinear Stretching Sheet.

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available The two-dimensional boundary layer flow and heat transfer to Sisko nanofluid over a non-linearly stretching sheet is scrutinized in the concerned study. Our nanofluid model incorporates the influences of the thermophoresis and Brownian motion. The convective boundary conditions are taken into account. Implementation of suitable transformations agreeing with the boundary conditions result in reduction of the governing equations of motion, energy and concentration into non-linear ordinary differential equations. These coupled non-linear ordinary differential equations are solved analytically by using the homotopy analysis method (HAM and numerically by the shooting technique. The effects of the thermophoresis and Brownian motion parameters on the temperature and concentration fields are analyzed and graphically presented. The secured results make it clear that the temperature distribution is an increasing function of the thermophoresis and Brownian motion parameters and concentration distribution increases with the thermophoresis parameter but decreases with the Brownian motion parameter. To see the validity of the present work, we made a comparison with the numerical results as well as previously published work with an outstanding compatibility.

  15. Flow and Heat Transfer to Sisko Nanofluid over a Nonlinear Stretching Sheet.

    Science.gov (United States)

    Khan, Masood; Malik, Rabia; Munir, Asif; Khan, Waqar Azeem

    2015-01-01

    The two-dimensional boundary layer flow and heat transfer to Sisko nanofluid over a non-linearly stretching sheet is scrutinized in the concerned study. Our nanofluid model incorporates the influences of the thermophoresis and Brownian motion. The convective boundary conditions are taken into account. Implementation of suitable transformations agreeing with the boundary conditions result in reduction of the governing equations of motion, energy and concentration into non-linear ordinary differential equations. These coupled non-linear ordinary differential equations are solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting technique. The effects of the thermophoresis and Brownian motion parameters on the temperature and concentration fields are analyzed and graphically presented. The secured results make it clear that the temperature distribution is an increasing function of the thermophoresis and Brownian motion parameters and concentration distribution increases with the thermophoresis parameter but decreases with the Brownian motion parameter. To see the validity of the present work, we made a comparison with the numerical results as well as previously published work with an outstanding compatibility.

  16. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array.

    Science.gov (United States)

    Yuldashev, Petr V; Shmeleva, Svetlana M; Ilyin, Sergey A; Sapozhnikov, Oleg A; Gavrilov, Leonid R; Khokhlova, Vera A

    2013-04-21

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm(-2) in the free field in water and 40 W cm(-2) in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.

  17. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet

    Directory of Open Access Journals (Sweden)

    Masood Khan

    2015-10-01

    Full Text Available This article studies the Carreau viscosity model (which is a generalized Newtonian model and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical values of the power law exponent n. The modeled boundary layer conservation equations are converted to non-linear coupled ordinary differential equations by a suitable transformation. Numerical solution of the resulting equations are obtained by using the Runge-Kutta Fehlberg method along with shooting technique. This analysis reveals many important physical aspects of flow and heat transfer. Computations are performed for different values of the stretching parameter (m, the Weissenberg number (We and the Prandtl number (Pr. The obtained results show that for shear thinning fluid the fluid velocity is depressed by the Weissenberg number while opposite behavior for the shear thickening fluid is observed. A comparison with previously published data in limiting cases is performed and they are in excellent agreement.

  18. Front propagation into unstable states : universal algebraic convergence towards uniformly translating pulled fronts

    NARCIS (Netherlands)

    U. Ebert (Ute); W. van Saarloos

    1999-01-01

    textabstractDepending on the nonlinear equation of motion and on the initial conditions, different regions of a front may dominate the propagation mechanism. The most familiar case is the so-called pushed front, whose speed is determined by the nonlinearities in the front region itself. Pushed dynam

  19. Solid-State Radio Frequency Plasma Heating Using a Nonlinear Transmission Line

    Science.gov (United States)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia

    2015-11-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems, which typically require high power gyrotrons or klystrons, associated power supplies, waveguides and vacuum systems. The cost and complexity of these systems can potentially be reduced with a nonlinear transmission line (NLTL) based system. In the past, NLTLs have lacked a high voltage driver that could produce long duration high voltage pulses with fast rise times at high pulse repetition frequency. Eagle Harbor Technologies, Inc. (EHT) has created new high voltage nanosecond pulser, which combined with NLTL technology will produce a low-cost, fully solid-state architecture for the generation of the RF frequencies (0.5 to 10 GHz) and peak power levels (~ 10 MW) necessary for plasma heating and diagnostic systems for the validation platform experiments within the fusion science community. The proposed system does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. Design details and initial bench testing results for the new RF system will be presented. This work is supported under DOE Grant # DE-SC0013747.

  20. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.

    Science.gov (United States)

    Sheng, Shiqi; Tu, Z C

    2015-02-01

    We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible thermodynamics. For tight-coupling heat engines, a generic constitutive relation for nonlinear response accurate up to the quadratic order is derived from the stalling condition and the symmetry argument. By applying this generic nonlinear constitutive relation to finite-time thermodynamics, we obtain the necessary and sufficient condition for the universality of efficiency at maximum power, which states that a tight-coupling heat engine takes the universal efficiency at maximum power up to the quadratic order if and only if either the engine symmetrically interacts with two heat reservoirs or the elementary thermal energy flowing through the engine matches the characteristic energy of the engine. Hence we solve the following paradox: On the one hand, the quadratic term in the universal efficiency at maximum power for tight-coupling heat engines turned out to be a consequence of symmetry [Esposito, Lindenberg, and Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009); Sheng and Tu, Phys. Rev. E 89, 012129 (2014)]; On the other hand, typical heat engines such as the Curzon-Ahlborn endoreversible heat engine [Curzon and Ahlborn, Am. J. Phys. 43, 22 (1975)] and the Feynman ratchet [Tu, J. Phys. A 41, 312003 (2008)] recover the universal efficiency at maximum power regardless of any symmetry.

  1. Ion Acceleration via "Nonlinear Vacuum Heating" by the Laser Pulse Obliquely Incident on a Thin Foil Target

    CERN Document Server

    Yogo, A; Mori, M; Ogura, K; Esirkepov, T Zh; Pirozhkov, A S; Kanasaki, M; Sakaki, H; Fukuda, Y; Bolton, P R; Nishimura, H; Kondo, K

    2015-01-01

    Dependence of the energy of ions accelerated during interaction of the laser pulse obliquelly incident on the thin foil target on the laser polarization is studied experimentally and theoretically. We found that the ion energy being maximal for the p-polarization gradually decreases when the pulse becomes s-polarized. The experimentally found dependences of the ion energy are explained by invoking the anomalous electron heating which results in high electrostatic potential formation at the target surface. Anomalous heating of electrons beyond the energy of quiver motion in the laser field is described within the framework of theoretical model of driven oscillator with a step-like nonlinearity. We have demonstrated that the electron anomalous heating can be realized in two regimes: nonlinear resonance and stochastic heating, depending on the extent of stochasticity. We have found the accelerated ion energy scaling determined by the laser intensity, pulse duration, polarization angle and incident angle.

  2. Existence and non-existence results for a nonlinear heat equation

    Directory of Open Access Journals (Sweden)

    Canan Celik

    2007-02-01

    Full Text Available In this study, we consider the nonlinear heat equation $$displaylines{ u_{t}(x,t = Delta u(x,t + u(x,t^p quad hbox{in } Omega imes (0,T,cr Bu(x,t = 0 quad hbox{on } partialOmega imes (0,T,cr u(x,0 = u_0(x quad hbox{in } Omega,}$$ with Dirichlet and mixed boundary conditions, where $Omega subset mathbb{R}^n$ is a smooth bounded domain and $p = 1+ 2 /n$ is the critical exponent. For an initial condition $u_0 in L^1$, we prove the non-existence of local solution in $L^1$ for the mixed boundary condition. Our proof is based on comparison principle for Dirichlet and mixed boundary value problems. We also establish the global existence in $L^{1+epsilon}$ to the Dirichlet problem, for any fixed $epsilon > 0$ with $|u_0|_{1+epsilon}$ sufficiently small.

  3. Nonlinear Radiative Heat Transfer in Blasius and Sakiadis Flows Over a Curved Surface

    Science.gov (United States)

    Naveed, M.; Abbas, Z.; Sajid, M.

    2017-01-01

    This study investigates the heat transfer characteristics for Blasius and Sakiadis flows over a curved surface coiled in a circle of radius R having constant curvature. Effects of thermal radiation are also analyzed for nonlinear Rosseland approximation which is valid for all values of the temperature difference between the fluid and the surface. The considered physical situation is represented by a mathematical model using curvilinear coordinates. Similar solutions of the developed partial differential equations are evaluated numerically using a shooting algorithm. Fluid velocity, skin-friction coefficient, temperature and local Nusselt number are the quantities of interest interpreted for the influence of pertinent parameters. A comparison of the present and the published data for a flat surface validates the obtained numerical solution for the curved geometry.

  4. Nonlinearity of ocean heat uptake during warming and cooling in the FAMOUS climate model

    Science.gov (United States)

    Bouttes, N.; Good, P.; Gregory, J. M.; Lowe, J. A.

    2015-04-01

    Atmospheric CO2 concentration is expected to continue rising in the coming decades, but natural or artificial processes may eventually reduce it. We show that, in the FAMOUS atmosphere-ocean general circulation model, the reduction of ocean heat content as radiative forcing decreases is greater than would be expected from a linear model simulation of the response to the applied forcings. We relate this effect to the behavior of the Atlantic meridional overturning circulation (AMOC): the ocean cools more efficiently with a strong AMOC. The AMOC weakens as CO2 rises, then strengthens as CO2 declines, but temporarily overshoots its original strength. This nonlinearity comes mainly from the accumulated advection of salt into the North Atlantic, which gives the system a longer memory. This implies that changes observed in response to different CO2 scenarios or from different initial states, such as from past changes, may not be a reliable basis for making projections.

  5. Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2016-09-19

    This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.

  6. Non-linear heat and mass transfer in a MHD Homann nanofluid flow through a porous medium with chemical reaction, heat generation and uniform inflow

    Science.gov (United States)

    EL-Dabe, N. T.; Attia, H. A.; Essawy, M. A. I.; Ramadan, A. A.; Abdel-Hamid, A. H.

    2016-11-01

    The steady MHD axisymmetric flow of an incompressible viscous electrically conducting nanofluid impinging on a permeable plate is investigated with heat and mass transfer. An external uniform magnetic field as well as a uniform inflow, in the presence of either suction or injection, are applied normal to the plate. The effects of heat (generation/absorption) and chemical reaction have been accentuated. This study indicates the incorporated influence of both the thermophoresis phenomenon and the Brownian behavior. Numerical solutions for the governing non-linear momentum, energy and nanoparticle equations have been obtained. The rates of heat and mass transfer are presented and discussed.

  7. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    OpenAIRE

    Miroslav M Živković; Aleksandar V Nikolić; Radovan B Slavković; Fatima T Živić

    2010-01-01

    This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE) analysis, starting from the differential equation of energy balance, taking into account the initial and boundary condi...

  8. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Mabood, F., E-mail: mabood1971@yahoo.com [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia); Khan, W.A., E-mail: wkhan_2000@yahoo.com [Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Ismail, A.I.M., E-mail: izani@cs.usm.my [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2015-01-15

    The MHD laminar boundary layer flow with heat and mass transfer of an electrically conducting water-based nanofluid over a nonlinear stretching sheet with viscous dissipation effect is investigated numerically. This is the extension of the previous study on flow and heat transfer of a nanofluid over nonlinear stretching sheet (Rana and Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 212–226). The governing equations are reduced to nonlinear ordinary differential equations using suitable similarity transformation. The effects of the governing parameters on dimensionless quantities like velocity, temperature, nanoparticle concentration, friction factor, local Nusselt, and Sherwood numbers are explored. It is found that the dimensionless velocity decreases and temperature increases with magnetic parameter, and the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters. - Highlights: • MHD flow of nanofluid and heat transfer over a nonlinear stretching sheet has not been studied yet. • Numerical solutions are computed with Runge–Kutta Fehlberg fourth–fifth order method. • Previous published results can be obtained from present study. • Reduced Nusselt and Sherwood numbers decrease with magnetic parameter.

  9. Macroscopic heat transport equations and heat waves in nonequilibrium states

    Science.gov (United States)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  10. Non-Linear Advanced Control of the LHC Inner Triplet Heat Exchanger Test Unit

    CERN Document Server

    Blanco-Viñuela, E; De Prada-Moraga, C; Cristea, S

    2002-01-01

    The future Large Hadron Collider (LHC) at CERN will include eight interaction region final focus magnet systems, the so-called "Inner Triplet", one on each side of the four beam collision points. The Inner Triplets will be cooled in a static bath of pressurized He II nominally at 1.9 K. This temperature is a control parameter and has very severe constraints in order to avoid the transition from the superconducting to normal resistive state. The main difference in these special zones with respect to a regular LHC cell is higher dynamic heat load unevenly distributed which modifies largely the process characteristics and hence the controller performance. Several control strategies have already been tested at CERN in a pilot plant (LHC String Test) which reproduced a LHC half-cell. In order to validate a common control structure along the whole LHC ring, a Nonlinear Model Predictive Control (NMPC) has been developed and implemented in the Inner Triplet Heat Exchanger Unit (IT-HXTU) at CERN. Automation of the Inn...

  11. Nonlinear convection stagnation point heat transfer and MHD fluid flow in porous medium towards a permeable shrinking sheet

    CERN Document Server

    Kumar, Rakesh

    2015-01-01

    This investigation deals with the analysis of stagnation point heat transfer and corresponding flow features of hydromagnetic viscous incompressible fluid over a vertical shrinking sheet. The considered sheet is assumed to be permeable and subject to addition of stagnation point to control the generated vorticity in the boundary layer. The sheet is placed on the right side of the fluid saturated porous medium which is having permeability of specified form. Nonlinear convection waves in the flow field are realized due to the envisaged nonlinear relation between density and temperature. The equations governing the nonlinear convection boundary layer flow are modeled and simplified using similarity transformations. The economized equations are solved for numerical solutions by employing the implicit finite difference scheme also known as Keller-box method. The influence of the associated parameters of the problem on velocity and temperature distributions, skin friction and rate of heat transfer are presented thr...

  12. X-RAY SOURCE HEIGHTS IN A SOLAR FLARE: THICK-TARGET VERSUS THERMAL CONDUCTION FRONT HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Reep, J. W. [National Research Council Post-Doc Program, Naval Research Laboratory, Washington, DC 20375 (United States); Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Holman, G. D., E-mail: jeffrey.reep.ctr@nrl.navy.mil, E-mail: stephen.bradshaw@rice.edu, E-mail: gordon.d.holman@nasa.gov [Solar Physics Laboratory, Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-10

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O’Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  13. X-ray Source Heights in a Solar Flare: Thick-target versus Thermal Conduction Front Heating

    CERN Document Server

    Reep, Jeffrey W; Holman, Gordon D

    2015-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 28 November 2002 C1.1 flare, first observed with RHESSI by Sui et al. 2006 and quantitatively analyzed by O'Flannagain et al. 2013, very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  14. Onset and non-linear regimes of Soret-induced convection in binary mixtures heated from above.

    Science.gov (United States)

    Lyubimova, T; Zubova, N; Shevtsova, V

    2017-03-01

    The paper deals with the investigation of the onset and non-linear regimes of convection of liquid binary mixtures with negative Soret effect heated from above. The linear stability of a convectionless state in a horizontal layer is studied by the numerical solution of the linearized problem on the temporal evolution of small perturbations of the unsteady base state. Non-linear regimes of convection are investigated by the numerical solution of the non-linear unsteady equations for a horizontally elongated rectangular cavity. The calculations are performed for water-ethanol and water-isopropanol liquid mixtures and for colloidal suspensions. The dependences of the instability onset time and wave number of the most dangerous perturbations on the solutal Rayleigh number (gravity level) obtained by a linear stability analysis and non-linear calculations are found to be in a very good agreement. A favorable comparison with the existing experimental and numerical data is presented.

  15. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    Directory of Open Access Journals (Sweden)

    Miroslav M Živković

    2010-01-01

    Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions

  16. Effects of Heat Transfer and Nonlinear Slip on the Steady Flow of Couette Fluid by Means of Chebyshev Spectral Method

    Science.gov (United States)

    Ellahi, Rahmat; Wang, Xinil; Hameed, Muhammad

    2014-02-01

    This article is concerned with the study of heat transfer and nonlinear slip effects on the Couette flow of a third-grade fluid. Numerical solutions are obtained by solving nonlinear differential equations using the higher-order Chebyshev spectral method. The results for no slip and no thermal slip become special cases of this study. Moreover, the results for Poiseuille flow can be obtained as a special case from the generalized Couette flow analysis by setting the plate velocity to zero. Graphical results for involved pertinent parameters are sketched and examined.

  17. On the Numerical Solution of the Nonlinear Radiation Heat Transfer Problem in a Three-Dimensional Flow

    Science.gov (United States)

    Mushtaq, Ammar; Mustafa, Meraj; Hayat, Tasawar; Alsaedi, Ahmed

    2014-12-01

    The steady laminar three-dimensional magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a stretching sheet is investigated. The sheet is linearly stretched in two lateral directions. Heat transfer analysis is performed by utilizing a nonlinear radiative heat flux in Rosseland approximation for thermal radiation. Two different wall conditions, namely (i) constant wall temperature and (ii) prescribed surface temperature are considered. The developed nonlinear boundary value problems (BVPs) are solved numerically through fifth-order Runge-Kutta method using a shooting technique. To ascertain the accuracy of results the solutions are also computed by using built in function bvp4c of MATLAB. The behaviours of interesting parameters are carefully analyzed through graphs for velocity and temperature distributions. The dimensionless expressions of wall shear stress and heat transfer rate at the sheet are evaluated and discussed. It is seen that a point of inflection of the temperature function exists for sufficiently large values of wall to ambient temperature ratio. The solutions are in excellent agreement with the previous studies in a limiting sense. To our knowledge, the novel idea of nonlinear thermal radiation in three-dimensional flow is just introduced here.

  18. CHAOS-REGULARIZATION HYBRID ALGORITHM FOR NONLINEAR TWO-DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEM

    Institute of Scientific and Technical Information of China (English)

    王登刚; 刘迎曦; 李守巨

    2002-01-01

    A numerical model of nonlinear two-dimensional steady inverse heat conduction problem was established considering the thermal conductivity changing with temperature.Combining the chaos optimization algorithm with the gradient regularization method, a chaos-regularization hybrid algorithm was proposed to solve the established numerical model.The hybrid algorithm can give attention to both the advantages of chaotic optimization algorithm and those of gradient regularization method. The chaos optimization algorithm was used to help the gradient regalarization method to escape from local optima in the hybrid algorithm. Under the assumption of temperature-dependent thermal conductivity changing with temperature in linear rule, the thermal conductivity and the linear rule were estimated by using the present method with the aid of boundary temperature measurements. Numerical simulation results show that good estimation on the thermal conductivity and the linear function can be obtained with arbitrary initial guess values, and that the present hybrid algorithm is much more efficient than conventional genetic algorithm and chaos optimization algorithm.

  19. Discretisation of the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements

    Directory of Open Access Journals (Sweden)

    E. D. Resende

    2007-09-01

    Full Text Available The freezing process is considered as a propagation problem and mathematically classified as an "initial value problem." The mathematical formulation involves a complex situation of heat transfer with simultaneous changes of phase and abrupt variation in thermal properties. The objective of the present work is to solve the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements. This technique has not yet been applied to freezing processes and represents an alternative numerical approach in this area. The results obtained confirmed the good capability of the numerical method, which allows the simulation of the freezing process in approximately one minute of computer time, qualifying its application in a mathematical optimising procedure. The influence of the latent heat released during the crystallisation phenomena was identified by the significant increase in heat load in the early stages of the freezing process.

  20. Stagnation-Point Flow and Heat Transfer over a Nonlinearly Stretching/Shrinking Sheet in a Micropolar Fluid

    Directory of Open Access Journals (Sweden)

    Khairy Zaimi

    2014-01-01

    Full Text Available This paper considers the problem of a steady two-dimensional stagnation-point flow and heat transfer of an incompressible micropolar fluid over a nonlinearly stretching/shrinking sheet. A similarity transformation is employed to convert the partial differential equations into nonlinear ordinary ones which are then solved numerically using a shooting method. Numerical results obtained are presented graphically, showing the effects of the micropolar or material parameter and the stretching/shrinking parameter on the flow field and heat transfer characteristics. The dual solutions are found to exist in a limited range of the stretching/shrinking parameter for the shrinking case, while unique solutions are possible for all positive values of the stretching/shrinking parameter (stretching case. It is also observed that the skin friction coefficient and the magnitude of the local Nusselt number increase as the material parameter increases.

  1. Some Exact Solutions of Nonlinear Fin Problem for Steady Heat Transfer in Longitudinal Fin with Different Profiles

    Directory of Open Access Journals (Sweden)

    M. D. Mhlongo

    2014-01-01

    Full Text Available One-dimensional steady-state heat transfer in fins of different profiles is studied. The problem considered satisfies the Dirichlet boundary conditions at one end and the Neumann boundary conditions at the other. The thermal conductivity and heat coefficients are assumed to be temperature dependent, which makes the resulting differential equation highly nonlinear. Classical Lie point symmetry methods are employed, and some reductions are performed. Some invariant solutions are constructed. The effects of thermogeometric fin parameter, the exponent on temperature, and the fin efficiency are studied.

  2. Existence, Non-existence, and Uniqueness for a Heat Equation with Exponential Nonlinearity in ℝ{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ioku, Norisuke, E-mail: ioku@ehime-u.ac.jp [Ehime University, Graduate School of Science Engineering (Japan); Ruf, Bernhard; Terraneo, Elide [Università degli Studi di Milano, Dipartimento di Matematica “F. Enriques” (Italy)

    2015-12-15

    We consider a semilinear heat equation with exponential nonlinearity in ℝ{sup 2}. We prove that local solutions do not exist for certain data in the Orlicz space exp L{sup 2}(ℝ{sup 2}), even though a small data global existence result holds in the same space exp L{sup 2}(ℝ{sup 2}). Moreover, some suitable subclass of exp L{sup 2}(ℝ{sup 2}) for local existence and uniqueness is proposed.

  3. Some properties of strong solutions to nonlinear heat and moisture transport in multi-layer porous structures

    CERN Document Server

    Beneš, Michal

    2010-01-01

    The present paper deals with mathematical models of heat and moisture transport in layered building envelopes. The study of such processes generates a system of two doubly nonlinear evolution partial differential equations with appropriate initial and boundary conditions. The existence of the strong solution in two dimensions on a (short) time interval is proven. The proof rests on regularity results for elliptic transmission problem for composite-like materials.

  4. MHD boundary layer slip flow and radiative nonlinear heat transfer over a flat plate with variable fluid properties and thermophoresis

    Directory of Open Access Journals (Sweden)

    S.K. Parida

    2015-12-01

    Full Text Available This work considers the two-dimensional steady MHD boundary layer flow of heat and mass transfer over a flat plate with partial slip at the surface subjected to the convective heat flux. The particular attraction lies in searching the effects of variable viscosity and variable thermal diffusivity on the behavior of the flow. In addition, non-linear thermal radiation effects and thermophoresis are taken into account. The governing nonlinear partial differential equations for the flow, heat and mass transfer are transformed into a set of coupled nonlinear ordinary differential equations by using similarity variable, which are solved numerically by applying Runge–Kutta fourth–fifth order integration scheme in association with quasilinear shooting technique. The novel results for the dimensionless velocity, temperature, concentration and ambient Prandtl number within the boundary layer are displayed graphically for various parameters that characterize the flow. The local skin friction, Nusselt number and Sherwood number are shown graphically. The numerical results obtained for the particular case are fairly in good agreement with the result of Rahman [6].

  5. Nonlinear feedback in a six-dimensional Lorenz Model: impact of an additional heating term

    Directory of Open Access Journals (Sweden)

    B.-W. Shen

    2015-03-01

    Full Text Available In this study, a six-dimensional Lorenz model (6DLM is derived, based on a recent study using a five-dimensional (5-D Lorenz model (LM, in order to examine the impact of an additional mode and its accompanying heating term on solution stability. The new mode added to improve the representation of the steamfunction is referred to as a secondary streamfunction mode, while the two additional modes, that appear in both the 6DLM and 5DLM but not in the original LM, are referred to as secondary temperature modes. Two energy conservation relationships of the 6DLM are first derived in the dissipationless limit. The impact of three additional modes on solution stability is examined by comparing numerical solutions and ensemble Lyapunov exponents of the 6DLM and 5DLM as well as the original LM. For the onset of chaos, the critical value of the normalized Rayleigh number (rc is determined to be 41.1. The critical value is larger than that in the 3DLM (rc ~ 24.74, but slightly smaller than the one in the 5DLM (rc ~ 42.9. A stability analysis and numerical experiments obtained using generalized LMs, with or without simplifications, suggest the following: (1 negative nonlinear feedback in association with the secondary temperature modes, as first identified using the 5DLM, plays a dominant role in providing feedback for improving the solution's stability of the 6DLM, (2 the additional heating term in association with the secondary streamfunction mode may destabilize the solution, and (3 overall feedback due to the secondary streamfunction mode is much smaller than the feedback due to the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different roles for small-scale processes (i.e., stabilization vs. destabilization, consistent with the following statement by Lorenz (1972: If the flap of a butterfly's wings can be instrumental in generating a tornado, it

  6. COYOTE : a finite element computer program for nonlinear heat conduction problems. Part I, theoretical background.

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Micheal W.; Hogan, Roy E., Jr.; Gartling, David K.

    2010-03-01

    The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction

  7. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer

    Science.gov (United States)

    Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin

    2017-02-01

    The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.

  8. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    Science.gov (United States)

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  9. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    Science.gov (United States)

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  10. Coronal heating and wind acceleration by nonlinear Alfvén waves – global simulations with gravity, radiation, and conduction

    Directory of Open Access Journals (Sweden)

    T. K. Suzuki

    2008-03-01

    Full Text Available We review our recent results of global one-dimensional (1-D MHD simulations for the acceleration of solar and stellar winds. We impose transverse photospheric motions corresponding to the granulations, which generate outgoing Alfvén waves. We treat the propagation and dissipation of the Alfvén waves and consequent heating from the photosphere by dynamical simulations in a self-consistent manner. Nonlinear dissipation of Alfven waves becomes quite effective owing to the stratification of the atmosphere (the outward decrease of the density. We show that the coronal heating and the solar wind acceleration in the open magnetic field regions are natural consequence of the footpoint fluctuations of the magnetic fields at the surface (photosphere. We find that the properties of the solar wind sensitively depend on the fluctuation amplitudes at the solar surface because of the nonlinearity of the Alfvén waves, and that the wind speed at 1 AU is mainly controlled by the field strength and geometry of flux tubes. Based on these results, we point out that both fast and slow solar winds can be explained by the dissipation of nonlinear Alfvén waves in a unified manner. We also discuss winds from red giant stars driven by Alfvén waves, focusing on different aspects from the solar wind.

  11. A new branch solution for the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient

    Science.gov (United States)

    Shivanian, Elyas; Hosseini Ghoncheh, S. J.

    2017-02-01

    In this paper, the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient is revisited. In this problem, it has been assumed that the heat transfer coefficient is expressed in a power-law form and the thermal conductivity is a linear function of temperature. A method based on the traditional shooting method and the homotopy analysis method is applied, the so-called shooting homotopy analysis method (SHHAM), to the governing nonlinear differential equation. In this technique, more high-order approximate solutions are computable and multiple solutions are easily searched and discovered due to being free of the symbolic variable. It is found that the solution might be empty, unique or dual depending on the values of the parameters of the model. Furthermore, corresponding fin efficiencies with high accuracy are computed. As a consequence, a new branch solution for this nonlinear problem by a new proposed method, based on the traditional shooting method and the homotopy analysis method, is obtained.

  12. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non-linear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2016-08-15

    This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.

  13. Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics

    Science.gov (United States)

    Yu, G. Y.; Luo, E. C.; Dai, W.; Hu, J. Y.

    2007-10-01

    This article focuses on using computational fluid dynamics (CFD) method to study several important nonlinear phenomenon and processes of a large experimental thermoacoustic-Stirling heat engine. First, the simulated physical model was introduced, and the suitable numerical scheme and algorithm for the time-dependent compressible thermoacoustic system was determined through extensive numerical tests. Then, the simulation results of the entire evolution process of self-excited thermoacoustic oscillation and the acoustical characteristics of pressure and velocity waves were presented and analyzed. Especially, the onset temperature and the saturation process of dynamic pressure were captured by the CFD simulation. In addition, another important nonlinear phenomenon accompanying the acoustic wave, which is the steady mass flow through the traveling-wave loop inside the thermoacoustic engine, was studied. To suppress the steady mass flow numerically, a fan model was adopted in the simulation. Finally, the multidimensional effects of vortex formation in the thermal buffer tube and other components were displayed numerically. Most importantly, a substantial comparison between the simulation and experiments was made, which demonstrated well the validity and powerfulness of the CFD simulation for characterizing several complicated nonlinear phenomenon involved in the self-excited thermoacoustic heat engine.

  14. On Nonlinear Inverse Problems of Heat Transfer with Radiation Boundary Conditions: Application to Dehydration of Gypsum Plasterboards Exposed to Fire

    Directory of Open Access Journals (Sweden)

    A. Belmiloudi

    2014-01-01

    Full Text Available The paper investigates boundary optimal controls and parameter estimates to the well-posedness nonlinear model of dehydration of thermic problems. We summarize the general formulations for the boundary control for initial-boundary value problem for nonlinear partial differential equations modeling the heat transfer and derive necessary optimality conditions, including the adjoint equation, for the optimal set of parameters minimizing objective functions J. Numerical simulations illustrate several numerical optimization methods, examples, and realistic cases, in which several interesting phenomena are observed. A large amount of computational effort is required to solve the coupled state equation and the adjoint equation (which is backwards in time, and the algebraic gradient equation (which implements the coupling between the adjoint and control variables. The state and adjoint equations are solved using the finite element method.

  15. An Analytical Study on Boundary Layer Flow and Heat Transfer of Nanofluid Induced by a Non-Linearly Stretching Sheet

    Directory of Open Access Journals (Sweden)

    A. Malvandi

    2014-01-01

    Full Text Available Steady two-dimensional boundary layer flow of a nanofluid past a nonlinear stretching sheet is investigated analytically using the Homotopy Analysis Method (HAM. The employed model for nanofluid includes twocomponent four-equation non-homogeneous equilibrium model that incorporates the effects of Brownian motion ( Nb , thermophoresis ( Nt and Lewis number ( Le simultaneously. The basic partial boundary layer equations have been reduced to a two-point boundary value problem via the similarity variables. Analytical results are in best agreements with those existing in the literatures. The outcomes signify the decreasing trend of heat transfer rate with thermophoresis, Brownian motion and Lewis number. However, concentration rate has a sensitive behavior with parameters, especially the Brownian motion and thermophoresis parameters. Also, the weak points of numerical methods in such problems have been mentioned and the efficiency of HAM, as an alternative approach, in solving these kinds of nonlinear coupled problems has been shown.

