WorldWideScience

Sample records for nonlinear gravitational evolution

  1. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  2. Nonlinear coupled Alfven and gravitational waves

    International Nuclear Information System (INIS)

    Kaellberg, Andreas; Brodin, Gert; Bradley, Michael

    2004-01-01

    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected

  3. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    Peacock, J.A.

    1982-01-01

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)

  4. Nonlinear Lorentz-invariant theory of gravitation

    International Nuclear Information System (INIS)

    Petry, W.

    1976-01-01

    A nonlinear Lorentz-invariant theory of gravitation and a Lorentz-invariant Hamiltonian for a particle with spin in the gravitational field are developed. The equations of motions are studied. The theory is applied to the three well known tests of General Relativity. In the special case of the red shift of spectral lines and of the deflection of light, the theory gives the same results as the General Theory of Relativity, whereas in the case of the perihelion of the Mercury, the theory gives 40,3'', in good agreement with experimental results of Dicke. (author)

  5. Nonlinear density waves in a marginally stable gravitating disk

    International Nuclear Information System (INIS)

    Korchagin, V.I.

    1986-01-01

    The evolution of short nonlinear density waves in a disk at the stability limit is studied for arbitrary values of the radial wave number k/sub r/. For waves with wave numbers that do not lie at the minimum of the dispersion curve, the behavior of the amplitude is described by a nonlinear parabolic equation; however, stationary soliton solutions cannot exist in such a system since there is no dispersion spreading of a packet. For wave numbers lying at the minimum of the dispersion curve, soliton structures with determined amplitude are possible. In stable gravitating disks and in a disk at the stability limit, two physically different types of soliton can exist

  6. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  7. Nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.

    1975-01-01

    A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)

  8. NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    Some astrophysical sources of gravitational waves can produce a 'memory effect', which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor's contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an 'effective-one-body' (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to redshifts z ∼< 2. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to 'gravitate'.

  9. Gravitational bags and solitary cosmological evolution

    International Nuclear Information System (INIS)

    Davidson, A.; Guendelman, E.I.

    1989-01-01

    The role played by the sophisticated scalar potential, dictated by spontaneous compactification, is analyzed. A fine-tuning is mandatory for achieving asymptotic flatness. Two main aspects are studied. 1. The three-fold spherically symmetric case exhibits localized four-dimensional objects, to be referred to as ''gravitational bags''. These are cores of scalar fields confined by means of a cosmic domain wall, whose size only slightly exceeds equal-mass black holes. 2. The cosmological case introduces a novel scenario of ''solitary evolution''. Triggered by the collapse of the extra dimensions, the universe undergoes an inflationary stage before settling in an oscillating fashion, in its ground state. (orig.)

  10. Causal properties of nonlinear gravitational waves in modified gravity

    Science.gov (United States)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  11. Non-linear excitation of gravitational radiation antennae

    International Nuclear Information System (INIS)

    Blair, D.G.

    1982-01-01

    A mechanism of non-linear excitation is proposed to explain observed excess noise in gravitational radiation antennae, driven by low frequency vibration. The mechanism is analogous to the excitation of a violin string by low frequency bowing. Numerical estimates for Weber bars suspended by cables are in good agreement with observations. (Auth.)

  12. Dark matter as a non-linear effect of gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.; Capistrano, A.J.S.

    2006-01-01

    The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)

  13. Nonlinear effects in Pulsations of Compact Stars and Gravitational Waves

    International Nuclear Information System (INIS)

    Passamonti, A

    2007-01-01

    Nonlinear stellar oscillations can be studied by using a multiparameter perturbative approach, which is appropriate for investigating the low and mild nonlinear dynamical regimes. We present the main properties of our perturbative framework for describing, in the time domain, the nonlinear coupling between the radial and nonradial perturbations of spherically symmetric and perfect fluid compact stars. This particular coupling can be described by gauge invariant quantities that obeys a system of partial differential equations with source terms, which are made up of product of first order radial and nonradial perturbations. We report the results of numerical simulations for both the axial and polar coupling perturbations, that exhibit in the stellar dynamics and in the associated gravitational wave signal some interesting nonlinear effects, such as combination harmonics and resonances. In particular, we concentrate on the axial case, where the linear axial perturbations describe a harmonic component of a differentially rotating neutron star. The gravitational wave signal of this stellar configuration mirrors at second perturbative order the spectral features of the linear radial normal modes. In addition, a signal amplification appears when one of the radial frequencies is close to the axial w-mode frequencies of the star

  14. Nonlinear metric perturbation enhancement of primordial gravitational waves.

    Science.gov (United States)

    Bastero-Gil, M; Macias-Pérez, J; Santos, D

    2010-08-20

    We present the evolution of the full set of Einstein equations during preheating after inflation. We study a generic supersymmetric model of hybrid inflation, integrating fields and metric fluctuations in a 3-dimensional lattice. We take initial conditions consistent with Einstein's constraint equations. The induced preheating of the metric fluctuations is not large enough to backreact onto the fields, but preheating of the scalar modes does affect the evolution of vector and tensor modes. In particular, they do enhance the induced stochastic background of gravitational waves during preheating, giving an energy density in general an order of magnitude larger than that obtained by evolving the tensor fluctuations in an homogeneous background metric. This enhancement can improve the expectations for detection by planned gravitational wave observatories.

  15. Simulating nonlinear neutrino flavor evolution

    Science.gov (United States)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  16. Simulating nonlinear neutrino flavor evolution

    Energy Technology Data Exchange (ETDEWEB)

    Duan, H [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Fuller, G M [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Carlson, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: hduan@phys.washington.edu, E-mail: gfuller@ucsd.edu, E-mail: carlson@lanl.gov

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev-Smirnov-Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle {theta}{sub 13}.

  17. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  18. Saturation at Low X and Nonlinear Evolution

    International Nuclear Information System (INIS)

    Stasto, A.M.

    2002-01-01

    In this talk the results of the analytical and numerical analysis of the nonlinear Balitsky-Kovchegov equation are presented. The characteristic BFKL diffusion into infrared regime is suppressed by the generation of the saturation scale Q s . We identify the scaling and linear regimes for the solution. We also study the impact of subleading corrections onto the nonlinear evolution. (author)

  19. Schrödinger evolution of self-gravitating discs

    Science.gov (United States)

    Batygin, Konstantin

    2018-04-01

    An understanding of the long-term evolution of self-gravitating discs ranks among the classic outstanding problems of astrophysics. In this work, we show that the secular inclination dynamics of a geometrically thin quasi-Keplerian disc, with a surface density profile that scales as the inverse square-root of the orbital radius, are described by the time-dependent Schrödinger equation. Within the context of this formalism, nodal bending waves correspond to the eigenmodes of a quasi-particle's wavefunction, confined in an infinite square well with boundaries given by the radial extent of the disc. We further show that external secular perturbations upon self-gravitating discs exhibit a mathematical similarity to quantum scattering theory. Employing this framework, we derive an analytic criterion for the gravitational rigidity of a nearly-Keplerian disc under external perturbations. Applications of the theory to circumstellar discs and Galactic nuclei are discussed.

  20. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  1. Exploring stellar evolution with gravitational-wave observations

    Science.gov (United States)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2018-05-01

    Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.

  2. Gravitational lenses and the cosmological evolution of quasars

    International Nuclear Information System (INIS)

    Avni, Y.

    1981-01-01

    A heuristic model for the effect of gravitational lenses on the apparent cosmological evolution of quasars is considered. The model satisfies the requirement of average flux conservation and has no net mean amplification. This requirement is shown to be numerically important in studying the effect. On the basis of the values of the evolution indicators calculated from the model, it is concluded that it is premature to assert that lensing plays an important role in affecting the apparent evolution. A qualitative, model independent observational test for the effect is suggested. The test estimates the distances where lensing is dominant. An application of this test to a complete sample of quasars indicates that lensing cannot completely account for the apparent evolution, except in an extreme situation

  3. Evolution Of Nonlinear Waves in Compressing Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Dodin, I.Y.; Fisch, N.J.

    2011-01-01

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size Δ during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches Δ. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  4. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  5. Nonlinear evolution of f(R) cosmologies. II. Power spectrum

    International Nuclear Information System (INIS)

    Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos

    2008-01-01

    We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.

  6. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)

    2017-02-12

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.

  7. Correlations and discreteness in nonlinear QCD evolution

    International Nuclear Information System (INIS)

    Armesto, N.; Milhano, J.

    2006-01-01

    We consider modifications of the standard nonlinear QCD evolution in an attempt to account for some of the missing ingredients discussed recently, such as correlations, discreteness in gluon emission and Pomeron loops. The evolution is numerically performed using the Balitsky-Kovchegov equation on individual configurations defined by a given initial value of the saturation scale, for reduced rapidities y=(α s N c /π)Y<10. We consider the effects of averaging over configurations as a way to implement correlations, using three types of Gaussian averaging around a mean saturation scale. Further, we heuristically mimic discreteness in gluon emission by considering a modified evolution in which the tails of the gluon distributions are cut off. The approach to scaling and the behavior of the saturation scale with rapidity in these modified evolutions are studied and compared with the standard mean-field results. For the large but finite values of rapidity explored, no strong quantitative difference in scaling for transverse momenta around the saturation scale is observed. At larger transverse momenta, the influence of the modifications in the evolution seems most noticeable in the first steps of the evolution. No influence on the rapidity behavior of the saturation scale due to the averaging procedure is found. In the cutoff evolution the rapidity evolution of the saturation scale is slowed down and strongly depends on the value of the cutoff. Our results stress the need to go beyond simple modifications of evolution by developing proper theoretical tools that implement such recently discussed ingredients

  8. Nonlinear evolution of astrophysical Alfven waves

    Science.gov (United States)

    Spangler, S. R.

    1984-01-01

    Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.

  9. Gravitational instability, evolution of galaxies and star formation

    International Nuclear Information System (INIS)

    Palous, J.

    1979-01-01

    The gravitational collapse is the key to the theories of galaxy and star formation. The observations, showing intrinsic differences between elliptical and spiral galaxies, guide our fundamental conceptions on the formation and evolution of systems in question. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short period of time during early phases of protogalactic collapse, at a time of violent star formation. The disc-like components of spiral galaxies, however, were built gradually in the course of galactic evolution. Star formation in elliptical galaxies is described by the collision model of interstellar clouds, while star formation in discs is characterised by several processes: the expansion of HII regions, the expansion of supernovae remnants and the shock wave related to the presence of the spiral structure. (author)

  10. Gravitational wave emission from a bounded source: A treatment in the full nonlinear regime

    International Nuclear Information System (INIS)

    Oliveiral, H.P. de; Damiao Soares, I.

    2004-03-01

    The dynamics of a bounded gravitational collapsing configuration emitting gravitational waves is studied. The exterior spacetime is described by Robinson-Trautman geometries and have the Schwarzschild black hole as its final gravitational configuration, when the gravitational wave emission ceases. The full nonlinear regime is examined by using the Galerkin method that allows us to reduce the equations governing the dynamics to a finite-dimensional dynamical system, after a proper truncation procedure. Gravitational wave emission patterns from given initial configurations are exhibited for several phases of the collapse and the mass-loss ratio that characterizes the amount of mass extracted by the gravitational wave emission is evaluated. We obtain that the smaller initial mass M init of the configuration, the more rapidly the Schwarzschild solution is attained and a larger fraction of M init is lost in the process of gravitational wave emission. Within all our numerical experiments, the distribution of the mass fraction extracted by gravitational wave emission is shown to satisfy the distribution law of nonextensive statistics and this result is independent of the initial configurations considered. (author)

  11. Nonlinear evolution equations having a physical meaning

    International Nuclear Information System (INIS)

    Nakach, R.

    1976-06-01

    The non stationary self-similar solutions of the nonlinear evolution equations which can be solved by the inverse scattering method are studied. It turns out, as shown by means of several examples, that when the L linear operator associated with these equations, is of second order and only then, the self-similar solutions can be expressed in terms of the various Painleve's transcendents [fr

  12. Equations of motion for anisotropic nonlinear elastic continuum in gravitational field

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1994-01-01

    Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs

  13. 3-D nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed

  14. Dynamical evolution of star clusters with a changing gravitational constant

    International Nuclear Information System (INIS)

    Angeletti, L.; Giannone, P.

    1978-01-01

    The dynamical evolution of massive star clusters was studied, taking into account variations with time of the gravitional constant. The rates of change of G were adopted according to theoretical and observational indications. Various conditions concerning the number of star groups, star masses, mass loss from stars, and initial star concentration were tested for the clusters. The comparison with analogous evolutionary sequences computed with a constant value of G showed that the effects of changes of G may be conspicuous. The analytical dependence of basic structural functions on the law of variation of G with time was determined from the numerical results. They allow an estimate of the consequences of G in a large range of cases. The effects of a decrease of G tended to prevent the formation of dense cores, which is a specific feature of the evolution of 'standard' models of star clusters. The expansion of the whole cluster structure was noteworthy. However, there was not a significant increase of escape of stars from cluster compared with the cases computed with constant G. Although detailed comparison with observations was beyond our present aims, it appears that a varaition of G according to the Brans-Dicke theory is not in conflict with observational data, as is the case for an exponential decrease of G consistent with Van Flandern's result. (orig.) [de

  15. Analytical modeling of soliton interactions in a nonlocal nonlinear medium analogous to gravitational force

    Science.gov (United States)

    Zeng, Shihao; Chen, Manna; Zhang, Ting; Hu, Wei; Guo, Qi; Lu, Daquan

    2018-01-01

    We illuminate an analytical model of soliton interactions in lead glass by analogizing to a gravitational force system. The orbits of spiraling solitons under a long-range interaction are given explicitly and demonstrated to follow Newton's second law of motion and the Binet equation by numerical simulations. The condition for circular orbits is obtained and the oscillating orbits are proved not to be closed. We prove the analogy between the nonlocal nonlinear optical system and gravitational system and specify the quantitative relation of the quantity between the two models.

  16. Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes

    Directory of Open Access Journals (Sweden)

    Reinoud Jan Slagter

    2017-02-01

    Full Text Available We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1 scalar gauge field (cosmic string on the brane using the multiple-scale method. The spectrum of the several orders of approximation show maxima of the energy distribution dependent on the azimuthal-angle and the winding numbers of the subsequent orders of the scalar field. This breakup of the quantized flux quanta does not lead to instability of the asymptotic wavelike solution due to the suppression of the n-dependency in the energy momentum tensor components by the warp factor. This effect is triggered by the contribution of the five dimensional Weyl tensor on the brane. This contribution can be understood as dark energy and can trigger the self-acceleration of the universe without the need of a cosmological constant. There is a striking relation between the symmetry breaking of the Higgs field described by the winding number and the SO(2 breaking of the axially symmetric configuration into a discrete subgroup of rotations of about 180 ∘ . The discrete sequence of non-axially symmetric deviations, cancelled by the emission of gravitational waves in order to restore the SO(2 symmetry, triggers the pressure T z z for discrete values of the azimuthal-angle. There could be a possible relation between the recently discovered angle-preferences of polarization axes of quasars on large scales and our theoretical predicted angle-dependency and this could be evidence for the existence of cosmic strings. Careful comparison of this spectrum of extremal values of the first and second order φ-dependency and the distribution of the alignment of the quasar polarizations is necessary. This can be accomplished when more observational data become available. It turns out that, for late time, the vacuum 5D spacetime is conformally invariant if the warp factor fulfils the equation of a vibrating

  17. Decomposition of a hierarchy of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Geng Xianguo

    2003-01-01

    The generalized Hamiltonian structures for a hierarchy of nonlinear evolution equations are established with the aid of the trace identity. Using the nonlinearization approach, the hierarchy of nonlinear evolution equations is decomposed into a class of new finite-dimensional Hamiltonian systems. The generating function of integrals and their generator are presented, based on which the finite-dimensional Hamiltonian systems are proved to be completely integrable in the Liouville sense. As an application, solutions for the hierarchy of nonlinear evolution equations are reduced to solving the compatible Hamiltonian systems of ordinary differential equations

  18. Non-linear development of secular gravitational instability in protoplanetary disks

    Science.gov (United States)

    Tominaga, Ryosuke T.; Inutsuka, Shu-ichiro; Takahashi, Sanemichi Z.

    2018-01-01

    We perform non-linear simulation of secular gravitational instability (GI) in protoplanetary disks, which has been proposed as a mechanism of planetesimal and multiple ring formation. Since the timescale of the growth of the secular GI is much longer than the Keplerian rotation period, we develop a new numerical scheme for a long-term calculation utilizing the concept of symplectic integration. With our new scheme, we first investigate the non-linear development of the secular GI in a disk without a pressure gradient in the initial state. We find that the surface density of dust increases by more than a factor of 100 while that of gas does not increase even by a factor of 2, which results in the formation of dust-dominated rings. A line mass of the dust ring tends to be very close to the critical line mass of a self-gravitating isothermal filament. Our results indicate that the non-linear growth of the secular GI provides a powerful mechanism to concentrate the dust. We also find that the dust ring formed via the non-linear growth of the secular GI migrates inward with a low velocity, which is driven by the self-gravity of the ring. We give a semi-analytical expression for the inward migration speed of the dusty ring.

  19. Gravitation

    CERN Document Server

    Misner, Charles W; Wheeler, John Archibald

    2017-01-01

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...

  20. Gravitational waves from nonlinear couplings of radial and polar nonradial modes in relativistic stars

    International Nuclear Information System (INIS)

    Passamonti, Andrea; Stergioulas, Nikolaos; Nagar, Alessandro

    2007-01-01

    The postbounce oscillations of newly-born relativistic stars are expected to lead to gravitational-wave emission through the excitation of nonradial oscillation modes. At the same time, the star is oscillating in its radial modes, with a central density variation that can reach several percent. Nonlinear couplings between radial oscillations and polar nonradial modes lead to the appearance of combination frequencies (sums and differences of the linear mode frequencies). We study such combination frequencies using a gauge-invariant perturbative formalism, which includes bilinear coupling terms between different oscillation modes. For typical values of the energy stored in each mode we find that gravitational waves emitted at combination frequencies could become detectable in galactic core-collapse supernovae with advanced interferometric or wideband resonant detectors

  1. Skewness of the cosmic microwave background temperature fluctuations due to the non-linear gravitational instability

    International Nuclear Information System (INIS)

    Munshi, D.; Souradeep, T.; Starobinsky, A.A.

    1995-01-01

    The skewness of the temperature fluctuations of the cosmic microwave background (CMB) produced by initially Gaussian adiabatic perturbations with the flat (Harrison-Zeldovich) spectrum, which arises due to non-linear corrections to a gravitational potential at the matter-dominated stage, is calculated quantitatively. For the standard CDM model, the effect appears to be smaller than expected previously and lies below the cosmic variance limit even for small angles. The sign of the skewness is opposite to that of the skewness of density perturbations. (author)

  2. On a new series of integrable nonlinear evolution equations

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  3. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field

    Science.gov (United States)

    Moawad, S. M.; Moawad

    2013-10-01

    The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.

  4. Analytic treatment of nonlinear evolution equations using first ...

    Indian Academy of Sciences (India)

    1. — journal of. July 2012 physics pp. 3–17. Analytic treatment of nonlinear evolution ... Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics, ... (2.2) is integrated where integration constants are considered zeros.

  5. Approximate viability for nonlinear evolution inclusions with application to controllability

    Directory of Open Access Journals (Sweden)

    Omar Benniche

    2016-12-01

    Full Text Available We investigate approximate viability for a graph with respect to fully nonlinear quasi-autonomous evolution inclusions. As application, an approximate null controllability result is given.

  6. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  7. Topological soliton solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-03-01

    Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.

  8. Direct approach for solving nonlinear evolution and two-point

    Indian Academy of Sciences (India)

    Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples ...

  9. New travelling wave solutions for nonlinear stochastic evolution

    Indian Academy of Sciences (India)

    The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic ...

  10. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Bai Yongqiang; Wu Ke; Zhao Weizhong; Guo Hanying

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schroedinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  11. Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation

    International Nuclear Information System (INIS)

    Wiseman, A.G.; Will, C.M.

    1991-01-01

    Christodoulou has found a new nonlinear contribution to the net change in the wave form caused by the passage of a burst of gravity waves (''memory of the burst''). We argue that this effect is nothing but the gravitational wave form generated by the stress energy in the burst itself. We derive an explicit formula for this effect in terms of a retarded-time integral of products of time derivatives of wave-zone gravitational wave forms. The resulting effect corresponds in size to a correction 2.5 post-Newtonian orders [O((Gm/rc 2 ) 5/2 ) =(O(v/c) 5 )] beyond the quadrupole approximation, and is therefore negligible for all but the most relativistic of systems. For gravitational bremsstrahlung from two stars moving at 300 km s -1 , the effect is much less than 10 -10 of the usual linear quadrupole wave form, while for a system of coalescing binary compact objects we estimate that the effect is of order 10 -1 for two neutron stars

  12. Long wavelength limit of evolution of nonlinear cosmological perturbations

    International Nuclear Information System (INIS)

    Hamazaki, Takashi

    2008-01-01

    In the general matter composition where the multiple scalar fields and the multiple perfect fluids coexist, in the leading order of the gradient expansion, we construct all of the solutions of the nonlinear evolutions of the locally homogeneous universe. From the momentum constraint, we derive the constraints which the solution constants of the locally homogeneous universe must satisfy. We construct the gauge invariant perturbation variables in the arbitrarily higher order nonlinear cosmological perturbation theory around the spatially flat Friedmann-Robertson-Walker universe. We construct the nonlinear long wavelength limit formula representing the long wavelength limit of the evolution of the nonlinear gauge invariant perturbation variables in terms of perturbations of the evolutions of the locally homogeneous universe. By using the long wavelength limit formula, we investigate the evolution of nonlinear cosmological perturbations in the universe dominated by the multiple slow rolling scalar fields with an arbitrary potential. The τ function and the N potential introduced in this paper make it possible to write the evolution of the multiple slow rolling scalar fields with an arbitrary interaction potential and the arbitrarily higher order nonlinear Bardeen parameter at the end of the slow rolling phase analytically. It is shown that the nonlinear parameters such as f NL and g NL are suppressed by the slow rolling expansion parameters.

  13. Effect of undetected gravitational lenses on statistical measures of quasar evolution

    International Nuclear Information System (INIS)

    Turner, E.L.

    1980-01-01

    Brightness amplifications by undetected gravitational lenses could be responsible in part for the apparent evolution of quasars, particularly for those which appear to be of high luminosity. It is shown that values of Vover-bar/over-barVover-bar/sub M/> or =0.6 and number-magnitude slopes > or =0.9 need not necessarily imply source density evolution if lensing events are common. Quasar samples which are defined by flux limits and minimum luminosities will preferentially include gravitational lens systems. Even if lensing events are quite rare, a large fraction of the lensed quasars will appear more luminous than the most luminous unlensed quasar

  14. Gravitation

    International Nuclear Information System (INIS)

    Fennelly, A.J.

    1978-01-01

    Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models

  15. Energy dependence of the Cronin effect from nonlinear QCD evolution

    International Nuclear Information System (INIS)

    Albacete, Javier L.; Armesto, Nestor; Salgado, Carlos A.; Wiedemann, Urs Achim; Kovner, Alex

    2004-01-01

    The nonlinear evolution of dense partonic systems has been suggested as a novel physics mechanism relevant for the dynamics of p-A and A-A collisions at collider energies. Here we study to what extent the description of Cronin enhancement in the framework of this nonlinear evolution is consistent with the recent observation in √(s)=200 GeV d-Au collisions at the Relativistic Heavy Ion Collider. We solve the Balitsky-Kovchegov evolution equation numerically for several initial conditions encoding Cronin enhancement. We find that the properly normalized nuclear gluon distribution is suppressed at all momenta relative to that of a single nucleon. For the resulting spectrum of produced gluons in p-A and A-A collisions, the nonlinear QCD evolution is unable to generate a Cronin-type enhancement, and it quickly erases any such enhancement which may be present at lower energies

  16. Time, gravitation, and the Universe: the evolution of relativistic theories

    Energy Technology Data Exchange (ETDEWEB)

    Whitrow, G J

    1974-12-31

    An account is given of the historical development or the theory of relativity, particularly from Newton' s mechanics and Maxwell's electrodynamics, and with reference to the importance of the work of 19th century mathematicians such as Riemann, Klein and Neumann, leading to the work of Poincare, Minkowski, Lorentz and Einstein. The Michelson-Morley, Kennedy-Thorndike and IvesStillwell experiments are discussed, the use of the radar concept in relativity, and the discovery in 1965 of the universal black-body microwave radiation. Gravitation and cosmological problems are considered in historical review. (UK)

  17. Evolution of gravitational orbits in the expanding universe

    International Nuclear Information System (INIS)

    Sereno, Mauro; Jetzer, Philippe

    2007-01-01

    The gravitational action of the smooth energy-matter components filling in the universe can affect the orbit of a planetary system. Changes are related to the acceleration of the cosmological scale size R. In a universe with significant dark matter, a gravitational system expands or contracts according to the amount and equation of state of the dark energy. At present time, the Solar System, according to the ΛCDM scenario emerging from observational cosmology, should be expanding if we consider only the effect of the cosmological background. Its fate is determined by the equation of state of the dark energy alone. The mean motion and periastron precession of a planet are directly sensitive to Re/R, whereas variations with time in the semimajor axis and eccentricity are related to its time variation. Actual bounds on the cosmological deceleration parameters q 0 from accurate astrometric data of perihelion precession and changes in the third Kepler's law in the Solar System fall short of 10 orders of magnitude with respect to estimates from observational cosmology. Future radio-ranging measurements of outer planets could improve actual bounds by 5 orders of magnitude

  18. Note on the evolution of the gravitational potential in Rastall scalar field theories

    International Nuclear Information System (INIS)

    Fabris, J.C.; Hamani Daouda, M.; Piattella, O.F.

