Nonlinear Force-free Coronal Magnetic Stereoscopy
Energy Technology Data Exchange (ETDEWEB)
Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd, E-mail: chifu@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)
2017-03-01
Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO /HMI, SDO /AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.
Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.
2014-01-01
Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.
NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY
International Nuclear Information System (INIS)
Aschwanden, Markus J.
2013-01-01
We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of μ 2 = 2.°7 ± 1.°3 between the model field lines and observed loops, and an accuracy of ≈1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.
A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)
2014-10-15
An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4
A Non-Linear Force-Free Field Model for the Evolving Magnetic Structure of Solar Filaments
Mackay, Duncan H.; van Ballegooijen, A. A.
2009-12-01
In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.
International Nuclear Information System (INIS)
Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.
2012-01-01
We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20° × 20°. Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.
Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang
2014-05-01
Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Chaowei; Wu, S. T.; Hu, Qiang [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2014-05-10
Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.
Topological and statistical properties of nonlinear force-free fields
Mangalam, A.; Prasad, A.
2018-01-01
We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.
International Nuclear Information System (INIS)
Low, B.C.; Nakagawa, Y.
1975-01-01
A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined in detail, one evolving with rising and the other with descending field lines. It is shown that these two contrasting behaviors of the field lines correspond to sheared motions of their foot-points of quite different characters. The physical implications of these two examples of evolving force-free magnetic fields are discussed. (auth)
Energy buildup in sheared force-free magnetic fields
Wolfson, Richard; Low, Boon C.
1992-01-01
Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.
A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA
International Nuclear Information System (INIS)
Jiang Chaowei; Feng Xueshang; Xiang Changqing
2012-01-01
Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.
New approaches and solutions of the nonlinear force-free field
International Nuclear Information System (INIS)
Xie Baisong; Yin Xintao; Luo Xia
2006-01-01
New approaches to nonlinear force-free field equations are presented and new exact solutions are found analytically. Examples are given and some implications of the results to astrophysical solar plasmas as well as tokamak plasmas are discussed
Force-free magnetic fields - The magneto-frictional method
Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.
1986-01-01
The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.
THE INFLUENCE OF SPATIAL RESOLUTION ON NONLINEAR FORCE-FREE MODELING
Energy Technology Data Exchange (ETDEWEB)
DeRosa, M. L.; Schrijver, C. J. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St. B/252, Palo Alto, CA 94304 (United States); Wheatland, M. S.; Gilchrist, S. A. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Leka, K. D.; Barnes, G. [NorthWest Research Associates, 3380 Mitchell Ln., Boulder, CO 80301 (United States); Amari, T.; Canou, A. [CNRS, Centre de Physique Théorique de l’École Polytechnique, F-91128, Palaiseau Cedex (France); Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Valori, G. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Wiegelmann, T. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077, Göttingen (Germany); Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Régnier, S. [Department of Mathematics and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST (United Kingdom)
2015-10-01
The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/Solar Optical Telescope Spectro-Polarimeter scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-consistent results. The free energies of the resulting solutions generally trend higher with increasing resolution, while relative magnetic helicity values vary significantly between resolutions for all methods. All methods require changing the horizontal components, and for some methods also the vertical components, of the vector magnetogram boundary field in excess of nominal uncertainties in the data. The solutions produced by the various methods are significantly different at each resolution level. We continue to recommend verifying agreement between the modeled field lines and corresponding coronal loop images before any NLFFF model is used in a scientific setting.
A short model excitation of an asymmetric force free superconducting transmission line magnet
Energy Technology Data Exchange (ETDEWEB)
Wake, M.; Sato, H.; /KEK, Tsukuba; Carcagno, R.; Foster, W.; Hays, S.; Kashikhin, V.; Oleck, A.; Piekarz, H.; Rabehl, R,; /Fermilab
2005-09-01
A short model of asymmetric force free magnet with single beam aperture was tested at Fermilab together with the excitation test of VLHC transmission line magnet. The design concept of asymmetric force free superconducting magnet was verified by the test. The testing reached up to 104 kA current and no indication of force imbalance was observed. Since the model magnet length was only 10cm, A 0.75m model was constructed and tested at KEK with low current to ensure the validity of the design. The cool down and the excitation at KEK were also successful finding very small thermal contraction of the conductor and reasonable field homogeneity.
Energy Technology Data Exchange (ETDEWEB)
Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J.; DeRosa, M. L. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Wheatland, M. S.; Gilchrist, S. A. [Sydney Institute for Astronomy, School of Physics, University of Sydney (Australia)
2012-09-10
At present, many models of the coronal magnetic field rely on photospheric vector magnetograms, but these data have been shown to be problematic as the sole boundary information for nonlinear force-free field extrapolations. Magnetic fields in the corona manifest themselves in high-energy images (X-rays and EUV) in the shapes of coronal loops, providing an additional constraint that is not at present used as constraints in the computational domain, directly influencing the evolution of the model. This is in part due to the mathematical complications of incorporating such input into numerical models. Projection effects, confusion due to overlapping loops (the coronal plasma is optically thin), and the limited number of usable loops further complicate the use of information from coronal images. We develop and test a new algorithm to use images of coronal loops in the modeling of the solar coronal magnetic field. We first fit projected field lines with those of constant-{alpha} force-free fields to approximate the three-dimensional distribution of currents in the corona along a sparse set of trajectories. We then apply a Grad-Rubin-like iterative technique, which uses these trajectories as volume constraints on the values of {alpha}, to obtain a volume-filling nonlinear force-free model of the magnetic field, modifying a code and method presented by Wheatland. We thoroughly test the technique on known analytical and solar-like model magnetic fields previously used for comparing different extrapolation techniques and compare the results with those obtained by currently available methods relying only on the photospheric data. We conclude that we have developed a functioning method of modeling the coronal magnetic field by combining the line-of-sight component of the photospheric magnetic field with information from coronal images. Whereas we focus on the use of coronal loop information in combination with line-of-sight magnetograms, the method is readily extended to
International Nuclear Information System (INIS)
Malanushenko, A.; Schrijver, C. J.; DeRosa, M. L.; Wheatland, M. S.; Gilchrist, S. A.
2012-01-01
At present, many models of the coronal magnetic field rely on photospheric vector magnetograms, but these data have been shown to be problematic as the sole boundary information for nonlinear force-free field extrapolations. Magnetic fields in the corona manifest themselves in high-energy images (X-rays and EUV) in the shapes of coronal loops, providing an additional constraint that is not at present used as constraints in the computational domain, directly influencing the evolution of the model. This is in part due to the mathematical complications of incorporating such input into numerical models. Projection effects, confusion due to overlapping loops (the coronal plasma is optically thin), and the limited number of usable loops further complicate the use of information from coronal images. We develop and test a new algorithm to use images of coronal loops in the modeling of the solar coronal magnetic field. We first fit projected field lines with those of constant-α force-free fields to approximate the three-dimensional distribution of currents in the corona along a sparse set of trajectories. We then apply a Grad-Rubin-like iterative technique, which uses these trajectories as volume constraints on the values of α, to obtain a volume-filling nonlinear force-free model of the magnetic field, modifying a code and method presented by Wheatland. We thoroughly test the technique on known analytical and solar-like model magnetic fields previously used for comparing different extrapolation techniques and compare the results with those obtained by currently available methods relying only on the photospheric data. We conclude that we have developed a functioning method of modeling the coronal magnetic field by combining the line-of-sight component of the photospheric magnetic field with information from coronal images. Whereas we focus on the use of coronal loop information in combination with line-of-sight magnetograms, the method is readily extended to incorporate
Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections; TOPICAL
International Nuclear Information System (INIS)
G.S. Choe; C.Z. Cheng
2002-01-01
In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed
Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections
International Nuclear Information System (INIS)
Choe, G.S.; Cheng, C.Z.
2002-01-01
In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed
TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD
Energy Technology Data Exchange (ETDEWEB)
Thalmann, J. K.; Veronig, A.; Su, Y., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria)
2016-08-01
We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.
Magnetic energy dissipation in force-free jets
Choudhuri, Arnab Rai; Konigl, Arieh
1986-01-01
It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Force-free field inside a toroidal magnetic cloud
Czech Academy of Sciences Publication Activity Database
Romashets, E. P.; Vandas, Marek
2003-01-01
Roč. 30, č. 20 (2003), s. 2065, /SSC 8-1 - SSC 8-4/ ISSN 0094-8276 R&D Projects: GA AV ČR IBS1003006; GA ČR GA205/03/0953 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic clouds * toroid al flux rope * analytical solution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.422, year: 2003
Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.
1994-01-01
It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.
Steady state models for filamentary plasma structures associated with force free magnetic fields
International Nuclear Information System (INIS)
Marklund, G.
1978-05-01
This paper presents a model for filamentary plasma structures associated with force-free magnetic fields. A homogenous electric field parallel to the symmetry axis of the magnetic field is assumed. Under the influence of these fields, the plasma will drift radially inwards resulting in an accumulation of plasma in the central region. We assume recombination losses to keep the central plasma density at a finite value, and the recombined plasma i.e. the neutrals to diffuse radially outwards. Plasma density and some neutral gas density distributions for a steady state situation are calculated for various cases
Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field
Energy Technology Data Exchange (ETDEWEB)
Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)
2017-05-01
The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.
Energy Technology Data Exchange (ETDEWEB)
Guo, Y.; Keppens, R. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Xia, C. [Centre for mathematical Plasma-Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium); Valori, G., E-mail: guoyang@nju.edu.cn [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)
2016-09-10
We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov–Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax–Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.
EFFECT OF POLARIMETRIC NOISE ON THE ESTIMATION OF TWIST AND MAGNETIC ENERGY OF FORCE-FREE FIELDS
International Nuclear Information System (INIS)
Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant
2009-01-01
The force-free parameter α, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of α for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global α value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant α and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10 -3 of the continuum intensity (I c ) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global α and magnetic energy values. The results show that (1) the sign of α is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition.
International Nuclear Information System (INIS)
Pfirsch, D.; Sudan, R.N.
1996-01-01
It is observed that the recently developed magnetic flux-averaged magnetohydrodynamics (AMHD) [Phys. Plasmas 1, 2488 (1994)] is incompatible with Taylor close-quote s theorem, which states that the lowest-energy state of force-free equilibria based on the conservation of the helicity integral is absolutely stable for vanishingly small resistivity. By a modification of the Lagrangian from which AMHD is derived, a modified version of AMHD that is compatible with Taylor close-quote s theorem is obtained. It also provides an energy principle for examining the linear instability of resistive equilibria, which has a great advantage over resistive MHD. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Seehafer, N.; Hildebrandt, J.; Krueger, A.; Akhmedov, Sh.; Gel'frejkh, G.B.
1983-01-01
Extensive model calculations of solar radio emission features were presented for the complex of solar active regions Hale No 16862, 16863, and 16864 on May 27, 1980 using force-free extrapolated magnetic fields with constant α and a treatment of radiative transfer of S-component emission. The photospheric magnetic field data were taken from magnetographic measurements whereas the required height distribution of temperature and electron density have been adopted from semi-empirical sunspot models based on recent X-, EUV-, optical, and radio observations. In contrast to the simpler magnetic field structure used in other studies, the complex source structure of the S-component emission is clearly represented by other characteristics. The results of the calculations are compared with the observations of the WRST (6 cm) and RATAN-600 (3.2 cm). (author)
Chiu, Y. T.; Hilton, H. H.
1977-01-01
Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.
International Nuclear Information System (INIS)
Ivanov, K.G.; Kharshiladze, A.F.; Eroshenko, E.G.; Styazhkin, V.A.
1988-01-01
Magnetic field experimental profiles, obtained during Vega-I and Vega-2 space vehicles passing through interplanetary cloud on the 16.02.1986, are compared with approximate theoretical profiles, taken from different hypotheses about such clouds structure. Maximum correlation of the theory and experiment is obtained with cloud presentation as flattened compact force-free toroid, which equatorial plane is approximately parallel to great circle plane, passing through flare on the 14.02.86 parallel to magnetic axis nearest to bipolar group flare
One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet
International Nuclear Information System (INIS)
Harrison, Michael G.; Neukirch, Thomas
2009-01-01
In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet
The force-free configuration of flux ropes in geomagnetotail: Cluster observations
Yang, Y. Y.; Shen, C.; Zhang, Y. C.; Rong, Z. J.; Li, X.; Dunlop, M.; Ma, Y. H.; Liu, Z. X.; Carr, C. M.; Rème, H.
2014-08-01
Unambiguous knowledge of magnetic field structure and the electric current distribution is critical for understanding the origin, evolution, and related dynamic properties of magnetic flux ropes (MFRs). In this paper, a survey of 13 MFRs in the Earth's magnetotail are conducted by Cluster multipoint analysis, so that their force-free feature, i.e., the kind of magnetic field structure satisfying J × B = 0, can be probed directly. It is showed that the selected flux ropes with the bipolar signature of the south-north magnetic field component generally lie near the equatorial plane, as expected, and that the magnetic field gradient is rather weak near the axis center, where the curvature radius is large. The current density (up to several tens of nA/m2) reaches their maximum values as the center is approached. It is found that the stronger the current density, the smaller the angles between the magnetic field and current in MFRs. The direct observations show that only quasi force-free structure is observed, and it tends to appear in the low plasma beta regime (in agreement with the theoretic results). The quasi force-free region is generally found to be embedded in the central portion of the MFRs, where the current is approximately field aligned and proportional to the strength of core field. It is shown that ~60% of surveyed MFRs can be globally approximated as force free. The force-free factor α is found to be nonconstantly varied through the quasi force-free MFR, suggesting that the force-free structure is nonlinear.
Nonlinear control of magnetic signatures
Niemoczynski, Bogdan
Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Nonlinear physics of twisted magnetic field lines
International Nuclear Information System (INIS)
Yoshida, Zensho
1998-01-01
Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)
Nonlinear electron transport in magnetized laser plasmas
International Nuclear Information System (INIS)
Kho, T.H.; Haines, M.G.
1986-01-01
Electron transport in a magnetized plasma heated by inverse bremsstrahlung is studied numerically using a nonlinear Fokker--Planck model with self-consistent E and B fields. The numerical scheme is described. Nonlocal transport is found to alter many of the transport coefficients derived from linear transport theory, in particular, the Nernst and Righi--Leduc effects, in addition to the perpendicular heat flux q/sub perpendicular/, are substantially reduced near critical surface. The magnetic field, however, remains strongly coupled to the nonlinear q/sub perpendicular/ and, as has been found in hydrosimulations, convective amplification of the magnetic field occurs in the overdense plasma
Force-free electromagnetic pulses in a laboratory plasma
Stenzel, R. L.; Urrutia, J. M.
1990-01-01
A short, intense current pulse is drawn from an electrode immersed in a magnetized afterglow plasma. The induced magnetic field B(r,t) assumes the shape of a helical double vortex which propagates along B(0) through the uniform plasma as a whistler mode. The observations support a prediction of force-free (J x B + neE = 0) electromagnetic fields and solitary waves. Energy and helicity are approximately conserved.
Force-free field model of ball lightning
International Nuclear Information System (INIS)
Tsui, K.H.
2001-01-01
Due to the nature that the force-free magnetic field, whose current carried by the conducting plasma is everywhere parallel to the magnetic field it generates, is the minimum energy configuration under the constraint of magnetic helicity conservation, ball lightning is considered as a self-organized phenomenon with a plasma fireball immersed in a spherical force-free magnetic field. Since this field does not exert force on the plasma, the plasma pressure, by itself, is in equilibrium with the surrounding environment, and the force-free magnetic field can take on any value without affecting the plasma. Due to this second feature, singular solutions of the magnetic field that are otherwise excluded are allowed, which enable a large amount of energy to be stored to sustain the ball lightning. The singularity is truncated only by the physical limit of current density that a plasma can carry. Scaling the customary soccer-size fireball to larger dimensions could account for day and night sightings of luminous objects in the sky
Nonlinear nuclear magnetic resonance in ferromagnets
International Nuclear Information System (INIS)
Nurgaliev, T.
1988-01-01
The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs
Magnetized black holes and nonlinear electrodynamics
Kruglov, S. I.
2017-08-01
A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.
Overview of magnetic nonlinear beam dynamics in the RHIC
International Nuclear Information System (INIS)
Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.
2009-01-01
In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed
ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE
International Nuclear Information System (INIS)
Petrova, S. A.
2013-01-01
The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.
Magnetically nonlinear dynamic model of synchronous motor with permanent magnets
International Nuclear Information System (INIS)
Hadziselimovic, Miralem; Stumberger, Gorazd; Stumberger, Bojan; Zagradisnik, Ivan
2007-01-01
This paper deals with a magnetically nonlinear two-axis dynamic model of a permanent magnet synchronous motor (PMSM). The geometrical and material properties of iron core and permanent magnets, the effects of winding distribution, saturation, cross-saturation and slotting effects are, for the first time, simultaneously accounted for in a single two-axis dynamic model of a three-phase PMSM. They are accounted for by current- and position-dependent characteristics of flux linkages. These characteristics can be determined either experimentally or by the finite element (FE) computations. The results obtained by the proposed dynamic model show a very good agreement with the measured ones and those obtained by the FE computation
The Force-Free Magnetosphere of a Rotating Black Hole
Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.
2013-01-01
We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."
Nonlinear dynamics of attractive magnetic bearings
Hebbale, K. V.; Taylor, D. L.
1987-01-01
The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.
The force-free magnetosphere of a rotating black hole
Directory of Open Access Journals (Sweden)
Contopoulos Ioannis
2013-12-01
Full Text Available We explore the analogy with pulsars and investigate the structure of the force-free magnetosphere around a Kerr black hole. We propose that the source of the black hole magnetic field is the Poynting-Robertson effect on the plasma electrons at the inner edge of the surrounding accretion disk, the so called Cosmic Battery. The magnetospheric solution is characterized by the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem, the inner ‘light surface’ located inside the ergosphere, and the outer ‘light surface’ which is the generalization of the pulsar light cylinder. The black hole forms a relativistic jet only if it is surrounded by a thick disk and/or extended disk outflows.
Gyrokinetic electron acceleration in the force-free corona with anomalous resistivity
Arzner, Kaspar; Vlahos, Loukas
2006-01-01
We numerically explore electron acceleration and coronal heating by dissipative electric fields. Electrons are traced in linear force-free magnetic fields extrapolated from SOHO/MDI magnetograms, endowed with anomalous resistivity ($\\eta$) in localized dissipation regions where the magnetic twist $\
Nonlinear modulation of ion acoustic waves in a magnetized plasma
International Nuclear Information System (INIS)
Bharuthram, R.; Shukla, P.K.
1987-01-01
The quasistatic plasma slow response to coherent ion acoustic waves in a magnetized plasma is considered. A multidimensional cubic nonlinear Schroedinger equation is derived. It is found that the ion acoustic waves remain modulationally stable against oblique perturbations
Nonlinear magnetic electron tripolar vortices in streaming plasmas.
Vranjes, J; Marić, G; Shukla, P K
2000-06-01
Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with characteristic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized plasma) or self-generated (for the unmagnetized plasma case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.
Nonlinear chaos control in a permanent magnet reluctance machine
International Nuclear Information System (INIS)
Harb, Ahmad M.
2004-01-01
The dynamics of a permanent magnet synchronous machine (PMSM) is analyzed. The study shows that under certain conditions the PMSM is experiencing chaotic behavior. To control these unwanted chaotic oscillations, a nonlinear controller based on the backstepping nonlinear control theory is designed. The objective of the designed control is to stabilize the output chaotic trajectory by forcing it to the nearest constant solution in the basin of attraction. The result is compared with a nonlinear sliding mode controller. The designed controller that based on backstepping nonlinear control was able to eliminate the chaotic oscillations. Also the study shows that the designed controller is mush better than the sliding mode control
A novel look at the pulsar force-free magnetosphere
Petrova, S. A.; Flanchik, A. B.
2018-03-01
The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, B_{new}0=3.3×10^{-4}B/P, where P is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the \\cotχ-law, where χ is a random quantity uniformly distributed in the interval [0,π/2]. Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle between the magnetic and rotational axes and gives insight into the neutron star unification on the geometrical basis.
Wall locking and multiple nonlinear states of magnetic islands
International Nuclear Information System (INIS)
Persson, Mikael; Australian National Univ., Canberra, ACT
1994-01-01
The nonlinear evolution of magnetic islands is analysed in configurations with multiple resonant magnetic surfaces. The existence of multiple nonlinear steady states, is discussed. These are shown to be associated with states where the dynamics around the different rational surfaces are coupled or decoupled and in the presence of a wall of finite resistivity may correspond wall-locked or non-wall-locked magnetic islands. For the case of strong wall stabilization the locking is shown to consist of two different phases. During the first phase the locking of the plasma at the different rational surfaces occurs. Only when the outermost resonant magnetic surface has locked to the inner surfaces can the actual wall locking process take place. Consequently, wall locking, of a global mode, involving more than one rational surface, can be prevented by the decoupling of the resonant magnetic surfaces by plasma rotation. Possible implications on tokamak experiments are discussed. (author)
APPLICATION OF NONLINEAR PID CONTROLLER IN SUPERCONDUCTING MAGNETIC ENERGY STORAGE
PENG, Xiaotao; CHENG, Shijie
2011-01-01
As a new control strategy, Nonlinear PID(NLPID) controller has been introduced in the power system successfully. The controller is free of planting model foundation in the design procedure and realized simply. In this paper, a nonlinear PID controller used for superconducting magnetic energy storage (SMES) unit connected to a power system is proposed. Purpose of designing such controller is to improve the stability of the power system in a relatively wide operation range. The design procedure...
Initial evolution of nonlinear magnetic islands in high temperature plasmas
International Nuclear Information System (INIS)
Kotschenreuther, M.
1988-06-01
The evolution of nonlinear magnetic islands is computed in the kinetic collisionality regime called the semicollisional regime, which is appropriate to present fusion confinement devices. Realistic effects are included, such as the presence of small external field errors, radial electric fields, and omega. When present simultaneously, these effects can greatly change the stability of small amplitude nonlinear islands. Islands with Δ' > O can sometimes be prevented from growing to macroscopic size; it is also possible to produce moderate mode-number nonlinear instabilities in the plasma edge. Furthermore, island growth can be prevented by application of external fields with suitably chosen amplitude and frequency
Non-linear spin transport in magnetic semiconductor superlattices
International Nuclear Information System (INIS)
Bejar, Manuel; Sanchez, David; Platero, Gloria; MacDonald, A.H.