  16. A note on analytical solutions of nonlinear fractional 2D heat equation with non-local integral terms

    Indian Academy of Sciences (India)

    O S IYIOLA; F D ZAMAN

    2016-10-01

    In this paper, we consider the (2+1) nonlinear fractional heat equation with non-local integral terms and investigate two different cases of such non-local integral terms. The first has to do with the time-dependent non-local integral term and the second is the space-dependent non-local integral term. Apart from the nonlinear nature of these formulations, the complexity due to the presence of the non-local integral terms impelled us to use a relatively new analytical technique called q-homotopy analysis method to obtain analytical solutions to both cases in the form of convergent series with easily computable components. Our numerical analysis enables us to show the effects of non-local terms and the fractional-order derivative on the solutions obtained by this method.

  17. UNIFORM BLOW-UP PROFILES FOR HEAT EQUATIONS WITH COUPLING NONLOCAL SOURCES OF ASYMMETRIC MIXED TYPE NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    Kong Linghua; Wang Jinhuan; Zheng Sining

    2012-01-01

    This article deals with a nonlocal heat system subject to null Dirichlet boundary conditions,where the coupling nonlocal sources consist of mixed type asymmetric nonlinearities.We at first give the criterion for simultaneous blow-up of solutions,and then establish the uniform blow-up profiles of solutions near the blow-up time.It is observed that not only the simultaneous blow-up rates of the two components u and v are asymmetric,but also the blow-up rates of the same component u (or v) may be in different levels under different dominations.

  18. Nonlinear radiative heat transfer and Hall effects on a viscous fluid in a semi-porous curved channel

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Z.; Naveed, M., E-mail: rana.m.naveed@gmail.com [Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Sajid, M. [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)

    2015-10-15

    In this paper, effects of Hall currents and nonlinear radiative heat transfer in a viscous fluid passing through a semi-porous curved channel coiled in a circle of radius R are analyzed. A curvilinear coordinate system is used to develop the mathematical model of the considered problem in the form partial differential equations. Similarity solutions of the governing boundary value problems are obtained numerically using shooting method. The results are also validated with the well-known finite difference technique known as the Keller-Box method. The analysis of the involved pertinent parameters on the velocity and temperature distributions is presented through graphs and tables.

  19. Considering Process Nonlinearity in Dual-Point Composition Control of a High-Purity Ideal Heat Integrated Distillation Column

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Dual-point composition control for a high-purity ideal heat integrated distillation column (HIDiC) is addressed in this work. Three measures are suggested and combined for overcoming process inherent nonlinearities:(1) variable scaling; (2) multi-model representation of process dynamics and (3) feedforward compensation. These strategies can offer the developed control systems with several distinct advantages: (1) capability of dealing with severe disturbances; (2) tight tuning of controller parameters and (3) high robustness with respect to variation of operating conditions. Simulation results demonstrate the effectiveness of the proposed methodology.

  20. Application of multilevel scheme and two level discretization for POD based model order reduction of nonlinear transient heat transfer problems

    Science.gov (United States)

    Gaonkar, A. K.; Kulkarni, S. S.

    2015-01-01

    In the present paper, a method to reduce the computational cost associated with solving a nonlinear transient heat conduction problem is presented. The proposed method combines the ideas of two level discretization and the multilevel time integration schemes with the proper orthogonal decomposition model order reduction technique. The accuracy and the computational efficiency of the proposed methods is discussed. Several numerical examples are presented for validation of the approach. Compared to the full finite element model, the proposed method significantly reduces the computational time while maintaining an acceptable level of accuracy.

  1. A Comparative Study of the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-linear Heat Conduction Problems

    Energy Technology Data Exchange (ETDEWEB)

    Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau

    2008-03-01

    We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.

  2. Study of Heat Transfer with Nonlinear Thermal Radiation on Sinusoidal Motion of Magnetic Solid Particles in a Dusty Fluid

    Science.gov (United States)

    Bhatti, M. M.; Zeeshan, A.; Ellahi, R.

    2016-09-01

    In this article, heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dust Jeffrey fluid has been studied. The effects of Magnetohydrodynamic (MHD) and hall current are also taken under consideration. The governing equation of motion and energy equation are modelled with help of Ohms law for fluid and dust phases. The solutions of the resulting ordinary coupled partial differential equations are solved analytically. The impact of all the physical parameters of interest such as Hartmann number, slip parameter, Hall parameter, radiation parameter, Prandtl number, Eckert number and particle volume fraction are demonstrated mathematically and graphically. Trapping mechanism is also discussed in detail by drawing contour lines. The present analysis affirms many interesting behaviours, which permit further study on solid particles motion with heat and mass transfer.

  3. The temperature field and heat transfer in the porthole of the Space Shuttle - Outer surface under the 3rd kind nonlinear boundary condition

    Science.gov (United States)

    Tan, Heping; Yu, Qizheng; Zhang, Jizhou

    In this paper, the transient combined heat transfer in the silicon glass porthole of Space Shuttle is studied by control volume method, ray tracing method and spectral band model. The temperature field in the silicon glass and heat flux entering the space cabin are given under the 3rd kind nonlinear boundary condition. The computational results show, if the radiation in the silicon glass is omitted, the errors for temperature fields are not too evident, but for heat flux are quite large.

  4. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  5. An experimentally verified model for thermal microactuators including nonlinear material properties, vacuum, and intra-device heat conduction

    Science.gov (United States)

    Colbert, Keegan; Naraghi, Mohammad; Boyd, James G.

    2017-02-01

    This paper presents a model and computational method to predict the steady-state performance of thermal flexure microactuators at high input powers and various levels of partial vacuum. The model accounts for nonlinear temperature dependence of material properties, heat loss due to radiation, and intra-device heat transfer by conduction across an air gap. The model is validated by comparing the model predictions with the experimentally measured voltage, current, and displacement at standard conditions, prior to adjusting for partial vacuum. In order to understand the effect of nonlinearities on model reliability, the predictions of six additional hypothetical models are considered where (1) intra-device heat transfer is neglected, (2) radiation is neglected, (3) the thermal conductivity of silicon is assumed to be temperature-independent, (4) the thermal conductivity of air is assumed to be temperature-independent, (5) the electrical resistivity of silicon is assumed to be linear in temperature, and (6) the thermal expansion coefficient of silicon is assumed to be temperature-independent. All factors except radiation were shown to have a significant influence on the device performance especially at high input powers. The experimentally validated full model is then employed to predict the effect of reduced air pressure on the displacement and heat transfer properties of the actuator. This aspect of the study targets applications of thermal actuators in controlled environments such as space applications, actuators used for in situ micropositioning and tensile testing inside electron microscopy chambers, or actuators incorporated into the design of MEMS resonators. It was demonstrated that the maximum actuator displacement is not a linear function of reduced pressure and that it reaches a maximum at a certain partial vacuum level.

  6. Nonlinear interactions in superfluid dynamics: Nonstationary heat transfer due to second sound shock waves

    Science.gov (United States)

    Liepmann, H. W.; Torczynski, J. R.

    1983-01-01

    Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena.

  7. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    CERN Document Server

    Okuzumi, Satoshi

    2014-01-01

    The MHD of protoplanetary disks crucially depends on the ionization state of the disks. Recent simulations suggest that MHD turbulence in the disks can generate a strong electric field in the local rest frame. Such a strong field can heat up plasmas and thereby change the ionization balance. To study this effect, we construct a charge reaction model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as plasma accretion by dust grains. The resulting Ohm's law is nonlinear in the electric field strength. We find that the gas-phase electron abundance decreases with increasing the electric field strength when plasma accretion onto grains dominates over gas-phase recombination, because electron heating accelerates electron--grain collisions. This leads to an increase in the magnetic resistivity, and possibly to a self-regulation of the MHD turbulence. In some cases, even the electric current decreases with increasing the field strength in a certain field range. The N...

  8. Preparation of AgCl Nano-Crystal Embedded Tellurite Nonlinear Optical Glasses under Electric Field Accompanied Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Jian LIN; Wenhai HUANG; Bofang LI; Chong JIN; Changcheng LIU; Shuhua LEI; Zhenrong SUN

    2008-01-01

    The quantum effect of nano-crystals is an important factor to improve nonlinear optical performance of nano-crystal embedded glasses,while controlling the size distribution and content of nano-crystals in the glass accurately is a key to obtain good quality.The auxiliary direct current electric field,accompanied with heat treatment,was applied on AgCl containing niobic tellurite glass sheet.The nucleation and crystallization of the glass were well controlled under auxiliary electric field.It was found that the average size of AgCl nano-crystal particles in the glass is smaller than that under single heat treatment,and the content of nano-crystals is higher.Therefore the third-order nonlinear optical performance of the glass was increased a lot.The local-area distributed AgCl nano-crystal particles can also be embedded into a glass sheet by using locally applied electric field.

  9. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.

    Science.gov (United States)

    Gubaidullin, Amir A; Yakovenko, Anna V

    2015-06-01

    Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.

  10. The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes

    Directory of Open Access Journals (Sweden)

    T. G. Shepherd

    2009-11-01

    Full Text Available An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008 who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998, is used in several other models we provide some description of the problem and how it was fixed.

  11. Forced convection heat transfer of Couette-Poiseuille flow of nonlinear viscoelastic fluids between parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Hashemabadi, S.H. [Iran Univ. of Science and Technology, Dept. of Chemical Engineering, Tehran (Iran); Etemad, S.Gh. [Isfahan Univ. of Technology, Dept. of Chemical Engineering, Isfahan (Israel); Thibault, J. [Ottawa Univ., Dept. of Chemical Engineering, Ottawa, ON (Canada)

    2004-08-01

    Heat transfer to viscoelastic fluids is frequently encountered in various industrial processing. In this investigation an analytical solution was obtained to predict the fully developed, steady and laminar heat transfer of viscoelastic fluids between parallel plates. One of the plates was stationary and was subjected to a constant heat flux. The other plate moved with constant velocity and was insulated. The simplified Phan-Thien-Tanner (SPTT) model, believed to be a more realistic model for viscoelastic fluids, was used to represent the rheological behavior of the fluid. The energy equation was solved for a wide range of Brinkman number, dimensionless viscoelastic group, and dimensionless pressure drop. Results highlight the strong effects of these parameters on the heat transfer rate. (Author)

  12. Nonlinear Phenomena Arising From Radio Wave Heating of the Lower Ionosphere.

    Science.gov (United States)

    1981-08-01

    trans- port effects have been neglected; hence, the importance of these effects should be ascertai~ned. REFERENCES Arfken , G., Mathematical Methods for...satellite power station, J. Geophys. Res., 83, 1611-1624, 1978. Ralston, A. and H. S. Wift, Mathematical Methods for Digital Computers, Wiley, New York...Fields .................. 53 * 3.3 Electron Heating in a weak Field: Analytic Theory. 57 3.4 Electron Heating in A Strong Field: Computational Method

  13. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    Science.gov (United States)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  14. Numerical study of nonlinear heat transfer in longitudinal fins; Etude des transferts de chaleur non lineaires dans les ailettes longitudinales

    Energy Technology Data Exchange (ETDEWEB)

    Bouaziz, M.N.; Hanini, S.; Bal, Y.; Bal, K. [Centre Universitaire de Medea, Dept. de Genie des Procedes, Medea (Algeria); Rechak, S. [Ecole Nationale Polytechnique, Dept. de Mecanique, Alger (Algeria)

    2001-10-01

    This work aims to quantify the effects of non-simplified situations on longitudinal fins efficiency. For this purpose a more realistic model, which has been developed here, is based on variable profile and temperature-dependent thermophysical properties in transient two-dimensional fin with internal non-uniform heat generation. An explicit exponential finite-difference method, conditionally stable, is extended in this study for the discretization of the governing equations. The numerical procedure consists in solving series of nodal temperature distribution according to the type of node, in order to reach the steady-state heat exchange. Then, the numerical simulation is used to present the sensitivity of some parameters on efficiency. Numerical results of interest are illustrated for a direct comparison with the traditional solutions. Extensive numerical experiments were conducted and showed that temperature-dependent heat transfer coefficient and generation lead to a significant reduction of fin-efficiency. The simultaneous effects of parameters for this non-linear problem are not negligible. (authors)

  15. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling and general nonlinear systems

    Science.gov (United States)

    Li, Huanan

    2013-03-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas. Finally a practical formalism dealing with cumulants of heat transfer across general nonlinear quantum systems is established based on field theoretical/algebraic method.

  16. Fundamental-Solution-Based Hybrid Element Model for Nonlinear Heat Conduction Problems with Temperature-Dependent Material Properties

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2013-01-01

    Full Text Available The boundary-type hybrid finite element formulation coupling the Kirchhoff transformation is proposed for the two-dimensional nonlinear heat conduction problems in solids with or without circular holes, and the thermal conductivity of material is assumed to be in terms of temperature change. The Kirchhoff transformation is firstly used to convert the nonlinear partial differential governing equation into a linear one by introducing the Kirchhoff variable, and then the new linear system is solved by the present hybrid finite element model, in which the proper fundamental solutions associated with some field points are used to approximate the element interior fields and the conventional shape functions are employed to approximate the element frame fields. The weak integral functional is developed to link these two fields and establish the stiffness equation with sparse and symmetric coefficient matrix. Finally, the algorithm is verified on several examples involving various expressions of thermal conductivity and existence of circular hole, and numerical results show good accuracy and stability.

  17. Nonlinear analysis of chaotic flow in a 3D closed-loop pulsating heat pipe

    CERN Document Server

    Pouryoussefi, S M

    2016-01-01

    Numerical simulation has been conducted for the chaotic flow in a 3D closed-loop pulsating heat pipe (PHP). Heat flux and constant temperature boundary conditions were applied for evaporator and condenser sections, respectively. Water and ethanol were used as working fluids. Volume of Fluid (VOF) method has been employed for two-phase flow simulation. Spectral analysis of temperature time series was carried out using Power Spectrum Density (PSD) method. Existence of dominant peak in PSD diagram indicated periodic or quasi-periodic behavior in temperature oscillations at particular frequencies. Correlation dimension values for ethanol as working fluid was found to be higher than that for water under the same operating conditions. Similar range of Lyapunov exponent values for the PHP with water and ethanol as working fluids indicated strong dependency of Lyapunov exponent to the structure and dimensions of the PHP. An O-ring structure pattern was obtained for reconstructed 3D attractor at periodic or quasi-peri...

  18. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Irwin Yousept

    2010-07-01

    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  19. Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yinping; Lin, Kunping; Jiang, Yi; Zhou, Guobing [Department of Building Science, Tsinghua University, Beijing 100084 (China)

    2008-07-01

    For the materials with constant thermophysical properties, the thermal performance of wallboards (or floor, ceiling) can be described by decrement factor f and time lag {phi}. However, the phase change material (PCM) may charge large heat during the melting process and discharge large heat during the freezing process, which takes place at some certain temperature or a narrow temperature range. The behavior deviates a lot from the material with constant thermal physical properties. Therefore, it is not reasonable to analyze the thermal performance of PCM wallboard by using the decrement factor f and time lag {phi}. How to simply and effectively analyze the thermal performance of a PCM wallboard is an important problem. In order to analyze and evaluate the energy-efficient effects of the PCM wallboard and floor, two new parameters, i.e., modifying factor of the inner surface heat flux '{alpha}' and ratio of the thermal storage 'b', are put forward. They can describe the thermal performance of PCM external and internal walls, respectively. The analysis and simulation methods are both applied to investigate the effects of different PCM thermophysical properties (heat of fusion H{sub m}, melting temperature T{sub m} and thermal conductivity k) on the thermal performance of PCM wallboard for the residential buildings. The results show that the PCM external wall can save more energy by increasing H{sub m}, decreasing k and selecting proper T{sub m} ({alpha}<1); that the PCM internal wall can save more energy by increasing H{sub m} and selecting appropriate T{sub m}, k. The most energy-efficient approach of applying PCM in a solar house is to apply it in its internal wall. (author)

  20. Linear and Nonlinear Modeling of a Traveling-Wave Thermoacoustic Heat Engine

    CERN Document Server

    Scalo, Carlo; Hesselink, Lambertus

    2014-01-01

    We have carried out three-dimensional Navier-Stokes simulations, from quiescent conditions to the limit cycle, of a traveling-wave thermoacoustic heat engine (TAE) composed of a long variable-area resonator shrouding a smaller annular tube, which encloses the hot (HHX) and ambient (AHX) heat-exchangers, and the regenerator (REG). Simulations are wall-resolved, with no-slip and adiabatic conditions enforced at all boundaries, while the heat transfer and drag due to the REG and HXs are modeled. HHX temperatures have been investigated in the range 440K - 500K with AHX temperature fixed at 300K. The initial exponential growth of acoustic energy is due to a network of traveling waves amplified by looping around the REG/HX unit in the direction of the imposed temperature gradient. A simple analytical model demonstrates that such thermoacoustic instability is a Lagrangian thermodynamic process resembling a Stirling cycle. A system-wide linear stability model based on Rott's theory is able to accurately predict the f...

  1. RESEARCH ON HEAT-SHIELDING PROPERTIES OF SUPERALLOY HONEYCOMB PANEL FOR NON-LINEAR HIGH TEMPERATURE ENVIRONMENT%非线性热环境下高温合金蜂窝板隔热性能研究

    Institute of Scientific and Technical Information of China (English)

    吴大方; 郑力铭; 潘兵; 王岳武; 孙冰; 牟朦

    2012-01-01

    established to simulate the heat-shielding performance of the honeycomb panels. The numerical simulations agree well with the experimental results, verifying the correctness and effectiveness of the numerical simulation method. The good agreements also confirm the feasibility of substituting expensive air thermal simulation testing using numerical simulation. Some other key issues, such as heat shielding efficiency variation of the MTPS in complex non-linear high temperature environment, the relutionship among the heat shielding efficiency, the change speed of front surface temperature and selection of emissivity for the MTPS' surface, were also discussed in this work, which provide important references for the heat-shielding of MTPS to be used in high-speed crafts.

  2. An analytical study of the endoreversible Curzon-Ahlborn cycle for a non-linear heat transfer law

    Science.gov (United States)

    Páez-Hernández, Ricardo T.; Portillo-Díaz, Pedro; Ladino-Luna, Delfino; Ramírez-Rojas, Alejandro; Pacheco-Paez, Juan C.

    2016-01-01

    In the present article, an endoreversible Curzon-Ahlborn engine is studied by considering a non-linear heat transfer law, particularly the Dulong-Petit heat transfer law, using the `componendo and dividendo' rule as well as a simple differentiation to obtain the Curzon-Ahlborn efficiency as proposed by Agrawal in 2009. This rule is actually a change of variable that simplifies a two-variable problem to a one-variable problem. From elemental calculus, we obtain an analytical expression of efficiency and the power output. The efficiency is given only in terms of the temperatures of the reservoirs, such as both Carnot and Curzon-Ahlborn cycles. We make a comparison between efficiencies measured in real power plants and theoretical values from analytical expressions obtained in this article and others found in literature from several other authors. This comparison shows that the theoretical values of efficiency are close to real efficiency, and in some cases, they are exactly the same. Therefore, we can say that the Agrawal method is good in calculating thermal engine efficiencies approximately.

  3. Boundary Layer Flow and Heat Transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium

    Science.gov (United States)

    Prasannakumara, B. C.; Shashikumar, N. S.; Venkatesh, P.

    2017-09-01

    An analysis has been carried out to study the effect of nonlinear thermal radiation on slip flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet immersed in a porous medium. Water is considered as a base fluid with dust particles along with suspended Aluminum Oxide (Al2O3) nanoparticles. Using appropriate similarity transformations, the coupled nonlinear partial differential equations are reduced into a set of coupled nonlinear ordinary differential equations. The reduced equations are then solved numerically using Runge-Kutta-Fehlberg45 order method with the help of shooting technique to investigate the impact of various pertinent parameters for the velocity and temperature fields. The obtained results are presented in tabular form as well as graphically and discussed in detail. Effect of different parameters on skin friction coefficient and Nusselt number are also discussed.

  4. Solving nonlinear nonstationary problem of heat-conductivity by finite element method

    Directory of Open Access Journals (Sweden)

    Антон Янович Карвацький

    2016-11-01

    Full Text Available Methodology and effective solving algorithm of non-linear dynamic problems of thermal and electric conductivity with significant temperature dependence of thermal and physical properties are given on the basis of finite element method (FEM and Newton linearization method. Discrete equations system FEM was obtained with the use of Galerkin method, where the main function is the finite element form function. The methodology based on successive solving problems of thermal and electrical conductivity has been examined in the work in order to minimize the requirements for calculating resources (RAM. in particular. Having used Mathcad software original programming code was developed to solve the given problem. After investigation of the received results, comparative analyses of accurate solution data and results of numerical solutions, obtained with the use of Matlab programming products, was held. The geometry of one fourth part of the finite sized cylinder was used to test the given numerical model. The discretization of the calculation part was fulfilled using the open programming software for automated Gmsh nets with tetrahedral units, while ParaView, which is an open programming code as well, was used to visualize the calculation results. It was found out that the maximum value violation of potential and temperature determination doesn`t exceed 0,2-0,83% in the given work according to the problem conditions

  5. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    Science.gov (United States)

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.

  6. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    Directory of Open Access Journals (Sweden)

    Meraj Mustafa

    Full Text Available The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.

  7. Spatially Nonuniform Heating and the Nonlinear Transient Response of Elastomeric Photomechanical Actuators

    Directory of Open Access Journals (Sweden)

    Robert W. Cohn

    2016-06-01

    Full Text Available Recently various nanomaterials, such as carbon nanotubes and graphene, have been added to rubbery elastomers, such as poly dimethyl siloxane (PDMS, to enable generation of stress and displacement in response to remote illumination. While the response is primarily due to heat-induced generation of stress; i.e., the thermoelastic effect in rubbers, illuminated samples have shown unexpected deviations between the transient waveforms of sample temperature and induced stress. In this report we have created a new and simple lumped element model to explain the stress behavior of these photomechanical nanocomposites. The model consists of two parameters that describe the spatially averaged steady state temperature rise due to optical absorption of the structure (typically a long strip of pre-strained elastomer and the spatially averaged convective cooling rate of the strip, together with a time-varying function that effectively represents the temperature distribution and thermal convection along the length of the strip. The model is used to compare two actuators that each have a thin embedded layer of carbon nanotubes, in which the one film consists of randomly aligned nanotubes and the other has a much more ordered alignment. The model not only fits both transient responses, but the differences between the parameters suggests that the ordered film conducts heat across the strip more rapidly than the disordered film, leading to it more rapidly reaching the steady state level of maximum stress. This model should be helpful in future experimental studies that work to observe, delineate and identify possible nanoscale and molecular contributions to photomechanical stress.

  8. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    Energy Technology Data Exchange (ETDEWEB)

    Mahanthesh, B., E-mail: bmanths@gmail.com [Department of Mathematics, AIMS Institutes, Peenya, 560058 Bangalore (India); Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Gireesha, B.J., E-mail: bjgireesu@rediffmail.com [Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Gorla, R.S. Reddy, E-mail: r.gorla@csuohio.edu [Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-11-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al{sub 2}O3 and TiO{sub 2} types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  9. Dynamics Near the Ground State for the Energy Critical Nonlinear Heat Equation in Large Dimensions

    Science.gov (United States)

    Collot, Charles; Merle, Frank; Raphaël, Pierre

    2016-11-01

    We consider the energy critical semilinear heat equation partial_tu = Δ u + |u|^{4/d-2}u, quad x in R^d and give a complete classification of the flow near the ground state solitary wave Q(x) = 1/(1+{|x|^2/{d(d-2)})^{d-2/2}} in dimension {d ≥ 7} , in the energy critical topology and without radial symmetry assumption. Given an initial data {Q + ɛ_0} with {|nabla ɛ_0|_{L^2} ≪ 1} , the solution either blows up in the ODE type I regime, or dissipates, and these two open sets are separated by a codimension one set of solutions asymptotically attracted by the solitary wave. In particular, non self similar type II blow up is ruled out in dimension {d ≥ 7} near the solitary wave even though it is known to occur in smaller dimensions (Schweyer, J Funct Anal 263(12):3922-3983, 2012). Our proof is based on sole energy estimates deeply connected to Martel et al. (Acta Math 212(1):59-140, 2014) and draws a route map for the classification of the flow near the solitary wave in the energy critical setting. A by-product of our method is the classification of minimal elements around Q belonging to the unstable manifold.

  10. Stability of Kuramoto-Sivashinsky fronts in moving fluid

    Science.gov (United States)

    Vilela, P. M.; Vasquez, Desiderio A.

    2014-12-01

    We analyze the effects of an external Couette flow on reactions fronts described by the Kuramoto-Sivashinsky equation. The fronts propagate in a two-dimensional slab confined by two parallel plates moving in opposite directions. The fronts can propagate in the same direction or against the external flow. We obtain steady front solutions by solving numerically the nonlinear time-independent equations. A linear stability analysis determines the stability of the fronts. The fronts and their stability depend on the slab width and on the relative velocity between the plates. These parameters have the potential to modify unstable fronts into stable fronts. We compare our results with fronts developed under a Poiseuille flow.

  11. Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model

    CERN Document Server

    Vannitsem, Stéphane; De Cruz, Lesley; Ghil, Michael

    2014-01-01

    We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable version by adding a dynamical equation for the passive advection of temperature in the ocean, together with an energy balance model. The bifurcation analysis and the numerical integration of the model reveal the presence of low-frequency variability (LFV) concentrated on and near a long-periodic, attracting orbit. This orbit combines atmospheric and oceanic modes, and it arises for large values of the meridional gradient of radiative input and of frictional coupling. Chaotic behavior develops around this orbit as it loses its stability; this behavior is still dominated by the LFV on decadal and multi-decadal time scales that is typical of oceanic processes. Atmospheric diagnostics also reveals the presence of predominant low- and high-pressure zones, as well as of a su...

  12. Evaluation of the heat transfer module (FAHT) of Failure Analysis Nonlinear Thermal And Structural Integrated Code (FANTASTIC)

    Science.gov (United States)

    Keyhani, Majid

    1989-01-01

    The heat transfer module of FANTASTIC Code (FAHT) is studied and evaluated to the extend possible during the ten weeks duration of this project. A brief background of the previous studies is given and the governing equations as modeled in FAHT are discussed. FAHT's capabilities and limitations based on these equations and its coding methodology are explained in detail. It is established that with improper choice of element size and time step FAHT's temperature field prediction at some nodes will be below the initial condition. The source of this unrealistic temperature prediction is identified and a procedure is proposed for avoiding this phenomenon. It is further shown that the proposed procedure will converge to an accurate prediction upon mesh refinement. Unfortunately due to lack of time FAHT's ability to accurately account for pyrolysis and surface ablation has not been verified. Therefore, at the present time it can be stated with confidence that FAHT can accurately predict the temperature field for a transient multi-dimensional, orthotropic material with directional dependence, variable property, with nonlinear boundary condition. Such a prediction will provide an upper limit for the temperature field in an ablating decomposing nozzle liner. The pore pressure field, however, will not be known.

  13. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  14. Estimation of Joule heating and its role in nonlinear electrical response of Tb0.5Sr0.5MnO3 single crystal

    Science.gov (United States)

    Nhalil, Hariharan; Elizabeth, Suja

    2016-12-01

    Highly non-linear I-V characteristics and apparent colossal electro-resistance were observed in non-charge ordered manganite Tb0.5Sr0.5MnO3 single crystal in low temperature transport measurements. Significant changes were noticed in top surface temperature of the sample as compared to its base while passing current at low temperature. By analyzing these variations, we realize that the change in surface temperature (ΔTsur) is too small to have caused by the strong negative differential resistance. A more accurate estimation of change in the sample temperature was made by back-calculating the sample temperature from the temperature variation of resistance (R-T) data (ΔTcal), which was found to be higher than ΔTsur. This result indicates that there are large thermal gradients across the sample. The experimentally derived ΔTcal is validated with the help of a simple theoretical model and estimation of Joule heating. Pulse measurements realize substantial reduction in Joule heating. With decrease in sample thickness, Joule heating effect is found to be reduced. Our studies reveal that Joule heating plays a major role in the nonlinear electrical response of Tb0.5Sr0.5MnO3. By careful management of the duty cycle and pulse current I-V measurements, Joule heating can be mitigated to a large extent.

  15. Frontal dynamics in a California Current System shallow front: 1. Frontal processes and tracer structure

    Science.gov (United States)

    Pallã S-Sanz, E.; Johnston, T. M. S.; Rudnick, D. L.

    2010-12-01

    The three-dimensional dynamics in a shallow front are examined using density and current data from two surveys 100 km offshore of Monterey Bay, California. Survey 1 is forced by down-front winds, and both surveys have considerable cross-front density gradients and flow curvature. The maximum Rossby numbers on the dense side reached maxima of +0.60 in survey 1 and +0.45 in survey 2. Downwelling occurs in regions of confluence (frontogenesis) associated with potential vorticity (PV) change and thermal wind imbalance. Streamers of particulate matter and PV are advected southeastward by the frontal jet and downward. Nonlinear Ekman currents advect dense water over light water in the presence of down-front winds, which leads to upwelling along the front and downwelling on the light side of the front. At sites of active ageostrophic secondary circulation (ASC), induced by frontogenesis or Ekman effects, the observed cross-front ageostrophic velocity is consistent with the diagnosed vertical velocity. Furthermore, in survey 2, ageostrophic divergence may play an important role at the curved front, presumably counteracting quasi-geostrophic frontogenesis due to isopycnal confluence. Downward frictional vertical PV flux below the surface extracts PV from the pycnocline and reinforces the frontogenetic vertical PV flux. PV destruction at the surface is inferred from a low PV anomaly below the mixed layer in survey 2. Since the magnitude of the frontogenetic ASC is only twice the magnitude of Ekman suction, external forcing may have a considerable impact on the vertical heat and PV fluxes.

  16. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.; Gorla, R. S. Reddy; Abbasi, F. M.; Shehzad, S. A.

    2016-11-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases.