    2012-01-01

    We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the Newtonian gauge, is possible only for γ=1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows to consider the case γ≠1.

  19. H-function evolution of collisionless self-gravitating systems

    International Nuclear Information System (INIS)

    Soker, N.

    1990-01-01

    An expression is derived for the time derivative of a general H function in which the potential appears explicitly. As is well-known, starting at a specific time with a coarse-grained distribution function that is equal to the fine-grained distribution function, at short times later the H function is a nondecreasing function of time. In general, however, one cannot claim this for arbitrary time. The expression is applied to self-gravitating systems. The condition for having a nondecreasing H function for all coarse-grained distribution functions is that, on the average, the high-density regions contract and the low-density regions expand. An example of using the expression derived to calculate the derivative of the H function with respect to time is discussed. 9 refs

  20. Gravitational collapse and evolution of holographic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, R [Dipartimento di Fisica, Universita di Bologna and I.N.F.N., Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Germani, C [D.A.M.T.P., Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom)

    2006-03-01

    Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and 'anti-evaporates'. Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an 'anti-evaporation' and an 'evaporation' term.

  1. Initial evolution of nonlinear magnetic islands in high temperature plasmas

    International Nuclear Information System (INIS)

    Kotschenreuther, M.

    1988-06-01

    The evolution of nonlinear magnetic islands is computed in the kinetic collisionality regime called the semicollisional regime, which is appropriate to present fusion confinement devices. Realistic effects are included, such as the presence of small external field errors, radial electric fields, and omega. When present simultaneously, these effects can greatly change the stability of small amplitude nonlinear islands. Islands with Δ' > O can sometimes be prevented from growing to macroscopic size; it is also possible to produce moderate mode-number nonlinear instabilities in the plasma edge. Furthermore, island growth can be prevented by application of external fields with suitably chosen amplitude and frequency

  2. Nonlinear evolution equations for waves in random media

    International Nuclear Information System (INIS)

    Pelinovsky, E.; Talipova, T.

    1994-01-01

    The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs

  3. Shear flows induced by nonlinear evolution of double tearing modes

    International Nuclear Information System (INIS)

    Wang Zhengxiong; Kishimoto, Y.; Li, J. Q.; Wang Xiaogang; Dong, J. Q.

    2008-01-01

    Shear flows induced by nonlinear evolution of double tearing modes are investigated in a resistive magnetohydrodynamic model with slab geometry. It is found that intensive and thin poloidal shear flow layers are generated in the magnetic island region driven by coupled reconnection process at both rational surfaces. The structure of the flow layers keeps evolving after the merging of magnetic separatrices and forms a few narrow vortices along the open field lines in the final stage of magnetic reconnection. The effects of the distance between both rational surfaces and the initial magnetic shear on the nonlinear evolution of the plasma flows are also taken into consideration and the relevant mechanism is discussed

  4. Oscillating patterns in image processing and nonlinear evolution equations the fifteenth Dean Jacqueline B. Lewis memorial lectures

    CERN Document Server

    Meyer, Yves

    2001-01-01

    Image compression, the Navier-Stokes equations, and detection of gravitational waves are three seemingly unrelated scientific problems that, remarkably, can be studied from one perspective. The notion that unifies the three problems is that of "oscillating patterns", which are present in many natural images, help to explain nonlinear equations, and are pivotal in studying chirps and frequency-modulated signals. The first chapter of this book considers image processing, more precisely algorithms of image compression and denoising. This research is motivated in particular by the new standard for compression of still images known as JPEG-2000. The second chapter has new results on the Navier-Stokes and other nonlinear evolution equations. Frequency-modulated signals and their use in the detection of gravitational waves are covered in the final chapter. In the book, the author describes both what the oscillating patterns are and the mathematics necessary for their analysis. It turns out that this mathematics invo...

  5. Nonlinear second order evolution inclusions with noncoercive viscosity term

    Science.gov (United States)

    Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.

    2018-04-01

    In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that permit passing to the limit, we prove that the problem has a solution.

  6. Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Yu Jianping; Sun Yongli

    2008-01-01

    This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations

  7. Nonlinear evolution of the sausage instability

    International Nuclear Information System (INIS)

    Book, D.L.; Ott, E.; Lampe, M.

    1976-01-01

    Sausage instabilities of an incompressible, uniform, perfectly conducting Z pinch are studied in the nonlinear regime. In the long wavelength limit (analogous to the ''shallow water theory'' of hydrodynamics), a simplified set of universal fluid equations is derived, with no radial dependence, and with all parameters scaled out. Analytic and numerical solutions of these one-dimensional equations show that an initially sinusoidal perturbation grows into a ''spindle'' or cylindrical ''spike and bubble'' shape, with sharp radial maxima. In the short wavelength limit, the problem is shown to be mathematically equivalent to the planar semi-infinite Rayleigh--Taylor instability, which also grows into a spike-and-bubble shape. Since the spindle shape is common to both limits, it is concluded that it probably obtains in all cases. The results are in agreement with dense plasma focus experiments

  8. Nonlinear evolution of f(R) cosmologies. I. Methodology

    International Nuclear Information System (INIS)

    Oyaizu, Hiroaki

    2008-01-01

    We introduce the method and the implementation of a cosmological simulation of a class of metric-variation f(R) models that accelerate the cosmological expansion without a cosmological constant and evade solar-system bounds of small-field deviations to general relativity. Such simulations are shown to reduce to solving a nonlinear Poisson equation for the scalar degree of freedom introduced by the f(R) modifications. We detail the method to efficiently solve the nonlinear Poisson equation by using a Newton-Gauss-Seidel relaxation scheme coupled with the multigrid method to accelerate the convergence. The simulations are shown to satisfy tests comparing the simulated outcome to analytical solutions for simple situations, and the dynamics of the simulations are tested with orbital and Zeldovich collapse tests. Finally, we present several static and dynamical simulations using realistic cosmological parameters to highlight the differences between standard physics and f(R) physics. In general, we find that the f(R) modifications result in stronger gravitational attraction that enhances the dark matter power spectrum by ∼20% for large but observationally allowed f(R) modifications. A more detailed study of the nonlinear f(R) effects on the power spectrum are presented in a companion paper.

  9. Nonlinear evolution dynamics of holographic superconductor model with scalar self-interaction

    Science.gov (United States)

    Li, Ran; Zi, Tieguang; Zhang, Hongbao

    2018-04-01

    We investigate the holographic superconductor model that is described by the Einstein-Maxwell theory with the self-interaction term λ |Ψ |4 of complex scalar field in asymptotic anti-de Sitter (AdS) spacetime. Below critical temperature Tc, the planar Reissner-Nordström-AdS black hole is unstable due to the near-horizon scalar condensation instability. We study the full nonlinear development of this instability by numerically solving the gravitational dynamics in the asymptotic AdS spacetime, and observe a dynamical process from the perturbed Reissner-Nordström-AdS black hole to a hairy black hole when the initial black hole temperature T process is then holographically dual to the dynamical superconducting phase transition process in the boundary theory. Furthermore, we also study the effect of the scalar self-interaction on time evolution of superconducting condensate operator, event and apparent horizon areas of the final hairy black hole.

  10. Space and time evolution of two nonlinearly coupled variables

    International Nuclear Information System (INIS)

    Obayashi, H.; Totsuji, H.; Wilhelmsson, H.

    1976-12-01

    The system of two coupled linear differential equations are studied assuming that the coupling terms are proportional to the product of the dependent variables, representing e.g. intensities or populations. It is furthermore assumed that these variables experience different linear dissipation or growth. The derivations account for space as well as time dependence of the variables. It is found that certain particular solutions can be obtained to this system, whereas a full solution in space and time as an initial value problem is outside the scope of the present paper. The system has a nonlinear equilibrium solution for which the nonlinear coupling terms balance the terms of linear dissipation. The case of space and time evolution of a small perturbation of the nonlinear equilibrium state, given the initial one-dimensional spatial distribution of the perturbation, is also considered in some detail. (auth.)

  11. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    Science.gov (United States)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  12. Nonlinear evolution inclusions arising from phase change models

    Czech Academy of Sciences Publication Activity Database

    Colli, P.; Krejčí, Pavel; Rocca, E.; Sprekels, J.

    2007-01-01

    Roč. 57, č. 4 (2007), s. 1067-1098 ISSN 0011-4642 R&D Projects: GA ČR GA201/02/1058 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlinear and nonlocal evolution equations * Cahn-Hilliard type dynamics * phase transitions models Subject RIV: BA - General Mathematics Impact factor: 0.155, year: 2007 http://www.dml.cz/bitstream/handle/10338.dmlcz/128228/CzechMathJ_57-2007-4_2.pdf

  13. Nonlinear evolution of single spike in Richtmyer-Meshkov instability

    International Nuclear Information System (INIS)

    Fukuda, Y.; Nishihara, K.; Wouchuk, J.G.

    2000-01-01

    Nonlinear evolution of single spike structure and vortex in the Richtmyer-Meshkov instability is investigated with the use of a two-dimensional hydrodynamic code. It is shown that singularity appears in the vorticity left by transmitted and reflected shocks at a corrugated interface. This singularity results in opposite sign of vorticity along the interface that causes double spiral structure of the spike. (authors)

  14. Nonlinear evolution of Mack modes in a hypersonic boundary layer

    Science.gov (United States)

    Chokani, Ndaona

    2005-01-01

    In hypersonic boundary layer flows the nonlinear disturbance evolution occurs relatively slowly over a very long length scale and has a profound effect on boundary layer transition. In the case of low-level freestream disturbances and negligible surface roughness, the transition is due to the modal growth of exponentially growing Mack modes that are destabilized by wall cooling. Cross-bicoherence measurements, derived from hot-wire data acquired in a quiet hypersonic tunnel, are used to identify and quantify phase-locked, quadratic sum and difference interactions involving the Mack modes. In the early stages of the nonlinear disturbance evolution, cross-bicoherence measurements indicate that the energy exchange between the Mack mode and the mean flow first occurs to broaden the sidebands; this is immediately followed by a sum interaction of the Mack mode to generate the first harmonic. In the next stages of the nonlinear disturbance evolution, there is a difference interaction of the first harmonic, which is also thought to contribute to the mean flow distortion. This difference interaction, in the latter stages, is also accompanied by a difference interaction between Mack mode and first harmonic, and a sum interaction, which forces the second harmonic. Analysis using the digital complex demodulation technique, shows that the low-frequency, phase-locked interaction that is identified in the cross bicoherence when the Mack mode and first harmonic have large amplitudes, arises due to the amplitude modulation of Mack mode and first harmonic.

  15. An approach of community evolution based on gravitational relationship refactoring in dynamic networks

    International Nuclear Information System (INIS)

    Yin, Guisheng; Chi, Kuo; Dong, Yuxin; Dong, Hongbin

    2017-01-01

    In this paper, an approach of community evolution based on gravitational relationship refactoring between the nodes in a dynamic network is proposed, and it can be used to simulate the process of community evolution. A static community detection algorithm and a dynamic community evolution algorithm are included in the approach. At first, communities are initialized by constructing the core nodes chains, the nodes can be iteratively searched and divided into corresponding communities via the static community detection algorithm. For a dynamic network, an evolutionary process is divided into three phases, and behaviors of community evolution can be judged according to the changing situation of the core nodes chain in each community. Experiments show that the proposed approach can achieve accuracy and availability in the synthetic and real world networks. - Highlights: • The proposed approach considers both the static community detection and dynamic community evolution. • The approach of community evolution can identify the whole 6 common evolution events. • The proposed approach can judge the evolutionary events according to the variations of the core nodes chains.

  16. The presentation of explicit analytical solutions of a class of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Feng Jinshun; Guo Mingpu; Yuan Deyou

    2009-01-01

    In this paper, we introduce a function set Ω m . There is a conjecture that an arbitrary explicit travelling-wave analytical solution of a real constant coefficient nonlinear evolution equation is necessarily a linear (or nonlinear) combination of the product of some elements in Ω m . A widespread applicable approach for solving a class of nonlinear evolution equations is established. The new analytical solutions to two kinds of nonlinear evolution equations are described with the aid of the guess.

  17. Spectral transform and solvability of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Degasperis, A.

    1979-01-01

    These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)

  18. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    Science.gov (United States)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  19. Nonlinear evolution of magnetic islands in a two fluid torus

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.

    1996-01-01

    A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress

  20. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  1. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  2. The non-linear evolution of edge localized modes

    International Nuclear Information System (INIS)

    Wenninger, Ronald

    2013-01-01

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  3. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  4. Nonlinear evolutions of bosonic clouds around black holes

    International Nuclear Information System (INIS)

    Okawa, Hirotada

    2015-01-01

    Black holes are a laboratory not only for testing the theory of gravity but also for exploring the properties of fundamental fields. Fundamental fields around a supermassive black hole give rise to extremely long-lived quasi-bound states which can in principle extract the energy and angular momentum from the black hole. To investigate the final state of such a system, the backreaction onto the spacetime becomes important because of the nonlinearity of the Einstein equation. In this paper, we review the numerical method to trace the evolution of massive scalar fields in the vicinity of black holes, how such a system originates from scalar clouds initially in the absence of black holes or from the capture of scalar clouds by a black hole, and the evolution of quasi-bound states around both a non-rotating black hole and a rotating black hole including the backreaction. (paper)

  5. Symbolic computation of exact solutions for a nonlinear evolution equation

    International Nuclear Information System (INIS)

    Liu Yinping; Li Zhibin; Wang Kuncheng

    2007-01-01

    In this paper, by means of the Jacobi elliptic function method, exact double periodic wave solutions and solitary wave solutions of a nonlinear evolution equation are presented. It can be shown that not only the obtained solitary wave solutions have the property of loop-shaped, cusp-shaped and hump-shaped for different values of parameters, but also different types of double periodic wave solutions are possible, namely periodic loop-shaped wave solutions, periodic hump-shaped wave solutions or periodic cusp-shaped wave solutions. Furthermore, periodic loop-shaped wave solutions will be degenerated to loop-shaped solitary wave solutions for the same values of parameters. So do cusp-shaped solutions and hump-shaped solutions. All these solutions are new and first reported here

  6. Non-linear Evolution of the Transverse Instability of Plane-Envelope Solitons

    DEFF Research Database (Denmark)

    Janssen, Peter A. E. M.; Juul Rasmussen, Jens

    1983-01-01

    The nonlinear evolution of the transverse instability of plane envelope soliton solutions of the nonlinear Schrödinger equation is investigated. For the case where the spatial derivatives in the two‐dimensional nonlinear Schrödinger equation are elliptic a critical transverse wavenumber is found...

  7. Bounds on the possible evolution of the gravitational constant from cosmological type-Ia supernovae

    International Nuclear Information System (INIS)

    Gaztanaga, E.; Garcia-Berro, E.; Isern, J.; Bravo, E.; Dominguez, I.

    2002-01-01

    Recent high-redshift type-Ia supernovae results can be used to set new bounds on a possible variation of the gravitational constant G. If the local value of G at the space-time location of distant supernovae is different, it would change both the kinetic energy release and the amount of 56 Ni synthesized in the supernova outburst. Both effects are related to a change in the Chandrasekhar mass M Ch ∝G -3/2 . In addition, the integrated variation of G with time would also affect the cosmic evolution and therefore the luminosity distance relation. We show that the later effect in the magnitudes of type-Ia supernovae is typically several times smaller than the change produced by the corresponding variation of the Chandrasekhar mass. We investigate in a consistent way how a varying G could modify the Hubble diagram of type-Ia supernovae and how these results can be used to set upper bounds to a hypothetical variation of G. We find G/G 0 (less-or-similar sign)1.1 and G/G(less-or-similar sign)10 -11 yr -1 at redshifts z≅0.5. These new bounds extend the currently available constraints on the evolution of G all the way from solar and stellar distances to typical scales of Gpc/Gyr, i.e., by more than 15 orders of magnitude in time and distance

  8. Nonlinear evolution of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-01-01

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r 0 = 5.1; its expected value in a neutrino dominated universe is 4(Ωh) -1 (H 0 = 100h km s -1 Mpc -1 ). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Lyα absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with Ω<1

  9. A procedure to construct exact solutions of nonlinear evolution ...

    Indian Academy of Sciences (India)

    Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30. ... computer science, directly searching for solutions of nonlinear differential equations has become more and ... Right after this pioneer work, this ...

  10. Discovery of a New Fundamental Plane Dictating Galaxy Cluster Evolution from Gravitational Lensing

    Science.gov (United States)

    Fujita, Yutaka; Umetsu, Keiichi; Rasia, Elena; Meneghetti, Massimo; Donahue, Megan; Medezinski, Elinor; Okabe, Nobuhiro; Postman, Marc

    2018-04-01

    In cold dark-matter (CDM) cosmology, objects in the universe have grown under the effect of gravity of dark matter. The intracluster gas in a galaxy cluster was heated when the dark-matter halo formed through gravitational collapse. The potential energy of the gas was converted to thermal energy through this process. However, this process and the thermodynamic history of the gas have not been clearly characterized in connection with the formation and evolution of the internal structure of dark-matter halos. Here, we show that observational CLASH data of high-mass galaxy clusters lie on a plane in the three-dimensional logarithmic space of their characteristic radius r s , mass M s , and X-ray temperature T X with a very small orthogonal scatter. The tight correlation indicates that the gas temperature was determined at a specific cluster formation time, which is encoded in r s and M s . The plane is tilted with respect to T X ∝ M s /r s , which is the plane expected in the case of simplified virial equilibrium. We show that this tilt can be explained by a similarity solution, which indicates that clusters are not isolated but continuously growing through matter accretion from their outer environments. Numerical simulations reproduce the observed plane and its angle. This result holds independently of the gas physics implemented in the code, revealing the fundamental origin of this plane.

  11. SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA

    International Nuclear Information System (INIS)

    Antonini, Fabio; Perets, Hagai B.

    2012-01-01

    The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that ∼0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e ∼> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.

  12. STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Tan, Jonathan C.

    2009-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of three-dimensional adaptive mesh refinement numerical simulations that follow both the global evolution on scales of ∼20 kpc and resolve down to scales ∼ H ≥ 100 cm -3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ∼140 Myr a large fraction of the gas in the disk has fragmented into clouds with masses ∼10 6 M sun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi-steady-state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ∼1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.

  13. Underdevelopment’s gravitation

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-09-01

    Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.

  14. The effect of heat radiation on the evolution of the Tsallis entropy in self-gravitating systems and plasmas

    Science.gov (United States)

    Zheng, Yahui; Hao, Binzheng; Wen, Yaxiang; Liu, Xiaojun

    2018-01-01

    The evolution of the Tsallis entropy in self-gravitating systems and plasmas is studied in this letter, which is determined by two factors. The first factor is the change of the microstate number of systems, whose spontaneous increase leads to the entropy's increase, consistent with the standard text book. The second is the evolution of the nonextensive parameter, whose evolution rate to time is opposite to the one of entropy. We find the correlation between heat radiation and time evolution of the nonextensive parameter in the self-gravitating systems and plasmas. In such systems, the emission of radiation heat leads to the increase of the parameter while the absorption of radiation heat results in the decrease of this parameter. This is consistent with the inference derived from the Clausius' definition of entropy. In order to evolve to the current state, the solar corona should absorb a large amount of radiation heat, which might be originated from the energy released by solar flare. The magnetic connection probably plays a role in the conversion of energy. A correct dynamics theory of magnetic connection should explain how the energy conversion is achieved.

  15. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  16. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  17. Direct approach for solving nonlinear evolution and two-point ...

    Indian Academy of Sciences (India)

    2013-12-01

    Dec 1, 2013 ... 1School of Mathematics and Applied Statistics, University of Wollongong, Wollongong,. NSW 2522 ... the nonlinear phenomena as well as their further applications in the real-life situations, it is ... concentration gradient. Thus ...

  18. New travelling wave solutions for nonlinear stochastic evolution ...

    Indian Academy of Sciences (India)

    expansion method to look for travelling wave solutions of nonlinear partial differential equations. It is interesting to mention that, in this method the sign of the parameters can be used to judge the numbers and types of travelling wave solutions.

  19. Solitary wave solutions to nonlinear evolution equations in ...

    Indian Academy of Sciences (India)

    1Computer Engineering Technique Department, Al-Rafidain University College, Baghdad, ... applied to extract solutions are tan–cot method and functional variable approaches. ... Consider the nonlinear partial differential equation in the form.

  20. A general nonlinear evolution equation for irreversible conservative approach to stable equilibrium

    International Nuclear Information System (INIS)

    Beretta, G.P.

    1986-01-01

    This paper addresses a mathematical problem relevant to the question of nonequilibrium and irreversibility, namely, that of ''designing'' a general evolution equation capable of describing irreversible but conservative relaxtion towards equilibrium. The objective is to present an interesting mathematical solution to this design problem, namely, a new nonlinear evolution equation that satisfies a set of very stringent relevant requirements. Three different frameworks are defined from which the new equation could be adopted, with entirely different interpretations. Some useful well-known mathematics involving Gram determinants are presented and a nonlinear evolution equation is given which meets the stringent design specifications

  1. NONLINEAR EVOLUTION OF GLOBAL HYDRODYNAMIC SHALLOW-WATER INSTABILITY IN THE SOLAR TACHOCLINE

    International Nuclear Information System (INIS)

    Dikpati, Mausumi

    2012-01-01

    We present a fully nonlinear hydrodynamic 'shallow-water' model of the solar tachocline. The model consists of a global spherical shell of differentially rotating fluid, which has a deformable top, thus allowing motions in radial directions along with latitudinal and longitudinal directions. When the system is perturbed, in the course of its nonlinear evolution it can generate unstable low-frequency shallow-water shear modes from the differential rotation, high-frequency gravity waves, and their interactions. Radiative and overshoot tachoclines are characterized in this model by high and low effective gravity values, respectively. Building a semi-implicit spectral scheme containing very low numerical diffusion, we perform nonlinear evolution of shallow-water modes. Our first results show that (1) high-latitude jets or polar spin-up occurs due to nonlinear evolution of unstable hydrodynamic shallow-water disturbances and differential rotation, (2) Reynolds stresses in the disturbances together with changing shell thickness and meridional flow are responsible for the evolution of differential rotation, (3) disturbance energy primarily remains concentrated in the lowest longitudinal wavenumbers, (4) an oscillation in energy between perturbed and unperturbed states occurs due to evolution of these modes in a nearly dissipation-free system, and (5) disturbances are geostrophic, but occasional nonadjustment in geostrophic balance can occur, particularly in the case of high effective gravity, leading to generation of gravity waves. We also find that a linearly stable differential rotation profile remains nonlinearly stable.

  2. A variational approach to nonlinear evolution equations in optics

    Indian Academy of Sciences (India)

    optics. D ANDERSON, M LISAK and A BERNTSON£. Department of Electromagnetics, Chalmers University of Technology, SE-41296 Göteborg, Sweden. £Ericsson Telcom ... Many works in nonlinear optics have made efficient ...... focusing dynamics of a laser beam (or a Bose–Einstein condensate) in a parabolic external.

  3. NONLINEAR EVOLUTION OF BEAM-PLASMA INSTABILITY IN INHOMOGENEOUS MEDIUM

    International Nuclear Information System (INIS)

    Ziebell, L. F.; Pavan, J.; Yoon, P. H.; Gaelzer, R.

    2011-01-01

    The problem of electron-beam propagation in inhomogeneous solar wind is intimately related to the solar type II and/or type III radio bursts. Many scientists have addressed this issue in the past by means of quasi-linear theory, but in order to fully characterize the nonlinear dynamics, one must employ weak-turbulence theory. Available numerical solutions of the weak-turbulence theory either rely on only one nonlinear process (either decay or scattering), or when both nonlinear terms are included, the inhomogeneity effect is generally ignored. The present paper reports the full solution of weak-turbulence theory that includes both decay and scattering processes, and also incorporating the effects of density gradient. It is found that the quasi-linear effect sufficiently accounts for the primary Langmuir waves, but to properly characterize the back-scattered Langmuir wave, which is important for eventual radiation generation, it is found that both nonlinear decay and scattering processes make comparable contributions. Such a finding may be important in the quantitative analysis of the plasma emission process with application to solar type II and/or type III radio bursts.

  4. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  5. Soliton solutions of some nonlinear evolution equations with time ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...

