WorldWideScience

Sample records for nonlinear force-free magnetic

  1. Stability of Nonlinear Force-Free Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    胡友秋

    2001-01-01

    Based on the magnetohydrodynamic energy principle, it is proved that Gold-Hoyle's nonlinear force-free magnetic field is unstable. This disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Kriiger that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue associated with the domain of interest.

  2. Nonlinear Force-free Coronal Magnetic Stereoscopy

    Science.gov (United States)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO/HMI, SDO/AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  3. Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector

    CERN Document Server

    Wiegelmann, T; Solanki, S K; Lagg, A

    2009-01-01

    Context: Solar magnetic fields are regularly extrapolated into the corona starting from photospheric magnetic measurements that can suffer from significant uncertainties. Aims: Here we study how inaccuracies introduced into the maps of the photospheric magnetic vector from the inversion of ideal and noisy Stokes parameters influence the extrapolation of nonlinear force-free magnetic fields. Methods: We compute nonlinear force-free magnetic fields based on simulated vector magnetograms, which have been produced by the inversion of Stokes profiles, computed froma 3-D radiation MHD simulation snapshot. These extrapolations are compared with extrapolations starting directly from the field in the MHD simulations, which is our reference. We investigate how line formation and instrumental effects such as noise, limited spatial resolution and the effect of employing a filter instrument influence the resulting magnetic field structure. The comparison is done qualitatively by visual inspection of the magnetic field dis...

  4. A Fluid Dynamics Approach for the Computation of Non-linear Force-Free Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Jing-Qun Li; Jing-Xiu Wang; Feng-Si Wei

    2003-01-01

    Inspired by the analogy between the magnetic field and velocity fieldof incompressible fluid flow, we propose a fluid dynamics approach for comput-ing nonlinear force-free magnetic fields. This method has the advantage that thedivergence-free condition is automatically satisfied, which is a sticky issue for manyother algorithms, and we can take advantage of modern high resolution algorithmsto process the force-free magnetic field. Several tests have been made based on thewell-known analytic solution proposed by Low & Lou. The numerical results arein satisfactory agreement with the analytic ones. It is suggested that the newlyproposed method is promising in extrapolating the active region or the whole sunmagnetic fields in the solar atmosphere based on the observed vector magnetic fieldon the photosphere.

  5. First use of synoptic vector magnetograms for global nonlinear force free coronal magnetic field models

    CERN Document Server

    Tadesse, Tilaye; Gosain, S; MacNeice, P; Pevtsov, Alexei A

    2013-01-01

    The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the first time, synoptic maps of photospheric vector magnetic field synthesized from Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. We solve the nonlinear force-free field equations using optimizatio...

  6. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  7. Nonlinear Force-Free Magnetic Field Modeling of AR 10953: A Critical Assessment

    Science.gov (United States)

    De Rosa, Marc L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; Amari, T.; Canou, A.; McTiernan, J. M.; Régnier, S.; Thalmann, J. K.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M. C. M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.

    2009-05-01

    Nonlinear force-free field (NLFFF) modeling seeks to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have failed to arrive at consistent solutions when applied to (thus far, two) cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not available). One issue is that NLFFF models require consistent, force-free vector magnetic boundary data, and vector magnetogram data sampling the photosphere do not satisfy this requirement. Consequently, several problems have arisen that are believed to affect such modeling efforts. We use AR 10953 to illustrate these problems, namely: (1) some of the far-reaching, current-carrying connections are exterior to the observational field of view, (2) the solution algorithms do not (yet) incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is needed to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.

  8. How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?

    CERN Document Server

    Wiegelmann, T; Inhester, B; Tadesse, T; Sun, X; Hoeksema, J T

    2012-01-01

    The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semi-analytic and numeric equilibria and been applied before to vector magnetograms from Hinode and ground based observations. Recently we implemented a new version which takes measurement errors in photospheric vector magnetograms into account. Photospheric field measurements are often due to measurement errors and finite nonmagnetic forces inconsistent as a boundary for a force-free field in the corona. In order to deal with these uncertainties, we developed two improvements: 1.) Preprocessing of the surface measurements in order to make them compatible with a force-free field 2.) The new code keeps a balance between the force-free constraint and deviation from the photospheric field m...

  9. Nonlinear Force-Free Magnetic Field Modeling of the Solar Corona: A Critical Assessment

    Science.gov (United States)

    De Rosa, M. L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; McTiernan, J. M.; Régnier, S.; Thalmann, J.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.

    2008-12-01

    Nonlinear force-free field (NLFFF) modeling promises to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have so far failed to arrive at consistent solutions when applied to cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not been available). It is our view that the lack of robust results indicates an endemic problem with the NLFFF modeling process, and that this process will likely continue to fail until (1) more of the far-reaching, current-carrying connections are within the observational field of view, (2) the solution algorithms incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is found to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.

  10. Solar Force-free Magnetic Fields

    CERN Document Server

    Wiegelmann, Thomas

    2012-01-01

    The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields) or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundar...

  11. Structure and Stability of Magnetic Fields in Solar Active Region12192 Based on Nonlinear Force-Free Field Modeling

    CERN Document Server

    Inoue, S; Kusano, K

    2016-01-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region(AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains multiple-flux-tube system, {\\it e.g.}, a large flux tube, both of whose footpoints are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the later are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the oth...

  12. First use of synoptic vector magnetograms for global nonlinear force free coronal magnetic field models

    OpenAIRE

    Tadesse, Tilaye; Wiegelmann, T.; Gosain, S.; Macneice, P.; Pevtsov, Alexei A.

    2013-01-01

    The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the ...

  13. STRUCTURE AND STABILITY OF MAGNETIC FIELDS IN SOLAR ACTIVE REGION 12192 BASED ON NONLINEAR FORCE-FREE FIELD MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S. [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen Germany (Germany); Hayashi, K.; Kusano, K., E-mail: inoue@mps.mpg.de [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)

    2016-02-20

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  14. The Vertical-current Approximation Nonlinear Force-free Field Code—Description, Performance Tests, and Measurements of Magnetic Energies Dissipated in Solar Flares

    Science.gov (United States)

    Aschwanden, Markus J.

    2016-06-01

    In this work we provide an updated description of the Vertical-Current Approximation Nonlinear Force-Free Field (VCA-NLFFF) code, which is designed to measure the evolution of the potential, non-potential, free energies, and the dissipated magnetic energies during solar flares. This code provides a complementary and alternative method to existing traditional NLFFF codes. The chief advantages of the VCA-NLFFF code over traditional NLFFF codes are the circumvention of the unrealistic assumption of a force-free photosphere in the magnetic field extrapolation method, the capability to minimize the misalignment angles between observed coronal loops (or chromospheric fibril structures) and theoretical model field lines, as well as computational speed. In performance tests of the VCA-NLFFF code, by comparing with the NLFFF code of Wiegelmann, we find agreement in the potential, non-potential, and free energy within a factor of ≲ 1.3, but the Wiegelmann code yields in the average a factor of 2 lower flare energies. The VCA-NLFFF code is found to detect decreases in flare energies in most X, M, and C-class flares. The successful detection of energy decreases during a variety of flares with the VCA-NLFFF code indicates that current-driven twisting and untwisting of the magnetic field is an adequate model to quantify the storage of magnetic energies in active regions and their dissipation during flares. The VCA-NLFFF code is also publicly available in the Solar SoftWare.

  15. The Vertical Current Approximation Nonlinear Force-Free Field Code - Description, Performance Tests, and Measurements of Magnetic Energies Dissipated in Solar Flares

    CERN Document Server

    Aschwanden, Markus J

    2016-01-01

    In this work we provide an updated description of the Vertical Current Approximation Nonlinear Force-Free Field (VCA-NLFFF) code, which is designed to measure the evolution of the potential, nonpotential, free energies, and the dissipated magnetic energies during solar flares. This code provides a complementary and alternative method to existing traditional NLFFF codes. The chief advantages of the VCA-NLFFF code over traditional NLFFF codes are the circumvention of the unrealistic assumption of a force-free photosphere in the magnetic field extrapolation method, the capability to minimize the misalignment angles between observed coronal loops (or chromospheric fibril structures) and theoretical model field lines, as well as computational speed. In performance tests of the VCA-NLFFF code, by comparing with the NLFFF code of Wiegelmann (2004), we find agreement in the potential, nonpotential, and free energy within a factor of about 1.3, but the Wiegelmann code yields in the average a factor of 2 lower flare en...

  16. Nonlinear force-free field modeling of the solar magnetic carpet and comparison with SDO/HMI and Sunrise/IMAX observations

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Kariyappa, R. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Van Ballegooijen, A. A.; DeLuca, E. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-58, Cambridge, MA 02138 (United States); Solanki, S. K. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2014-10-01

    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet that continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, and the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory, as time-dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce a time series of three-dimensional nonlinear force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.

  17. Full-disk nonlinear force-free field extrapolation of SDO/HMI and SOLIS/VSM magnetograms

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Inhester, B.; MacNeice, P.; Pevtsov, A.; Sun, X.