  17. Nonlinear hyperbolic waves in multidimensions

    CERN Document Server

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  18. A Case Study on a Quasi-Stationary Meiyu Front Bringing About Continuous Rainstorms with Piecewise Potential Vorticity Inversion

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yuchun; LI Zechun; XIAO Ziniu

    2008-01-01

    A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°×1°latitude and longitude NCEP reanalysis data and the ground surface rainfall, using the potential vorticity (PV) analysis and PV inversion method, the evolution of main synoptic systems, and the corresponding PV and PV perturbation (or PV anomalies) and their relationship with heavy rainfall along the Meiyu front are analyzed in order to investigate the physical mechanism of the formation, development, and maintenance of the Meiyu front. Furthermore, the PV perturbations related to different physics are separated to investigate their different roles in the formation and development of the Meiyu front. The results show: the formation and persistence of the Meiyu front in a quasi-WE orientation are mainly due to the maintenance of the high-pressure systems in its south/north sides (the West Pacific subtropical high/ the high pressure band extending from the Korean Peninsula to east of North China). The Meiyu front is closely associated with the PV in the lower troposphere. The location of the positive PV perturbation on the Meiyu front matches well with the main heavy rainfall area along the Meiyu front. The PV inversion reveals that the balanced winds satisfying the nonlinear balanced assumption represent to a large extent the real atmospheric flow and its evolution basically reflects the variation of stream flow associated with the Meiyu front. The unbalanced flow forms the convergence band of the Meiyu front and it mainly comes from the high-pressure system in the north side of the Meiyu front. The positive PV perturbation related to latent heat release in the middle-lower troposphere is one of the main factors influencing the formation and development of the Meiyu front. The positive vorticity band from the total balanced winds is in accordance with the Meiyu front

  19. Nonlinear transient heat transfer and thermoelastic analysis of thick-walled FGM cylinder with temperature-dependent material properties using Hermitian transfinite element

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mahboobeh [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2009-10-15

    Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present research. Another novelty of the present paper is simultaneous use of the transfinite element method and updating technique. Time variations of the temperature, displacements, and stresses are obtained through a numerical Laplace inversion. Finally, results obtained considering the temperature-dependency of the material properties are compared with those derived based on temperature independency assumption. Furthermore, the temperature distribution and the radial and circumferential stresses are investigated versus time, geometrical parameters and index of power law. Results reveal that the temperature-dependency effect is significant

  20. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet

    Science.gov (United States)

    Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy

    2016-09-01

    A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.

  1. Two-Level Dipolar System in a Heat Bath: High-Pump Power Effects in the Nonlinear Optical Responses

    Science.gov (United States)

    Paz, J. L.; León-Torres, J. R.; Lascano, Luis; Alvarado, Ysaias J.; Costa-Vera, Cesar

    2017-06-01

    Using the four-wave mixing spectroscopy, we analyze the nonlinear optical properties in a strongly driven two-level system, using a perturbative treatment where, the pump field is considered at all orders, second order in the probe, and first order for the signal field, when the stochastic effects of the solvent are considered. Significant variations in the nonlinear optical properties due mainly to changes in the probe intensity, chemical concentrations, and transversal relaxation times are observed.

  2. Effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence of suction

    Institute of Scientific and Technical Information of China (English)

    Muhaimin; R. Kandasamy; Azme B. Khamis

    2008-01-01

    This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.

  3. Inverse analysis of thermal conductivities in transient non-homogeneous and non-linear heat conductions using BEM based on complex variable differentiation method

    Science.gov (United States)

    Yu, XiaoChun; Bai, YuGuang; Cui, Miao; Gao, XiaoWei

    2013-05-01

    This paper presents a new inverse analysis approach to sensitivity analysis and material property identification in transient non-homogeneous and non-linear heat conduction Boundary Element Method (BEM) analysis based on Complex Variable Differentiation Method (CVDM). In this approach, the material properties are taken as the optimization variables, and the sensitivity coefficients are computed by CVDM. The advantages of using CVDM are that the computation of partial derivatives of an implicit function is reduced to function calculation in a complex domain, and the parameter sensitivity coefficients can be determined in a more accurate way than the traditional Finite Difference Method (FDM). Based on BEM and CVDM in evaluation of the sensitivity matrix of heat flux, the parameter such as thermal conductivity can be accurately identified. Six numerical examples are given to demonstrate the potential of the proposed approach. The results indicate that the presented method is efficient for identifying the thermal conductivity with single or multiple parameters.

  4. Magnetic field-induced off-resonance third-order optical nonlinearity of iron oxide nanoparticles incorporated mesoporous silica thin films during heat treatment.

    Science.gov (United States)

    Cui, Fangming; Feng, Chude; Xie, Rongjun; Hua, Zile; Ohtsuka, Hideyuki; Sakka, Yoshio; Shi, Jianlin

    2010-02-01

    Highly dispersed and uniform Fe(2)O(3) nanoparticles (NPs) have been incorporated into the pore channels of SBA-15 mesoporous silica thin films (MSTFs). And such Fe(2)O(3) NPs incorporated MSTFs did not show detectable nonlinear optical (NLO) signals at off-resonance wavelength 1064 nm by Z-scan technique. However after a vacuum heat treatment at 800 degrees C for 1 h under 6 T magnetic field, the Fe(2)O(3) NPs incorporated MSTFs with very low Fe content (0.8 approximately 1.5 at.%) presented distinctive NLO signals with chi(3) value in an order of 10(-10) esu. We proposed the physical reason for the NLO property generation to be the magnetic domain orientation of the iron oxide NPs incorporated within the pore channels of the MSTFs by the magnetic field heat treatment.

  5. Application of a Nonlinear Model to Transcript Levels of Upregulated Stress Response Gene ibpA in Stationary-Phase Salmonella enterica Subjected to Sublethal Heat Stress.

    Science.gov (United States)

    Carroll, Laura M; Bergholz, Teresa M; Hildebrandt, Ian M; Marks, Bradley P

    2016-07-01

    Sublethal heating, which can occur during slow cooking of meat products, is known to induce increased thermal resistance in Salmonella. However, very few studies have addressed the kinetics of this response. Although several recent studies have reported improved thermal inactivation models that include the effect of prior sublethal history on subsequent thermal resistance, none of these models were based on cellular-level responses to sublethal thermal stress. The goal of this study was to determine whether a nonlinear model could accurately portray the response of Salmonella to heat stress induced by prolonged exposure to sublethal temperatures. To accomplish this, stationary-phase Salmonella Montevideo cultures were subjected to various heating profiles (held at either 40 or 45°C for 0, 5, 10, 15, 30, 60, 90, 180, or 240 min) using a PCR thermal cycler. Differential plating on selective and nonselective media was used to confirm the presence of cellular injury. Reverse transcription quantitative PCR was used to screen the transcript levels of six heat stress-related genes to find candidate genes for nonlinear modeling. Injury was detected in populations of Salmonella held at 45°C for 30, 60, and 90 min and at 40°C for 0, 5, and 90 min (P 0.05). The transcript levels of ibpA, which codes for a small heat shock protein associated with the ClpB and DnaK-DnaJ-GrpE chaperone systems, showed the greatest increase relative to the transcript levels at 0 min, which was significant at 5, 10, 15, 30, 60, 90, and 180 min at 45°C and at 5, 10, 15, 30, 60, and 90 min at 40°C (P < 0.05). Using ibpA transcript levels as an indicator of adaptation to thermal stress, a nonlinear model for sublethal injury is proposed. The use of variables indicating the physiological state of the pathogen during stress has the potential to increase the accuracy of thermal inactivation models that must account for prolonged exposure to sublethal temperatures.

  6. ON STABILITY OF THE OIL DISPLACEMENT FRONT UNDER CONDITIONS OF THERMOGAS IMPACT ON THE OIL BEARING LAYER

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2016-01-01

    Full Text Available The method of thermogas impact on the oil bearing layer is a perspective one to improve oil recovery. It is now under experimental implementation in Belarus. Stability of the thermal front and that of the oil displacement is a point of principle for the given technology. The article offers solution based on the method of small perturbations for the problem of the oil-displacement front stability under thermogas impact on the oil layer. The perturbation growth increment is shown to be quite different from that of the gas filtration combustion. Being determined by the perturbation wave number (or wave length, by difference in speed of the blowing filtration and that of the heat development front, by the ratios of densities, filtration coefficients, compressibility of the displacement agent and the displaced oil mass, and by other parameters. The author analyses the main parameters influencing the stability of the front. Recommendations are given on possible methods and procedures improving stability of the displacement front (neutralizing perturbation growth. The mechanisms of suppression or compensation of the front perturbation growth are as follows: the crude oil viscosity reduction and increase of that of the displacement agent, the displacement agent compressibility increase, increase of the thermogas impact heat-front width in the first instance at the expense of the temperature growth and alteration in the chemism (low temperature catalysts utilization, etc., reduction in speed of the front propagation and/or correspondingly of the displacement agent feed. Utilization of the gas or water-gas displacement agent as well as the agent impregnation with hydrophobic gases provides a relatively better stability of the front as compared to that employing water based compounds. Analytical data and derived recommendations are offered for utilization within the framework of general techniques and procedures of the thermogas impact process management

  7. Magneto-Hydro Dynamic Flow and Heat Transfer of Nonnewtonian Power-Law Fluid Over a Non-Linear Stretching Surface with Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Kishan N.

    2014-05-01

    Full Text Available A fluid flow and heat transfer analysis of an electrically conducting non-Newtonian power law fluid flowing over a non-linear stretching surface in the presence of a transverse magnetic field taking into consideration viscous dissipation effects is investigated. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. By using quasi-linearization techniques first linearize the non linear momentum equation is linearized and then the coupled ordinary differential equations are solved numerically by an implicit finite difference scheme. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, Eckert number, velocity exponent parameter, temperature exponent parameter, modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed.

  8. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    Science.gov (United States)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  9. The nonlinear heat equation with state–dependent parameters and its connection to the Burgers’ and the potential Burgers’ equation

    DEFF Research Database (Denmark)

    Backi, Christoph Josef; Bendtsen, Jan Dimon; Leth, John-Josef

    2014-01-01

    In this work the stability properties of a nonlinear partial differential equation (PDE) with state–dependent parameters is investigated. Among other things, the PDE describes freezing of foodstuff, and is closely related to the (Potential) Burgers’ Equation. We show that for certain forms...

  10. Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.

    2008-01-01

    (MAP) estimation is presented along with a software implementation. As a case study, the modelling of the thermal characteristics of a building integrated PV component is considered. The EC-JRC Ispra has made experimental data available. Both linear and non-linear models are identified. It is shown...

  11. Interaction Dynamics of Singular Wave Fronts

    CERN Document Server

    Holm, Darryl D

    2013-01-01

    Some of the most impressive singular wave fronts seen in Nature are the transbasin oceanic internal waves, which may be observed from the Space Shuttle as they propagate and interact with each other, for example, in the South China Sea. The characteristic feature of these strongly nonlinear wavefronts is that they reconnect when two of them collide transversely. We derive the EPDiff equation, and use it to model this phenomenon as elastic collisions between singular wave fronts (solitons) whose momentum is distributed along curves moving in the plane. Numerical methods for EPDiff based on compatible differencing algorithms (CDAs) are used for simulating these collisions among curves. The numerical results show the same nonlinear behavior of wavefront reconnections as that observed for internal waves in the South China Sea. We generalize the singular solutions of EPDiff for other applications, in computational anatomy and in imaging science, where the singular wavefronts are evolving image outlines, whose mome...

  12. Double-Front Detonation Waves

    Science.gov (United States)

    Gubin, S. A.; Sumskoi, S. I.; Victorov, S. B.

    According to the theory of detonation, in a detonation wave there is a sound plane, named Chapman-Jouguet (CJ) plane. There are certain stationary parameters for this plane. In this work the possibility of the second CJ plane is shown. This second CJ plane is stationary as well. The physical mechanism of non-equilibrium transition providing the existence of the second CJ plane is presented. There is a non-equilibrium state, when the heat is removed from the reaction zone and the heat capacity decreases sharply. As a result of this non-equilibrium state, the sound velocity increases, and the local supersonic zone with second sonic plane (second CJ plane) appears. So the new mode of detonation wave is predicted. Equations describing this mode of detonation are presented. The exact analytical solution for the second CJ plane parameters is obtained. The example of double-front detonation in high explosive (TNT) is presented. In this double-front structure "nanodiamond-nanographite" phase transition takes place in condensed particles of detonation products.

  13. Nonlinear Effects in Piezoelectric Transformers Explained by Thermal-Electric Model Based on a Hypothesis of Self-Heating

    DEFF Research Database (Denmark)

    Andersen, Thomas; Andersen, Michael A. E.; Thomsen, Ole Cornelius;

    2012-01-01

    As the trend within power electronic still goes in the direction of higher power density and higher efficiency, it is necessary to develop new topologies and push the limit for the existing technology. Piezoelectric transformers are a fast developing technology to improve efficiency and increase...... power density of power converters. Nonlinearities in piezoelectric transformers occur when the power density is increased enough. The simple linear equations are not valid at this point and more complex theory of electro elasticity must be applied. In This work a simplified thermo-electric model...

  14. Resolution of an inverse heat conduction problem with a nonlinear least square method in the Hankel space. Application to photothermal infrared thermography

    Science.gov (United States)

    Legaie, D.; Pron, H.; Bissieux, C.

    2008-11-01

    Integral transforms (Laplace, Fourier, Hankel) are widely used to solve the heat diffusion equation. Moreover, it often appears relevant to realize the estimation of thermophysical properties in the transformed space. Here, an analytical model has been developed, leading to a well-posed inverse problem of parameter identification. Two black coatings, a thin black paint layer and an amorphous carbon film, were studied by photothermal infrared thermography. A Hankel transform has been applied on both thermal model and data and the estimation of thermal diffusivity has been achieved in the Hankel space. The inverse problem is formulated as a non-linear least square problem and a Gauss-Newton algorithm is used for the parameter identification.

  15. The structure of precipitation fronts for finite relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Stechmann, Samuel N.; Majda, Andrew J. [New York University, Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York, NY (United States)

    2006-11-15

    When convection is parameterized in an atmospheric circulation model, what types of waves are supported by the parameterization? Several studies have addressed this question by finding the linear waves of simplified tropical climate models with convective parameterizations. In this paper's simplified tropical climate model, convection is parameterized by a nonlinear precipitation term, and the nonlinearity gives rise to precipitation front solutions. Precipitation fronts are solutions where the spatial domain is divided into two regions, and the precipitation (and other model variables) changes abruptly at the boundary of the two regions. In one region the water vapor is below saturation and there is no precipitation, and in the other region the water vapor is above saturation level and precipitation is nonzero. The boundary between the two regions is a free boundary that moves at a constant speed. It is shown that only certain front speeds are allowed. The three types of fronts that exist for this model are drying fronts, slow moistening fronts, and fast moistening fronts. Both types of moistening fronts violate Lax's stability criterion, but they are robustly realizable in numerical experiments that use finite relaxation times. Remarkably, here it is shown that all three types of fronts are robustly realizable analytically for finite relaxation time. All three types of fronts may be physically unreasonable if the front spans an unrealistically large physical distance; this depends on various model parameters, which are investigated below. From the viewpoint of applied mathematics, these model equations exhibit novel phenomena as well as features in common with the established applied mathematical theories of relaxation limits for conservation laws and waves in reacting gas flows. (orig.)

  16. Numerical treatment of the gas dynamics equations with nonlinear heat conduction in the linear perturbation code SileX; Traitement numerique des equations de la dynamique des gaz avec conduction non lineaire dans le code de perturbation SileX

    Energy Technology Data Exchange (ETDEWEB)

    Boudesocque-Dubois, C.; Clarisse, J.M

    2007-07-01

    In the context of linear perturbation computations of planar or spherically symmetric flows, we propose numerical methods, in Lagrangian coordinates, for integrating the one-dimensional gas dynamics equations with nonlinear heat conduction and their linear perturbations. Numerical results are presented for different configurations, with or without flow motion. (authors)

  17. Design of Laboratory Experiments to Study Photoionization Fronts

    Science.gov (United States)

    Gray, William James; Davis, Josh; Drake, R. Paul

    2017-06-01

    Here we present the theoretical foundation for a laboratory experiment to study photoionization fronts. Photoionization fronts play important roles in the formation and evolution of structure in the Universe. A properly designed experiment will have to control the recombination rate, electron impact ionization rate, and the initial thermal spectrum. We show that such an experiment can be designed, but requires the use of the largest high-energy-density laser facilities, such as Omega, Z, and NIF. We also show that prior experiments do not actually generate photoionization fronts, rather a heat front is produced by heat conductions. We show some initial simulation results of the current experimental design and characterize the ionization front.

  18. Estimating nonlinear models

    Science.gov (United States)

    Billings, S. A.

    1988-03-01

    Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.

  19. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  20. Nonlinear Burn Control in Tokamaks using Heating, Non-axisymmetric Magnetic Fields, Isotopic fueling and Impurity injection

    Science.gov (United States)

    Pajares, Andres; Schuster, Eugenio

    2016-10-01

    Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.

  1. Light-Front QCD

    CERN Document Server

    Brodsky, S J

    2004-01-01

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffr...

  2. A mathematical proof of the zeroth "law" of thermodynamics and the nonlinear Fourier "law" for heat flow.

    Science.gov (United States)

    Evans, Denis J; Williams, Stephen R; Rondoni, Lamberto

    2012-11-21

    What is now known as the zeroth "law" of thermodynamics was first stated by Maxwell in 1872: at equilibrium, "Bodies whose temperatures are equal to that of the same body have themselves equal temperatures." In the present paper, we give an explicit mathematical proof of the zeroth "law" for classical, deterministic, T-mixing systems. We show that if a body is initially not isothermal it will in the course of time (subject to some simple conditions) relax to isothermal equilibrium where all parts of the system will have the same temperature in accord with the zeroth "law." As part of the derivation we give for the first time, an exact expression for the far from equilibrium thermal conductivity. We also give a general proof that the infinite-time integral, of transient and equilibrium autocorrelation functions of fluxes of non-conserved quantities vanish. This constitutes a proof of what was called the "heat death of the Universe" as was widely discussed in the latter half of the 19th century.

  3. 底部加热长方体腔内自然对流的非线性特性%Nonlinear Characters of Natural Convection Heated From Below

    Institute of Scientific and Technical Information of China (English)

    战乃岩; 杨茉

    2012-01-01

    Nonlinear phenomena in natural convection of air in a three-dimensional rectangular cavity heated from below have been investigated numerically using SIMPLE algorithm with QUICK scheme. It is found that the different results occur when the different initial conditions are given and only one of the results is consist with the experimental result. But the influence of initial conditions appears in some range. When Rayleigh number is above a critical value, unsteady oscillation occurs. With increase of Rayleigh number, flow and heat transfer change from steady to unsteady state, and transition to chaos occurs through multi-periodical oscillation. The critical value of Rayleigh number of transition is different for different aspect ratio.%采用SIMPLE算法,QUICK差分格式,对底部加热三维长方体腔内空气的自然对流进行了数值模拟。根据模拟结果,探讨了方腔内流体流动与换热的静态分岔与振荡等非线性现象。数值结果显示,在固定的几何尺寸和不同Ra的情况下,当初始场不同时,会出现若干不同的解,即存在解的静态分岔;在固定的几何尺寸和相同的初始场情况下,低Ra时流动和换热处于稳态,当Ra超过某一临界值时,流动和换热就会随时间振荡,并通过倍周期分岔过渡到混沌;当方腔的几何尺寸不同时,分岔点的特征值Ra也发生变化。

  4. The Front Desks of Boston

    Directory of Open Access Journals (Sweden)

    Michael Oshins

    2013-04-01

    Full Text Available The role of hotel front desks has not changed significantly in more than a century. The activities of welcoming guests upon arrival, assisting guests during their stay, and settling accounts upon departure are still the mainstay of the front desk. Although the function of the front desk has remained static, its form has evolved. Front desks now differ widely in terms of aesthetics and, in some cases, even operational patterns. This article offers photographs of numerous hotel front desks in Boston and provides brief commentaries that provide insight about the changing nature of front desk design.

  5. Direct drive ablation front stability: numerical predictions against flame front model

    Energy Technology Data Exchange (ETDEWEB)

    Masse, L. [Phd Student at IRPHE St Jerome, 13 - Marseille (France)]|[CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France); Hallo, L.; Tallot, C. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    We study the linear stability of flows resulting from constant heating of planar targets by a laser. In the coordinate system of the ablation front there is a flow from the cold to hot region, which is situated in a gravity field oriented from hot to cold region. Similar types of flow can be observed in combustion systems, which involve propagation of flame fronts. A spectral model which studies linear perturbation is directly taken from the combustion community. Here we present the results for state as well as perturbed flows. Growth rate determined from the models are compared to each other, and preliminary numerical results from FC12 simulations are shown. (authors)

  6. A Characterization for the Gevrey-Sobolev Wave Front Set

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN

    2001-01-01

    In this note, we use the so-called microlocal energy method to give a characterization of theGevrey-Sobolev wave front set W FHστσ (u), which will be useful in the study of non-linear microlocalanalysis in Gevrey classes.

  7. Dynamics of curved fronts

    CERN Document Server

    Pelce, Pierre

    1989-01-01

    In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.

  8. Radiative thermal conduction fronts

    Science.gov (United States)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  9. Front roughening of flames in discrete media

    Science.gov (United States)

    Lam, Fredric; Mi, XiaoCheng; Higgins, Andrew J.

    2017-07-01

    The morphology of flame fronts propagating in reactive systems composed of randomly positioned, pointlike sources is studied. The solution of the temperature field and the initiation of new sources is implemented using the superposition of the Green's function for the diffusion equation, eliminating the need to use finite-difference approximations. The heat released from triggered sources diffuses outward from each source, activating new sources and enabling a mechanism of flame propagation. Systems of 40 000 sources in a 200 ×200 two-dimensional domain were tracked using computer simulations, and statistical ensembles of 120 realizations of each system were averaged to determine the statistical properties of the flame fronts. The reactive system of sources is parameterized by two nondimensional values: the heat release time (normalized by interparticle diffusion time) and the ignition temperature (normalized by adiabatic flame temperature). These two parameters were systematically varied for different simulations to investigate their influence on front propagation. For sufficiently fast heat release and low ignition temperature, the front roughness [defined as the root mean square deviation of the ignition temperature contour from the average flame position] grew following a power-law dependence that was in excellent agreement with the Kardar-Parisi-Zhang (KPZ) universality class (β =1 /3 ). As the reaction time was increased, lower values of the roughening exponent were observed, and at a sufficiently great value of reaction time, reversion to a steady, constant-width thermal flame was observed that matched the solution from classical combustion theory. Deviation away from KPZ scaling was also observed as the ignition temperature was increased. The features of this system that permit it to exhibit both KPZ and non-KPZ scaling are discussed.

  10. Flame front propagation in a channel with porous walls

    Science.gov (United States)

    Golovastov, S. V.; Bivol, G. Yu

    2016-11-01

    Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.

  11. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsov, Maxim A., E-mail: shevtsov-max@mail.ru [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); A.L. Polenov Russian Research Scientific Institute of Neurosurgery, Mayakovsky str. 12, St. Petersburg 191014 (Russian Federation); Nikolaev, Boris P. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Ryzhov, Vyacheslav A. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Yakovleva, Ludmila Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Dobrodumov, Anatolii V. [Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, St. Petersburg 199004 (Russian Federation); Marchenko, Yaroslav Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Margulis, Boris A. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); Pitkin, Emil [The Wharton School, University of Pennsylvania, 3730 Walnut St., Philadelphia, PA 19104 (United States); Guzhova, Irina V. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation)

    2015-08-15

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M{sub 2}). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T{sub 2}-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M{sub 2} measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M{sub 2} ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates

  12. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Medicine's Front Line Observation Emergency Care Fact Sheet Health & Safety Tips Campaigns SUBSCRIBE Emergencies A-Z Share ... Illnesses Dr. Glenn Mitchell , Emergency physician at Mercy Health System in Chesterfield, Missouri Heat-related illness can ...

  13. LOCAL STABILITY OF TRAVELLING FRONTS FOR A DAMPED WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    Cao LUO

    2013-01-01

    The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut =uxx-V'(u) on R.The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut =uxx-V'(u).Whereas a lot is known about the local stability of travelling fronts in parabolic systems,for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type.However,for the combustion or monostable type of V,the problem is much more complicated.In this paper,a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established.And then,the result is extended to the damped wave equation with a case of monostable pushed front.

  14. Nonlinear regime of the mode-coupling instability in 2D plasma crystals

    CERN Document Server

    Röcker, T B; Zhdanov, S K; Nosenko, V; Ivlev, A V; Thomas, H M; Morfill, G E

    2014-01-01

    The transition between linear and nonlinear regimes of the mode-coupling instability (MCI) operating in a monolayer plasma crystal is studied. The mode coupling is triggered at the centre of the crystal and a melting front is formed, which travels through the crystal. At the nonlinear stage, the mode coupling results in synchronisation of the particle motion and the kinetic temperature of the particles grows exponentially. After melting of the crystalline structure, the mean kinetic energy of the particles continued to grow further, preventing recrystallisation of the melted phase. The effect could not be reproduced in simulations employing a simple point-like wake model. This shows that at the nonlinear stage of the MCI a heating mechanism is working which was not considered so far.

  15. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    Science.gov (United States)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Marchenko, Yaroslav Y.; Margulis, Boris A.; Pitkin, Emil; Guzhova, Irina V.

    2015-08-01

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION-Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M2). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T2-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION-Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors.

  16. New Front End Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, D; Jovanovic, I; Comaskey, B J

    2001-02-01

    The next generation of Petawatt class lasers will require the development of new laser technology. Optical parametric chirped pulse amplification (OPCPA) holds a potential to increase the peak power level to >10 PW with existing grating technology through ultrashort pulses. Furthermore, by utilizing a new type of front-end system based on optical parametric amplification, pulses can be produced with substantially higher contrast than with Ti:sapphire regenerative amplifier technology. We performed extensive study of OPCPA using a single crystal-based OPA. We developed a replacement for Ti:sapphire regenerative amplifier for high peak power lasers based on OPCPA, with an output of 30 mJ, at 10 Hz repetition rate and 16.5 nm spectral bandwidth. We developed a 3D numerical model for OPCPA and we performed a theoretical study of influences of pump laser beam quality on optical parametric amplification. Our results indicate that OPCPA represents a valid replacement for Ti:sapphire in the front end of high energy short pulse lasers.

  17. Complex patterns in reaction-diffusion systems a tale of two front instabilities

    CERN Document Server

    Hagberg, A; Aric Hagberg; Ehud Meron

    1994-01-01

    Two front instabilities in a reaction-diffusion system are shown to lead to the formation of complex patterns. The first is an instability to transverse modulations that drives the formation of labyrinthine patterns. The second is a Nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar front unstable and gives rise to a pair of counterpropagating fronts. Near the NIB bifurcation the relation of the front velocity to curvature is highly nonlinear and transitions between counterpropagating fronts become feasible. Nonuniformly curved fronts may undergo local front transitions that nucleate spiral-vortex pairs. These nucleation events provide the ingredient needed to initiate spot splitting and spiral turbulence. Similar spatio-temporal processes have been observed recently in the ferrocyanide-iodate-sulfite reaction.

  18. Order Parameter Equations for Front Transitions Planar and Circular Fronts

    CERN Document Server

    Hagberg, A; Rubinstein, I; Zaltzman, B; Hagberg, Aric; Meron, Ehud

    1997-01-01

    Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts. Often this results in nonsteady asymptotic motion such as breathing and domain breakup. Exploiting the time scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order parameter describing transitions between left and right propagating fronts. Perturbations, such as a space dependent advective field or uniform curvature (axisymmetric spots), couple these two degrees of freedom. In both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.

  19. From the front

    Energy Technology Data Exchange (ETDEWEB)

    Price, Stephen [Los Alamos National Laboratory

    2009-01-01

    The causes of recent dynamic thinning of Greenland's outlet glaciers have been debated. Realistic simulations suggest that changes at the marine fronts of these glaciers are to blame, implying that dynamic thinning will cease once the glaciers retreat to higher ground. For the last decade, many outlet glaciers in Greenland that terminate in the ocean have accelerated, thinned, and retreated. To explain these dynamic changes, two hypotheses have been discussed. Atmospheric warming has increased surface melting and may also have increased the amount of meltwater reaching the glacier bed, increasing lubrication at the base and hence the rate of glacier sliding. Alternatively, a change in the delicate balance of forces where the glacier fronts meet the ocean could trigger the changes. Faezeh Nick and colleagues5 present ice-sheet modeling experiments that mimic the observations on Helheim glacier, East Greenland, and suggest that the dynamic behaviour of outlet glaciers follows from perturbations at their marine fronts. Greenland's ice sheet loses mass partly through surface melting and partly through fast flowing outlet glaciers that connect the vast plateau of inland ice with the ocean. Earlier ice sheet models have failed to reproduce the dynamic variability exhibited by ice sheets over time. It has therefore not been possible to distinguish with confidence between basal lubrication from surface meltwater and changes at the glaciers' marine fronts as causes for the observed changes on Greenland's outlet glaciers. But this distinction bears directly on future sea-level rise, the raison d'etre of much of modern-day glaciology: If the recent dynamic mass loss Greenland's outlet glaciers is linked to changing atmospheric temperatures, it may continue for as long as temperatures continue to increase. On the other hand, if the source of the dynamic mass loss is a perturbation at the ice-ocean boundary, these glaciers will lose contact with

  20. Dipolarization front and current disruption

    Science.gov (United States)

    Lui, A. T. Y.

    2016-10-01

    The modification of current density on the dawn-dusk cross section of the magnetotail with the earthward approach of a dipolarization front (DF) is examined through the recently published results of a three-dimensional (3-D) particle-in-cell (PIC) simulation. It is found that the current density intensifies by 37% abruptly within 1.5 ion gyrotime as the DF approaches and shows localized regions with north-south extrusions. After reaching its peak value, it undergoes a drastic current reduction (DCR) by 65% within 2 ion gyrotime. Breakdown of the frozen-in condition occurs in the neutral sheet region in association with DCR, demonstrating the non-MHD behavior of the phenomenon. The evolution of current density from this 3-D PIC simulation bears several similarities to those observed for the current disruption (CD) phenomenon, such as explosive growth and disruption of the current density leading to a breakdown of the frozen-in condition. The evolution is also similar to those from a previous two-dimensional (2-D) PIC simulation specially designed to investigate the nonlinear evolution of the cross-field current instability for CD. One interpretation of these findings is that CD and substorm triggering can be associated with earthward intrusion of a DF into the near-Earth plasma sheet as indicated by previous Cluster and Time History of Events and Macroscale Interactions during Substorms observations. An alternative interpretation is that both DF and CD are consequences of a global evolution from an ion-tearing-like instability of the magnetotail.