2004-01-01
The electronic spin dynamics in DC-biased n-doped II-VI semiconductor multiquantum wells doped with magnetic impurities is presented. Under certain range of electronic doping, conventional semiconductor superlattices present self-sustained oscillations. Magnetically doped wells (Mn) present large spin splittings due to the exchange interaction. The interplay between non-linear interwell transport, the electron-electron interaction and the exchange between electrons and the magnetic impurities produces interesting time-dependent features in the spin polarization current tuned by an external magnetic field
International Nuclear Information System (INIS)
Nakamura, Kenji; Saito, Kenichi; Watanabe, Tadaaki; Ichinokura, Osamu
2005-01-01
Interior permanent magnet synchronous motors (IPMSMs) have high efficiency and torque, since the motors can utilize reluctance torque in addition to magnet torque. The IPMSMs are widely used for electric household appliances and electric bicycles and vehicles. A quantitative analysis method of dynamic characteristics of the IPMSMs, however, has not been clarified fully. For optimum design, investigation of dynamic characteristics considering magnetic nonlinearity is needed. This paper presents a new nonlinear magnetic circuit model of an IPMSM, and suggests a dynamic analysis method using the proposed magnetic circuit model
Energy Technology Data Exchange (ETDEWEB)
Guo, Y. [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210023 (China); Pariat, E.; Moraitis, K. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, F-92190 Meudon (France); Valori, G. [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Anfinogentov, S. [Institute of Solar-Terrestrial Physics SB RAS 664033, Irkutsk, P.O. box 291, Lermontov Street, 126a (Russian Federation); Chen, F. [Max-Plank-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany); Georgoulis, M. K. [Research Center for Astronomy and Applied Mathematics of the Academy of Athens, 4 Soranou Efesiou Street, 11527 Athens (Greece); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Thalmann, J. K. [Institute of Physics, Univeristy of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Yang, S., E-mail: guoyang@nju.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2017-05-01
We study the writhe, twist, and magnetic helicity of different magnetic flux ropes, based on models of the solar coronal magnetic field structure. These include an analytical force-free Titov–Démoulin equilibrium solution, non-force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger–Prior formula, which is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is estimated by the twist multiplied by the square of the axial magnetic flux. We compare the obtained values with those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.
Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity
International Nuclear Information System (INIS)
Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru
2003-01-01
We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity
Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru
2003-03-01
We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.
Nonlinear control of permanent magnet synchronous motor driving a ...
African Journals Online (AJOL)
This paper presents a non-linear control of permanent magnet synchronous motor (PMSM) fed by a PWM voltage source inverter. To improve the performance of this control technique, the input-output linearization technique is proposed for a system driving a mechanical load with two masses. In order to ensure a steady ...
On nonlinear MHD-stability of toroidal magnetized plasma
International Nuclear Information System (INIS)
Ilgisonis, V.I.; Pastukhov, V.P.
1994-01-01
The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs
A non-linear dissipative model of magnetism
Czech Academy of Sciences Publication Activity Database
Durand, P.; Paidarová, Ivana
2010-01-01
Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/
Nonlinear magnetic reconnection in low collisionality plasmas
Energy Technology Data Exchange (ETDEWEB)
Ottaviani, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F [Politecnico di Torino, Turin (Italy)
1994-07-01
The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.
Finite element solution of quasistationary nonlinear magnetic field
International Nuclear Information System (INIS)
Zlamal, Milos
1982-01-01
The computation of quasistationary nonlinear two-dimensional magnetic field leads to the following problem. There is given a bounded domain OMEGA and an open nonempty set R included in OMEGA. We are looking for the magnetic vector potential u(x 1 , x 2 , t) which satisifies: 1) a certain nonlinear parabolic equation and an initial condition in R: 2) a nonlinear elliptic equation in S = OMEGA - R which is the stationary case of the above mentioned parabolic equation; 3) a boundary condition on delta OMEGA; 4) u as well as its conormal derivative are continuous accross the common boundary of R and S. This problem is formulated in two equivalent abstract ways. There is constructed an approximate solution completely discretized in space by a generalized Galerkin method (straight finite elements are a special case) and by backward A-stable differentiation methods in time. Existence and uniqueness of a weak solution is proved as well as a weak and strong convergence of the approximate solution to this solution. There are also derived error bounds for the solution of the two-dimensional nonlinear magnetic field equations under the assumption that the exact solution is sufficiently smooth
Magnetic-field asymmetry of nonlinear thermoelectric and heat transport
International Nuclear Information System (INIS)
Hwang, Sun-Yong; Sánchez, David; López, Rosa; Lee, Minchul
2013-01-01
Nonlinear transport coefficients do not obey, in general, reciprocity relations. We here discuss the magnetic-field asymmetries that arise in thermoelectric and heat transport of mesoscopic systems. Based on a scattering theory of weakly nonlinear transport, we analyze the leading-order symmetry parameters in terms of the screening potential response to either voltage or temperature shifts. We apply our general results to a quantum Hall antidot system. Interestingly, we find that certain symmetry parameters show a dependence on the measurement configuration. (paper)
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates
International Nuclear Information System (INIS)
Brizard, A.
1988-09-01
A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs
Particle reflection along the magnetic field in nonlinear magnetosonic pulses
Ohsawa, Yukiharu
2017-11-01
Reflection of electrons and positrons in oblique, nonlinear magnetosonic pulses is theoretically analyzed. With the use of the parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, a simple equation for reflection conditions is derived, which shows that reflection along the magnetic field is caused by two forces: one arising from the parallel pseudo potential multiplied by the particle charge and the other from the magnetic mirror effect. The two forces push electrons in the opposite directions. In compressive solitons, in which the magnetic field is intensified, electrons with large magnetic moments can be reflected by the magnetic mirror effect, whereas in rarefactive solitons, in which the magnetic field is weaker than outside, electrons with small magnetic moments can be reflected by the parallel pseudo potential. Although F is basically positive and large in shock waves, it occasionally becomes negative in some regions behind the shock front in nonstationary wave evolution. These negative spikes of F can reflect electrons. In contrast to the case of electrons, the two forces push positrons in the same direction. For this reason, compressive solitons in an electron-positron-ion plasma reflect a large fraction of positrons compared with electrons, whereas rarefactive solitons will reflect no positrons. A shock wave can reflect a majority of positrons with its large F. However, in a pure electron-positron plasma, in which F becomes zero, positron reflection will rarely occur.
Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime
Zhu, Ping; Yan, Xingting; Huang, Wenlong
2017-10-01
Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
Force-free thin flux tubes: Basic equations and stability
International Nuclear Information System (INIS)
Zhugzhda, Y.D.
1996-01-01
The thin flux tube approximation is considered for a straight, symmetrical, force-free, rigidly rotating flux tube. The derived set of equations describes tube, body sausage, and Alfveacute charn wave modes and is valid for any values of Β. The linear waves and instabilities of force-free flux tubes are considered. The comparison of approximate and exact solutions for an untwisted, nonrotating flux tube is performed. It is shown that the approximate and exact dispersion equations coincides, except the 20% discrepancy of sausage frequencies. An effective cross section is proposed to introduce the removal of this discrepancy. It makes the derived approximation correct for the force-free thin flux tube dynamics, except the detailed structure of radial eigenfunction. The dispersion of Alfveacute charn torsional waves in a force-free tubes appears. The valve effect of one directional propagation of waves in rotating twisted tube is revealed. The current and rotational sausage instabilities of a force-free, thin flux tube are considered. copyright 1996 American Institute of Physics
Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations
Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.
2017-10-01
Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.
Force-free state in a superconducting single crystal and angle-dependent vortex helical instability
del Valle, J.; Gomez, A.; Gonzalez, E. M.; Manas-Valero, S.; Coronado, E.; Vicent, J. L.
2017-06-01
Superconducting 2 H -NbS e2 single crystals show intrinsic low pinning values. Therefore, they are ideal materials with which to explore fundamental properties of vortices. (V , I ) characteristics are the experimental data we have used to investigate the dissipation mechanisms in a rectangular-shaped 2 H -NbS e2 single crystal. Particularly, we have studied dissipation behavior with magnetic fields applied in the plane of the crystal and parallel to the injected currents, i.e., in the force-free state where the vortex helical instability governs the vortex dynamics. In this regime, the data follow the elliptic critical state model and the voltage dissipation shows an exponential dependence, V ∝eα (I -IC ∥ ) , IC ∥ being the critical current in the force-free configuration and α a linear temperature-dependent parameter. Moreover, this exponential dependence can be observed for in-plane applied magnetic fields up to 40° off the current direction, which implies that the vortex helical instability plays a role in dissipation even out of the force-free configuration.
Nonlinear Magnetic Phenomena in Highly Polarized Target Materials
Kiselev, Yu F
2007-01-01
The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.
DEFF Research Database (Denmark)
Enemark, Søren; Santos, Ilmar F.
2016-01-01
In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy......) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved...
Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field
International Nuclear Information System (INIS)
Vagin, Dmitry V.; Polyakov, Oleg P.
2008-01-01
Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems
DEFF Research Database (Denmark)
Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.
2014-01-01
Optical properties of one-dimensional photonic structures consisting of Kerr-type nonlinear and magnetic layers under the action of an external static magnetic field in the Faraday geometry are investigated. The structure is a periodic arrangement of alternating nonlinear and magnetic layers (a o...
Nonlinear dynamics of drift structures in a magnetized dissipative plasma
International Nuclear Information System (INIS)
Aburjania, G. D.; Rogava, D. L.; Kharshiladze, O. A.
2011-01-01
A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense
Instabilities of the force-free current configurations
Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; Erb, A.; Walker, E.; Flükiger, R.; Benoit, W.
1996-03-01
Using the magneto-optic technique, it is shown that inductively induced force-free current configurations in high purity YBa2Cu3O7-δ single crystals become unstable above a certain well-defined amplitude and frequency of the variation of the applied perpendicular field.
Mean-field Ohm's law and coaxial helicity injection in force-free plasmas
International Nuclear Information System (INIS)
Weening, R. H.
2011-01-01
A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.
Theory for stationary nonlinear wave propagation in complex magnetic geometry
International Nuclear Information System (INIS)
Watanabe, T.; Hojo, H.; Nishikawa, Kyoji.
1977-08-01
We present our recent efforts to derive a systematic calculation scheme for nonlinear wave propagation in the self-consistent plasma profile in complex magnetic-field geometry. Basic assumptions and/or approximations are i) use of the collisionless two-fluid model with an equation of state; ii) restriction to a steady state propagation and iii) existence of modified magnetic surface, modification due to Coriolis' force. We discuss four situations: i) weak-field propagation without static flow, ii) arbitrary field strength with flow in axisymmetric system, iii) weak field limit of case ii) and iv) arbitrary field strength in nonaxisymmetric torus. Except for case iii), we derive a simple variation principle, similar to that of Seligar and Whitham, by introducing appropriate coordinates. In cases i) and iii), we derive explicit results for quasilinear profile modification. (auth.)
DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures
International Nuclear Information System (INIS)
Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail
2016-01-01
Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas ® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT −1 and permitted the measurement of dc magnetic fields in the range of ∼10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered. (paper)
Nonlinear evolution of magnetic islands in a two fluid torus
International Nuclear Information System (INIS)
Sugiyama, L.E.; Park, W.
1996-01-01
A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress
Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.
Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S
2017-06-14
Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.
Formation of sub-ion scale filamentary force-free structures in the vicinity of reconnection region
International Nuclear Information System (INIS)
Zelenyi, L M; Artemyev, A V; Petrukovich, A A; Frank, A G; Nakamura, R
2016-01-01
In this paper we review the results of spacecraft observations of current sheets (CSs) of sub-ion spatial scales in the Earth’s magnetotail as well as experiments with these structures in laboratory devices. We demonstrate that such sub-ion CSs having a thickness less than the ion gyroradius are usually formed in the vicinity of the magnetic reconnection region and are supported by strong electron currents flowing along magnetic field lines. The magnetic field configuration of sub-ion CSs is close to the force-free configuration, with a strong shear magnetic field component in the CS central region. Spacecraft observations suggest that parallel electron currents are generated by electron beams (pronounced enhancement of the phase space density for electrons with small pitch angles and energies ∼1–3 keV). We discuss several models describing such force-free sub-ion CSs. (paper)
Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations
Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Strumberger, E.; Ferraro, N.
2017-10-01
A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q ≈1 , thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m =1 ,n =1 ) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β is sufficiently high to provide the necessary drive for the (m =1 ,n =1 ) instability that generates the dynamo loop voltage. The necessary amount of dynamo loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.
Non-linear radial spinwave modes in thin magnetic disks
International Nuclear Information System (INIS)
Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.
2015-01-01
We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point
Transport processes in magnetically confined plasmas in the nonlinear regime.
Sonnino, Giorgio
2006-06-01
A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.
Donoso, Guillermo; Ladera, Celso L.
2012-01-01
We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…
Nonlinear ion-acoustic waves and solitons in a magnetized plasma
International Nuclear Information System (INIS)
Lee, L.C.; Kan, J.R.
1981-01-01
A unified formulation is presented to study the nonlinear low-frequency electrostatic waves in a magnetized low-β plasma. It is found that there exist three types of nonlinear waves; (1) nonlinear ion-cyclotron periodic waves with a wave speed V/sub p/ > C/sub s/ (ion-acoustic velocity); (2) nonlinear ion-acoustic periodic waves with V/sub p/ < C/sub s/ costheta; and (3) ion-acoustic solitons with C/sub s/ costheta < V/sub p/ < C/sub s/, where theta is the angle between the wave vector and the magnetic field
Directory of Open Access Journals (Sweden)
Ao Zhang
2018-01-01
Full Text Available The vibration and noise of permanent magnet synchronous motors (PMSM are mainly caused by unbalanced magnetic pull (UMP. This paper aims to investigate nonlinear vibration in PMSMs. Firstly, the analytical model of the air-gap magnetic field with an eccentric rotor in PMSM is studied, and the analytical model is verified by the finite element method. Then the dynamic model of an offset rotor-bearing system is established, and the gyroscopic effect, nonlinear bearing force and UMP are taken into consideration. Finally, the dynamic characteristics of different static displacement eccentricities, rotor offsets and radial clearances are investigated in both the time domain and the frequency domain. The results show that the amplitudes of dynamic responses increase with the static displacement eccentricity and rotor offset and high integer multiples of rotating frequency appear with the increase of displacement eccentricity. The coupling effects of bearing force, unbalanced mass force and UMP are observed in the frequency domain, and the frequency components in the dynamic responses indicate that the bearings have an effect on the system.
Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction
International Nuclear Information System (INIS)
Upadrashta, Deepesh; Yang, Yaowen
2015-01-01
Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction. (paper)
Response to perturbations of the force-free aligned pulsar atmosphere
International Nuclear Information System (INIS)
Jackson, E.A.
1978-01-01
To clarify the likely structure of the pulsar atmosphere, the response of various plasma configurations near a rotating neutron star with aligned rotational and dipole magnetic axes is investigated. These configurations represent both general infinitesimal perturbations along B of the force-free (E.B = O) atmosphere, as well as a heuristic class of finite perturbations (shell atmospheres). It is shown that the general infinitesimal perturbations along B which preserve spatial ordering involve regions of both negative and positive work, whose boundaries are at the surfaces E.B = O(E is not equal to O) and those of zero charge density (cos 2 theta = 1/3). At the latter surfaces, and on one side of the system will produce mixing of charges of opposite sign. The intersecting E.B=O surface, the response of the recombination of these charges, and their removal by gravity, shows that the force-free atmosphere is physically unstable, favouring a lower density at mid-latitude. The response of various plasma shell atmospheres is also examined and confirms the likelihood of the plasma atmosphere previously predicted from a near-vacuum analysis, provided the density is not too large. Larger density shells are found to break up into 'striated' configurations, containing two electron and one or two ion groups, which however may not develop into stable configurations. Criteria on the plasma density related to this and other responses of the plasma shells are discussed. (author)
Two-fluid model of the pulsar magnetosphere represented as an axisymmetric force-free dipole
Energy Technology Data Exchange (ETDEWEB)
Petrova, S.A., E-mail: petrova@rian.kharkov.ua [Institute of Radio Astronomy of the NAS of Ukraine, Mystetstv Str., 4, Kharkiv 61002 (Ukraine)
2017-05-01
Based on the exact dipolar solution of the pulsar equation the self-consistent two-fluid model of the pulsar magnetosphere is developed. We concentrate on the low-mass limit of the model, taking into account the radiation damping. As a result, we obtain the particle distributions sustaining the dipolar force-free configuration of the pulsar magnetosphere in case of a slight velocity shear of the electron and positron components. Over most part of the force-free region, the particles follow the poloidal magnetic field lines, with the azimuthal velocities being small. Close to the Y-point, however, the particle motion is chiefly azimuthal and the Lorentz-factor grows unrestrictedly. This may result in the very-high-energy emission from the vicinity of the Y-point and may also imply the magnetocentrifugal formation of a jet. As for the first-order quantities, the longitudinal accelerating electric field is found to change the sign, hinting at coexistence of the polar and outer gaps. Besides that, the components of the plasma conductivity tensor are derived and the low-mass analogue of the pulsar equation is formulated as well.
Linear and nonlinear electrostatic modes in a nonuniform magnetized electron plasma
International Nuclear Information System (INIS)
Vranjes, J.; Shukla, P.K.; Kono, M.; Poedts, S.
2001-01-01
Linear and nonlinear low-frequency modes in a magnetized electron plasma are studied, taking into account a proper description of the equilibrium plasma state that is inhomogeneous. Assuming a homogeneous magnetic field and sheared plasma flows, flute-like perturbations are studied in the presence of density and potential gradients. Linear analysis reveals the presence of a streaming instability and depicts conditions for global linear spiral mode. In the nonlinear domain, a tripolar vortex, which is driven and carried by the flow, is found. Also investigated are the consequences of a magnetic shear as well as nonuniformities along the magnetic field lines, which are shown to be responsible for the possible annulment of the magnetic shear effects. Streaming along the lines of the sheared magnetic field is also studied. A variety of nonlinear structures (viz. global multipolar vortices, local vortex chains, and tripolar vortices) is shown to be the consequence of the simultaneous action of the parallel and perpendicular flows
Sheykhi, A.; Abdollahzadeh, Z.
2018-03-01
We investigate the effects of an external magnetic field as well as exponential nonlinear electrodynamics on the properties of s-wave holographic superconductors. Our strategy for this study is the matching method, which is based on the match of the solutions near the horizon and on the boundary at some intermediate point. When the magnetic field is turned off, we obtain the critical temperature as well as the condensation operator and show that the critical exponent is still 1/2, which is the universal value in the mean field theory. Then, we turn on the magnetic field and obtain the critical magnetic field, B c , in order to study its behavior in terms of the temperature. Interestingly enough, we find that in the presence of exponential nonlinear electrodynamics, the critical temperature decreases, while the critical magnetic field increases compared to the Maxwell case. We also observe that the critical magnetic field increases with increasing the nonlinear parameter b.
Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow
International Nuclear Information System (INIS)
Chen Yinhua; Wang Ge; Tan Liwei
2004-01-01
Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form
International Nuclear Information System (INIS)
Zhou, Shengxi; Cao, Junyi; Wang, Wei; Liu, Shengsheng; Lin, Jing
2015-01-01
This paper presents a nonlinear doubly magnet-coupled energy harvesting system (DMEHS) which could exhibit co-bistable and monostable dynamic characteristics. Its various characteristic responses induced by the magnetic force can be conveniently obtained using the adjustable horizontal distance between two coupled harvesters in the DMEHS. In the case of appropriate relative positions, the DMEHS appears in a co-bistable structure which is different from the traditional bistable structure. Additionally, both the inclination angle of endmost magnets and the displacement perpendicular to the vibration direction are taken into account to calculate the nonlinear magnetic force in the nonlinear electromechanical equations. The numerical investigations show good agreement with experimental results with respect to the output voltage response. Each harvester without magnetic coupling is tested independently to compare with the DMEHS. Both numerical and experimental results also demonstrate the frequency bandwidth and performance enhancements by changing the horizontal distance between the two coupled harvesters. (paper)
Energy Technology Data Exchange (ETDEWEB)
Ruderman, M S
1988-08-01
Nonlinear Alfven surface wave propagation at a magnetic interface in a compressible fluid is considered. It is supposed that the magnetic field directions at both sides of the interface and the direction of wave propagation coincide. The equation governing time-evolution of nonlinear small-amplitude waves is derived by the method of multiscale expansions. This equation is similar to the equation for nonlinear Alfven surface waves in an incompressible fluid derived previously. The numerical solution of the equation shows that a sinusoidal disturbance overturns, i.e. infinite gradients arise.
Origin and structures of solar eruptions II: Magnetic modeling
Guo, Yang; Cheng, Xin; Ding, MingDe
2017-07-01
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.
Kim, Kihong; Phung, D K; Rotermund, F; Lim, H
2008-01-21
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes
Terradas, J.; Magyar, N.; Van Doorsselaere, T.
2018-01-01
Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.
Energy Technology Data Exchange (ETDEWEB)
Westermann, Henrik; Neubauer, Marcus; Wallaschek, Joerg [Hannover Univ. (Germany). Inst. fuer Dynamik und Schwingungen
2012-07-15
Using ambient energy by piezoelectric energy harvesting systems received much attention over the last years. Most vibration-based generators produce a sufficient power only if the transducer is excited in its resonance frequency. The use of magnetic forces suggests a promising strategy to increase the efficiency. This paper presents different ways for broadband piezoelectric energy harvesting using nonlinear magnetic forces. (orig.)
Estimation of non-linear effective permeability of magnetic materials with fine structure
International Nuclear Information System (INIS)
Waki, H.; Igarashi, H.; Honma, T.
2006-01-01
This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability
Determining the magnetically nonlinear characteristics of a three phase core-type power transformer
International Nuclear Information System (INIS)
Dolinar, Matjaz; Stumberger, Gorazd; Polajzer, Bostjan; Dolinar, Drago
2006-01-01
This paper presents nonlinear iron core model of a three-phase, three-limb power transformer which is given by the current-dependant characteristics of flux linkages. The magnetically nonlinear characteristics are determined by controlled magnetic excitation of all three limbs which allows to take into account the variable magnetic-cross couplings between different coils placed on limbs, caused by saturation. The corresponding partial derivatives of measured flux linkage characteristics are used in the transformer circuit model as a magnetically nonlinear iron core model in order to analyze the behaviour of a nonsymmetrically excited transformer. Numerical results using transformer model with the determined iron core model agree very well with the measured results
High Tc superconducting nonlinear inductance and quick response magnetic sensor devices
International Nuclear Information System (INIS)
Uchiyama, T.; Mohri, K.; Ozeki, A.; Shibata, T.
1990-01-01
A flux penetration model considering the demagnetizing effect is presented in order to analyze the nonlinear inductance characteristics for HTcSC. Various quick response magnetic devices such as modulators, magnetic switches and magnetic sensors were constructed. The magnetizing frequency can be set up more than 10 MHz which is difficult to achieve with the conventional ferromagnetic bulk cores. The cut-off frequency of 1.6 MHz was obtained for the sensors using the HTcSC cores at a magnetizing frequency of 11.5 MHz
The correlation of fractal structures in the photospheric and the coronal magnetic field
Dimitropoulou, M.; Georgoulis, M.; Isliker, H.; Vlahos, L.; Anastasiadis, A.; Strintzi, D.; Moussas, X.