  6. Jet-like long spike in nonlinear evolution of ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Ye Wenhua; He Xiantu; Wang Lifeng

    2010-01-01

    We report the formation of jet-like long spike in the nonlinear evolution of the ablative Rayleigh-Taylor instability (ARTI) experiments by numerical simulations. A preheating model κ(T) = κ SH [1 + f(T)], where κ SH is the Spitzer-Haerm (SH) electron conductivity and f(T) interprets the preheating tongue effect in the cold plasma ahead of the ablative front [Phys. Rev. E 65 (2002) 57401], is introduced in simulations. The simulation results of the nonlinear evolution of the ARTI are in general agreement with the experiment results. It is found that two factors, i.e., the suppressing of ablative Kelvin-Helmholtz instability (AKHI) and the heat flow cone in the spike tips, contribute to the formation of jet-like long spike in the nonlinear evolution of the ARTI. (authors)

  7. Exact solutions for nonlinear evolution equations using Exp-function method

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2008-01-01

    In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations

  8. Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2009-01-01

    In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.

  9. Long-term evolution and gravitational wave radiation of neutron stars with differential rotation induced by r-modes

    International Nuclear Information System (INIS)

    Yu Yunwei; Cao Xiaofeng; Zheng Xiaoping

    2009-01-01

    In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs. (research papers)

  10. Network evolution by nonlinear preferential rewiring of edges

    Science.gov (United States)

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  11. New generalized and improved (G′/G-expansion method for nonlinear evolution equations in mathematical physics

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2014-10-01

    Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.

  12. Nonlinear evolution of tearing and coalescence instability with free boundary conditions

    International Nuclear Information System (INIS)

    Malara, F.; Veltri, P.; Carbone, V.

    1990-01-01

    The nonlinear evolution of a reconnection instability in a plane current sheet is described. In particular, the appearance of coalescence instability was studied, which follows the formation of a chain of magnetic islands due to the tearing instability. In order to describe realistically this phonemenon, the time evolution of all the unstable modes which are present in the spectrum at the same time is considered. Moreover, this study allows to investigate the turbulent energy cascade which forms owing to the nonlinear coupling between such modes. (R.P.) 9 refs.; 6 figs

  13. Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation

    International Nuclear Information System (INIS)

    Zhaqilao,

    2013-01-01

    A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed

  14. Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn

    2013-12-06

    A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.

  15. Gravitational wave extraction based on Cauchy-characteristic extraction and characteristic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Babiuc, Maria [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Szilagyi, Bela [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Hawke, Ian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Zlochower, Yosef [Department of Physics and Astronomy, and Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2005-12-07

    We implement a code to find the gravitational news at future null infinity by using data from a Cauchy code as boundary data for a characteristic code. This technique of Cauchy-characteristic extraction (CCE) allows for the unambiguous extraction of gravitational waves from numerical simulations. We first test the technique on non-radiative spacetimes: Minkowski spacetime, perturbations of Minkowski spacetime and static black hole spacetimes in various gauges. We show the convergence and limitations of the algorithm and illustrate its success in cases where other wave extraction methods fail. We further apply our techniques to a standard radiative test case for wave extraction, a linearized Teukolsky wave, presenting our results in comparison to the Zerilli technique, and we argue for the advantages of our method of extraction.

  16. Solving nonlinear evolution equation system using two different methods

    Science.gov (United States)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  17. On nonlinear evolution variational inequalities involving variable exponent

    Directory of Open Access Journals (Sweden)

    Mingqi Xiang

    2013-12-01

    Full Text Available In this paper, we discuss a class of quasilinear evolution variational inequalities with variable exponent growth conditions in a generalized Sobolev space. We obtain the existence of weak solutions by means of penalty method. Moreover, we study the extinction properties of weak solutions to parabolic inequalities and provide a sufficient condition that makes the weak solutions vanish in a finite time. The existence of global attractors for weak solutions is also obtained via the theories of multi-valued semiflow.

  18. Power-induced evolution and increased dimensionality of nonlinear modes in reorientational soft matter.

    Science.gov (United States)

    Laudyn, Urszula A; Jung, Paweł S; Zegadło, Krzysztof B; Karpierz, Miroslaw A; Assanto, Gaetano

    2014-11-15

    We demonstrate the evolution of higher order one-dimensional guided modes into two-dimensional solitary waves in a reorientational medium. The observations, carried out at two different wavelengths in chiral nematic liquid crystals, are in good agreement with a simple nonlocal nonlinear model.

  19. Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma

    Science.gov (United States)

    Vasquez, Bernard J.

    1993-01-01

    The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p Schrodinger (DNLS) equation.

  20. Nonlinear wave evolution in VLASOV plasma: a lie-transform analysis

    International Nuclear Information System (INIS)

    Cary, J.R.

    1979-08-01

    Nonlinear wave evolution in Vlasov plasma is analyzed using the Lie transform, a powerful mathematical tool which is applicable to Hamiltonian systems. The first part of this thesis is an exposition of the Lie transform. Dewar's general Lie transform theory is explained and is used to construct Deprit's Lie transform perturbation technique. The basic theory is illustrated by simple examples

  1. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  2. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  3. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  4. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maccari, A.

    1997-01-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics

  5. Time evolution of absorption process in nonlinear metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Hatef, Ali [Department of Physics and Astronomy, University of Western Ontario, London (Canada)

    2009-05-15

    The time evolution of the absorption coefficient in metallic photonic crystals has been studied numerically. These crystals are made from metallic spheres which are arranged periodically in air. The refractive index of the metallic spheres depends on the plasma frequency. Probe and pump fields are applied to monitor the absorption process. Ensembles of three-level particles are embedded in the crystal. Nanoparticles are interacting with the metallic crystals via the electron-photon interaction. It is found that when the resonance states lie away from the band edges system goes to transparent state. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order

    International Nuclear Information System (INIS)

    Feng Qing-Hua; Zhang Yao-Ming; Meng Fan-Wei

    2011-01-01

    In this paper, based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method, we try to seek the exact solutions of the general Gardner equation and the general Benjamin—Bona—Mahoney equation. As a result, some traveling wave solutions for the two nonlinear equations are established successfully. Also we make a comparison between the two methods. It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems, and more general solutions are constructed by the Riccati sub-ODE method. (general)

  7. Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn's moon Enceladus

    Science.gov (United States)

    Yin, An; Pappalardo, Robert T.

    2015-11-01

    Despite a decade of intense research the mechanical origin of the tiger-stripe fractures (TSF) and their geologic relationship to the hosting South Polar Terrain (SPT) of Enceladus remain poorly understood. Here we show via systematic photo-geological mapping that the semi-squared SPT is bounded by right-slip, left-slip, extensional, and contractional zones on its four edges. Discrete deformation along the edges in turn accommodates translation of the SPT as a single sheet with its transport direction parallel to the regional topographic gradient. This parallel relationship implies that the gradient of gravitational potential energy drove the SPT motion. In map view, internal deformation of the SPT is expressed by distributed right-slip shear parallel to the SPT transport direction. The broad right-slip shear across the whole SPT was facilitated by left-slip bookshelf faulting along the parallel TSF. We suggest that the flow-like tectonics, to the first approximation across the SPT on Enceladus, is best explained by the occurrence of a transient thermal event, which allowed the release of gravitational potential energy via lateral viscous flow within the thermally weakened ice shell.

  8. Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2017-10-01

    Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train. The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.

  9. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  10. Traveling solitary wave solutions to evolution equations with nonlinear terms of any order

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2003-01-01

    Many physical phenomena in one- or higher-dimensional space can be described by nonlinear evolution equations, which can be reduced to ordinary differential equations such as the Lienard equation. Thus, to study those ordinary differential equations is of significance not only in mathematics itself, but also in physics. In this paper, a kind of explicit exact solutions to the Lienard equation is obtained. The applications of the solutions to the nonlinear RR-equation and the compound KdV-type equation are presented, which extend the results obtained in the previous literature

  11. The Relationship between Nonconservative Schemes and Initial Values of Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    林万涛

    2004-01-01

    For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given.Based on numerical tests, the relationship between the nonlinear computational stability and the construction of difference schemes, as well as the form of initial values, is further discussed. It is proved through both theoretical analysis and numerical tests that if the construction of difference schemes is definite, the computational stability of nonconservative schemes is decided by the form of initial values.

  12. Symplectic and Hamiltonian structures of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Dorfman, I.Y.

    1993-01-01

    A Hamiltonian structure on a finite-dimensional manifold can be introduced either by endowing it with a (pre)symplectic structure, or by describing the Poisson bracket with the help of a tensor with two upper indices named the Poisson structure. Under the assumption of nondegeneracy, the Poisson structure is nothing else than the inverse of the symplectic structure. Also in the degenerate case the distinction between the two approaches is almost insignificant, because both presymplectic and Poisson structures split into symplectic structures on leaves of appropriately chosen foliations. Hamiltonian structures that arise in the theory of evolution equations demonstrate something new in this respect: trying to operate in local terms, one is induced to develop both approaches independently. Hamiltonian operators, being the infinite-dimensional counterparts of Poisson structures, were the first to become the subject of investigations. A considerable period of time passed before the papers initiated research in the theory of symplectic operators, being the counterparts of presymplectic structures. In what follows, we focus on the main achievements in this field

  13. Dark Energy and Inflation from Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Leonid Marochnik

    2017-10-01

    Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.

  14. A linear evolution for non-linear dynamics and correlations in realistic nuclei

    International Nuclear Information System (INIS)

    Levin, E.; Lublinsky, M.

    2004-01-01

    A new approach to high energy evolution based on a linear equation for QCD generating functional is developed. This approach opens a possibility for systematic study of correlations inside targets, and, in particular, inside realistic nuclei. Our results are presented as three new equations. The first one is a linear equation for QCD generating functional (and for scattering amplitude) that sums the 'fan' diagrams. For the amplitude this equation is equivalent to the non-linear Balitsky-Kovchegov equation. The second equation is a generalization of the Balitsky-Kovchegov non-linear equation to interactions with realistic nuclei. It includes a new correlation parameter which incorporates, in a model-dependent way, correlations inside the nuclei. The third equation is a non-linear equation for QCD generating functional (and for scattering amplitude) that in addition to the 'fan' diagrams sums the Glauber-Mueller multiple rescatterings

  15. Analysis and classification of nonlinear dispersive evolution equations in the potential representation

    International Nuclear Information System (INIS)

    Eichmann, U.A.; Draayer, J.P.; Ludu, A.

    2002-01-01

    A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class. (author)

  16. Evolution of nonlinear perturbations inside Einstein-Yang-Mills black holes

    International Nuclear Information System (INIS)

    Donets, E.E.; Tentyukov, M.N.; Tsulaya, M.M.

    1998-01-01

    We present our results on numerical study of evolution of nonlinear perturbations inside spherically symmetric black holes in the SU(2) Einstein-Yang-Mills (EYM) theory. Recent developments demonstrate a new type of the behaviour of the metric for EYM black hole interiors; the generic metric exhibits an infinitely oscillating approach to the singularity, which is a spacelike but not of the mixmaster type. The evolution of various types of spherically symmetric perturbations, propagating from the internal vicinity of the external horizon towards the singularity is investigated in a self-consistent way using an adaptive numerical algorithm. The obtained results give strong numerical evidence in favor of nonlinear stability of the generic EYM black hole interiors. Alternatively, the EYM black hole interiors of S (schwarzschild)-type, which form only a zero measure subset in the space of all internal solutions are found to be unstable and transform to the generic type as perturbations are developed

  17. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves

    DEFF Research Database (Denmark)

    Eldeberky, Y.; Madsen, Per A.

    1999-01-01

    and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement......This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary...... is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic...

  18. Three-dimensional, nonlinear evolution of the Rayleigh--Taylor instability of a thin layer

    International Nuclear Information System (INIS)

    Manheimer, W.; Colombant, D.; Ott, E.

    1984-01-01

    A numerical simulation scheme is developed to examine the nonlinear evolution of the Rayleigh--Taylor instability of a thin sheet in three dimensions. It is shown that the erosion of mass at the top of the bubble is approximately as described by two-dimensional simulations. However, mass is lost into spikes more slowly in three-dimensional than in two-dimensional simulations

  19. Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes

    Science.gov (United States)

    Xiong, G. Z.; Wang, L.; Li, X. Q.; Liu, H. F.; Tang, C. J.; Huang, J.; Zhang, X.; Wang, X. Q.

    2017-06-01

    The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet-Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs.

  20. Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes

    International Nuclear Information System (INIS)

    Xiong, G Z; Liu, H F; Huang, J; Wang, X Q; Wang, L; Li, X Q; Tang, C J; Zhang, X

    2017-01-01

    The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet–Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs. (paper)

  1. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations

    Science.gov (United States)

    Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.

    2018-01-01

    We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.

  2. Eigenvalue problem and nonlinear evolution of kink modes in a toroidal plasma

    International Nuclear Information System (INIS)

    Ogino, T.; Takeda, S.; Sanuki, H.; Kamimura, T.

    1979-04-01

    The internal kink modes of a cylindrical plasma are investigated by a linear eigen value problem and their nonlinear evolution is studied by 3-dimensional MHD simulation based on the rectangular column model under the fixed boundary condition. The growth rates in two cases, namely uniform and diffused current profiles are analyzed in detail, which agree with the analytical estimation by Shafranov. The time evolution of the m = 1 mode showed that q > 1 is satisfied at the relaxation time (q safety factor), a stable configuration like a horse shoe (a new equilibrium) was formed. Also, the time evolution of the pressure p for the m = 2 mode showed that a stable configuration like a pair of anchors was formed. (author)

  3. Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.

    Science.gov (United States)

    Avilés, Leticia; Abbot, Patrick; Cutter, Asher D

    2002-02-01

    Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.

  4. Redox Evolution via Gravitational Differentiation on Low-mass Planets: Implications for Abiotic Oxygen, Water Loss, and Habitability

    Science.gov (United States)

    Wordsworth, R. D.; Schaefer, L. K.; Fischer, R. A.

    2018-05-01

    The oxidation of rocky planet surfaces and atmospheres, which arises from the twin forces of stellar nucleosynthesis and gravitational differentiation, is a universal process of key importance to habitability and exoplanet biosignature detection. Here we take a generalized approach to this phenomenon. Using a single parameter to describe the redox state, we model the evolution of terrestrial planets around nearby M stars and the Sun. Our model includes atmospheric photochemistry, diffusion and escape, line-by-line climate calculations, and interior thermodynamics and chemistry. In most cases, we find abiotic atmospheric {{{O}}}2 buildup around M stars during the pre-main-sequence phase to be much less than calculated previously, because the planet’s magma ocean absorbs most oxygen liberated from {{{H}}}2{{O}} photolysis. However, loss of noncondensing atmospheric gases after the mantle solidifies remains a significant potential route to abiotic atmospheric {{{O}}}2 subsequently. In all cases, we predict that exoplanets that receive lower stellar fluxes, such as LHS1140b and TRAPPIST-1f and g, have the lowest probability of abiotic {{{O}}}2 buildup and hence may be the most interesting targets for future searches for biogenic {{{O}}}2. Key remaining uncertainties can be minimized in future by comparing our predictions for the atmospheres of hot, sterile exoplanets such as GJ1132b and TRAPPIST-1b and c with observations.

  5. Evolution of an electron-positron plasma produced by induced gravitational collapse in binary-driven hypernovae

    Directory of Open Access Journals (Sweden)

    Melon Fuksman J. D.

    2018-01-01

    Full Text Available The binary-driven hypernova (BdHN model has been introduced in the past years, to explain a subfamily of gamma-ray bursts (GRBs with energies Eiso ≥ 1052 erg associated with type Ic supernovae. Such BdHNe have as progenitor a tight binary system composed of a carbon-oxigen (CO core and a neutron star undergoing an induced gravitational collapse to a black hole, triggered by the CO core explosion as a supernova (SN. This collapse produces an optically-thick e+e- plasma, which expands and impacts onto the SN ejecta. This process is here considered as a candidate for the production of X-ray flares, which are frequently observed following the prompt emission of GRBs. In this work we follow the evolution of the e+e- plasma as it interacts with the SN ejecta, by solving the equations of relativistic hydrodynamics numerically. Our results are compatible with the Lorentz factors estimated for the sources that produce the flares, of typically Γ ≲ 4.

  6. Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schroedinger's equation, and hydrodynamic organization of near-molecular-scale vorticity

    International Nuclear Information System (INIS)

    Keanini, R.G.

    2011-01-01

    Research highlights: → Systematic approach for physically probing nonlinear and random evolution problems. → Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. → Organization of near-molecular scale vorticity mediated by hydrodynamic modes. → Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the

  7. Nonlinear evolution of the mode structure of ELMs in realistic ASDEX Upgrade geometry

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Isabel; Hoelzl, Matthias; Lackner, Karl; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2013-07-01

    Edge-localized modes (ELMs) are edge instabilities in H-mode plasmas, which eject particles and energy. The suitability of the H-mode for future fusion reactors depends crucially on the exact ELM dynamics as they can damage plasma facing components if too large. We have simulated ELMs in ASDEX Upgrade geometry using the nonlinear MHD code JOREK. Emphasis was put on the mode structure evolution in the early ELM phase which is characterized by the exponential growth of the unstable toroidal Fourier harmonics followed by a phase of saturation. In the linear phase, toroidal harmonics grow independently, whereas at larger amplitudes, the nonlinear interaction between the toroidal harmonics influences their growth and structure. Prior to mode saturation, the evolution of the mode structure can be reproduced well by a simple quadratic mode-interaction model, which yields a possible explanation for the strong n=1 component of type-I ELMs observed in ASDEX Upgrade. In the linear phase of the simulations, intermediate toroidal mode numbers (n 6-14) are most unstable as predicted by the peeling-ballooning model. But non-linearly, the n=1 component becomes important due to an energy transfer from pairs of linearly dominant toroidal harmonics with neighboring mode numbers to the n=1. The latter thereby changes its spatial structure.

  8. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  9. The spectral transform as a tool for solving nonlinear discrete evolution equations

    International Nuclear Information System (INIS)

    Levi, D.

    1979-01-01

    In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)

  10. On the evolution of the density probability density function in strongly self-gravitating systems

    International Nuclear Information System (INIS)

    Girichidis, Philipp; Konstandin, Lukas; Klessen, Ralf S.; Whitworth, Anthony P.

    2014-01-01

    The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form P V (ρ)∝ρ –1.54 for the (volume-weighted) PDF and P M (ρ)∝ρ –0.54 for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.

  11. Observations of linear and nonlinear processes in the foreshock wave evolution

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2007-07-01

    Full Text Available Waves in the foreshock region are studied on the basis of a hypothesis that the linear process first excites the waves and further wave-wave nonlinearities distribute scatter the energy of the primary waves into a number of daughter waves. To examine this wave evolution scenario, the dispersion relations, the wave number spectra of the magnetic field energy, and the dimensionless cross helicity are determined from the observations made by the four Cluster spacecraft. The results confirm that the linear process is the ion/ion right-hand resonant instability, but the wave-wave interactions are not clearly identified. We discuss various reasons why the test for the wave-wave nonlinearities fails, and conclude that the higher order statistics would provide a direct evidence for the wave coupling phenomena.

  12. Some applications of nonlinear diffusion to processing of dynamic evolution images

    International Nuclear Information System (INIS)

    Goltsov, Alexey N.; Nikishov, Sergey A.

    1997-01-01

    Model nonlinear diffusion equation with the most simple Landau-Ginzburg free energy functional was applied to locate boundaries between meaningful regions of low-level images. The method is oriented to processing images of objects that are a result of dynamic evolution: images of different organs and tissues obtained by radiography and NMR methods, electron microscope images of morphogenesis fields, etc. In the methods developed by us, parameters of the nonlinear diffusion model are chosen on the basis of the preliminary treatment of the images. The parameters of the Landau-Ginzburg free energy functional are extracted from the structure factor of the images. Owing to such a choice of the model parameters, the image to be processed is located in the vicinity of the steady-state of the diffusion equation. The suggested method allows one to separate distinct structures having specific space characteristics from the whole image. The method was applied to processing X-ray images of the lung

  13. Nonlinear evolution of single spike structure and vortex in Richtmeyer-Meshkov instability

    International Nuclear Information System (INIS)

    Fukuda, Yuko O.; Nishihara, Katsunobu; Okamoto, Masayo; Nagatomo, Hideo; Matsuoka, Chihiro; Ishizaki, Ryuichi; Sakagami, Hitoshi

    1999-01-01

    Nonlinear evolution of single spike structure and vortex in the Richtmyer-Meshkov instability is investigated for two dimensional case, and axial symmetric and non axial symmetric cases with the use of a three-dimensional hydrodynamic code. It is shown that singularity appears in the vorticity left by transmitted and reflected shocks at a corrugated interface. This singularity results in opposite sign of vorticity along the interface that causes double spiral structure of the spike. Difference of nonlinear growth rate and double spiral structure among three cases is also discussed by visualization of simulation data. In a case that there is no slip-off of initial spike axis, vorticity ring is relatively stable, but phase rotation occurs. (author)

  14. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  15. Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions

    Directory of Open Access Journals (Sweden)

    Jimoh O. Pedro

    2013-01-01

    Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.

  16. The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Liu Chunping; Liu Xiaoping

    2004-01-01

    First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions

  17. Modelling of the nonlinear evolution of 2D waves and vortices in plasmas

    International Nuclear Information System (INIS)

    Taranov, V.B.

    1998-01-01

    In this report an antisymmetric lattice formed by standing waves of vorticity is considered. For small but finite amplitudes multiple-time-scale analysis is performed, higher harmonics generation and frequency shifts are evaluated analytically and critical amplitude for perturbation theory is determined. For amplitudes bigger than critical numerical simulations are carried out taking into account vortex nonlinearity, drift and dispersion effects. Numerical code is developed which allows to study long-term evolution of two-dimensional spatially periodic waves and vortex structures

  18. A class of periodic solutions of nonlinear wave and evolution equations

    International Nuclear Information System (INIS)

    Kashcheev, V.N.

    1987-01-01

    For the case of 1+1 dimensions a new heuristic method is proposed for deriving dels-similar solutions to nonlinear autonomous differential equations. If the differential function f is a polynomial, then: (i) in the case of even derivatives in f the solution is the ratio of two polynomials from the Weierstrass elliptic functions; (ii) in the case of any order derivatives in f the solution is the ratio of two polynomials from simple exponents. Numerous examples are given constructing such periodic solutions to the wave and evolution equations

  19. Linear vs non-linear QCD evolution: from HERA data to LHC phenomenology

    CERN Document Server

    Albacete, J L; Quiroga-Arias, P; Rojo, J

    2012-01-01

    The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. We compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.

  20. The gravitational-wave memory from eccentric binaries

    International Nuclear Information System (INIS)

    Favata, Marc

    2011-01-01

    The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitational-waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short ''scattering'' time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large ''memory jumps'' in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.

  1. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  2. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  3. A novel algebraic procedure for solving non-linear evolution equations of higher order

    International Nuclear Information System (INIS)

    Huber, Alfred

    2007-01-01

    We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

  4. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method

    International Nuclear Information System (INIS)

    Fan Engui

    2002-01-01

    A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)

  5. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    Science.gov (United States)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  6. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2017-11-01

    Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines

  7. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community

  8. AdS and stabilized extra dimensions in multi-dimensional gravitational models with nonlinear scalar curvature terms R-1 and R4

    International Nuclear Information System (INIS)

    Guenther, Uwe; Zhuk, Alexander; Bezerra, Valdir B; Romero, Carlos

    2005-01-01

    We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R -1 and R 4 . It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R -1 model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R 4 model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D 4 model

  9. A question of separation: disentangling tracer bias and gravitational non-linearity with counts-in-cells statistics

    Science.gov (United States)

    Uhlemann, C.; Feix, M.; Codis, S.; Pichon, C.; Bernardeau, F.; L'Huillier, B.; Kim, J.; Hong, S. E.; Laigle, C.; Park, C.; Shin, J.; Pogosyan, D.

    2018-02-01

    Starting from a very accurate model for density-in-cells statistics of dark matter based on large deviation theory, a bias model for the tracer density in spheres is formulated. It adopts a mean bias relation based on a quadratic bias model to relate the log-densities of dark matter to those of mass-weighted dark haloes in real and redshift space. The validity of the parametrized bias model is established using a parametrization-independent extraction of the bias function. This average bias model is then combined with the dark matter PDF, neglecting any scatter around it: it nevertheless yields an excellent model for densities-in-cells statistics of mass tracers that is parametrized in terms of the underlying dark matter variance and three bias parameters. The procedure is validated on measurements of both the one- and two-point statistics of subhalo densities in the state-of-the-art Horizon Run 4 simulation showing excellent agreement for measured dark matter variance and bias parameters. Finally, it is demonstrated that this formalism allows for a joint estimation of the non-linear dark matter variance and the bias parameters using solely the statistics of subhaloes. Having verified that galaxy counts in hydrodynamical simulations sampled on a scale of 10 Mpc h-1 closely resemble those of subhaloes, this work provides important steps towards making theoretical predictions for density-in-cells statistics applicable to upcoming galaxy surveys like Euclid or WFIRST.

  10. Gravitational radiation reaction

    International Nuclear Information System (INIS)

    Tanaka, Takahiro

    2006-01-01

    We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)

  11. Response and reliability analysis of nonlinear uncertain dynamical structures by the probability density evolution method

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri

    2016-01-01

    The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...