    2013-02-01

    Context. The magnetic field configuration is essential for understanding solar explosive phenomena, such as flares and coronal mass ejections. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Two complications of this approach are that the measured photospheric magnetic field is not force-free and that one has to apply a preprocessing routine to achieve boundary conditions suitable for the force-free modeling. Furthermore the nonlinear force-free extrapolation code should take uncertainties into account in the photospheric field data. They occur due to noise, incomplete inversions, or azimuth ambiguity-removing techniques. Aims: Extrapolation codes in Cartesian geometry for modeling the magnetic field in the corona do not take the curvature of the Sun's surface into account and can only be applied to relatively small areas, e.g., a single active region. Here we apply a method for nonlinear force-free coronal magnetic field modeling and preprocessing of photospheric vector magnetograms in spherical geometry using the optimization procedure to full disk vector magnetograms. We compare the analysis of the photospheric magnetic field and subsequent force-free modeling based on full-disk vector maps from Helioseismic and Magnetic Imager (HMI) onboard the solar dynamics observatory (SDO) and Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS). Methods: We used HMI and VSM photospheric magnetic field measurements to model the force-free coronal field above multiple solar active regions, assuming magnetic forces to dominate. We solved the nonlinear force-free field equations by minimizing a functional in spherical coordinates over a full disk and excluding the poles. After searching for the optimum modeling parameters for the particular data sets, we compared the resulting nonlinear force-free model fields. We compared

  18. ON THE FORCE-FREE NATURE OF PHOTOSPHERIC SUNSPOT MAGNETIC FIELDS AS OBSERVED FROM HINODE (SOT/SP)

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv Kumar, E-mail: tiwari@mps.mpg.de [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313 001 (India)

    2012-01-01

    A magnetic field is force-free if there is no interaction between it and the plasma in the surrounding atmosphere, i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of various magnetic parameters, such as magnetic energy (using the virial theorem), gradient of twist of sunspot magnetic fields (computed from the force-free parameter {alpha}), and any kind of extrapolation, heavily hinges on the force-free approximation of the photospheric sunspot magnetic fields. Thus, it is of vital importance to inspect the force-free behavior of sunspot magnetic fields. The force-free nature of sunspot magnetic fields has been examined earlier by some researchers, ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. For this purpose, we use several vector magnetograms of high spatial resolution obtained from the Solar Optical Telescope/Spectro-Polarimeter on board Hinode. Both the necessary and sufficient conditions for force-free nature are examined by checking the global and local nature of equilibrium magnetic forces over sunspots. We find that sunspot magnetic fields are not very far from the force-free configuration, although they are not completely force-free on the photosphere. The umbral and inner penumbral fields are more force-free than the middle and outer penumbral fields. During their evolution, sunspot magnetic fields are found to maintain their proximity to force-free field behavior. Although a dependence of net Lorentz force components is seen on the evolutionary stages of the sunspots, we do not find a systematic relationship between the nature of sunspot magnetic fields and the associated flare activity. Further, we examine whether the fields at the photosphere follow linear or nonlinear force-free conditions. After examining this in various complex and simple sunspots, we conclude that

  19. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  20. Particle energization in a chaotic force-free magnetic field

    Science.gov (United States)

    Li, Xiaocan; Li, Gang; Dasgupta, Brahmananda

    2015-04-01

    A force-free field (FFF) is believed to be a reasonable description of the solar corona and in general a good approximation for low-beta plasma. The equations describing the magnetic field of FFF is similar to the ABC fluid equations which has been demonstrated to be chaotic. This implies that charged particles will experience chaotic magnetic field in the corona. Here, we study particle energization in a time-dependent FFF using a test particle approach. An inductive electric field is introduced by turbulent motions of plasma parcels. We find efficient particle acceleration with power-law like particle energy spectra. The power-law indices depend on the amplitude of plasma parcel velocity field and the spatial scales of the magnetic field fluctuation. The spectra are similar for different particle species. This model provide a possible mechanism for seed population generation for particle acceleration by, e.g., CME-driven shocks. Generalization of our results to certain non-force-free-field (NFFF) is straightforward as the sum of two or multiple FFFs naturally yield NFFF.

  1. Effect of Size of the Computational Domain on Spherical Nonlinear Force-Free Modeling of Coronal Magnetic Field Using SDO/HMI Data

    CERN Document Server

    Tadesse, Tilaye; MacNeice, Peter

    2014-01-01

    The solar coronal magnetic field produces solar activity, including extremely energetic solar flares and coronal mass ejections (CMEs). Knowledge of the structure and evolution of the magnetic field of the solar corona is important for investigating and understanding the origins of space weather. Although the coronal field remains difficult to measure directly, there is considerable interest in accurate modeling of magnetic fields in and around sunspot regions on the Sun using photospheric vector magnetograms as boundary data. In this work, we investigate effects of the size of the domain chosen for coronal magnetic field modeling on resulting model solution. We apply spherical Optimization procedure to vector magnetogram data of Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) with four Active Region observed on 09 March 2012 at 20:55UT. The results imply that quantities like magnetic flux density, electric current density and free magnetic energy density of ARs of interest are...

  2. The Influence of Spatial Resolution on Nonlinear Force-Free Modeling

    CERN Document Server

    DeRosa, M L; Leka, K D; Barnes, G; Amari, T; Canou, A; Gilchrist, S A; Thalmann, J K; Valori, G; Wiegelmann, T; Schrijver, C J; Malanushenko, A; Sun, X; Régnier, S

    2015-01-01

    The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/SOT-SP scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-c...

  3. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations

    Science.gov (United States)

    Guo, Y.; Xia, C.; Keppens, R.

    2016-09-01

    A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel-1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

  4. NONLINEAR FORCE-FREE MODELING OF A THREE-DIMENSIONAL SIGMOID OBSERVED ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S.; Watari, S. [National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Magara, T.; Choe, G. S., E-mail: inosato@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-03-01

    In this work, we analyze the characteristics of the three-dimensional magnetic structure of a sigmoid observed over an active region (AR 10930) and followed by X-class flares. This is accomplished by combining a nonlinear force-free field (NLFFF) model of a coronal magnetic field and the high-resolution vector-field measurement of a photospheric magnetic field by Hinode. The key findings of our analysis reveal that the value of the X-ray intensity associated with the sigmoid is more sensitive to the strength of the electric current rather than the twist of the field lines. The strong electric current flows along the magnetic field lines and composes the central part of the sigmoid, even though the twist of the field lines is weak in that region. On the other hand, the outer region (i.e., the elbow part) of the sigmoid is basically occupied by field lines of strong twist and weak current density. Consequently, weak X-ray emission is observed. As the initial Ca II illumination basically occurs from the central part of the sigmoid, this region plays an important role in determining the onset mechanism of the flare despite its weak twisted field-line configuration. We also compare our results with the magnetohydrodynamic simulation for the formation of a sigmoid. Although the estimated values of the twist from the simulation are found to be a little higher than the values obtained from the NLFFF, we find that the field-line configurations generated by the simulation and NLFFF are remarkably analogous as long as we deal with the lower coronal region.

  5. Temporal and spatial relationship of flare signatures and the force-free coronal magnetic field

    CERN Document Server

    Thalmann, Julia K; Su, Yang

    2016-01-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2 August 2011 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths, in order to pin down the intersection of previously reconnected flaring loops at the lower solar atmosphere. These locations are used to calculate field lines from 3D nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. With this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet's lower tip during an on-disk observed flare, as a few kilometers per second. Comparison to pos...

  6. Magnetic Helicity of Self-Similar Axisymmetric Force-free Fields

    CERN Document Server

    Zhang, Mei; Low, Boon Chye

    2012-01-01

    In this paper we continue our theoretical studies on addressing what are the possible consequences of magnetic helicity accumulation in the solar corona. Our previous studies suggest that coronal mass ejections (CMEs) are natural products of coronal evolution as a consequence of magnetic helicity accumulation and the triggering of CMEs by surface processes such as flux emergence also have their origin in magnetic helicity accumulation. Here we use the same mathematical approach to study the magnetic helicity of axisymmetric power-law force-free fields, but focus on a family whose surface flux distributions are defined by self-similar force-free fields. The semi-analytical solutions of the axisymmetric self-similar force-free fields enable us to discuss the properties of force-free fields possessing a huge amount of accumulated magnetic helicity. Our study suggests that there may be an absolute upper bound on the total magnetic helicity of all bipolar axisymmetric force-free fields. And with the increase of ac...

  7. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  8. On the "force-free surface " of the magnetized celestial bodies

    CERN Document Server

    Epp, V

    2015-01-01

    The field of a uniformly magnetized rotating sphere is studied with special attention to the surface where the electric and magnetic fields are orthogonal to each other. The equation of this surface, valid at arbitrary distances from the rotating magnetized sphere, is obtained. Inside the light cylinder this surface can be considered as a force-free surface, i.e. as a place where the particles with strong radiation damping can be trapped due to their energy loss. Outside the light cylinder this surface makes just a geometric locus which moves with a superlight velocity around the axis of rotation. The 2- and 3-dimensional plots of the force-free surface are constructed. Estimation of influence of the centrifugal force on the particle dynamics is made. It is shown, that in case of strong magnetic field the centrifugal force is negligible small everywhere except a narrow neighbourhood of the light cylinder.

  9. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    CERN Document Server

    Thalmann, J K; Wiegelmann, T

    2013-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region corona, has been substantiated by high-resolution observations only recently. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. 2013 (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on vector SDO/HMI magnetograms. We deliver estimates of the free magnetic energy associated to a braided coronal structure. Our model results suggest (~100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the active-region corona being heated by field line braiding. We were able to assess the coronal free energy appropriately by using vector field measurements and attribute the lower energy...

  10. Magnetic Energy of Force-Free Fields with Detached Field Lines

    Institute of Scientific and Technical Information of China (English)

    Guo-Qiang Li; You-Qiu Hu

    2003-01-01

    Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasmaβ (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energylarger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.