2009-10-01
Context: This work examines the relation between the fractal properties of the photospheric magnetic patterns and those of the coronal magnetic fields in solar active regions. Aims: We investigate whether there is any correlation between the fractal dimensions of the photospheric structures and the magnetic discontinuities formed in the corona. Methods: To investigate the connection between the photospheric and coronal complexity, we used a nonlinear force-free extrapolation method that reconstructs the 3d magnetic fields using 2d observed vector magnetograms as boundary conditions. We then located the magnetic discontinuities, which are considered as spatial proxies of reconnection-related instabilities. These discontinuities form well-defined volumes, called here unstable volumes. We calculated the fractal dimensions of these unstable volumes and compared them to the fractal dimensions of the boundary vector magnetograms. Results: Our results show no correlation between the fractal dimensions of the observed 2d photospheric structures and the extrapolated unstable volumes in the corona, when nonlinear force-free extrapolation is used. This result is independent of efforts to (1) bring the photospheric magnetic fields closer to a nonlinear force-free equilibrium and (2) omit the lower part of the modeled magnetic field volume that is almost completely filled by unstable volumes. A significant correlation between the fractal dimensions of the photospheric and coronal magnetic features is only observed at the zero level (lower limit) of approximation of a current-free (potential) magnetic field extrapolation. Conclusions: We conclude that the complicated transition from photospheric non-force-free fields to coronal force-free ones hampers any direct correlation between the fractal dimensions of the 2d photospheric patterns and their 3d counterparts in the corona at the nonlinear force-free limit, which can be considered as a second level of approximation in this
International Nuclear Information System (INIS)
Miyoshi, Takahiro; Becchaku, Masahiro; Kusano, Kanya
2008-01-01
Nonlinear dynamics of the resistive tearing instability in high magnetic Reynolds number (R m ) plasmas is studied by newly developing an accurate and robust resistive magnetohydrodynamic (MHD) scheme. The results show that reconnection processes strongly depend on R m . Particularly, in a high R m case, small-scale plasmoids induced by a secondary instability are intermittently generated and ejected accompanied by fast shocks. According to the intermittent processes, the reconnection rate increases intermittently at a later nonlinear stage. (author)
Three dimensional nonlinear magnetic AdS solutions through topological defects
International Nuclear Information System (INIS)
Hendi, S.H.; Panah, B.E.; Momennia, M.; Panahiyan, S.
2015-01-01
Inspired by large applications of topological defects in describing different phenomena in physics, and considering the importance of three dimensional solutions in AdS/CFT correspondence, in this paper we obtain magnetic anti-de Sitter solutions of nonlinear electromagnetic fields. We take into account three classes of nonlinear electrodynamic models; first two classes are the well-known Born-Infeld like models including logarithmic and exponential forms and third class is known as the power Maxwell invariant nonlinear electrodynamics. We investigate the effects of these nonlinear sources on three dimensional magnetic solutions. We show that these asymptotical AdS solutions do not have any curvature singularity and horizon. We also generalize the static metric to the case of rotating solutions and find that the value of the electric charge depends on the rotation parameter. Finally, we consider the quadratic Maxwell invariant as a correction of Maxwell theory and we investigate the effects of nonlinearity as a correction. We study the behavior of the deficit angle in presence of these theories of nonlinearity and compare them with each other. We also show that some cases with negative deficit angle exists which are representing objects with different geometrical structure. We also show that in case of the static only magnetic field exists whereas by boosting the metric to rotating one, electric field appears too. (orig.)
MgB_{2} nonlinear properties investigated under localized high rf magnetic field excitation
Directory of Open Access Journals (Sweden)
Tamin Tai
2012-12-01
Full Text Available The high transition temperature and low surface resistance of MgB_{2} attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB_{2} at high rf fields is still open to question. Our approach is to study the nonlinear electrodynamics of the material under localized rf magnetic fields. Because of the presence of the small superconducting gap in the π band, the nonlinear response of MgB_{2} at low temperature is potentially complicated compared to a single-gap s-wave superconductor such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB_{2}, as well as extrinsic sources of nonlinearity, is an urgent requirement. A localized and strong rf magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [T. Tai et al., IEEE Trans. Appl. Supercond. 21, 2615 (2011ITASE91051-822310.1109/TASC.2010.2096531]. MgB_{2} films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that several possible mechanisms are responsible for this nonlinear response.
Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2010-01-01
We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.
Liang, Peixin; Chai, Feng; Bi, Yunlong; Pei, Yulong; Cheng, Shukang
2016-11-01
Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization.
Energy Technology Data Exchange (ETDEWEB)
Spata, Michael [Old Dominion Univ., Norfolk, VA (United States)
2012-08-01
An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.
Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM.
Rashidi, Mohammad Mehdi; Freidoonimehr, Navid; Momoniat, Ebrahim; Rostami, Behnam
2015-01-01
In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial magnetic force strength parameter (N2), dimensionless tangential magnetic force strength parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics.
Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM.
Directory of Open Access Journals (Sweden)
Mohammad Mehdi Rashidi
Full Text Available In the current article, a combination of the differential transform method (DTM and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1, dimensionless axial magnetic force strength parameter (N2, dimensionless tangential magnetic force strength parameter (N3, and magnetic Reynolds number (Rem are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics.
Nonlinear dynamics of breathers in the spiral structures of magnets
Energy Technology Data Exchange (ETDEWEB)
Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)
2016-06-15
The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.
International Nuclear Information System (INIS)
Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.
2014-01-01
In this work, we study the defect mode and bistability behavior of 1-D photonic band gap structure with magnetized plasma and coupled nonlinear defects. The transfer matrix method has been employed to investigate the magnetic field effect on defect mode frequency and bistability threshold. The obtained results show that the frequency of defect mode and bistability threshold can be altered, without changing the structure of the photonic multilayer. Therefore, the bistability behavior of the subjected structure in the presence of magnetized plasma can be utilized in manufacturing wide frequency range devices
On the Shape of Force-Free Field Lines in the Solar Corona
Prior, C.
2012-02-02
This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.
Construction of force-free fields which have toroidal surfaces about a given surface
International Nuclear Information System (INIS)
Bouligand, G.
1983-05-01
A study of two-fields (B vector, rotB vector) of conservative flux which admits a family of toroidal surfaces of parameter phi on a domain limited by a given surface S, suggests their construction by a Cauchy-Arzela method of step by step. Taking into account the Newcomb condition this method is consistent with force-free magnetic fields and with helical equilibria with scalar pressure. The method supposes that B vector is of class C 1 . This construction makes use of the remarkable property of the field B vector to be the surface gradient of a generating multivalued function Q on a closed surface. Consequently, the initial surface will be given with its normal metric coefficient K; that is to say, B vector admits a family F of homotopic surfaces on a infinitesimal domain about S, an element of F. From this, the periodic part of Q is a solution of a Beltrami equation for the flux conservation of which numerical resolution is envisaged. The study of these fields is made in a biorthogonal system of coordinates. The coeffficients of the two fundamental metric forms of magnetic surfaces vary with phi and are interrelated by a sixth order differential system of equations which gives their variation [fr
Nonlinear propagation of ultra-low-frequency electronic modes in a magnetized dusty plasma
International Nuclear Information System (INIS)
Mamun, A.A.
1999-07-01
A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfven waves for small value of θ and are modified magnetosonic waves for large θ, where θ is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. (author)
International Nuclear Information System (INIS)
Khalil, Sh.M.; El-Sherif, N.; El-Siragy, N.M.; Tanta Univ.; El-Naggar, I.A.; Alexandria Univ.
1985-01-01
Investigation is made for nonlinear interaction between incident radiation and a surface wave in a magnetized plasma layer. Both interacting waves are of P polarization. The generated currents and fields at combination frequencies are obtained analytically. Unlike the S-polarized interacting waves, the magnetic field affects the fundamental waves and leads to an amplification of generated waves when their frequencies approach the cyclotron frequency. (author)
International Nuclear Information System (INIS)
Zeng Zhengzhong; Kuai Bin; Sun Fengju; Cong Peitian; Qiu Aici
2002-01-01
The linear multi-core pulse transformer is an important primary driving source used in pulsed power apparatus for the production of dense plasm owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data
Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet
Energy Technology Data Exchange (ETDEWEB)
Qi, Jian-Wen [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Yang, Wen-Li [Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China)
2017-06-15
Highlights: • Three different types of soliton excitations under the spin-wave background are demonstrated in spin chain system. • The magnetic moment distributions corresponding to these solitons are characterized in detail. • The formation mechanisms of those excitations are explained by the magnon density distribution. - Abstract: We study the nonlinear spin dynamics of an anisotropic Heisenberg helimagnet in a fourth-order integrable nonlinear Schrödinger equation. We demonstrate that there are three types of nonlinear spin excitations on a spin-wave background in the Heisenberg helimagnet, notably including anti-dark soliton, W-shaped soliton, and multi-peak soliton. The magnetic moment distribution that corresponds to each of these are characterized in detail. Additionally, the formation mechanism is clarified by the magnon density distribution.
Nonlinear and Nonequilibrium Spin Injection in Magnetic Tunneling Junctions
Guo, Hong
2007-03-01
Quantitative analysis of charge and spin quantum transport in spintronic devices requires an atomistic first principles approach that can handle nonlinear and nonequilibrium transport conditions. We have developed an approach for this purpose based on real space density functional theory (DFT) carried out within the Keldysh nonequilibrium Green's function formalism (NEGF). We report theoretical analysis of nonlinear and nonequilibrium spin injection and quantum transport in Fe/MgO/Fe trilayer structures as a function of external bias voltage. Devices with well relaxed atomic structures and with FeO oxidization layers are investigated as a function of external bias voltage. We also report calculations of nonequilibrium spin injection into molecular layers and graphene. Comparisons to experimental data will be presented. Work in collaborations with: Derek Waldron, Vladimir Timochevski (McGill University); Ke Xia (Institute of Physics, Chinese Academy of Science, Beijing, China); Eric Zhu, Jian Wang (University of Hong Kong); Paul Haney, and Allan MacDonald (University of Texas at Austin).
A new differential equations-based model for nonlinear history-dependent magnetic behaviour
International Nuclear Information System (INIS)
Aktaa, J.; Weth, A. von der
2000-01-01
The paper presents a new kind of numerical model describing nonlinear magnetic behaviour. The model is formulated as a set of differential equations taking into account history dependence phenomena like the magnetisation hysteresis as well as saturation effects. The capability of the model is demonstrated carrying out comparisons between measurements and calculations
International Nuclear Information System (INIS)
Amein, W.H.; El-Siragy, N.M.; Nagy, O.Z.; Sayed, Y.A.
1981-01-01
Nonlinear interaction of S-Polarized surface waves at the boundary of a semibounded magnetized plasma is investigated. The expressions of the amplitudes of the generated waves are found. It is shown that, the generated waves with combined frequencies are equally radiated from the transient layer into plasma and vacuum
Nonlinear sausage-wave propagation in a magnetic slab in an incompressible fluid
International Nuclear Information System (INIS)
Ruderman, M.S.
1993-01-01
Long nonlinear sausage-wave propagation in a magnetic slab in an incompressible plasma is considered. The governing equation is derived with the aid of the reductive perturbation method. The solutions of this equation in the form of periodic waves of permanent shape are found numerically. (Author)
Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes
Xiong, G. Z.; Wang, L.; Li, X. Q.; Liu, H. F.; Tang, C. J.; Huang, J.; Zhang, X.; Wang, X. Q.
2017-06-01
The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet-Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs.
Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes
International Nuclear Information System (INIS)
Xiong, G Z; Liu, H F; Huang, J; Wang, X Q; Wang, L; Li, X Q; Tang, C J; Zhang, X
2017-01-01
The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet–Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs. (paper)
Electron vortex magnetic holes: A nonlinear coherent plasma structure
Energy Technology Data Exchange (ETDEWEB)
Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)
2015-01-15
We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.
International Nuclear Information System (INIS)
Donoso, Guillermo; Ladera, Celso L
2012-01-01
We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)
Linear and nonlinear waves with orbital angular momentum in magnetized plasma
Ali, Shahid; Kant Shukla, Padma; Tito Mendonca, José.
2009-11-01
Here we discuss the concept of orbital angular momentum (OAM) for electromagnetic waves in a magnetized plasma. Nonlinear effects of photons with spin and OAM will be considered. In particular, we examine the case of parametric interactions between circularly polarized electromagnetic waves and Langmuir and ion acoustic waves, including the ponderomotive force of light with OAM in magnetized plasma (Shukla & Stenflo, PRA). This will be a generalization of recent results published in PRL by J.T. Mendonca and B. Thide. We also examine the influence of OAM on the magnetic field generation by the inverse Faraday effect.
Nonlinear Simulations of Trapped Electron Mode Turbulence in Low Magnetic Shear Stellarators
Faber, B. J.; Pueschel, M. J.; Terry, P. W.; Hegna, C. C.
2017-10-01
Optimized stellarators, like the Helically Symmetric eXperiment (HSX), often operate with small global magnetic shear to avoid low-order rational surfaces and magnetic islands. Nonlinear, flux-tube gyrokinetic simulations of density-gradient-driven Trapped Electron Mode (TEM) turbulence in HSX shows two distinct spectral fluctuation regions: long-wavelength slab-like TEMs localized by global magnetic shear that extend along field lines and short-wavelength TEMs localized by local magnetic shear to a single helical bad curvature region. The slab-like TEMs require computational domains significantly larger than one poloidal turn and are computationally expensive, making turbulent optimization studies challenging. A computationally more efficient, zero-average-magnetic-shear approximation is shown to sufficiently describe the relevant nonlinear physics and replicate finite-shear computations, and can be exploited in quasilinear models based on linear gyrokinetics as a feasible optimization tool. TEM quasilinear heat fluxes are computed with the zero-shear approximation and compared to experimentally-relevant nonlinear gyrokinetic TEM heat fluxes for HSX. Research supported by U.S. DoE Grants DE-FG02-99ER54546, DE-FG02-93ER54222 and DE-FG02-89ER53291.
Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng
2018-05-01
Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.
A two-fluid study of oblique tearing modes in a force-free current sheet
Energy Technology Data Exchange (ETDEWEB)
Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lukin, Vyacheslav S. [National Science Foundation, Arlington, Virginia 22230 (United States); Liu, Yi-Hsin [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2016-01-15
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.
Energy Technology Data Exchange (ETDEWEB)
Liang, Peixin; Chai, Feng [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001 (China); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bi, Yunlong [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Pei, Yulong, E-mail: peiyulong1@163.com [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Cheng, Shukang [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001 (China); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China)
2016-11-01
Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization. - Highlights: • The no-load magnetic field of poke-type motors is firstly calculated by analytical method. • The magnetic circuit model and iterative method are employed to calculate the permeability. • The analytical expression of each subdomain is derived.. • The proposed method can effectively reduce the predesign stages duration.
International Nuclear Information System (INIS)
Liang, Peixin; Chai, Feng; Bi, Yunlong; Pei, Yulong; Cheng, Shukang
2016-01-01
Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization. - Highlights: • The no-load magnetic field of poke-type motors is firstly calculated by analytical method. • The magnetic circuit model and iterative method are employed to calculate the permeability. • The analytical expression of each subdomain is derived.. • The proposed method can effectively reduce the predesign stages duration.
Ruuskanen, J.; Stenvall, A.; Lahtinen, V.; Pardo, E.
2017-02-01
Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet’s current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor’s critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.
Damping and non-linearity of a levitating magnet in rotation above a superconductor
International Nuclear Information System (INIS)
Druge, J; Jean, C; Laurent, O; Méasson, M-A; Favero, I
2014-01-01
We study the dissipation of moving magnets in levitation above a superconductor. The rotation motion is analyzed using optical tracking techniques. It displays a remarkable regularity together with long damping time up to several hours. The magnetic contribution to the damping is investigated in detail by comparing 14 distinct magnetic configurations and points towards amplitude-dependent dissipation mechanisms. The non-linear dynamics of the mechanical rotation motion is also revealed and described with an effective Duffing model. The magnetic mechanical damping is consistent with measured hysteretic cycles M(H) that are discussed within a modified critical state model. The obtained picture of the coupling of levitating magnets to their environment sheds light on their potential as ultra-low dissipation mechanical oscillators for high precision physics. (paper)
Inflation and acceleration of the universe by nonlinear magnetic monopole fields
Energy Technology Data Exchange (ETDEWEB)
Oevguen, A. [Eastern Mediterranean Univ., Famagusta (Country Unknown). Dept. of Physics
2017-02-15
Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields. (orig.)
Inflation and acceleration of the universe by nonlinear magnetic monopole fields
Övgün, A.
2017-02-01
Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.
International Nuclear Information System (INIS)
Mahmood, S.; Sadiq, Safeer; Haque, Q.
2013-01-01
Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He + , He ++ ) and hydrogen (H + ) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas
Nonlinear optics response of semiconductor quantum wells under high magnetic fields
International Nuclear Information System (INIS)
Chemla, D.S.
1993-07-01
Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW's as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H → ∞. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed
International Nuclear Information System (INIS)
Labakanta Mandal; Banerjee, R.; Roy, S.; Khan, M.; Gupta, M.R.
2010-01-01
Complete text of publication follows. In an Inertial Confinement Fusion (ICF) situation, laser driven ablation front of an imploding capsule is subjected to the fluid instabilities like Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instability. In this case dense core is compressed and accelerated by low density ablating plasma. During this process laser driven shocks interact the interface and hence it becomes unstable due to the formation of nonlinear structure like bubble and spike. The nonlinear structure is called bubble if the lighter fluid pushes inside the heavier fluid and spike, if opposite takes place. R-M instability causes non-uniform compression of ICF fuel pellets and needs to be mitigated. Scientists and researchers are much more interested on RM instability both from theoretical and experimental points of view. In this article, we have presented the analytical expression for the growth rate and velocity for the nonlinear structures due to the effect of magnetic field of fluid using potential flow model. The magnetic field is assumed to be parallel to the plane of two fluid interfaces. If the magnetic field is restricted only to either side of interface the R-M instability can be stabilized or destabilized depending on whether the magnetic pressure on the interface opposes the instability driving shock pressure or acts in the same direction. An interesting result is that if both the fluids are magnetized, interface as well as velocity of bubble and spike will show oscillating stabilization and R-M instability is mitigated. All analytical results are also supported by numerical results. Numerically it is seen that magnetic field above certain minimum value reduces the instability for compression the target in ICF.
Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma
Energy Technology Data Exchange (ETDEWEB)
Rufai, O. R., E-mail: rajirufai@gmail.com [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Scientific Computing, Memorial University of Newfoundland, St John' s, Newfoundland and Labrador A1C 5S7 (Canada); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai 410218 (India)
2016-03-15
Finite amplitude nonlinear ion-acoustic solitons, double layers, and supersolitons in a magnetized two-component plasma composed of adiabatic warm ions fluid and energetic nonthermal electrons are studied by employing the Sagdeev pseudopotential technique and assuming the charge neutrality condition at equilibrium. The model generates supersoliton structures at supersonic Mach numbers regime in addition to solitons and double layers, whereas in the unmagnetized two-component plasma case only, soliton and double layer solutions can be obtained. Further investigation revealed that wave obliqueness plays a critical role for the evolution of supersoliton structures in magnetized two-component plasmas. In addition, the effect of ion temperature and nonthermal energetic electron tends to decrease the speed of oscillation of the nonlinear electrostatic structures. The present theoretical results are compared with Viking satellite observations.
Basic mode of nonlinear spin-wave resonance in normally magnetized ferrite films
International Nuclear Information System (INIS)
Gulyaev, Yu.V.; Zil'berman, P.E.; Timiryazev, A.G.; Tikhomirova, M.P.
2000-01-01
Modes of nonlinear and spin-wave resonance (SWR) in the normally magnetized ferrite films were studied both theoretically and experimentally. The particular emphasis was placed on the basic mode of SWR. One showed theoretically that with the growth of the precession amplitude the profile of the basic mode changed. The nonlinear shift of the resonance field depends on the parameters of fixing of the surface spins. Films of ferroyttrium garnet (FYG) with strong gradient of the single-axis anisotropy field along the film thickness, as well as, FYG films of the submicron thickness where investigated experimentally. With the intensification of Uhf-power one observed the sublinear shift of the basic mode resonance field following by the superlinear growth of the absorbed power. That kind of behaviour is explained by variation of the profile of the varying magnetization space distribution [ru
Influence of magnetic flutter on tearing growth in linear and nonlinear theory
Kreifels, L.; Hornsby, W. A.; Weikl, A.; Peeters, A. G.
2018-06-01
Recent simulations of tearing modes in turbulent regimes show an unexpected enhancement in the growth rate. In this paper the effect is investigated analytically. The enhancement is linked to the influence of turbulent magnetic flutter, which is modelled by diffusion terms in magnetohydrodynamics (MHD) momentum balance and Ohm’s law. Expressions for the linear growth rate as well as the island width in nonlinear theory for small amplitudes are derived. The results indicate an enhanced linear growth rate and a larger linear layer width compared with resistive MHD. Also the island width in the nonlinear regime grows faster in the diffusive model. These observations correspond well to simulations in which the effect of turbulence on the magnetic island width and tearing mode growth is analyzed.
Energy Technology Data Exchange (ETDEWEB)
Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn [School of Mechano-Electronic Engineering, Xidian University, Xi' an 710071, Shaanxi (China); Jin, Ke [School of Aerospace Science and Technology, Xidian University, Xi' an 710071, Shaanxi (China)
2016-04-14
Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.
Directory of Open Access Journals (Sweden)
Fernando Gómez-Salas
2015-01-01
Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.
The use of induction linacs with nonlinear magnetic drive as high average power accelerators
International Nuclear Information System (INIS)
Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Newton, M.A.; Poor, S.E.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.
1985-01-01
The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/m, and with power efficiences approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here. (orig.)
Suppression of Instabilities Generated by an Anti-Damper with a Nonlinear Magnetic Element in IOTA
Energy Technology Data Exchange (ETDEWEB)
Stern, E. [Fermilab
2018-04-01
The Integrable Optics Test Accelerator (IOTA) storage ring is being constructed at Fermilab as a testbed for new accelerator concepts. One important series of experiments tests the use of a novel nonlinear magnetic insert to damp coherent instabilities. To test the damping power of the element, an instability of desired strength may be intentionally excited with an anti-damper. We report on simulations of beam stabilization using the Synergia modeling framework over ranges of driving and damping strengths.
The non-linear growth of the magnetic Rayleigh-Taylor instability
Carlyle, Jack; Hillier, Andrew
2017-09-01
This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensions. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.
Yasuda, K.; Tsukazaki, A.; Yoshimi, R.; Kondou, K.; Takahashi, K. S.; Otani, Y.; Kawasaki, M.; Tokura, Y.
2017-09-01
The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Crx (Bi1 -ySby )2 -xTe3 /(Bi1 -ySby )2Te3 , where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5 ×1010 A m-2 , showing its potential as a spintronic material.
Beam interaction of a pulsed, nonlinear in-vacuum injection magnet
International Nuclear Information System (INIS)
Rast, Helge
2013-01-01
Theme of this thesis is the study of the interaction of the injection magnet designed for BESSY II with the electron beam. The main topic of this thesis lies in the numerical and measurement-technical study of the loss factor, the wake potential, and the wake impedance of the nonlinear kicker magnet with the aim of an optimization of the magnet design, so that a stable operation of the kicker in the BESSY II storage ring is made possible. A further main topic of this thesis is a study on the matching of the injection scheme with a single kicker to the conditions of the DELTA storage ring, which is operated by the TU Dortmund.
Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields
International Nuclear Information System (INIS)
Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.
2006-01-01
Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field
International Nuclear Information System (INIS)
Lazzaro, E.; Comisso, L.; Valdettaro, L.