  12. Identification of time-varying nonlinear systems using differential evolution algorithm

    DEFF Research Database (Denmark)

    Perisic, Nevena; Green, Peter L; Worden, Keith

    2013-01-01

    (DE) algorithm for the identification of time-varying systems. DE is an evolutionary optimisation method developed to perform direct search in a continuous space without requiring any derivative estimation. DE is modified so that the objective function changes with time to account for the continuing......, thus identification of time-varying systems with nonlinearities can be a very challenging task. In order to avoid conventional least squares and gradient identification methods which require uni-modal and double differentiable objective functions, this work proposes a modified differential evolution...... inclusion of new data within an error metric. This paper presents results of identification of a time-varying SDOF system with Coulomb friction using simulated noise-free and noisy data for the case of time-varying friction coefficient, stiffness and damping. The obtained results are promising and the focus...

  13. A Simple Approach to Derive a Novel N-Soliton Solution for a (3+1)-Dimensional Nonlinear Evolution Equation

    International Nuclear Information System (INIS)

    Wu Jianping

    2010-01-01

    Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica. (general)

  14. The relation between the kink-type solution and the kink-bell-type solution of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Liu Chunping

    2003-01-01

    Using a direct algebraic method, more new exact solutions of the Kolmogorov-Petrovskii-Piskunov equation are presented by formula form. Then a theorem concerning the relation between the kink-type solution and the kink-bell-type solution of nonlinear evolution equations is given. Finally, the applications of the theorem to several well-known equations in physics are also discussed

  15. AdS and stabilized extra dimensions in multi-dimensional gravitational models with nonlinear scalar curvature terms R{sup -1} and R{sup 4}

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Uwe [Gravitationsprojekt, Mathematische Physik I, Institut fuer Mathematik, Universitaet Potsdam, Am Neuen Palais 10, PF 601553, D-14415 Potsdam (Germany); Zhuk, Alexander [Department of Physics, University of Odessa, 2 Dvoryanskaya St, Odessa 65100 (Ukraine); Bezerra, Valdir B [Departamento de Fisica, Universidade Federal de ParaIba C Postal 5008, Joao Pessoa, PB, 58059-970 (Brazil); Romero, Carlos [Departamento de Fisica, Universidade Federal de ParaIba C Postal 5008, Joao Pessoa, PB, 58059-970 (Brazil)

    2005-08-21

    We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R{sup -1} and R{sup 4}. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R{sup -1} model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R{sup 4} model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D < 8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility of inflation are discussed for the R{sup 4} model.

  16. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  17. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  18. Quantum Emulation of Gravitational Waves.

    Science.gov (United States)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  19. Inflationary Regime of the Evolution of the Scale Factor in the Relativistic Theory of Gravitation with a Graviton Mass

    Science.gov (United States)

    Lasukov, V. V.; Lasukova, T. V.; Abdrashitova, M. O.

    2018-05-01

    It is shown that a cosmological medium consisting of a kinetic and a potential component, at the outset of its evolution is vacuum-like and at the end of its evolution asymptotically becomes the quintessence.

  20. GRAVITATIONAL MEMORY IN BINARY BLACK HOLE MERGERS

    International Nuclear Information System (INIS)

    Pollney, Denis; Reisswig, Christian

    2011-01-01

    In addition to the dominant oscillatory gravitational wave signals produced during binary inspirals, a non-oscillatory component arises from the nonlinear 'memory' effect, sourced by the emitted gravitational radiation. The memory grows significantly during the late-inspiral and merger, modifying the signal by an almost step-function profile, and making it difficult to model by approximate methods. We use numerical evolutions of binary black holes (BHs) to evaluate the nonlinear memory during late-inspiral, merger, and ringdown. We identify two main components of the signal: the monotonically growing portion corresponding to the memory, and an oscillatory part which sets in roughly at the time of merger and is due to the BH ringdown. Counterintuitively, the ringdown is most prominent for models with the lowest total spin. Thus, the case of maximally spinning BHs anti-aligned to the orbital angular momentum exhibits the highest signal-to-noise ratio (S/N) for interferometric detectors. The largest memory offset, however, occurs for highly spinning BHs, with an estimated value of h tot 20 ≅ 0.24 in the maximally spinning case. These results are central to determining the detectability of nonlinear memory through pulsar timing array measurements.

  1. Curve Evolution in Subspaces and Exploring the Metameric Class of Histogram of Gradient Orientation based Features using Nonlinear Projection Methods

    DEFF Research Database (Denmark)

    Tatu, Aditya Jayant

    This thesis deals with two unrelated issues, restricting curve evolution to subspaces and computing image patches in the equivalence class of Histogram of Gradient orientation based features using nonlinear projection methods. Curve evolution is a well known method used in various applications like...... tracking interfaces, active contour based segmentation methods and others. It can also be used to study shape spaces, as deforming a shape can be thought of as evolving its boundary curve. During curve evolution a curve traces out a path in the infinite dimensional space of curves. Due to application...... specific requirements like shape priors or a given data model, and due to limitations of the computer, the computed curve evolution forms a path in some finite dimensional subspace of the space of curves. We give methods to restrict the curve evolution to a finite dimensional linear or implicitly defined...

  2. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  3. PREFACE: X Mexican School on Gravitation and Mathematical Physics: ''Reaching a Century: Classical and Modified General Relativity's Attempts to explain de evolution of the Universe''

    Science.gov (United States)

    Bárcenas, R. B.; Hernández, H. H. H.; Sabido, M.

    2015-11-01

    The collection of papers in this volume was presented during the X Mexican School on Gravitation and Mathematical Physics, which was held in Playa del Carmen, Quintana Roo, México, December 1-5, 2014. The Mexican School on Gravitation and Mathematical Physics is a series of conferences sponsored by the Mexican Physical Society that started in 1994 with the purposes of discussing and exchanging current ideas in gravitational physics. Each Mexican School has been devoted to a particular subject, and these have included supergravity, branes, black holes, the early Universe, observational cosmology, quantum gravity and numerical relativity. In this ocasion the theme of the school was Reaching a Century: Classical and Modified General Relativity's Attempts to explain the evolution of the Universe, which focused on the discussion of classical and modified aspects of general relativity. Following our previous Schools, world leaders in the field were invited to give courses and plenary lectures. More specialized talks were also presented in parallel sessions, and some of them have been included in these proceedings. The contributions in this volume have been reviewed and represent some of the courses, plenary talks and contributed talks presented during our X School. We are indebted to the contributors of these proceedings as well as to the rest of the participants in our Mexican School all for making of it a complete success. As for financial support we should mention the Mexican National Science and Technology Council (CONACyT), the Royal Society of London (UK), the Mexican Physical Society (SMF), as well as several Institutions including: Centro de Investigación y Estudios Avanzados (CINVESTAV), Universidad Autónoma Metropolitana Iztapalapa (UAM-I), Universidad de Guanajuato (UG), and Universidad Nacional Autónoma de México (UNAM).

  4. Geostrophic tripolar vortices in a two-layer fluid: Linear stability and nonlinear evolution of equilibria

    Science.gov (United States)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2017-03-01

    We investigate equilibrium solutions for tripolar vortices in a two-layer quasi-geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-signed vortex lies in the other layer. The families of equilibria can be spanned by the distance (called separation) between the two like-signed vortices. Two equilibrium configurations are possible when the opposite-signed vortex lies between the two other vortices. In the first configuration (called ordinary roundabout), the opposite signed vortex is equidistant to the two other vortices. In the second configuration (eccentric roundabouts), the distances are unequal. We determine the equilibria numerically and describe their characteristics for various internal deformation radii. The two branches of equilibria can co-exist and intersect for small deformation radii. Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric roundabouts do, thus inducing stronger vortex interactions. However, for larger deformation radii, eccentric roundabouts can also be unstable. Then, the two branches of equilibria do not cross. The branch of eccentric roundabouts only exists for large separations. Near the end of the branch of eccentric roundabouts (at the smallest separation), one of the like-signed vortices exhibits a sharp inner corner where instabilities can be triggered. Finally, we investigate the nonlinear evolution of a few selected cases of tripoles.

  5. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  6. Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.; Ye, Huanchun.

    1992-03-01

    Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ''explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles

  7. Nonlinear evolution-type equations and their exact solutions using inverse variational methods

    International Nuclear Information System (INIS)

    Kara, A H; Khalique, C M

    2005-01-01

    We present the role of invariants in obtaining exact solutions of differential equations. Firstly, conserved vectors of a partial differential equation (p.d.e.) allow us to obtain reduced forms of the p.d.e. for which some of the Lie point symmetries (in vector field form) are easily concluded and, therefore, provide a mechanism for further reduction. Secondly, invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. In this latter case, the reductions carry all the usual advantages regarding Noether symmetries and double reductions. The examples we consider are nonlinear evolution-type equations such as the Korteweg-deVries equation, but a detailed analysis is made on the Fisher equation (which describes reaction-diffusion waves in biology, inter alia). Other diffusion-type equations lend themselves well to the method we describe (e.g., the Fitzhugh Nagumo equation, which is briefly discussed). Some aspects of Painleve properties are also suggested

  8. Influence of helical external driven current on nonlinear resistive tearing mode evolution and saturation in tokamaks

    Science.gov (United States)

    Zhang, W.; Wang, S.; Ma, Z. W.

    2017-06-01

    The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.

  9. Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation

    Directory of Open Access Journals (Sweden)

    V. O. Vakhnenko

    2016-01-01

    Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.

  10. The non-linear evolution of magnetic flux ropes: 3. effects of dissipation

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    1997-02-01

    Full Text Available We study the evolution (expansion or oscillation of cylindrically symmetric magnetic flux ropes when the energy dissipation is due to a drag force proportional to the product of the plasma density and the radial speed of expansion. The problem is reduced to a single, second-order, ordinary differential equation for a damped, non-linear oscillator. Motivated by recent work on the interplanetary medium and the solar corona, we consider polytropes whose index, γ, may be less than unity. Numerical analysis shows that, in contrast to the small-amplitude case, large-amplitude oscillations are quasi-periodic with frequencies substantially higher than those of undamped oscillators. The asymptotic behaviour described by the momentum equation is determined by a balance between the drag force and the gradient of the gas pressure, leading to a velocity of expansion of the flux rope which may be expressed as (1/2γr/t, where r is the radial coordinate and t is the time. In the absence of a drag force, we found in earlier work that the evolution depends both on the polytropic index and on a dimensionless parameter, κ. Parameter κ was found to have a critical value above which oscillations are impossible, and below which they can exist only for energies less than a certain energy threshold. In the presence of a drag force, the concept of a critical κ remains valid, and when κ is above critical, the oscillatory mode disappears altogether. Furthermore, critical κ remains dependent only on γ and is, in particular, independent of the normalized drag coefficient, ν*. Below critical κ, however, the energy required for the flux rope to escape to infinity depends not only on κ (as in the conservative force case but also on ν*. This work indicates how under certain conditions a small change in the viscous drag coefficient or the initial energy may alter the evolution drastically. It is thus important to determine ν* and κ from observations.

  11. Propagation of waves in a gravitating and rotating anisotropic heat ...

    African Journals Online (AJOL)

    Bheema

    astrophysical plasmas. These plasmas are usually self-gravitating, rotating and embedded in a .... gravitational potential, and P denotes the anisotropic pressure tensor defined as. ൌ ୄ ൅ ሺ צǦ ..... Nonlinear Processes Geophysics, 11 :731.

  12. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  13. The gravitational-wave memory effect

    International Nuclear Information System (INIS)

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.

  14. Nonlinear evolution in Quantum Chromodynamics and its application to neutrinos production at very high energy

    International Nuclear Information System (INIS)

    Stasto, A.

    2004-09-01

    This work is a study of the phenomenon of partonic saturation in the high energy collisions of elementary particles. We have observed the geometric scaling property of the deep inelastic electron-proton cross section which can be interpreted as a signal of partonic saturation. This scaling means that the cross section depends only on one scaling variable τ ≅ Q 2 /Q 2 s (x) which is a ratio of the photon virtuality Q 2 and the saturation scale Q 2 s (x) which depends power-like on Bjorken x. The properties of the solution to the linear DGLAP evolution equations have been investigated in the presence of the scaling initial conditions. These conditions are given on the critical line defined as Q 0 =Q 4 s (x). In the fixed strong coupling case scaling is preserved by the DGLAP evolution. When strong coupling is running, geometric scaling is violated because of presence of additional scale Λ QCD . The coefficient responsible for geometric scaling violations has been extracted, which vanishes for very small values of Bjorken x such that Q 2 4 s (x)=Λ 2 QCD . We have analysed numerically nonlinear Balitsky-Kovchegov equation, which takes into account diagrams responsible for the gluon recombination and describes partonic saturation. The solution to this equation in the case of the infinitely large target has been obtained (1 + 1 dimensions). In the linear case, the solution is plagued by the strong diffusion of the transverse momenta. It turns out that in the nonlinear equation the diffusion to infrared region is strongly suppressed due to the presence of the saturation scale Q s (x). We have also investigated the impact of the nonleading in x effects in this equation such as running coupling and the consistency constraint. In the case of solution to the Balitsky-Kovchegov equation in 3+1 dimensions the power behaviour in impact parameter is present, even if the initial conditions are exponentially falling. This feature causes violation of the Froissart-Martin bound

  15. Evolution of almost circular orbits of satellites under the action of noncentral gravitational field of the Earth and lunisolar perturbations

    Science.gov (United States)

    Dulliev, A. M.

    2011-02-01

    Based on the results of paper [1] by G.V. Mozhaev, joint perturbations produced by nonsphericity of the Earth and by attraction of the Moon and the Sun are investigated using the method of averaging. Arbitrary number of spherical harmonics was taken into account in the force function of the Earth’s gravitational filed, and only the principal term was retained in the perturbing function of the Sun. In the perturbing function of the Moon two parallactic terms were considered in addition to the dominant term. The flight altitude was chosen in such a way that perturbations produced by the Sun and Moon would have the second order of smallness relative to the polar oblateness of the Earth. As a result, the formulas for calculation of satellite coordinates are derived that give a high precision on long time intervals.

  16. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell–Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    International Nuclear Information System (INIS)

    Lorin, E; Bandrauk, A D; Lytova, M; Memarian, A

    2015-01-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser–molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3–9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects. (paper)

  17. Dissipative Evolution of Unequal-mass Binary–single Interactions and Its Relevance to Gravitational-wave Detections

    Science.gov (United States)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2018-02-01

    We present a study of binary–single interactions with energy-loss terms such as tidal dissipation and gravitational-wave (GW) emission added to the equation of motion. The inclusion of such terms leads to the formation of compact binaries that form during the three-body interaction through two-body captures. These binaries predominantly merge relatively promptly at high eccentricity, with several observable and dynamical consequences to follow. Despite their possibility for being observed in both present and upcoming transient surveys, their outcomes are not firmly constrained. In this paper, we present an analytical framework that allows to estimate the cross section of such two-body captures, which permits us to study how the corresponding rates depend on the initial orbital parameters, the mass hierarchy, the type of interacting object, and the energy dissipation mechanism. This formalism is applied here to study the formation of two-body GW captures, for which we estimate absolute and relative rates relevant to Advanced LIGO detections. It is shown that two-body GW captures should have compelling observational implications if a sizable fraction of detected compact binaries are formed via dynamical interactions.

  18. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    Science.gov (United States)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  19. THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S.; Brownstein, Joel R.; Shu Yiping; Arneson, Ryan A. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Weaver, Benjamin A., E-mail: bolton@astro.utah.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-09-20

    We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z Almost-Equal-To 0.1-0.6, based on the combination of strong-lensing aperture mass and stellar velocity-dispersion constraints. We find a significant trend toward steeper mass profiles (parameterized by the power-law density model with {rho}{proportional_to}r {sup -{gamma}}) at later cosmic times, with magnitude d < {gamma} > /dz = -0.60 {+-} 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <{gamma} > on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is subdominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an 'inflection zone' marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.

  20. Optimal the tilt angles for photovoltaic modules using PSO method with nonlinear time-varying evolution

    International Nuclear Information System (INIS)

    Chang, Ying-Pin

    2010-01-01

    A particle-swarm optimization method with nonlinear time-varying evolution (PSO-NTVE) is employed in determining the tilt angle of photovoltaic (PV) modules in Taiwan. The objective is to maximize the output electrical energy of the modules. In this study, seven Taiwanese cities were selected for analysis. First, the sun's position at any time and location was predicted by the mathematical procedure of Julian dating, and then the solar irradiation was obtained at each site under a clear sky. By combining the temperature effect, the PSO-NTVE method is adopted to calculate the optimal tilt angles for fixed south-facing PV modules. In this method, the parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments have an effect that approximates the full factorial experiments. Statistical error analysis was performed to compare the results between the four PSO methods and experimental results. Hengchun city in which the minimum total error value of 6.12% the reasons for the weather more stability and less building shade. A comparison of the measurement results in electrical energy between the four PSO methods and the PV modules set a six tilt angles. Obviously four types of PSO methods simulation of electrical energy value from 231.12 kWh/m 2 for Taipei to 233.81 kWh/m 2 for Hengchun greater than the measurement values from 224.71 kWh/m 2 for Taichung to 228.47 kWh/m 2 for Hengchun by PV module which is due to instability caused by climate change. Finally, the results show that the annual optimal angle for the Taipei area is 18.16 o ; for Taichung, 17.3 o ; for Tainan, 16.15 o ; for Kaosiung, 15.79 o ; for Hengchung, 15.17 o ; for Hualian, 17.16 o ; and for Taitung, 15.94 o . It is evident that the authorized Industrial Technology Research Institute (ITRI) recommends that tilt angle of 23.5 o was not an appropriate use of Taiwan's seven cities. PV modules with the installation of the tilt angle should be

  1. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    Science.gov (United States)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  2. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  3. Measurement of the influences relating to anthropization on the temporal evolution of the gravitational risks and the vulnerability.

    Science.gov (United States)

    Lebourg, T.; Llop, R.; Provitolo, D.; Allignol, F.; Zerathe, S.

    2009-04-01

    The objective of this paper is to show the impact of the instrumentation on an urban area on the principle of prevention of the landslides risk and thus to contribute to decrease the vulnerability for an urban long-term future development. We show that the analyze by instrumentation of triggered factors which characterize the risk (by the quantification of the evolution in time of the mechanical properties versus weathered processes) suggest that it exists a relation between "susceptibility of landslides" and urban development The evolution of the stakes during time is at the same time, factor of evolution of the susceptibility and triggered factor of the vulnerability evolution of urban areas. The scientific goal relates to the urban systems vulnerability and resilience modelling versus landslides processes for the assistance to the risks prevention. Indeed, the installation of an effective risks prevention policy is based on a good evaluation of the intensity, the period of return of the phenomena and their zone of expansion, but also on an identification of the sectors exposed to the risks, their vulnerability and their resilience. The strategy of prevention of the risks generally relates to the construction of fortifications to protect the society but it can also be founded on the resilience concept. This other approach is not opposed to the risk, but proposes to reduce the impacts. The anthroposysteme concept of makes it possible to take into accounts the determining role played by the human society in the space system evolution; natural and social systems associated on a given territory. The study of a space system passes then by the identification of components of the physical world (natural) and the living world (social), these two components forming integral part of the Society. To be concluded, this paper and study applies to the Mediterranean coastline anthroposystemes (northern bank) where urban growth, saturation of the littorals, constructions in

  4. A generalized variational principle of gravitation

    International Nuclear Information System (INIS)

    El-Tahir, A.

    1987-09-01

    Generalized fourth order differential equations of gravitation are derived. Though similar to those earlier obtained by Lanczos, the present derivation is based on more general assumptions. The geometry-gravity dualism is discussed and the nonlinearity of gravitation is shown to be constrained by the curvature of space. (author). 5 refs

  5. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  6. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  7. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  8. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    Science.gov (United States)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  9. Gravitational effects of global textures

    International Nuclear Information System (INIS)

    Noetzold, D.

    1990-03-01

    A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures

  10. Nonlinear evolution of the matter power spectrum in modified theories of gravity

    International Nuclear Information System (INIS)

    Koyama, Kazuya; Taruya, Atsushi; Hiramatsu, Takashi

    2009-01-01

    We present a formalism to calculate the nonlinear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover general relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi-nonlinear power spectrum in the Dvali-Gabadadze-Porratti braneworld models and f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully nonlinear scales using the parametrized post-Friedmann framework. In the Dvali-Gabadadze-Porratti and f(R) gravity models, the predicted nonlinear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at the weakly nonlinear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.

  11. Post-Newtonian evolution of massive black hole triplets in galactic nuclei - III. A robust lower limit to the nHz stochastic background of gravitational waves

    Science.gov (United States)

    Bonetti, Matteo; Sesana, Alberto; Barausse, Enrico; Haardt, Francesco

    2018-04-01

    Inspiraling massive black-hole binaries (MBHBs) forming in the aftermath of galaxy mergers are expected to be the loudest gravitational-wave (GW) sources relevant for pulsar-timing arrays (PTAs) at nHz frequencies. The incoherent overlap of signals from a cosmic population of MBHBs gives rise to a stochastic GW background (GWB) with characteristic strain around hc ˜ 10-15 at a reference frequency of 1 yr-1, although uncertainties around this value are large. Current PTAs are piercing into the GW amplitude range predicted by MBHB-population models, but no detection has been reported so far. To assess the future success prospects of PTA experiments, it is therefore important to estimate the minimum GWB level consistent with our current understanding of the formation and evolution of galaxies and massive black holes (MBHs). To this purpose, we couple a semianalytic model of galaxy evolution and an extensive study of the statistical outcome of triple MBH interactions. We show that even in the most pessimistic scenario where all MBHBs stall before entering the GW-dominated regime, triple interactions resulting from subsequent galaxy mergers inevitably drive a considerable fraction of the MBHB population to coalescence. At frequencies relevant for PTA, the resulting GWB is only a factor of 2-to-3 suppressed compared to a fiducial model where binaries are allowed to merge over Gyr timescales. Coupled with current estimates of the expected GWB amplitude range, our findings suggest that the minimum GWB from cosmic MBHBs is unlikely to be lower than hc ˜ 10-16 (at f = 1 yr-1), well within the expected sensitivity of projected PTAs based on future observations with FAST, MeerKAT and SKA.

  12. Post-Newtonian evolution of massive black hole triplets in galactic nuclei - III. A robust lower limit to the nHz stochastic background of gravitational waves

    Science.gov (United States)

    Bonetti, Matteo; Sesana, Alberto; Barausse, Enrico; Haardt, Francesco

    2018-06-01

    Inspiraling massive black hole binaries (MBHBs) forming in the aftermath of galaxy mergers are expected to be the loudest gravitational-wave (GW) sources relevant for pulsar-timing arrays (PTAs) at nHz frequencies. The incoherent overlap of signals from a cosmic population of MBHBs gives rise to a stochastic GW background (GWB) with characteristic strain around hc ˜ 10-15 at a reference frequency of 1 yr-1, although uncertainties around this value are large. Current PTAs are piercing into the GW amplitude range predicted by MBHB-population models, but no detection has been reported so far. To assess the future success prospects of PTA experiments, it is therefore important to estimate the minimum GWB level consistent with our current understanding of the formation and evolution of galaxies and massive black holes (MBHs). To this purpose, we couple a semi-analytic model of galaxy evolution and an extensive study of the statistical outcome of triple MBH interactions. We show that even in the most pessimistic scenario where all MBHBs stall before entering the GW-dominated regime, triple interactions resulting from subsequent galaxy mergers inevitably drive a considerable fraction of the MBHB population to coalescence. At frequencies relevant for PTA, the resulting GWB is only a factor of 2-3 suppressed compared to a fiducial model where binaries are allowed to merge over Gyr time-scales . Coupled with current estimates of the expected GWB amplitude range, our findings suggest that the minimum GWB from cosmic MBHBs is unlikely to be lower than hc ˜ 10-16 (at f = 1 yr-1), well within the expected sensitivity of projected PTAs based on future observations with FAST, MeerKAT, and SKA.

  13. Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1D colliding gravitational plane waves

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Buchman, L.T.