  1. Biological Activity at Oceanic Fronts.

    Science.gov (United States)

    1985-12-01

    and/or phytoplankton concentrations between the adjacent areas. High particle concentrations are associated with a front east of the Galapagos Islands...yeTlowfin, albacore, and bluefin tunas, mackerel, salmon, and some whales (Uda, 1938, 1952,. 9.=, 1973; Uda and Ishino, 1958). Behavioral responses of...Marine mammals ,Gaskin, 1976) also utilize tidal fronts. Minke whales were observed to feed on herring or capelin collected in fronts and fin whales fed

  2. On a Strongly Damped Wave Equation for the Flame Front

    Institute of Scientific and Technical Information of China (English)

    Claude-Michel BRAUNER; Luca LORENZI; Gregory I.SIVASHINSKY; Chuanju XU

    2010-01-01

    In two-dimensional free-interface problems,the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S).However,away from the stability threshold,the structure of the front equation may be more in-volved.In this paper,a generalized K-S equation,a nonlinear wave equation with a strong damping operator,is considered.As a consequence,the associated semigroup turns out to be analytic.Asymptotic convergence to K-S is shown,while numerical results illustrate the dynamics.

  3. Photoionization effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain); Trueba, Jose L [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2006-12-21

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work.

  4. Turbulent front speed in the Fisher equation: dependence on Damkohler number

    CERN Document Server

    Brandenburg, A; Babkovskaia, N

    2010-01-01

    Direct numerical simulations and mean-field theory are used to model reactive front propagation in a turbulent medium. In the mean-field approach, memory effects of turbulent diffusion are taken into account to estimate the front speed in cases when the Damkohler number is large. This effect is found to saturate the front speed to values comparable with the speed of the turbulent motions. By comparing with direct numerical simulations, it is found that the effective correlation time is much shorter than for non-reacting flows. The nonlinearity of the reaction term is found to make the front speed slightly faster.

  5. Front tracking for hyperbolic conservation laws

    CERN Document Server

    Holden, Helge

    2002-01-01

    Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.

  6. Combustion waves and fronts in flows flames, shocks, detonations, ablation fronts and explosion of stars

    CERN Document Server

    Clavin, Paul

    2016-01-01

    Combustion is a fascinating phenomenon coupling complex chemistry to transport mechanisms and nonlinear fluid dynamics. This book provides an up-to-date and comprehensive presentation of the nonlinear dynamics of combustion waves and other non-equilibrium energetic systems. The major advances in this field have resulted from analytical studies of simplified models performed in close relation with carefully controlled laboratory experiments. The key to understanding the complex phenomena is a systematic reduction of the complexity of the basic equations. Focusing on this fundamental approach, the book is split into three parts. Part I provides physical insights for physics-oriented readers, Part II presents detailed technical analysis using perturbation methods for theoreticians, and Part III recalls the necessary background knowledge in physics, chemistry and fluid dynamics. This structure makes the content accessible to newcomers to the physics of unstable fronts in flows, whilst also offering advanced mater...

  7. An extended version of the discrete Kalman filter applied to a nonlinear inverse heat conduction problem; Version etendue du filtre de Kalman discret appliquee a un probleme inverse de conduction de chaleur non lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Daouas, N.; Radhouani, M.S. [Ecole Nationale d' Ingenieurs de Monastir, Dept. de Genie-Energetique, Monastir (Tunisia)

    2000-02-01

    Nonlinear inverse heat conduction problem is resolved by using a formulation of the Kalman filter based on a statistical approach and extended to nonlinear systems. The time evolution of a surface heat flux density is reconstructed from a numerical simulation which allowed us to analyse the influence of some parameters, that condition the running of the filter, on the estimation result. A suitable choice of these parameters, guided by the filter behaviour observations, leads to a solution that remains stable when using noisy data, but that is slightly time-lagged compared to the exact function. This time-lag depends on the location of the interior temperature measurement needed for the inversion and on the model error caused by the approximation of the heat flux with a piece-wide constant function. The application of the extended Kalman filter with real measurements recorded from an experimental set-up, shows that this technique fits the stochastic structure of experimental measurements. The provided results are validated by using the Raynaud's and Bransier's inverse method and are in good agreement with the flux density estimated with this method. (authors)

  8. Active learning of Pareto fronts.

    Science.gov (United States)

    Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto

    2014-03-01

    This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.

  9. Light Front Boson Model Propagation

    Institute of Scientific and Technical Information of China (English)

    Jorge Henrique Sales; Alfredo Takashi Suzuki

    2011-01-01

    stract The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ > O. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.

  10. Io in Front of Jupiter

    Science.gov (United States)

    2000-01-01

    Jupiter's four largest satellites, including Io, the golden ornament in front of Jupiter in this image from NASA's Cassini spacecraft, have fascinated Earthlings ever since Galileo Galilei discovered them in 1610 in one of his first astronomical uses of the telescope.Images from Cassini that will be released over the next several days capture each of the four Galilean satellites in their orbits around the giant planet.This true-color composite frame, made from narrow angle images taken on Dec. 12, 2000, captures Io and its shadow in transit against the disk of Jupiter. The distance of the spacecraft from Jupiter was 19.5 million kilometers (12.1 million miles). The image scale is 117 kilometers (73 miles) per pixel.The entire body of Io, about the size of Earth's Moon, is periodically flexed as it speeds around Jupiter and feels, as a result of its non-circular orbit, the periodically changing gravitational pull of the planet. The heat arising in Io's interior from this continual flexure makes it the most volcanically active body in the solar system, with more than 100 active volcanoes. The white and reddish colors on its surface are due to the presence of different sulfurous materials. The black areas are silicate rocks.Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  11. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...

  12. Implementation of the superfluid helium phase transition using finite element modeling: Simulation of ransient heat transfer and He-I/He-II phase front movement in cooling channels of superconducting magnets

    NARCIS (Netherlands)

    Bielert, E.R.; Verweij, A.P.; Kate, ten H.H.J.

    2013-01-01

    In the thermal design of high magnetic field superconducting accelerator magnets, the emphasis is on the use of superfluid helium as a coolant and stabilizing medium. The very high effective thermal conductivity of helium below the lambda transition temperature significantly helps to extract heat fr

  13. Nonlinear Young integrals via fractional calculus

    OpenAIRE

    Hu, Yaozhong (1961-); Le, Khoa

    2015-01-01

    For H\\"older continuous functions $W(t,x)$ and $\\varphi_t$, we define nonlinear integral $\\int_a^b W(dt, \\varphi_t)$ via fractional calculus. This nonlinear integral arises naturally in the Feynman-Kac formula for stochastic heat equations with random coefficients. We also define iterated nonlinear integrals.

  14. Non-linear model predictive supervisory controller for building, air handling unit with recuperator and refrigeration system with heat waste recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2016-01-01

    In this paper we examine a supermarket system. In order to grasp the most important dynamics we present a model that includes the single zone building thermal envelope with its heating, cooling and ventilation. Moreover we include heat waste recovery from the refrigeration high pressure side. The...

  15. "Front" hotshet izvinitsja / Aleksandr Ikonnikov

    Index Scriptorium Estoniae

    Ikonnikov, Aleksandr

    2003-01-01

    Põhiliselt vene rahvusest noori ühendava liikumise "Front" esindajad kavatsevad kohtuda USA suursaadikuga Eestis ja vabandada kevadel suursaatkonna ees vägivallatsemisega lõppenud meeleavalduse pärast

  16. Asymptotics for dissipative nonlinear equations

    CERN Document Server

    Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A

    2006-01-01

    Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.

  17. Stability of oblique shock front

    Institute of Scientific and Technical Information of China (English)

    CHEN; Shuxing(陈恕行)

    2002-01-01

    The stability of the weak planar oblique shock front with respect to the perturbation of the wall is discussed. By the analysis of the formation and the global construction of shock and its asymptotic behaviour for stationary supersonic flow along a smooth rigid wall we obtain the stability of the solution containing a weak planar shock front. The stability can be used to single out a physically reasonable solution together with the entropy condition.

  18. Carbon Nanotube Passive Intermodulation Device for Nonlinear Energy Harvesting

    Science.gov (United States)

    Lerner, Mitchell; Perez, Israel; Rockway, John

    2014-03-01

    The navy is interested in designing RF front-ends for receivers to handle high power jammers and other strong interferers. Instead of blocking that energy or dissipating it as heat in filters or amplifiers, this project investigates re-directing that energy for harvesting and storage. The approach is based on channelizing a high power jamming signal into a passive intermodulation device to create intermodulation products in sub-band frequencies, which could then be harvested for energy. The intermodulation device is fabricated using carbon nanotube transistors and such devices can be modified by creating chemical defects in the sidewalls of the nanotubes and locally gating the devices with a slowly varying electric field. These effects controllably enhance the hysteretic non-linearity in the transistors IV behavior. Combining these components with a RF energy harvester on the back-end should optimize the re-use of inbound jamming energy while maximizing the utility of standard back end radio components.

  19. Radiative magnetized thermal conduction fronts

    Science.gov (United States)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The evolution of plane-parallel magnetized thermal conduction fronts in the interstellar medium (ISM) was studied. Separating the coronal ISM phase and interstellar clouds, these fronts have been thought to be the site of the intermediate-temperature regions whose presence was inferred from O VI absorption-line studies. The front evolution was followed numerically, starting from the initial discontinuous temperature distribution between the hot and cold medium, and ending in the final cooling stage of the hot medium. It was found that, for the typical ISM pressure of 4000 K/cu cm and the hot medium temperature of 10 to the 6th K, the transition from evaporation to condensation in a nonmagnetized front occurs when the front thickness is 15 pc. This thickness is a factor of 5 smaller than previously estimated. The O VI column densities in both evaporative and condensation stages agree with observations if the initial hot medium temperature Th exceeds 750,000 K. Condensing conduction fronts give better agreement with observed O VI line profiles because of lower gas temperatures.

  20. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  1. Nonlinear supratransmission

    Energy Technology Data Exchange (ETDEWEB)

    Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)

    2003-05-07

    A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.

  2. Nonlinear fluid simulation of particle and heat fluxes during burst of ELMs on DIII-D with BOUT++  code

    Science.gov (United States)

    Xia, T. Y.; Xu, X. Q.

    2015-09-01

    In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++  six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. The profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements are used as the initial conditions for the simulations. A flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficient {αj} , free streaming model with {αj}=1 , sheath-limit with {αj}=0.05 , and one value in between. The studies show that a 20 times increase in {αj} leads to  ∼6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of {{n}\\text{e}} are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. The heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The lobe structures near the X-point at LFS are both broadened and elongated due

  3. a Study of the Dynamics of Maritime Fronts Using Remotely Sensed Wind and Stress Measurements.

    Science.gov (United States)

    Levy, Gad

    The satellite scatterometer data open unprecedented opportunities to look at maritime storms and fronts. They are combined with observations, modeling efforts, and theory to study five cases. These provide the data to investigate frontal behavior in terms of its vorticity and divergence. The appropriate momentum, divergence and vorticity equations are derived and investigated including the inertial and the frictional terms. The analysis is used to study frontal dynamics. The results indicate that the large scale horizontal and vertical thermodynamic structure of the boundary layer significantly influence baroclinic waves and frontal structure. These effects promote more efficient mixing and transport of heat, moisture, and westerly momentum in midlatitude storms. The conclusions are: (1) The analyzed satellite scatterometer winds are suited for input to a planetary boundary layer model which yields synoptic scale surface pressure analyses commensurate with current analyses based on buoy and ship observations. (2) Surface analysis may be improved when model pressure fields, scatterometer convergence patterns, and microwave radiometer vapor fields are used together. (3) The convergence usually coincides with cyclonic vorticity at frontal zones. However, the maxima in vorticity and convergence normally do not completely coincide. A significant out-of-phase relationship which was observed for one storm in its explosive stage is suggested to be a result of gravity wave activity. (4) Surface friction is important in frontal processes. This is shown in the divergence and the vorticity equations through the role of friction in determining the dissipation and the ageostrophic terms. (5) In frontal situations the dissipation term normally acts to weaken the front and thus could be regarded as a mechanism that can help in bringing a front towards a steady state. (6) The ageostrophic term normally acts to strengthen a front, and except for some special conditions, could be

  4. Convective chemical fronts in a Poiseuille flow.

    Science.gov (United States)

    Vasquez, Desiderio A

    2007-11-01

    Autocatalytic reaction fronts propagating in a Poiseuille flow present a change of speed and curvature depending on the strength of the flow and on the direction of front propagation. These chemical fronts separate reacted and unreacted fluids of different densities, consequently convection will always be present due to the horizontal density gradient of the curved front. In this paper, we find the change of speed caused by gravity for fronts propagating in vertical tubes under a Poiseuille flow. For small density differences, we find axisymmetric fronts. Our theory predicts a transition to nonaxisymmetric fronts as the distance between the walls is increased. The transition depends on the average speed of the Poiseuille flow.

  5. Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Cisternas, Jaime, E-mail: jecisternas@miuandes.cl [Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monseñor Alvaro del Portillo 12455, Las Condes, Santiago (Chile); Karpitschka, Stefan [Physics of Fluids, University of Twente, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Wehner, Stefan [Institut für Integrierte Naturwissenschaften - Physik, Universität Koblenz-Landau, 56070 Koblenz (Germany)

    2014-10-28

    In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.

  6. Practical Nonlinearities

    Science.gov (United States)

    2016-07-01

    Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9

  7. Variational principle for nonlinear wave propagation in dissipative systems.

    Science.gov (United States)

    Dierckx, Hans; Verschelde, Henri

    2016-02-01

    The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.

  8. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  9. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  10. Nonlinear analysis

    CERN Document Server

    Nanda, Sudarsan

    2013-01-01

    "Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.

  11. Travelling waves in nonlinear diffusion-convection-reaction

    NARCIS (Netherlands)

    Gilding, B.H.; Kersner, R.

    2001-01-01

    The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the stu

  12. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  13. Align the Front End First.

    Science.gov (United States)

    Perry, Jim

    1995-01-01

    Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)

  14. Multiple WH-Fronting Constructions.

    Science.gov (United States)

    Rudin, Catherine

    The unique position of WH words in Slavic languages is discussed, with specific reference to Bulgarian and Serbo-Croatian. The multiple fronting characteristics of Bulgarian and Serbo-Croatian differ in terms of the following positions and behaviors: extraction from embedded questions; clitic placement and other indications of constituent status;…

  15. The Light-Front Vacuum

    CERN Document Server

    Herrmann, Marc

    2015-01-01

    Background: The vacuum in the light-front representation of quantum field theory is trivial while vacuum in the equivalent canonical representation of the same theory is non-trivial. Purpose: Understand the relation between the vacuum in light-front and canonical representations of quantum field theory and the role of zero-modes in this relation. Method: Vacuua are defined as linear functionals on an algebra of field operators. The role of the algebra in the definition of the vacuum is exploited to understand this relation. Results: The vacuum functional can be extended from the light-front Fock algebra to an algebra of local observables. The extension to the algebra of local observables is responsible for the inequivalence. The extension defines a unitary mapping between the physical representation of the local algebra and a sub-algebra of the light-front Fock algebra. Conclusion: There is a unitary mapping from the physical representation of the algebra of local observables to a sub-algebra of the light-fro...

  16. Align the Front End First.

    Science.gov (United States)

    Perry, Jim

    1995-01-01

    Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)

  17. Light Front Fermion Model Propagation

    Institute of Scientific and Technical Information of China (English)

    Jorge Henrique Sales; Alfredo Takashi Suzuki

    2013-01-01

    In this work we consider the propagation of two fermion fields interacting with each other by the exchange of intermediate scalar bosons in the light front.We obtain the corrections up to fourth order in the coupling constant using hierarchical equations in order to obtain the bound state equation (Bethe-Salpeter equation).

  18. FAZIA front-end electronics

    OpenAIRE

    Salomon F.; Edelbruck P.; Brulin G.; Boiano A.; Tortone G.; Ordine A.; Bini M.; Barlini S.; Valdré S.

    2015-01-01

    FAZIA is a multi-detector specifically designed to optimize ion identification in heavy-ion experiments. Its electronic is fully digital; it was designed in the laboratories of the collaboration. This paper presents the front-end part of this electronic.

  19. FAZIA front-end electronics

    Directory of Open Access Journals (Sweden)

    Salomon F.

    2015-01-01

    Full Text Available FAZIA is a multi-detector specifically designed to optimize ion identification in heavy-ion experiments. Its electronic is fully digital; it was designed in the laboratories of the collaboration. This paper presents the front-end part of this electronic.

  20. On the propagation of a coupled saturation and pressure front

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  1. Solitary Wave and Wave Front as Viewed From Curvature

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Kuo; FU Zun-Tao; LIU Shi-Da; LIANG Fu-Ming; XIN Guo-Jun

    2004-01-01

    The solitary wave and wave front are two important behaviors of nonlinear evolution equations. Geometri cally, solitary wave and wave front are all plane curve. In this paper, they can be represented in terms of curvature c(s), which varies with arc length s. For solitary wave when s →±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) reaches its maximum. For wave front, when s →±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) is still zero, but c'(s) ≠ 0. That is, s = 0 is a turning point. When c(s) is given, the variance at some point (x, y) in stream line with arc length s satisfies a 2-order linear variable-coefficient ordinary differential equation. From this equation, it can be determined qualitatively whether the given curvature is a solitary wave or wave front.

  2. Solitary Wave and Wave Front as Viewed From Curvature

    Institute of Scientific and Technical Information of China (English)

    LIUShi-Kuo; FUZun-Tao; LIUShi-Da; LIANGFu-Ming; XINGuo-Jun

    2004-01-01

    The solitary wave and wave front are two important behaviors of nonlinear evolution equations. Geometrically, solitary wave and wave front are all plane curve. In this paper, they can be represented in terms of curvature c(s),which varies with arc length s. For solitary wave when s→±∞, then its curvature c(s) approaches zero, and whens = 0, the curvature c(s) reaches its maximum. For wave front, when s→±∞, then its curvature c(s) approaches zero,and when s = 0, the curvature c(s) is still zero, but c'(s)≠0. That is, s = 0 is a turning point. When c(s) is given,the variance at some point (x, y) in stream line with arc length s satisfies a 2-order linear variable-coeffcient ordinary differential equation. From this equation, it can be determined qualitatively whether the given curvature is a solitary wave or wave front.

  3. Effects of mechanical dispersion on the morphological evolution of a chemical dissolution front in a fluid-saturated porous medium

    Science.gov (United States)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Lai, Geng-Xin; Ni, Chuen-Fa

    2009-06-01

    SummaryThe dissolution-induced finger or wormhole patterns in porous medium or fracture rock play a crucial role in a variety of scientific, industrial, and engineering practices. Although previous studies have extensively presented a number of numerical models which couples a system of nonlinear governing equations of porosity change due to mineral dissolution, the conservations of groundwater flow and transport of chemical species to investigate the morphological pattern of a chemical dissolution front within a fluid-saturated porous medium, whereas the mechanical dispersion effect has generally been neglected in the model development. This study addresses the effects of mechanical dispersion on the morphological evolution of a chemical dissolution front for a variety of cases. Mechanical dispersion processes is incorporated with the coupled nonlinear governing equation system so as to rebuild a newly numerical model. The results of numerical simulations demonstrate that mechanical dispersion has pronounced impacts on the morphological pattern of the chemical dissolution front. For single local non-uniformity case, mechanical dispersion reduces the finger length of an unstable single-fingering front or retains the shape of a stable planar front while speeding up the front advancement. In the case of two local non-uniformities, adding mechanical dispersion with different flow conditions can yield one of the following results: (1) the shape of the stable planar front is maintained but its advancement is accelerated; (2) the shape of the unstable single-fingering front is maintained but its length is reduced; (3) the unstable double-fingering front is merged into an unstable single-fingering front; and (4) the shape of the unstable double-fingering front is preserved but its fingering length is reduced. A comparison between the behavior diagrams of dissolution front morphology (with and without considering mechanical dispersion) shows that the double-fingering front

  4. Instability of Evaporation Fronts in the Interstellar Meidum

    CERN Document Server

    Kim, Jeong-Gyu

    2013-01-01

    The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) of terrestrial flames. We perform a full linear stability analysis as well as nonlinear hydrodynamic simulations of the DLI of such evaporation fronts in the presence of thermal conduction. We find that the DLI is suppressed at short length scales by conduction. The length and time scales of the fastest growing mode are inversely proportional to the evaporation flow speed of the CNM and its square, respectively. In the nonlinear stage, the DLI saturates to a steady state where the front deforms to a finger-like shape protruding toward the WNM, without generating turbulence. The evaporation rate at nonlinear saturation is ...

  5. Thermal rectification in nonlinear quantum circuits

    DEFF Research Database (Denmark)

    Ruokola, T.; Ojanen, T.; Jauho, Antti-Pekka

    2009-01-01

    We present a theoretical study of radiative heat transport in nonlinear solid-state quantum circuits. We give a detailed account of heat rectification effects, i.e., the asymmetry of heat current with respect to a reversal of the thermal gradient, in a system consisting of two reservoirs at finite...

  6. Influence of nonlinearity of the phonon dispersion relation on wave velocities in the four-moment maximum entropy phonon hydrodynamics

    Science.gov (United States)

    Larecki, Wieslaw; Banach, Zbigniew

    2014-01-01

    This paper analyzes the propagation of the waves of weak discontinuity in a phonon gas described by the four-moment maximum entropy phonon hydrodynamics involving a nonlinear isotropic phonon dispersion relation. For the considered hyperbolic equations of phonon gas hydrodynamics, the eigenvalue problem is analyzed and the condition of genuine nonlinearity is discussed. The speed of the wave front propagating into the region in thermal equilibrium is first determined in terms of the integral formula dependent on the phonon dispersion relation and subsequently explicitly calculated for the Dubey dispersion-relation model: |k|=ωc-1(1+bω2). The specification of the parameters c and b for sodium fluoride (NaF) and semimetallic bismuth (Bi) then makes it possible to compare the calculated dependence of the wave-front speed on the sample’s temperature with the empirical relations of Coleman and Newman (1988) describing for NaF and Bi the variation of the second-sound speed with temperature. It is demonstrated that the calculated temperature dependence of the wave-front speed resembles the empirical relation and that the parameters c and b obtained from fitting respectively the empirical relation and the original material parameters of Dubey (1973) are of the same order of magnitude, the difference being in the values of the numerical factors. It is also shown that the calculated temperature dependence is in good agreement with the predictions of Hardy and Jaswal’s theory (Hardy and Jaswal, 1971) on second-sound propagation. This suggests that the nonlinearity of a phonon dispersion relation should be taken into account in the theories aiming at the description of the wave-type phonon heat transport and that the Dubey nonlinear isotropic dispersion-relation model can be very useful for this purpose.

  7. Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jaski, Y.; Westferro, F.; Lee, S. H.; Yang, B.; Abliz, M.; Ramanathan, M.

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shutters open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.

  8. Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing

    Science.gov (United States)

    Uddin, M. J.; Bég, O. Anwar; Amin, N.

    2014-11-01

    Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices.

  9. Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.J., E-mail: jashim_74@yahoo.com [Department of Mathematics, American International University-Bangladesh, Banani Dhaka 1213 (Bangladesh); Bég, O. Anwar [Gort Engovation Research (Propulsion/Biomechanics), Gabriel' s Wing House, 15 Southmere Ave., Bradford, BD7 3NU England (United Kingdom); Amin, N. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor (Malaysia)

    2014-11-15

    Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices. - Highlights: • This paper analyses MHD slip flow of nofluid with convective boundary conditions. • Group method is used to transform governing equations into similarity equations. • The Runge–Kutta–Fehlberg method is used for numerical computations. • The study is relevant to synthesis of bio-magnetic nanofluids.

  10. Front-end XY-slits assembly for the SPring-8 undulator beamlines.

    Science.gov (United States)

    Oura, M; Sakurai, Y; Kitamura, H

    1998-05-01

    A front-end XY-slits assembly has been designed for the SPring-8 undulator beamlines. This assembly can handle the high heat flux from the undulator, its grazing-incidence L-shaped configuration employing an enhanced heat-transfer technology.

  11. Weather fronts and acute myocardial infarction

    Science.gov (United States)

    Kveton, Vit

    1991-03-01

    Some methodological aspects are discussed of the investigation of acute infarct myocarditis (AIM) in relation to weather fronts. Results of a new method of analysis are given. Data were analysed from about the hour of the onset of symptoms, and led to the diagnosis of AIM either immediately or within a few hours or days (3019 cases observed over 4.5 years during 1982 1986 in Plzen, Czechoslovakia). Weather classification was based on three factors (the type of the foregoing front, the type of the subsequent front, the time section of the time interval demarcated by the passage of the surfaces of the fronts). AIM occurrence increased in particular types of weather fronts: (i) by 30% during 7 12 h after a warm front, if the time span between fronts exceeded 24 h; (ii) by 10% in time at least 36 h distant from the foregoing cold or occlusion front and from the succeeding warm or occlusion front; (iii) by 20% during 0 2 h before the passage of the front, provided the foregoing front was not warm and the interval between fronts exceeded 5 h. AIM occurrence decreased by 15% 20% for time span between fronts > 24 h at times 6 11, 6 23 and 6 35 h before a coming warm or occlusion front (for interfrontal intervals 25 48, 49 72 and possibly > 72 h), and also at 12 23 and possibly 12 35 h before a cold front (for intervals 49 72 and possibly > 72 h), if the foregoing front was cold or an occlusion front.

  12. Front waves in the early RNA world: The Schlögl model and the logistic growth model.

    Science.gov (United States)

    Frank, T D

    2016-03-01

    Front wave solutions of nonlinear reaction-diffusion models describing the spatio-temporal growth of RNA populations in the early RNA world are discussed. A two-variable model for RNA enzymes and enzyme complex molecules as well as single-variable models obtained via adiabatic elimination of the complex molecules are considered. In both models, the focus is on enzyme diffusion in one spatial dimension, assuming that the diffusion of complex molecules can be neglected. It is shown that one of the single-variable models corresponds to a Schlögl model of front propagation. In general, for the single-variable models it is found that front speed corresponds to the minimal speed of traveling fronts. In contrast, the two-variable model exhibits even slower front propagation. Front propagation might be an important factor in competitive evolutionary processes in the early RNA world.

  13. Nonlinear Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2016-01-01

    We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.

  14. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  15. Front speed in reactive compressible stirred media

    CERN Document Server

    Bianco, Federico; Vergni, Davide; Vulpiani, Angelo

    2013-01-01

    We investigated a nonlinear advection-diffusion-reaction equation for a passive scalar field. The purpose is to understand how the compressibility can affect the front dynamics and the bulk burning rate. We study two classes of flows: periodic shear flow and cellular flow both in the case of fast advection regime, analysing the system at varying the extent of compressibility and the reaction rate. We find that the bulk burning rate in a shear flow increases with compressibility intensity. Furthermore, the faster the reaction the more important the difference with respect to the laminar case. The effect has been quantitatively measured and it turns out to be generally little. For the cellular flow, the two extreme cases have been investigated, with the whole perturbation situated either in the centre of the vortex or in the periphery. The dependence in this case does not show a monotonic scaling with different behaviour in the two cases. The enhancing remains modest and always less than 20%

  16. Front tracking for hyperbolic conservation laws

    CERN Document Server

    Holden, Helge

    2015-01-01

    This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions, and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet  "I have read the book with great pleasure, and I can recommend it to experts ...

  17. FRIB Front End Design Status

    CERN Document Server

    Pozdeyev, E; Machicoane, G; Morgan, G; Rao, X; Zhao, Q; Stovall, J; Vorozhtsov, S; Sun, L

    2013-01-01

    The Facility for Rare Isotope Beams (FRIB) will provide a wide range of primary ion beams for nuclear physics research with rare isotope beams. The FRIB SRF linac will be capable of accelerating medium and heavy ion beams to energies beyond 200 MeV/u with a power of 400 kW on the fragmentation target. This paper presents the status of the FRIB Front End designed to produce uranium and other medium and heavy mass ion beams at world-record intensities. The paper describes the FRIB high performance superconducting ECR ion source, the beam transport designed to transport two-charge state ion beams and prepare them for the injection in to the SRF linac, and the design of a 4-vane 80.5 MHz RFQ. The paper also describes the integration of the front end with other accelerator and experimental systems.

  18. Multi Front-End Engineering

    Science.gov (United States)

    Botterweck, Goetz

    Multi Front-End Engineering (MFE) deals with the design of multiple consistent user interfaces (UI) for one application. One of the main challenges is the conflict between commonality (all front-ends access the same application core) and variability (multiple front-ends on different platforms). This can be overcome by extending techniques from model-driven user interface engineering.We present the MANTRA approach, where the common structure of all interfaces of an application is modelled in an abstract UI model (AUI) annotated with temporal constraints on interaction tasks. Based on these constraints we adapt the AUI, e.g., to tailor presentation units and dialogue structures for a particular platform. We use model transformations to derive concrete, platform-specific UI models (CUI) and implementation code. The presented approach generates working prototypes for three platforms (GUI, web, mobile) integrated with an application core via web service protocols. In addition to static evaluation, such prototypes facilitate early functional evaluations by practical use cases.

  19. Disk Instabilities and Cooling Fronts

    CERN Document Server

    Vishniac, E T

    1998-01-01

    Accretion disk outbursts, and their subsequent decline, offer a unique opportunity to constrain the physics of angular momentum transport in hot accretion disks. Recent work has centered on the claim by Cannizzo et al. that the exponential decay of luminosity following an outburst in black hole accretion disk systems is only consistent with a particular form for the dimensionless viscosity, $\\alpha=35(c_s/r\\Omega)^{3/2}$. This result can be understood in terms of a simple model of the evolution of cooling fronts in accretion disks. In particular, the cooling front speed during decline is $\\sim cooling front, and the exact value of $n$ depends on the hot state opacity, (although generally $n\\approx 1/2$). Setting this speed proportional to $r$ constrains the functional form of $\\alpha$ in the hot phase of the disk, which sets it apart from previous arguments based on the relative durations of outburst and quiescence. However, it remains uncertain how well we know the exponent $n$. In addition, more work is nee...

  20. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t

  1. On the construction of heat wave in symmetric case

    Science.gov (United States)

    Kazakov, A. L.; Lempert, A. A.