  11. The Chiral Anomaly, Dirac and Weyl Semimetals, and Force-Free Magnetic Fields

    CERN Document Server

    Marsh, Gerald E

    2016-01-01

    The chiral anomaly is a purely quantum mechanical phenomenon that has a long history dating back to the late 1960s. Surprisingly, it has recently made a macroscopic appearance in condensed matter physics. A brief introduction to the relevant features of this anomaly is given and it is shown that its appearance in condensed matter systems must involve force-free magnetic fields, which may help explain the long current relaxation times in Dirac and Weyl semimetals.

  12. Formation and Eruption of an Active Region Sigmoid: I. Study by Nonlinear Force-Free Field Modeling

    CERN Document Server

    Jiang, Chaowei; Feng, Xueshang; Hu, Qiang

    2013-01-01

    We present a magnetic analysis of the formation and eruption of an active region (AR) sigmoid in AR 11283 from 2011 September 4 to 6. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by the SDO/HMI vector magnetograms. A detailed analysis of the fields compared with the SDO/AIA observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a pre-existing bipolar AR, forming a null point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux-cancellation photospheric reconnections, forming a bald patch separatrix surface (BPSS) separating the FR from its ambient field. The FR grows gradually until its axis runs into a torus instability (TI) domain near the end of the third day, and the BPSS also develops a ful...

  13. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. I. Testing with Analytic Solutions

    Science.gov (United States)

    Guo, Y.; Xia, C.; Keppens, R.; Valori, G.

    2016-09-01

    We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov-Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax-Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.

  14. Limitations of force-free magnetic field extrapolations: revisiting basic assumptions

    CERN Document Server

    Peter, H; Chitta, L P; Cameron, R H

    2015-01-01

    Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Despite the widespread use of this assumption observations, models, and theoretical considerations show that beta is of the order of a few percent to more than 10%, and thus not small. We investigate what consequences this has for the reliability of extrapolation results. We use basic concepts starting with the force and the energy balance to infer relations between plasma-beta and free magnetic energy, to study the direction of currents in the corona with respect to the magnetic field, and to estimate the errors in the free magnetic energy by neglecting effects of the plasma (beta<<1). A comparison with a 3D MHD model supports our basic considerations. If plasma-beta is of the order of the relative free energy (the ratio of the free magnetic energy to the total...

  15. Force-free Field Modeling of Twist and Braiding-induced Magnetic Energy in an Active-region Corona

    Science.gov (United States)

    Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T.

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (~100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  16. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Tiwari, S. K.; Wiegelmann, T., E-mail: julia.thalmann@uni-graz.at [Max Plank Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany)

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  17. Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation

    CERN Document Server

    Georgoulis, M K

    2007-01-01

    We self-consistently derive the magnetic energy and relative magnetic helicity budgets of a three-dimensional linear force-free magnetic structure rooted in a lower boundary plane. For the potential magnetic energy we derive a general expression that gives results practically equivalent to those of the magnetic Virial theorem. All magnetic energy and helicity budgets are formulated in terms of surface integrals applied to the lower boundary, thus avoiding computationally intensive three-dimensional magnetic field extrapolations. We analytically and numerically connect our derivations with classical expressions for the magnetic energy and helicity, thus presenting a so-far lacking unified treatment of the energy/helicity budgets in the constant-alpha approximation. Applying our derivations to photospheric vector magnetograms of an eruptive and a noneruptive solar active regions, we find that the most profound quantitative difference between these regions lies in the estimated free magnetic energy and relative ...

  18. Non-Linear Force-Free Field Modelling of Solar Coronal Jets in Theoretical Configurations

    Science.gov (United States)

    Savcheva, Antonia

    2017-08-01

    Coronal jets occur frequently on the Sun, and may contribute significantly to the solar wind. With the suite of instruments avilable now, e.g. on IRIS, Hinode and SDO, we can observe these phenomena in greater detail than ever before. Modeling and simulations can assist further in understanding the dynamic processes involved, but previous studies tend to consider only one mechanism (e.g. emergence or rotation) for the origin of the jet. In this study we model a series of idealised archetypaljet configurations and follow the evolution of the coronal magnetic field. This is a step towards understanding these idealised situations before considering their observational counterparts. Several simple situations are set up for the evolution of the photospheric magnetic field: a single parasitic polarity rotating or moving in a circular path; as well as opposite polarity pairs involved in flyby (shearing), cancellation or emergence; all in the presence of a uniform, open background magneticfield. The coronal magnetic field is evolved in time using a magnetofrictional relaxation method. While magnetofriction cannot accurately reproduce the dynamics of an eruptive phase, the structure of the coronal magnetic field, as well as the build up of electric currents and free magnetic energy are instructive. Certain configurations and motions produce a flux rope and allow the significant build up of free energy, reminiscent of the progenitors of so-called blowout jets, whereas other, simpler configurations are more comparable to the standard jet model. The next stage is a comparison with observed coronal jet structures and their corresponding photospheric evolution.

  19. Modeling of Gamma-Ray Pulsar Light Curves with Force-Free Magnetic Field

    CERN Document Server

    Bai, Xue-Ning

    2009-01-01

    (Abridged) Gamma-ray emission from pulsars has long been modeled using a vacuum dipole field. This approximation ignores changes in the field structure caused by the magnetospheric plasma and strong plasma currents. We present the first results of gamma-ray pulsar light curve modeling using the more realistic field taken from 3D force-free magnetospheric simulations. Having the geometry of the field, we apply several prescriptions for the location of the emission zone, comparing the light curves to observations. We find that the conventional two-pole caustic model fails to produce double-peak pulse profiles, mainly because the size of the polar cap in force-free magnetosphere is larger than the vacuum field polar cap. The conventional outer-gap model is capable of producing only one peak under general conditions, because a large fraction of open field lines does not cross the null charge surface. We propose a novel "annular gap" model, where the high-energy emission originates from a thin layer on the open fi...

  20. Force-Free Magnetic Fields on AN Extreme Reissner-Nordström Spacetime and the Meissner Effect

    Science.gov (United States)

    Takamori, Yousuke; Ken-Ichi, Nakao; Hideki, Ishihara; Masashi, Kimura; Chul-Moon, Yoo

    It is known that the Meissner effect of black holes is seen in the vacuum solutions of blackhole magnetosphere: no non-monopole component of magnetic flux penetrates the event horizon if the black hole is extreme. In this article, in order to see the effects of charge currents, we study the force-free magnetic field on the extreme Reissner-Nordström background. In this case, we should solve one elliptic differential equation called the Grad-Shafranov equation which has singular points called light surfaces. In order to see the Meissner effect, we consider the region near the event horizon and try to solve the equation by Taylor expansion about the event horizon. Moreover, we assume that the small rotational velocity of the magnetic field, and then, we construct a perturbative method to solve the Grad-Shafranov equation considering the efftect of the inner light surface and study the behavior of the magnetic field near the event horizon.

  1. Non-linear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection

    CERN Document Server

    Schrijver, C J; Metcalf, T; Barnes, G; Lites, B; Tarbell, T; McTiernan, J; Valori, G; Wiegelmann, T; Wheatland, M S; Amari, T; Aulanier, G; Demoulin, P; Fuhrmann, M; Kusano, K; Régnier, S; Thalmann, J K

    2007-01-01

    Solar flares and coronal mass ejections are associated with rapid changes in field connectivity and powered by the partial dissipation of electrical currents in the solar atmosphere. A critical unanswered question is whether the currents involved are induced by the motion of pre-existing atmospheric magnetic flux subject to surface plasma flows, or whether these currents are associated with the emergence of flux from within the solar convective zone. We address this problem by applying state-of-the-art nonlinear force-free field (NLFFF) modeling to the highest resolution and quality vector-magnetographic data observed by the recently launched Hinode satellite on NOAA Active Region 10930 around the time of a powerful X3.4 flare. We compute 14 NLFFF models with 4 different codes and a variety of boundary conditions. We find that the model fields differ markedly in geometry, energy content, and force-freeness. We discuss the relative merits of these models in a general critique of present abilities to model the ...

  2. Force-Free Electromagnetic Fields within Spinor Framework

    Directory of Open Access Journals (Sweden)

    V. N. Trishin

    2016-01-01

    Full Text Available The article deals with spinor representation of the force-free electrodynamics. The equations of the force-free electromagnetic field describe the physics of pulsars and black holes whose magnetospheres are filled with magnetically dominated relativistic plasma.The paper is a brief pedagogical introduction to the mathematics of the subject, based on 2-spinor calculi. The objective is to present the nonlinear theory of force-free fields in a compact and elegant form that the spinor framework provides. First, the algebraic classification of the Maxwell tensor is presented. Then, the reduced system of differential equations is obtained for two types of electromagnetic field and the basic features of the solutions are described.  The null force-free field is connected with the shear-free geodesic null congruence in a space-time and is derived from a linear equation for a complex function. The magnetic force-free field is associated with the time-like 2-surface that represents the world-sheet of magnetic field line. The simplified system includes 4 linear differential equations for a real function. The article is educational in nature and there are no new solutions of force-free equations obtained.

  3. Force-Free Foliations

    CERN Document Server

    Compère, Geoffrey; Lupsasca, Alexandru

    2016-01-01

    Electromagnetic field configurations with vanishing Lorentz force density are known as force-free and appear in terrestrial, space, and astrophysical plasmas. We explore a general method for finding such configurations based on formulating equations for the field lines rather than the field itself. The basic object becomes a foliation of spacetime or, in the stationary axisymmetric case, of the half-plane. We use this approach to find some new stationary and axisymmetric solutions, one of which could represent a rotating plasma vortex near a magnetic null point.