    2002-01-01

    We investigate how the accuracy and stability of numerical relativity simulations of 1D colliding plane waves depends on choices of equation formulations, gauge conditions, boundary conditions, and numerical methods, all in the context of a first-order 3+1 approach to the Einstein equations, with basic variables some combination of first derivatives of the spatial metric and components of the extrinsic curvature tensor. Hyperbolic schemes, specifically variations on schemes proposed by Bona and Masso and Anderson and York, are compared with variations of the Arnowitt-Deser-Misner formulation. Modifications of the three basic schemes include raising one index in the metric derivative and extrinsic curvature variables and adding a multiple of the energy constraint to the extrinsic curvature evolution equations. Redundant variables in the Bona-Masso formulation may be reset frequently or allowed to evolve freely. Gauge conditions which simplify the dynamical structure of the system are imposed during each time step, but the lapse and shift are reset periodically to control the evolution of the spacetime slicing and the longitudinal part of the metric. We show that physically correct boundary conditions, satisfying the energy and momentum constraint equations, generically require the presence of some ingoing eigenmodes of the characteristic matrix. Numerical methods are developed for the hyperbolic systems based on decomposing flux differences into linear combinations of eigenvectors of the characteristic matrix. These methods are shown to be second-order accurate, and in practice second-order convergent, for smooth solutions, even when the eigenvectors and eigenvalues of the characteristic matrix are spatially varying

  14. Improved Minimum Entropy Filtering for Continuous Nonlinear Non-Gaussian Systems Using a Generalized Density Evolution Equation

    Directory of Open Access Journals (Sweden)

    Jinliang Xu

    2013-06-01

    Full Text Available This paper investigates the filtering problem for multivariate continuous nonlinear non-Gaussian systems based on an improved minimum error entropy (MEE criterion. The system is described by a set of nonlinear continuous equations with non-Gaussian system noises and measurement noises. The recently developed generalized density evolution equation is utilized to formulate the joint probability density function (PDF of the estimation errors. Combining the entropy of the estimation error with the mean squared error, a novel performance index is constructed to ensure the estimation error not only has small uncertainty but also approaches to zero. According to the conjugate gradient method, the optimal filter gain matrix is then obtained by minimizing the improved minimum error entropy criterion. In addition, the condition is proposed to guarantee that the estimation error dynamics is exponentially bounded in the mean square sense. Finally, the comparative simulation results are presented to show that the proposed MEE filter is superior to nonlinear unscented Kalman filter (UKF.

  15. Nonlinear saturation of the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    A detailed numerical simulation of the nonlinear state of the Rayleigh endash Taylor instability has been carried out. There are three distinct phases of evolution where it is governed by the (i) linear effects, (ii) effects arising from the conventional nonlinear terms and (iii) subtle nonlinear effects arising through the coupling terms. During the third phase of evolution, there is a self-consistent generation of shear flow which saturates the Rayleigh endash Taylor instability even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. The Galerkin approximation is presented to provide an understanding of our numerical findings. Last, there is an attempt to provide a comprehensive understanding of the nonlinear state of the Rayleigh endash Taylor instability by comparing and contrasting this work with earlier studies. copyright 1997 American Institute of Physics

  16. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  17. Self-similar gravitational clustering

    International Nuclear Information System (INIS)

    Efstathiou, G.; Fall, S.M.; Hogan, C.

    1979-01-01

    The evolution of gravitational clustering is considered and several new scaling relations are derived for the multiplicity function. These include generalizations of the Press-Schechter theory to different densities and cosmological parameters. The theory is then tested against multiplicity function and correlation function estimates for a series of 1000-body experiments. The results are consistent with the theory and show some dependence on initial conditions and cosmological density parameter. The statistical significance of the results, however, is fairly low because of several small number effects in the experiments. There is no evidence for a non-linear bootstrap effect or a dependence of the multiplicity function on the internal dynamics of condensed groups. Empirical estimates of the multiplicity function by Gott and Turner have a feature near the characteristic luminosity predicted by the theory. The scaling relations allow the inference from estimates of the galaxy luminosity function that galaxies must have suffered considerable dissipation if they originally formed from a self-similar hierarchy. A method is also developed for relating the multiplicity function to similar measures of clustering, such as those of Bhavsar, for the distribution of galaxies on the sky. These are shown to depend on the luminosity function in a complicated way. (author)

  18. Gravitational Physics

    OpenAIRE

    Schäfer, G.; Schutz, B.

    1996-01-01

    Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...

  19. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  20. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  1. Self-consistent simulations of nonlinear magnetohydrodynamics and profile evolution in stellarator configurations

    Energy Technology Data Exchange (ETDEWEB)

    Schlutt, M. G.; Hegna, C. C.; Sovinec, C. R. [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, Wisconsin 53706 (United States); Held, E. D. [Utah State University, Logan, Utah 84322 (United States); Kruger, S. E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80303 (United States)

    2013-05-15

    Self-consistent extended MHD framework is used to investigate nonlinear macroscopic dynamics of stellarator configurations. In these calculations, initial conditions are given by analytical 3-D vacuum solutions. Finite beta discharges in a straight stellarator are simulated. Vacuum magnetic fields are applied to produce stellarator-like rotational transform profiles with iota(0) ≤ 0.5 and iota(0) ≥ 0.5. The vacuum magnetic fields are either helically symmetric or spoiled by the presence of magnetic harmonics of incommensurate helicity. As heat is added to the system, pressure-driven instabilities are excited when a critical β is exceeded. These instabilities may grow to large amplitude and effectively terminate the discharge, or they may saturate nonlinearly as the configuration evolves. In all of these studies, anisotropic heat conduction is allowed with κ{sub ∥}/κ{sub ⊥}=10{sup 4}−10{sup 7}.

  2. A Nonlinear Growth Analysis of Integrated Device Manufacturers’ Evolution to the Nanotechnology Manufacturing Outsourcing

    Directory of Open Access Journals (Sweden)

    Hung-Chi Hsiao

    2012-04-01

    Full Text Available With the increasing cost of setting up a semiconductor fabrication facility, coupled with significant costs of developing a leading nanotechnology process, aggressive outsourcing (asset-light business models via working more closely with foundry companies is how semiconductor manufacturing firms are looking to strengthen their sustainable competitive advantages. This study aims to construct a market intelligence framework for developing a wafer demand forecasting model based on long-term trend detection to facilitate decision makers in capacity planning. The proposed framework modifies market variables by employing inventory factors and uses a top-down forecasting approach with nonlinear least square method to estimate the forecast parameters. The nonlinear mathematical approaches could not only be used to examine forecasting performance, but also to anticipate future growth of the semiconductor industry. The results demonstrated the practical viability of this long-term demand forecast framework.

  3. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    Science.gov (United States)

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  4. Nonlinear effects in evolution - an ab initio study: A model in which the classical theory of evolution occurs as a special case.

    Science.gov (United States)

    Clerc, Daryl G

    2016-07-21

    An ab initio approach was used to study the molecular-level interactions that connect gene-mutation to changes in an organism׳s phenotype. The study provides new insights into the evolutionary process and presents a simplification whereby changes in phenotypic properties may be studied in terms of the binding affinities of the chemical interactions affected by mutation, rather than by correlation to the genes. The study also reports the role that nonlinear effects play in the progression of organs, and how those effects relate to the classical theory of evolution. Results indicate that the classical theory of evolution occurs as a special case within the ab initio model - a case having two attributes. The first attribute: proteins and promoter regions are not shared among organs. The second attribute: continuous limiting behavior exists in the physical properties of organs as well as in the binding affinity of the associated chemical interactions, with respect to displacements in the chemical properties of proteins and promoter regions induced by mutation. Outside of the special case, second-order coupling contributions are significant and nonlinear effects play an important role, a result corroborated by analyses of published activity levels in binding and transactivation assays. Further, gradations in the state of perfection of an organ may be small or large depending on the type of mutation, and not necessarily closely-separated as maintained by the classical theory. Results also indicate that organs progress with varying degrees of interdependence, the likelihood of successful mutation decreases with increasing complexity of the affected chemical system, and differences between the ab initio model and the classical theory increase with increasing complexity of the organism. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Self-gravitating black hole scalar wigs

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier

    2017-07-01

    It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.

  6. Nondissipative gravitational turbulence

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Zybin, K.P.

    1988-01-01

    The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence

  7. Gravitational radiation and 3D numerical relativity

    International Nuclear Information System (INIS)

    Nakamura, T.

    1986-01-01

    Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented

  8. On a nonlinear integrodifferential evolution inclusion with nonlocal initial conditions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Zuomao Yan

    2012-01-01

    Full Text Available In this paper, we discuss the existence results for a class of nnlinear integrodifferential evolution inclusions with nonlocal initial conditions in Banach spaces. Our results are based on a fixed point theorem for condensing maps due to Martelli and the resolvent operators combined with approximation techniques.

  9. Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces

    Directory of Open Access Journals (Sweden)

    Xavier Carvajal Paredes

    2010-11-01

    Full Text Available In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq 2heta ge 2$ and the initial value problem associated with the nonlinear Schrodinger equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq heta geq 1$. Persistence property has been proved by approximation of the solutions and using a priori estimates.

  10. Numerical studies of non-linear evolution of kink and tearing modes in tokamaks

    International Nuclear Information System (INIS)

    White, R.; Monticello, D.; Rosenbluth, M.N.; Strauss, H.; Kadomtsev, B.B.

    1975-01-01

    A set of numerical techniques for investigating the full nonlinear unstable behavior of low β kink modes of given helical symmetry in Tokamaks is presented. Uniform current density plasmas display complicated deformations including the formation of large vacuum bubbles provided that the safety factor q is sufficiently close to integral. Fairly large m = 1 deformations, but not bubble formation, persist for a plasma with a parabolic current density profile (and hence shear). Deformations for m greater than or equal to 2 are, however, greatly suppressed. (auth)

  11. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  12. Payoff non-linearity sways the effect of mistakes on the evolution of reciprocity.

    Science.gov (United States)

    Kurokawa, Shun

    2016-09-01

    The existence of cooperation is considered to require explanation, and reciprocity is a potential explanatory mechanism. Animals sometimes fail to cooperate even when they attempt to do so, and a reciprocator has an Achilles' heel: it is vulnerable to error (the interaction between two reciprocators can lead to an endless vendetta.). However, the strategy favored by natural selection is determined also by its interaction with other strategies. The relationship between two reciprocators leading to a collapse of cooperation through error does not straightforwardly imply that mistakes make the conditions under which reciprocity evolves stringent. Hence, mistakes may facilitate the evolution of reciprocity. However, it has been shown through the analysis of the interaction between reciprocators and unconditional defectors that the existence of mistakes makes the conditions for reciprocators stable against invasion by an unconditional defector more stringent, which indicates that mistakes discourage the evolution of reciprocity. However, this result is based on the assumption that the effects of cooperation are additive (payoff is linear), while the game played by real animals does not always display this feature. In such cases, the result may be swayed. In this paper, we remove this assumption, reexamining whether mistakes disturb the evolution of reciprocity. Using the analysis of an evolutionarily stable strategy (ESS), we show that when extra fitness costs are present in cases where mutual cooperation is established, mistakes can facilitate the evolution of reciprocity; whereas, when the effect of cooperation is additive, mistakes always disturb the evolution of reciprocity, as has been shown previously. Copyright © 2016. Published by Elsevier Inc.

  13. Dark matter-baryon segregation in the nonlinear evolution of coupled dark energy models

    International Nuclear Information System (INIS)

    Mainini, Roberto

    2005-01-01

    The growth and virialization of spherical top-hat fluctuations, in coupled dark energy models, causes segregation between dark matter (DM) and baryons, as the gravitational infall into the potential well proceeds more slowly for the baryons than for DM. As a consequence, after attaining their turnaround and before full virialization, halos have outer layers rich of baryons. Accordingly, a natural ambiguity exists on the definition of the virial density contrast. In fact, when the outer baryon layers infall onto the DM-richer core, they carry with them DM materials outside the original fluctuation; hence, no time exists when all materials originally belonging to the fluctuation--and only they--have virialized. Baryon-DM segregation can have various astrophysical consequences on different length scales. The smallest halos may loose up to 50% of the original baryonic contents and become hardly visible. Subhalos in cluster-size halos may loose much baryonic materials, which could then be observed as intracluster light. Isolated halos, in general, can be expected to have a baryon component richer than the cosmological proportions, due to the cosmic enrichement of baryons lost in small halo encounters

  14. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  15. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  16. Evolution of super-Gaussian pulses in a nonlinear optical fiber

    Science.gov (United States)

    Bugay, Aleksandr N.; Khalyapin, Vyacheslav A.

    2018-04-01

    An analytic and numerical study is carried out of the dynamics of parameters of a super-Gaussian pulse whose spectrum can fit both in the region of normal and anomalous dispersion of the group velocity. An analytical solution is found for the parameter characterizing the evolution of the degree of the super-Gaussian momentum. The loss of profile rectangularity is shown to be much faster than the pulse dispersion broadening, and corresponding characteristic length is determined by explicit formula.

  17. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    Science.gov (United States)

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-08

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  18. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  19. GRAVITATIONAL RADIATION

    Directory of Open Access Journals (Sweden)

    Metin SALTIK

    1996-03-01

    Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.

  20. Gravitational lenses

    International Nuclear Information System (INIS)

    Turner, E.L.

    1989-01-01

    The author discusses how gravitational lens studies is becoming a major focus of extragalactic astronomy and cosmology. This review is organized into five parts: an overview of the observational situation, a look at the state of theoretical work on lenses, a detailed look at three recently discovered types of lensing phenomena (luminous arcs, radio rings, quasar-galaxy associations), a review of progress on two old problems in lens studies (deriving unique lens mass distribution models, measurements of differential time delays), and an attempt to look into the future of lens studies

  1. On the development and evolution of nonlinear ion acoustic wave packets

    Directory of Open Access Journals (Sweden)

    A. M. Hamza

    2005-09-01

    Full Text Available A simple model of ion fluctuations (ion acoustic and ion cyclotron fluctuations for example driven by an electron current which leads to intermittent fluctuations when the linear growth rate exceeds the wave packet dispersion rate is analized. The normalized fluctuation amplitude eφ0/T can be much larger than the mass ratio (me/mi level predicted by the conventional quasilinear theory or Manheimer's theory (see references in this document, and where φ0 represents the amplitude of the main peak of the ion fluctuations. Although the ion motion is linear, intermittency is produced by the strong nonlinear electron response, which causes the electron momentum input to the ion fluctuations to be spatially localized. We treat the 1-D case because it is especially simple from an intuitive and analytical point of view, but it is readily apparent and one can put forward the conjecture that the effect occurs in a three dimensional magnetized plasma. The 1-D analysis, as shown in this manuscript will clearly help identify the subtle difference between turbulence as conventionally understood and intermittency as it occurs in space and laboratory plasmas. Keywords. Meteorology and atmospheric dynamics (Turbulence – Ionosphere (Wave-particles interactions – Space plasma physics (Waves and instabilities

  2. Nonlinear Amplitude Evolution During Spontaneous Patterning of Ion-Bombarded Si(001)

    International Nuclear Information System (INIS)

    Chason, Eric; Erlebacher, Jonah; Aziz, Michael J.; Floro, Jerold A.; Sinclair, Michael B.

    1999-01-01

    The time evolution of the amplitude of periodic nanoscale ripple patterns formed on Ar+ sputtered Si(OOl ) surfaces was examined using a recently developed in situ spectroscopic technique. At sufficiently long times, we find that the amplitude does not continue to grow exponentially as predicted by the standard Bradley-Harper sputter rippling model. In accounting for this discrepancy, we rule out effects related to the concentration of mobile species, high surface curvature, surface energy anisotropy, and ion-surface interactions. We observe that for all wavelengths the amplitude ceases to grow when the width of the topmost terrace of the ripples is reduced to approximately 25 nm. This observation suggests that a short circuit relaxation mechanism limits amplitude . growth. A strategy for influencing the ultimate ripple amplitude is discussed

  3. The nonlinear evolution of ring dark solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2004-01-01

    The dynamics of the ring dark soliton in a Bose-Einstein condensate (BEC) with thin disc-shaped potential is investigated analytically and numerically. Analytical investigation shows that the ring dark soliton in the radial non-symmetric cylindrical BEC is governed by a cylindrical Kadomtsev-Petviashvili equation, while the ring dark soliton in the radial symmetric cylindrical BEC is governed by a cylindrical Korteweg-de Vries equation. The reduction to the cylindrical KP or KdV equation may be useful to understand the dynamics of a ring dark soliton. The numerical results show that the evolution properties and the snaking of a ring dark soliton are modified significantly by the trapping

  4. Gravitational-wave memory revisited: Memory from the merger and recoil of binary black holes

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory-the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an 'effective-one-body' description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, as well as the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also experience center-of-mass recoil due to the anisotropic emission of gravitational radiation. These recoils can manifest themselves in the gravitational-wave signal in the form of a 'linear' memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects for observing these effects are also discussed.

  5. The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings.

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2017-06-01

    We investigate the influence of collective self-gravity forces on the nonlinear evolution of the viscous overstability in Saturn's dense rings. Local N-body simulations, incorporating vertical and radial collective self-gravity are performed. Vertical self-gravity is mimicked through an increased frequency of vertical oscillations, while radial self-gravity is approximated by solving the Poisson equation for a thin disk in Fourier space. Direct particle-particle forces are omitted, while the magnitude of radial self gravity is controlled by assigning a variable surface mass density to the system's homogeneous ground state. We compare our simulations with large-scale isothermal and non-isothermal hydrodynamic model calculations, including radial self-gravity and employing transport coefficients derived in Salo et al. (2001). We concentrate on optical depths τ=1.5-2, appropriate to model Saturn's dense rings. Our isothermal and non isothermal hydrodynamic results in the limit of vanishing self-gravity compare very well with the studies of Latter&Ogilvie (2010) and Rein&latter (2013), respectively.With non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains are located in close vicinity of the local minimum of the nonlinear dispersion relation for a particular surface density. Good agreement is found between non-isothermal hydrodynamics and N-body simulations for disks with strong radial self-gravity, while the largest deviations occur for a weak but non-vanishing self-gravity.The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (λ~ 200-300m) agree reasonably well with the length scale of periodic micro structure in Saturn's inner A and B ring, as found by Cassini.

  6. Dynamics of one-dimensional self-gravitating systems using Hermite-Legendre polynomials

    Science.gov (United States)

    Barnes, Eric I.; Ragan, Robert J.

    2014-01-01

    The current paradigm for understanding galaxy formation in the Universe depends on the existence of self-gravitating collisionless dark matter. Modelling such dark matter systems has been a major focus of astrophysicists, with much of that effort directed at computational techniques. Not surprisingly, a comprehensive understanding of the evolution of these self-gravitating systems still eludes us, since it involves the collective non-linear dynamics of many particle systems interacting via long-range forces described by the Vlasov equation. As a step towards developing a clearer picture of collisionless self-gravitating relaxation, we analyse the linearized dynamics of isolated one-dimensional systems near thermal equilibrium by expanding their phase-space distribution functions f(x, v) in terms of Hermite functions in the velocity variable, and Legendre functions involving the position variable. This approach produces a picture of phase-space evolution in terms of expansion coefficients, rather than spatial and velocity variables. We obtain equations of motion for the expansion coefficients for both test-particle distributions and self-gravitating linear perturbations of thermal equilibrium. N-body simulations of perturbed equilibria are performed and found to be in excellent agreement with the expansion coefficient approach over a time duration that depends on the size of the expansion series used.

  7. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    Science.gov (United States)

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  8. Nonlinear evolution of a three dimensional longitudinal plasma wavepacket in a hot plasma including the effect of its interaction with an ion-acoustic wave

    International Nuclear Information System (INIS)

    Das, K.P.; Sihi, S.

    1979-01-01

    Assuming amplitudes as slowly varying functions of space and time and using perturbation method three coupled nonlinear partial differential equations are obtained for the nonlinear evolution of a three dimensional longitudinal plasma wave packet in a hot plasma including the effect of its interaction with a long wavelength ion-acoustic wave. These three equations are used to derive the instability conditions of a uniform longitudinal plasma wave train including the effect of its interaction both at resonance and nonresonance, with a long wavelength ion-acoustic wave. (author)

  9. The evolution of an unsteady translating nonlinear rossby-wave critical layer

    Science.gov (United States)

    Haynes, Peter H.; Cowley, Stephen J.

    When a monochromatic Rossby wave is forced on a flow which is slowly varying in time, the location of the critical line, where the phase speed of the wave is equal to that of the flow, also slowly changes. It is shown that this translation can play an important role in the vorticity balance near the critical line. The behavior of the translating critical layer is analyzed for various values of y, a parameter which measures the relative importance of nonlinear advection and translation. First, the vorticity equation in the critical layer is solved numerically in an important special case, where the velocity field in the critical layer is independent of the vorticity distribution and constant in time. The solutions reveal a number of new aspects of the behavior which are introduced by the translation, including the formation of a wake behind the critical layer, and the possibility of "trapping" of fluid particles in the critical layer if y exceeds a threshold value. Viewed in a frame of reference moving with the critical line the vorticity distribution may tend to a steady state, except in a "vorticity front" far downstream in the wake. If streamlines in the critical layer are open this steady state may be a predominantly inviscid one; if they are closed a steady state is possible only with non-zero dissipation. For both the unsteady and steady flows the translation allows the "logarithmic phase jump" across the critical layer, 4, to be non-zero and negative. Hence, even when the viscosity is vanishingly small, the critical layer can act as a strong "absorber" of Eliassen-Palm wave activity. Second, steady-state solutions are obtained numerically for a case when the velocity field in the critical layer is not independent of the vorticity distribution there. The interaction restricts the formation of closed streamlines, and an asymptotic open-streamline solution for large y can be found. The critical layer again acts an absorber of wave activity, but with decreasing e

  10. Gravitational microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Aleksandr F [Russian Federation State Scientific Center ' A.I. Alikhanov Institute for Theoretical and Experimental Physics' , Moscow (Russian Federation); Sazhin, Mikhail V [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1998-10-31

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  11. Gravitational microlensing

    International Nuclear Information System (INIS)

    Zakharov, Aleksandr F; Sazhin, Mikhail V

    1998-01-01

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  12. Effects of toroidal coupling on the non-linear evolution of tearing modes and on the stochastisation of the magnetic field topology in plasmas

    International Nuclear Information System (INIS)

    Edery, D.; Pellat, R.; Soule, J.L.

    1981-01-01

    The resistive MHD equations have been handled in toroidal geometry following the tokamak ordering, in order to obtain a simplified set of non-linear equations. This system of equations is compact, closed, consistent and exact to the first two orders in the expansion in the inverse aspect ratio. Studies of the non-linear evolution of tearing modes in the real geometry of tokamak discharges are now in progress, and quite significant results have been obtained from the numerical code REVE of Fontenay based on our above model. From the analytical results, strong linear coupling between neighbouring modes is expected as is demonstrated by the numerical results in the linear, and non-linear regimes. Moreover, coupling exhibits a stochastic structure of the magnetic field lines, the threshold of which is seen to be easily computed by a simple analytical criterion. (orig.)

  13. Hyperbolicity and constrained evolution in linearized gravity

    International Nuclear Information System (INIS)

    Matzner, Richard A.

    2005-01-01

    Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations

  14. Gravitation SL(2,C) gauge theory and conservation laws

    CERN Document Server

    Carmeli, Moshe; Nissani, Noah

    1990-01-01

    This monograph gives a comprehensive presentation of the SL(2,C) Gauge Theory of Gravitation along with some recent developments in the problem of Conservation Laws in General Relativity. Emphasis is put on quadratic Lagrangians which yield the Einstein field equations, as compared with Hilbert's original linear Langrangian, thus gravitation follows the other Gauge Fields all of which are derived from nonlinear Lagrangians.

  15. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  16. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.

  17. Gravitational instability in a primordial collapsing gas cloud

    International Nuclear Information System (INIS)

    Lacey, C.G.

    1989-01-01

    This paper presents an analysis of the linear evolution of short-wavelength perturbations in a background fluid flow which is undergoing gravitational collapse on large scales. Local evolution equations for perturbations to an arbitrary flow are derived in the linear regime and the short-wavelength limit. Local perturbation behavior in an inhomogeneous flow is found to be the same as that in a homogeneous anisotropic flow having the same local velocity field. Background flows in which the scale factors vary as power laws in time are considered to illustrate the relative effects of self-gravity, pressure and kinematics of the background flow on the density perturbation evolution. Perturbation analyses are then presented for more realistic background flows arising from the evolution into the nonlinear regime of initially small density perturbations in an isotropically expanding cosmological model. For low-pressure, inhomogeneous collapses, kinematic effects tend to dominate over self-gravity in driving perturbation growth as the collapse proceeds. 28 references

  18. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    Science.gov (United States)

    Venturi, D.; Karniadakis, G. E.

    2012-08-01

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  19. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  20. The evolution time of nucleon spectrum in residual excited nucleus and calculation of the non-linear effects

    International Nuclear Information System (INIS)

    Kenzhebaev, Sh.K.; Djuraev, Sh.H.; Mannanov, D.E.; Khugaev, A.V.

    1994-01-01

    The investigation of nonstationary fermi-gas thermalization of nucleons in the residual excited nucleus as an open nonlinearize system and analytical methods of calculation are presented. (author). 9 refs

  1. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    Science.gov (United States)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  2. First Integrals of Evolution Systems and Nonlinear Stability of Stationary Solutions for the Ideal Atmospheric, Oceanic Hydrodynamical and Plasma Models

    International Nuclear Information System (INIS)

    Gordin, V.A.

    1998-01-01

    First integral of the systems of nonlinear equations governing the behaviour of atmospheric, oceanic and MHD plasma models are determined. The Lyapunov stability conditions for the solutions under small initial disturbances are analyzed. (author)

  3. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  4. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  5. Detection of gravitational radiation

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1994-01-01

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)

  6. Relativity theory and gravitation

    International Nuclear Information System (INIS)

    Bondi, H.