    2016-06-01

    A nonlinear second-order parabolic equation with two variables is considered. Under additional conditions, this equation can be interpreted as the porous medium equation in case of dependence of the unknown function on two variables: time and distance from the origin. The equation has a wide variety of applications in continuum mechanics, for example, it is applicable for mathematical modeling of filtration of ideal polytropic gas in porous media or heat conduction. The authors deal with a special solutions which are usually called heat waves. A special feature of such solution is that it consists of two continuously joined solutions. The first of them is trivial and the second one is nonnegative. The heat wave solution can have discontinuous derivatives on the line of joint which is called the front of heat wave, i.e. smoothness of the solution, generally speaking, is broken. The most natural problem which has such solutions is the so-called “the Sakharov problem of the initiation of a heat wave”. New solutions of the problem in the form of multiple power series for physical variables are constructed. The coefficients of the series are obtained from tridiagonal systems of linear algebraic equations. Herewith, the elements of matrices of this systems depend on the matrix order and the condition of the diagonal dominance is not fulfilled. The recurrent formulas for the coefficients are suggested.

  2. Nonlinear acoustics in biomedical ultrasound

    Science.gov (United States)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  3. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-05-21

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  4. Critical heat flux and dynamics of boiling in nanofluids at stepwise heat release

    Science.gov (United States)

    Moiseev, M. I.; Kuznetsov, D. V.

    2016-10-01

    In this paper results of an experimental study on critical heat flux and dynamics of boiling crisis onset in nanofluids at stepwise heat generation are presented. Freon R21 with three types of nanoparticles - SiO2, Cu and Al2O3 was used as test fluid. Critical heat fluxes and temperatures of boiling initiation were obtained. It was shown that the addition of nanoparticles increased CHF at stepwise heat generation by up to 21%. Under conditions of the experiment transition to film boiling occurred via evaporation fronts. Data on propagation velocity and structure of evaporation fronts were obtained; the spectral analysis of fluctuations of the evaporation front interface was carried out. The characteristic frequencies and amplitudes of interface fluctuations were determined depending on the velocity of evaporation front propagation. It was shown that the addition of nano-sized particles significantly affects development of interface instability and increases the front velocity.

  5. Joule heating in nanowires

    Science.gov (United States)

    Fangohr, Hans; Chernyshenko, Dmitri S.; Franchin, Matteo; Fischbacher, Thomas; Meier, Guido

    2011-08-01

    We study the effect of Joule heating from electric currents flowing through ferromagnetic nanowires on the temperature of the nanowires and on the temperature of the substrate on which the nanowires are grown. The spatial current density distribution, the associated heat generation, and diffusion of heat are simulated within the nanowire and the substrate. We study several different nanowire and constriction geometries as well as different substrates: (thin) silicon nitride membranes, (thick) silicon wafers, and (thick) diamond wafers. The spatially resolved increase in temperature as a function of time is computed. For effectively three-dimensional substrates (where the substrate thickness greatly exceeds the nanowire length), we identify three different regimes of heat propagation through the substrate: regime (i), where the nanowire temperature increases approximately logarithmically as a function of time. In this regime, the nanowire temperature is well described analytically by You [Appl. Phys. Lett.APPLAB0003-695110.1063/1.2399441 89, 222513 (2006)]. We provide an analytical expression for the time tc that marks the upper applicability limit of the You model. After tc, the heat flow enters regime (ii), where the nanowire temperature stays constant while a hemispherical heat front carries the heat away from the wire and into the substrate. As the heat front reaches the boundary of the substrate, regime (iii) is entered, where the nanowire and substrate temperature start to increase rapidly. For effectively two-dimensional substrates (where the nanowire length greatly exceeds the substrate thickness), there is only one regime in which the temperature increases logarithmically with time for large times, before the heat front reaches the substrate boundary. We provide an analytical expression, valid for all pulse durations, that allows one to accurately compute this temperature increase in the nanowire on thin substrates.

  6. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  7. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  8. Molecular dynamics simulation of the burning front propagation in PETN

    Science.gov (United States)

    Yanilkin, A. V.; Sergeev, O. V.

    2014-05-01

    One of the models of detonation development in condensed explosives under shock loading is the concept of "hot spots." According to this model, the reaction initially starts at various defects and inhomogeneities, where energy is localized during shock wave propagation. In such a region the reaction may start and the heat flux sufficient for the ignition of the adjacent layers of matter may be formed. If the reaction propagates fast enough, the merging of the burning fronts from several hot spots may lead to detonation. So there is an interest in determining the burning propagation rate from the hot spot in various conditions. In this work we investigate the propagation of plane burning front from initially heated layer in PETN single crystal using molecular dynamics method with the reactive force field (ReaxFF). The burning rate depends on the direction in crystal. The kinetics of chemical transformations is considered. The dependence of the burning front propagation rate along [100] direction on the external pressure in the pressure range from normal to 30 GPa is calculated, it is shown that it grows linearly in the considered range from 50 m/s to 320 m/s. The results are compared with the data from experiments and quantum chemical calculations.

  9. Onshore propagation of a buoyant ocean front observed using a shore-based marine radar

    Science.gov (United States)

    Marmorino, G. O.; Cooper, A. L.; Mied, R. P.; Lindemann, G. J.; Trizna, D. B.; Porter, D. L.

    2004-06-01

    An analysis is presented of a 2-h-long time series of X-band marine radar images, collected at Duck, North Carolina (USA), that captured the evolution of a buoyant ocean front as it propagated onshore, following a period of upwelling-favorable winds. In plan view, the front exhibits a scallop-shaped structure similar to that previously observed along strongly convergent fronts. This alongshore structure consists of broad frontal crests (a few hundred meters in length) alternating with sharply angled troughs, or frontal cusps. The evolution of these frontal shapes is explored using a reduced-gravity model (Cooper et al., J. Geophys. Res.-Oceans 106 (2001) 16887) that allows for nonlinear self-interaction of a propagating front. A model simulation shows cusps that develop quickly from initially broad troughs and that point toward the buoyant water, features resembling the observations. However, the simulation also shows a continuous oscillation of frontal shapes, while the observed front reaches a quasi-steady plan form. We attribute this difference in behavior to the gradual shoaling of the observed front as it steadily advances, ultimately reaching water depths of less than 2 m, which is comparable to the thickness of the buoyant layer. As a consequence of the shoaling, we suggest the cusps become sites of enhanced mixing, where water inshore of the front is also accelerated seaward.

  10. Nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)

    1989-01-01

    Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.

  11. Three-Dimensional Dynamical Instabilities in Galactic Ionization Fronts

    Science.gov (United States)

    Whalen, Daniel J.; Norman, Michael L.

    2008-01-01

    Ionization front instabilities have long been of interest for their suspected role in a variety of phenomena in the Galaxy, from the formation of bright rims and "elephant trunks" in nebulae to triggered star formation in molecular clouds. Numerical treatments of these instabilities have historically been limited in both dimensionality and input physics, leaving important questions about their true evolution unanswered. We present the first three-dimensional radiation hydrodynamical calculations of both R-type (rarefied) and D-type (dense) ionization front instabilities in Galactic environments (i.e., solar-metallicity gas). Consistent with linear stability analyses of planar D-type fronts, our models exhibit many short-wavelength perturbations that grow at early times and later evolve into fewer large-wavelength structures. The simulations demonstrate that both self-consistent radiative transfer and three-dimensional flow introduce significant morphological differences to unstable modes when compared to earlier two-dimensional approximate models. We find that the amplitude of the instabilities in the nonlinear regime is primarily determined by the efficiency of cooling within the shocked neutral shell. Strong radiative cooling leads to long, extended structures with pronounced clumping, while weaker cooling leads to saturated modes that devolve into turbulent flows. These results suggest that expanding H II regions may either promote or provide turbulent support against the formation of later generations of stars, with potential consequences for star formation rates in the Galaxy today.

  12. Stability of a directional solidification front in subdiffusive media.

    Science.gov (United States)

    Hamed, Mohammad Abu; Nepomnyashchy, Alexander A

    2014-01-01

    The efficiency of crystal growth in alloys is limited by the morphological instability, which is caused by a positive feedback between the interface deformation and the diffusive flux of solute at the front of the phase transition. Usually this phenomenon is described in the framework of the normal diffusion equation, which stems from the linear relation between time and the mean squared displacement of molecules 〈x2(t)〉∼K1t (K1 is the classical diffusion coefficient) that is characteristic of Brownian motion. However, in some media (e.g., in gels and porous media) the random walk of molecules is hindered by obstacles, which leads to another power law, 〈x2(t)〉∼Kαtα, where 0directional solidification front in the case of an anomalous diffusion. Linear stability of a moving planar directional solidification front is studied, and a generalization of the Mullins-Sekerka stability criterion is obtained. Also, an asymptotic nonlinear long-wave evolution equation of Sivashinsky's type, which governs the cellular structures at the interface, is derived.

  13. A general formalism for Fourier based Wave Front Sensing

    CERN Document Server

    Fauvarque, Olivier; Fusco, Thierry; Sauvage, Jean-François; Girault, Orion

    2016-01-01

    We introduce in this article a general formalism for Fourier based wave front sensing. To do so, we consider the filtering mask as a free parameter. Such an approach allows to unify sensors like the Pyramid Wave Front Sensor (PWFS) and the Zernike Wave Front Sensor (ZWFS). In particular, we take the opportunity to generalize this two sensors in terms of sensors' class where optical quantities as, for instance, the apex angle for the PWFS or the depth of the Zernike mask for the ZWFS become free parameters. In order to compare all the generated sensors of this two classes thanks to common performance criteria, we firstly define a general phase-linear quantity that we call meta-intensity. Analytical developments allow then to split the perfectly phase-linear behavior of a WFS from the non-linear contributions making robust and analytic definitions of the sensitivity and the linearity range possible. Moreover, we define a new quantity called the SD factor which characterizes the trade-off between these two antag...

  14. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan

    2017-01-01

    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  15. Nonlinear plasmonics at high temperatures

    Science.gov (United States)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  16. Melting of a phase change material in a horizontal annulus with discrete heat sources

    Directory of Open Access Journals (Sweden)

    Mirzaei Hooshyar

    2015-01-01

    Full Text Available Phase change materials have found many industrial applications such as cooling of electronic devices and thermal energy storage. This paper investigates numerically the melting process of a phase change material in a two-dimensional horizontal annulus with different arrangements of two discrete heat sources. The sources are positioned on the inner cylinder of the annulus and assumed as constant-temperature boundary conditions. The remaining portion of the inner cylinder wall as well as the outer cylinder wall is considered to be insulated. The emphasis is mainly on the effects of the arrangement of the heat source pair on the fluid flow and heat transfer features. The governing equations are solved on a non-uniform O type mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid and liquid interface. The results are obtained at Ra=104 and presented in terms of streamlines, isotherms, melting phase front, liquid fraction and dimensionless heat flux. It is observed that, depending on the arrangement of heat sources, the liquid fraction increases both linearly and non-linearly with time but will slow down at the end of the melting process. It can also be concluded that proper arrangement of discrete heat sources has the great potential in improving the energy storage system. For instance, the arrangement C3 where the heat sources are located on the bottom part of the inner cylinder wall can expedite the melting process as compared to the other arrangements.

  17. A shock front at the radio relic of Abell 2744

    Science.gov (United States)

    Eckert, D.; Jauzac, M.; Vazza, F.; Owers, M. S.; Kneib, J.-P.; Tchernin, C.; Intema, H.; Knowles, K.

    2016-09-01

    Radio relics are Mpc-scale diffuse radio sources at the peripheries of galaxy clusters which are thought to trace outgoing merger shocks. We present XMM-Newton and Suzaku observations of the galaxy cluster Abell 2744 (z = 0.306), which reveal the presence of a shock front 1.5 Mpc east of the cluster core. The surface-brightness jump coincides with the position of a known radio relic. Although the surface-brightness jump indicates a weak shock with a Mach number M=1.7_{-0.3}^{+0.5}, the plasma in the post-shock region has been heated to a very high temperature (˜13 keV) by the passage of the shock wave. The low-acceleration efficiency expected from such a weak shock suggests that mildly relativistic electrons have been re-accelerated by the passage of the shock front.

  18. Front Propagation in Stochastic Neural Fields

    KAUST Repository

    Bressloff, Paul C.

    2012-01-01

    We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.

  19. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Science.gov (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  20. Nonlinear predictive control in the LHC accelerator

    CERN Document Server

    Blanco, E; Cristea, S; Casas, J

    2009-01-01

    This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.

  1. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  2. Effects of mechanical dispersion on the morphological evolution of the reaction front during transport in a homogeneous porous medium with initial small non-uniformities

    Science.gov (United States)

    Chen, J.-S.; Lai, G.-X.

    2009-04-01

    The morphological evolution of a chemical dissolution front is an important topic in geological processes and engineering practices. Although previous studies have extensively presented a number of numerical models which couples a system of nonlinear governing equations of porosity change due to mineral dissolution, the conservations of groundwater flow and transport of chemical species to investigate the morphological pattern of a chemical dissolution front within a fluid-saturated porous medium, whereas the mechanical dispersion effect has generally been neglected in the model development. This study addresses the effects of mechanical dispersion on the morphological evolution of a chemical dissolution front for a variety of cases. Mechanical dispersion processes is incorporated with the coupled nonlinear governing equation system so as to rebuild a newly numerical model. The results of numerical simulations demonstrate that mechanical dispersion has pronounced impacts on the morphological pattern of the chemical dissolution front. For single local non-uniformity case, mechanical dispersion reduces the finger length of an unstable single-fingering front or retains the shape of a stable planar front while speeding up the front advancement. In the case of two local non-uniformities, adding mechanical dispersion with different flow conditions can yield one of the following results: (1) the shape of the stable planar front is maintained but its advancement is accelerated; (2) the shape of the unstable single-fingering front is maintained but its length is reduced; (3) the unstable double-fingering front is merged into an unstable single-fingering front; and (4) the shape of the unstable double-fingering front is preserved but its fingering length is reduced.. A comparison between the behavior diagrams of dissolution front morphology (with and without considering mechanical dispersion) shows that the double-fingering front occurs under condition where the upstream

  3. Longitudinal nonlinear wave propagation through soft tissue.

    Science.gov (United States)

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated

  4. Front propagation and rejuvenation in flipping processes

    Energy Technology Data Exchange (ETDEWEB)

    Ben-naim, Eli [Los Alamos National Laboratory; Krapivsky, P I [BOSTON UNIV; Antal, T [HARVARD UNIV; Ben - Avrahm, D [HARVARD UNIV

    2008-01-01

    We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess {Delta}{sub k} increases logarithmically, {Delta}{sub k} {approx_equal}ln k, with the distance k from the front. Third, the front exhibits ageing -- young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations.

  5. Progress in front propagation research

    Science.gov (United States)

    Fort, Joaquim; Pujol, Toni

    2008-08-01

    We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined.

  6. Visual study of propagation of self-sustained evaporation front within the thickness of a thermal liquid layer

    Science.gov (United States)

    Zhukov, V. E.; Moiseev, M. I.; Kuznetsov, D. V.

    2016-10-01

    In the range of low reduced pressures, the development of self-sustained evaporation front along the heat-releasing surface at non-stationary heat release is an important factor that determines possible transition to film boiling at heat fluxes, significantly lower than the critical heat fluxes at stationary heat release. This paper presents the experimental results on the scale of a leading part of the interface of self-sustained evaporation front at stepped heat release. The scale of the leading part of the interface of the evaporation front is compared with the thermal layer thickness, registered using the shadow method of visualization at high-speed video shooting with up to 25,000 frames per second. Experiments were carried out in Freon R21 under the conditions of free convection at relative pressures of 0.032 - 0.068. It is shown that self-sustained evaporation front spreads along the heated wall within the thickness of a liquid layer, superheated relative to the saturation temperature. Dependence of the front velocity on wall superheating relative to the saturation temperature does not change with significant subcooling to the temperature of liquid saturation in the volume.

  7. Muon front end for the neutrino factory

    Directory of Open Access Journals (Sweden)

    C. T. Rogers

    2013-04-01

    Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  8. Muon front end for the neutrino factory

    CERN Document Server

    Rogers, C T; Prior, G; Gilardoni, S; Neuffer, D; Snopok, P; Alekou, A; Pasternak, J

    2013-01-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  9. A Nonlinear Model of Thermoacoustic Devices

    NARCIS (Netherlands)

    Karpov, Sergey; Prosperetti, Andrea

    2002-01-01

    This paper presents a nonlinear, time-domain model of thermoacoustic devices based on cross-sectional averaged equations. Heat transfer perpendicular to the device axis - which lies at the core of thermoacoustic effects - is modeled in a novel and more realistic way. Heat conduction in the solid sur

  10. Towards a Carbon Nanotube Intermodulation Product Sensor for Nonlinear Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Mitchell B. Lerner

    2015-01-01

    Full Text Available It is critically important in designing RF receiver front ends to handle high power jammers and other strong interferers. Instead of blocking incoming energy or dissipating it as heat, we investigate the possibility of redirecting that energy for harvesting and storage. The approach is based on channelizing a high power signal into a previously unknown circuit element which serves as a passive intermodulation device. This intermodulation component must produce a hysteretic current-voltage curve to be useful as an energy harvester. Here we demonstrate a method by which carbon nanotube transistors produce the necessary hysteretic I-V curves. Such devices can be tailored to the desired frequency by introducing functional groups to the nanotubes. These effects controllably enhance the desired behavior, namely, hysteretic nonlinearity in the transistors’ I-V characteristic. Combining these components with an RF energy harvester may one day enable the reuse of inbound jamming energy for standard back end radio components.

  11. Nonlinear propagation and decay of intense regular and random waves in relaxing media

    Science.gov (United States)

    Gurbatov, S. N.; Rudenko, O. V.; Demin, I. Yu.

    2015-10-01

    An integro-differential equation is written down that contains terms responsible for nonlinear absorption, visco-heat-conducting dissipation, and relaxation processes in a medium. A general integral expression is obtained for calculating energy losses of the wave with arbitrary characteristics—intensity, profile (frequency spectrum), and kernel describing the internal dynamics of the medium. Profiles of stationary solutions are constructed both for an exponential relaxation kernel and for other types of kernels. Energy losses at the front of week shock waves are calculated. General integral formulas are obtained for energy losses of intense noise, which are determined by the form of the kernel, the structure of the noise correlation function, and the mean square of the derivative of realization of a random process.

  12. Modelling the Propagation of a Weak Fast-Mode MHD Shock Wave near a 2D Magnetic Null Point Using Nonlinear Geometrical Acoustics

    Science.gov (United States)

    Afanasyev, A. N.; Uralov, A. M.

    2012-10-01

    We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.

  13. Modelling the Propagation of a Weak Fast-Mode MHD Shock Wave near a 2D Magnetic Null Point Using Nonlinear Geometrical Acoustics

    CERN Document Server

    Afanasyev, Andrey N

    2012-01-01

    We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.

  14. Burning invariant manifolds in reactive front propagation

    CERN Document Server

    Mahoney, John; Mitchell, Kevin; Solomon, Tom

    2011-01-01

    We present theory and experiments on the dynamics of reaction fronts in a two-dimensional flow composed of a chain of alternating vortices. Inspired by the organization of passive transport by invariant manifolds, we introduce burning invariant manifolds (BIMs), which act as one-sided barriers to front propagation. The BIMs emerge from the theory when the advection-reaction- diffusion system is recast as an ODE for reaction front elements. Experimentally, we demonstrate how these BIMs can be measured and compare their behavior with simulation. Finally, a topological BIM formalism yields a maximum front propagation speed.

  15. Front blind spot crashes in Hong Kong.

    Science.gov (United States)

    Cheng, Yuk Ki; Wong, Koon Hung; Tao, Chi Hang; Tam, Cheok Ning; Tam, Yiu Yan; Tsang, Cheuk Nam

    2016-09-01

    In 2012-2014, our laboratory had investigated a total of 9 suspected front blind spot crashes, in which the medium and heavy goods vehicles pulled away from rest and rolled over the pedestrians, who were crossing immediately in front of the vehicles. The drivers alleged that they did not see any pedestrians through the windscreens or the front blind spot mirrors. Forensic assessment of the goods vehicles revealed the existence of front blind spot zones in 3 out of these 9 accident vehicles, which were attributed to the poor mirror adjustments or even the absence of a front blind spot mirror altogether. In view of this, a small survey was devised involving 20 randomly selected volunteers and their goods vehicles and 5 out of these vehicles had blind spots at the front. Additionally, a short questionnaire was conducted on these 20 professional lorry drivers and it was shown that most of them were not aware of the hazards of blind spots immediately in front of their vehicles, and many did not use the front blind spot mirrors properly. A simple procedure for quick measurements of the coverage of front blind spot mirrors using a coloured plastic mat with dimensional grids was also introduced and described in this paper.

  16. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  17. Dynamics of kinks in one- and two-dimensional hyperbolic models with quasidiscrete nonlinearities.

    Science.gov (United States)

    Rotstein, H G; Mitkov, I; Zhabotinsky, A M; Epstein, I R

    2001-06-01

    We study the evolution of fronts in the Klein-Gordon equation when the nonlinear term is inhomogeneous. Extending previous works on homogeneous nonlinear terms, we describe the derivation of an equation governing the front motion, which is strongly nonlinear, and, for the two-dimensional case, generalizes the damped Born-Infeld equation. We study the motion of one- and two-dimensional fronts finding a much richer dynamics than in the homogeneous system case, leading, in most cases, to the stabilization of one phase inside the other. For a one-dimensional front, the function describing the inhomogeneity of the nonlinear term acts as a "potential function" for the motion of the front, i.e., a front initially placed between two of its local maxima asymptotically approaches the intervening minimum. Two-dimensional fronts, with radial symmetry and without dissipation can either shrink to a point in finite time, grow unboundedly, or their radius can oscillate, depending on the initial conditions. When dissipation effects are present, the oscillations either decay spirally or not depending on the value of the damping dissipation parameter. For fronts with a more general shape, we present numerical simulations showing the same behavior.

  18. Photothermal heating of nanoribbons

    Science.gov (United States)

    Smith, Bennett E.; Zhou, Xuezhe; Davis, E. James; Pauzauskie, Peter J.

    2017-01-01

    Nanoscale optical materials are of great interest for building future optoelectronic devices for information processing and sensing applications. Although heat transfer ultimately limits the maximum power at which nanoscale devices may operate, gaining a quantitative experimental measurement of photothermal heating within single nanostructures remains a challenge. Here, we measure the nonlinear optical absorption coefficient of optically trapped cadmium-sulfide nanoribbons at the level of single nanostructures through observations of their Brownian dynamics during single-beam laser trapping experiments. A general solution to the heat transfer partial differential equation is derived for nanostructures having rectilinear morphology including nanocubes and nanoribbons. Numerical electromagnetic calculations using the discrete-dipole approximation enable the simulation of the photothermal heating source function and the extraction of nonlinear optical absorption coefficients from experimental observations of single nanoribbon dynamics.

  19. Non-linear simulations of combustion instabilities with a quasi-1D Navier-Stokes code

    CERN Document Server

    Haugen, Nils Erland L; Sannan, Sigurd

    2010-01-01

    As lean premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems, there is an increasing demand for improved numerical design tools that can predict the occurrence of combustion instabilities with high accuracy. The inherent non-linearities in combustion instabilities can be of crucial importance, and we here propose an approach in which the one-dimensional Navier-Stokes and scalar transport equations are solved for geometries of variable cross-section. The focus is on attached flames, and for this purpose a new phenomenological model for the unsteady heat release from a flame front is introduced. In the attached flame method (AFM) the heat release occurs over the full length of the flame. The non-linear code with the use of the AFM approach is validated against results from an experimental study of thermoacoustic instabilities in oxy-fuel flames by Ditaranto and Hals [Combustion and Flame, 146, 493-512 (2006)]. The numerical simulations are in accordance with the...

  20. Mutation at Expanding Front of Self-Replicating Colloidal Clusters

    CERN Document Server

    Tanaka, Hidenori; Brenner, Michael P

    2016-01-01

    We construct a scheme for self-replicating square clusters of particles in two spatial dimensions, and validate it with computer simulations in a finite-temperature heat bath. We find that the self-replication reactions propagate through the bath in the form of Fisher waves. Our model reflects existing colloidal systems, but is simple enough to allow simulation of many generations and thereby the first study of evolutionary dynamics in an artificial system. By introducing spatially localized mutations in the replication rules, we show that the mutated cluster population can survive and spread with the expanding front in circular sectors of the colony.

  1. Mutation at Expanding Front of Self-Replicating Colloidal Clusters

    Science.gov (United States)

    Tanaka, Hidenori; Zeravcic, Zorana; Brenner, Michael P.

    2016-12-01

    We construct a scheme for self-replicating square clusters of particles in two spatial dimensions, and validate it with computer simulations in a finite-temperature heat bath. We find that the self-replication reactions propagate through the bath in the form of Fisher waves. Our model reflects existing colloidal systems, but is simple enough to allow simulation of many generations and thereby the first study of evolutionary dynamics in an artificial system. By introducing spatially localized mutations in the replication rules, we show that the mutated cluster population can survive and spread with the expanding front in circular sectors of the colony.

  2. Nonlinear PDEs

    OpenAIRE

    2015-01-01

    From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...

  3. Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts

    Science.gov (United States)

    Tiani, R.; Rongy, L.

    2016-09-01

    The nonlinear dynamics of A + B → C fronts is analyzed both numerically and theoretically in the presence of Marangoni flows, i.e., convective motions driven by surface tension gradients. We consider horizontal aqueous solutions where the three species A, B, and C can affect the surface tension of the solution, thereby driving Marangoni flows. The resulting dynamics is studied by numerically integrating the incompressible Navier-Stokes equations coupled to reaction-diffusion-convection (RDC) equations for the three chemical species. We show that the dynamics of the front cannot be predicted solely on the basis of the one-dimensional reaction-diffusion profiles as is the case for buoyancy-driven convection around such fronts. We relate this observation to the structure of Marangoni flows which lead to more complex and exotic dynamics. We find in particular the surprising possibility of a reversal of the front propagation direction in time for some sets of Marangoni numbers, quantifying the influence of each chemical species concentration on the solution surface tension. We explain this reversal analytically and propose a new classification of the convective effects on A + B → C reaction fronts as a function of the Marangoni numbers. The influence of the layer thickness on the RDC dynamics is also presented. Those results emphasize the importance of flow symmetry properties when studying convective front dynamics in a given geometry.

  4. A method for tracking subsurface fronts of stress-induced permeability enhancement

    Science.gov (United States)

    Lewis, K. C.

    2012-12-01

    The coupled interactions in fractured geological media between thermal-hydrologic-mechanical (THM) and chemical effects are expected to be important in many engineering applications including CO2 sequestration, geothermal energy production, oil and gas production, nuclear waste isolation, and arctic permafrost. Large changes in pressures, temperatures, and saturations can result due to injection/withdrawal of fluids or emplaced heat sources. Phase changes or rock failure often occur in an abrupt fashion, characterized by a sharp front of discontinuity with relatively small changes in properties on either side of the front. These changes can modify the formation permeability in a manner that can often be approximated by a step-function-like dependence. Such behavior has motivated us to use an analogy to the classical Stefan problem; we construct evolution equations for the fluid pore pressure on both sides of a propagating stress induced damage front for the case of planar front geometry. Closed form expressions are derived for the position of the damage front and the observable surface mass flow rate as functions of time for planar, spherical, and cylindrical damage front geometries. Isothermal, pressure induced damage is discussed as well as damage dominated by thermal effects. Model predictions are shown to agree with those of a less general fracture model as well as with field data consisting of measured mass flow rates over a two week period. Finally, we discuss extensions of the basic model to more complex damage front geometries.

  5. Dynamic computer-generated nonlinear-optical holograms

    Science.gov (United States)

    Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng

    2017-08-01

    We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.

  6. Molecular Dynamics Simulations of Shocks Including Electronic Heat Conduction and Electron-Phonon Coupling

    Science.gov (United States)

    Ivanov, Dmitriy S.; Zhigilei, Leonid V.; Bringa, Eduardo M.; De Koning, Maurice; Remington, Bruce A.; Caturla, Maria Jose; Pollaine, Stephen M.

    2004-07-01

    Shocks are often simulated using the classical molecular dynamics (MD) method in which the electrons are not included explicitly and the interatomic interaction is described by an effective potential. As a result, the fast electronic heat conduction in metals and the coupling between the lattice vibrations and the electronic degrees of freedom can not be represented. Under conditions of steep temperature gradients that can form near the shock front, however, the electronic heat conduction can play an important part in redistribution of the thermal energy in the shocked target. We present the first atomistic simulation of a shock propagation including the electronic heat conduction and electron-phonon coupling. The computational model is based on the two-temperature model (TTM) that describes the time evolution of the lattice and electron temperatures by two coupled non-linear differential equations. In the combined TTM-MD method, MD substitutes the TTM equation for the lattice temperature. Simulations are performed with both MD and TTM-MD models for an EAM Al target shocked at 300 kbar. The target includes a tilt grain boundary, which provides a region where shock heating is more pronounced and, therefore, the effect of the electronic heat conduction is expected to be more important. We find that the differences between the predictions of the MD and TTM-MD simulations are significantly smaller as compared to the hydrodynamics calculations performed at similar conditions with and without electronic heat conduction.

  7. Finite-element technique applied to heat conduction in solids with temperature dependent thermal conductivity

    Science.gov (United States)

    Aguirre-Ramirez, G.; Oden, J. T.

    1969-01-01

    Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

  8. Laplacian Instability of Planar Streamer Ionization Fronts: An Example of Pulled Front Analysis

    NARCIS (Netherlands)

    Derks, G.; Ebert, U.; Meulenbroek, B.

    2008-01-01

    Streamer ionization fronts are pulled fronts that propagate into a linearly unstable state; the spatial decay of the initial condition of a planar front selects dynamically one specific long-time attractor out of a continuous family. A stability analysis for perturbations in the transverse direction

  9. Laplacian Instability of Planar Streamer Ionization Fronts: An Example of Pulled Front Analysis

    NARCIS (Netherlands)

    Derks, G.; Ebert, U.; Meulenbroek, B.

    2008-01-01

    Streamer ionization fronts are pulled fronts that propagate into a linearly unstable state; the spatial decay of the initial condition of a planar front selects dynamically one specific long-time attractor out of a continuous family. A stability analysis for perturbations in the transverse direction

  10. The Role of Front-Back Features in Children's 'Front', 'Back', and 'Beside' Placements of Objects.

    Science.gov (United States)

    Harris, Lauren; Strommen, Ellen

    1970-01-01

    In a study of spatial orientation, 40 boys and 40 girls from kindergarten and first grade placed a series of objects in front, behind, and beside themselves, and in front, behind, and beside other objects. Some objects had distinguishable front and back sides; others lacked such features. Placements were highly consistent within and across…

  11. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DEFF Research Database (Denmark)

    Brodsky, S. J.; de Teramond, G. F.

    2012-01-01

    amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schrodinger equation which determines...