  4. Spacetime approach to force-free magnetospheres

    CERN Document Server

    Gralla, Samuel E

    2014-01-01

    Force-Free Electrodynamics (FFE) describes magnetically dominated relativistic plasma via non-linear equations for the electromagnetic field alone. Such plasma is thought to play a key role in the physics of pulsars and active black holes. Despite its simple covariant formulation, FFE has primarily been studied in 3+1 frameworks, where spacetime is split into space and time. In this article we systematically develop the theory of force-free magnetospheres taking a spacetime perspective. Using a suite of spacetime tools and techniques (notably exterior calculus) we cover 1) the basics of the theory, 2) exact solutions that demonstrate the extraction and transport of the rotational energy of a compact object (in the case of a black hole, the Blandford-Znajek mechanism), 3) the behavior of current sheets, 4) the general theory of stationary, axisymmetric magnetospheres and 5) general properties of pulsar and black hole magnetospheres. We thereby synthesize, clarify and generalize known aspects of the physics of ...

  5. Nonlinear magnetic metamaterials.

    Science.gov (United States)

    Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S

    2008-12-08

    We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America

  6. Plasma Motions and Turbulent Magnetic Diffusivity of Active Region AR 12158 Using a Minimum Energy Functional and Non-Force-Free Reconstructions of Vector Magnetograms

    Science.gov (United States)

    Tremblay, Benoit; Vincent, Alain

    2017-01-01

    We present a generalization of the resistive minimum-energy fit (MEF-R: Tremblay and Vincent, Solar Phys. 290, 437, 2015) for non-force-free (NFF) magnetic fields. In MEF-R, an extremum principle is used to infer two-dimensional maps of plasma motions [boldsymbol{v}(x,y)] and magnetic eddy diffusivity [η _{eddy}(x,y)] at the photosphere. These reconstructions could be used as boundary conditions in data-driven simulations or in data assimilation. The algorithm is validated using the analytical model of a resistive expanding spheromak by Rakowski, Laming, and Lyutikov ( Astrophys. J. 730, 30, 2011). We study the flaring Active Region AR 12158 using a series of magnetograms and Dopplergrams provided by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The results are discussed for a non-force-free magnetic-field reconstruction [boldsymbol{B}_{NFF}] (Hu and Dasgupta in Solar Phys. 247, 87, 2008). We found that the vertical plasma velocities [vz(x,y)] inferred using MEF-R are very similar to the observed Doppler velocities [vr(x,y)]. Finally, we study the potential spatial correlation between microturbulent velocities and significant values of η_{eddy}(x,y).

  7. Covariant Hyperbolization of Force-free Electrodynamics

    CERN Document Server

    Carrasco, Federico

    2016-01-01

    Force-Free Flectrodynamics (FFE) is a non-linear system of equations modeling the evolution of the electromagnetic field, in the presence of a magnetically dominated relativistic plasma. This configuration arises on several astrophysical scenarios, which represent exciting laboratories to understand physics in extreme regimes. We show that this system, when restricted to the correct constraint submanifold, is symmetric hyperbolic. In numerical applications is not feasible to keep the system in that submanifold, and so, it is necessary to analyze its structure first in the tangent space of that submanifold and then in a whole neighborhood of it. As already shown by Pfeiffer, a direct (or naive) formulation of this system (in the whole tangent space) results in a weakly hyperbolic system of evolution equations for which well-possednes for the initial value formulation does not follows. Using the generalized symmetric hyperbolic formalism due to Geroch, we introduce here a covariant hyperbolization for the FFE s...

  8. Polarization Signatures of Relativistic Magnetohydrodynamic Shocks in the Blazar Emission Region - I. Force-free Helical Magnetic Fields

    CERN Document Server

    Zhang, Haocheng; Li, Hui; Böttcher, Markus

    2015-01-01

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling, thus so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with ei...

  9. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta

    Energy Technology Data Exchange (ETDEWEB)

    Allanson, O., E-mail: oliver.allanson@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Wilson, F., E-mail: fw237@st-andrews.ac.uk; Troscheit, S., E-mail: s.troscheit@st-andrews.ac.uk [School of Mathematics and Statistics, University of St Andrews, St. Andrews, KY16 9SS (United Kingdom)

    2015-10-15

    We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution.

  10. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta

    CERN Document Server

    Allanson, O; Wilson, F; Troscheit, S

    2015-01-01

    We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely the Force-Free Harris Sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite Polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution.

  11. Nonlinear magnetization dynamics in nanosystems

    CERN Document Server

    Mayergoyz, Isaak D; Serpico, Claudio

    2014-01-01

    As data transfer rates increase within the magnetic recording industry, improvements in device performance and reliability crucially depend on the thorough understanding of nonlinear magnetization dynamics at a sub-nanoscale level. This book offers a modern, stimulating approach to the subject of nonlinear magnetization dynamics by discussing important aspects such as the Landau-Lifshitz-Gilbert (LLG) equation, analytical solutions, and the connection between the general topological and structural aspects of dynamics. An advanced reference for the study and understanding of non

  12. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model

    Science.gov (United States)

    Wang, Yuming; Zhou, Zhenjun; Shen, Chenglong; Liu, Rui; Wang, S.

    2015-03-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs), and usually modeled by a flux rope. By assuming the quasi-steady evolution and self-similar expansion, we introduce three types of global motion into a cylindrical force-free flux rope model and developed a new velocity-modified model for MCs. The three types of the global motion are the linear propagating motion away from the Sun, the expanding, and the poloidal motion with respect to the axis of the MC. The model is applied to 72 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. First, we find that some MCs had a significant propagation velocity perpendicular to the radial direction, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space. Second, we confirm the previous results that the expansion speed is correlated with the radial propagation speed and most MCs did not expand self-similarly at 1 AU. In our statistics, about 62%/17% of MCs underwent a underexpansion/overexpansion at 1 AU and the expansion rate is about 0.6 on average. Third, most interestingly, we find that a significant poloidal motion did exist in some MCs. Three speculations about the cause of the poloidal motion are therefore proposed. These findings advance our understanding of the MC's properties at 1 AU and the dynamic evolution of CMEs from the Sun to interplanetary space.

  13. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model

    CERN Document Server

    Wang, Yuming; Shen, Chenglong; Liu, Rui; Wang, S

    2015-01-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs), and usually modeled by a flux rope. By assuming the quasi-steady evolution and self-similar expansion, we introduce three types of global motion into a cylindrical force-free flux rope model, and developed a new velocity-modified model for MCs. The three types of the global motion are the linear propagating motion away from the Sun, the expanding and the poloidal motion with respect to the axis of the MC. The model is applied to 72 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. First, we find that some MCs had a significant propagation velocity perpendicular to the radial direction, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space. Second, we confirm the previous results that the expansion speed is correlated with the radial propagation speed and most MCs did not expand self-similarly at 1 AU. In our statistics, about 6...

  14. Nonlinear Control of Magnetic Bearings

    Institute of Scientific and Technical Information of China (English)

    Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen

    2010-01-01

    In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.

  15. Nonlinear susceptibility magnitude imaging of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ficko, Bradley W., E-mail: Bradley.W.Ficko@Dartmouth.edu; Giacometti, Paolo; Diamond, Solomon G.

    2015-03-15

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R{sup 2}=0.99, CNR=84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R{sup 2}>0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI. - Highlights: • Development of a nonlinear susceptibility magnitude imaging model • Demonstration of nonlinear SMI with primary and harmonic frequencies • Demonstration of nonlinear SMI with primary and intermodulation

  16. FREELY DECAYING TURBULENCE IN FORCE-FREE ELECTRODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan; East, William E. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2016-02-01

    Freely decaying, relativistic force-free turbulence is studied for the first time. We initiate the magnetic field at a short wavelength and simulate its relaxation toward equilibrium on two- and three-dimensional periodic domains in both helical and nonhelical settings. Force-free turbulent relaxation is found to exhibit an inverse cascade in all settings and in three dimensions to have a magnetic energy spectrum consistent with the Kolmogorov 5/3 power law. Three-dimensional relaxations also obey the Taylor hypothesis; they settle promptly into the lowest-energy configuration allowed by conservation of the total magnetic helicity. However, in two dimensions, the relaxed state is a force-free equilibrium whose energy greatly exceeds the Taylor minimum and that contains persistent force-free current layers and isolated flux tubes. We explain this behavior in terms of additional topological invariants that exist only in two dimensions, namely the helicity enclosed within each level surface of the magnetic potential function. The speed and completeness of turbulent magnetic free-energy discharge could help account for rapidly variable gamma-ray emission from the Crab Nebula, gamma-ray bursts, blazars, and radio galaxies.

  17. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...

  18. Freely decaying turbulence in force-free electrodynamics

    CERN Document Server

    Zrake, Jonathan

    2015-01-01

    Freely decaying relativistic force-free turbulence is studied for the first time. We initiate the magnetic field at a short wavelength and simulate its relaxation toward equilibrium on two and three dimensional periodic domains, in both helical and non-helical settings. Force-free turbulent relaxation is found to exhibit an inverse cascade in all settings, and in 3D to have a magnetic energy spectrum consistent with the Kolmogorov $5/3$ power law. 3D relaxations also obey the Taylor hypothesis; they settle promptly into the lowest energy configuration allowed by conservation of the total magnetic helicity. But in 2D, the relaxed state is a force-free equilibrium whose energy greatly exceeds the Taylor minimum, and which contains persistent force-free current layers and isolated flux tubes. We explain this behavior in terms of additional topological invariants that exist only in two dimensions, namely the helicity enclosed within each level surface of the magnetic potential function. The speed and completeness...

  19. Nonlinear susceptibility magnitude imaging of magnetic nanoparticles

    Science.gov (United States)

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2015-03-01

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R2=0.99, CNR=84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R2>0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI.