2010-01-01
In tokamaks magnetic islands arise from an unstable process of tearing and reconnecting of helical field lines across rational surfaces. After a linear stage the magnetic instability develops through three characteristic nonlinear stages where increasingly complex topological alterations occur in the form of the magnetic islands. The problem of response of reconnection process to the injection of an external current suitably localized is addressed using a four-field model in a plane slab plasma, with a novel extension to account consistently of the relevant neoclassical effects, such as bootstrap current and pressure anisotropy. The results found have implications on the interpretation of the possible mechanism of present day experimental results on neoclassical tearing modes as well as on the concepts for their control or avoidance.
Nonlinear mechanism for the suppression of error field magnetic islands by plasma flow
International Nuclear Information System (INIS)
Parker, R.D.
1992-01-01
Non-axisymmetric magnetic field perturbations generated, for example, by errors in the alignment of the field coils are known to lead to reduced confinement in a tokamak. By inducing the formation of small, stationary, magnetic islands on all rational surfaces they can enhance radial transport and under certain circumstances interact with MHD instabilities to trigger the onset of locked modes leading, in some cases, to disruption of the plasma discharge. Given the stationary nature of the error field islands it is natural to consider whether they can be reduced significantly by the viscous drag of a sheared flow resulting from a bulk rotation of the plasma. In this paper, we examine this interaction by modelling the nonlinear growth and saturation of force-reconnected magnetic islands driven by a corrugated boundary in a slab plasma with an initially uniform flow. A systematic parameter study is made of the time asymptotic steady state. (author) 3 figs., 5 refs
Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.
We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.
AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique
In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...
Electronic and magnetic phase separation in EuB6. Fluctuation spectroscopy and nonlinear transport
International Nuclear Information System (INIS)
Amyan, Adham
2013-01-01
The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB 6 as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB 6 and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T MI and T C . Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.
International Nuclear Information System (INIS)
Das, Amita; Sen, Abhijit; Kaw, Predhiman; Benkadda, S.; Beyer, Peter
2005-01-01
Three-dimensional electromagnetic fluid simulations of the magnetic-curvature-driven Rayleigh-Taylor instability are presented. Issues related to the existence of nonlinear saturated states and the nature of the temporal evolution to such states from random initial conditions are addressed. It is found that nonlinear saturated states arising from generation of zonal shear flows continue to exist in certain parametric domains but their spectrum and spatial characteristics have important differences from earlier two-dimensional results reported in Phys. Plasmas 4, 1018 (1997) and Phys. Plasmas 8, 5104 (2001). In particular, the three-dimensional nonlinear states possess a significant power level in short scales and the spatial structures of the potential and density fluctuations appear not to develop any functional correlations. Electromagnetic effects are found to inhibit the formation of zonal flows and thereby to considerably restrict the parametric domain of nonlinear stabilization. The role of finite k parallel and the contribution of the unstable drift wave branch are also discussed and delineated through a number of simulation studies carried out in special simplified limits
Nonlinear effects in parallel magnetic fields in vanadyl and iron (111) ions solutions
International Nuclear Information System (INIS)
Ryzhov, V.A.; Fomichev, V.N.
1983-01-01
Nonlinear effects (NE) in vanadyl (VOSO 4 ) and iron (FeCl 3 x6H 2 O) solutions are investigated experimentally in the 268-323 K temperature range in parallel constant and variable linearly polarized magnetic fields, including conditions when EPR spectra are lacking due to strong resonance transition widening. It is shown that nonlinear effects are specified, on the one side, by the effect of a variable field on the relaxation processes and, on the other side, by resonance transitions in parallel fields. The relaxation and resonance effects contribute to different phase components of the second harmonic of magnetization, recorded in the experiment, at low frequences of a variable field (as compared to characteristic frequences of lattice motion). Therefore, separate analysis of the effects is possible. The presence of NE effects under conditions, when the EPR signal is not observed, and the possibility of the inverse problem solution using the variation technique on the base of simple models reveal that NE in parallel magnetic fields may be used for the investigation of paramagnets with a large EPR resonance transitions width
Directory of Open Access Journals (Sweden)
Aboozar Heydari
2017-09-01
Full Text Available In this paper, the effects of nonlinear forces due to the electromagnetic field of bearing and the unbalancing force on nonlinear vibration behavior of a rotor is investigated. The rotor is modeled as a rigid body that is supported by two magnetic bearings with eight-polar structures. The governing dynamics equations of the system that are coupled nonlinear second order ordinary differential equations (ODEs are derived, and for solving these equations, the homotopy perturbation method (HPM is used. By applying HPM, the possibility of presenting a harmonic semi-analytical solution, is provided. In fact, with equality the coefficient of auxiliary parameter (p, the system of coupled nonlinear second order and non-homogenous differential equations are obtained so that consists of unbalancing effects. By considering some initial condition for displacement and velocity in the horizontal and vertical directions, free vibration analysis is done and next, the forced vibration analysis under the effect of harmonic forces also is investigated. Likewise, various parameters on the vibration behavior of rotor are studied. Changes in amplitude and response phase per excitation frequency are investigated. Results show that by increasing excitation frequency, the motion amplitude is also increases and by passing the critical speed, it decreases. Also it shows that the magnetic bearing system performance is in stable maintenance of rotor. The parameters affecting on vibration behavior, has been studied and by comparison the results with the other references, which have a good precision up to 2nd order of embedding parameter, it implies the accuracy of this method in current research.
Magnetic field configurations associated with polarity intrusion in a solar active region
International Nuclear Information System (INIS)
Low, B.C.
1982-01-01
This paper presents a new class of exact solutions describing the non-linear force-free-field above a spatially localized photospheric bipolar magnetic region. An essential feature is the variation in all three Cartesian directions and this could not be modelled adequately with previously known symmetric force-free fields. Sequences of force-free fields are constructed and analyzed to simulate the slow growth of a pair of spots on the photosphere. The acis connecting the spots executes roational motion, distorting the photospheric neutral line separating fluxes of opposite signs. We show directly from the analytic solutions that the resulting reversal of the positions of the spots relative to the background field is associated with (i) the creation of magnetic free energy, (ii) the severe shearing of localized low-lying loops in the vicinity where the photospheric transverse field aligns with the photospheric neutral line, and (iii) the emergence and disappearance of flux from the photosphere at these highly stressed regions. The model relates theoretically for the first time these different magnetic field features that have been suggested by observation and theoretical considerations to be flare precursors. A general formula, based on the virial theorem, is also given for the free energy of a force-free field, strictly in terms of the field value at the photosphere. This formula has obvious practical application. (orig.)
Nonlinear Speed Control of Permanent Magnet Synchronous Motor with Salient Poles
Directory of Open Access Journals (Sweden)
K. Kyslan
2015-12-01
Full Text Available This paper presents the speed control of permanent magnet synchronous motor with salient poles based on two-step linearization method. In the first step, the direct compensation of the nonlinearities in the equations of current is used. In the second step, the input-output linearization in the state space is used for the decoupling of flux and torque axis. Simulated results are compared to the field oriented vector control structure with PI controllers in order to show differences in the performance of both approaches.
International Nuclear Information System (INIS)
Denisov, V.I.; Krivchenkov, I.V.; Denisov, I.P.
2002-01-01
The study on the electromagnetic waves propagation in the neutron star magnetic dipole and gravitation fields, taking place according to the vacuum nonlinear electrodynamics laws, is carried out. It is shown that depending on the polarization the electromagnetic signals in this field propagate by different beams and with various velocities. The law on these signals motion by beams is established. The calculation of differences in the times of the electromagnetic signals propagation, having the same source up to the detector, is presented. It is shown that this difference in some cases may reach enough measurable value of 1 μs [ru
On non-linear magnetic-charged black hole surrounded by quintessence
Nam, Cao H.
2018-06-01
We derive a non-linear magnetic-charged black hole surrounded by quintessence, which behaves asymptotically like the Schwarzschild black hole surrounded by quintessence but at the short distances like the dS geometry. The horizon properties of this black hole are investigated in detail. The thermodynamics of the black hole is studied in the local and global views. Finally, by calculating the heat capacity and the free energy, we point to that the black hole may undergo a thermal phase transition, between a larger unstable black hole and a smaller stable black hole, at a critical temperature.
Analysis of nonlinear parabolic equations modeling plasma diffusion across a magnetic field
International Nuclear Information System (INIS)
Hyman, J.M.; Rosenau, P.
1984-01-01
We analyse the evolutionary behavior of the solution of a pair of coupled quasilinear parabolic equations modeling the diffusion of heat and mass of a magnetically confined plasma. The solutions's behavior, due to the nonlinear diffusion coefficients, exhibits many new phenomena. In short time, the solution converges into a highly organized symmetric pattern that is almost completely independent of initial data. The asymptotic dynamics then become very simple and take place in a finite dimensional space. These conclusions are backed by extensive numerical experimentation
Wu, S. T.; Sun, M. T.; Sakurai, Takashi
1990-01-01
This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.
Baraskar, Priyanka; Chouhan, Romita; Agrawal, Arpana; Choudhary, R. J.; Sen, Pranay K.; Sen, Pratima
2018-03-01
We report the magnetic field effect on the linear and nonlinear optical properties of pulse laser ablated Ti-incorporated Cr2O3 nanostructured thin film. Optical properties have been experimentally analyzed under Voigt geometry by performing ultraviolet-visible spectroscopy and closed aperture Z-scan technique using a continuous wave He-Ne laser source. Nonlinear optical response reveals a single peak-valley feature in the far field diffraction pattern in absence of magnetic field (B = 0) confirming self-defocussing effect. This feature switches to a valley-peak configuration for B = 5000G, suggesting self-focusing effect. For B ≤ 750G, oscillations were observed revealing the occurrence of higher order nonlinearity. Origin of nonlinearity is attributed to the near resonant d-d transitions observed from the broad peak occurring around 2 eV. These transitions are of magnetic origin and get modified under the application of external magnetic field. Our results suggest that magnetic field can be used as an effective tool to monitor the sign of optical nonlinearity and hence the thermal expansion in Ti-incorporated Cr2O3 nanostructured thin film.
Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang
2017-06-01
The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.
Grants, Ilmars; Gerbeth, Gunter
2010-07-01
The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.
Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification
Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.
2017-03-01
Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.
Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes
Manuel, Mario
2012-10-01
Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 μm, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.
Weak nonlinear analysis of magneto–convection under magnetic field modulation
International Nuclear Information System (INIS)
Bhadauria, B S; Kiran, Palle
2014-01-01
An analytic study of heat transport in an electrically conducting fluid layer is performed under a non-uniform time-dependent magnetic field. The applied vertical magnetic field consists of two parts: a constant part and a time-dependent periodic part, which varies sinusoidally with time. A weakly nonlinear theory has been considered to investigate heat transfer in the fluid layer. The heat transfer coefficient is obtained by deriving the non-autonomous Ginzburg–Landau equation for an amplitude of convection. This amplitude of convection is derived by using NDSolve Mathematica 8, and the results are verified using Runge–Kutta–Fehlberg method. The Nusselt number is obtained in terms of various system parameters and the effect of each parameter on heat transport is reported in detail. The effect of magnetic Prandtl number Pm, amplitude of modulation δ is to enhance the heat transfer. The Chandrasekhar number Q, modulation frequency ω is to stabilize the system. Further, it is found that magnetic modulation can be used effectively in either enhancing the heat transfer or diminishing it. (paper)
Ultrafast switching of the magnetic ground state in d1 titanates though nonlinear phononic coupling
Gu, Mingqiang; Rondinelli, James M.
LaTiO3 and YTiO3 are isostructure d1 titanates, which exhibit distinct magnetic and orbital properties: The former is a G-type antiferromagnet with a 150 K Neel temperature whereas the latter is a rare ferromagnetic (FM) insulator with a 30 K Curie temperature. With first-principles density functional theory calculations, we identify the local structural origin of the magnetic order difference in these orthorhombic perovskites. By increasing the tilt and rotation angles in LaTiO3, respectively, LaTiO3 is predicted to undergo a magnetic phase transition to an FM state. Similarly, decreasing the tilt and rotation angles in YTiO3 leads to a FM-to-AFM phase transition. The underlying physics is attributed to the change in the superexchange coupling between Ti-sites. Last, we propose a route to switch the magnetism in the titanates by controlling the octahedral distortions through dynamical nonlinear phononic coupling. The proposed experiment requires the use of static strain to position the crystal structure in proximity to the structural transition combined with readily achievable fluencies in an ultrafast optical pump-probe geometry The theory work is supported by the U.S Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012375.
International Nuclear Information System (INIS)
Crebbin, K.C.
1985-05-01
Uniform magnetic field perturbations cause a closed orbit distortion in a circular accelerator. If the magnetic guide field is non-linear these perturbations can also cause a Nu shift in the betatron oscillations. Such a shift in radial Nu values has been observed in the Bevalac while studying the low energy resonant extraction system. In the Bevalac, the radial perturbation comes from the quadrants being magnetically about 0.8% longer than 90 0 . The normal effect of this type of perturbation is a radial closed orbit shift and orbit distortion. The Nu shift, associated with this type of perturbation in the presence of a non-linear guide field, is discussed in this paper. A method of handling the non-linear n values is discussed as well as the mechanism for the associated Nu shift. Computer calculations are compared to measurements. 2 refs., 4 figs
Wu, R. Q.; Zhang, W.; Yao, M. H.
2018-02-01
In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 subharmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system.
Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas
International Nuclear Information System (INIS)
Krommes, John E.
2010-01-01
Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and diffculties) of deriving nonlinear gyro fluid equations suitable for rapid numerical solution - although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.
Nonlinear gyrokinetics: a powerful tool for the description of microturbulence in magnetized plasmas
International Nuclear Information System (INIS)
Krommes, John A
2010-01-01
Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and difficulties) of deriving nonlinear gyrofluid equations suitable for rapid numerical solution-although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.
2017-12-01
Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are
International Nuclear Information System (INIS)
Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.
2010-01-01
The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.
Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.
2013-12-01
Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.
Force-free fields in the vicinity of a Reissner-Nordstroem black hole
International Nuclear Information System (INIS)
Evangelidis, E.
1978-01-01
The behaviour of a force-free field has been studied in a Reissner-Nordstroem metric. An expansion in tensor harmonics of even-odd parity reduced the radial equations in a differential equation of the Sturm-Liouville system which was solved asymptotically in a conveniently defined space coordinate. Further, it has been possible to regularize the singular behaviour of the Reissner-Nordstroem metric at the event horizon and the modified metric to be given explicitly. (Auth.)
Axisymmetric force-free states and relaxation of a spheroidal spheromak
International Nuclear Information System (INIS)
Throumoulopoulos, G.N.; Pantis, G.
1990-01-01
Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal Spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced, which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration, in qualitative agreement with experimental results. (author)
Axisymmetric force-free states and relaxation of a spheroidal spheromak
International Nuclear Information System (INIS)
Throumoulopoulos, G.N.; Pantis, G.
1990-01-01
Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration in qualitative agreement with experimental results. (Author)
Energy Technology Data Exchange (ETDEWEB)
Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)
2016-05-15
The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.
International Nuclear Information System (INIS)
Etemadpour, R.; Dorranian, D.; Sepehri Javan, N.
2016-01-01
The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.
Schmitt, Alexander; Richter, Jan; Gommeringer, Mario; Wersal, Thomas; Braun, Michael
2016-01-01
This paper presents a high dynamic power hardware-inthe-loop (PHIL) emulation test bench to mimic arbitrary permanent magnet synchronous machines with nonlinear magnetics. The proposed PHIL test bench is composed of a high performance real-time simulation system to calculate the machine behaviour and a seven level modular multiphase multilevel converter to emulate the power flow of the virtual machine. The PHIL test bench is parametrized for an automotive synchronous machine and controlled by...
Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field
Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.
2018-02-01
The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.
Nonlinear simulation of magnetic reconnection with a drift kinetic electron model
International Nuclear Information System (INIS)
Zwingmann, W.; Ottaviani, M.
2004-01-01
The process of reconnection allows for a change of magnetic topology inside a plasma. It is an important process for eruptive phenomena in astrophysical plasma, and the sawtooth relaxation in laboratory plasma close to thermonuclear conditions. The sawtooth relaxation is associated with the collisionless electron tearing instability, caused by the electron inertia. A thorough treatment therefore requires a kinetic model for the electron dynamics. In this contribution, we report on the numerical simulation of the electron tearing instability by solving the Vlasov equation directly. The results confirm results of an early paper on the same subject, and extends them to smaller values of the collision skin depth d e = 0.25. Our results suggest a faster than exponential growth in the early nonlinear phase of the instability. We observe as well an asymmetry of the resulting fields. It seems, however, that the field structure becomes closer to the fluid case for small values of d e
Reluctance network modelling of surface permanent magnet motor considering iron nonlinearities
International Nuclear Information System (INIS)
Raminosoa, T.; Farooq, J.A.; Djerdir, A.; Miraoui, A.
2009-01-01
This paper presents a simple, quick and precise nonlinear reluctance network modelling of an in-wheel surface permanent magnet motor. The saturation of the ferromagnetic materials is considered and a simple air-gap length function is used to take the slotting effect into account. The topology and the reluctance values of the air-gap network are automatically computed for any rotor position. Thus, the proposed technique allows a steady state time stepping simulation. For any saturation level, there is a good accordance with the finite element method for the torque and back EMF. Moreover, the model accurately predicts the effect of the demagnetization. The proposed model can be advantageously used for a geometry optimization as well as for the diagnosis of demagnetization.
Nonlinear Dynamics of Permanent-magnet Synchronous Motor with v/f Control
International Nuclear Information System (INIS)
Wei Du-Qu; Luo Xiao-Shu; Zhang Bo; Qiu Dong-Yuan
2013-01-01
The nonlinear dynamics of permanent-magnet synchronous motor (PMSM) with v/f control signals is investigated intensively. First, the equilibria and steady-state characteristics of the system are formulated by analytical analysis. Then, some of its basic dynamical properties, such as characteristic eigenvalues, Lyapunov exponents and phase trajectories are studied by varying the values of system parameters. It is found that when the values of the system parameters are smaller, the PMSM operates in stable domains, no matter what the values of control gains are. With the values of parameters increasing, the unstability appears and PMSM falls into chaotic operation. Furthermore, the complex dynamic behaviors are verified by means of simulation. (general)
Directory of Open Access Journals (Sweden)
Papari Das
2018-01-01
Full Text Available A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed astro-structure formation, such as stellesimals, planetsimals, etc.
Deng, Zhenhua; Shang, Jing; Nian, Xiaohong
2015-11-01
In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Das, Papari; Karmakar, Pralay Kumar
2018-01-01
A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV) equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed) astro-structure formation, such as stellesimals, planetsimals, etc.
Energy Technology Data Exchange (ETDEWEB)
Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)
2015-01-20
The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.
International Nuclear Information System (INIS)
Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.
2011-01-01
In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.
International Nuclear Information System (INIS)
Cornacchia, M.; Evans, L.
1985-06-01
A nonlinear lens may be used to study the effect of high-order multipolar field imperfections on a stored proton beam. Such a nonlinear lens is particulary suitable to simulate field imperfections of the types encountered in coil dominated superconducting magnets. We have studied experimentally at the SPS the effect of high order (5th and 8th) single isolated resonances driven by the nonlinear lens. The width of these resonances is of the order one expects to be caused by field errors in superconducting magnets of the SSC type. The experiment shows that, in absence of tune modulation, these resonances are harmless. Slow crossings of the resonance, on the other hand, have destructive effects on the beam, much more so than fast crossings caused by synchrotron oscillations. In the design of future storage rings, sources of low-frequency tune modulation should be avoided as a way to reduce the harmful effects of high order multipolar field imperfection
International Nuclear Information System (INIS)
Toma, M.; Sanduloviciu, M.
1994-01-01
The nonlinear behaviour in an electrical discharge plasma due to the action of an external nonuniform magnetic field is presented. The discharge geometry and the magnetic field configuration ('inverse' cylindrical magnetron discharge) were so chosen that there is a possibility to control the net electron flux in a certain region of a positive electrode. The plasma discharge nonlinearity manifested in the profile of the current-voltage, current-magnetic field and current-gas pressure characteristics by the appearance of the anomalous negative resistance, in the bistability and hysteresis and also in the periodical and chaotic variation of the discharge current. The profile of the current variation vs control discharge parameters was related to the appearance of a space charge structure in the shape of nearly spherical bulges, delimited from the surrounding plasma by a double layer. (Author)
International Nuclear Information System (INIS)
Sugaya, Reiji
1989-01-01
General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)
Directory of Open Access Journals (Sweden)
Qian Xie
2016-07-01
Full Text Available This paper pays attention to magnetic flux linkage optimization of a direct-driven surface-mounted permanent magnet synchronous generator (D-SPMSG. A new compact representation of the D-SPMSG nonlinear dynamic differential equations to reduce system parameters is established. Furthermore, the nonlinear dynamic characteristics of new D-SPMSG equations in the process of varying magnetic flux linkage are considered, which are illustrated by Lyapunov exponent spectrums, phase orbits, Poincaré maps, time waveforms and bifurcation diagrams, and the magnetic flux linkage stable region of D-SPMSG is acquired concurrently. Based on the above modeling and analyses, a novel method of magnetic flux linkage optimization is presented. In addition, a 2 MW D-SPMSG 2D/3D model is designed by ANSYS software according to the practical design requirements. Finally, five cases of D-SPMSG models with different magnetic flux linkages are simulated by using the finite element analysis (FEA method. The nephograms of magnetic flux density are agreement with theoretical analysis, which both confirm the correctness and effectiveness of the proposed approach.
Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.
2018-01-01
Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.
Nonlinear dynamics of magnetic vortices in single-crystal and ion-damaged NbSe2
International Nuclear Information System (INIS)
Zhang, J.; De Long, L.E.; Majidi, V.; Budhani, R.C.
1996-01-01
Nonlinear dynamics of magnetic flux lines in superconducting NbSe 2 are studied using the vibrating-reed technique and a resonance-line-shape analysis. A yield point for plastic deformation of the flux-line lattice is linked to the onset of a dissipation anomaly previously associated with a flux-line lattice melting transition. The resonance (10 kHz range) of radiation-damaged samples bifurcates into patterned sidebands at high drives, with additional nonlinear response emerging above 200 kHz, which may signal the onset of chaos. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Zhou, Hao-Miao; Qu, Shao-Xing; Ou, Xiao-Wei; Xiao, Ying; Wu, Hua-Ping
2013-01-01
Based on the equivalent circuit method, this paper adopts the nonlinear magnetostrictive constitutive relations to establish an analytical nonlinear magnetoelectric coefficient model for magnetostrictive/piezoelectric/magnetostrictive laminated magnetoelectric composites. When the pre-stress is set to zero in the model, the predicted results of the magnetoelectric coefficient coincide well with the available experimental results both qualitatively and quantitatively. Using the model, we can qualitatively predict the influence of the pre-stress, magnetic bias fields and the volume fraction of the magnetostrictive material on the magnetoelectric coefficient. The predicted results show that the influences of the pre-stress on the magnetoelectric coefficient, which varies with the magnetic bias field, before and after reaching the magnetoelectric coefficient maximum, are opposite. That is, the influence of the pre-stress on curves of the magnetoelectric coefficient reverses when the magnetoelectric coefficient reaches its maximum. Therefore, the correct setting of the pre-stress can lower the applied magnetic bias field and improve the magnetoelectric coefficient. The established nonlinear magnetoelectric effect model can provide a theoretical basis for regulating the magnetoelectric coefficient by the pre-stress and magnetic bias field and make it possible to design high-precision miniature magnetoelectric devices. (paper)
Automatic interpretation of magnetic data using Euler deconvolution with nonlinear background
Digital Repository Service at National Institute of Oceanography (India)
Dewangan, P.; Ramprasad, T.; Ramana, M.V.; Desa, M.; Shailaja, B.
are close to each other. A possible solution to these problems is prposed by simultaneously estimating the source location, depth and structural index assuming nonlinear background. The Euler equation is solved in a nonlinear fashion using the optimization...
Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations
Energy Technology Data Exchange (ETDEWEB)
Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)
2013-10-15
The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.
Directory of Open Access Journals (Sweden)
Sebastian Schaetz
2017-01-01
Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.
A filament supported by different magnetic field configurations
Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.
2011-08-01
A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.
Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou
2013-05-01
A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.
Luo, Zhaochu; Xiong, Chengyue; Zhang, Xu; Guo, Zhen-Gang; Cai, Jianwang; Zhang, Xiaozhong
2016-04-13
The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear magnetohydrodynamics. Progress report, December 15, 1977--December 14, 1978
International Nuclear Information System (INIS)
Vahala, G.
1978-01-01
Incompressible MHD turbulence is considered for both 2D and 3D plasmas in cylindrical geometry. It is found that for virtually all initial conditions (including quiescent ones) the plasma is nonlinearly unstable in that mean square turbulent velocity fields develop. However, there is a unique stable state of extremal magnetic helicity/energy ratio for which no turbulent fields develop [in 2D with B/sub z/ = const., it is the state of extremal mean square vector potential/energy]. It is force free and is just the Taylor state. A conjecture can be put forward (based on a dual cascade argument for resistive MHD) to explain Taylor's hypothesis. In spherical geometry, the stable axisymmetric state is the spheromak
Directory of Open Access Journals (Sweden)
Shaohua Luo
2014-01-01
Full Text Available This paper is concerned with the problem of the nonlinear dynamic surface control (DSC of chaos based on the minimum weights of RBF neural network for the permanent magnet synchronous motor system (PMSM wherein the unknown parameters, disturbances, and chaos are presented. RBF neural network is used to approximate the nonlinearities and an adaptive law is employed to estimate unknown parameters. Then, a simple and effective controller is designed by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed controller is testified through simulation results.
International Nuclear Information System (INIS)
Yavary, H.
2006-01-01
The magnetic penetration depth of a quasi-two dimensional d-wave superconductor in the presence of nonlineary, nonlocality, and impurity effects is investigated by using Green's function method. It is shown that a d-wave superconductor would inevitably avoid the violation of the Nernst theorem by creating a T 2 term in its penetration depth through a competition of nonlinear, nonlocal, and impurity effects and this system may be stable at low temperatures. I also show that in the impure sample at low temperatures, T < T * ∝ γ the impurity effect determines the temperature dependence of the penetration depth, i.e., nonlocal and nonlinear effects are completely masked by impurities
Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model
Energy Technology Data Exchange (ETDEWEB)
Fleishman, Gregory D.; Loukitcheva, Maria [Physics Department, Center for Solar-Terrestrial Research, New Jersey Institute of Technology Newark, NJ, 07102-1982 (United States); Anfinogentov, Sergey; Mysh’yakov, Ivan [Institute of Solar-Terrestrial Physics (ISZF), Lermontov st., 126a, Irkutsk, 664033 (Russian Federation); Stupishin, Alexey [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)
2017-04-10
Quantifying the coronal magnetic field remains a central problem in solar physics. Nowadays, the coronal magnetic field is often modeled using nonlinear force-free field (NLFFF) reconstructions, whose accuracy has not yet been comprehensively assessed. Here we perform a detailed casting of the NLFFF reconstruction tools, such as π -disambiguation, photospheric field preprocessing, and volume reconstruction methods, using a 3D snapshot of the publicly available full-fledged radiative MHD model. Specifically, from the MHD model, we know the magnetic field vector in the entire 3D domain, which enables us to perform a “voxel-by-voxel” comparison of the restored and the true magnetic fields in the 3D model volume. Our tests show that the available π -disambiguation methods often fail in the quiet-Sun areas dominated by small-scale magnetic elements, while they work well in the active region (AR) photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although it does produce a more force-free boundary condition, also results in some effective “elevation” of the magnetic field components. This “elevation” height is different for the longitudinal and transverse components, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolations performed starting from the actual AR photospheric magnetogram are free from this systematic error, while other metrics are comparable with those for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing. Our tests further suggest that extrapolations from a force-free chromospheric boundary produce measurably better results than those from a photospheric boundary.
The non-linear evolution of magnetic flux ropes: 3. effects of dissipation
Directory of Open Access Journals (Sweden)
C. J. Farrugia
1997-02-01
Full Text Available We study the evolution (expansion or oscillation of cylindrically symmetric magnetic flux ropes when the energy dissipation is due to a drag force proportional to the product of the plasma density and the radial speed of expansion. The problem is reduced to a single, second-order, ordinary differential equation for a damped, non-linear oscillator. Motivated by recent work on the interplanetary medium and the solar corona, we consider polytropes whose index, γ, may be less than unity. Numerical analysis shows that, in contrast to the small-amplitude case, large-amplitude oscillations are quasi-periodic with frequencies substantially higher than those of undamped oscillators. The asymptotic behaviour described by the momentum equation is determined by a balance between the drag force and the gradient of the gas pressure, leading to a velocity of expansion of the flux rope which may be expressed as (1/2γr/t, where r is the radial coordinate and t is the time. In the absence of a drag force, we found in earlier work that the evolution depends both on the polytropic index and on a dimensionless parameter, κ. Parameter κ was found to have a critical value above which oscillations are impossible, and below which they can exist only for energies less than a certain energy threshold. In the presence of a drag force, the concept of a critical κ remains valid, and when κ is above critical, the oscillatory mode disappears altogether. Furthermore, critical κ remains dependent only on γ and is, in particular, independent of the normalized drag coefficient, ν*. Below critical κ, however, the energy required for the flux rope to escape to infinity depends not only on κ (as in the conservative force case but also on ν*. This work indicates how under certain conditions a small change in the viscous drag coefficient or the initial energy may alter the evolution drastically. It is thus important to determine ν* and κ from observations.
Directory of Open Access Journals (Sweden)
Merboldt Klaus-Dietmar
2010-07-01
Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and
Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens
2010-07-08
Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for
Quantifying non-ergodic dynamics of force-free granular gases.
Bodrova, Anna; Chechkin, Aleksei V; Cherstvy, Andrey G; Metzler, Ralf
2015-09-14
Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.
Determination of Coronal Magnetic Fields from Vector Magnetograms
Mikic, Zoran
1997-01-01
During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that
Energy Technology Data Exchange (ETDEWEB)
Yildirim, Hasan [Faculty of Science, Department of Physics, Karabuek University, Karabuek 78050 (Turkey); Aslan, Bulent [Faculty of Science, Department of Physics, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey)
2012-11-15
Effects of the magnetic field on nonlinear optical properties at THz range in GaAs/AlGaAs quantum wells doped with donor atoms are investigated. Expressions for the third-order nonlinear optical susceptibilities are obtained through the solution of the density matrix equations of motion within the rotating wave approximation. Donor binding energies are calculated variationally by means of an iterative shooting algorithm. Magnetic field has strong effect on the nonlinear susceptibility: it removes the degeneracy in energies of 2p{sub {+-}} impurity states and increases the absolute value of the nonlinearity. It is also shown that a large and tunable optical nonlinear figure of merit is possible with the magnetic field applied in the growth direction. The nonlinear optical quantities are also calculated for donor distributions with different full width at half maximum values in the absence of magnetic field and the observed features at low energy part are attributed to the increasing homogeneity in the donor distribution. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Linear and nonlinear stability in resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Tasso, H.
1994-01-01
A sufficient stability condition with respect to purely growing modes is derived for resistive magnetohydrodynamics. Its open-quotes nearnessclose quotes to necessity is analysed. It is found that for physically reasonable approximations the condition is in some sense necessary and sufficient for stability against all modes. This, together with hermiticity makes its analytical and numerical evaluation worthwhile for the optimization of magnetic configurations. Physically motivated test functions are introduced. This leads to simplified versions of the stability functional, which makes its evaluation and minimization more tractable. In the case of special force-free fields the simplified functional reduces to a good approximation of the exact stability functional derived by other means. It turns out that in this case the condition is also sufficient for nonlinear stability. Nonlinear stability in hydrodynamics and magnetohydrodynamics is discussed especially in connection with open-quotes unconditionalclose quotes stability and with severe limitations on the Reynolds number. Two examples in magnetohydrodynamics show that the limitations on the Reynolds numbers can be removed but unconditional stability is preserved. Practical stability needs to be treated for limited levels of perturbations or for conditional stability. This implies some knowledge of the basin of attraction of the unperturbed solution, which is a very difficult problem. Finally, a special inertia-caused Hopf bifurcation is identified and the nature of the resulting attractors is discussed. 23 refs
International Nuclear Information System (INIS)
Maslovsky, D.; Levitt, B.; Mauel, M. E.
2003-01-01
Interchange instabilities excited by energetic electrons trapped by a magnetic dipole nonlinearly saturate and exhibit complex, coherent spectral characteristics and frequency sweeping [H. P. Warren and M. E. Mauel, Phys. Plasmas 2, 4185 (1995)]. When monochromatic radio frequency (rf) fields are applied in the range of 100-1000 MHz, the saturation behavior of the interchange instability changes dramatically. For applied fields of sufficient intensity and pulse-length, coherent interchange fluctuations are suppressed and frequency sweeping is eliminated. When rf fields are switched off, coherent frequency sweeping reappears. Since low frequency interchange instabilities preserve the electron's first and second adiabatic invariants, these observations can be interpreted as resulting from nonlinear resonant wave-particle interactions described within a particle phase-space, (ψ,φ), comprised of the third adiabatic invariant and the azimuthal angle. Self-consistent numerical simulation is used to study (1) the nonlinear development of the instability, (2) the radial mode structure of the interchange instability, and (3) the suppression of frequency sweeping. When the applied rf heating is modeled as an 'rf collisionality', the simulation reproduces frequency sweeping suppression and suggests an explanation for the observations that is consistent with Berk and co-workers [H. L. Berk et al., Phys. Plasmas 6, 3102 (1999)
Energy Technology Data Exchange (ETDEWEB)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)
2015-02-15
Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found that self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.
Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus, 42075 Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus, 68100 Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus, 42075 Konya (Turkey)
2017-04-01
We have calculated the wavefunctions and energy eigenvalues of spherical quantum dot with infinite potential barrier inside uniform magnetic field. In addition, we have investigated the magnetic field effect on optical transitions between Zeeman energy states. The results are expressed as a function of dot radius, incident photon energy and magnetic field strength. The results present that, in large dot radii, the external magnetic field affects strongly the optical transitions between Zeeman states. In the strong spatial confinement case, energy level is relatively insensitive to the magnetic field, and electron spatial confinement prevails over magnetic confinement. Also, while m varies from −1 to +1, the peak positions of the optical transitions shift toward higher energy (blueshift).
Comments on ''The non-linear saturation of a magnetic island'' by J. Norris
International Nuclear Information System (INIS)
Thyagaraja, A.
1990-01-01
Recent results derived on non-linear saturation of tearing modes (Norris, J., Plasma Phys. Contr. Fusion, 1989, Vol. 31, 699) are examined in relation to previously published literature. It is explicitly demonstrated that they are at variance in several important respects with those due to previous workers in this area. (author)
Anisotropy of susceptibility in rocks that are magnetically non-linear even in weak fields
Czech Academy of Sciences Publication Activity Database
Chadima, Martin; Ježek, J.; Hrouda, F.
2017-01-01
Roč. 19, EGU General Assembly 2017 (2017) ISSN 1029-7006. [European Geosciences Union General Assembly. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility * field-dependent susceptibility * second-rank tensor Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2017/EGU2017-7210-1.pdf
Energy Technology Data Exchange (ETDEWEB)
Hendi, Seyed Hossein [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, Shahram; Panah, Behzad Eslam [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2015-06-15
In this paper, we consider two first order corrections to both the gravity and the gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on the deficit angle of spacetime near the origin. (orig.)
International Nuclear Information System (INIS)
Hendi, Seyed Hossein; Panahiyan, Shahram; Panah, Behzad Eslam
2015-01-01
In this paper, we consider two first order corrections to both the gravity and the gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on the deficit angle of spacetime near the origin. (orig.)
Timokhin, A. N.; Arons, J.
2013-02-01
We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be
Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances
International Nuclear Information System (INIS)
Pustelny, S.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.
2006-01-01
In this work, a sensitivity of the rate of relaxation of ground-state atomic coherences to magnetic-field inhomogeneities is studied. Such coherences give rise to many interesting phenomena in light-atom interactions, and their lifetimes are a limiting factor for achieving better sensitivity, resolution, or contrast in many applications. For atoms contained in a vapor cell, some of the coherence-relaxation mechanisms are related to magnetic-field inhomogeneities. We present a simple model describing relaxation due to such inhomogeneities in a buffer-gas-free antirelaxation-coated cell. A relation is given between relaxation rate and magnetic-field inhomogeneities including the dependence on cell size and atomic species. Experimental results, which confirm predictions of the model, are presented. Different regimes, in which the relaxation rate is equally sensitive to the gradients in any direction and in which it is insensitive to gradients transverse to the bias magnetic field, are predicted and demonstrated experimentally
Directory of Open Access Journals (Sweden)
Seng-Chi Chen
2014-01-01
Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2013-09-01
It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Anitha Karthikeyan
2018-03-01
Full Text Available In this paper we derived the fractional order model of the Permanent Magnet Synchronous Generator (PMSG from its integer model. The PMSG was employing a shaft sensor for the speed sensing and control. But this sensor would increase the hardware complexity as well as the cost of the system. Hence we have developed a Fractional order Nonlinear adaptive control method for speed and current tracking of the PMSG. The objective of an adaptive controller is to first define a virtual control state and force it to become a stabilizing function in accordance with a corresponding error dynamics. In order to study the Lyapunov exponents of the fractional order controller, we proposed a new method which would remove the complexity of finding the sign of the Lyapunov first derivative. The Fractional order control scheme is implemented in LabVIEW for simulation results. The simulation results indicated that the estimated rotor position and speed correspond to their actual values well. Keywords: Chaos suppression, Fractional order systems, Permanent magnet synchronous generator, Speed and current control, Lyapunov stability
Nonlinear localized excitations in magnets with a weak exchange interaction as a soliton problem
International Nuclear Information System (INIS)
Gvozdikova, M.V.; Kovalev, A.S.
1998-01-01
The spin dynamics of soliton-like localized excitations in a discrete ferromagnet chain with an easy axis anisotropy and a weak exchange interaction is studied. The connection of these excitations with longwave magnetic solitons is discussed. The localized excitation frequency dependence on exchange interaction is found for a fixed number of spin deviation. It is shown that this dependence modifies essentially when the exchange interaction becomes comparable with an anisotropy value
Inductively induced force-free configurations as a test of vortex dimensionalilty
André, M.-O.; D'Anne, G.; Indenbom, M. V.; Benoit, W.
1994-12-01
A study of flux-line dimensionality on untwinned YBa 2Cu 3O 7-δ and Bi 2Sr 2CaCu 2O 8 is presented. The type of penetration of a transverse magnetic component into a pre-existing longitudinal vortex assembly permits to determine whether its character is dominantly 2D or 3D.
Anisotropy of susceptibility in rocks which are magnetically nonlinear even in low fields
Hrouda, František; Chadima, Martin; Ježek, Josef
2018-06-01
Theory of the low-field anisotropy of magnetic susceptibility (AMS) assumes a linear relationship between magnetization and magnetizing field, resulting in field-independent susceptibility. This is valid for diamagnetic and paramagnetic minerals by definition and also for pure magnetite, while in titanomagnetite, pyrrhotite and hematite the susceptibility may be clearly field-dependent even in low fields used in common AMS meter. Consequently, the use of the linear AMS theory is fully legitimate in the former minerals, but in principle incorrect in the latter ones. Automated measurement of susceptibility in 320 directions in variable low-fields ranging from 5 to 700 A m-1 was applied to more than 100 specimens of various pyrrhotite-bearing and titanomagnetite-bearing rocks. Data analysis showed that the anisotropic susceptibility remains well represented by an ellipsoid in the entire low-field span even though the ellipsoid increases its volume and eccentricity. The principal directions do not change their orientations with low-field in most specimens. Expressions for susceptibility as a function of field were found in the form of diagonal tensor whose elements are polynomials of low order. In a large proportion of samples, the susceptibility expressions can be further simplified to have one common skeleton polynomial.
Directory of Open Access Journals (Sweden)
Sobczyk Tadeusz J.
2015-09-01
Full Text Available Energy based approach was used in the study to formulate a set of functions approximating the magnetic flux linkages versus independent currents. The simplest power series that approximates field co-energy and linked fluxes for a two winding core of an induction machine are described by a set of common unknown coefficients. The authors tested three algorithms for the coefficient estimation using Weighted Least-Squared Method for two different positions of the coils. The comparison of the approximation accuracy was accomplished in the specified area of the currents. All proposed algorithms of the coefficient estimation have been found to be effective. The algorithm based solely on the magnetic field co-energy values is significantly simpler than the method based on the magnetic flux linkages estimation concept. The algorithm based on the field co-energy and linked fluxes seems to be the most suitable for determining simultaneously the coefficients of power series approximating linked fluxes and field co-energy.
SOLAR ERUPTION AND LOCAL MAGNETIC PARAMETERS
Energy Technology Data Exchange (ETDEWEB)
Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)
2016-11-10
It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5–1.5) and high decay index (0.9–1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.
Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field
International Nuclear Information System (INIS)
Wilson, F.; Neukirch, T.; Harrison, M. G.; Hesse, M.; Stark, C. R.
2016-01-01
Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.
Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona
Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong
2018-04-01
The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.
3D nonlinear modeling of the coupling and phase locking of magnetic Islands in tokamaks
Jardin, Stephen; Ferraro, Nathaniel; Chen, Jin; Pfefferle, David
2017-10-01
Many tokamak discharges develop multiple tearing modes possessing different mode numbers. These modes are observed to phase lock to one another, resulting in a flattening of the core toroidal plasma rotation profile, which can have deleterious effects on transport and MHD stability. In order to study these phenomena with minimum assumptions, we use the M3D-C1 3D nonlinear MHD code to perform initial value simulations of the evolution of equilibria unstable to both the 2/1 and 3/2 modes, but having sheared toroidal rotation. Initial attempts to perform these simulations led to numerical instabilities developing once the islands got to a certain size. In order to study the cause of this instability, we developed a small model code that solves a pure convection equation in 1D. We find that an implicit Crank-Nicholson method in time and Hermite Cubic finite elements (as are used in the toroidal direction in the M3D-C1 code) is not a convergent algorithm. Adding a small second order diffusion term, proportional to the velocity, improves the numerical stability properties but is not convergent in the first-derivative of the solution. Instead, adding a much smaller forth-order spatial derivative term proportional to the velocity leads to an algorithm in which both the solution and the first derivative converge as 1/N2,. Adding similar toroidal forth derivative terms to the M3D-C1 code eliminated the numerical instability. This work was supported by US DOE Contract DE-AC02-09-CH11466.
Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field
Chen, J.; Palmadesso, P. J.
1986-01-01
The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.
Disorder and non-linear magnetic response of high Tc superconductors
Energy Technology Data Exchange (ETDEWEB)
Burin, J.P. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Fouad, Y. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Raboutou, A. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Peyral, P. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Lebeau, C. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Rosenblatt, J. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Mokhtari, M. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France)); Pena, O. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France)); Perrin, C. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France))
1993-05-10
We measure the low frequency magnetic response of YBa[sub 2]Cu[sub 3]O[sub 6.7]F[sub x] (0 [<=] x < 0.2) ceramics in a wide range of a.c. fields (10[sup -7] T [<=] [mu][sub 0]H[sub 0] [<=] 10[sup -4]). When changing the amount of disorder (varying x) on the microscopic level we find the same non linear response with field amplitude H[sub 0] as in granular conventional superconductors. The real part of the susceptibility appears as a universal function of H[sub 1](T)/H[sub 0] where H[sub 1](T) is the field of first flux penetration. The power law dependence found for H[sub 1](T) can be understood in the framework of the coherence transition of granular superconductors with random couplings. (orig.)
Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir
2018-05-01
Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.
COMPARISON OF MAGNETIC PROPERTIES IN A MAGNETIC CLOUD AND ITS SOLAR SOURCE ON 2013 APRIL 11–14
Energy Technology Data Exchange (ETDEWEB)
Vemareddy, P. [Indian Institute of Astrophysics, Koramangala, Bangalore-560034 (India); Möstl, C.; Amerstorfer, T. [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria); Mishra, W. [Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei-230026 (China); Farrugia, C. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Leitner, M., E-mail: vemareddy@iiap.res.in [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, A-8010 Graz (Austria)
2016-09-01
In the context of the Sun–Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14–15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory . The MCs magnetic structure is reconstructed from the Grad–Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10{sup −7}–10{sup −6} m{sup −1}) at the sigmoid leg matches the range of twist number in the MC of 1–2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold–Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.
COMPARISON OF MAGNETIC PROPERTIES IN A MAGNETIC CLOUD AND ITS SOLAR SOURCE ON 2013 APRIL 11–14
International Nuclear Information System (INIS)
Vemareddy, P.; Möstl, C.; Amerstorfer, T.; Mishra, W.; Farrugia, C.; Leitner, M.
2016-01-01
In the context of the Sun–Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14–15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory . The MCs magnetic structure is reconstructed from the Grad–Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10 −7 –10 −6 m −1 ) at the sigmoid leg matches the range of twist number in the MC of 1–2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold–Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.
Comparison of Magnetic Properties in a Magnetic Cloud and Its Solar Source on 2013 April 11-14
Vemareddy, P.; Möstl, C.; Amerstorfer, T.; Mishra, W.; Farrugia, C.; Leitner, M.
2016-09-01
In the context of the Sun-Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14-15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory. The MCs magnetic structure is reconstructed from the Grad-Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10-7-10-6 m-1) at the sigmoid leg matches the range of twist number in the MC of 1-2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold-Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.
Zaher, Ashraf A
2008-03-01
The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro-MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.
Linear and non-linear ion acoustic phenomena in magnetic multi-dipole discharges
International Nuclear Information System (INIS)
Ferreira, J.L.