    1986-01-01

    The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)

  7. Gravitational wave signals and cosmological consequences of gravitational reheating

    Science.gov (United States)

    Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek

    2018-04-01

    Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.

  8. On the fundamental principles of the relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1990-01-01

    This paper expounds consistently within the frames of the Special Relativity Theory the fundamental postulates of the Relativistic Theory of Gravitation (RTG) which make it possible to obtain the unique complete system of the equations for gravitational field. Major attention has been paid to the analysis of the gauge group and of the causality principle. Some results related to the evolution of the Friedmann Universe, to gravitational collapse, etc. being the consequences of the RTG equations are also presented. 7 refs

  9. Generalized equations of gravitational field

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Borisova, L.B.

    1985-01-01

    Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)

  10. Intrinsic problems of the gravitational baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzova, E.V., E-mail: arbuzova@uni-dubna.ru [Novosibirsk State University, Novosibirsk, 630090 (Russian Federation); Department of Higher Mathematics, Dubna State University, 141980 Dubna (Russian Federation); Dolgov, A.D., E-mail: dolgov@fe.infn.it [Novosibirsk State University, Novosibirsk, 630090 (Russian Federation); ITEP, Bol. Cheremushkinsaya ul., 25, 117259 Moscow (Russian Federation)

    2017-06-10

    Modification of gravity due to the curvature dependent term in the gravitational baryogenesis scenario is considered. It is shown that this term leads to the fourth order differential equation of motion for the curvature scalar instead of the algebraic one of General Relativity (GR). The fourth order gravitational equations are generically unstable with respect to small perturbations. Non-linear in curvature terms may stabilize the solution but the magnitude of the stabilized curvature scalar would be much larger than that dictated by GR, so the standard cosmology would be strongly distorted.

  11. Intrinsic problems of the gravitational baryogenesis

    Science.gov (United States)

    Arbuzova, E. V.; Dolgov, A. D.

    2017-06-01

    Modification of gravity due to the curvature dependent term in the gravitational baryogenesis scenario is considered. It is shown that this term leads to the fourth order differential equation of motion for the curvature scalar instead of the algebraic one of General Relativity (GR). The fourth order gravitational equations are generically unstable with respect to small perturbations. Non-linear in curvature terms may stabilize the solution but the magnitude of the stabilized curvature scalar would be much larger than that dictated by GR, so the standard cosmology would be strongly distorted.

  12. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  13. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita; Grande, Tor

    2012-01-01

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO 3 has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3 ¯ c structure of LaFeO 3 is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO 3 at T N =735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO 3 to gain insight to the magnetoelectric coupling in BiFeO 3 , which is also multiferroic. The first order phase transition of LaFeO 3 from Pbnm to R3 ¯ c was observed at 1228±9 K, and a subsequent transition to Pm3 ¯ m was extrapolated to occur at 2140±30 K. The stability of the Pbnm and R3 ¯ c polymorphs of LaFeO 3 is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V A /V B . - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO 3 . Highlights: ► The crystal structure of LaFeO 3 is studied by HTXRD from RT to 1533 K. ► A non-linear expansion across the Néel temperature is observed for LaFeO 3 . ► The ratio V A /V B is used to rationalize the thermal evolution of the structure.

  14. Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F

    International Nuclear Information System (INIS)

    Jain, R.K.; Das, A.C.

    1978-01-01

    The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)

  15. Stochastic Nonlinear Evolutional Model of the Large-Scaled Neuronal Population and Dynamic Neural Coding Subject to Stimulation

    International Nuclear Information System (INIS)

    Wang Rubin; Yu Wei

    2005-01-01

    In this paper, we investigate how the population of neuronal oscillators deals with information and the dynamic evolution of neural coding when the external stimulation acts on it. Numerically computing method is used to describe the evolution process of neural coding in three-dimensioned space. The numerical result proves that only the suitable stimulation can change the coupling structure and plasticity of neurons

  16. Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts

    International Nuclear Information System (INIS)

    Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon

    2010-01-01

    Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.

  17. Quasi-two-dimensional nonlinear evolution of helical magnetorotational instability in a magnetized Taylor-Couette flow

    Science.gov (United States)

    Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.

    2018-01-01

    Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.

  18. Gravitational Contraction and Fusion Plasma Burn. Universal Expansion and the Hubble Law

    International Nuclear Information System (INIS)

    Wilhelmsson, Hans

    2002-01-01

    A dynamic approach is developed for the two principle phases of (i) gravitational condensation, and (ii) burning fusion plasma evolution. Comparison is made with conceptual descriptions of star formation and of subsequent decay towards red giant stars, white dwarfs, and other condensed core objects like neutron stars and black holes. The possibility of treating the expansion of the Universe by means of a similar approach is also discussed. The concept of negative diffusion is introduced for the contraction phase of star formation. The coefficients of defining the nonlinear diffusion are determined uniquely by physical conditions and for the case of the expansion of the universe, by the observation of the Hubble law. The contraction and evolution of large scale 3-D stars and 2-D galactic systems can thus be dynamically surveyed. In particular the time-scales can be determined

  19. Gravitation in the 'quasi-classical' theory

    International Nuclear Information System (INIS)

    Wignall, J.W.G.; Zangari, M.

    1990-01-01

    The 'quasi-classical' picture of particles as extendend periodic disturbances in a classical nonlinear field, previously shown to imply all the equations of Maxwell electrodynamics with very little formal input, is here applied to the other known long-range force, gravitation. It is shown that the picture's absolute interpretation of inertial mass and four-potential as measures of the local spacing between equal-phase hypersurfaces, together with the empirically established proportionality of gravitational 'charge' to inertial mass, leads naturally to the gravitational red-shift formula, and it thus provides a physical basis for the spacetime curvature that is the central idea of Einstein's general theory of relativity. 16 refs., 1 fig

  20. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  1. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  2. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  3. Shearfree cylindrical gravitational collapse

    International Nuclear Information System (INIS)

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-01-01

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  4. Light rays and the tidal gravitational pendulum

    Science.gov (United States)

    Farley, A. N. St J.

    2018-05-01

    Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null

  5. Gravitation in material media

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  6. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  7. Fundamentals of the relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    An extended exposition of the relativistic theory of gravitation (RTG) proposed by Logunov, Vlasov, and Mestvirishvili is presented. The RTG was constructed uniquely on the basis of the relativity principle and the geometrization principle by regarding the gravitational field as a physical field in the spirit of Faraday and Maxwell possessing energy, momentum, and spins 2 and 0. In the theory, conservation laws for the energy, momentum, and angular momentum for the matter and gravitational field taken together are strictly satisfied. The theory explains all the existing gravitational experiments. When the evolution of the universe is analyzed, the theory leads to the conclusion that the universe is infinite and flat, and it is predicted to contain a large amount of hidden mass. This missing mass exceeds by almost 40 times the amount of matter currently observed in the universe. The RTG predicts that gravitational collapse, which for a comoving observer occurs after a finite proper time, does not lead to infinite compression of matter but is halted at a certain finite density of the collapsing body. Therefore, according to the RTG there cannot be any objects in nature in which the gravitational contraction of matter to infinite density occurs, i.e., there are no black holes

  8. Nonlinear smooth orthogonal decomposition of kinematic features of sawing reconstructs muscle fatigue evolution as indicated by electromyography.

    Science.gov (United States)

    Segala, David B; Gates, Deanna H; Dingwell, Jonathan B; Chelidze, David

    2011-03-01

    Tracking or predicting physiological fatigue is important for developing more robust training protocols and better energy supplements and/or reducing muscle injuries. Current methodologies are usually impractical and/or invasive and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify more optimal fatigue coordinates and provide a lower-dimensional reconstruction of local fatigue dynamics than the linear SOD. Both linear and nonlinear SODs were applied to PSW features estimated from measured kinematics to reconstruct muscle fatigue dynamics in subjects performing a sawing motion. Ten healthy young right-handed subjects pushed a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles were measured from the right upper extremity in addition to surface electromyography (EMG) recordings. The SOD coordinates of kinematic PSW features were compared against independently measured fatigue markers (i.e., mean and median EMG spectrum frequencies of individual muscle groups). This comparison was based on a least-squares linear fit of a fixed number of the dominant SOD coordinates to the appropriate local fatigue markers. Between subject variability showed that at most four to five nonlinear SOD coordinates were needed to reconstruct fatigue in local muscle groups, while on average 15 coordinates were needed for the linear SOD. Thus, the nonlinear coordinates provided a one-order-of-magnitude improvement over the linear ones.

  9. Identification of defect distribution at ferroelectric domain walls from evolution of nonlinear dielectric response during the aging process

    Czech Academy of Sciences Publication Activity Database

    Mokrý, Pavel; Sluka, T.

    2016-01-01

    Roč. 93, č. 6 (2016), č. článku 064114. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Nonlinear dielectric response * ferroelectric domain walls * aging process * phase field simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.064114

  10. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  11. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-01-01

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  12. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  13. Gravitational waves from cosmic bubble collisions

    International Nuclear Information System (INIS)

    Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han

    2015-01-01

    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)

  14. Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian [University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yue, Jason [National Taiwan Normal University, Department of Physics, Taipei (China)

    2017-08-15

    We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition, T{sub p}, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature, T{sub n} ∝ 50 GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as f ∝ 10{sup -9}-10{sup -7} Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory. (orig.)

  15. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  16. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  17. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  18. Long gravitational waves in a closed universe

    International Nuclear Information System (INIS)

    Grishchuk, L.P.; Doroshkevich, A.G.; Yudin, V.M.

    The important part played by long gravitational waves in the evolution of a homogeneous closed universe (model of type IX in Biancki's classification) is discussed. It is shown that the metric of this model can be represented in the form of a sum of a background metric, describing nonstationary space of constant positive curvature, and a group of terms that may be interpreted as a set of gravitational waves of maximal length compatible with closure of the space. This subdivision of the metric is exact and does not presuppose necessary smallness of the wave corrections. For this reason the behavior of the wave terms can be traced at all stages of their evolution--both in the epoch when the contribution of the ''energy density'' and ''pressure'' of the gravitational waves to the dynamics of the background universe is negligibly small and in the epoch when this contribution is dominant. It was demonstrated, in particular, that in the limiting case of complete absence of ordinary matter the scale factor of the background metric, because of the negativity of gravitational ''pressure,''can pass during the evolution of the universe through a state of stable regular minimum

  19. Evolution of association between renal and liver functions while awaiting heart transplant: An application using a bivariate multiphase nonlinear mixed effects model.

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Barnard, John

    2018-07-01

    In many longitudinal follow-up studies, we observe more than one longitudinal outcome. Impaired renal and liver functions are indicators of poor clinical outcomes for patients who are on mechanical circulatory support and awaiting heart transplant. Hence, monitoring organ functions while waiting for heart transplant is an integral part of patient management. Longitudinal measurements of bilirubin can be used as a marker for liver function and glomerular filtration rate for renal function. We derive an approximation to evolution of association between these two organ functions using a bivariate nonlinear mixed effects model for continuous longitudinal measurements, where the two submodels are linked by a common distribution of time-dependent latent variables and a common distribution of measurement errors.

  20. A Generalized National Planning Approach for Admission Capacity in Higher Education: A Nonlinear Integer Goal Programming Model with a Novel Differential Evolution Algorithm.

    Science.gov (United States)

    El-Qulity, Said Ali; Mohamed, Ali Wagdy

    2016-01-01

    This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.

  1. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  2. Non-gaussianity versus nonlinearity of cosmological perturbations.

    Science.gov (United States)

    Verde, L

    2001-06-01

    Following the discovery of the cosmic microwave background, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us toward a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, nonlinear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but galaxies might not be faithful tracers of the underlying mass distribution. The relationship between fluctuations in the mass and in the galaxies distribution (bias), is often assumed to be local, but could well be nonlinear. Moreover, galaxy catalogues use the redshift as third spatial coordinate: the resulting redshift-space map of the galaxy distribution is nonlinearly distorted by peculiar velocities. Nonlinear gravitational evolution, biasing, and redshift-space distortion introduce non-gaussianity, even in an initially gaussian fluctuation field. I investigate the statistical tools that allow us, in principle, to disentangle the above different effects, and the observational datasets we require to do so in practice.

  3. Stationary nonlinear Airy beams

    International Nuclear Information System (INIS)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-01-01

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  4. Nonlinear electrodynamics and cosmology

    International Nuclear Information System (INIS)

    Breton, Nora

    2010-01-01

    Nonlinear electrodynamics (NLED) generalizes Maxwell's theory for strong fields. When coupled to general relativity NLED presents interesting features like the non-vanishing of the trace of the energy-momentum tensor that leads to the possibility of violation of some energy conditions and of acting as a repulsive contribution in the Raychaudhuri equation. This theory is worth to study in cosmological and astrophysical situations characterized by strong electromagnetic and gravitational fields.

  5. Time evolution of scattering states and velocity increase due to nonlinear processes in the quantum hall regime

    International Nuclear Information System (INIS)

    Riess, J.; Duport, C.

    1991-01-01

    We report the first numerical results (with realistic parameter values) for the time evolution of a scattered Landau function in a model system. They give a striking illustration for the Hall velocity increase beyond the classical value of the conduction electrons in the quantum Hall regime. This phenomenon, which is crucial for the integer quantum Hall effect, is caused by a special kind of nonclassical particle dynamics induced by disorder and cannot be described by linear response theory

  6. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  7. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  8. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.

    1980-01-01

    The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)

  9. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  10. Presenting Newtonian gravitation

    International Nuclear Information System (INIS)

    Counihan, Martin

    2007-01-01

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry

  11. Environmental Effects for Gravitational-wave Astrophysics

    International Nuclear Information System (INIS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)

  12. Nonlinear Evolution of Observed Fast Streams in the Solar Wind - Micro-instabilities and Energy Exchange between Protons and Alpha Particles

    Science.gov (United States)

    Maneva, Y. G.; Poedts, S.

    2017-12-01

    Non-thermal kinetic components such as deformed velocity distributions, temperature anisotropies and relative drifts between the multiple ion populations are frequently observed features in the collisionless fast solar wind streams near the Earth whose origin is still to be better understood. Some of the traditional models consider the formation of the temperature anisotropies through the effect of the solar wind expansion, while others assume in situ heating and particle acceleration by local fluctuations, such as plasma waves, or by spacial structures, such as advected or locally generated current sheets. In this study we consider the evolution of initial ion temperature anisotropies and relative drifts in the presence of plasma oscillations, such as ion-cyclotron and kinetic Alfven waves. We perform 2.5D hybrid simulations to study the evolution of observed fast solar wind plasma parcels, including the development of the plasma micro-instabilities, the field-particle correlations and the energy transfer between the multiple ion species. We consider two distinct cases of highly anisotropic and quickly drifting protons which excite ion-cyclotron waves and of moderately anisotropic slower protons, which co-exist with kinetic Alfven waves. The alpha particles for both cases are slightly anisotropic in the beginning and remain anisotropic throughout the simulation time. Both the imposed magnetic fluctuations and the initial differential streaming decrease in time for both cases, while the minor ions are getting heated. Finally we study the effects of the solar wind expansion and discuss its implications for the nonlinear evolution of the system.

  13. A new theory of space-time and gravitation

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.

    1982-01-01

    Field theory of gravitation is constructed. It uses a symmetrical second rank tensor field in pseudoeuclidean space-time for describing the gravitational field. The theory is based on the condition of the presence of conservation laws for gravitational field and matter taken together and on the geometrization principle. The field theory of gravitation has the same post-newtonian parame-- ters as the general relativity theory (GRT) which implies that both theories are indistinguishable from the viewpoint of any post- newtonian experiment. The description of the effects in strong gravitational fields as well as properties of gravitational waves in the field theory of gravitation and GRT differ significantly from each other. The distinctions between two theories include also the itational red shifti curving of light trajectories and timabsence in the field theory of gravitation of the effects of grav.. delay/ in processes of propagation of gravitational waves in external fields. These distinctions made it possible to suggest a number of experiments with gravitational waves in which the predictions of the field theory of gravitation can be compared with those of the GRT. Model of the Universe in the field theory of gravitation makes it possible to describe the cosmological red shift of the frequency. Character of the evolution in this mode is determined by the delay parameter q 0 : at q 0 0 >4-3/2xα the ''expansion'' at some moment will ''change'' to contraction'' and the Universe will return to the singular state, where α=8πepsilon 0 /3M 2 (H is the Hubble constant) [ru

  14. Gravitation and source theory

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1975-01-01

    Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures

  15. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  16. Gravitational Waves and Neutrinos

    OpenAIRE

    Sturani, Riccardo

    2018-01-01

    We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.

  17. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  18. A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems

    International Nuclear Information System (INIS)

    Banerjee, Amit; Abu-Mahfouz, Issam

    2014-01-01

    The use of evolutionary algorithms has been popular in recent years for solving the inverse problem of identifying system parameters given the chaotic response of a dynamical system. The inverse problem is reformulated as a minimization problem and population-based optimizers such as evolutionary algorithms have been shown to be efficient solvers of the minimization problem. However, to the best of our knowledge, there has been no published work that evaluates the efficacy of using the two most popular evolutionary techniques – particle swarm optimization and differential evolution algorithm, on a wide range of parameter estimation problems. In this paper, the two methods along with their variants (for a total of seven algorithms) are applied to fifteen different parameter estimation problems of varying degrees of complexity. Estimation results are analyzed using nonparametric statistical methods to identify if an algorithm is statistically superior to others over the class of problems analyzed. Results based on parameter estimation quality suggest that there are significant differences between the algorithms with the newer, more sophisticated algorithms performing better than their canonical versions. More importantly, significant differences were also found among variants of the particle swarm optimizer and the best performing differential evolution algorithm

  19. Listening music of gravitation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru

  20. Bunge on gravitational waves

    OpenAIRE

    Romero, Gustavo E.

    2017-01-01

    I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.

  1. Gravitation and Electricity

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2008-04-01

    Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.

  2. Study on the temperature gradient evolution of large size nonlinear crystal based on the fluid-solid coupling theory

    Science.gov (United States)

    Sun, F. Z.; Zhang, P.; Liang, Y. C.; Lu, L. H.

    2014-09-01

    In the non-critical phase-matching (NCPM) along the Θ =90° direction, ADP and DKDP crystals which have many advantages, including a large effective nonlinear optical coefficient, a small PM angular sensitivity and non beam walk-off, at the non-critical phase-matching become the competitive candidates in the inertial confinement fusion(ICF) facility, so the reasonable temperature control of crystals has become more and more important .In this paper, the fluid-solid coupling models of ADP crystal and DKDP crystal which both have anisotropic thermal conductivity in the states of vacuum and non-vacuum were established firstly, and then simulated using the fluid analysis software Fluent. The results through the analysis show that the crystal surface temperature distribution is a ring shape, the temperature gradients in the direction of the optical axis both the crystals are 0.02°C and 0.01°C due to the air, the lowest temperature points of the crystals are both at the center of surface, and the temperatures are lower than 0.09°C and 0.05°C compared in the vacuum and non-vacuum environment, then propose two designs for heating apparatus.

  3. On the representation of contextual probabilistic dynamics in the complex Hilbert space: Linear and nonlinear evolutions, Schrodinger dynamics

    International Nuclear Information System (INIS)

    Khrennikov, A.

    2005-01-01

    We constructed the representation of contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function can be considered as Hilbert space projection of realistic dynamics in a pre space. The basic condition for representing the pre space-dynamics is the law of statistical conservation of energy-conservation of probabilities. The construction of the dynamical representation is an important step in the development of contextual statistical viewpoint of quantum processes. But the contextual statistical model is essentially more general than the quantum one. Therefore in general the Hilbert space projection of the pre space dynamics can be nonlinear and even irreversible (but it is always unitary). There were found conditions of linearity and reversibility of the Hilbert space dynamical projection. We also found conditions for the conventional Schrodinger dynamics (including time-dependent Hamiltonians). We remark that in general even the Schrodinger dynamics is based just on the statistical conservation of energy; for individual systems the law of conservation of energy can be violated (at least in our theoretical model)

  4. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  5. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  6. Nonlinear evolution of broad-bandwidth, laser-imprinted nonuniformities in planar targets accelerated by 351-nm laser light

    International Nuclear Information System (INIS)

    Smalyuk, V.A.; Boehly, T.R.; Bradley, D.K.; Goncharov, V.N.; Delettrez, J.A.; Knauer, J.P.; Meyerhofer, D.D.; Oron, D.; Shvarts, D.; Srebro, Y.; Town, R.P.

    1999-01-01

    Planar, 20 and 40 μm thick CH targets have been accelerated by 351 nm laser beams of the OMEGA laser system [Opt. Commun. 133, 495 (1997)]. Different beam-smoothing techniques were employed including distributed phase plates, smoothing by spectral dispersion, and distributed polarization rotators. The Rayleigh - Taylor evolution of three-dimensional (3D) broadband planar-target perturbations seeded by laser nonuniformities was measured using x-ray radiography at ∼1.3 keV. Fourier analysis shows that the perturbations evolve to longer wavelengths and the shorter wavelengths saturate. The saturation amplitudes and rates of growth of these features are consistent with the predictions of Haan [Phys. Rev. A 39, 5812 (1989)]. copyright 1999 American Institute of Physics

  7. Gravitation, phase transitions, and the big bang

    International Nuclear Information System (INIS)

    Krauss, L.M.

    1982-01-01

    Introduced here is a model of the early universe based on the possibility of a first-order phase transition involving gravity, and arrived at by a consideration of instabilities in the semiclassical theory. The evolution of the system is very different from the standard Friedmann-Robertson-Walker big-bang scenario, indicating the potential importance of semiclassical finite-temperature gravitational effects. Baryosynthesis and monopole production in this scenario are also outlined

  8. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    transition to superconductivity in neutron stars. If the neutrons and protons in the cores of the neutron stars in low-mass X-ray binary systems are superfluid and superconducting, respectively, the resultant strong coupling between different regions of the core and between the core and the solid crust appears likely to prevent gravitational radiation by r-wave fluid motions from amplifying them. If so, gravitational radiation by r-waves would not play a significant role in determining the spin rates of these neutron stars, in accordance with the standard picture in which their spins are determined by magnetic spin evolution. (author)

  9. An axisymmetric gravitational collapse code

    Energy Technology Data Exchange (ETDEWEB)

    Choptuik, Matthew W [CIAR Cosmology and Gravity Program, Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604 (United States); Liebling, Steven L [Southampton College, Long Island University, Southampton, NY 11968 (United States); Pretorius, Frans [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2003-05-07

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.

  10. An axisymmetric gravitational collapse code

    International Nuclear Information System (INIS)

    Choptuik, Matthew W; Hirschmann, Eric W; Liebling, Steven L; Pretorius, Frans

    2003-01-01

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations

  11. Cosmological constraints on the amplitude of relic gravitational waves

    International Nuclear Information System (INIS)

    Novosyadlij, B.; Apunevich, S.

    2005-01-01

    The evolution of the amplitude of relic gravitational waves (RGW) generated in early Universe has been analyzed. The analytical approximation is presented for angular power spectrum of cosmic microwave background anisotropies caused by gravitational waves through Sachs-Wolfe effect. The estimate of the most probable value for this amplitude was obtained on the basis of observation data on cosmic microwave background anisotropies from COBE, WMAP and BOOMERanG experiments along with large-scale structure observations

  12. Gravitational wave emission from the coalescence of white dwarfs

    International Nuclear Information System (INIS)

    Garcia-Berro, E; Loren-Aguilar, P; Isern, J; Pedemonte, A G; Guerrero, J; Lobo, J A

    2005-01-01

    We have computed the gravitational wave emission arising from the coalescence of several close white dwarf binary systems. In order to do so, we have followed the evolution of such systems using a smoothed particle hydrodynamics code. Here we present some of the results obtained so far, paying special attention to the detectability of the emitted gravitational waves. Within this context, we show which could be the impact of individual merging episodes for LISA

  13. Comment on 'Late-time tails of a self-gravitating massless scalar field revisited'

    International Nuclear Information System (INIS)

    Szpak, Nikodem

    2009-01-01

    Bizon et al (2009 Class. Quantum Grav. 26 175006) discuss the power-law tail in the long-time evolution of a spherically symmetric self-gravitating massless scalar field in odd spatial dimensions. They derive explicit expressions for the leading-order asymptotics for solutions with small initial data by using formal series expansions. Unfortunately, this approach misses an interesting observation that the actual decay rate is a product of asymptotic cancellations occurring due to a special structure of the nonlinear terms. Here, we show that one can calculate the leading asymptotics more directly by recognizing the special structure and cancellations already on the level of the wave equation. (comments and replies)

  14. Optimal gravitational search algorithm for automatic generation control of interconnected power systems

    Directory of Open Access Journals (Sweden)

    Rabindra Kumar Sahu

    2014-09-01

    Full Text Available An attempt is made for the effective application of Gravitational Search Algorithm (GSA to optimize PI/PIDF controller parameters in Automatic Generation Control (AGC of interconnected power systems. Initially, comparison of several conventional objective functions reveals that ITAE yields better system performance. Then, the parameters of GSA technique are properly tuned and the GSA control parameters are proposed. The superiority of the proposed approach is demonstrated by comparing the results of some recently published techniques such as Differential Evolution (DE, Bacteria Foraging Optimization Algorithm (BFOA and Genetic Algorithm (GA. Additionally, sensitivity analysis is carried out that demonstrates the robustness of the optimized controller parameters to wide variations in operating loading condition and time constants of speed governor, turbine, tie-line power. Finally, the proposed approach is extended to a more realistic power system model by considering the physical constraints such as reheat turbine, Generation Rate Constraint (GRC and Governor Dead Band nonlinearity.