  20. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  1. Force-Free Magnetosphere of an Accreting Kerr Black Hole

    CERN Document Server

    Uzdensky, D A

    2005-01-01

    I consider a stationary axisymmetric force-free degenerate magnetosphere of a rotating Kerr black hole surrounded by a thin Keplerian infinitely-conducting accretion disk. I focus on the closed-field geometry with a direct magnetic coupling between the disk and the event horizon. I first present a simple physical argument that shows how the black hole's rotation limits the radial extent of the force-free link. I then confirm this result by solving numerically the general-relativistic force-free Grad--Shafranov equation in the magnetosphere, using the regularity condition at the inner light cylinder to determine the poloidal current. I indeed find that force-free solutions exist only when the magnetic link between the hole and the disk has a limited extent on the disk surface. I chart out the maximum allowable size of this magnetically-connected part of the disk as a function of the black hole spin. I also compute the angular momentum and energy transfer between the hole and the disk that takes place via the d...

  2. First 3D Reconstructions of Coronal Loops with the STEREO A+B Spacecraft: IV. Magnetic Modeling with Twisted Force-Free Fields

    CERN Document Server

    Aschwanden, Markus J; Nitta, Nariaki V; Lemen, James R; DeRosa, Marc L; Malanushenko, Anna

    2012-01-01

    The three-dimensional (3D) coordinates of stereoscopically triangulated loops provide strong constraints for magnetic field models of active regions in the solar corona. Here we use STEREO/A and B data from some 500 stereoscopically triangulated loops observed in four active regions (2007 Apr 30, May 9, May 19, Dec 11), together with SOHO/MDI line-of-sight magnetograms. We measure the average misalignment angle between the stereoscopic loops and theoretical magnetic field models, finding a mismatch of $\\mu=19^\\circ-46^\\circ$ for a potential field model, which is reduced to $\\mu=14^\\circ-19^\\circ$ for a non-potential field model parameterized by twist parameters. The residual error is commensurable with stereoscopic measurement errors ($\\mu_{SE} \\approx 8^\\circ-12^\\circ$). We developed a potential field code that deconvolves a line-of-sight magnetogram into three magnetic field components $(B_x, B_y, B_z)$, as well as a non-potential field forward-fitting code that determines the full length of twisted loops (...

  3. Nonlinear plasma wave in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-08-15

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.

  4. Imbalanced Relativistic Force-Free Magnetohydrodynamic Turbulence

    CERN Document Server

    Cho, Jungyeon

    2013-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfv\\'enic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., \\$b_+^2/b_-^2 \\propto (\\epsilon_+/\\epsilon_-)^n \\$ with n>2). These result...

  5. Nonlinear regimes of forced magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Vekstein, G., E-mail: g.vekstein@manchester.ac.uk [JBCA, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); STEL, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Kusano, K. [STEL, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2015-09-15

    This letter presents a self-consistent description of nonlinear forced magnetic reconnection in Taylor's model of this process. If external boundary perturbation is strong enough, nonlinearity in the current sheet evolution becomes important before resistive effects come into play. This terminates the current sheet shrinking that takes place at the linear stage and brings about its nonlinear equilibrium with a finite thickness. Then, in theory, this equilibrium is destroyed by a finite plasma resistivity during the skin-time, and further reconnection proceeds in the Rutherford regime. However, realization of such a scenario is unlikely because of the plasmoid instability, which is fast enough to develop before the transition to the Rutherford phase occurs. The suggested analytical theory is entirely different from all previous studies and provides proper interpretation of the presently available numerical simulations of nonlinear forced magnetic reconnection.

  6. A viable non-axisymmetric non-force-free field to represent solar active regions

    CERN Document Server

    Prasad, A

    2016-01-01

    A combination of analytical calculations and vectormagnetogram data are utilized to develop a non-axisymmetric non-force-free magnetic field and asses its viability in describing solar active regions. For the purpose, we construct a local spherical shell where a planar surface, tangential to the inner sphere, represents a Cartesian cutout of an active region. The magnetic field defined on the surface is then correlated with magnetograms. The analysis finds the non-axisymmetric non-force-free magnetic field, obtained by a superposition of two linear-force-free fields, correlates reasonably well with magnetograms.

  7. Nonlinear theory of magnetic Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Kirpichnikov, A.P.; Yusupov, I.U.

    1978-05-01

    The nonlinear Cerenkov damping of helical electromagnetic waves in a magnetized plasma is analyzed. The nonlinear mechanism which leads to oscillations in the wave amplitude and limits the damping is the trapping of resonant particles in the potential well of the wave, as in the O'Neil problem. The factors of the type exp (-..cap alpha..t/sup 2/) in the expression for the nonlinear damping rate for a Maxwellian particle distribution lead to a damping of the amplitude oscillations of the helical wave which is much more rapid than for a plasma wave.

  8. The spectral simulations of axisymmetric force-free pulsar magnetosphere

    CERN Document Server

    Cao, Gang; Sun, Sineng

    2015-01-01

    A pseudo-spectral method with an absorbing outer boundary is used to solve a set of the time-dependent force-free equations. In the method, both electric and magnetic fields are expanded in terms of the vector spherical harmonic (VSH) functions in spherical geometry and the divergencelessness of magnetic field is analytically enforced by a projection method. Our simulations show that the Deutsch vacuum solution and the Michel monopole solution can be well reproduced by our pseudo-spectral code. Further the method is used to present the time-dependent simulation of the force-free pulsar magnetosphere for an aligned rotator. The simulations show that the current sheet in the equatorial plane can be resolved well, and the obtained spin-down luminosity in the steady state is in good agreement with the value given by Spitkovsky (2006).

  9. Nonlinear Magnetic Diffusion and Magnetic Helicity Transport in Galactic Dynamos

    CERN Document Server

    Kleeorin, N; Rogachevskii, I; Sokoloff, D D

    2003-01-01

    We have extended our previous mean-field galactic dynamo model which included algebraic and dynamic alpha nonlinearities (Kleeorin et al., A&A, v. 387, 453, 2002), to include also a quenching of turbulent diffusivity. We readily obtain equilibrium states for the large-scale magnetic field in the local disc dynamo model, and these fields have strengths that are comparable to the equipartition field strength. We find that the algebraic nonlinearity alone (i.e. quenching of both the alpha effect and turbulent magnetic diffusion) cannot saturate the growth of the mean magnetic field; only the combined effect of algebraic and dynamic nonlinearities can limit the growth of the mean magnetic field. However, in contrast to our earlier work without quenching of the turbulent diffusivity, we cannot now find satisfactory solutions in the no-z approximation to the axisymmetric galactic dynamo problem.

  10. Self-Similar Force-Free Wind From an Accretion Disk

    CERN Document Server

    Narayan, R; Farmer, A J; Narayan, Ramesh; Kinney, Jonathan C. Mc; Farmer, Alison J.

    2006-01-01

    We consider a self-similar force-free wind flowing out of an infinitely thin disk located in the equatorial plane. On the disk plane, we assume that the magnetic stream function $P$ scales as $P\\propto R^\

  11. Nonlinear Plasma Wave in Magnetized Plasmas

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke

    2013-01-01

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].

  12. Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

    CERN Document Server

    Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C

    2011-01-01

    We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.

  13. Knotted solitons in nonlinear magnetic metamaterials.

    Science.gov (United States)

    Rosanov, Nikolay N; Vysotina, Nina V; Shatsev, Anatoly N; Desyatnikov, Anton S; Kivshar, Yuri S

    2012-03-30

    We demonstrate that nonlinear magnetic metamaterials comprised of a lattice of weakly coupled split-ring resonators driven by an external electromagnetic field may support entirely new classes of spatially localized modes--knotted solitons, which are stable self-localized dissipative structures in the form of closed knotted chains. We demonstrate different topological types of stable knots for the subcritical coupling between resonators and instability-induced breaking of the chains for the supercritical coupling.

  14. The Force-Free Magnetosphere of a Rotating Black Hole

    Science.gov (United States)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.

    2013-01-01

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."

  15. Nonlinear Acceleration Mechanism of Collisionless Magnetic Reconnection

    CERN Document Server

    Hirota, M; Ishii, Y; Yagi, M; Aiba, N

    2012-01-01

    A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in tokamak discharges. Nonlinear growth of the tearing mode driven by electron inertia is analytically estimated by invoking the energy principle for the first time. Decrease of potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is found to be steeper than in the linear regime, resulting in acceleration of the reconnection. Release of free energy by such ideal fluid motion leads to unsteady and strong convective flow, which theoretically corroborates the inertia-driven collapse model of the sawtooth crash [D. Biskamp and J. F. Drake, Phys. Rev. Lett. 73, 971 (1994)].

  16. Study of Magnetic Domain Dynamics Using Nonlinear Magnetic Responses: Magnetic Diagnostics of the Itinerant Magnet MnP

    Science.gov (United States)

    Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Deguchi, Hiroyuki; Kishine, Jun-ichiro; Inoue, Katsuya; Kousaka, Yusuke; Yano, Shin-ichiro; Nakao, Yuya; Akimitsu, Jun

    2015-10-01

    The nonlinear and linear magnetic responses to an ac magnetic field H are useful for the study of the magnetic dynamics of both magnetic domains and their constituent spins. In particular, the third-harmonic magnetic response M3ω reflects the dynamics of magnetic domains. Furthermore, by considering the ac magnetic response as a function of H, we can evaluate the degree of magnetic nonlinearity, which is closely related to M3ω. In this study, a series of approaches was used to examine the itinerant magnet MnP, in which both ferromagnetic and helical phases are present. On the basis of this investigation, we systematize the diagnostic approach to evaluating nonlinearity in magnetic responses.