1986-12-01
An experimental study of ion acoustic phenomena in a multi-magnetic-dipole plasma device is presented. The plasma is uniform and free from external field, permitting good observation of space and laboratory plasma phenomena. The major interest was in the observtion of the propagation characterics of solitions and ion acoustic waves in a double plasma configuration. In this experiment plane waves were studied in a plasma composed by a mixture of negative and positive ions. The most important result was the first observation of solitary waves with negative potential, that means rarefaction ion acoustic solitions. The formation of non neutral regions inside the plasma and its relations with the inhibition of electron thermal flux were studied. A bootstrap action enhances the ion acoustic instability which generates an anomalous resistivity self consistently with a potential step. It was observed that this is the mechanism of cold electron thermalization during diffusion through a warn collisionless plasma. The importance of the bootstrap action in ion acoustic double layer formation was experimentally verified by ion acoustic instability inhibition, obtained via induced Landau damping of the ion acoustic spectrum of the instability. (author) [pt
Linear and nonlinear magnetic error measurements using action and phase jump analysis
Directory of Open Access Journals (Sweden)
Javier F. Cardona
2009-01-01
Full Text Available “Action and phase jump” analysis is presented—a beam based method that uses amplitude and phase knowledge of a particle trajectory to locate and measure magnetic errors in an accelerator lattice. The expected performance of the method is first tested using single-particle simulations in the optical lattice of the Relativistic Heavy Ion Collider (RHIC. Such simulations predict that under ideal conditions typical quadrupole errors can be estimated within an uncertainty of 0.04%. Other simulations suggest that sextupole errors can be estimated within a 3% uncertainty. Then the action and phase jump analysis is applied to real RHIC orbits with known quadrupole errors, and to real Super Proton Synchrotron (SPS orbits with known sextupole errors. It is possible to estimate the strength of a skew quadrupole error from measured RHIC orbits within a 1.2% uncertainty, and to estimate the strength of a strong sextupole component from the measured SPS orbits within a 7% uncertainty.
International Nuclear Information System (INIS)
Edery, D.; Pellat, R.; Soule, J.L.
1981-01-01
The resistive MHD equations have been handled in toroidal geometry following the tokamak ordering, in order to obtain a simplified set of non-linear equations. This system of equations is compact, closed, consistent and exact to the first two orders in the expansion in the inverse aspect ratio. Studies of the non-linear evolution of tearing modes in the real geometry of tokamak discharges are now in progress, and quite significant results have been obtained from the numerical code REVE of Fontenay based on our above model. From the analytical results, strong linear coupling between neighbouring modes is expected as is demonstrated by the numerical results in the linear, and non-linear regimes. Moreover, coupling exhibits a stochastic structure of the magnetic field lines, the threshold of which is seen to be easily computed by a simple analytical criterion. (orig.)
International Nuclear Information System (INIS)
Aggarwal, Munish; Vij, Shivani; Kant, Niti
2015-01-01
The propagation of quadruple Gaussian laser beam in a plasma characterized by axial inhomogeneity and nonlinearity due to ponderomotive force in the paraxial ray approximation is investigated. An appropriate expression for the nonlinear dielectric constant has been developed in the presence of external magnetic field, with linear absorption and due to saturation effects for arbitrary large intensity. The effects of different types of plasma axial inhomogeneities on self-focusing of laser beam have been studied with the typical laser and plasma parameters. Self-focusing of quadruple Gaussian laser beam in the presence of externally applied magnetic field and saturating parameter is found significantly improved in the case of extraordinary mode. Our results reveal that initially converging beam shows oscillatory convergence whereas initially diverging beam shows oscillatory divergence. The beam is more focussed at lower intensity in both cases viz. extraordinary and ordinary mode. (paper)
International Nuclear Information System (INIS)
Kraus, H.G.; Jones, J.L.
1986-01-01
The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)
Energy Technology Data Exchange (ETDEWEB)
Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Lerche, I., E-mail: lercheian@yahoo.com [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle, D-06099 Halle (Germany)
2015-11-15
This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are of use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].
International Nuclear Information System (INIS)
Wu Qingjie; Guo Kangxian; Liu Guanghui; Wu Jinghe
2013-01-01
Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with the radial parabolic potential and the z-direction linear potential with applied magnetic field are theoretically investigated. The optical absorption coefficients and refractive index changes are presented by using the compact-density-matrix approach and iterative method. Numerical calculations are presented for GaAs/AlGaAs. It is found that taking into account the electron-LO-phonon interaction, not only are the linear, the nonlinear and the total optical absorption coefficients and refractive index changes enhanced, but also the total optical absorption coefficients are more sensitive to the incident optical intensity. It is also found that no matter whether the electron-LO-phonon interaction is considered or not, the absorption coefficients and refractive index changes above are strongly dependent on the radial frequency, the magnetic field and the linear potential coefficient.
Energy Technology Data Exchange (ETDEWEB)
Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)
2012-06-15
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
International Nuclear Information System (INIS)
Liu Guanghui; Guo Kangxian; Wang Chao
2012-01-01
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
Bell, T. F.
1984-01-01
A theory is presented of the nonlinear gyroresonance interaction that takes place in the magnetosphere between energetic electrons and coherent VLF waves propagating in the whistler mode at an arbitrary angle psi with respect to the earth's magnetic field B-sub-0. Particularly examined is the phase trapping (PT) mechanism believed to be responsible for the generation of VLF emissions. It is concluded that near the magnetic equatorial plane gradients of psi may play a very important part in the PT process for nonducted waves. Predictions of a higher threshold value for PT for nonducted waves generally agree with experimental data concerning VLF emission triggering by nonducted waves.
Directory of Open Access Journals (Sweden)
E. L. Verde
2012-09-01
Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated
International Nuclear Information System (INIS)
Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Marchenko, Yaroslav Y.; Margulis, Boris A.; Pitkin, Emil; Guzhova, Irina V.
2015-01-01
Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M 2 ). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T 2 -weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M 2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M 2 ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates effectively target the
Bhowmik, R. N.; Vijayasri, G.
2015-06-01
We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.
Energy Technology Data Exchange (ETDEWEB)
Bhowmik, R. N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Vijayasri, G. [Department of Physics, Pondicherry University, R.Venkataraman Nagar, Kalapet, Puducherry - 605 014 (India)
2015-06-15
We have studied current-voltage (I-V) characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3}, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔV{sub P}) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.
Directory of Open Access Journals (Sweden)
R. N. Bhowmik
2015-06-01
Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.
Energy Technology Data Exchange (ETDEWEB)
Loizu, J., E-mail: joaquim.loizu@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543 (United States); Hudson, S.; Bhattacharjee, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)
2015-02-15
Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.
Energy Technology Data Exchange (ETDEWEB)
Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-06-07
We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.
van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Benoit, W.; Erb, A.; Flükiger, R.
1997-08-01
The anisotropy in the transverse AC susceptibility of YBa2Cu3O7-δ single crystals, induced by the periodic appearance of a force-free current configuration upon rotation of a superimposed DC field in the crystal plane, disappears at the vortex phase transition, indicating the loss of the vortex lines' stability against mutual cutting.
International Nuclear Information System (INIS)
Kumar Samanta, Utpal; Saha, Asit; Chatterjee, Prasanta
2013-01-01
Bifurcations of nonlinear propagation of ion acoustic waves (IAWs) in a magnetized plasma whose constituents are cold ions and kappa distributed electron are investigated using a two component plasma model. The standard reductive perturbation technique is used to derive the Zakharov-Kuznetsov (ZK) equation for IAWs. By using the bifurcation theory of planar dynamical systems to this ZK equation, the existence of solitary wave solutions and periodic travelling wave solutions is established. All exact explicit solutions of these travelling waves are determined. The results may have relevance in dense space plasmas
Energy Technology Data Exchange (ETDEWEB)
Shevtsov, Maxim A., E-mail: shevtsov-max@mail.ru [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); A.L. Polenov Russian Research Scientific Institute of Neurosurgery, Mayakovsky str. 12, St. Petersburg 191014 (Russian Federation); Nikolaev, Boris P. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Ryzhov, Vyacheslav A. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Yakovleva, Ludmila Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Dobrodumov, Anatolii V. [Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, St. Petersburg 199004 (Russian Federation); Marchenko, Yaroslav Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Margulis, Boris A. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); Pitkin, Emil [The Wharton School, University of Pennsylvania, 3730 Walnut St., Philadelphia, PA 19104 (United States); Guzhova, Irina V. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation)
2015-08-15
Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M{sub 2}). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T{sub 2}-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M{sub 2} measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M{sub 2} ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates
International Nuclear Information System (INIS)
Kurkin, S. A.; Koronovski, A. A.; Hramov, A. E.
2009-01-01
Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.
Directory of Open Access Journals (Sweden)
Bég Anwar O.
2014-01-01
Full Text Available A mathematical model is presented for viscous hydromagnetic flow through a hybrid non-Darcy porous media rotating generator. The system is simulated as steady, incompressible flow through a nonlinear porous regime intercalated between parallel plates of the generator in a rotating frame of reference in the presence of a strong, inclined magnetic field A pressure gradient term is included which is a function of the longitudinal coordinate. The general equations for rotating viscous magnetohydrodynamic flow are presented and neglecting convective acceleration effects, the two-dimensional viscous flow equations are derived incorporating current density components, porous media drag effects, Lorentz drag force components and Hall current effects. Using an appropriate group of dimensionless variables, the momentum equations for primary and secondary flow are rendered nondimensional and shown to be controlled by six physical parameters-Hartmann number (Ha, Hall current parameter (Nh, Darcy number (Da, Forchheimer number (Fs, Ekman number (Ek and dimensionless pressure gradient parameter (Np, in addition to one geometric parameter-the orientation of the applied magnetic field (θ . Several special cases are extracted from the general model, including the non-porous case studied earlier by Ghosh and Pop (2006. A numerical solution is presented to the nonlinear coupled ordinary differential equations using both the Network Simulation Method and Finite Element Method, achieving excellent agreement. Additionally very good agreement is also obtained with the earlier analytical solutions of Ghosh and Pop (2006. for selected Ha, Ek and Nh values. We examine in detail the effects of magnetic field, rotation, Hall current, bulk porous matrix drag, second order porous impedance, pressure gradient and magnetic field inclination on primary and secondary velocity distributions and also frictional shear stresses at the plates. Primary velocity is seen to decrease
International Nuclear Information System (INIS)
Dupret, K.; Delande, D.
1996-01-01
We study the time propagation of an initially localized wave packet for a generic one-dimensional time-independent system, using the open-quote open-quote nonlinear wave-packet dynamics close-quote close-quote [S. Tomsovic and E. J. Heller, Phys. Rev. Lett. 67, 664 (1991)], a semiclassical approximation using a local linearization of the wave packet in the vicinity of classical reference trajectories. Several reference trajectories are needed to describe the behavior of the full wave packet. The introduction of action-angle variables allows us to obtain a simple analytic expression for the autocorrelation function, and to show that a universal behavior (quantum collapses, quantum revivals, etc.) is obtained via interferences between the reference trajectories. A connection with the standard WKB approach is established. Finally, we apply the nonlinear wave-packet dynamics to the case of the hydrogen atom in a weak magnetic field, and show that the semiclassical expressions obtained by nonlinear wave-packet dynamics are extremely accurate. copyright 1996 The American Physical Society
Sharykin, I. N.; Kuznetsov, A. A.; Myshyakov, I. I.
2018-02-01
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-V map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.
Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.
2017-11-01
In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.
Directory of Open Access Journals (Sweden)
I.L. Animasaun
2016-06-01
Full Text Available This article presents the effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow toward a stagnation point. It is assumed that there exists a kind of chemical reaction between chemical species A and B. The diffusion coefficients of the two chemical species in the viscoelastic fluid flow are unequal. Since chemical species B is a catalyst at the horizontal surface, hence homogeneous and heterogeneous schemes are of the isothermal cubic autocatalytic reaction and first order reaction respectively. The transformed governing equations are solved numerically using Runge–Kutta integration scheme along with Newton’s method. Good agreement is obtained between present and published numerical results for a limiting case. The influence of some pertinent parameters on skin friction coefficient, local heat transfer rate, together with velocity, induced magnetic field, temperature, and concentration profiles is illustrated graphically and discussed. Based on all of these assumptions, results indicate that the effects of induced magnetic and viscoelastic parameters on velocity, transverse velocity and velocity of induced magnetic field are almost the same but opposite in nature. The strength of heterogeneous reaction parameter is very helpful to reduce the concentration of bulk fluid and increase the concentration of catalyst at the surface.
Kono, Mitsuo
2010-01-01
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Czech Academy of Sciences Publication Activity Database
Hartman, David; Hlinka, Jaroslav; Paluš, Milan; Mantini, D.; Corbetta, M.
2011-01-01
Roč. 21, č. 1 (2011), art.no 013119 ISSN 1054-1500 R&D Projects: GA MŠk 7E08027 Institutional research plan: CEZ:AV0Z10300504 Keywords : complex network * fMRI * brain connectivity * nonlinear * mutual information * correlation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.076, year: 2011
International Nuclear Information System (INIS)
Yang, Kai; Guo, Yang; Ding, M. D.
2016-01-01
Magnetic flux ropes (MFRs) play an important role in solar activities. The quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and associated activities. In this paper, we investigate the magnetic field of active region (AR) 12017 from 2014 March 28–29, during which time 12 flares were triggered by intermittent eruptions of a filament (either successful or confined). Using vector magnetic field data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory , we calculate the magnetic energy and helicity injection in the AR, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR from the closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The results show that the closed QSL structure surrounding the MFR becomes smaller as a consequence of flare occurrence. We also find that the flares in our sample are mainly triggered by kink instability. Moreover, the twist number varies more sensitively than other parameters with the occurrence of flares.
Yang, Kai; Guo, Yang; Ding, M. D.
2016-06-01
Magnetic flux ropes (MFRs) play an important role in solar activities. The quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and associated activities. In this paper, we investigate the magnetic field of active region (AR) 12017 from 2014 March 28-29, during which time 12 flares were triggered by intermittent eruptions of a filament (either successful or confined). Using vector magnetic field data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we calculate the magnetic energy and helicity injection in the AR, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR from the closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The results show that the closed QSL structure surrounding the MFR becomes smaller as a consequence of flare occurrence. We also find that the flares in our sample are mainly triggered by kink instability. Moreover, the twist number varies more sensitively than other parameters with the occurrence of flares.
Energy Technology Data Exchange (ETDEWEB)
Yang, Kai; Guo, Yang; Ding, M. D., E-mail: dmd@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)
2016-06-20
Magnetic flux ropes (MFRs) play an important role in solar activities. The quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and associated activities. In this paper, we investigate the magnetic field of active region (AR) 12017 from 2014 March 28–29, during which time 12 flares were triggered by intermittent eruptions of a filament (either successful or confined). Using vector magnetic field data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory , we calculate the magnetic energy and helicity injection in the AR, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR from the closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The results show that the closed QSL structure surrounding the MFR becomes smaller as a consequence of flare occurrence. We also find that the flares in our sample are mainly triggered by kink instability. Moreover, the twist number varies more sensitively than other parameters with the occurrence of flares.
Energy Technology Data Exchange (ETDEWEB)
Antonov, A.S.; Buznikov, N.A. E-mail: n_buznikov@mail.ru; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M
2002-08-01
The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors.
International Nuclear Information System (INIS)
Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M.
2002-01-01
The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors
Energy Technology Data Exchange (ETDEWEB)
Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Restrepo, R.L. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Ungan, F.; Yesilgul, U.; Sari, H. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)
2015-03-15
In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga{sub 1−x}Al{sub x}As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width.
International Nuclear Information System (INIS)
Kasapoglu, E.; Duque, C.A.; Mora-Ramos, M.E.; Restrepo, R.L.; Ungan, F.; Yesilgul, U.; Sari, H.; Sökmen, I.
2015-01-01
In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga 1−x Al x As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width
Energy Technology Data Exchange (ETDEWEB)
J.A. Krommes
2009-05-19
Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.
International Nuclear Information System (INIS)
Krommes, J.A.
2009-01-01
Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-? theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-06-01
In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.
THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE
Energy Technology Data Exchange (ETDEWEB)
Yan, X. L.; Xue, Z. K.; Wang, J. C.; Xiang, Y. Y.; Kong, D. F.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Pan, G. M. [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)
2015-08-15
To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspot with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.
X-ray detected magnetic resonance of YIG thin films in the nonlinear regime of spin waves
Energy Technology Data Exchange (ETDEWEB)
Goulon, J., E-mail: goulon@esrf.f [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Rogalev, A.; Wilhelm, F.; Goujon, G. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Brouder, Ch. [Institut de Mineralogie et de Physique des Milieux Condenses, UMR-CNRS 7590, Universite Paris VI-VII, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Yaresko, A. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Ben Youssef, J.; Indenbom, M.V. [Laboratoire de Magnetisme de Bretagne, CNRS FRE 2697, UFR Sciences et Techniques, F-29328 Brest Cedex (France)
2010-08-15
We discuss the information content of element/edge resolved X-ray detected magnetic resonance (XDMR) experiments carried out on yttrium iron garnet (YIG) thin films. Starting with a phenomenological approach, it is shown that the photoionisation of deep atomic core levels by circularly polarized X-rays can be used to probe the precession dynamics of spin or orbital magnetization components in empty final states of proper symmetry. Crude estimates of the opening angle of the uniform precession mode were tentatively deduced from the ratio of the XDMR and XMCD absorption cross-sections either at the iron or yttrium absorbing sites. The implications of the most recent experimental results collected at the ESRF are analyzed, keeping in mind that: (i) the Fe K-edge XDMR signal is largely dominated by the precession of orbital magnetization components at the tetrahedral iron sites; (ii) the Y L-edges XDMR signal essentially describes the precession of induced spin magnetization involving the 4d states of yttrium. In the magnetostatic regime, we produce clear experimental evidence of collective excitations of orbital magnetization waves, especially under high pumping power. Several coupling mechanisms could explain our observations, starting with pseudo-dipolar interactions in ferromagnetic systems. In ferrimagnetic systems in which orbital degeneracy and orbital ordering make the excitation of orbitons possible, one may envisage additional modes of excitation or relaxation of orbital magnetization waves. This interpretation looks fully consistent with the results of band structure calculations carried out recently on YIG with fully relativistic LMTO-LSDA methods.
Energy Technology Data Exchange (ETDEWEB)
Duan, Aiying; Zhang, Huai [Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, Chaowei [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 518055 (China); Hu, Qiang; Gary, G. Allen; Wu, S. T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn [School of Space and Environment, Beihang University, Beijing 100191 (China)
2017-06-20
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.
International Nuclear Information System (INIS)
Young, I.R.
1984-01-01
A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)
Comparative study of a constant-alpha force-free field and its approximations in an ideal toroid
Czech Academy of Sciences Publication Activity Database
Vandas, Marek; Romashets, E.
2015-01-01
Roč. 580, August (2015), A123/1-A123/7 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-19376S Institutional support: RVO:67985815 Keywords : solar wind * magnetic fields * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014
Energy Technology Data Exchange (ETDEWEB)
Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Guo, Q. L., E-mail: yanxl@ynao.ac.cn [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)
2016-11-20
We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.
International Nuclear Information System (INIS)
Lu, LingFeng
2016-01-01
Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr
International Nuclear Information System (INIS)
Aschwanden, Markus J.; Sun, Xudong; Liu, Yang
2014-01-01
We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E N and potential energy E P but find up to a factor of 4 discrepancy in the free energy E free = E N – E P and up to a factor of 10 discrepancy in the decrease of the free energy ΔE free during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.
Nonlinear Optics and Applications
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Energy Technology Data Exchange (ETDEWEB)
Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J.; DeRosa, M. L. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Wheatland, M. S. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Redfern, NSW (Australia)
2014-03-10
The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the non-potential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of active region (AR) 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around the time of major flare activity on 2011 February 15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also being subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about 1 × 10{sup 32} erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption, the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by ≈0.9 full turns about its axis.
Directory of Open Access Journals (Sweden)
Youngmin Oh
2018-02-01
Full Text Available We propose a phenomenological yet general model in a form of extended complex Ginzburg-Landau equation to understand edge-localized modes (ELMs, a class of quasi-periodic fluid instabilities in the boundary of toroidal magnetized high-temperature plasmas. The model reproduces key dynamical features of the ELMs (except the final explosive relaxation stage observed in the high-confinement state plasmas on the Korea Superconducting Tokamak Advanced Research: quasi-steady states characterized by field-aligned filamentary eigenmodes, transitions between different quasi-steady eigenmodes, and rapid transition to non-modal filamentary structure prior to the relaxation. It is found that the inclusion of time-varying perpendicular sheared flow is crucial for reproducing all of the observed dynamical features.
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong
2018-02-01
On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.
Nonlinear surface Alfven waves
International Nuclear Information System (INIS)
Cramer, N.F.
1991-01-01
The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)
Transient anisotropic magnetic field calculation
International Nuclear Information System (INIS)
Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan
2006-01-01
For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement
International Nuclear Information System (INIS)
Boyd, R.W.
1992-01-01
Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics
Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms
Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.; Parnell, C. E.
2013-09-01
This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.
by B. Curé
2011-01-01
The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...
[Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
International Nuclear Information System (INIS)
Karabulut, I.; Mora-Ramos, M.E.; Duque, C.A.
2011-01-01
The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.
Kinetic models of magnetic flux ropes observed in the Earth magnetosphere
Energy Technology Data Exchange (ETDEWEB)
Vinogradov, A. A. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); Artemyev, A. V. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); University of California, Los Angeles, California 90095 (United States); Yushkov, E. V. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation)
2016-07-15
Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.
Kinetic models of magnetic flux ropes observed in the Earth magnetosphere
International Nuclear Information System (INIS)
Vinogradov, A. A.; Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M.; Artemyev, A. V.; Yushkov, E. V.
2016-01-01
Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.
Ohm's law for mean magnetic fields
International Nuclear Information System (INIS)
Boozer, A.H.
1986-05-01
The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity
Ohm's law for mean magnetic fields
International Nuclear Information System (INIS)
Boozer, A.H.
1986-01-01
The magnetic fields associated with plasmas frequently exhibit small-amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions, it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity. (author)
Benoit Curé
2010-01-01
Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...
B. Curé
2012-01-01
The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...
B. Curé
2012-01-01
Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...
Paul, Sarbajit; Chang, Junghwan
2017-07-01
This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension.
Tom, Nathan; Yeung, Ronald W.
2015-01-01
To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.
Magnetohydrodynamic simulations of the ejection of a magnetic flux rope
Pagano, P.; Mackay, D. H.; Poedts, S.
2013-06-01
Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
B. Curé
2012-01-01
The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...
B. Curé
2013-01-01
The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...
Benoit Curé
2010-01-01
The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...
B. Curé
2011-01-01
The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...
Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State
Regnier, S.; Priest, E. R.
2008-01-01
To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...
Energy Technology Data Exchange (ETDEWEB)
Amyan, Adham
2013-07-09
The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB{sub 6} as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB{sub 6} and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T{sub MI} and T{sub C}. Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.
B. Curé
2011-01-01
The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos
2015-08-01
NOAA active region (AR) 11429 was the source of twin super-fast coronal mass ejections (CMEs). The CMEs took place within an hour from each other, with the onset of the first taking place in the beginning of 2012 March 7. This AR fulfills all the requirements for a “super active region” namely, Hale's law incompatibility and a δ-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ({D}{st}=-143 nT) was associated with one of these events. Magnetic flux ropes (MFRs) are twisted magnetic structures in the corona, best seen in ˜10 MK hot plasma emission and are often considered the core of erupting structures. However, their “dormant” existence in the solar atmosphere (i.e., prior to eruptions), is an open question. Aided by multi-wavelength observations by the Solar Dynamics Observatory (SDO) and by the Solar Terrestrial Relations Observatory (STEREO) and a nonlinear force-free model for the coronal magnetic field, our work uncovers two separate, weakly twisted magnetic flux systems which suggest the existence of pre-eruption MFRs that eventually became the seeds of the two CMEs. The MFRs could have been formed during confined (i.e., not leading to major CMEs) flaring and sub-flaring events which took place the day before the two CMEs in the host AR 11429.