  12. Multiple front propagation into unstable states

    CERN Document Server

    Montagne, R; Hernández-García, E; Miguel, M S

    1993-01-01

    The dynamics of transient patterns formed by front propagation in extended nonequilibrium systems is considered. Under certain circumstances, the state left behind a front propagating into an unstable homogeneous state can be an unstable periodic pattern. It is found by a numerical solution of a model of the Fr\\'eedericksz transition in nematic liquid crystals that the mechanism of decay of such periodic unstable states is the propagation of a second front which replaces the unstable pattern by a another unstable periodic state with larger wavelength. The speed of this second front and the periodicity of the new state are analytically calculated with a generalization of the marginal stability formalism suited to the study of front propagation into periodic unstable states. PACS: 47.20.Ky, 03.40.Kf, 47.54.+r

  13. Effects of cold front passage on turbulent fluxes over a large inland water

    Science.gov (United States)

    Zhang, Q.; Liu, H.

    2011-12-01

    Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.

  14. Steady dynamics of exothermic chemical wave fronts in van der Waals fluids

    Science.gov (United States)

    Dumazer, G.; Antoine, C.; Lemarchand, A.; Nowakowski, B.

    2009-12-01

    We study the steady dynamics of an exothermic Fisher-Kolmogorov-Petrovsky-Piskunov chemical wave front traveling in a one-dimensional van der Waals fluid. The propagating wave is initiated by a nonuniformity in reactant concentration contrary to usual combustion ignition processes. The heat release and activation energy of the reaction play the role of control parameters. We recently proved that the propagation of an exothermic chemical wave front in a perfect gas displays a forbidden interval of stationary wave front speeds [G. Dumazer, M. Leda, B. Nowakowski, and A. Lemarchand, Phys. Rev. E 78, 016309 (2008)]. We examine how this result is modified for nonideal fluids and determine the effect of the van der Waals parameters and fluid density on the bifurcation between diffusion flames and Chapman-Jouguet detonation waves as heat release increases. Analytical predictions are confirmed by the numerical solution of the hydrodynamic equations including reaction kinetics.

  15. Nonlinear plasmonics at high temperatures

    CERN Document Server

    Sivan, Yonatan

    2016-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on {\\em experimentally}-measured data for the metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution, and thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modelling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high temperature non...

  16. Life on the front lines.

    Science.gov (United States)

    Hern, W M

    1994-01-01

    Warren Hern's reminiscences about his experiences as medical director of the Boulder (Colorado) Abortion Clinic and as an abortion provider in private practice provide support for his statement, "Every doctor in America who does abortions lives under a death threat." Shortly after the clinic was opened, a group of anti-abortion physicians pressured the Boulder County Medical Society to pass a resolution declaring the clinic a "clear and present danger" that should be shut down by local health boards. As the only freestanding abortion clinic in the state in the mid-1970's, the Boulder center was targeted by the Right-to-Life Committee picketers and Dr. Hern was harassed in his home and in public. When Dr. Hern left the clinic a year later to establish a private practice specializing in pregnancy termination, the picketers followed. After release of a textbook he prepared on abortion practice, the publisher was deluged with hate mail and threats of boycott, leading them to withdraw the text from its list. Violent attacks on abortion clinics accelerated after Reagan's election and bullets were fired into Hern's waiting room. Randall Terry, national head of Operation Rescue, prayed for Hern's death at a rally in front of his clinic. By the time Dr. David Gunn was assassinated by an anti-abortionist in March 1993, there had been over 1285 acts of violence against abortion facilities and more than 100 facilities had been completely destroyed. The transgression for which Dr. Gunn was murdered was that he sought to save the lives and futures of countless women and support their right to become full participants in society.

  17. Compensating laser wave-front aberration in atmosphere 1.27 km away with SBS

    Institute of Scientific and Technical Information of China (English)

    Youlun Ju(鞠有伦); Qi Wang(王骐); Deying Chen(陈德应); Xin Yu(于欣); Yuezhu Wang(王月珠)

    2003-01-01

    It is reported that the wave-front aberration produced by atmosphere disturbance can be compensated with nonlinear optics phase conjugate technology. The distance of laser propagating in atmosphere is up to 1.27 km away. The result shows that SBS phase conjugating beam energy can be focus in a little area on target. And the biggest energy of phase conjugating beam on target is up to 142 mJ.

  18. Blocking-resistant communication through domain fronting

    Directory of Open Access Journals (Sweden)

    Fifield David

    2015-06-01

    Full Text Available We describe “domain fronting,” a versatile censorship circumvention technique that hides the remote endpoint of a communication. Domain fronting works at the application layer, using HTTPS, to communicate with a forbidden host while appearing to communicate with some other host, permitted by the censor. The key idea is the use of different domain names at different layers of communication. One domain appears on the “outside” of an HTTPS request—in the DNS request and TLS Server Name Indication—while another domain appears on the “inside”—in the HTTP Host header, invisible to the censor under HTTPS encryption. A censor, unable to distinguish fronted and nonfronted traffic to a domain, must choose between allowing circumvention traffic and blocking the domain entirely, which results in expensive collateral damage. Domain fronting is easy to deploy and use and does not require special cooperation by network intermediaries. We identify a number of hard-to-block web services, such as content delivery networks, that support domain-fronted connections and are useful for censorship circumvention. Domain fronting, in various forms, is now a circumvention workhorse. We describe several months of deployment experience in the Tor, Lantern, and Psiphon circumvention systems, whose domain-fronting transports now connect thousands of users daily and transfer many terabytes per month.

  19. Breaking the sound barrier in recombination fronts

    CERN Document Server

    Williams, R J R

    1995-01-01

    We exploit a generic instability in the integration of steady, sonic near-isothermal flows to find the complete transition diagram for recombination fronts (for a model system of equations). The instability requires the integration of the flow equations for speeds between the isothermal and adiabatic sound speeds to be performed with particular care. As a result of this, the previous work of Newman & Axford on the structure of recombination fronts neglected an important class of solution, that of transonic fronts; our method is readily extensible to a more complete treatment of the ionization structure. Future papers will apply these results in models of the structure of ultracompact HII regions.

  20. Pressure transient method for front tracking

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.M.; Bodvarsson, G.S.

    1983-08-01

    A pressure transient technique for tracking the advance of cold water fronts during water flooding and goethermal injection operations has been developed. The technique is based on the concept that the steady state pressure buildup in the reservoir region inside the front can be calculated by a fluid skin factor. By analyzing successive pressure falloff tests, the advance of the front in the reservoir can be monitored. The validity of the methods is demonstrated by application to three numerically simulated data sets, a nonisothermal step-rate injection test, a series of pressure falloffs in a multilayered reservoir, and a series of pressure falloff tests in a water flooded oil reservoir.

  1. FACE RECOGNITION FROM FRONT-VIEW FACE

    Institute of Scientific and Technical Information of China (English)

    Wu Lifang; Shen Lansun

    2003-01-01

    This letter presents a face normalization algorithm based on 2-D face model to recognize faces with variant postures from front-view face. A 2-D face mesh model can be extracted from faces with rotation to left or right and the corresponding front-view mesh model can be estimated according to the facial symmetry. Then based on the inner relationship between the two mesh models, the normalized front-view face is formed by gray level mapping. Finally, the face recognition will be finished based on Principal Component Analysis (PCA). Experiments show that better face recognition performance is achieved in this way.

  2. Collisionless ion dynamics in the shock front

    Science.gov (United States)

    Gedalin, Michael

    2016-07-01

    In the vicinity of the shock front the dynamics of ions is governed by the macroscopic regular electric and magnetic field of the shock. Upon crossing the shock the thermal ions form a non-gyrotropic distribution. The pressure of these non-gyrotropic ions shapes the downstream magnetic field. High-energy ions behave in the shock front as test particles under the influence on the macroscopic fields. The reflection and transmission coefficients of high-energy ions at an oblique shock front is not sensitive to the shock structure and depends only on the global magnetic field change at the shock.

  3. Scalable nonlinear iterative methods for partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X-C

    2000-10-29

    We conducted a six-month investigation of the design, analysis, and software implementation of a class of singularity-insensitive, scalable, parallel nonlinear iterative methods for the numerical solution of nonlinear partial differential equations. The solutions of nonlinear PDEs are often nonsmooth and have local singularities, such as sharp fronts. Traditional nonlinear iterative methods, such as Newton-like methods, are capable of reducing the global smooth nonlinearities at a nearly quadratic convergence rate but may become very slow once the local singularities appear somewhere in the computational domain. Even with global strategies such as line search or trust region the methods often stagnate at local minima of {parallel}F{parallel}, especially for problems with unbalanced nonlinearities, because the methods do not have built-in machinery to deal with the unbalanced nonlinearities. To find the same solution u* of F(u) = 0, we solve, instead, an equivalent nonlinearly preconditioned system G(F(u*)) = 0 whose nonlinearities are more balanced. In this project, we proposed and studied a nonlinear additive Schwarz based parallel nonlinear preconditioner and showed numerically that the new method converges well even for some difficult problems, such as high Reynolds number flows, when a traditional inexact Newton method fails.

  4. Direct measurement of wave-front distortion induced during second-harmonic generation: application to breakup-integral compensation.

    Science.gov (United States)

    Caumes, Jean Pascal; Videau, Laurent; Rouyer, Claude; Freysz, Eric

    2004-04-15

    The wave-front distortion of femtosecond laser pulses recorded with a Shack-Hartmann analyzer makes it possible to retrieve the nonlinear index of refraction of different glasses and the nonlinear phase shift induced during second-harmonic generation in beta-barium borate (BBO) crystal versus the phase mismatch. It is shown that the nonlinear phase shift induced in a 2-mm-thick BBO crystal allows compensation for up to a 2pi breakup-integral induced in a 4-cm fused-silica glass. The stability of the compensation is reported to be from 10 to 100 GW cm(-2).

  5. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  6. Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.

  7. Nonperturbative light-front Hamiltonian methods

    CERN Document Server

    Hiller, J R

    2016-01-01

    We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli--Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, $\\phi^4$ theory, ordinary Yukawa theory, supersymmetric Yang--Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations...

  8. Front Matter: Volume 1 (Proceedings of CBU

    Directory of Open Access Journals (Sweden)

    Petr Hájek

    2013-06-01

    Full Text Available This PDF file contains the front matter associated with CBU Proceedings Volume 1 including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.

  9. Front Matter: Volume 3 (Proceedings of CBU

    Directory of Open Access Journals (Sweden)

    Petr Hájek

    2015-09-01

    Full Text Available This PDF file contains the front matter associated with CBU Proceedings Volume 1 including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.

  10. Optimizing emergency department front-end operations.

    Science.gov (United States)

    Wiler, Jennifer L; Gentle, Christopher; Halfpenny, James M; Heins, Alan; Mehrotra, Abhi; Mikhail, Michael G; Fite, Diana

    2010-02-01

    As administrators evaluate potential approaches to improve cost, quality, and throughput efficiencies in the emergency department (ED), "front-end" operations become an important area of focus. Interventions such as immediate bedding, bedside registration, advanced triage (triage-based care) protocols, physician/practitioner at triage, dedicated "fast track" service line, tracking systems and whiteboards, wireless communication devices, kiosk self check-in, and personal health record technology ("smart cards") have been offered as potential solutions to streamline the front-end processing of ED patients, which becomes crucial during periods of full capacity, crowding, and surges. Although each of these operational improvement strategies has been described in the lay literature, various reports exist in the academic literature about their effect on front-end operations. In this report, we present a review of the current body of academic literature, with the goal of identifying select high-impact front-end operational improvement solutions.

  11. Nonperturbative light-front Hamiltonian methods

    Science.gov (United States)

    Hiller, J. R.

    2016-09-01

    We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.

  12. Shocks and cold fronts in galaxy clusters

    CERN Document Server

    Markevitch, M L; Markevitch, Maxim; Vikhlinin, Alexey

    2007-01-01

    The currently operating X-ray imaging observatories provide us with an exquisitely detailed view of the Megaparsec-scale plasma atmospheres in nearby galaxy clusters. At z < 0.05, the Chandra's 1" angular resolution corresponds to linear resolution of less than a kiloparsec, which is smaller than some interesting linear scales in the intracluster plasma. This enables us to study the previously unseen hydrodynamic phenomena in clusters: classic bow shocks driven by the infalling subclusters, and the unanticipated "cold fronts," or sharp contact discontinuities between regions of gas with different entropies. The ubiquitous cold fronts are found in mergers as well as around the central density peaks in "relaxed" clusters. They are caused by motion of cool, dense gas clouds in the ambient higher-entropy gas. These clouds are either remnants of the infalling subclusters, or the displaced gas from the cluster's own cool cores. Both shock fronts and cold fronts provide novel tools to study the intracluster plasm...

  13. Hydrodynamic dispersion broadening of a sedimentation front

    Science.gov (United States)

    Martin, J.; Rakotomalala, N.; Salin, D.

    1994-10-01

    Hydrodynamic dispersion is responsible for the spreading of the sedimentation front even in a noncolloidal monodisperse suspension. Measurements of the broadening of the top front observed during sedimentation have been used in determining the hydrodynamic dispersion coefficient. Hindered settling has an opposed effect and leads to the self-sharpening of the front. Both effects have to be taken into account simultaneously. This Letter provides a simple, but complete determination of the space and time concentration profile and shows that the final front should consist of a steady-shape profile propagating at constant velocity. With such a solution, the data of Davis et al. [AIChE J. 34, 123 (1988); J. Fluid Mech. 196, 107 (1988)] give hydrodynamic dispersion coefficient five times larger than their former analysis, in agreement with Lee et al. [Phys. Fluids A 4, 2601 (1992)].

  14. Detecting Lagrangian fronts with favourable fishery conditions

    CERN Document Server

    Prants, S V; Uleysky, M Yu

    2012-01-01

    Lagrangian fronts in the ocean delineate boundaries between surface waters with different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps of the drift of synthetic tracers, their Lyapunov exponents, and other Lagrangian indicators. Using Russian ship's catch and location data for a number of commercial fishing seasons in the region of the northwest Pacific with one of the richest fishery in the world, it is shown that the saury fishing grounds with maximal catches are located mainly along those Lagrangian fronts where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts with the altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions in both the cases the front locations may serve good indicators of potential fishing grou...

  15. On Front Slope Stability of Berm Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    2013-01-01

    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison with the r......The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...

  16. Nonlinear energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Lallart, Mickael; Guyomar, Daniel, E-mail: mickael.lallart@insa-lyon.fr [LGEF, INSA-Lyon, Universite de Lyon, 8 rue de la Physique, F-69621 (France)

    2011-10-29

    The proliferation of wearable and left-behind devices has raised the issue of powering such systems. While primary batteries have been widely used in order to address this issue, recent trends have focused on energy harvesting products that feature high reliability and low maintenance issues. Among all the ambient sources available for energy harvesting, vibrations and heat have been of significant interest among the research community for small-scale devices. However, the conversion abilities of materials are still limited when dealing with systems featuring small dimensions. The purpose of this paper is to presents an up-to-date view of nonlinear approaches for increasing the efficiency of electromechanical and electrocaloric conversion mechanisms. From the modeling of the operation principles of the different architectures, a comparative analysis will be exposed, emphasizing the advantages and drawbacks of the presented concepts, in terms of maximal output power (under constant vibration magnitude or taking into account the damping effect), load independence, and implementation easiness.

  17. Front formation in an active scalar equation.

    Science.gov (United States)

    Constantin, P; Nie, Q; Schörghofer, N

    1999-09-01

    We study the formation of thermal fronts in an active scalar equation that is similar to the Euler equation. For a particular initial condition, an earlier candidate for finite-time blowup, the front forms in a generalized self-similar way with constant hyperbolicity at the center. The behavior belongs to a class of scenarios for which finite-time blowup is impossible. A systematic exploration of many different initial conditions reveals no evidence of singular solutions.

  18. Extended Symbolic Dynamics in Bistable CML Existence and Stability of Fronts

    CERN Document Server

    Coutinho, R

    1996-01-01

    We consider a diffusive Coupled Map Lattice (CML) for which the local map is piece-wise affine and has two stable fixed points. By introducing a spatio-temporal coding, we prove the one-to-one correspondence between the set of global orbits and the set of admissible codes. This relationship is applied to the study of the (uniform) fronts' dynamics. It is shown that, for any given velocity in $[-1,1]$, there is a parameter set for which the fronts with that velocity exist and their shape is unique. The dependence of the velocity of the fronts on the local map's discontinuity is proved to be a Devil's staircase. Moreover, the linear stability of the global orbits which do not reach the discontinuity follows directly from our simple map. For the fronts, this statement is improved and as a consequence, the velocity of all the propagating interfaces is computed for any parameter. The fronts are shown to be also nonlinearly stable under some restrictions on the parameters. Actually, these restrictions follow from t...

  19. Nonlinear self-adjointness and conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, N H, E-mail: nib@bth.se [Department of Mathematics and Science, Blekinge Institute of Technology, 371 79 Karlskrona (Sweden)

    2011-10-28

    The general concept of nonlinear self-adjointness of differential equations is introduced. It includes the linear self-adjointness as a particular case. Moreover, it embraces the strict self-adjointness (definition 1) and quasi-self-adjointness introduced earlier by the author. It is shown that the equations possessing nonlinear self-adjointness can be written equivalently in a strictly self-adjoint form by using appropriate multipliers. All linear equations possess the property of nonlinear self-adjointness, and hence can be rewritten in a nonlinear strictly self-adjoint form. For example, the heat equation u{sub t} - {Delta}u = 0 becomes strictly self-adjoint after multiplying by u{sup -1}. Conservation laws associated with symmetries are given in an explicit form for all nonlinearly self-adjoint partial differential equations and systems. (fast track communication)

  20. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  1. Life on the front lines.

    Science.gov (United States)

    Hern, W M

    1993-01-01

    honor those who advanced the cause of women's rights. They honored the physician who had to shout over hecklers to make his remarks heard. After a year of operation, the physician encountered differences with the Board of Directors of the clinic. Soon after that, he resigned and opened his own clinic with a bank loan of $7000. Within 4 years, his clinic had expanded, and he purchased its building. The harassment from antiabortion protesters continued, with broken windows, pickets, and, in February 1988, bullets fired through the front windows of the waiting room. This necessitated the installation of bullet-proof glass and a security system which cost $17,000. As of March 1, 1993, there had been 1285 acts of violence towards abortion clinics, which led to the destruction of more than 100. On March 10 of that year, a physician who performed abortions in Florida was gunned down by an anti-abortion protestor. People who provide abortions hope for legal protection and respect for their civil liberties, but they will continue to provide this service even if conditions do not improve.

  2. Scenario Modeling of Thermal Influence from Forest Fire Front on a Coniferous Tree Trunk

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2016-01-01

    Full Text Available Scenario research results of heat transfer and tissue damage in three-layered tree trunk influenced by heat flux from forest fire are presented. The problem is solved in two-dimensional statement in polar coordinates. The typical range of influence parameters (heat flux from forest fire front, trunk radius, coniferous species, air temperature, duration of exposure and distance from fire line is considered. Temperature distributions in different moments of time are obtained. Condition of tree damage by forest fire influence is under consideration in this research. Information summarized using tables with scenario and fire consequences results.

  3. Nonlinear modeling of thermoacoustically driven energy cascade

    Science.gov (United States)

    Gupta, Prateek; Scalo, Carlo; Lodato, Guido

    2016-11-01

    We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.

  4. Nonlinear singular vectors and nonlinear singular values

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.

  5. QCD and Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  6. Light-Front Holography and the Light-Front Schrodinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  7. Optimal Transmission Power in a Nonlinear VLC System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shuang; CAI Sunzeng; KANG Kai; QIAN Hua

    2016-01-01

    In a visible light communication (VLC) system, the light emitting diode (LED) is nonlinear for large signals, which limits the trans⁃mission power or equivalently the coverage of the VLC system. When the input signal amplitude is large, the nonlinear distortion creates harmonic and intermodulation distortion, which degrades the transmission error vector magnitude (EVM). To evaluate the impact of nonlinearity on system performance, the signal to noise and distortion ratio (SNDR) is applied, defined as the linear sig⁃nal power over the thermal noise plus the front end nonlinear distortion. At a given noise level, the optimal system performance can be achieved by maximizing the SNDR, which results in high transmission rate or long transmission range for the VLC system. In this paper, we provide theoretical analysis on the optimization of SNDR with a nonlinear Hammerstein model of LED. Simula⁃tion results and lab experiments validate the theoretical analysis.

  8. Light-Front Quantization of Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  9. QCD and Light-Front Holography

    CERN Document Server

    Brodsky, Stanley J

    2010-01-01

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum $L$ of hadrons and the radial quantum number $N$. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable $z$ of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable $\\zeta$ which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors...

  10. Stream of Reaction Products behind the Detonation Wave Front

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Embedded copper foils in a high explosive charge allow to see the stream of the reaction products behind the detonation front. With three individual firings in front of FXR it can be shown that the reaction products behind the detonation front are immediately going in the direction of the detonation front. But then the rarefaction fans are influencing strongly the further displacements.

  11. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  12. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  13. Acoustic streaming with heat exchange

    Science.gov (United States)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2016-10-01

    Acoustic streaming in a cylindrical cavity with heat exchange is numerically investigated. The cavity is filled with air. The boundaries of the cavity are maintained at constant temperature. The features of acoustic streaming manifesting with the decrease in the frequency of vibration in comparison with the resonant frequency are determined. The influence of the nonlinearity of process on acoustic streaming is shown. The nonlinearity is caused by the increase of the vibration amplitude.

  14. Structure of dynamical condensation fronts in the interstellar medium

    CERN Document Server

    Iwasaki, Kazunari

    2012-01-01

    In this paper, we investigate the structure of condensation fronts from warm diffuse gas to cold neutral medium (CNM) under the plane parallel geometry. The solutions have two parameters, the pressure of the cold neutral medium (CNM) and the mass flux across the transition front and their ranges are much wider than previous thought. First, we consider the pressure range where the three phases, the CNM, the unstable phase, and the warm neutral medium, can coexist in the pressure equilibrium. In a wide range of the mass flux, we find solutions connecting the CNM and unstable phase. Moreover, we find solutions in larger pressure range where there is only one thermal equilibrium state, or the CNM. These solutions can be realized in shock-compressed regions that is promising sites of the molecular cloud formation. We also find remarkable properties in our solutions. The heat conduction becomes less important with increasing mass flux, and the thickness of the transition layer is characterized by the cooling length...

  15. Estimating cutting front temperature difference in disk and CO2 laser beam fusion cutting

    Science.gov (United States)

    Scintilla, L. D.; Tricarico, L.

    2012-07-01

    A three-dimensional, semi-stationary, simplified thermal numerical model was developed. The average cutting front temperature difference in disk and CO2 laser beam fusion cutting of 90MnCrV8 was estimated by computing the conductive power loss. Basing on heat affected zone extension experimentally measured and using an inverse methodology approach, the unknown thermal load on the cutting front during laser cutting was calculated. The accuracy of the numerical power loss estimation was evaluated comparing the results from simulation with the ones from analytical models. A good agreement was found for all the test cases considered in this study. The conduction losses estimation was used for justifying the lower quality of disk laser cuts due to the lower average cut front temperature. This results in the increase of viscosity of molten material and in the subsequent more difficult ejection of the melted material from the cut kerf.

  16. Front-end conceptual platform modeling

    DEFF Research Database (Denmark)

    Guðlaugsson, Tómas Vignir; Ravn, Poul Martin; Mortensen, Niels Henrik

    2014-01-01

    Platform thinking has been the subject of investigation and deployment in many projects in both academia and industry. Most contributions involve the restructuring of product programs, and only a few support front-end development of a new platform in parallel with technology development....... This contribution deals with the development of product platforms in front-end projects and introduces a modeling tool: the Conceptual Product Platform model. State of the art within platform modeling forms the base of a modeling formalism for a Conceptual Product Platform model. The modeling formalism is explored...... through an example and applied in a case in which the Conceptual Product Platform model has supported the front-end development of a platform for an electro-active polymer technology. The case describes the contents of the model and how its application supported the development work in the project...

  17. Gauge Theories on the Light-Front

    CERN Document Server

    Brodsky, S J

    2004-01-01

    The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions, as well as the Goldstone boson equivalence theorem.

  18. RF front-end world class designs

    CERN Document Server

    Love, Janine

    2009-01-01

    All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Janine Love site editor for RF Design Line,columnist, and author has selected the very best RF design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of RF front end design from antenna and filter design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving RF front end design problems and h

  19. TopN-Pareto Front Search

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-21

    The JMP Add-In TopN-PFS provides an automated tool for finding layered Pareto front to identify the top N solutions from an enumerated list of candidates subject to optimizing multiple criteria. The approach constructs the N layers of Pareto fronts, and then provides a suite of graphical tools to explore the alternatives based on different prioritizations of the criteria. The tool is designed to provide a set of alternatives from which the decision-maker can select the best option for their study goals.

  20. Pulse front control with adaptive optics

    Science.gov (United States)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  1. Discretionary Power on the Front-line

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum; Lønsmann, Dorte

    This article investigates the communication practices used by front-line employees to cross language boundaries in the context of English language policies implemented by the management of three multinational corporations (MNCs) headquartered in Scandinavia. Based on an analysis of interview......-line employees diverge from the corporate language policies, and emphasise the role of individual agency in the implementation of language policy. With a focus on the communication practices of front-line employees, the article contributes with a bottom-up, employee-centred perspective on corporate language...... management, emphasising the importance of paying attention to the micro level of everyday interactions in the study of language policy and practice....

  2. UNIX NSW Front End Enhancements. Volume I.

    Science.gov (United States)

    1981-06-01

    Implementation UNIX MSG is implemented in the programming language C (D.M. Ritchie, S.C. Johnson, M.E. Lesk, and B.W. Kernighan , "The C Programming Language...8URC-0062 UNCLASSIFIED B BN4b I VOL-1 RADC-TR-81-lbA VOL-1 NL fRADCTR-81-164, Vol I (of two) Final Technical Report June 1981 .. UNIX NSW FRONT END...ABSTRACT (Conti--- on re0-r8. side If necessary and idenfify by block number) The effort to develop a UNIX NSW Front End is part of the National Software

  3. Towards an Intelligent Acoustic Front End for Automatic Speech Recognition: Built-in Speaker Normalization

    Directory of Open Access Journals (Sweden)

    Umit H. Yapanel

    2008-08-01

    Full Text Available A proven method for achieving effective automatic speech recognition (ASR due to speaker differences is to perform acoustic feature speaker normalization. More effective speaker normalization methods are needed which require limited computing resources for real-time performance. The most popular speaker normalization technique is vocal-tract length normalization (VTLN, despite the fact that it is computationally expensive. In this study, we propose a novel online VTLN algorithm entitled built-in speaker normalization (BISN, where normalization is performed on-the-fly within a newly proposed PMVDR acoustic front end. The novel algorithm aspect is that in conventional frontend processing with PMVDR and VTLN, two separating warping phases are needed; while in the proposed BISN method only one single speaker dependent warp is used to achieve both the PMVDR perceptual warp and VTLN warp simultaneously. This improved integration unifies the nonlinear warping performed in the front end and reduces simultaneously. This improved integration unifies the nonlinear warping performed in the front end and reduces computational requirements, thereby offering advantages for real-time ASR systems. Evaluations are performed for (i an in-car extended digit recognition task, where an on-the-fly BISN implementation reduces the relative word error rate (WER by 24%, and (ii for a diverse noisy speech task (SPINE 2, where the relative WER improvement was 9%, both relative to the baseline speaker normalization method.

  4. Towards an Intelligent Acoustic Front End for Automatic Speech Recognition: Built-in Speaker Normalization

    Directory of Open Access Journals (Sweden)

    Yapanel UmitH

    2008-01-01

    Full Text Available A proven method for achieving effective automatic speech recognition (ASR due to speaker differences is to perform acoustic feature speaker normalization. More effective speaker normalization methods are needed which require limited computing resources for real-time performance. The most popular speaker normalization technique is vocal-tract length normalization (VTLN, despite the fact that it is computationally expensive. In this study, we propose a novel online VTLN algorithm entitled built-in speaker normalization (BISN, where normalization is performed on-the-fly within a newly proposed PMVDR acoustic front end. The novel algorithm aspect is that in conventional frontend processing with PMVDR and VTLN, two separating warping phases are needed; while in the proposed BISN method only one single speaker dependent warp is used to achieve both the PMVDR perceptual warp and VTLN warp simultaneously. This improved integration unifies the nonlinear warping performed in the front end and reduces simultaneously. This improved integration unifies the nonlinear warping performed in the front end and reduces computational requirements, thereby offering advantages for real-time ASR systems. Evaluations are performed for (i an in-car extended digit recognition task, where an on-the-fly BISN implementation reduces the relative word error rate (WER by 24%, and (ii for a diverse noisy speech task (SPINE 2, where the relative WER improvement was 9%, both relative to the baseline speaker normalization method.

  5. NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS

    Institute of Scientific and Technical Information of China (English)

    PENG SHIGE

    2005-01-01

    This paper deals with nonlinear expectations. The author obtains a nonlinear generalization of the well-known Kolmogorov's consistent theorem and then use it to construct filtration-consistent nonlinear expectations via nonlinear Markov chains. Compared to the author's previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probability measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations.The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.

  6. The optimum fin spacing of circular tube bank fin heat exchanger with vortex generators

    Science.gov (United States)

    Hu, Wanling; Su, Mei; Wang, Liangcheng; Zhang, Qiang; Chang, Limin; Liu, Song; Wang, Liangbi

    2013-09-01

    In real application, once the pattern of fin is determined, fin spacing of tube bank fin heat exchanger can be adjusted in a small region, and air flow velocity in the front of the heat exchanger is not all the same. Therefore, the effects of fin spacing on heat transfer performance of such heat exchanger are needed. This paper numerically studied the optimal fin spacing regarding the different front flow velocities of a circular tube bank fin heat exchanger with vortex generators. To screen the optimal fin spacing, an appropriate evaluation criterion JF was used. The results show that when front velocity is 1.75 m/s, the optimal fin spacing is 2.25 mm, when front velocity is 2.5 m/s, the optimal fin spacing is 2 mm, and when front velocity is higher than 2.5 m/s, the optimal fin spacing is 1.75 mm.

  7. Robust Nonlinear Control with Compensation Operator for a Peltier System

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wen

    2014-01-01

    Full Text Available Robust nonlinear control with compensation operator is presented for a Peltier actuated system, where the compensation operator is designed by using a predictive model on heat radiation. For the Peltier system, the heat radiation is related to the fourth power of temperature. So, the heat radiation is affected evidently by the temperature when it is high and temperature difference between the system and environment is large. A new nonlinear model with the heat radiation is set up for the system according to some thermal conduction laws. To ensure robust stability of the nonlinear system, operator based robust right coprime factorization design is considered. Also, a compensation operator based on a predictive model is proposed to cancel effect of the heat radiation, where the predictive model is set up by using radial basis kernel function based SVM (support vector machine method. Finally, simulation results are given to show the effectiveness of the proposed scheme.