  17. Nonlinear spin-wave excitations at low magnetic bias fields

    Science.gov (United States)

    Woltersdorf, Georg

    We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.

  18. Discrete dissipative localized modes in nonlinear magnetic metamaterials.

    Science.gov (United States)

    Rosanov, Nikolay N; Vysotina, Nina V; Shatsev, Anatoly N; Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S

    2011-12-19

    We analyze the existence, stability, and propagation of dissipative discrete localized modes in one- and two-dimensional nonlinear lattices composed of weakly coupled split-ring resonators (SRRs) excited by an external electromagnetic field. We employ the near-field interaction approach for describing quasi-static electric and magnetic interaction between the resonators, and demonstrate the crucial importance of the electric coupling, which can completely reverse the sign of the overall interaction between the resonators. We derive the effective nonlinear model and analyze the properties of nonlinear localized modes excited in one-and two-dimensional lattices. In particular, we study nonlinear magnetic domain walls (the so-called switching waves) separating two different states of nonlinear magnetization, and reveal the bistable dependence of the domain wall velocity on the external field. Then, we study two-dimensional localized modes in nonlinear lattices of SRRs and demonstrate that larger domains may experience modulational instability and splitting.

  19. Kink instability of force-free jets: a parameter space study

    Science.gov (United States)

    Sobacchi, E.; Lyubarsky, Y. E.; Sormani, M. C.

    2017-07-01

    In the paradigm of magnetic acceleration of relativistic jets, one of the key points is identifying a viable mechanism to convert the Poynting flux into the kinetic energy of the plasma beyond equipartition. A promising candidate is the kink instability, which deforms the body of the jet through helical perturbations. Since the detailed structure of real jets is unknown, we explore a large family of cylindrical, force-free equilibria to get robust conclusions. We find that the growth rate of the instability depends primarily on two parameters: (i) the gradient of the poloidal magnetic field and (ii) the Lorentz factor of the perturbation, which is closely related to the velocity of the plasma. We provide a simple fitting formula for the growth rate of the instability. As a tentative application, we use our results to interpret the dynamics of the jet in the nearby active galaxy M87. We show that the kink instability becomes non-linear at a distance from the central black hole comparable to where the jet stops accelerating. Hence (at least for this object), the kink instability of the jet is a good candidate to drive the transition from a Poynting-dominated to a kinetic-energy-dominated flow.

  20. Non Linear Force Free Field Modeling for a Pseudostreamer

    Science.gov (United States)

    Karna, Nishu; Savcheva, Antonia; Gibson, Sarah; Tassev, Svetlin V.

    2017-08-01

    In this study we present a magnetic configuration of a pseudostreamer observed on April 18, 2015 on southern west limb embedding a filament cavity. We constructed Non Linear Force Free Field (NLFFF) model using the flux rope insertion method. The NLFFF model produces the three-dimensional coronal magnetic field constrained by observed coronal structures and photospheric magnetogram. SDO/HMI magnetogram was used as an input for the model. The high spatial and temporal resolution of the SDO/AIA allows us to select best-fit models that match the observations. The MLSO/CoMP observations provide full-Sun observations of the magnetic field in the corona. The primary observables of CoMP are the four Stokes parameters (I, Q, U, V). In addition, we perform a topology analysis of the models in order to determine the location of quasi-separatrix layers (QSLs). QSLs are used as a proxy to determine where the strong electric current sheets can develop in the corona and also provide important information about the connectivity in complicated magnetic field configuration. We present the major properties of the 3D QSL and FLEDGE maps and the evolution of 3D coronal structures during the magnetofrictional process. We produce FORWARD-modeled observables from our NLFFF models and compare to a toy MHD FORWARD model and the observations.

  1. The force-free twisted magnetosphere of a neutron star

    CERN Document Server

    Akgün, Taner; Pons, José A; Cerdá-Durán, Pablo

    2016-01-01

    We present a detailed analysis of the properties of twisted, force-free magnetospheres of non-rotating neutron stars, which are of interest in the modelling of magnetar properties and evolution. In our models the magnetic field smoothly matches to a current-free (vacuum) solution at some large external radius, and they are specifically built to avoid pathological surface currents at any of the interfaces. By exploring a large range of parameters, we find a few remarkable general trends. We find that the total dipolar moment can be increased by up to 40% with respect to a vacuum model with the same surface magnetic field, due to the contribution of magnetospheric currents to the global magnetic field. Thus, estimates of the surface magnetic field based on the large scale dipolar braking torque are slightly overestimating the surface value by the same amount. Consistently, there is a moderate increase in the total energy of the model with respect to the vacuum solution of up to 25%, which would be the available...

  2. Nonlinear Evolution of Magnetic Islands in the Magnetopause Current Sheet

    Institute of Scientific and Technical Information of China (English)

    XianminWANG; ZuyinPU

    1996-01-01

    Nonlinear evolution of magnetic islands produced by time-dependent magnetic reconnection in the magnetopause current sheet is studied.It is shown that the magnetic islands are unstable against the interference from external disturbances.Their structure can be destroyed by medium and small-scale solar wind turbulences,leading to stochastic magnetic reconnection and the formation of irregular small0scale structures in magnetospheric boundary regions.

  3. Self-induced gap solitons in nonlinear magnetic metamaterials.

    Science.gov (United States)

    Cui, Weina; Zhu, Yongyuan; Li, Hongxia; Liu, Sumei

    2009-09-01

    The self-induced gap solitons in nonlinear magnetic metamaterials is investigated. It is shown that the self-induced gap solitons may exist due to the interaction of the discreteness and nonlinearity. The evolution of these localized structures is studied in the phase plane and analytical and numerical expressions are obtained.

  4. Force-free collisionless current sheet models with non-uniform temperature and density profiles

    Science.gov (United States)

    Wilson, F.; Neukirch, T.; Allanson, O.

    2017-09-01

    We present a class of one-dimensional, strictly neutral, Vlasov-Maxwell equilibrium distribution functions for force-free current sheets, with magnetic fields defined in terms of Jacobian elliptic functions, extending the results of Abraham-Shrauner [Phys. Plasmas 20, 102117 (2013)] to allow for non-uniform density and temperature profiles. To achieve this, we use an approach previously applied to the force-free Harris sheet by Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)]. In one limit of the parameters, we recover the model of Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)], while another limit gives a linear force-free field. We discuss conditions on the parameters such that the distribution functions are always positive and give expressions for the pressure, density, temperature, and bulk-flow velocities of the equilibrium, discussing the differences from previous models. We also present some illustrative plots of the distribution function in velocity space.

  5. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    CERN Document Server

    Mukai, Y; Yamamoto, T; Kageyama, H; Tanaka, K

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (~40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  6. A novel look at the pulsar force-free magnetosphere

    CERN Document Server

    Petrova, S A

    2016-01-01

    The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, $B_{\\mathrm new}^0=3.3\\times 10^{-4}B/P$, where $P$ is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the $\\cot\\chi$-law, where $\\chi$ is a random quantity uniformly distributed in the interval $[0,\\pi/2]$. Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle bet...

  7. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    Science.gov (United States)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  8. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    Science.gov (United States)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.

  9. The force-free twisted magnetosphere of a neutron star

    Science.gov (United States)

    Akgün, T.; Miralles, J. A.; Pons, J. A.; Cerdá-Durán, P.

    2016-10-01

    We present a detailed analysis of the properties of twisted, force-free magnetospheres of non-rotating neutron stars, which are of interest in the modelling of magnetar properties and evolution. In our models the magnetic field smoothly matches to a current-free (vacuum) solution at some large external radius, and they are specifically built to avoid pathological surface currents at any of the interfaces. By exploring a large range of parameters, we find a few remarkable general trends. We find that the total dipolar moment can be increased by up to 40 per cent with respect to a vacuum model with the same surface magnetic field, due to the contribution of magnetospheric currents to the global magnetic field. Thus, estimates of the surface magnetic field based on the large-scale dipolar braking torque are slightly overestimating the surface value by the same amount. Consistently, there is a moderate increase in the total energy of the model with respect to the vacuum solution of up to 25 per cent, which would be the available energy budget in the event of a fast, global magnetospheric reorganization commonly associated with magnetar flares. We have also found the interesting result of the existence of a critical twist (ϕmax ≲ 1.5 rad), beyond which we cannot find any more numerical solutions. Combining the models considered in this paper with the evolution of the interior of neutron stars will allow us to study the influence of the magnetosphere on the long-term magnetic, thermal, and rotational evolution.

  10. Nonlinear Dynamics of A Damped Magnetic Oscillator

    CERN Document Server

    Kim, S Y

    1999-01-01

    We consider a damped magnetic oscillator, consisting of a permanent magnet in a periodically oscillating magnetic field. A detailed investigation of the dynamics of this dissipative magnetic system is made by varying the field amplitude $A$. As $A$ is increased, the damped magnetic oscillator, albeit simple looking, exhibits rich dynamical behaviors such as symmetry-breaking pitchfork bifurcations, period-doubling transitions to chaos, symmetry-restoring attractor-merging crises, and saddle-node bifurcations giving rise to new periodic attractors. Besides these familiar behaviors, a cascade of ``resurrections'' (i.e., an infinite sequence of alternating restabilizations and destabilizations) of the stationary points also occurs. It is found that the stationary points restabilize (destabilize) through alternating subcritical (supercritical) period-doubling and pitchfork bifurcations. We also discuss the critical behaviors in the period-doubling cascades.

  11. Nonlinear giant magnetoimpedance and the asymmetric circumferential magnetization process in soft magnetic wires

    Science.gov (United States)

    Gómez-Polo, C.; Duque, J. G. S.; Knobel, M.