  15. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  16. Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries

    Science.gov (United States)

    Yagi, Kent; Yang, Huan

    2018-05-01

    The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have

  17. Gravitational Goldstone fields from affine gauge theory

    Science.gov (United States)

    Tresguerres, Romualdo; Mielke, Eckehard W.

    2000-08-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.

  18. Three-point statistics of cosmological stochastic gravitational waves

    International Nuclear Information System (INIS)

    Adshead, Peter; Lim, Eugene A.

    2010-01-01

    We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

  19. The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics

    International Nuclear Information System (INIS)

    Tremaine, Scott

    2003-01-01

    The gravitational N-body problem is to describe the evolution of an isolated system of N point masses interacting only through Newtonian gravitational forces. For N =2 the solution is due to Newton. For N =3 there is no general analytic solution, but the problem has occupied generations of illustrious physicists and mathematicians including Laplace, Lagrange, Gauss and Poincare, and inspired the modern subjects of nonlinear dynamics and chaos theory. The general gravitational N-body problem remains one of the oldest unsolved problems in physics. Many-body problems can be simpler than few-body problems, and many physicists have attempted to apply the methods of classical equilibrium statistical mechanics to the gravitational N-body problem for N >> 1. These applications have had only limited success, partly because the gravitational force is too strong at both small scales (the interparticle potential energy diverges) and large scales (energy is not extensive). Nevertheless, we now understand a rich variety of behaviour in large-N gravitating systems. These include the negative heat capacity of isolated, gravitationally bound systems, which is the basic reason why nuclear burning in the Sun is stable; Antonov's discovery that an isothermal, self-gravitating gas in a container is located at a saddle point, rather than a maximum, of the entropy when the gas is sufficiently dense and hence is unstable (the 'gravothermal catastrophe'); the process of core collapse, in which relaxation induces a self-similar evolution of the central core of the system towards (formally) infinite density in a finite time; and the remarkable phenomenon of gravothermal oscillations, in which the central density undergoes periodic oscillations by factors of a thousand or more on the relaxation timescale - but only if N ∼> 10 4 . The Gravitational Million-Body Problem is a monograph that describes our current understanding of the gravitational N-body problem. The authors have chosen to

  20. BOOK REVIEW: The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics

    Science.gov (United States)

    Heggie, D.; Hut, P.

    2003-10-01

    The gravitational N-body problem is to describe the evolution of an isolated system of N point masses interacting only through Newtonian gravitational forces. For N =2 the solution is due to Newton. For N =3 there is no general analytic solution, but the problem has occupied generations of illustrious physicists and mathematicians including Laplace, Lagrange, Gauss and Poincaré, and inspired the modern subjects of nonlinear dynamics and chaos theory. The general gravitational N-body problem remains one of the oldest unsolved problems in physics. Many-body problems can be simpler than few-body problems, and many physicists have attempted to apply the methods of classical equilibrium statistical mechanics to the gravitational N-body problem for N gg 1. These applications have had only limited success, partly because the gravitational force is too strong at both small scales (the interparticle potential energy diverges) and large scales (energy is not extensive). Nevertheless, we now understand a rich variety of behaviour in large-N gravitating systems. These include the negative heat capacity of isolated, gravitationally bound systems, which is the basic reason why nuclear burning in the Sun is stable; Antonov's discovery that an isothermal, self-gravitating gas in a container is located at a saddle point, rather than a maximum, of the entropy when the gas is sufficiently dense and hence is unstable (the 'gravothermal catastrophe'); the process of core collapse, in which relaxation induces a self-similar evolution of the central core of the system towards (formally) infinite density in a finite time; and the remarkable phenomenon of gravothermal oscillations, in which the central density undergoes periodic oscillations by factors of a thousand or more on the relaxation timescale - but only if N gtrsim 104. The Gravitational Million-Body Problem is a monograph that describes our current understanding of the gravitational N-body problem. The authors have chosen to

  1. Gravitational waves and antennas

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...

  2. Gravitation and spacetime

    CERN Document Server

    Ohanian, Hans C

    2013-01-01

    The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...

  3. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  4. Supersymmetry and gravitational duality

    International Nuclear Information System (INIS)

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-01-01

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  5. Cosmological N-body simulations with a tree code - Fluctuations in the linear and nonlinear regimes

    International Nuclear Information System (INIS)

    Suginohara, Tatsushi; Suto, Yasushi; Bouchet, F.R.; Hernquist, L.

    1991-01-01

    The evolution of gravitational systems is studied numerically in a cosmological context using a hierarchical tree algorithm with fully periodic boundary conditions. The simulations employ 262,144 particles, which are initially distributed according to scale-free power spectra. The subsequent evolution is followed in both flat and open universes. With this large number of particles, the discretized system can accurately model the linear phase. It is shown that the dynamics in the nonlinear regime depends on both the spectral index n and the density parameter Omega. In Omega = 1 universes, the evolution of the two-point correlation function Xi agrees well with similarity solutions for Xi greater than about 100 but its slope is steeper in open models with the same n. 28 refs

  6. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.

    1977-06-01

    A three-dimensional finite difference numerical methodology was developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity, selected such that the net angular momentum relative to the rotating frame is zero. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric toroids. For low thermal pressures, however, the collapsing cloud is unstable to initial perturbations. The fragmentation of protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to non-axisymmetric perturbations. The detailed evolution of the fragmenting toroid depends upon a non-dimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wavelengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into co-rotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  7. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.; Harlow, F.H.

    1978-01-01

    A three-dimensional finite difference numerical methodology has been developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high-speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric ellipsoids. For low thermal pressures, however, the collapsing cloud is unstable to perturbations. The resulting fragmentation of unstable protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to nonaxisymmetric perturbations. The detailed evolution of the fragmentation toroid depends upon a nondimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wave-lengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into corotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  8. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  9. Gravitational Waves: The Evidence Mounts

    Science.gov (United States)

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  10. Gravitation radiation observations

    OpenAIRE

    Glass, E. N.

    2017-01-01

    The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.

  11. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  12. Glitches and gravitational waves

    Indian Academy of Sciences (India)

    A M Srivastava

    2017-10-09

    Oct 9, 2017 ... We also discuss gravitational wave production due to rapidly changing ... efficient source of energy loss during the cooling of the neutron star. ..... [3] U S Gupta, R K Mohapatra, A M Srivastava and V K. Tiwari, Phys. Rev. D 82 ...

  13. Extragalactic Gravitational Collapse

    Science.gov (United States)

    Rees, Martin J.

    After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.

  14. Gravitational-Wave Astronomy

    Indian Academy of Sciences (India)

    Keywords. General relativity; gravitational waves; astrophysics; interferometry. Author Affiliations. P Ajith1 K G Arun2. LIGO Laboratory and Theoretical Astrophysics California Institute of Technology MS 18-34, Pasadena CA 91125, USA. Chennai Mathematical Institute Plot H1, SIPCOT IT Park Siruseri, Padur Post Chennai ...

  15. Gauge theory and gravitation

    International Nuclear Information System (INIS)

    Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu

    1983-01-01

    These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)

  16. Nonlinear Wave Propagation

    Science.gov (United States)

    2015-05-07

    associated with the lattice background; the nonlinearity is derived from the inclusion of cubic nonlinearity. Often the background potential is periodic...dispersion branch we can find discrete evolution equations for the envelope associated with the lattice NLS equation (1) by looking for solutions of...spatial operator in the above NLS equation can be elliptic, hyperbolic or parabolic . We remark that further reduction is possible by going into a moving

  17. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  18. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  19. Using the HHT to Search for Gravitational Waves

    Science.gov (United States)

    Camp, Jordan

    2008-01-01

    Gravitational waves are a consequence of Einstein's theory of general relativity applied to the motion of very dense and massive objects such as black holes and neutron stars. Their detection will reveal a wealth of information about these mysterious objects that cannot be obtained with electromagnetic probes. Two projects are underway to attempt the detection of gravitational waves: NASA's Laser Interferometer Space Antenna (LISA), a space based mission being designed to search for waves from supermassive black holes at the centers of galaxies, and the NSF's Laser Interferometer Gravitational Wave Observatory (LIGO), a ground based facility that is now searching for waves from supernovae. pulsars, and the coalescence of black hole and neutron star systems. Because general relativity is an inherently non-linear theory, many of the predicted source waveforms show strong frequency modulation. In addition, the LIGO and LISA detectors are highly sensitive devices that produce a variety of non-linear transient noise features. Thus the unique capabilities of the HHT. the extraction of intrawave modulation and the characterization of non-linear and non-stationary signals, have a natural application to both signal detection and experimental characterization of the detectors. In this talk I will give an overview of the status of the field. including some of the expected sources of gravitational waves, and I will also describe the LISA and LIGO detectors. Then I will describe some applications of the HHT to waveform detection and detector noise characterization.

  20. Projective relativity, cosmology and gravitation

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation

  1. Gravitational waves emitted by extrasolar planetary systems

    International Nuclear Information System (INIS)

    Berti, E.; Ferrari, V.

    2001-01-01

    The recently discovered Extrasolar Planetary Systems (EPS's) are potentially interesting sources of gravitational waves, since they are very close to Earth (at distances ∼ 10 pc), and their orbital features and positions in the sky are quite well known. As a first estimate, we compute the orbital emission of these systems using the quadrupole formula. Then we show that, in principle, the orbiting planet could resonantly excite the quasi-normal modes of the central star. We use the general-relativistic theory of stellar pulsations to estimate the effects of such a resonance on the gravitational-wave emission of the system. We also consider radiation-reaction effects on the orbital evolution, and give upper limits on the timescales required for a planet to get off-resonance. (author)

  2. Gravitational vacuum and energy release in microworld

    International Nuclear Information System (INIS)

    Mel'nikov, V.N.; Nikolaev, Yu.M.; Stanyukovich, K.P.

    1981-01-01

    It is shown that gravitati.onal interaction can be connected with the processes of energy release in microworld. Suggested is a planckeon model within the frames of which gradual production of the observed substance of the Universe during the whole evolution is explained. Burst processes in nuclei of the Galaxy are explained. It is concluded that the theory of gravitational vacuum creates preconditions for developing the general theory of the field explaining the basic peculiarities of the micro- and macroworld, reveals significant applications in the physics of elementary particles and atomic nucleus. The process of 235 U fission is considered for testing the hypothesis that the coefficient of energy release depends on the nature of the reaction in different processes of energy release in the micro- and macroworld [ru

  3. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  4. First VESF School on Advanced Detectors for Gravitational Waves

    CERN Document Server

    Advanced Interferometers and the Search for Gravitational Waves

    2014-01-01

    The search for gravitational radiation with optical interferometers is gaining momentum worldwide. Beside the VIRGO and GEO gravitational wave observatories in Europe and the two LIGOs in the United States, which have operated successfully during the past decade, further observatories are being completed (KAGRA in Japan) or planned (ILIGO in India). The sensitivity of the current observatories, although spectacular, has not allowed direct discovery of gravitational waves. The advanced detectors (Advanced LIGO and Advanced Virgo), at present in the development phase, will improve sensitivity by a factor of 10, probing the universe up to 200 Mpc for signal from inspiraling binary compact stars. This book covers all experimental aspects of the search for gravitational radiation with optical interferometers. Every facet of the technological development underlying the evolution of advanced interferometers is thoroughly described, from configuration to optics and coatings, and from thermal compensation to suspensio...

  5. Cosmic matter-antimatter asymmetry and gravitational force

    Science.gov (United States)

    Hsu, J. P.

    1980-01-01

    Cosmic matter-antimatter asymmetry due to the gravitational interaction alone is discussed, considering the gravitational coupling of fermion matter related to the Yang-Mills (1954) gauge symmetry with the unique generalization of the four-dimensional Poincare group. Attention is given to the case of weak static fields which determines the space-time metric where only large source terms are retained. In addition, considering lowest-order Feynman diagrams, there are presented gravitational potential energies between fermions, between antifermions, and between a fermion and an antifermion. It is concluded that the gravitational force between matter is different from that between antimatter; implications from this concerning the evolution of the universe are discussed.

  6. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  7. Global gravitational anomalies

    International Nuclear Information System (INIS)

    Witten, E.

    1985-01-01

    A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)

  8. Gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Nieto, M.M.

    1985-01-01

    Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references

  9. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  10. Spacetime and gravitation.

    Science.gov (United States)

    Kopczyński, W.; Trautman, A.

    This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.

  11. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  12. Bimetric Machian gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Goldoni, R

    1980-11-22

    A bimetric theory of gravitation within a Machian framework is developed on the basis of considerations which are completely divorced from Newton's theory. The theory is assumed to hold in any conceivable cosmos and possesses the Machian properties of being singular in the absence of matter and of explicitly incorporating the idea that properties of space-time are determined not only by local matter, but also by the average distribution of cosmological matter.

  13. Gravitation, Symmetry and Undergraduates

    Science.gov (United States)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  14. Gravitational field mass

    International Nuclear Information System (INIS)

    Penrose, R.

    1986-01-01

    The author's definition for the mass-momentum/angular momentum surrounded by a spacelike 2-surface with S/sup 2/ topology is presented. This definition is motivated by some ideas from twistor theory in relation to linearized gravitational theory. The status of this definition is examined in relation to many examples which have been worked out. The reason for introducing a slight modification of the original definition is also presented

  15. General Relativity and Gravitation

    Science.gov (United States)

    Ehlers, J.; Murdin, P.

    2000-11-01

    The General Theory of Relativity (GR), created by Albert Einstein between 1907 and 1915, is a theory both of gravitation and of spacetime structure. It is based on the assumption that matter, via its energy-momentum, interacts with the metric of spacetime, which is considered (in contrast to Newtonian physics and SPECIAL RELATIVITY) as a dynamical field having degrees of freedom of its own (GRAVI...

  16. Fivebrane gravitational anomalies

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie

    2000-01-01

    Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten

  17. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunqi; Gong, Yungui [School of Physics, Huazhong University of Science and Technology,Wuhan, Hubei 430074 (China); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy, Shanghai Jiao Tong University,Shanghai 200240 (China)

    2016-02-17

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U(1) gauge field. We start with an asymptotic Anti-de-Sitter(AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T{sub c}, the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  18. Source modelling at the dawn of gravitational-wave astronomy

    Science.gov (United States)

    Gerosa, Davide

    2016-09-01

    The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary

  19. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  20. THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Wolstenhulme, Richard; Bonvin, Camille [Kavli Institute for Cosmology Cambridge and Institute of Astronomy, Madingley Road, Cambridge CB3 OHA (United Kingdom); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)

    2015-05-10

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc. Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.

  1. Forward modeling of space-borne gravitational wave detectors

    International Nuclear Information System (INIS)

    Rubbo, Louis J.; Cornish, Neil J.; Poujade, Olivier

    2004-01-01

    Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to 20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground-based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction

  2. Gravitational physics of stellar and galactic systems

    International Nuclear Information System (INIS)

    Saslaw, W.C.

    1985-01-01

    The book concerns the gravitational interactions and evolution of astronomical systems on all scales, and is aimed at the graduate student of physics and astronomy. The text is divided into four parts, and each describes areas of the subject in order of decreasing symmetry. The four parts include: idealized homogeneous systems-basic ideas and gentle relaxation; infinite inhomogeneous systems and galaxy clustering; finite spherical systems including clusters of galaxies; galactic nuclei and globular clusters; and finite flattened systems and galaxies. (U.K.)

  3. Probing Positron Gravitation at HERA

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2015-07-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  4. Probing Positron Gravitation at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn

    2015-07-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  5. Gravitating discs around black holes

    International Nuclear Information System (INIS)

    Karas, V; Hure, J-M; Semerak, O

    2004-01-01

    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)

  6. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  7. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  8. Gravitational Physics Research

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  9. Mode coupling in the nonlinear response of black holes

    International Nuclear Information System (INIS)

    Zlochower, Yosef; Gomez, Roberto; Husa, Sascha; Lehner, Luis; Winicour, Jeffrey

    2003-01-01

    We study the properties of the outgoing gravitational wave produced when a nonspinning black hole is excited by an ingoing gravitational wave. Simulations using a numerical code for solving Einstein's equations allow the study to be extended from the linearized approximation, where the system is treated as a perturbed Schwarzschild black hole, to the fully nonlinear regime. Several nonlinear features are found which bear importance to the data analysis of gravitational waves. When compared to the results obtained in the linearized approximation, we observe large phase shifts, a stronger than linear generation of gravitational wave output and considerable generation of radiation in polarization states which are not found in the linearized approximation. In terms of a spherical harmonic decomposition, the nonlinear properties of the harmonic amplitudes have simple scaling properties which offer an economical way to catalog the details of the waves produced in such black hole processes

  10. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  11. Gravitational radiation from dust

    International Nuclear Information System (INIS)

    Isaacson, R.A.; Welling, J.S.; Winicour, J.

    1985-01-01

    A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems

  12. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  13. Superstatistics and Gravitation

    Directory of Open Access Journals (Sweden)

    Octavio Obregón

    2010-09-01

    Full Text Available We suggest to consider the spacetime as a non-equilibrium system with a long-term stationary state that possess as a spatio-temporally fluctuating quantity ß . These systems can be described by a superposition of several statistics, superstatistics. We propose a Gamma distribution for f(ß that depends on a parameter ρ1. By means of it the corresponding entropy is calculated, ρ1 is identified with the probability corresponding to this model. A generalized Newton’s law of gravitation is then obtained following the entropic force formulation. We discuss some of the difficulties to try to get an associated theory of gravity.

  14. The instability of nonlinear surface waves in an electrified liquid jet

    International Nuclear Information System (INIS)

    Moatimid, Galal M

    2009-01-01

    We investigate the weakly nonlinear stability of surface waves of a liquid jet. In this work, the liquids are uniformly streaming through two porous media and the gravitational effects are neglected. The system is acted upon by a uniform tangential electric field, that is parallel to the jet axis. The equations of motion are linearly treated and solved in the light of nonlinear boundary conditions. Therefore, the boundary-value problem leads to a nonlinear characteristic second-order differential equation. This characterized equation has a complex nature. The nonlinearity is kept up to the third degree. It is used to judge the behavior of the surface evolution. According to the linear stability theory, we derive the dispersion relation that accounts for the growth waves. The stability criterion is discussed analytically and a stability picture is identified for a chosen sample system. Several special cases are recovered upon appropriate data choices. In order to derive the Ginsburg-Landau equation for the general case, in the nonlinear approach, we used the method of multiple timescales with the aid of the Taylor expansion. This equation describes the competition between nonlinearity and the linear dispersion relation. As a special case for non-porous media where there is no streaming, we obtained the well-known nonlinear Schroedinger equation as it has been derived by others. The stability criteria are expressed theoretically in terms of various parameters of the problem. Stability diagrams are obtained for a set of physical parameters. We found new instability regions in the parameter space. These regions are due to the nonlinear effects.

  15. Weak gravitational lensing as a method to constrain unstable dark matter

    International Nuclear Information System (INIS)

    Wang Meiyu; Zentner, Andrew R.

    2010-01-01

    The nature of the dark matter remains a mystery. The possibility of an unstable dark matter particle decaying to invisible daughter particles has been explored many times in the past few decades. Meanwhile, weak gravitational lensing shear has gained a lot of attention as a probe of dark energy, though it was previously considered a dark matter probe. Weak lensing is a useful tool for constraining the stability of the dark matter. In the coming decade a number of large galaxy imaging surveys will be undertaken and will measure the statistics of cosmological weak lensing with unprecedented precision. Weak lensing statistics are sensitive to unstable dark matter in at least two ways. Dark matter decays alter the matter power spectrum and change the angular diameter distance-redshift relation. We show how measurements of weak lensing shear correlations may provide the most restrictive, model-independent constraints on the lifetime of unstable dark matter. Our results rely on assumptions regarding nonlinear evolution of density fluctuations in scenarios of unstable dark matter and one of our aims is to stimulate interest in theoretical work on nonlinear structure growth in unstable dark matter models.

  16. Gravitational wave background from reheating after hybrid inflation

    International Nuclear Information System (INIS)

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-01-01

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm

  17. General relativity: An introduction to the theory of the gravitational field

    International Nuclear Information System (INIS)

    Stephani, H.

    1985-01-01

    The entire treatment presented here is framed by questions which led to and now lead out of the general theory of relativity: can an absolute acceleration be defined meaningfully? Do gravitational effects propagate with infinite velocity as Newton required? Can the general theory correctly reflect the dynamics of the whole universe while consistently describing stellar evolution? Can a theory which presupposes measurement of properties of space through the interaction of matter be made compatible with a theory in which dimensions of the objects measured are so small that location loses meaning? The book gives the mathematics necessary to understand the theory and begins in Riemannian geometry. Contents, abridged: Foundations of Riemannian geometry. Foundations of Einstein's theory of gravitation. Linearised theory of gravitation, far fields and gravitational waves. Invariant characterisation of exact solutions. Gravitational collapse and black holes. Cosmology. Non-Einsteinian theories of gravitation. Index

  18. An upper limit on the stochastic gravitational-wave background of cosmological origin.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brand, J F J van den; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Van Den Broeck, C; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J-P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; Debra, D; Degallaix, J; Del Prete, M; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J-C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J-D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gobler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Sancho de la Jordana, L; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Krishnan, B; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Laval, M; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mackowski, J-M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Mossavi, K; Mours, B; Mowlowry, C; Mueller, G; Muhammad, D; Mühlen, H Zur; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pagliaroli, G; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameshwaraiah, V; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Pichot, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Punken, O; Punturo, M; Puppo, P; Putten, S van der; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radkins, H; Raffai, P; Raics, Z; Rainer, N; Rakhmanov, M; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Rehbein, H; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Rivera, B; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Russell, P; Ryan, K; Sakata, S; Salemi, F; Sandberg, V; Sannibale, V; Santamaría, L; Saraf, S; Sarin, P; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; van der Sluys, M V; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, A; Stein, L C; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Swinkels, B L; Szokoly, G P; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Terenzi, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Ugolini, D; Ulmen, J; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; van Veggel, A A; Veitch, J; Veitch, P; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J-Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Was, M; Weidner, A; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yvert, M; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2009-08-20

    A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.

  19. Turbulence of Weak Gravitational Waves in the Early Universe.

    Science.gov (United States)

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  20. The gravitational Schwinger effect and attenuation of gravitational waves

    Science.gov (United States)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  1. Titan's Gravitational Field

    Science.gov (United States)

    Schubert, G.; Anderson, J. D.

    2013-12-01

    Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.

  2. UCN gravitational spectrometer

    International Nuclear Information System (INIS)

    Kawabata, Yuji

    1988-01-01

    Concept design is carried out of two types of ultra cold neutron scallering equipment using the fall-focusing principle. One of the systems comprises a vertical gravitational spectrometer and the other includes a horizontal gravitation analyzer. A study is made of their performance and the following results are obtained. Fall-focusing type ultra cold neutron scattering equipment can achieve a high accuracy for measurement of energy and momentum. Compared with conventional neutron scattering systems, this type of equipment can use neutron very efficiently because scattered neutrons within a larger solid angle can be used. The maximum solid angle is nearly 4π and 2π for the vertical and horizontal type, respectively. Another feature is that the size of equipment can be reduced. In the present concept design, the equipment is spherical with a diameter of about 1 m, as compared with NESSIE which is 6.7 m in length and 4.85 m in height with about the same accuracy. Two horizontal analyzers and a vertical spectroscope are proposed. They are suitable for angle-dependent non-elastic scattering in the neutron velocity range of 6∼15 m/s, pure elastic scattering in the range of 4∼7 m/s, or angle-integration non-elastic scattering in the range of 4∼15 m/s. (N.K.)

  3. General Relativity and Gravitation

    Science.gov (United States)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  4. On geometrized gravitation theories

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe

  5. Gravitating lepton bag model

    International Nuclear Information System (INIS)

    Burinskii, A.

    2015-01-01

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system

  6. Gravitational Waves - New Perspectives

    International Nuclear Information System (INIS)

    Biesiada, M.