  8. Positional Velar Fronting: An Updated Articulatory Account

    Science.gov (United States)

    Byun, Tara McAllister

    2012-01-01

    This study develops the hypothesis that the child-specific phenomenon of positional velar fronting can be modeled as the product of phonologically encoded articulatory limitations unique to immature speakers. Children have difficulty executing discrete tongue movements, preferring to move the tongue and jaw as a single unit. This predisposes the…

  9. A preliminary ultrasound study of velar fronting

    Science.gov (United States)

    Wodzinski, Sylvie M.; Frisch, Stefan A.

    2003-10-01

    The purpose of this study is to (1) evaluate the effectiveness of ultrasound imaging to measure velar consonant closure location, and (2) conduct a thorough study of velar fronting by measuring several productions of velar stops in the context of every English vowel. Word onset velar stops were measured in both words (CV or CVC) and nonwords (VCV) within a carrier phrase. Other coarticulatory influences were minimized by using words with no coda or labial coda consonants (e.g., ``Say a gap again,'' ``Say /oIkoI/ again''). Measurements were made at the point of maximal closure. Closure location was measured using the radial angle from the center of the ultrasound probe to the center of the velar closure. Pilot data for one subject has been analyzed to date. Closure location appears consistent across all central and back vowels. For front vowels, the degree of fronting of the velar appears to be correlated with the frontness of the vowel. Measures of closure location for diphthongs followed the back vowel pattern in the word targets. For nonwords, the closure location was influenced by the preceding diphthong offset quality and the following diphthong onset quality. Theoretical implications for the phonetics/phonology interface will be discussed.

  10. On Multiple Questions and Multiple WH Fronting.

    Science.gov (United States)

    Rudin, Catherine

    An analysis of languages with multiple fronting of WH words (who, what, whom, etc.) looks in detail at Polish, Serbo-Croatian, Czech, Bulgarian (Slavic languages), and Romanian (a Romance language). In spite of their superficial similarity, the Slavic and East European languages that normally put all WH words at the beginning of clauses fall into…

  11. New Results in Light-Front Phenomenology

    CERN Document Server

    Brodsky, S J

    2004-01-01

    The light-front quantization of gauge theories such as QCD in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions and to define a kinematical definition of angular momentum. The AdS/CFT correspondence of large $N_C$ supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes. String/gauge duality also predicts the QCD power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. The...

  12. Front propagation in a chaotic flow field

    Science.gov (United States)

    Mehrvarzi, C. O.; Paul, M. R.

    2014-07-01

    We investigate numerically the dynamics of a propagating front in the presence of a spatiotemporally chaotic flow field. The flow field is the three-dimensional time-dependent state of spiral defect chaos generated by Rayleigh-Bénard convection in a spatially extended domain. Using large-scale parallel numerical simulations, we simultaneously solve the Boussinesq equations and a reaction-advection-diffusion equation with a Fischer-Kolmogorov-Petrovskii-Piskunov reaction for the transport of the scalar species in a large-aspect-ratio cylindrical domain for experimentally accessible conditions. We explore the front dynamics and geometry in the low-Damköhler-number regime, where the effect of the flow field is significant. Our results show that the chaotic flow field enhances the front propagation when compared with a purely cellular flow field. We quantify this enhancement by computing the spreading rate of the reaction products for a range of parameters. We use our results to quantify the complexity of the three-dimensional front geometry for a range of chaotic flow conditions.

  13. Morphology of solidification front in eutectic

    Directory of Open Access Journals (Sweden)

    M. Trepczyńska - Łent

    2009-07-01

    Full Text Available In this paper the analysis of morphology of solidification front in eutectic made. It was present influence of composition, solidification velocity, concentration micro-field and capillarity effects on the morphology of the solid/liquid interface. It was introduced phase-field model.

  14. FRED, a Front End for Databases.

    Science.gov (United States)

    Crystal, Maurice I.; Jakobson, Gabriel E.

    1982-01-01

    FRED (a Front End for Databases) was conceived to alleviate data access difficulties posed by the heterogeneous nature of online databases. A hardware/software layer interposed between users and databases, it consists of three subsystems: user-interface, database-interface, and knowledge base. Architectural alternatives for this database machine…

  15. Computer simulation and vehicle front optimisation.

    NARCIS (Netherlands)

    Sluis, J. van der

    1993-01-01

    The influence of the stiffness and shape of a car-front on injuries of bicyclists caused by side collisions was studied by computer simulation. Simulation was a suitable method in this case because of two reasons: variation of shape and stiffness is more difficult to perform in case of an experiment

  16. Managing Controversies in the Fuzzy Front End

    DEFF Research Database (Denmark)

    Christiansen, John K.; Gasparin, Marta

    2016-01-01

    . The analysis investigates the microprocesses around the controversies that emerge during the fuzzy front end of four products. Five different types of controversies are identified: profit, production, design, brand and customers/market. Each controversy represents a threat, but also an opportunity to search...

  17. Time Line Visualization of Research Fronts.

    Science.gov (United States)

    Morris, Steven A.; Yen, G.; Wu, Zheng; Asnake, Benyam

    2003-01-01

    Research fronts, defined as clusters of documents that tend to cite a fixed, time invariant set of base documents, are plotted as time lines for visualization and exploration. Illustrates the construction, exploration, and interpretation of time lines for identifying and visualizing temporal changes in research activity through journal articles.…

  18. Influence of quasi-periodic gravitational modulation on convective instability of reaction fronts in porous media

    Science.gov (United States)

    Allali, Karam; Belhaq, Mohamed; El Karouni, Kamal

    2012-04-01

    The influence of a time-dependent gravity on the convective instability of reaction fronts in porous media is investigated in this paper. It is assumed that the time-dependent modulation is quasi-periodic with two frequencies σ1 and σ2 that are incommensurate with each other. The model consists of the heat equation, the equation for the depth of conversion and the equations of motion under the Darcy law. The convective threshold is approximated performing a linear stability analysis on a reduced singular perturbation problem using the matched asymptotic expansion method. The reduced interface problem is solved using numerical simulations. It is shown that if the reacting fluid is heated from below, a stabilizing effect of a reaction fronts in a porous medium can be gained for appropriate values of amplitudes and frequencies ratio σ={σ2}/{σ1} of the quasi-periodic vibration.

  19. QCD and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  20. Front propagation in steady cellular flows: A large-deviation approach

    Science.gov (United States)

    Tzella, Alexandra; Vanneste, Jacques

    2012-11-01

    We examine the speed of propagation of chemical fronts modelled by the Fisher-Kolmogorov-Petrovskii-Piskunov nonlinearity in steady cellular flows. A number of predictions have been previously derived assuming small molecular diffusivity (large Péclet number) and either very slow (small Damköhler number) or very fast (large Damköhler number) chemical reactions. Here, we employ the theory of large deviations to obtain a family of eigenvalue problems from whose solution the front speed is inferred. The matched-asymptotics solution of these eigenvalue problems in the limit of large Péclet number provides approximations for the front speed for a wide range of Damköhler numbers. Two distinguished regimes are identified; in both regimes the front speed is given by a non-trivial function of the Péclet and Damköhler numbers which we determine. Earlier results, characterised by power-law dependences on these numbers, are recovered as limiting cases. The theoretical results are illustrated by a number of numerical simulations. The authors acknowledge support from EPSRC grant EP/I028072/1.

  1. Multi-layer asymptotic solution for wetting fronts in porous media with exponential moisture diffusivity

    CERN Document Server

    Budd, Christopher J

    2015-01-01

    We study the asymptotic behaviour of sharp front solutions arising from the nonlinear diffusion equation \\theta_t = (D(\\theta)\\theta_x)_x, where the diffusivity is an exponential function D({\\theta}) = D_o exp(\\beta\\theta). This problem arises in the study of unsaturated flow in porous media where {\\theta} represents the liquid saturation. For the physical parameters corresponding to actual porous media, the diffusivity at the residual saturation is D(0) = D_o << 1 so that the diffusion problem is nearly degenerate. Such problems are characterised by wetting fronts that sharply delineate regions of saturated and unsaturated flow, and that propagate with a well-defined speed. Using matched asymptotic expansions in the limit of large {\\beta}, we derive an analytical description of the solution that is uniformly valid throughout the wetting front. This is in contrast with most other related analyses that instead truncate the solution at some specific wetting front location, which is then calculated as part...

  2. Solidification fronts in large magma chambers: insights from the anomalies

    Science.gov (United States)

    VanTongeren, J. A.

    2012-12-01

    The emplacement of hot viscous magma into the cold rigid crust causes a thermal disturbance within both the country rock and the magma. With time, heat loss from the molten interior to the walls causes solidification at the floor, roof and margins of the magma chamber. As is observed in both experiment and theory, in the absence of hydrothermal convection, the majority of heat is lost via conduction through the roof of the intrusion. In basaltic sills and layered mafic intrusions (LMIs), this solidification front is manifest in the deposition of mineral assemblages and compositions that become progressively more evolved from the floor of the intrusion upwards (the 'Layered Series'; LS) and from the roof downwards (the UBS) such that the most chemically evolved rocks are found in the interior of the magma body at a 'Sandwich Horizon'. The formation of a UBS, as typified by the Skaergaard Intrusion, is a natural outcome of the progression of the solidification front from the cold roof to the hot center of the magma chamber. There are, however, a few unique LMIs for which little or no UBS exists. Convection of the molten magma, reinjection and mixing of new magma, compaction of cumulates, and porous flow of interstitial liquid, among other processes, can affect the final location and composition of the most differentiated liquids; but ultimately, all are linked to the nature of heat loss from the magma chamber. In this study, I examine the thermal evolution of several classic LMIs as it is recorded in the extent of the preserved upper solidification front (or Upper Border Series; 'UBS'). For those intrusions that have experienced crystallization at the roof, such as the Skaergaard Intrusion, the development of a UBS reduces the temperature gradient at the roof and effectively slows the rate of heat loss from the main magma body. However, for those intrusions that do not have an UBS, such as the Bushveld Complex, the cooling rate is controlled only by the maximum rate

  3. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...

  4. QCD Phenomenology and Light-Front Wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    2001-11-21

    A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wavefunctions.

  5. Channel size influence on the heat flux density at zero net mass flow in the non-linear transport regime between 1.2 and 2.1 K

    Science.gov (United States)

    Frederking, T. H. K.; Yuan, S. W. K.; Lee, J. M.; Sun, G. S.

    1987-01-01

    Porous media and narrow ducts of simple shape at zero net mass flow (ZNMF) are used to investigate the influence of pore size on the entropy/heat convection rate at ZNMF. The study is relevant to the development of specific types of phase separators. Previous work on heat transport by convection is extended to porous media without mass loss. The experimental results show the influence of pore size on heat flux for permeabilities between 10 to the -8th and 10 to the -6th sq cm. ZNMF plug data are found to be similar to results obtained for vapor liquid phase separation.

  6. Nonlinear Krylov acceleration of reacting flow codes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Rawat, R.; Smith, P.; Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.

  7. Wave-front correction of femtosecond terawatt lasers by deformable mirrors.

    Science.gov (United States)

    Druon, F; Chériaux, G; Faure, J; Nees, J; Nantel, M; Maksimchuk, A; Mourou, G; Chanteloup, J C; Vdovin, G

    1998-07-01

    Wave-front correction and focal spot improvement of femtosecond laser beams have been achieved, for the first time to our knowledge, with a deformable mirror with an on-line single-shot three-wave lateral shearing interferometer diagnostic. Wave-front distortions of a 100-fs laser that are due to third-order nonlinear effects have been compensated for. This technique, which permits correction in a straightforward process that requires no feedback loop, is also used on a 10-TW Ti:sapphire-Nd:phosphate glass laser in the subpicosecond regime. We also demonstrate that having a focal spot close to the diffraction limit does not constitute a good criterion for the quality of the laser in terms of peak intensity.

  8. Wave and Particle Characters behind Antidipolarization Front in the distant Magnetotail

    Science.gov (United States)

    Zhao, D.; Fu, S.; Parks, G. K.; Zong, Q.; Sun, W.

    2016-12-01

    Dipolarization front (DF) and antidipolarization front (ADF) are the earthward and tailward boundaries separating the fast plasma flows and the background plasma sheet. We present observations of electron flat-top distributions and associated wave activities behind an ADF detected by ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. The electron flat-top distributions sometimes show field-aligned beams, while the perpendicular temperatures are usually hotter. The formation of these electron distributions appear to consistent with decaying electron beams generated by the nonlinear structures in the reconnection region. Comparison of observations from the two spacecraft, we can deduce the structure of the electrons embedded in the high-speed flow. The associated waves are similar to the whistler mode waves which appear at the local minimum of the fluctuated total magnetic and electric field, indicating this region is highly structured and dynamic.

  9. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites

    Science.gov (United States)

    Iomin, A.; Méndez, V.

    2013-07-01

    Fractional reaction-diffusion equations are derived by exploiting the geometrical similarities between a comb structure and a spiny dendrite. In the framework of the obtained equations, two scenarios of reaction transport in spiny dendrites are explored, where both a linear reaction in spines and nonlinear Fisher-Kolmogorov-Petrovskii-Piskunov reactions along dendrites are considered. In the framework of fractional subdiffusive comb model, we develop a Hamilton-Jacobi approach to estimate the overall velocity of the reaction front propagation. One of the main effects observed is the failure of the front propagation for both scenarios due to either the reaction inside the spines or the interaction of the reaction with the spines. In the first case the spines are the source of reactions, while in the latter case, the spines are a source of a damping mechanism.

  10. Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics.

    Science.gov (United States)

    Fernandez-Oto, C; Clerc, M G; Escaff, D; Tlidi, M

    2013-04-26

    We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.

  11. Pattern selection as a nonlinear eigenvalue problem

    CERN Document Server

    Büchel, P

    1996-01-01

    A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.Ft

  12. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Painlevé Integrability of Nonlinear Schrödinger Equations with both Space- and Time-Dependent Coefficients

    Science.gov (United States)

    Kyoung, Ho Han; H. J., Shin

    2010-12-01

    We investigate the Painlevé integrability of nonautonomous nonlinear Schrödinger (NLS) equations with both space- and time-dependent dispersion, nonlinearity, and external potentials. The Painlevé analysis is carried out without using the Kruskal's simplification, which results in more generalized form of inhomogeneous equations. The obtained equations are shown to be reducible to the standard NLS equation by using a point transformation. We also construct the corresponding Lax pair and carry out its Kundu-type reduction to the standard Lax pair. Special cases of equations from choosing limited form of coefficients coincide with the equations from the previous Painlevé analyses and/or become unknown new equations.

  13. Lattice Boltzmann model for nonlinear convection-diffusion equations.

    Science.gov (United States)

    Shi, Baochang; Guo, Zhaoli

    2009-01-01

    A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.

  14. Weakly nonlinear electron plasma waves in collisional plasmas

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.

    1986-01-01

    The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...

  15. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW OSHA- ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  16. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  17. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...

  18. Noncommutative Nonlinear Supersymmetry

    CERN Document Server

    Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash

    2002-01-01

    We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).

  19. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind P. Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..

  20. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind; P.; Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..

  1. Secondary instabilities of linearly heated falling films

    Institute of Scientific and Technical Information of China (English)

    HU Jun; SUN Dejun; HU Guohui; YIN Xieyuan

    2005-01-01

    Secondary instabilities of linearly heated failing films are studied through three steps. Firstly, the analysis of the primary linear instability on Miladinova's long wave equation of the linearly heated film is performed. Secondly, the similar Landau equation is derived through weak nonlinear theory, and a two-dimensional nonlinear saturation solution of primary instability is obtained within the weak nonlinear domain. Thirdly, the secondary (three-dimensional) instability of the two-dimensional wave is studied by the Floquet theorem.Our secondary instability analysis shows that the Marangoni number has destabilization effect on the secondary instability.

  2. Heating automation

    OpenAIRE

    Tomažič, Tomaž

    2013-01-01

    This degree paper presents usage and operation of peripheral devices with microcontroller for heating automation. The main goal is to make a quality system control for heating three house floors and with that, increase efficiency of heating devices and lower heating expenses. Heat pump, furnace, boiler pump, two floor-heating pumps and two radiator pumps need to be controlled by this system. For work, we have chosen a development kit stm32f4 - discovery with five temperature sensors, LCD disp...

  3. PBH tests for nonlinear systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit

  4. Analysis of thermodiffusive cellular instabilities in continuum combustion fronts

    Science.gov (United States)

    Azizi, Hossein; Gurevich, Sebastian; Provatas, Nikolas

    2017-01-01

    We explore numerically the morphological patterns of thermodiffusive instabilities in combustion fronts with a continuum fuel source, within a range of Lewis numbers and ignition temperatures, focusing on the cellular regime. For this purpose, we generalize the recent model of Brailovsky et al. to include distinct process kinetics and reactant heterogeneity. The generalized model is derived analytically and validated with other established models in the limit of infinite Lewis number for zero-order and first-order kinetics. Cellular and dendritic instabilities are found at low Lewis numbers. These are studied using a dynamic adaptive mesh refinement technique that allows very large computational domains, thus allowing us to reduce finite-size effects that can affect or even preclude the emergence of these patterns. Our numerical linear stability analysis is consistent with the analytical results of Brailovsky et al. The distinct types of dynamics found in the vicinity of the critical Lewis number, ranging from steady-state cells to continued tip splitting and cell merging, are well described within the framework of thermodiffusive instabilities and are consistent with previous numerical studies. These types of dynamics are classified as "quasilinear" and characterized by low-amplitude cells that may be strongly affected by the mode selection mechanism and growth prescribed by the linear theory. Below this range of Lewis number, highly nonlinear effects become prominent and large-amplitude, complex cellular and seaweed dendritic morphologies emerge.

  5. Crack front propagation by kink formation

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, Frohmut; Trebin, Hans-Rainer [Universitaet Stuttgart, Institut fuer Theoretische und Angewandte Physik, 70550 Stuttgart (Germany)

    2010-07-01

    In a brittle material a travelling crack generates an upper and a lower fracture surface, which meet at a one-dimensional crack front. From a macroscopic point of view there is no reason why this curve should deviate from a straight line, contrary to the atomistic point of view, where a crack propagates by successive rupture of cohesive bonds. We investigate fracture of the C15 NbCr{sub 2} Friauf-laves phase on an atomic level by means of molecular dynamics simulations. The numerical experiments highlight that crack fronts in general do not form a straight line and propagate by kink-pair formation at low loads (EPL 87 (2009) 66004). This mechanism should be relevant for crack propagation in any ordered brittle solid.

  6. Effect of Microscopic Noise on Front Propagation

    Science.gov (United States)

    Brunet, Éric; Derrida, Bernard

    2001-04-01

    We study the effect of the noise due to microscopic fluctuations on the position of a one dimensional front propagating from a stable to an unstable region in the "linearly marginal stability case." By simulating a very simple system for which the effective number N of particles can be as large as N=10150, we measure the N dependence of the diffusion constant DN of the front and the shift of its velocity vN. Our results indicate that DN˜(log N)-3. They also confirm our recent claim that the shift of velocity scales like vmin-vN≃K(log N)-2 and indicate that the numerical value of K is very close to the analytical expression Kapprox obtained in our previous work using a simple cut-off approximation.

  7. Multiclass gene selection using Pareto-fronts.

    Science.gov (United States)

    Rajapakse, Jagath C; Mundra, Piyushkumar A

    2013-01-01

    Filter methods are often used for selection of genes in multiclass sample classification by using microarray data. Such techniques usually tend to bias toward a few classes that are easily distinguishable from other classes due to imbalances of strong features and sample sizes of different classes. It could therefore lead to selection of redundant genes while missing the relevant genes, leading to poor classification of tissue samples. In this manuscript, we propose to decompose multiclass ranking statistics into class-specific statistics and then use Pareto-front analysis for selection of genes. This alleviates the bias induced by class intrinsic characteristics of dominating classes. The use of Pareto-front analysis is demonstrated on two filter criteria commonly used for gene selection: F-score and KW-score. A significant improvement in classification performance and reduction in redundancy among top-ranked genes were achieved in experiments with both synthetic and real-benchmark data sets.

  8. Validity of the Brunet-Derrida formula for the speed of pulled fronts with a cutoff

    OpenAIRE

    2007-01-01

    We establish rigorous upper and lower bounds for the speed of pulled fronts with a cutoff. We show that the Brunet-Derrida formula corresponds to the leading order expansion in the cut-off parameter of both the upper and lower bounds. For sufficiently large cut-off parameter the Brunet-Derrida formula lies outside the allowed band determined from the bounds. If nonlinearities are neglected the upper and lower bounds coincide and are the exact linear speed for all values of the cut-off parameter.

  9. A Riccati type PDE for light-front higher helicity vertices

    CERN Document Server

    Bengtsson, Anders K H

    2014-01-01

    This paper is based on a curious observation about an equation related to the tracelessness constraints of higher spin gauge fields. The equation also occurs in the theory of continuous spin representations of the Poincar\\'e group. Expressed in an oscillator basis for the higher spin fields, the equation becomes a non-linear partial differential operator of the Riccati type acting on the vertex functions. The consequences of the equation for the cubic vertex is investigated in the light-front formulation of higher spin theory. The classical vertex is completely fixed but there is room for off-shell quantum corrections.

  10. The COral-REef Front (COREF Project

    Directory of Open Access Journals (Sweden)

    John A. and Katherine G. Jackson

    2007-09-01

    Full Text Available The First International Workshop on the COral-REef Front (COREF project was held on 14−19 January 2007 in Okinawa-jima, southwestern Japan to discuss objectives, required laboratory analyses and techniques, potential drilling sites, and scientific proposals for the Integrated Ocean Drilling Program (IODP and the International Continental Scientific Drilling Program (ICDP. This article briefly introduces the project and reports the outcome of the First International Workshop on the COREF Project.

  11. Idiosyncrasies of the Front-back Organization

    OpenAIRE

    小橋, 勉; 許斐, ナタリー

    2015-01-01

    "As a new kind of organization, the front-back (F/B) organization has been analyzed in many researches. Referring to them, we identify the idiosyncrasies of the F/B organization theoretically. In doing so, we will make a comparison among multi-divisional organization, F/B organization, and matrix organization. Next, based on the development model of global organization, we point out its idiosyncrasies. "

  12. Prototype ALICE front-end card

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This circuit board is a prototype 48-channel front end digitizer card for the ALICE time projection chamber (TPC), which takes electrical signals from the wire sensors in the TPC and shapes the data before converting the analogue signal to digital data. A total of 4356 cards will be required to process the data from the ALICE TPC, the largest of this type of detector in the world.

  13. Extended depth of field with a nonlinear silver-halide emulsion detector.

    Science.gov (United States)

    Greengard, Adam; Cathey, W Thomas

    2002-10-10

    Presented here are experimental results of an extended depth-of-field (EDF) system using film to record the image. The EDF system used is an application of wave-front coding. A phase mask is placed in the aperture stop of the lens to code the image data; then digital signal processing is used to decode the image. Wave-front coding is based on linear systems theory, but film is not a linear medium. An extra step of linearization is then needed to apply the technique. Both nonlinear and linearized results are shown, as is a test image that demonstrates the success of the technique for nonlinear media.

  14. Phenomenological Theory of the Photoevaporation Front Instability

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D; Kane, J O; Mizuta, A; Pound, M W; Remington, B A

    2006-04-10

    The dynamics of photoevaporated molecular clouds is determined by the ablative pressure acting on the ionization front. An important step in the understanding of the ensuing motion is to develop the linear stability theory for the initially flat front. Despite the simplifications introduced by the linearization, the problem remains quite complex and still draws a lot of attention. The complexity is related to the large number of effects that have to be included in the analysis: acceleration of the front, possible temporal variation of the intensity of the ionizing radiation, the tilt of the radiation flux with respect to the normal to the surface, and partial absorption of the incident radiation in the ablated material. In this paper, we describe a model where all these effects can be taken into account simultaneously, and a relatively simple and universal dispersion relation can be obtained. The proposed phenomenological model may prove to be a helpful tool in assessing the feasibility of the laboratory experiments directed towards scaled modeling of astrophysical phenomena.

  15. Lightweight design of automotive front crossbeam assembly

    Institute of Scientific and Technical Information of China (English)

    Yao Zaiqi; Liu Qiang; Ma Fangwu; Zhao Fuquan; Liu Zongwei; Wang Guan; Wan Yinhui; Li Luoxing

    2012-01-01

    This paper reviews the development course of the front crossbeam assembly for a self-owned brand vehicle model based on lightweight and passive safety performance. Combining with an A00 model variant, the paper details the design of extruded aluminum-alloy front crossbeam assembly from the perspectives of optimal design, performance verifi- cation, lightweight effect and cost control. The following results in the technical and engineering applications have been achieved. The weight of the developed aluminum-alloy crossbeam can be reduced by 51%. The simulated analysis of the collision rigid wall, the 40 % offset hammering as well as the static crush test of energy-absorbing box show that af- ter reasonable materials matching and size optimization of the crossbeam and the energy-absorbing boxes, the level of crash safety can be improved. The price of aluminum-alloy front crossbeam can be lowered by using the extruding die in- stead of the stamping die to reduce the die cost-sharing.

  16. Front propagation in vortex-dominated flows

    Science.gov (United States)

    O'Malley, Garrett; Winokur, Justin; Solomon, Tom

    2008-11-01

    We present experiments that explore how the propagation of a reaction front is affected by a two-dimensional flow dominated by vortices. The reaction is the excitable Belousov-Zhabotinsky chemical reaction. The flow is driven by the interaction between an electrical current passing through the fluid and a spatially-varying magnetic field produced by an array of magnets below the fluid. For some of the experiments, the forcing is strong enough to produce a weakly turbulent flow. Measurements are made both of the enhanced diffusion coefficient D^* describing transport in the flow and of the propagation speed v of a reaction front in the same flow. Scaling of v versus D^* is compared with that for the standard Fisher-Kolmogorov-Petrovsky-Piskunov prediction v ˜√D (with D as the molecular diffusion coefficient) for the reaction-diffusion limit with no fluid advection. We also study the effects of superdiffusive transport and Lévy flights on front propagation in a time-dependent vortex array with wavy jet regions.

  17. Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws

    CERN Document Server

    Chen, Gui-Qiang; Zhang, Yongqian

    2012-01-01

    We establish an $L^1$-estimate to validate the weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws with arbitrary initial data of small bounded variation. This implies that the simpler geometric optics expansion function can be employed to study the properties of general entropy solutions to hyperbolic systems of conservation laws. Our analysis involves new techniques which rely on the structure of the approximate equations, besides the properties of the wave-front tracking algorithm and the standard semigroup estimates.

  18. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  19. Characteristic features of the operation of high-temperature heat pipes with a noncondesable gas

    Science.gov (United States)

    Tolubinskiy, V. I.; Shevchuk, Ye. N.

    1987-01-01

    The principal concepts related to the nature of the processes occurring in high-temperature heat pipes with a noncondensable gas are examined, and guidelines for the development of such heat pipes are presented. The discussion is illustrated by experimental results obtained for a horizontal sodium heat pipe (diameter, 18/1 mm; length, 710 mm). In particular, attention is given to the starting dynamics and mechanisms, the shape of the vapor-gas front, and the vapor-gas front velocity.

  20. Nonlinear Peltier effect and the nonequilibrium Jonson-Mahan theorem

    OpenAIRE

    Freericks, J. K.; Zlatic, V.

    2006-01-01

    We generalize the many-body formalism for the Peltier effect to the nonlinear/nonequilibrium regime corresponding to large amplitude (spatially uniform but time-dependent) electric fields. We find a relationship between the expectation values for the charge current and for the part of the heat current that reduces to the Jonson-Mahan theorem in the linear-response regime. The nonlinear-response Peltier effect has an extra term in the heat current that is related to Joule heating (we are unabl...

  1. Multiple front propagation in a potential non-gradient system

    CERN Document Server

    Miguel, M S; Amengual, A; Hernández-García, E

    1995-01-01

    A classification of dynamical systems in terms of their variational properties is reviewed. Within this classification, front propagation is discussed in a non-gradient relaxational potential flow. The model is motivated by transient pattern phenomena in nematics. A front propagating into an unstable homogenous state leaves behind an unstable periodic pattern, which decays via a second front and a second periodic state. An interface between unstable periodic states is shown to be a source of propagating fronts in opposite directions.

  2. Sediment Transport at Density Fronts in Shallow Water

    Science.gov (United States)

    2012-09-30

    in the Hudson occurred at multiple locations along the salinity gradient rather than a single interface between salty and fresh water . The fronts in...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment Transport at Density Fronts in Shallow Water ...suspended sediment concentration at density fronts in shallow water (< 1 m), - characterize flow and suspended sediment at a density front through the

  3. Fronts of Stress Wave in Anisotropic Piezoelectric Media

    Institute of Scientific and Technical Information of China (English)

    刘颖; 刘凯欣; 高凌天

    2004-01-01

    The characteristic of wave fronts in anisotropic piezoelectric media is analysed by adopting the generalized characteristic theory. Analytical expressions for wave velocities and wave fronts are formulated. Apart from the ordinary characteristics, a new phenomenon, energy velocity funnel, is formed on the wave fronts of quasitransverse waves in anisotropic piezoelectric materials. A three-dimensional representation of wave fronts in anisotropic piezoelectric materials is given for a better understanding of the new phenomena.

  4. SR front ends of VEPP-4M storage ring

    CERN Document Server

    Fedotov, M G; Kuz'minykh, V S; Mironenko, L A; Mishnev, S I; Panchenko, V E; Protopopov, I Ya; Rachkova, V V; Rukhlyada, L P; Selivanov, A N

    2001-01-01

    The VEPP-4M storage ring system of SR front ends is described. SR is released by means of 14 front ends. Eleven of them are intended for beamlines of experimental stations. One front end is technical. For the permanent stabilization of an orbit of a beam with respect to a coordinate and angle in the vertical direction, two monitoring front ends are used. They take out SR from emission regions, which are at a large distance from one another.

  5. Shocks and Thermal Conduction Fronts in Retracting Reconnected Flux Tubes

    Science.gov (United States)

    Guidoni, S. E.; Longcope, D. W.