    2004-07-01

    The magnetoimpedance effect and its nonlinear terms are analysed for a (Co0.94Fe0.06)72.5Si12.5B15 amorphous wire. In order to enhance the nonlinear contribution the sample was previously subjected to current annealing (Joule heating) to induce a circumferential anisotropy. The effect of the application of a torsional strain on the nonlinear magnetoimpedance is analysed in terms of the torsional dependence of the magnetic permeability, evaluated through experimental circumferential hysteresis loops. The results obtained clearly confirm the direct correlation between the asymmetric circumferential magnetization process and the occurrence of nonlinear second-harmonic terms in the magnetoimpedance voltage.

  12. Nonlinear Kinetic Dynamics of Magnetized Weibel Instability

    CERN Document Server

    Palodhi, L; Pegoraro, F

    2010-01-01

    Kinetic numerical simulations of the evolution of the Weibel instability during the full nonlinear regime are presented. The formation of strong distortions in the electron distribution function resulting in formation of strong peaks in it and their influence on the resulting electrostatic waves are shown.

  13. Separable solutions of force-free spheres and applications to solar active regions

    CERN Document Server

    Prasad, A; Ravindra, B

    2014-01-01

    In this paper, we present a systematic study of the force-free field equation for simple axisymmetric configurations in spherical geometry and apply it to the solar active regions. The condition of separability of solutions in the radial and angular variables leads to two classes of solutions: linear and non-linear force-free fields. We have studied these linear solutions Chandrasekhar (1956) and extended the non-linear solutions given in Low & Lou (1990) for the radial power law index to the irreducible rational form $n= p/q$, which is allowed for all cases of odd $p$ and cases of $q>p$ for even $p$ (the poloidal flux $\\psi\\propto1/r^n$ and field $\\mathbf{B}\\propto 1/r^{n+2}$). We apply these solutions to simulate photospheric vector magnetograms obtained using the spectro-polarimeter onboard Hinode. The effectiveness of our search strategy is first demonstrated on test inputs of dipolar, axisymmetric and non-axisymmetric linear force-free fields. Using the best fit to these magnetograms, we build 3D axi...

  14. Nonlinear magnetic field transport in opening switch plasmas

    Science.gov (United States)

    Mason, R. J.; Auer, P. L.; Sudan, R. N.; Oliver, B. V.; Seyler, C. E.; Greenly, J. B.

    1993-04-01

    The nonlinear transport of magnetic field in collisionless plasmas, as present in the plasma opening switch (POS), using the implicit multifluid simulation code anthem [J. Comput. Phys. 71, 429 (1987)] is studied. The focus is on early time behavior in the electron-magnetohydrodynamic (EMHD) limit, with the ions fixed, and the electrons streaming as a fluid under the influence of ve×B Hall forces. Through simulation, magnetic penetration and magnetic exclusion waves are characterized, due to the Hall effect in the presence of transverse density gradients, and the interaction of these Hall waves with nonlinear diffusive disturbances from electron velocity advection, (veṡ∇)ve, is studied. It is shown how these mechanisms give rise to the anode magnetic insulation layer, central diffusion, and cathode potential hill structures seen in earlier opening switch plasmas studies.

  15. Nonlinear subelliptic Schrodinger equations with external magnetic field

    Directory of Open Access Journals (Sweden)

    Kyril Tintarev

    2004-10-01

    Full Text Available To account for an external magnetic field in a Hamiltonian of a quantum system on a manifold (modelled here by a subelliptic Dirichlet form, one replaces the the momentum operator $frac 1i d$ in the subelliptic symbol by $frac 1i d-alpha$, where $alphain TM^*$ is called a magnetic potential for the magnetic field $eta=dalpha$. We prove existence of ground state solutions (Sobolev minimizers for nonlinear Schrodinger equation associated with such Hamiltonian on a generally, non-compact Riemannian manifold, generalizing the existence result of Esteban-Lions [5] for the nonlinear Schrödinger equation with a constant magnetic field on $mathbb{R}^N$ and the existence result of [6] for a similar problem on manifolds without a magnetic field. The counterpart of a constant magnetic field is the magnetic field, invariant with respect to a subgroup of isometries. As an example to the general statement we calculate the invariant magnetic fields in the Hamiltonians associated with the Kohn Laplacian and for the Laplace-Beltrami operator on the Heisenberg group.

  16. Nonlinear electron acoustic waves in presence of shear magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  17. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Science.gov (United States)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  18. Nonlinear Disturbance Rejection for Magnetic Levitation Systems

    Science.gov (United States)

    2003-10-01

    B. Costic, D. Dawson and Y. Fang, "Non- linear Control of Magnetic Bearing in the Presence of Sinu- soidal Disturbance," Proceedings of the American Control Conference , pp...Unknown 61 Amplitudes and Frequencies in Linear SISO Uncertain Sys- tems," Proceedings of the American Control Conference , Anchorage, Alaska, pp. 4015

  19. Nonlinear magnetic reconnection in low collisionality plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F. [Politecnico di Torino, Turin (Italy)

    1994-07-01

    The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.

  20. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.

  1. Acceleration of Universe by Nonlinear Magnetic Monopole Fields

    CERN Document Server

    Övgün, A

    2016-01-01

    Despite impressive phenomenological successes, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. Within the scope of Friedmann-Robertson-Walker (FRW) spacetime we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory which generalizes Maxwell's theory for strong fields. A mathematical new model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  2. Nonlinear fast sausage waves in homogeneous magnetic flux tubes

    Science.gov (United States)

    Mikhalyaev, Badma B.; Ruderman, Michael S.

    2015-12-01

    > We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.

  3. A New Formulation for General Relativistic Force-Free Electrodynamics and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We formulate the general relativistic force-free electrodynamics in a new 3+1 language. In this formulation, when we have properly defined electric and magnetic fields, the covariant Maxwell equations could be cast in the traditional form with new vacuum con stitutive constraint equations. The fundamental equation governing a stationary, axisymmet ric force-free black hole magnetosphere is derived using this formulation which recasts the Grad-Shafranov equation in a simpler way. Compared to the classic 3+1 system of Thorne and MacDonald, the new system of 3+1 equations is more suitable for numerical use for it keeps the hyperbolic structure of the electrodynamics and avoids the singularity at the event horizon. This formulation could be readily extended to non-relativistic limit and find applications in flat spacetime. We investigate its application to disk wind, black hole magnetosphere and solar physics in both flat and curved spacetime.

  4. Ill posedness of force-free electrodynamics in Euler potentials

    Science.gov (United States)

    Reula, Oscar A.; Rubio, Marcelo E.

    2017-03-01

    We prove that the initial value problem for force-free electrodynamics in Euler variables is not well posed. We establish this result by showing that a well-posedness criterion provided by Kreiss fails to hold for this theory, and using a theorem provided by Strang. To show the nature of the problem we display a particular bounded (in Sobolev norms) sequence of initial data for the force-free equations such that at any given time as close to zero as one wishes, the corresponding evolution sequence is not bounded. Thus, the force-free evolution is noncontinuous in that norm with respect to the initial data. We furthermore prove that this problem is also ill-posed in the Leray-Ohya sense.

  5. Magnetic brane solutions of Lovelock gravity with nonlinear electrodynamics

    CERN Document Server

    Hendi, Seyed Hossein; Panahiyan, Shahram

    2015-01-01

    In this paper, we consider logarithmic and exponential forms of nonlinear electrodynamics as a source and obtain magnetic brane solutions of the Lovelock gravity. Although these solutions have no curvature singularity and no horizon, they have a conic singularity with a deficit angle. We investigate the effects of nonlinear electrodynamics and the Lovelock gravity on the value of deficit angle and find that various terms of Lovelock gravity do not affect deficit angle. Next, we generalize our solutions to spinning cases with maximum rotating parameters in arbitrary dimensions and calculate the conserved quantities of the solutions. Finally, we consider nonlinear electrodynamics as a correction of the Maxwell theory and investigate the properties of the solutions.

  6. Nonlinear electrostatic wave equations for magnetized plasmas - II

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....

  7. Nonlinear Control of Large Disturbances in Magnetic Bearing Systems

    Science.gov (United States)

    Jiang, Yuhong; Zmood, R. B.

    1996-01-01

    In this paper, the nonlinear operation of magnetic bearing control methods is reviewed. For large disturbances, the effects of displacement constraints and power amplifier current and di/dt limits on bearing control system performance are analyzed. The operation of magnetic bearings exhibiting self-excited large scale oscillations have been studied both experimentally and by simulation. The simulation of the bearing system has been extended to include the effects of eddy currents in the actuators, so as to improve the accuracy of the simulation results. The results of these experiments and simulations are compared, and some useful conclusions are drawn for improving bearing system robustness.

  8. Nonlinear Processes in Magnetic Nanodots under Perpendicular Pumping: Micromagnetic Simulations

    Directory of Open Access Journals (Sweden)

    D.V. Slobodiainuk

    2013-03-01

    Full Text Available Processes that take place in permalloy nanodots under external electromagnetic pumping are considered. It is shown that in such system similar to bulk samples Suhl and kinetic instability processes are possible. Using micromagnetic simulations approach key features of mode excitation with an external pumping power increase were revealed. Results of the simulations were compared with published experimental data dedicated to investigation of magnetic nanodotes in nonlinear regime.