    1999-01-01

    Laser interferometric experiments planned for 2002 will open up a new window onto the Universe. The first part of the paper gives a brief intuitive introduction to gravity waves, detection techniques and enumeration of main astrophysical sources and frequency bands to which they contribute. Then two more specific issues are discussed concerning cosmological perspectives of gravity waves detection. First one is the problem of gravitational lensing of the signal from inspiralling NS-NS binaries. The magnitude of the so called magnification bias is estimated and found non-negligible for some quite realistic lens models, but strongly model-dependent. The second problem is connected with estimates of galactic and extragalactic parts of the stochastic background. The main conclusion from these two examples is that in so far as the cosmological payoff of gravitational wave detection would be high, we should substantially deepen our understanding of basic astrophysical properties of galaxies and their clusters (in terms of mass distribution) in order to draw clear cosmological conclusions. (author)

  7. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  8. Nonlinear realization of general covariance group

    International Nuclear Information System (INIS)

    Hamamoto, Shinji

    1979-01-01

    The structure of the theory resulting from the nonlinear realization of general covariance group is analysed. We discuss the general form of free Lagrangian for Goldstone fields, and propose as a special choice one reasonable form which is shown to describe a gravitational theory with massless tensor graviton and massive vector tordion. (author)

  9. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions

    International Nuclear Information System (INIS)

    Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.

    1979-01-01

    Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given

  10. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  11. Some problems of modern gravitation theory

    International Nuclear Information System (INIS)

    Markov, M.A.

    1984-01-01

    Possible role of gravitation in high-energy physics and cosmology is under study. A problem of the limiting elementary particle mass is considered. Maximum value of the elementary partjcle mass is chosen to be msub(p)=(h/2πc/kappa)sup(1/2) approximately equal to 10 -5 g. The presented combination of universal constants is called the Plank mass, which is considered as possible characteristics of real physical objects called ''maximons''. These superheavy elementary particles may play an important part in the Universe evolution. Emphasis is paid to the scenario of the Universe evolution, according to which maximons are formed just in the first moments of the Universe expansion, and, then, form a normal substance interacting with each other. Reasons confirming the oscillating Universe model are presented

  12. On the gravitational radiation formula

    International Nuclear Information System (INIS)

    Schaefer, G.; Dehnen, H.

    1980-01-01

    For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)

  13. To theory of gravitational interaction

    OpenAIRE

    Minkevich, A. V.

    2008-01-01

    Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.

  14. Gravitational Casimir–Polder effect

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2017-04-01

    Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  15. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  16. Laboratory generation of gravitational waves

    International Nuclear Information System (INIS)

    Pinto, I.M.; Rotoli, G.

    1988-01-01

    The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation

  17. The gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs

  18. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  19. Critical Effects in Gravitational Collapse

    International Nuclear Information System (INIS)

    Chmaj, T.

    2000-01-01

    The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole

  20. Conservation laws and gravitational radiation

    International Nuclear Information System (INIS)

    Rastall, P.

    1977-01-01

    A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)

  1. Vignettes in Gravitation and Cosmology

    CERN Document Server

    Sriramkumar, L

    2012-01-01

    This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.

  2. Gravitational radiation and the validity of general relativity

    International Nuclear Information System (INIS)

    Will, C.M.

    2001-01-01

    The regular observation of gravitational radiation by a world-wide network of resonant and laser-interferometric detectors will usher in a new form of astronomy. At the same time, it will provide new and interesting tests of general relativity. We review the current empirical status of general relativity, and discuss three areas in which direct observation of gravitational radiation could test the theory further: polarization of the waves, speed of the waves, and back-reaction of the waves on the evolution of the source. (author)

  3. The True Gravitational Degrees Of Freedom

    International Nuclear Information System (INIS)

    Murchadha, N. o

    2011-01-01

    More than 50 years ago it was realized that General Relativity could be expressed in Hamiltonian form. Unfortunately, just like electromagnetism and Yang-Mills theory, the Einstein equations split into evolution equations and constraints which complicates matters. The 4 constraints are expressions of the gauge freedom of the theory, general covariance. One can cleanly pose initial data for the gravitational field, but this data has to satisfy the constraints. To find the independent degrees of freedom, one needs to factor the initial data by the constraints. There are many ways of doing this. I can do so in such a way as to implement the model suggested by Poincare for a well-posed dynamical system: Pick a configuration space and give the free initial data as a point of the configuration space and a tangent vector at the same point. Now, the evolution equations should give a unique curve in the same configuration space. This gives a natural definition of what I call the true gravitational degrees of freedom. (author)

  4. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, Istvan

    1997-01-01

    If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave

  5. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  6. Gravitational wave experiments

    CERN Document Server

    Hamilton, W O

    1993-01-01

    There were three oral sessions and one poster session for Workshop C1 on Gravitational Wave Experiments. There was also an informal experimental roundtable held one after- noon. The first two oral sessions were devoted mainly to progress reports from various interferometric and bar detector groups. A total of 15 papers were presented in these two sessions. The third session of Workshop C1 was devoted primarily to theoretical and experimental investigations associated with the proposed interferometric detectors. Ten papers were presented in this session. In addition, there were a total of 13 papers presented in the poster session. There was some overlap between the presentations in the third oral session and the posters since only two of the serious posters were devoted to technology not pertinent to interferometers. In general, the papers showed the increasing maturity of the experimental aspects of the field since most presented the results of completed investigations rather than making promises of wonderf...

  7. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  8. Atomic and gravitational clocks

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous-whose rates are related by a non-constant function βsub(a)-is demonstrated. The cosmological character of βsub(a) is also discussed. (author)

  9. Solar gravitational redshift

    International Nuclear Information System (INIS)

    Lopresto, J.C.; Chapman, R.D.

    1980-01-01

    Wavelengths of solar spectrum lines should be shifted toward the red by the Sun's gravitational field as predicted by metric theories of gravity according to the principle of equivalence. Photographic wavelengths of 738 solar Fe 1 lines and their corresponding laboratory wavelengths have been studied. The measured solar wavelength minus the laboratory wavelength (Δlambdasub(observed)) averaged for the strong lines agrees well with the theoretically predicted shift (Δlambdasub(theoretical)). Studies show that the departures depend on line strength. No dependence of the departures on wavelength was found within the existing data. By studying strong lines over a wide spectral range, velocity shifts caused by the complex motions in the solar atmosphere seem to affect the results in a minimal fashion. (orig.)

  10. Observations of gravitational lenses

    International Nuclear Information System (INIS)

    Fort, B.

    1990-01-01

    During the last tow years a burst of results has come from radio and optical surveys of ''galaxy lenses'' (where the main deflector is a galaxy). These are reviewed. On the other hand, in September 1985 we pointed out a very strange blue ring-like structure on a Charge-Coupled Device image of the cluster of galaxies Abell 370. This turned out to be Einstein arcs discovery. Following this discovery, new observational results have shown that many rich clusters of galaxies can produce numerous arclets: tangentially distorted images of an extremely faint galaxy population probably located at redshift larger than 1. This new class of gravitational lenses proves to be an important observational topic and this will be discussed in the second part of the paper. (author)

  11. Feynman Lectures on Gravitation

    International Nuclear Information System (INIS)

    Borcherds, P

    2003-01-01

    In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics. However, the book was written 40

  12. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  13. The structure of electromagnetism and gravitation

    International Nuclear Information System (INIS)

    Pommaret, J.F.

    1983-01-01

    The formalisms of gauge theory and continuum mechanics linked to the construction of the non-linear Spencer sequences in the formal theory of Lie pseudogroups give results showing that a contradiction exists between the two theories quoted above as the Yang-Mills ''potentials'' of physicists are sections of the first Spencer vector bundle, coming from connections, while the ''fields'' of mechanicians are sections of the same bundle, not coming from connections. The purpose of this Note is to explain this contradiction by showing that the electromagnetic model of gauge theory must be modified. Maxwell and Einstein equations then automatically appear in this differential framework that unifies electromagnetism and gravitation. These conclusions are imposed, not by the choice of physical assumptions, but by the use of a new mathematical tool [fr

  14. New exact travelling wave solutions of nonlinear physical models

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Cevikel, Adem C.

    2009-01-01

    In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The ((G ' )/G )-expansion method presents a wider applicability for handling nonlinear wave equations.

  15. Spinor Field Nonlinearity and Space-Time Geometry

    Science.gov (United States)

    Saha, Bijan

    2018-03-01

    , though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI( LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.

  16. A most useful manifestation of relativity: gravitational lenses

    International Nuclear Information System (INIS)

    Falco, Emilio E

    2005-01-01

    Gravitational lenses are scarce but extraordinary phenomena that yield a very high rate of return on observational investment. Given their scarcity, it is very impressive that since their discovery in the extragalactic realm in 1979, they have had such an enormous impact on our knowledge of the universe. Gravitational lensing is a manifestation of general relativity that has contributed to a great variety of astrophysical and cosmological studies. In the weak-field limit, lensing studies are based on well-established physics and thus offer a direct approach to study many of the currently pressing problems of astrophysics. Examples of these are the significance of dark matter and the age and size of the universe. I present a brief history of gravitational lensing and describe recent developments in fields such as searches for dark matter and studies of galaxy evolution and cosmology. The approach is non-specialized and emphasizes observational results, to reach the widest possible audience

  17. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  18. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  19. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  20. Gravitational waves: A challenge to theoretical astrophysics

    International Nuclear Information System (INIS)

    Ferrari, V.; Miller, J.C.; Rezzolla, L.

    2001-01-01

    During the 20th century, new windows on the Universe have been opened by the advent of radio astronomy and X-ray astronomy and these, together with the great advances in optical astronomy (both from the Earth's surface and from space), have revolutionized our understanding of the Universe and the way in which it works. Now, as we enter the twenty-first century, we await the opening of another new window - that provided by gravitational waves - which will allow us a closer 'view' of black holes and neutron stars, as well as providing a new probe of processes in the very early Universe. This is an exciting prospect but one which poses a serious challenge to theoretical astrophysics. The new generation of detectors (both laser interferometers and resonant detectors) require input from theoreticians regarding the possible mechanisms for generation of gravitational waves by astronomical sources and predictions of the waveforms produced. This input is essential in order both to tune the parameters of the detectors and to provide templates for use in extracting the tiny gravitational-wave signals from the ambient noise. Also, we need to understand how gravitational wave data, when it arrives, could be used in order to obtain information about the nature of the sources and about their dynamical evolution as well as, perhaps, giving deeper insights into some questions of fundamental physics by means of probing the state of matter under the extreme conditions of energy and pressure found in the interior of neutron stars and in the very early universe. This can provide opportunities beyond the capabilities of experiments carried out in terrestrial laboratories. For a week at the beginning of June 2000, 106 scientists from 28 countries came to Trieste for a meeting whose aim was to present a survey of the current status of the response of theoreticians to the challenge described above, as well as including progress reports on the different types of detector. The meeting was a

  1. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    Science.gov (United States)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  2. Nonlinear Dynamics of the Cosmic Neutrino Background

    Science.gov (United States)

    Inman, Derek

    At least two of the three neutrino species are known to be massive, but their exact masses are currently unknown. Cosmic neutrinos decoupled from the rest of the primordial plasma early on when the Universe was over a billion times hotter than it is today. These relic particles, which have cooled and are now non-relativistic, constitute the Cosmic Neutrino Background and permeate the Universe. While they are not observable directly, their presence can be inferred by measuring the suppression of the matter power spectrum. This suppression is a linear effect caused by the large thermal velocities of neutrinos, which prevent them from collapsing gravitationally on small scales. Unfortunately, it is difficult to measure because of degeneracies with other cosmological parameters and biases arising from the fact that we typically observe point-like galaxies rather than a continous matter field. It is therefore important to look for new effects beyond linear suppression that may be more sensitive to neutrinos. This thesis contributes to the understanding of the nonlinear dynamics of the cosmological neutrino background in the following ways: (i) the development of a new injection scheme for neutrinos in cosmological N-body simulations which circumvents many issues associated with simulating neutrinos at large redshifts, (ii) the numerical study of the relative velocity field between cold dark matter and neutrinos including its reconstruction from density fields, (iii) the theoretical description of neutrinos as a dispersive fluid and its use in modelling the nonlinear evolution of the neutrino density power spectrum, (iv) the derivation of the dipole correlation function using linear response which allows for the Fermi-Dirac velocity distribution to be properly included, and (v) the numerical study and detection of the dipole correlation function in the TianNu simulation. In totality, this thesis is a comprehensive study of neutrino density and velocity fields that may

  3. Singularities and horizons in the collisions of gravitational waves

    International Nuclear Information System (INIS)

    Yurtsever, U.H.

    1989-01-01

    This thesis presents a study of the dynamical, nonlinear interaction of colliding gravitational waves, as described by classical general relativity. In the work on the collisions of exactly-plane waves, it is shown that Killing horizons in any plane-symmetric spacetime are unstable against small plane-symmetric perturbations. It is thus concluded that the Killing-Cauchy horizons produced by the collisions of some exactly plane gravitational waves are nongeneric, and the generic initial data for the colliding plane waves always produce pure spacetime singularities without such horizons. This conclusion is later proved rigorously (using the full nonlinear theory rather than perturbation theory), in connection with an analysis of the asymptotic singularity structure of a general colliding plane-wave spacetime. This analysis also proves that asymptotically the singularities created by colliding plane waves are of inhomogeneous-Kasner type; the asymptotic Kasner axes and exponents of these singularities in general depend on the spatial coordinate that runs tangentially to the singularity in the non-plane-symmetric direction. In the work on collisions of almost-plane gravitational waves, first some general properties of single almost-plane gravitational-wave spacetimes are explored. It is shown that, by contrast with an exact plane wave, an almost-plane gravitational wave cannot have a propagation direction that is Killing; i.e., it must diffract and disperse as it propagates. It is also shown that an almost-plane wave cannot be precisely sandwiched between two null wave-fronts; i.e., it must leave behind tails in the spacetime region through which is passes

  4. Gravitation. [Book on general relativity

    Science.gov (United States)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  5. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  6. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  7. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  8. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  9. Gravitational entropies in LTB dust models

    International Nuclear Information System (INIS)

    Sussman, Roberto A; Larena, Julien

    2014-01-01

    We consider generic Lemaître–Tolman–Bondi (LTB) dust models to probe the gravitational entropy proposals of Clifton, Ellis and Tavakol (CET) and of Hosoya and Buchert (HB). We also consider a variant of the HB proposal based on a suitable quasi-local scalar weighted average. We show that the conditions for entropy growth for all proposals are directly related to a negative correlation of similar fluctuations of the energy density and Hubble scalar. While this correlation is evaluated locally for the CET proposal, it must be evaluated in a non-local domain dependent manner for the two HB proposals. By looking at the fulfilment of these conditions at the relevant asymptotic limits we are able to provide a well grounded qualitative description of the full time evolution and radial asymptotic scaling of the three entropies in generic models. The following rigorous analytic results are obtained for the three proposals: (i) entropy grows when the density growing mode is dominant, (ii) all ever-expanding hyperbolic models reach a stable terminal equilibrium characterized by an inhomogeneous entropy maximum in their late time evolution; (iii) regions with decaying modes and collapsing elliptic models exhibit unstable equilibria associated with an entropy minimum (iv) near singularities the CET entropy diverges while the HB entropies converge; (v) the CET entropy converges for all models in the radial asymptotic range, whereas the HB entropies only converge for models asymptotic to a Friedmann–Lemaître–Robertson–Walker background. The fact that different independent proposals yield fairly similar conditions for entropy production, time evolution and radial scaling in generic LTB models seems to suggest that their common notion of a ‘gravitational entropy’ may be a theoretically robust concept applicable to more general spacetimes. (paper)

  10. Weakly nonlinear electron plasma waves in collisional plasmas

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.

    1986-01-01

    The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...

  11. Blandford's argument: The strongest continuous gravitational wave signal

    International Nuclear Information System (INIS)

    Knispel, Benjamin; Allen, Bruce

    2008-01-01

    For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an old argument of Blandford states that the expected gravitational-wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars that also emit electromagnetic radiation. We restate these arguments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our galaxy. The simulations allow us to test the assumptions of Blandford's argument on a realistic model of our galaxy. We show that the two key assumptions of the argument (two dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension D of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational-wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational-wave amplitude from neutron stars by a factor of 6 for realistic values of ellipticity.

  12. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  13. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  14. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  15. Stochastic backgrounds of gravitational waves

    International Nuclear Information System (INIS)

    Maggiore, M.

    2001-01-01

    We review the motivations for the search for stochastic backgrounds of gravitational waves and we compare the experimental sensitivities that can be reached in the near future with the existing bounds and with the theoretical predictions. (author)

  16. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  17. Highlights in gravitation and cosmology

    International Nuclear Information System (INIS)

    Iyer, B.R.; Kembhavi, Ajit; Narlikar, J.V.; Vishveshwara, C.V.

    1988-01-01

    This book assesses research into gravitation and cosmology by examining the subject from various viewpoints: the classical and quantum pictures, along with the cosmological and astrophysical applications. There are 35 articles by experts of international standing. Each defines the state of the art and contains a concise summary of our present knowledge of a facet of gravitational physics. These edited papers are based on those first given at an international conference held in Goa, India at the end of 1987. The following broad areas are covered: classical relativity, quantum gravity, cosmology, black holes, compact objects, gravitational radiation and gravity experiments. In this volume there are also summaries of discussions on the following special topics: exact solutions of cosmological equations, mathematical aspects of general relativity, the early universe, and quantum gravity. For research workers in cosmology and gravitation this reference book provides a broad view of present achievements and current problems. (author)

  18. A new theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.

    1989-01-01

    The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs

  19. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, I.

    1998-01-01

    The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)

  20. Heuristic introduction to gravitational waves

    International Nuclear Information System (INIS)

    Sandberg, V.D.

    1982-01-01

    The purpose of this article is to provide a rough and somewhat heuristic theoretical background and introduction to gravitational radiation, its generation, and its detection based on Einstein's general theory of relativity

  1. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  2. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  3. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    Science.gov (United States)

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  4. General relativity and gravitation, 1989

    International Nuclear Information System (INIS)

    Ashby, N.; Bartlett, D.F.; Wyss, W.

    1990-01-01

    This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)

  5. Nuclear Quantum Gravitation - The Correct Theory

    Science.gov (United States)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  6. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko, E-mail: matsui.yuka@f.mbox.nagoya-u.ac.jp, E-mail: horiguchi.kouichirou@h.mbox.nagoya-u.ac.jp, E-mail: nitta.daisuke@g.mbox.nagoya-u.ac.jp, E-mail: kuroyanagi.sachiko@f.mbox.nagoya-u.ac.jp [Department of physics and astrophysics, Nagoya University, Nagoya, 464-8602 (Japan)

    2016-11-01

    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.

  7. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    International Nuclear Information System (INIS)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko

    2016-01-01

    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.

  8. Uniqueness of exterior axisymmetric solution for a rotating charged body in the relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Karabut, P.V.; Chugreev, Yu.V.

    1989-01-01

    The relativistic theory of gravitation (RTG), which is constructed on the basis of Minkowski spacetime, the geometrization principle, and the notion of the gravitational field var-phi mn as a physical field in the spirit of Faraday and Maxwell, explains all known gravitational experiments and gives a new prediction for the evolution of the universe, collapse, etc. The RTG determines the structure of the gravitational field as a field possessing spins 2 and 0 and all conservation laws for energy, momentum, and angular momentum. An exact solution of the complete simultaneous system of equations of the relativistic theory of gravitation and Maxwell's equations is found in the axisymmetric case for an electrically charged rotating body. The uniqueness of this solution is proved

  9. Periodic and solitary wave solutions of cubic–quintic nonlinear ...

    Indian Academy of Sciences (India)

    Hence, most of the real nonlinear physical equations possess variable ... evolution of the system with time and second term represents the convective flux term. The ... Travelling wave solutions of nonlinear reaction-diffusion equations are.

  10. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  11. Black Hole Coalescence: The Gravitational Wave Driven Phase

    Science.gov (United States)

    Schnittman, Jeremy D.

    2011-01-01

    When two supermassive black holes (SMBHS) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.

  12. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  13. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    International Nuclear Information System (INIS)

    Cordes, J. M.; Jenet, F. A.

    2012-01-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  14. Detecting Gravitational Wave Memory with Pulsar Timing

    Science.gov (United States)

    Cordes, J. M.; Jenet, F. A.

    2012-06-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  15. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Krommes

    2009-05-19

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  16. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2009-01-01

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-? theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  17. Certain problems in the current theory of gravitation

    Science.gov (United States)

    Markov, M. A.

    1984-04-01

    A number of problems (considered by the author to be the most significant) connected with the possible role of gravitation in the elementary-particle physics and cosmology are examined. Particular attention is given to the problems of self-energy, the limit mass of elementary particles, maximons and the evolution of the universe, the origin of the universe, and the physical meaning of Planck's length.

  18. Entropy in Collisionless Self-gravitating Systems

    Science.gov (United States)

    Barnes, Eric; Williams, L.

    2010-01-01

    Collisionless systems, like simulated dark matter halos or gas-less elliptical galaxies, often times have properties suggesting that a common physical principle controls their evolution. For example, N-body simulations of dark matter halos present nearly scale-free density/velocity-cubed profiles. In an attempt to understand the origins of such relationships, we adopt a thermodynamics approach. While it is well-known that self-gravitating systems do not have physically realizable thermal equilibrium configurations, we are interested in the behavior of entropy as mechanical equilibrium is acheived. We will discuss entropy production in these systems from a kinetic theory point of view. This material is based upon work supported by the National Aeronautics and Space Administration under grant NNX07AG86G issued through the Science Mission Directorate.

  19. Gravitational collapse and the vacuum energy

    International Nuclear Information System (INIS)

    Campos, M

    2014-01-01

    To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.

  20. Asymptotic safety, singularities, and gravitational collapse

    International Nuclear Information System (INIS)

    Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz

    2011-01-01

    Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.

  1. The matter-wave laser interferometer gravitation antenna (MIGA: New perspectives for fundamental physics and geosciences

    Directory of Open Access Journals (Sweden)

    Canuel B.

    2014-01-01

    Full Text Available We are building a hybrid detector of new concept that couples laser and matter-wave interferometry to study sub Hertz variations of the strain tensor of space-time and gravitation. Using a set of atomic interferometers simultaneously manipulated by the resonant optical field of a 200 m cavity, the MIGA instrument will allow the monitoring of the evolution of the gravitational field at unprecedented sensitivity, which will be exploited both for geophysical studies and for Gravitational Waves (GWs detection. This new infrastructure will be embedded into the LSBB underground laboratory, ideally located away from major anthropogenic disturbances and benefitting from very low background noise.

  2. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    Science.gov (United States)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  3. Classical black holes: the nonlinear dynamics of curved spacetime.

    Science.gov (United States)

    Thorne, Kip S

    2012-08-03

    Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.

  4. On the Interpretation of Gravitational Corrections to Gauge Couplings

    CERN Document Server

    Ellis, John

    2012-01-01

    Several recent papers discuss gravitational corrections to gauge couplings that depend quadratically on the energy. In the framework of the background-field approach, these correspond in general to adding to the effective action terms quadratic in the field strength but with higher-order space-time derivatives. We observe that such terms can be removed by appropriate local field redefinitions, and do not contribute to physical scattering-matrix elements. We illustrate this observation in the context of open string theory, where the effective action includes, among other terms, the well-known Born-Infeld form of non-linear electrodynamics. We conclude that the quadratically energy-dependent gravitational corrections are \\emph{not} physical in the sense of contributing to the running of a physically-measurable gauge coupling, or of unifying couplings as in string theory.

  5. Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach

    International Nuclear Information System (INIS)

    Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R

    2015-01-01

    Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)

  6. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  7. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  8. A new geometrical gravitational theory

    International Nuclear Information System (INIS)

    Obata, T.; Chiba, J.; Oshima, H.

    1981-01-01

    A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)

  9. Modified entropic gravitation in superconductors

    International Nuclear Information System (INIS)

    Matos, Clovis Jacinto de

    2012-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  10. Gravitational waves from supernova matter

    International Nuclear Information System (INIS)

    Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M

    2010-01-01

    We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.

  11. Relic gravitational waves and cosmology

    International Nuclear Information System (INIS)

    Grishchuk, Leonid P

    2005-01-01

    The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)

  12. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried; Hofstä tter, Harald; Ketcheson, David I.; Koch, Othmar

    2016-01-01

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  13. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried

    2016-07-28

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  14. Nonlinear systems

    National Research Council Canada - National Science Library

    Drazin, P. G

    1992-01-01

    This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...

  15. Nonlinear analysis

    CERN Document Server

    Gasinski, Leszek

    2005-01-01

    Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.

  16. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  17. Post-Newtonian gravitational bremsstrahlung

    International Nuclear Information System (INIS)

    Turner, M.; Will, C.M.

    1978-01-01

    We present formulae and numerical results for the gravitational radiation emitted during a low-deflection encounter between two massive bodies (''gravitational bremsstrahlung''). Our results are valid through post-Newtonian order within general relativity. We discuss in detail the gravitational waveform (transverse-traceless part of the metric perturbation tensor), the toal luminosity and total emitted energy, the angular distribution of emitted energy (antenna pattern), and the frequency spectrum. We also present a method of ''boosting'' the accuracy of these quantities to post-3/2-Newtonian order. A numerical comparison of our results with those of Peters and of Kovacs and Thorne shows that the post-Newtonian method is reliable to better than 0.1% at v=0.1c, to a few percent at v=0.35c, and to 10--20% at v=0.5c. We also compare our results with those of Smarr

  18. Sparse representation of Gravitational Sound

    Science.gov (United States)

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  19. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  20. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    Science.gov (United States)

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.