    2010-08-01

    We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfvénic speeds from the reconnection site. Heating occurs in gas-dynamic shocks (GDSs) which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature-dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong GDSs generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the tube, rendering the diffusive processes dominant. They determine the thickness of the shock that evolves up to a steady state value, although this condition may not be reached in the short times involved in a flare. For realistic solar coronal parameters, this steady state shock thickness might be as long as the entire flux tube. For strong shocks at low Prandtl numbers, typical of the solar corona, the GDS consists of an isothermal sub-shock where all the compression and cooling occur, preceded by a thermal front where the temperature increases and most of the heating occurs. We estimate the length of each of these sub-regions and the speed of their propagation.

  6. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    Science.gov (United States)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  7. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    Science.gov (United States)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  8. Nonlinearity of colloid systems oxyhydrate systems

    CERN Document Server

    Sucharev, Yuri I

    2008-01-01

    The present monograph is the first systematic study of the non-linear characteristic of gel oxy-hydrate systems involving d- and f- elements. These are the oxyhydrates of rare-earth elements and oxides - hydroxides of d- elements (zirconium, niobium, titanium, etc.) The non-linearity of these gel systems introduces fundamental peculiarities into their structure and, consequently, their properties. The polymer-conformational diversity of energetically congenial gel fragments, which continu-ously transform under the effect of, for instance, system dissipation heat, is central to the au-thor's hy

  9. Topology optimization of front metallization patterns for solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2015-01-01

    This paper presents the application of topology optimization (TO) for designing the front electrode patterns for solar cells. Improving the front electrode design is one of the approaches to improve the performance of the solar cells. It serves to produce the voltage distribution for the front surfa

  10. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.

    2016-01-01

    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  11. Extended models of nonlinear waves in liquid with gas bubbles

    CERN Document Server

    Kudryashov, Nikolay A

    2016-01-01

    In this work we generalize the models for nonlinear waves in a gas--liquid mixture taking into account an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the derivation of the equations for nonlinear waves. We also take into consideration high order terms with respect to the small parameter. Two new nonlinear differential equations are derived for long weakly nonlinear waves in a liquid with gas bubbles by the reductive perturbation method considering both high order terms with respect to the small parameter and the above mentioned physical properties. One of these equations is the perturbation of the Burgers equation and corresponds to main influence of dissipation on nonlinear waves propagation. The other equation is the perturbation of the Burgers--Korteweg--de Vries equation and corresponds to main influence of dispersion on nonlinear waves propagation.

  12. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  13. A Study of an Intense Density Front in the Eastern Alboran Sea: The Almeria-Oran Front

    Science.gov (United States)

    1988-10-01

    SeWr ClnificatI 12 ) A Study or an iTntense Density Front in the Eastern Alboran Sea: The Almeria -Oran Front 12. PERSONAL AUTHOR(S) J. Tintore...is present between Almeria , Spain, and Oran, Algeria, which is part of the easternuost segment of the Eastern Alboran Gyre. Based on these satellite...studies, the first in situ investigation of the - front, called here the Almeria -Oran Front, was conducted () in March 1986 as part of the winter

  14. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei

    2001-11-01

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).

  15. Performance characteristics and optimal analysis of a nonlinear diode refrigerator

    Institute of Scientific and Technical Information of China (English)

    Wang Xiu-Mei; He Ji-Zhou; Liang Hong-Ni

    2011-01-01

    This paper establishes a model of a nonlinear diode refrigerator consisting of two diodes switched in the opposite directions and located in two heat reservoirs with different temperatures. Based on the theory of thermal fluctuations, the expressions of the heat flux absorbed from the heat reservoirs are derived. After the heat leak between the two reservoirs is considered, the cooling rate and the coefficient of performance are obtained analytically. The influence of the heat leak and the temperature ratio on the performance characteristics of the refrigerator is analysed in detail.

  16. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    Science.gov (United States)

    Liu, Heping; Blanken, Peter D.; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-04-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32°26'N, 90°02'W which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  17. Universal power law for front propagation in all fiber resonators.

    Science.gov (United States)

    Coulibaly, S; Taki, M; Tlidi, M

    2014-01-13

    We consider a bistable system consisting of all fiber cavity driven by an external injected continuous wave. We report on front propagation in a high finesse cavity. We study the asymptotic behavior of the front velocity. We show that the front velocity is affected by the distance from the critical point associated with bistability. We provide a scaling low governing its evolution near the up-switching point of the bistable curve. We show also that the velocity of front propagation obeys a generic power law when the front velocity approaches asymptotically its linear growing value.

  18. STRUCTURE OF WAVE FRONT AND ORGANIZATION CENTER IN EXCITABLE MEDIA

    Institute of Scientific and Technical Information of China (English)

    刘深泉

    2004-01-01

    With help of establishing the moving coordinate on the wave front surface and the perturbation analysis in the boundary layer, the structures of wave front and organization center in excitable media were studied. The eikonal equation of wave front surface and general equation of organization center were obtained. These eikonal equations reveal the wave front surfaces have structures of twisted scroll wave and Mobius band, the organization centers have structures of knotted and linked ring. These theoretical results not only explain the wave patterns of BZ ( Belousov-Zhabotinskii ) chemical reaction but also give several possibility structures of wave front surface and organization center in general excitable media.

  19. Novel Perspectives from Light-Front QCD, Super-Conformal Algebra, and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.

  20. Alteration and vein mineralization, Schwartzwalder uranium deposit, Front Range, Colorado

    Science.gov (United States)

    Wallace, Alan R.

    1983-01-01

    The Schwartzwalder uranium deposit, in the Front Range west of Denver, Colorado, is the largest vein-type uranium deposit in the United States. The deposit is situated in a steeply dipping fault system that cuts Proterozoic metamorphic rocks. The host rocks represent a submarine volcanic system with associated chert and iron- and sulfide-rich pelitic rocks. Where faulted, the more competent garnetiferous and quartzitic units behaved brittlely and created a deep, narrow conduit. The ores formed 70-72 m.y. ago beneath 3 km of Phanerozoic sedimentary rocks. Mineralization included two episodes of alteration and three stages of vein-mineralization. Early carbonate-sericite alteration pseudomorphically replaced mafic minerals, whereas the ensuing hematite-adularia episode replaced only the earlier alteration assemblage. Early vein mineralization produced a minor sulfide-adularia-carbonate assemblage. Later vein mineralization generated the uranium ores in two successive stages. Carbonates, sulfides, and adularia filled the remaining voids. Clastic dikes composed of fault gouge and, locally, ore were injected into new and existing fractures. Geologic and chemical evidence suggest that virtually all components of the deposit were derived from major hornblende gneiss units and related rocks. The initial fluids were evolved connate/metamorphic water that infiltrated and resided along the extensive fault zones. Complex fault movements in the frontal zone of the eastern Front Range caused the fluids to migrate to the most permeable segments of the fault zones. Heat was supplied by increased crustal heat flow related to igneous activity in the nearby Colorado mineral belt. Temperatures decreased from 225?C to 125?C during later mineralization, and the pressure episodically dropped from 1000 bars. The CO2 fugacity was initially near 100 bars, and uranium was carried as a dicarbonate complex. Sudden decreases in confining pressure during fault movement caused evolution of CO2

  1. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model param...... heat load reduction during peak load hours, control of indoor air temperature and for generating forecasts of power consumption from space heating....

  2. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  3. Front-like entire solutions for equations with convection

    Science.gov (United States)

    Crooks, E. C. M.; Tsai, Je-Chiang

    We construct families of front-like entire solutions for problems with convection, both for bistable and monostable reaction-diffusion-convection equations, and, via vanishing-viscosity arguments, for bistable and monostable balance laws. The unified approach employed is inspired by ideas of Chen and Guo and based on a robust method using front-dependent sub and supersolutions. Unlike convectionless problems, the equations studied here lack symmetry between increasing and decreasing travelling waves, which affects the choice of sub and supersolutions used. Our entire solutions include both those that behave like two fronts coming together and annihilating as time increases, and, for bistable equations, those that behave like two fronts merging to propagate like a single front. We also characterise the long-time behaviour of each family of entire solutions, which in the case of solutions constructed from a monostable front merging with a bistable front answers a question that was open even for reaction-diffusion equations without convection.

  4. Speed and structure of turbulent fronts in pipe flow

    CERN Document Server

    Song, Baofang; Hof, Björn; Avila, Marc

    2016-01-01

    The dynamics of laminar-turbulent fronts in pipe flow is investigated for Reynolds numbers between Re=1900 and Re=5500 using extensive direct numerical simulations. In this range the flow undergoes a continuous transition from localised puffs to weakly expanding and ultimately to strongly expanding turbulent slugs (Barkley et al. 2015). We here investigate the physical distinction between these two types of slug by analysing time-resolved statistics of their downstream fronts in the frame moving at the bulk turbulent advection speed. While weak fronts travel slower than the bulk turbulent advection speed, implying local relaminarisation, strong fronts travel faster and so feed on the laminar flow ahead. At Re$\\approx$2900 the downstream front speed becomes faster than the advection speed, marking the onset of strong fronts. We argue that large temporal fluctuations of production and dissipation at the laminar-turbulent interface drive the dynamical switches between the two types of front observed up to Re$\\si...

  5. CME front and severe space weather

    Science.gov (United States)

    Balan, N.; Skoug, R.; Tulasi Ram, S.; Rajesh, P. K.; Shiokawa, K.; Otsuka, Y.; Batista, I. S.; Ebihara, Y.; Nakamura, T.

    2014-12-01

    Thanks to the work of a number of scientists who made it known that severe space weather can cause extensive social and economic disruptions in the modern high-technology society. It is therefore important to understand what determines the severity of space weather and whether it can be predicted. We present results obtained from the analysis of coronal mass ejections (CMEs), solar energetic particle (SEP) events, interplanetary magnetic field (IMF), CME-magnetosphere coupling, and geomagnetic storms associated with the major space weather events since 1998 by combining data from the ACE and GOES satellites with geomagnetic parameters and the Carrington event of 1859, the Quebec event of 1989, and an event in 1958. The results seem to indicate that (1) it is the impulsive energy mainly due to the impulsive velocity and orientation of IMF Bz at the leading edge of the CMEs (or CME front) that determine the severity of space weather. (2) CMEs having high impulsive velocity (sudden nonfluctuating increase by over 275 km s-1 over the background) caused severe space weather (SvSW) in the heliosphere (failure of the solar wind ion mode of Solar Wind Electron Proton Alpha Monitor in ACE) probably by suddenly accelerating the high-energy particles in the SEPs ahead directly or through the shocks. (3) The impact of such CMEs which also show the IMF Bz southward from the leading edge caused SvSW at the Earth including extreme geomagnetic storms of mean DstMP power outages happened during some of these SvSW events. (4) The higher the impulsive velocity, the more severe the space weather, like faster weather fronts and tsunami fronts causing more severe damage through impulsive action. (5) The CMEs having IMF Bz northward at the leading edge do not seem to cause SvSW on Earth, although, later when the IMF Bz turns southward, they can lead to super geomagnetic storms of intensity (Dstmin) less than even -400 nT.

  6. Light-Front Perturbation Without Spurious Singularities

    Science.gov (United States)

    Przeszowski, Jerzy A.; Dzimida-Chmielewska, Elżbieta; Żochowski, Jan

    2016-07-01

    A new form of the light front Feynman propagators is proposed. It contains no energy denominators. Instead the dependence on the longitudinal subinterval x^2_L = 2 x+ x- is explicit and a new formalism for doing the perturbative calculations is invented. These novel propagators are implemented for the one-loop effective potential and various 1-loop 2-point functions for a massive scalar field. The consistency with results for the standard covariant Feynman diagrams is obtained and no spurious singularities are encountered at all. Some remarks on the calculations with fermion and gauge fields in QED and QCD are added.

  7. Refraction and reflection of diffusion fronts.

    Science.gov (United States)

    Remhof, A; Wijngaarden, R J; Griessen, R

    2003-04-11

    Diffusion waves form the basis of several measurement technologies in materials science as well as in biological systems. They are, however, so heavily damped that their observation is a real challenge to the experimentalist. We show that accurate information about the refraction-like and reflection-like behavior of diffusion waves can be obtained by studying diffusion fronts. For this we use hydrogen in a metal as a model system and visualize its 2D migration with an optical indicator. The similarities between classical optics and diffusion, in particular, the applicability of Snell's law to diffusive systems are discussed. Our measurements are in good agreement with numerical simulations.

  8. FLUID EXCHANGE ACROSS THE EQUATORIAL FRONT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the cusp-shaped wave pattern (Legeckis wave) along the Equatorial Front (EF) is modeled by a meandering jet, and the motion of fluid parcels in a two-dimensional kinematic model of the meandering jet along EF is studied using Melnikov's method. Results indicated that the velocity field of the cusp-shaped wave pattern can indeed be modeled by a meandering jet; that the EF will act as a barrier to fluid exchange if there is no variability, but that it is just the variability that moves the buoy across the EF.

  9. FLUID EXCHANGE ACROSS THE EQUATORIAL FRONT

    Institute of Scientific and Technical Information of China (English)

    姜传丽; 吕建; 吴德星

    2001-01-01

    In this paper, the cusp-shaped wave pattern (Legeckis wave) along the Equatorial Front (EF) is modeled by a meandering jet, and the motion of fluid parcels in a two-dimensional kine-matic model of the meandering jet along EF is studied using Melnikov's method. Results indicated that the velocity field of the cusp-shaped wave pattern can indeed be modeled by a meandering jet; that the EF will act as a barrier to fluid exchange if there is no variability, but that it is just the variability that moves the buoy across the EF.

  10. Rarefaction-undercompressive fronts in driven films

    Science.gov (United States)

    Münch, A.; Bertozzi, A. L.

    1999-10-01

    We consider experiments by Ludviksson and Lightfoot [AIChE J. 17, 1166 (1971)] on thin liquid films driven up a vertical plate by a thermally induced surface tension gradient with a counteracting gravitational force, and revisit their theoretical analysis, which neglects the effects of curvature, for predicting the climbing rate of the front. We present a new theory for the lubrication model with curvature effects, and get rising rates that depend on the microscopic length scale at the contact line. The predictions are, in general, in better agreement with the experiment.

  11. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  12. On the Heat Transfer through a Solid Slab Heated Uniformly and Continuously on One of Its Surfaces

    Science.gov (United States)

    Marin, E.; Lara-Bernal, A.; Calderon, A.; Delgado-Vasallo, O.

    2011-01-01

    Some peculiarities of the heat transfer through a sample that is heated by the superficial absorption of light energy under continuous uniform illumination are discussed. We explain, using a different approach to that presented in a recent article published in this journal (Salazar "et al" 2010 "Eur. J. Phys." 31 1053-9), that the front surface of…

  13. Phase fronts and synchronization patterns in forced oscillatory systems

    Directory of Open Access Journals (Sweden)

    Ehud Meron

    2000-01-01

    Full Text Available This is a review of recent studies of extended oscillatory systems that are subjected to periodic temporal forcing. The periodic forcing breaks the continuous time translation symmetry and leaves a discrete set of stable uniform phase states. The multiplicity of phase states allows for front structures that shift the oscillation phase by π/n where n=1,2,…, hereafter π/n-fronts. The main concern here is with front instabilities and their implications on pattern formation. Most theoretical studies have focused on the 2:1 resonance where the system oscillates at half the driving frequency. All front solutions in this case are π-fronts. At high forcing strengths only stationary fronts exist. Upon decreasing the forcing strength the stationary fronts lose stability to pairs of counter-propagating fronts. The coexistence of counter-propagating fronts allows for traveling domains and spiral waves. In the 4:1 resonance stationary π-fronts coexist with π/2-fronts. At high forcing strengths the stationary π-fronts are stable and standing two-phase waves, consisting of successive oscillatory domains whose phases differ by π,, prevail. Upon decreasing the forcing strength the stationary π-fronts lose stability and decompose into pairs of propagating π/2-fronts. The instability designates a transition from standing two-phase waves to traveling four-phase waves. Analogous decomposition instabilities have been found numerically in higher 2n:1 resonances. The available theory is used to account for a few experimental observations made on the photosensitive Belousov–Zhabotinsky reaction subjected to periodic illumination. Observations not accounted for by the theory are pointed out.

  14. Nonlinear Cross Gramians

    Science.gov (United States)

    Ionescu, Tudor C.; Scherpen, Jacquelien M. A.

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.

  15. Nonlinear functional analysis

    Directory of Open Access Journals (Sweden)

    W. L. Fouché

    1983-03-01

    Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.

  16. Nonlinear Electrodynamics and QED

    OpenAIRE

    2003-01-01

    The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...

  17. Nonlinear and stochastic dynamics of coherent structures

    DEFF Research Database (Denmark)

    Rasmussen, Kim

    1997-01-01

    system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...... phenomenon. We find numerically and analytically that the collapse can be delayed and ultimatively arrested by the fluctuations. Allowing the system to reach thermal equilibrium we further augment the model by a nonlineardamping term and find that this prohibits collapse in the strict mathematical se nse....... However a collapse like behavior still persists in the presence of the nonlinear damping . Apart from the absence of the collapse in the strict mathematical sense we find that the nonlinear damping term has rather weak influence on the interplay between fluctuations and self-focusing. The study...

  18. Photonic surfaces for designable nonlinear power shaping

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Roshni, E-mail: rbiswas@usc.edu; Povinelli, Michelle L. [Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States)

    2015-02-09

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest.

  19. Analysis and Comparison of Large Time Front Speeds in Turbulent Combustion Models

    CERN Document Server

    Xin, Jack

    2011-01-01

    Predicting turbulent flame speed (the large time front speed) is a fundamental problem in turbulent combustion theory. Several models have been proposed to study the turbulent flame speed, such as the G-equations, the F-equations (Majda-Souganidis model) and reaction-diffusion-advection (RDA) equations. In the first part of this paper, we show that flow induced strain reduces front speeds of G-equations in periodic compressible and shear flows. The F-equations arise in asymptotic analysis of reaction-diffusion-advection equations and are quadratically nonlinear analogues of the G-equations. In the second part of the paper, we compare asymptotic growth rates of the turbulent flame speeds from the G-equations, the F-equations and the RDA equations in the large amplitude ($A$) regime of spatially periodic flows. The F and G equations share the same asymptotic front speed growth rate; in particular, the same sublinear growth law $A\\over \\log(A)$ holds in cellular flows. Moreover, in two space dimensions, if one o...

  20. The vacuum structure of light-front $\\phi^{4}_{1+1}$-theory

    CERN Document Server

    Heinzl, T; Werner, E; Zellermann, B

    1995-01-01

    We discuss the vacuum structure of \\phi^4-theory in 1+1 dimensions quantised on the light-front x^+ =0. To this end, one has to solve a non-linear, operator-valued constraint equation. It expresses that mode of the field operator having longitudinal light-front momentum equal to zero, as a function of all the other modes in the theory. We analyse whether this zero mode can lead to a non-vanishing vacuum expectation value of the field \\phi and thus to spontaneous symmetry breaking. In perturbation theory, we get no symmetry breaking. If we solve the constraint, however, non-perturbatively, within a mean-field type Fock ansatz, the situation changes: while the vacuum state itself remains trivial, we find a non-vanishing vacuum expectation value above a critical coupling. Exactly the same result is obtained within a light-front Tamm-Dancoff approximation, if the renormalisation is done in the correct way.

  1. Marangoni flows induced by A + B -> C reaction fronts with arbitrary diffusion coefficients

    Science.gov (United States)

    Tiani, Reda; Rongy, Laurence

    2016-11-01

    We consider horizontal aqueous solutions in contact with air where three reacting species A, B, and C can affect the surface tension of the solution, thereby driving Marangoni flows. When the two reactants A and B, that are initially separated, are brought into contact, a reaction front producing species C is formed and evolves in time due to diffusion, convection and reaction processes. The resulting dynamics is studied by numerically integrating the incompressible Navier-Stokes equations coupled to reaction-diffusion-convection equations for the three chemical species. For equal initial concentrations of reactants and equal diffusion coefficients, we have explained how chemically-driven Marangoni flows can lead to complex dynamics of the front propagation. Here we extend such results for arbitrary values of the diffusion coefficients and initial concentrations of reactants. We give the general classification of the surface tension profiles as a function of the Marangoni numbers quantifying the effect of each species on the surface tension, the ratio of initial concentrations of reactants and the ratios of diffusion coefficients. Such a classification allows us then to study the resulting structure of the convective rolls as well as the nonlinear dynamics of the reaction front. F.R.S.- FNRS, ARC.

  2. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  3. Nonlinear magnetic metamaterials.

    Science.gov (United States)

    Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S

    2008-12-08

    We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America

  4. Organic nonlinear optical materials

    Science.gov (United States)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  5. Nonlinearity-reduced interferometer

    Science.gov (United States)

    Wu, Chien-ming

    2007-12-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.

  6. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  7. Nonlinear Dynamical Analysis of Fibrillation

    Science.gov (United States)

    Kerin, John A.; Sporrer, Justin M.; Egolf, David A.

    2013-03-01

    The development of spatiotemporal chaotic behavior in heart tissue, termed fibrillation, is a devastating, life-threatening condition. The chaotic behavior of electrochemical signals, in the form of spiral waves, causes the muscles of the heart to contract in an incoherent manner, hindering the heart's ability to pump blood. We have applied the mathematical tools of nonlinear dynamics to large-scale simulations of a model of fibrillating heart tissue to uncover the dynamical modes driving this chaos. By studying the evolution of Lyapunov vectors and exponents over short times, we have found that the fibrillating tissue is sensitive to electrical perturbations only in narrow regions immediately in front of the leading edges of spiral waves, especially when these waves collide, break apart, or hit the edges of the tissue sample. Using this knowledge, we have applied small stimuli to areas of varying sensitivity. By studying the evolution of the effects of these perturbations, we have made progress toward controlling the electrochemical patterns associated with heart fibrillation. This work was supported by the U.S. National Science Foundation (DMR-0094178) and Research Corporation.

  8. Thermodynamic framework for a generalized heat transport equation

    Directory of Open Access Journals (Sweden)

    Guo Yangyu

    2016-06-01

    Full Text Available In this paper, a generalized heat transport equation including relaxational, nonlocal and nonlinear effects is provided, which contains diverse previous phenomenological models as particular cases. The aim of the present work is to establish an extended irreversible thermodynamic framework, with generalized expressions of entropy and entropy flux. Nonlinear thermodynamic force-flux relation is proposed as an extension of the usual linear one, giving rise to the nonlinear terms in the heat transport equation and ensuring compatibility with the second law. Several previous results are recovered in the linear case, and some additional results related to nonlinear terms are also obtained.

  9. Biomechanics of front and back squat exercises

    Science.gov (United States)

    Braidot, A. A.; Brusa, M. H.; Lestussi, F. E.; Parera, G. P.

    2007-11-01

    Squat constitutes one of the most popular exercises to strengthen the muscles of the lower limbs. It is considered one of the most widely spread exercises for muscle sport training and is part of the competition movements comprised within olympic weight-lifting. In physical rehabilitation, squats are used for muscular recovery after different injuries of the lower limbs, especially the knee. In previous anterior cruciate ligament injuries, the mini-squats are generally used, in a knee flexion motion range from 0° to 50° because in this range the shear forces, the tibiofemoral and patellofemoral compression forces decrease related to greater flexion angles. The aim of this work is to make a comparative bidimensional study of the kinematic and dynamic variables of the excecution of the parallel squat exercise with the front and back bar. It is observed in the knee a better development of energy with the front bar, allowing a better muscular exercise with the same load. The mean power absorbed by the hip with the back bar is considerably greater, associated to the speed of the gesture.

  10. AFEII Analog Front End Board Design Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Rubinov, Paul; /Fermilab

    2005-04-01

    This document describes the design of the 2nd iteration of the Analog Front End Board (AFEII), which has the function of receiving charge signals from the Central Fiber Tracker (CFT) and providing digital hit pattern and charge amplitude information from those charge signals. This second iteration is intended to address limitations of the current AFE (referred to as AFEI in this document). These limitations become increasingly deleterious to the performance of the Central Fiber Tracker as instantaneous luminosity increases. The limitations are inherent in the design of the key front end chips on the AFEI board (the SVXIIe and the SIFT) and the architecture of the board itself. The key limitations of the AFEI are: (1) SVX saturation; (2) Discriminator to analog readout cross talk; (3) Tick to tick pedestal variation; and (4) Channel to channel pedestal variation. The new version of the AFE board, AFEII, addresses these limitations by use of a new chip, the TriP-t and by architectural changes, while retaining the well understood and desirable features of the AFEI board.

  11. Internal waves and temperature fronts on slopes

    Directory of Open Access Journals (Sweden)

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  12. Biomechanics of front and back squat exercises

    Energy Technology Data Exchange (ETDEWEB)

    Braidot, A A [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Brusa, M H [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Lestussi, F E [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Parera, G P [Licenciatura en KinesiologIa y FisiatrIa Universidad Abierta Interamericana. Sede Regional Rosario (Argentina)

    2007-11-15

    Squat constitutes one of the most popular exercises to strengthen the muscles of the lower limbs. It is considered one of the most widely spread exercises for muscle sport training and is part of the competition movements comprised within olympic weight-lifting. In physical rehabilitation, squats are used for muscular recovery after different injuries of the lower limbs, especially the knee. In previous anterior cruciate ligament injuries, the mini-squats are generally used, in a knee flexion motion range from 0 deg. to 50 deg. because in this range the shear forces, the tibiofemoral and patellofemoral compression forces decrease related to greater flexion angles. The aim of this work is to make a comparative bidimensional study of the kinematic and dynamic variables of the excecution of the parallel squat exercise with the front and back bar. It is observed in the knee a better development of energy with the front bar, allowing a better muscular exercise with the same load. The mean power absorbed by the hip with the back bar is considerably greater, associated to the speed of the gesture.

  13. Travelling fronts in stochastic Stokes’ drifts

    KAUST Repository

    Blanchet, Adrien

    2008-10-01

    By analytical methods we study the large time properties of the solution of a simple one-dimensional model of stochastic Stokes\\' drift. Semi-explicit formulae allow us to characterize the behaviour of the solutions and compute global quantities such as the asymptotic speed of the center of mass or the effective diffusion coefficient. Using an equivalent tilted ratchet model, we observe that the speed of the center of mass converges exponentially to its limiting value. A diffuse, oscillating front attached to the center of mass appears. The description of the front is given using an asymptotic expansion. The asymptotic solution attracts all solutions at an algebraic rate which is determined by the effective diffusion coefficient. The proof relies on an entropy estimate based on homogenized logarithmic Sobolev inequalities. In the travelling frame, the macroscopic profile obeys to an isotropic diffusion. Compared with the original diffusion, diffusion is enhanced or reduced, depending on the regime. At least in the limit cases, the rate of convergence to the effective profile is always decreased. All these considerations allow us to define a notion of efficiency for coherent transport, characterized by a dimensionless number, which is illustrated on two simple examples of travelling potentials with a sinusoidal shape in the first case, and a sawtooth shape in the second case. © 2008 Elsevier B.V. All rights reserved.

  14. An island in front of Izola

    Directory of Open Access Journals (Sweden)

    Franci Steinman

    2002-01-01

    Full Text Available Maritime construction in front of Izola restitutes an enriched former state. The island is positioned in a place where there are no legal regimes enforced by the state or local community. Legal regimes that determine the exploitation of water rights and limitations (management, exploitation, use can actually limit all. Therefore their synthesis has to be the starting point for analysing the harmony of present uses and for planning future uses of the sea and coastal area. For example the aquatorium of the shellfish mariculture positioned in the Strunjan Bay without adequate analysis of the prevailing conditions is causing conflicts of uses, unacceptable limiting of general use of the sea and prohibitive limitations in neighbouring areas. The analysis done for the island in front of Izola shows that there are no such consequences. Only uses in the public interest were proposed, since when assessing suitability first public and then common interests where considered, possible specific (e.g. entrepreneurial uses were permitted only if the afore mentioned weren’t obstructed. Thus integral management of the coastal area was enabled, with respect to functional ties between the land and sea.

  15. Universal Millimeter-Wave Radar Front End

    Science.gov (United States)

    Perez, Raul M.

    2010-01-01

    A quasi-optical front end allows any arbitrary polarization to be transmitted by controlling the timing, amplitude, and phase of the two input ports. The front end consists of two independent channels horizontal and vertical. Each channel has two ports transmit and receive. The transmit signal is linearly polarized so as to pass through a periodic wire grid. It is then propagated through a ferrite Faraday rotator, which rotates the polarization state 45deg. The received signal is propagated through the Faraday rotator in the opposite direction, undergoing a further 45 of polarization rotation due to the non-reciprocal action of the ferrite under magnetic bias. The received signal is now polarized at 90deg relative to the transmit signal. This signal is now reflected from the wire grid and propagated to the receive port. The horizontal and vertical channels are propagated through, or reflected from, another wire grid. This design is an improvement on the state of the art in that any transmit signal polarization can be chosen in whatever sequence desired. Prior systems require switching of the transmit signal from the amplifier, either mechanically or by using high-power millimeter-wave switches. This design can have higher reliability, lower mass, and more flexibility than mechanical switching systems, as well as higher reliability and lower losses than systems using high-power millimeter-wave switches.

  16. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...

  17. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...

  18. Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

    OpenAIRE

    2013-01-01

    During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities of improving the flow structure and thereby increasing uniform heat transfer...

  19. Nonlinear and Nonlocal Feedbacks in an Aquaplanet

    Science.gov (United States)

    Feldl, N.; Roe, G.

    2012-12-01

    The power of the feedback framework lies in its ability to reveal the energy pathways by which the climate system adjusts to an imposed forcing. By understanding the closure of the energy budget in as much detail and precision as possible, and within as clean an experimental set-up as possible, we are also able to isolate nonlinear interactions between feedbacks. For an aquaplanet simulation under perpetual equinox conditions, we account for rapid tropospheric adjustments to CO2 and diagnose radiative kernels for this precise model set-up. We characterize the contributions of feedbacks, heat transport, and nonlinearities in controlling the meridional structure of the climate response. The presence of strongly positive subtropical feedbacks, combined with polar amplification, implies a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: net heat divergence away from strong positive feedbacks in the tropics; nonlinearities induced by circulation changes that cool the tropics and warm the high-latitudes; and strong ice-line feedbacks that drive further amplification of polar warming. Overall, these results highlight how spatial patterns in feedbacks affect both the local and nonlocal climate response, with implications for regional predictability.

  20. Front Office and Reception; An Approach to Front Office and Reception Training.

    Science.gov (United States)

    Hotel and Catering Industry Training Board, Wembley (England).

    This manual is concerned with the tasks and training needs of front office personnel in hotels. After discussion of selection and qualifications of such personnel, the perfect receptionist is described in terms of personality, appearance, and deportment. Then follows a detailed listing of tasks--basic tasks, such as reception, bookkeeping, cash,…