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...
Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation
Georgoulis, Manolis K.
Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.
Set Your Creative Forces Free!
DEFF Research Database (Denmark)
Meier Sørensen, Bent; Villadsen, Kaspar
in this study exploits a much more rarely used potential in CMS by placing the managerial body centre stage in the analysis, observing it as ‘a discursive statement’ in its own right. Empirically, this is done via an analysis of video material produced by the film company Zentropa about their apparently...
Anomalous resistivity and the evolution of magnetic field topology
Parker, E. N.
1993-01-01
This paper explores the topological restructuring of a force-free magnetic field caused by the hypothetical sudden onset of a localized region of strong anomalous resistivity. It is shown that the topological complexity increases, with the primitive planar force-free field with straight field lines developing field lines that wrap half a turn around each other, evidently providing a surface of tangential discontinuity in the wraparound region. It is suggested that the topological restructuring contributes to the complexity of the geomagnetic substorm, the aurora, and perhaps some of the flare activity on the sun, or other star, and the Galactic halo.
Theory and application of maximum magnetic energy in toroidal plasmas
International Nuclear Information System (INIS)
Chu, T.K.
1992-02-01
The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q'/q (as in reverse field pinches and spheromaks) to have the same α in all its force-free regions and with a positive q'/q (as in tokamaks) to have centrally peaked α's
Nonlinear Dynamics in Spear Wigglers
International Nuclear Information System (INIS)
2002-01-01
BL11, the most recently installed wiggler in the SPEAR storage ring at SSRL, produces a large nonlinear perturbation of the electron beam dynamics, which was not directly evident in the integrated magnetic field measurements. Measurements of tune shifts with betatron oscillation amplitude and with closed orbit shifts were used to characterize the nonlinear fields of the SPEAR insertion devices (IDs). Because of the narrow pole width in BL11, the nonlinear fields seen along the wiggling electron trajectory are dramatically different than the flip coil measurements made along a straight line. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Corrector magnets to cancel the BL11 nonlinear fields are presently under construction
Benoit Curé
2010-01-01
The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...
B. Curé
MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...
Benoit Curé.
The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...
B. Curé
2013-01-01
The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....
National Research Council Canada - National Science Library
Drazin, P. G
1992-01-01
This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
Benoit Curé
The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...
B. Curé
During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...
Estimation of Nonlinear DC-Motor Models Using a Sensitivity Approach
DEFF Research Database (Denmark)
Knudsen, Morten; Jensen, J.G.
1995-01-01
A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed.......A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed....
The 2013 February 17 Sunquake in the Context of the Active Region's Magnetic Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Green, L. M.; Valori, G.; Zuccarello, F. P.; Matthews, S. A. [Mullard Space Science Laboratory, UCL, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Zharkov, S. [Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom); Guglielmino, S. L. [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università degli Studi di Catania, Via S. Sofia 78, I-95123 Catania (Italy)
2017-11-01
Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region’s magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was in its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope’s instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake.
Vemareddy, P.; Demóulin, P.
2018-04-01
We study the magnetic structure of a successively erupting sigmoid in active region 12371 by modeling the quasi-static coronal field evolution with nonlinear force-free field (NLFFF) equilibria. Helioseismic and Magnetic Imager/Solar Dynamic Observatory vector magnetograms are used as input to the NLFFF model. In all eruption events, the modeled structure resembles the observed pre-eruptive coronal sigmoid and the NLFFF core field is a combination of double inverse-J-shaped and inverse-S field lines with dips touching the photosphere. Such field lines are formed by the flux cancellation reconnection of opposite-J field lines at bald-patch locations, which in turn implies the formation of a weakly twisted flux-rope (FR) from large-scale sheared arcade field lines. Later on, this FR undergoes coronal tether-cutting reconnection until a coronal mass ejection is triggered. The modeled structure captured these major features of sigmoid-to-arcade-to-sigmoid transformation, which is reoccuring under continuous photospheric flux motions. Calculations of the field line twist reveal a fractional increase followed by a decrease of the number of pixels having a range of twist. This traces the buildup process of a twisted core field by slow photospheric motions and the relaxation after eruption, respectively. Our study infers that the large eruptivity of this AR is due to a steep decrease of the background coronal field meeting the torus instability criteria at a low height (≈40 Mm) in contrast to noneruptive ARs.
Gradiometer Based on Nonlinear Magneto-Optic Rotation, Phase I
National Aeronautics and Space Administration — This Phase I SBIR project will demonstrate sensitive measurements of magnetic field gradients by nonlinear atomic spectroscopy. The gradients are determined by...
International Nuclear Information System (INIS)
Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang
2013-01-01
In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...
Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.
2015-06-01
The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.
Benoit Curé
The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...
B. Curé
The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...
Benoit Curé
2013-01-01
Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...
AUTHOR|(CDS)2067087
In one of its acceptation, the word quench is synonym of destruction. And this is even more consistent with reality in the case of the Large Hadron Collider dipole magnets, whose magnetic field and stored energy are unprecedented: the uncontrolled transition from the superconducting to the resistive state can be the origin of dramatic events. This is why the protection of magnets is so important, and why so many studies and investigations have been carried out on quench origin. The production, cold testing and installation of the 1232 arc dipole magnets is completed. They have fulfilled all the requirements and the operation reliability of these magnets has already been partially confirmed. From an academic standpoint, nevertheless, the anomalous mechanical behaviour, which was sometimes observed during power tests, has not yet been given a clear explanation. The work presented in this thesis aims at providing an instrument to better understand the reasons for such anomalies, by means of finite element modell...
Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)
2017-06-20
Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.
TIME EVOLUTION OF CORONAL MAGNETIC HELICITY IN THE FLARING ACTIVE REGION NOAA 10930
International Nuclear Information System (INIS)
Park, Sung-Hong; Jing, Ju; Wang Haimin; Chae, Jongchul; Tan, Changyi
2010-01-01
To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 x 10 43 Mx 2 just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 x 10 43 Mx 2 , in the corona over ∼1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.
International Nuclear Information System (INIS)
Montgomery, D.C.
1986-01-01
We have explored numerical solutions of the three-dimensional magnetohydrodynamic equations and of the Strauss equations. In the former case, the emphasis has been on relaxation to force-free, field-reversed states in magnetofluids bounded by rigid conductors; in the latter case, the emphasis has been on disruptions. The competition between dynamic alignment of the velocity fields and magnetic fields and selective decay toward minimum energy states has been explored. Analytical expressions for density fluctuation spectra in MHD turbulence have been derived. Analytical expressions for turbulent MHD resistivities and viscosities have been derived
Nonlinear diffuse scattering of the random-phased wave
International Nuclear Information System (INIS)
Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.
1983-01-01
First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)
Laitinen, Antti; Kumar, Manohar; Hakonen, Pertti; Sonin, Edouard
2018-01-12
We have investigated tunneling current through a suspended graphene Corbino disk in high magnetic fields at the Dirac point, i.e. at filling factor ν = 0. At the onset of the dielectric breakdown the current through the disk grows exponentially before ohmic behaviour, but in a manner distinct from thermal activation. We find that Zener tunneling between Landau sublevels dominates, facilitated by tilting of the source-drain bias potential. According to our analytic modelling, the Zener tunneling is strongly affected by the gyrotropic force (Lorentz force) due to the high magnetic field.
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...
Periodic waves in nonlinear metamaterials
International Nuclear Information System (INIS)
Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo
2012-01-01
Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.
Nonlinear phenomena at cyclotron resonance
International Nuclear Information System (INIS)
Subbarao, D.; Uma, R.
1986-01-01
Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH
Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520
Energy Technology Data Exchange (ETDEWEB)
Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Sun, X. D. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Wang, Y. M. [School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Kliem, B. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Deng, Y. Y., E-mail: xincheng@nju.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2014-07-10
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520
International Nuclear Information System (INIS)
Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.
2014-01-01
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s –1 . The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
Modeling of Local Magnetic Field Enhancements within Solar Flux Ropes
Romashets, E; Vandas, M; Poedts, Stefaan
2010-01-01
To model and study local magnetic-field enhancements in a solar flux rope we consider the magnetic field in its interior as a superposition of two linear (constant alpha) force-free magnetic-field distributions, viz. a global one, which is locally similar to a part of the cylinder, and a local torus-shaped magnetic distribution. The newly derived solution for a toroid with an aspect ratio close to unity is applied. The symmetry axis of the toroid and that of the cylinder may or may not coinci...
Nonlinear dynamo in the intracluster medium
Beresnyak, Andrey; Miniati, Francesco
2018-05-01
Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.
Directory of Open Access Journals (Sweden)
C. Möstl
2009-05-01
Full Text Available We analyze a magnetic signature associated with the leading edge of a bursty bulk flow observed by Cluster at −19 RE downtail on 22 August 2001. A distinct rotation of the magnetic field was seen by all four spacecraft. This event was previously examined by Slavin et al. (2003b using both linear force-free modeling as well as a curlometer technique. Extending this work, we apply here single- and multi-spacecraft Grad-Shafranov (GS reconstruction techniques to the Cluster observations and find good evidence that the structure encountered is indeed a magnetic flux rope and contains helical magnetic field lines. We find that the flux rope has a diameter of approximately 1 RE, an axial field of 26.4 nT, a velocity of ≈650 km/s, a total axial current of 0.16 MA and magnetic fluxes of order 105 Wb. The field line twist is estimated as half a turn per RE. The invariant axis is inclined at 40° to the ecliptic plane and 10° to the GSM equatorial plane. The flux rope has a force-free core and non-force-free boundaries. When we compare and contrast our results with those obtained from minimum variance, single-spacecraft force-free fitting and curlometer techniques, we find in general fair agreement, but also clear differences such as a higher inclination of the axis to the ecliptic. We further conclude that single-spacecraft methods have limitations which should be kept in mind when applied to THEMIS observations, and that non-force-free GS and curlometer techniques are to be preferred in their analysis. Some properties we derived for this earthward– moving structure are similar to those inferred by Lui et al. (2007, using a different approach, for a tailward-moving flux rope observed during the expansion phase of the same substorm.
International Nuclear Information System (INIS)
Vemareddy, P.; Wiegelmann, T.
2014-01-01
We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology and is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Directory of Open Access Journals (Sweden)
B. T. Tsurutani
2005-01-01
Full Text Available Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant 'turbulence' created by the Alfvén wave dissipation is quite complex. There are both propagating (waves and nonpropagating (mirror mode structures and MDs byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the 'turbulence' is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs. Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in
International Nuclear Information System (INIS)
Yoshimura, H.
1979-01-01
A new dynamical model of the solar cycle has predicted that the cycle should have a hysteretic nature: the behavior of each 11 year cycle should depend on previous cycles. In the light of this new understanding of the dynamical mechanism of the solar cycle, Waldmeier's (hypothetical) law was examined as a yet unexplained characteristic of the cycle by studying the observed sunspot frequency curve. Contrary to this hypothetical law, however, it was found that sunspot cycle curves did not form a single-parameter family characterized by the maximum amplitude of the cycle. The evolutionary trajectories in period-amplitude phase space verified the hysteretic nature of the observed cycle and revealed long-term (55 year instead of the previously claimed 80 year) periodic modulations, called here 55 year grand cycles. Each 55 year grand cycle forms a loop in the phase space, and the characteristics of each 11 year cycle depend on its position in the ascending or descending phase of the grand cycle. This new law was analyzed by the nonlinear multiple-period dynamo oscillation model which has predicted the hysteretic nature. The era from cycle 11 to cycle 15 turned out to be an anomalous one characterized by alternating amplitudes for odd and even cycles. Cycles 16--20 seem to constitute one grand cycle. If this is true, cycle 21 would be the beginning of another grand maximum and the model predicts that its duration would be short
Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials
International Nuclear Information System (INIS)
Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan
2007-01-01
A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models
Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.
1996-01-01
We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.
Metastability in Magnetically Confined Plasmas
International Nuclear Information System (INIS)
Fong, B.H.; Cowley, S.C.; Hurricane, O.A.
1999-01-01
The parameter space of magnetically confined plasmas near marginal instability for interchange-type modes is divided into three regions according to qualitative stability properties. Region I is linearly stable though nonlinearly unstable to large excitations. Region II is linearly unstable, nonlinearly stable to small excitations, and nonlinearly unstable to large excitations. Region III is linearly and nonlinearly unstable. For an equilibrium evolving through marginal stability, region III and therefore explosive instability are inevitably encountered. copyright 1999 The American Physical Society
Chaos and Structures in Nonlinear Plasmas
Chen, James
In recent decades, the concepts and applications of chaos, complexity, and nonlinear dynamics have profoundly influenced scientific as well as literary thinking. Some aspects of these concepts are used in almost all of the geophysical disciplines. Chaos and Structures in Nonlinear Plasmas, written by two respected plasma physicists, focuses on nonlinear phenomena in laboratory and space plasmas, which are rich in nonlinear and complex collective effects. Chaos is treated only insofar as it relates to some aspects of nonlinear plasma physics.At the outset, the authors note that plasma physics research has made fundamental contributions to modern nonlinear sciences. For example, the Poincare surface of section technique was extensively used in studies of stochastic field lines in magnetically confined plasmas and turbulence. More generally, nonlinearity in plasma waves and wave-wave and wave-particle interactions critically determines the propagation of energy through a plasma medium. The book also makes it clear that the importance of understanding nonlinear waves goes beyond plasma physics, extending to such diverse fields as solid state physics, fluid dynamics, atmospheric physics, and optics. In space physics, non-linear plasma physics is essential for interpreting in situ as well as remote-sensing data.
International Nuclear Information System (INIS)
Jiang, Chao-Wei; Feng, Xue-Shang
2016-01-01
In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)
Nonlinear behavior of the radiative condensation instability
International Nuclear Information System (INIS)
McCarthy, D.; Drake, J.F.
1991-01-01
An investigation of the nonlinear behavior of the radiative condensation instability is presented in a simple one-dimensional magnetized plasma. It is shown that the radiative condensation is typically a nonlinear instability---the growth of the instability is stronger once the disturbance reaches finite amplitude. Moreover, classical parallel thermal conduction is insufficient by itself to saturate the instability. Radiative collapse continues until the temperature in the high density condensation falls sufficiently to reduce the radiation rate
FINE MAGNETIC FEATURES AND CHIRALITY IN SOLAR ACTIVE REGION NOAA 10930
International Nuclear Information System (INIS)
Zhang Hongqi
2010-01-01
In this paper, we present fine magnetic features near the magnetic inversion line in the solar active region NOAA 10930. The high-resolution vector magnetograms obtained by Hinode allow detailed analyses around magnetic fibrils in the active region. The analyses are based on the fact that the electric current density can be divided into two components: the shear component caused by the magnetic inhomogeneity and the twist component caused by the magnetic field twist. The relationships between magnetic field, electric current density, and its two components are examined. It is found that the individual magnetic fibrils are dominated by the current density component caused by the magnetic inhomogeneity, while the large-scale magnetic region is generally dominated by the electric current component associated with the magnetic twist. The microstructure of the magnetic field in the solar atmosphere is far from the force-free field. The current mainly flows around the magnetic flux fibrils in the active regions.
A paramagnetic nearly isodynamic compact magnetic confinement system
International Nuclear Information System (INIS)
Cooper, W.A.; Antonietti, J.M.; Todd, T.N.
2001-01-01
A coreless compact magnetic confinement system that consists of sets of helical windings and vertical magnetic field coils is investigated. The helical coils produce a small toroidal translation of the magnetic field lines and seed paramagnetism. The force-free component of the toroidal current strongly enhances the paramagnetism such that isodynamic conditions near the plasma centre can be approached. At β 5%, the configuration is stable to local MHD modes. Global MHD modes limit the toroidal current 2πJ to about 60kA for peaked J. Bootstrap-like hollow current profiles generate quasiaxisymmetric systems that require a close fitting conducting shell to satisfy external kink stability. (author)
DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES
Energy Technology Data Exchange (ETDEWEB)
Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui, E-mail: zhangqh@mail.ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China)
2016-07-10
2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.
DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES
International Nuclear Information System (INIS)
Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui
2016-01-01
2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.
Nonlinear predictive control in the LHC accelerator
Blanco, E; Cristea, S; Casas, J
2009-01-01
This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.
Nonlinear single-spin spectrum analyzer.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2013-03-15
Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.
Inami, T; Tanaka, H
1997-01-01
The spin dynamics of the hexagonal ABX sub 3 -type quasi-one-dimensional antiferromagnet CsVCl sub 3 is investigated by means of an inelastic neutron scattering technique. In good qualitative agreement with a recent spin-wave calculation including higher-order terms, a large scattering cross-section arising from two-magnon excitations is observed at the one-dimensional antiferromagnetic zone centre. In addition, we measured spin-wave excitations between the chains precisely and revealed that the spin-wave dispersion curves are modified in energy and in intensity on account of the anticrossing between the one-magnon branches and two-magnon continuum. These results demonstrate that anharmonic terms are important in the spin dynamics of CsVCl sub 3 even at low temperatures. We also measured the temperature dependence of the magnetic excitations and found that far above the Neel temperature the two-magnon process gives a considerable contribution to the inelastic spectrum. (author)
International Nuclear Information System (INIS)
Jacquot, Jonathan
2013-01-01
A correct understanding of the interactions between the edge plasma and the ion cyclotron (IC) waves (40-80 MHz) is needed to inject reliably large amount of power required for self-sustainable fusion plasmas. These thesis objectives were to model separately, with Comsol Multiphysics, but in compatible approaches the wave coupling and the radio-frequency (RF) sheath formation to anticipate development of a single code combining both. Modelling of fast wave coupling requires a detailed description of the antenna (2D or 3D) and of the plasma environment by a full wave approach for a cold plasma. Absorption of outgoing waves is emulated by perfectly matched layers, rendered compatible with a plasma dielectric tensor. Experimental trends for the coupling resistance of the antennas of Tore Supra are qualitatively reproduced but the coupling efficiency is overestimated. In parallel a novel self-consistent description, including RF sheaths, of the interplay between the cold wave propagation and DC biasing of the magnetized edge plasma of a tokamak was developed with the minimum set of physics ingredients. For Tore Supra antenna cases, the code coupled with TOPICA allowed to unveil qualitatively some unexpected observations on the latest design of Tore Supra Faraday screens whose electrical design was supposed to minimize RF sheaths. From simulations, a DC (Direct Current) current transport appears necessary to explain the radial structures of measurements. Cantilevered bars have been identified as the design element in the antenna structure enhancing the plasma potential. (author) [fr
Westra, H.J.R.
2012-01-01
In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Magnetic shielding for MRI superconducting magnets
International Nuclear Information System (INIS)
Ishiyama, A.; Hirooka, H.
1991-01-01
This paper describes an optimal design of a highly homogeneous superconducting coil system with magnetic shielding for Magnetic Resonance Imaging (MRI). The presented optimal design method; which is originally proposed in our earlier papers, is a combination of the hybrid finite element and boundary element method for analysis of an axially symmetric nonlinear open boundary magnetic field problem, and the mathematical programming method for solving the corresponding optimization problem. In this paper, the multi-objective goal programming method and the nonlinear least squares method have been adopted. The optimal design results of 1.5- and 4.7-Tesla-magnet systems with different types of magnetic shielding for whole-body imaging are compared and the advantages of a combination of active and yoke shields are shown
A study of discrete nonlinear systems
International Nuclear Information System (INIS)
Dhillon, H.S.
2001-04-01
An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)
Nonlinear Distortion Mechanisms and Efficiency of Balanced-Armature Loudspeakers
DEFF Research Database (Denmark)
Jensen, Joe
are inherently nonlinear devices, since any displacement of the loudspeaker diaphragm in- evitably changes the magnetic and electrical characteristics of the loudspeaker. Additionally, for the balanced-armature loudspeaker the signal has to be transmitted through the magnetic domain (as a magnetic B -field...... and to validate simpler equivalent circuit models. A large scale model of a balanced-armature loudspeaker has been developed and its inherent nonlinear parameters have been measured and compared to the theoretically predicted values. A measurement setup for determining the magnetic properties of soft magnetic...... materials has also been developed, since it is of great importance to understand what kind of linear and nonlinear transformations the magnetic materials impose on the signal. In hearing aid applications the power efficiency of the loudspeaker is important because every reduction in power consumption...
Shear flows induced by nonlinear evolution of double tearing modes
International Nuclear Information System (INIS)
Wang Zhengxiong; Kishimoto, Y.; Li, J. Q.; Wang Xiaogang; Dong, J. Q.
2008-01-01
Shear flows induced by nonlinear evolution of double tearing modes are investigated in a resistive magnetohydrodynamic model with slab geometry. It is found that intensive and thin poloidal shear flow layers are generated in the magnetic island region driven by coupled reconnection process at both rational surfaces. The structure of the flow layers keeps evolving after the merging of magnetic separatrices and forms a few narrow vortices along the open field lines in the final stage of magnetic reconnection. The effects of the distance between both rational surfaces and the initial magnetic shear on the nonlinear evolution of the plasma flows are also taken into consideration and the relevant mechanism is discussed
Non-Linear Excitation of Ion Acoustic Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Hirsfield, J. L.
1974-01-01
The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....
Nonlinear AC susceptibility, surface and bulk shielding
van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.
1996-02-01
We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.
Nonlinear coupled Alfven and gravitational waves
International Nuclear Information System (INIS)
Kaellberg, Andreas; Brodin, Gert; Bradley, Michael
2004-01-01
In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected
Nonlinear Faraday rotation in samarium vapor
International Nuclear Information System (INIS)
Barkov, L.M.; Melik-Pashaev, D.A.; Zolotorev, M.S.
1988-01-01
Experiments on nonlinear magnetic optical (Faraday) rotation on resonance transitions of atomic samarium are described. Measurements were carried out on transitions with different angular momenta of upper and lower states: 1→0, 0→1 and 1→1. Qualitative explanations of observed phenomena are given
Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.
Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-12-02
We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Theory and design of nonlinear metamaterials
Rose, Alec Daniel
If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers
Institute of Scientific and Technical Information of China (English)
王冰; 张一鸣; 周建良
2013-01-01
针对永磁风电机组中存在的主要非线性环节(风能捕获功率的复杂非线性、发电机的典型非线性),设计风机转子角速度决策环节和非线性控制器,实现对风电机组的精确控制,达到全风速范围高效风能获取的目标.首先通过非线性观测器得到风速估计值,然后通过风能捕获功率的复杂非线性函数分析得到角速度参考值,最后利用角速度参考值与实际角速度值的差值驱动非线性控制器得到控制电压,以实现全程高效风能获取.针对风电机组模型,基于Lyapunov定理设计非线性控制器,能使实际角速度准确跟踪理想角速度的变化.仿真验证结果表明,非线性控制器的设计方法可行、有效.%Considering the main nonlinearities in the permanent magnet wind turbine, the complex nonlinear function of the power captured from wind and the typical nonlinear structure of generators, a speed decision-making module and a nonlinear controller were designed to control the wind turbine precisely and obtain high-efficiency wing energy for the whole wind speed range. First, a nonlinear observer was used to obtain the estimate of wind speed. Then, through analysis of the complex nonlinear function of the power captured from the wind, the reference value of angular speed was obtained. Finally, based on the difference between the reference value and the actual value, the nonlinear controller was driven to obtain the control voltage. Thus, the high-efficiency wind energy for the whole wind speed range was obtained. For the model of wind turbines, the nonlinear controller was designed based on the Lyapunov theorem. This control method can make the actual angular speed value follow the reference speed value precisely. The simulation results show that the proposed method for the design of the nonlinear controller is feasible and effective.
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
Hanamura, Eiichi; Yamanaka, Akio
2007-01-01
This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Nonlinear Cyclotron absorption of a hole doppleron in cadmium
Energy Technology Data Exchange (ETDEWEB)
Voloshin, I.F.; Bugal' ter, G.A.; Demikhovskii, V.Y.; Fisher, L.M.; Yudin, V.A.
1977-10-01
We investigated experimentally the nonlinear behavior of the impedance of a cadmium plate in the region of existence of the hole doppleron. It is shown theoretically that this phenomenon can be attributed to nonlinear cyclotron absorption of the wave in the metal. A theory of nonlinear cyclotron absorption of a hole doppleron in cadmium is constructed. The nonlinearity is due to the influence of the wave magnetic field H that alters the trajectories of the resonant electrons responsible for the cyclotron asorption. The Lorentz force connected with the field H modulates the particle velocity along the magnetic field at a characteristic frequency ..omega../sub 0/ proportional to the square root of the wave amplitude. The modulation of the longitudinal particle velocity leads to violation of the condition of their resonant interaction with the wave, as a result of which the absorption coefficient decreases. The nonlinearity is significant when the frequency ..omega../sub 0/ is large compared with the electron-collision frequency. A decrease of the cyclotron absorption changes radically the picture of the surface-impedance oscillations of the plate in the magnetic field. We studied in the experiment the influence of the temperature, of the angle of inclination of the magnetic field, and of the frequency on the nonlinear-effect threshold field that separates the regions of linear and nonlinear behavior of the sample impedance. The measurement results are in qualitative agreement with the conclusions of the theory.
Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials
International Nuclear Information System (INIS)
Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu
2010-01-01
We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.
A GLOBAL MAGNETIC TOPOLOGY MODEL FOR MAGNETIC CLOUDS. II
Energy Technology Data Exchange (ETDEWEB)
Hidalgo, M. A., E-mail: miguel.hidalgo@uah.es [Departamento de Fisica, Universidad de Alcala, Apartado 20, E-28871 Alcala de Henares, Madrid (Spain)
2013-04-01
In the present work, we extensively used our analytical approach to the global magnetic field topology of magnetic clouds (MCs), introduced in a previous paper, in order to show its potential and to study its physical consistency. The model assumes toroidal topology with a non-uniform (variable maximum radius) cross-section along them. Moreover, it has a non-force-free character and also includes the expansion of its cross-section. As is shown, the model allows us, first, to analyze MC magnetic structures-determining their physical parameters-with a variety of magnetic field shapes, and second, to reconstruct their relative orientation in the interplanetary medium from the observations obtained by several spacecraft. Therefore, multipoint spacecraft observations give the opportunity to infer the structure of this large-scale magnetic flux rope structure in the solar wind. For these tasks, we use data from Helios (A and B), STEREO (A and B), and Advanced Composition Explorer. We show that the proposed analytical model can explain quite well the topology of several MCs in the interplanetary medium and is a good starting point for understanding the physical mechanisms under these phenomena.
Nonlinear Single Spin Spectrum Analayzer
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2014-05-01
Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.
Nonlinear electrostatic solitary waves in electron-positron plasmas
Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.
2016-02-01
The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.
DEFF Research Database (Denmark)
Enemark, Søren; Santos, Ilmar
2014-01-01
with a multibody system composed of rigid rotor and flexible foundation. The magnetic eccentricities of the shaft magnets are modelled using the distances (amplitudes) and directions (phase angles) between the shaft axis and the centre of the magnetic fields generated. A perturbation method, i.e. harmonic......-linear stiffness. In this investigation passive magnetic bearings using axially- aligned neodymium cylinder magnets are investigated. The cylinder magnets are axially magnetised for rotor as well as bearings. Compared to bearings with radial magnetisation, the magnetic stiffness of axially-aligned bearings...... is considerably lower, nevertheless they allow for asymmetric stiffness mounting, and it could be beneficial for rotor stabilization. A theoretical model is proposed to describe the non-linear rotor-bearing dynamics. It takes into account non-linear behaviour of the magnetic forces and their interaction...
Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines
International Nuclear Information System (INIS)
Kozyrev, Alexander B.; Weide, Daniel W. van der
2005-01-01
The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator
Homogenized description and retrieval method of nonlinear metasurfaces
Liu, Xiaojun; Larouche, Stéphane; Smith, David R.
2018-03-01
A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry
General methods for determining the linear stability of coronal magnetic fields
Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.
1988-01-01
A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.
An Apparatus to Demonstrate Linear and Nonlinear Oscillations of a Pendulum
Mayer, V. V.; Varaksina, E. I.
2016-01-01
A physical pendulum with a magnetic load is proposed for comparison of linear and nonlinear oscillations. The magnetic load is repelled by permanent magnets which are disposed symmetrically relative to the load. It is established that positions of the pendulum and the magnets determine the dependence of restoring force on displacement of the load.…
Magnetic response to applied electrostatic field in external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)
2014-04-15
We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)
Magnetic vortex filament flows
International Nuclear Information System (INIS)
Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso
2007-01-01
We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Ooi, Kelvin J. A.; Tan, Dawn T. H.
2017-10-01
The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.
Stationary nonlinear Airy beams
International Nuclear Information System (INIS)
Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.
2011-01-01
We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-01-01
With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Nonlinear optics at interfaces
International Nuclear Information System (INIS)
Chen, C.K.
1980-12-01
Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory
Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers
International Nuclear Information System (INIS)
Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.
2005-01-01
The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules
Nonlinear extraordinary wave in dense plasma
Energy Technology Data Exchange (ETDEWEB)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.
Nonlinear theory of electroelastic and magnetoelastic interactions
Dorfmann, Luis
2014-01-01
This book provides a unified theory of nonlinear electro-magnetomechanical interactions of soft materials capable of large elastic deformations. The authors include an overview of the basic principles of the classical theory of electromagnetism from the fundamental notions of point charges and magnetic dipoles through to distributions of charge and current in a non-deformable continuum, time-dependent electromagnetic fields and Maxwell’s equations. They summarize the basic ingredients of continuum mechanics that are required to account for the deformability of material and present nonlinear constitutive frameworks for electroelastic and magnetoelastic interactions in a highly deformable material. The equations contained in the book are used to formulate and solve a variety of representative boundary-value problems for both nonlinear electroelasticity and magnetoelasticity.
Nonlinear dynamics in Nuclotron
International Nuclear Information System (INIS)
Dinev, D.
1997-01-01
The paper represents an extensive study of the nonlinear beam dynamics in the Nuclotron. Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chromatic perturbations have been investigated taking into account the measured field imperfections. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated for different particle energies and betatron tunes
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Energy Technology Data Exchange (ETDEWEB)
Kumar, Dinesh; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)
2015-01-15
In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.
International Nuclear Information System (INIS)
Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.
2015-01-01
In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics
Nonlinear cyclotron absorption and stimulated scattering
International Nuclear Information System (INIS)
Chung, T.H.
1986-01-01
In electron cyclotron resonance heating (ECRH), wave sources heating a plasma linearly with respect to intensity; but as the intensity of ECRH gets larger, there might appear nonlinear effects that would result in cutoff of net absorption. This thesis uses quantum mechanical theory to derive a threshold microwave intensity for nonlinear absorption. The quantum mechanical theory estimates that the threshold microwave intensity for nonlinear absorption is about 10 5 watts/cm 2 for a microwave heating experiment (T/sub e/ = 100 ev, λ = 3,783 cm, B = 2.5 kG). This value seems large considering the present power capabilities of microwave sources (10 2 ∼ 10 3 watts/cm 2 ), but for a low temperature plasma, this threshold will go down. There is another nonlinear phenomenon called stimulated cyclotron scattering that enhances photon scattering by electrons gyrating in a magnetic field. This is expected to prevent incoming photons from arriving at the central region of the fusion plasma, where absorption mainly takes place. Theory based on a photon transport model predicts that the threshold intensity for the stimulated cyclotron scattering is about 10 4 watts/cm 2 for the plasma parameters mentioned above. This value seems large also, but a longer wavelength of microwaves and a larger magnitude magnetic field, which will be the case in reactor type facilities, will lower the threshold intensity to levels comparable with the currently developed microwave sources
Solitons and nonlinear waves in space plasmas
International Nuclear Information System (INIS)
Stasiewicz, K.
2005-01-01
Recent measurements made on the ESA/NASA Cluster mission to the Earth's magnetosphere have provided first detailed measurements of magnetosonic solitons in space. The solitons represent localized enhancements of the magnetic field by a factor of 2-10, or depressions down to 10% of the ambient field. The magnetic field signatures are associated with density depressions/enhancements A two-fluid model of nonlinear electron and ion inertial waves in anisotropic plasmas explains the main properties of these structures. It is shown that warm plasmas support four types of nonlinear waves, which correspond to four linear modes: Alfvenic, magnetosonic, sound, and electron inertial waves. Each of these nonlinear modes has slow and fast versions. It is shown by direct integration that the exponential growth rate of nonlinear modes is balanced by the ion and electron dispersion leading to solutions in the form of trains of solitons or cnoidal waves. By using a novel technique of phase portraits it is shown how the dispersive properties of electron and ion inertial waves change at the transition between warm and hot plasmas, and how trains of solitons ('' mirror modes '') are produced in a hot, anisotropic plasma. The applicability of the model is illustrated with data from Cluster spacecraft. (author)
Nonlinear growth of strongly unstable tearing modes
International Nuclear Information System (INIS)
Waelbroeck, F.L.
1993-11-01
Rutherford's theory of the tearing instability is extended to cases where current nonlinearities are important, such as long wavelength modes in current slabs and the m = 1 instability in tokamaks with moderately large aspect-ratios. Of particular interest is the possibility that the associated magnetic islands, as a result of secondary instabilities, have a singular response to the Ohmic diffusion of the current. A family of islands is used to test this possibility; it is found that the response remains bounded
Nonlinear mirror mode dynamics: Simulations and modeling
Czech Academy of Sciences Publication Activity Database
Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel
2008-01-01
Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008
Single Particle Linear and Nonlinear Dynamics
Energy Technology Data Exchange (ETDEWEB)
Cai, Y
2004-06-25
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form.
Single Particle Linear and Nonlinear Dynamics
International Nuclear Information System (INIS)
Cai, Y
2004-01-01
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form
General Relativistic Simulations of Magnetized Plasmas Around Merging Supermassive Black Holes
Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.
2012-01-01
Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe, total amplification of the magnetic field of approx 2 orders of magnitude which is driven by the accretion onto the binary and that leads to stronger electromagnetic signals than in the force-free regime where such amplifications are not possible.
Shear-induced inflation of coronal magnetic fields
International Nuclear Information System (INIS)
Klimchuk, J.A.
1990-01-01
Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes. 38 refs
Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media
El-Dib, Y O
2003-01-01
In the present work a weakly nonlinear stability for magnetic fluid is discussed. The research of an interface between two strong viscous homogeneous incompressible fluids through porous medium is investigated theoretically and graphically. The effect of the vertical magnetic field has been demonstrated in this study. The linear form of equation of motion is solved in the light of the nonlinear boundary conditions. The boundary value problem leads to construct nonlinear characteristic equation having complex coefficients in elevation function. The nonlinearity is kept to third-order expansion. The nonlinear characteristic equation leads to derive the well-known nonlinear Schroedinger equation. This equation having complex coefficients of the disturbance amplitude varies in both space and time. Stability criteria have been performed for nonlinear Chanderasekhar dispersion relation including the porous effects. Stability conditions are discussed through the assumption of equal kinematic viscosity. The calculati...
On MHD nonlinear stretching flow of Powell–Eyring nanomaterial
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available This communication addresses the magnetohydrodynamic (MHD flow of Powell–Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell–Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted. Keywords: Powell–Eyring fluid, Magnetohydrodynamics, Nanomaterial, Nonlinear stretching surface
Nonlinear photonic metasurfaces
Li, Guixin; Zhang, Shuang; Zentgraf, Thomas
2017-03-01
Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
Nanoplasmonic solution for nonlinear optics
DEFF Research Database (Denmark)
Bache, Morten; Lavrinenko, Andrei; Lysenko, Oleg
2014-01-01
for the silicon dioxide cladding. The blue, cyan and magenta curves correspond to the transmission spectra for the gold waveguides with the width of 10 μm and length of 2, 3, and 4 mm.The polarization of laser beam was tuned to match the transverse magnetic mode of surface plasmonpolaritons in the gold waveguides...... and is being under investigation in recent years [3].The purpose of our research is to study nonlinear optical properties of gold waveguides embedded intodielectric medium (silicon dioxide) using picosecond laser spectroscopy. The work includes modeling ofoptical properties of gold waveguides, fabrication...... of prototype samples, and optical characterization ofsamples using a picosecond laser source.The prototype samples of gold waveguides embedded into silicon dioxide were fabricated at DTUDanchip. A silicon wafer with pre-made 6.5 μm layer of silicon dioxide was used as a substrate and goldwaveguides (films...
Nonlinear electrodynamics and CMB polarization
Energy Technology Data Exchange (ETDEWEB)
Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)
2011-03-01
Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.
Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction
Solov'ev, A. A.
2013-09-01
We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Nonlinear interaction of waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Istomin, Ya.N.
1988-01-01
Nonlinear wave processes in a weakly inhomogeneous plasma are considered. A quasilinear equation is derived which takes into account the effect of the waves on resonance particles, provided that the inhomogeneity appreciably affects the nature of the resonance interaction. Three-wave interaction is investigated under the same conditions. As an example, the nonlinear interaction in a relativistic plasma moving along a strong curvilinear magnetic field is considered
US-LHC IR magnet error analysis and compensation
International Nuclear Information System (INIS)
Wei, J.; Ptitsin, V.; Pilat, F.; Tepikian, S.; Gelfand, N.; Wan, W.; Holt, J.
1998-01-01
This paper studies the impact of the insertion-region (IR) magnet field errors on LHC collision performance. Compensation schemes including magnet orientation optimization, body-end compensation, tuning shims, and local nonlinear correction are shown to be highly effective
Coronal Jet Collimation by Nonlinear Induced Flows
Energy Technology Data Exchange (ETDEWEB)
Vasheghani Farahani, S.; Hejazi, S. M. [Department of Physics, Tafresh University, Tafresh 39518 79611 (Iran, Islamic Republic of)
2017-08-01
Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.
Final report. [Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
Montgomery, D.C.
1998-01-01
This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant's lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the
Photostable nonlinear optical polycarbonates
Faccini, M.; Balakrishnan, M.; Diemeer, Mart; Torosantucci, Riccardo; Driessen, A.; Reinhoudt, David; Verboom, Willem
2008-01-01
Highly thermal and photostable nonlinear optical polymers were obtained by covalently incorporating the tricyanovinylidenediphenylaminobenzene (TCVDPA) chromophore to a polycarbonate backbone. NLO polycarbonates with different chromophore attachment modes and flexibilities were synthesized. In spite
Nonlinear singular elliptic equations
International Nuclear Information System (INIS)
Dong Minh Duc.
1988-09-01
We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs
Nonlinear Optical Terahertz Technology
National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...
Nonlinear differential equations
Struble, Raimond A
2017-01-01
Detailed treatment covers existence and uniqueness of a solution of the initial value problem, properties of solutions, properties of linear systems, stability of nonlinear systems, and two-dimensional systems. 1962 edition.
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Indian Academy of Sciences (India)
The Structures Panel of the Aeronautics Research and Development Board of India ... A great variety of topics was covered, including themes such as nonlinear finite ... or shell structures, and three are on the composite form of construction, ...
A nonlinear oscillatory problem
International Nuclear Information System (INIS)
Zhou Qingqing.
1991-10-01
We have studied the nonlinear oscillatory problem of orthotropic cylindrical shell, we have analyzed the character of the oscillatory system. The stable condition of the oscillatory system has been given. (author). 6 refs
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
International Nuclear Information System (INIS)
Gao Jie
2009-01-01
In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations. (author)
Some remarks on coherent nonlinear coupling of waves in plasmas
International Nuclear Information System (INIS)
Wilhelmsson, H.
1976-01-01
The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)
Measurement of nonlinear mode coupling of tearing fluctuations
International Nuclear Information System (INIS)
Assadi, S.; Prager, S.C.; Sidikman, K.L.
1992-03-01
Three-wave nonlinear coupling of spatial Fourier modes is measured in the MST reversed field pinch by applying bi-spectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 polodial modes and 32 toroidal modes. Comparison to bi-spectra predicted by MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomittant with a broadened (presumably nonlinearly generated) k-spectrum
2015-05-07
associated with the lattice background; the nonlinearity is derived from the inclusion of cubic nonlinearity. Often the background potential is periodic...dispersion branch we can find discrete evolution equations for the envelope associated with the lattice NLS equation (1) by looking for solutions of...spatial operator in the above NLS equation can be elliptic, hyperbolic or parabolic . We remark that further reduction is possible by going into a moving
Nonlinear dynamics and astrophysics
International Nuclear Information System (INIS)
Vallejo, J. C.; Sanjuan, M. A. F.
2000-01-01
Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)
Pescara benchmarks: nonlinear identification
Gandino, E.; Garibaldi, L.; Marchesiello, S.
2011-07-01
Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.
Nonlinear Multiantenna Detection Methods
Directory of Open Access Journals (Sweden)
Chen Sheng
2004-01-01
Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
Pescara benchmarks: nonlinear identification
International Nuclear Information System (INIS)
Gandino, E; Garibaldi, L; Marchesiello, S
2011-01-01
Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled M onitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing , financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.
Introduction to nonlinear acoustics
Bjørnø, Leif
2010-01-01
A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.
Fundamentals of nonlinear optical materials
Indian Academy of Sciences (India)
Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.
Sánchez Almeida, J.; Martínez González, M. J.
2018-05-01
Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.
The spheromak as a prototype for ultra-high-field superconducting magnets
International Nuclear Information System (INIS)
Furth, H.P.; Jardin, S.C.
1987-08-01
In view of current progress in the development of superconductor materials, the ultimate high-field limit of superconducting magnets is likely to be set by mechanical stress problems. Maximum field strength should be attainable by means of approximately force-free magnet windings having favorable ''MHD'' stability properties (so that small winding errors will not grow). Since a low-beta finite-flux-hole spheromak configuration qualifies as a suitable prototype, the theoretical and experimental spheromak research effort of the past decade has served to create a substantial technical basis for the design of ultra-high-field superconducting coils. 11 refs
Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection
International Nuclear Information System (INIS)
Hesse, Michael; Kuznetsova, Masha; Schindler, Karl; Birn, Joachim
2005-01-01
A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field
Investigations of the magnetic structure and the decay of a plasma-gun-generated compact torus
International Nuclear Information System (INIS)
Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Hammer, J.H.; Hartman, C.W.; Prono, D.S.; Taska, J.
1983-01-01
The results of a series of experimental measurements of compact toroidal (CT) plasmas produced by a magnetized coaxial plasma gun injecting into a flux-conserving metallic liner are reported. The experiments were performed on the Beta II facility at Lawrence Livermore National Laboratory. The magnetic equilibria are well described by a force-free eigenmode structure that results from an extension of Taylor's theory of the reversed-field pinch. Consideration of helicity conservation during relaxation of the composite plasma-gun flux-conserver system to the final state equilibrium yields theoretical expressions that are compared with the experiment
Nonlinear Approaches in Engineering Applications
Jazar, Reza
2012-01-01
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...
Cylindrical Taylor states conserving total absolute magnetic helicity
Low, B. C.; Fang, F.
2014-09-01
The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.
International Nuclear Information System (INIS)
Fujii, Akira; Kluemper, Andreas
1999-01-01
We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation
International Nuclear Information System (INIS)
Shen Yuanrang
2011-01-01
This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Magnetodynamic non-linearity of electric properties of uncompensated metals
International Nuclear Information System (INIS)
Sobol', V.R.; Mazurenko, O.N.
2001-01-01
Magnetodynamic non-linearity of electric properties of normal metals is investigated both experimentally and analytically provided that the drift of charge carriers of high density in crossed electric and magnetic fields results in generation of a self current field. The measurements were made on high purity polycrystalline aluminium cylindrical conductors under the action of the magnetic field, coaxial the sample axis, on the radial current. The electric potential and its nonlinear correction are determined in a wide range of energy dissipation values up to the levels corresponding to the crisis of liquid helium boiling. In the approximation of contribution additivity to the resistive effect of both the external and self magnetic field agreement between the experimental data and the results calculated using the macroscopic field equations is attained. The problems of magnetic energy concentration for cylindrical conductors is discussed in the approximation of long and short solenoids
Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas
DEFF Research Database (Denmark)
Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.
2003-01-01
Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...
Nonlinear wave collapse and strong turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1997-01-01
The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society
Oscillating magnetic islands in a rotating plasma
International Nuclear Information System (INIS)
Persson, M.; Bondeson, A.
1990-01-01
The nonlinear evolution of tearing modes in the presence of sheared mass flow is studied as an initial value problem. It is shown that under certain conditions, when the mode is driven unstable primarily by the mass flow, the nonlinear evolution leads to a dynamic state in which the size and shape of the magnetic islands is oscillatory. 15 refs., 11 figs
Ion-cyclotron instability in magnetic mirrors
International Nuclear Information System (INIS)
Pearlstein, L.D.
1987-01-01
This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits
Gerrits, T.; Silva, T.J.; Nibarger, J.P.; Rasing, T.H.M.
2004-01-01
We examine the relationship between nonlinear magnetic responses and the change in the Gilbert damping parameter alpha for patterned and unpatterned thin Permalloy films when subjected to pulsed magnetic fields. An improved magnetization-vector-resolved technique utilizing magnetization-induced
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Rodrigues, Nils; Weiskopf, Daniel
2018-01-01
Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.
Multidimensional nonlinear descriptive analysis
Nishisato, Shizuhiko
2006-01-01
Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem
of a proposed NSE system with high dynamic performance. The goal of the work is to achieve a state-of-the art transient time of 10 µs. In order to produce the arbitrary nonlinear curve, the exponential function of a typical diode is used, but the diode can be replaced by other nonlinear curve reference...... of conductive common-mode current produced by the high rate of change of voltage over time (high dv/dt) at the NSE output. v/xvii The contributions of the thesis are based on the development of both units: the low Cio isolated power supply and the high dynamic performance NSE. Both units are investigated......-of-the-art dynamic performance among devices of the same kind. It also offers a complete solution for simulation of nonlinear source systems of different sizes, both in terrestrial and non-terrestrial applications. Key words: Current transformers, dc-dc power converters, hysteresis, parasitic capacitance, system...
Depression of Nonlinearity in Decaying Isotropic MHD Turbulence
International Nuclear Information System (INIS)
Servidio, S.; Matthaeus, W. H.; Dmitruk, P.
2008-01-01
Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously generates coherent spatial correlations of several types, associated with local Beltrami fields, directional alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration components. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics and spatial intermittency
NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS
International Nuclear Information System (INIS)
TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.
2004-01-01
For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Nonlinear excitations in biomolecules
International Nuclear Information System (INIS)
Peyrard, M.
1995-01-01
The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)