  9. Nonlinear Magnetic Circuit Analysis of SMART Control Rod Drive Actuator

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Myounggyu; Gi, Myung Ju; Kim, Myounggon; Park, Youngwoo [Chungnam Nat' l Univ., Daejeon (Korea, Republic of); Lee, Jaeseon; Kim, Jongwook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, we derive a nonlinear magnetic circuit model of an electromagnetic control-rod actuator in the SMART. The results of the nonlinear model are compared with those by linear circuit model and finite-element analyses. gnetic circuit modeling is a useful tool when designing an electromagnetic actuator, as it allows fast calculations and enables parametric studies. It is particularly essential when the actuator is to be used in a very complex system such as a nuclear reactor. Important design parameters must be identified at the early stage of the design process. Once the design space is narrowed down, more accurate methods such finite-element analyses (FEA) can be employed for detailed design. Magnetic circuit modeling is based on the assumption that a flux path consists of sections in each of which field quantities are constant with linear constitutive relations. This assumption fails to hold when portions of the flux path become saturated. The magnetic circuit must be modified in order to accurately describe the nonlinear behavior of saturation.

  10. Local, Non-Geodesic, Timelike Currents in the Force-Free Magnetosphere of a Kerr Black Hole

    CERN Document Server

    Menon, Govind

    2014-01-01

    In this paper, we use previously developed exact solutions to present some of the curious features of a force-free magnetosphere in a Kerr background. More precisely, we obtain a hitherto unseen timelike current in the force-free magnetosphere that does not flow along a geodesic. The electromagnetic field in this case happens to be magnetically dominated. This too is a feature that has entered the literature for the first time. Changing the sign of a single parameter in our solutions generates a spacelike current that creates an electromagnetic field that is electrically dominated.

  11. Nonlinear laser-plasma interaction in magnetized liner inertial fusion

    Science.gov (United States)

    Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.

    2016-03-01

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

  12. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  13. Suppressing Transverse Beam Halo with Nonlinear Magnetic Fields

    CERN Document Server

    Webb, Stephen D; Abell, Dan T; Danilov, Viatcheslav; Nagaitsev, Sergei; Valishev, Alexander; Danilov, Kirill; Cary, John R

    2012-01-01

    High intensity proton storage rings are central for the development of advanced neutron sources, drivers for the production of pions in neutrino factories or muon colliders, and transmutation of radioactive waste. Fractional proton loss from the beam must be very small to prevent radioac- tivation of nearby structures, but many sources of beam loss are driven by collective effects that increase with intensity. Recent theoretical work on the use of nonlinear magnetic fields to design storage rings with integrable transverse dynamics is extended here to include collective effects, with numerical results showing validity in the presence of very high beam current. Among these effects is the formation of beam halo, where particles are driven to large amplitude oscillations by coherent space charge forces. The strong variation of particle oscillation frequency with amplitude results in nonlinear decoherence that is observed to suppress transverse halo development in the case studied. We also present a necessary gen...

  14. Asymmetric bistable reflection and polarization switching in a magnetic nonlinear multilayer structure

    DEFF Research Database (Denmark)

    Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.

    2014-01-01

    Optical properties of one-dimensional photonic structures consisting of Kerr-type nonlinear and magnetic layers under the action of an external static magnetic field in the Faraday geometry are investigated. The structure is a periodic arrangement of alternating nonlinear and magnetic layers (a one...

  15. Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow

    CERN Document Server

    Dimitrov, Z D; Hristov, T S; Mishonov, T M

    2011-01-01

    We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.

  16. Nonergodic dynamics of force-free granular gases

    OpenAIRE

    Bodrova, Anna; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Metzler, Ralf

    2015-01-01

    We study analytically and by event-driven molecular dynamics simulations the nonergodic and aging properties of force-free cooling granular gases with both constant and velocity-dependent (viscoelastic) restitution coefficient $\\varepsilon$ for particle pair collisions. We compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behavior of the ensembl...

  17. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures

    Science.gov (United States)

    Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail

    2016-09-01

    Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT-1 and permitted the measurement of dc magnetic fields in the range of ~10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered.

  18. Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results

    Science.gov (United States)

    Lee, Nam C.; Parks, George K.

    1992-01-01

    A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.

  19. Parameter estimation of a nonlinear magnetic universe from observations

    CERN Document Server

    Montiel, Ariadna; Salzano, Vincenzo

    2014-01-01

    The cosmological model consisting of a nonlinear magnetic field obeying the Lagrangian L= \\gamma F^{\\alpha}, F being the electromagnetic invariant, coupled to a Robertson-Walker geometry is tested with observational data of Type Ia Supernovae, Long Gamma-Ray Bursts and Hubble parameter measurements. The statistical analysis show that the inclusion of nonlinear electromagnetic matter is enough to produce the observed accelerated expansion, with not need of including a dark energy component. The electromagnetic matter with abundance $\\Omega_B$, gives as best fit from the combination of all observational data sets \\Omega_B=0.562^{+0.037}_{-0.038} for the scenario in which \\alpha=-1, \\Omega_B=0.654^{+0.040}_{-0.040} for the scenario with \\alpha=-1/4 and \\Omega_B=0.683^{+0.039}_{-0.043} for the one with \\alpha=-1/8. These results indicate that nonlinear electromagnetic matter could play the role of dark energy, with the theoretical advantage of being a mensurable field.

  20. Role of nonlinear localized structures and turbulence in magnetized plasma

    Science.gov (United States)

    Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.

    2016-09-01

    In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.

  1. Nonlinear absorption due to linear loss and magnetic permeability in metamaterials.

    Science.gov (United States)

    Xiang, Yuanjiang; Dai, Xiaoyu; Wen, Shuangchun; Guo, Jun

    2012-06-01

    We predict theoretically that linear magnetic permeability induces nonlinear absorption (NA) of an electric field in lossy metamaterials (MMs) with Kerr-type nonlinear polarization even when the imaginary part of the nonlinear polarization is absent. The nonlinear magnetic susceptibility, if it exists and although it may be real, enhances or reduces the NA of the electric field, depending on the relative values of the electric and magnetic losses. In particular, it is shown that the NA effect can be tuned by the figure of merit (FOM) of the MM: generally, MMs with a better FOM have a weaker NA effect. Moreover, the nonlinear coefficient can also be enhanced greatly due to the combined effect of the linear losses and the nonlinear magnetization of MMs. The control of the tunable NA and nonlinear coefficients by the structural parameters of MMs is also discussed.

  2. Nonlinear dynamic model for magnetically-tunable Galfenol vibration absorbers

    Science.gov (United States)

    Scheidler, Justin J.; Dapino, Marcelo J.

    2013-03-01

    This paper presents a single degree of freedom model for the nonlinear vibration of a metal-matrix composite manufactured by ultrasonic additive manufacturing that contains seamlessly embedded magnetostrictive Galfenol alloys (FeGa). The model is valid under arbitrary stress and magnetic field. Changes in the composite's natural frequency are quantified to assess its performance as a semi-active vibration absorber. The effects of Galfenol volume fraction and location within the composite on natural frequency are quantified. The bandwidth over which the composite's natural frequency can be tuned with a bias magnetic field is studied for varying displacement excitation amplitudes. The natural frequency is tunable for all excitation amplitudes considered, but the maximum tunability occurs below an excitation amplitude threshold of 1 × 10-6 m for the composite geometry considered. Natural frequency shifts between 6% and 50% are found as the Galfenol volume fraction varies from 25% to 100% when Galfenol is located at the composite neutral axis. At a modest 25% Galfenol by volume, the model shows that up to 15% shifts in composite resonance are possible through magnetic bias field modulation if Galfenol is embedded away from the composite midplane. As the Galfenol volume fraction and distance between Galfenol and composite midplane are increased, linear and quadratic increases in tunability result, respectively.

  3. Nonlinear diffusion of a strong magnetic field in a conducting medium

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.F.

    1985-09-01

    The problem considered here is a self-similar problem concerning nonlinear diffusion of a strong magnetic field in a conducting nonmagnetic incompressible medium where the magnetic field is produced by a current passing along the symmetry axis. Nonlinear diffusion equations are solved analytically for various particular cases with allowance for the heating of the medium.

  4. Nonlinear dynamic susceptibilities of interacting and noninteracting magnetic nanoparticles

    CERN Document Server

    Joensson, P; García-Palacios, J L; Svedlindh, P

    2000-01-01

    The linear and cubic dynamic susceptibilities of solid dispersions of nanosized maghemite gamma-Fe sub 2 O sub 3 particles have been measured for three samples with a volume concentration of magnetic particles ranging from 0.3% to 17%, in order to study the effect of dipole-dipole interactions. Significant differences between the dynamic response of the samples are observed. While the linear and cubic dynamic susceptibilities of the most dilute sample compare reasonably well with the corresponding expressions proposed by Raikher and Stepanov for noninteracting particles, the nonlinear dynamic response of the most concentrated sample exhibits at low temperatures similar features as observed in a Ag(11 at% Mn) spin glass.

  5. Ferrite core non-linearity in coils for magnetic neurostimulation.

    Science.gov (United States)

    RamRakhyani, Anil Kumar; Lazzi, Gianluca

    2014-10-01

    The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.

  6. Calculation of nonlinear magnetic susceptibility tensors for a uniaxial antiferromagnet

    Science.gov (United States)

    Lim, Siew-Choo; Osman, Junaidah; Tilley, D. R.

    2000-11-01

    In this paper, we present a derivation of the nonlinear susceptibility tensors for a two-sublattice uniaxial antiferromagnet up to the third-order effects within the standard definition by which the rf magnetization m is defined as a power series expansion in the rf fields h with the susceptibility tensors χ(q) as the coefficients. The starting point is the standard set of torque equations of motion for this problem. A complete set of tensor elements is derived for the case of a single-frequency input wave. Within a circular polarization frame (pnz) expressions are given for the first-order susceptibility, second-harmonic generation, optical rectification, third-harmonic generation and intensity-dependent susceptibility. Some of the coefficients with representative resonance features in the far infrared are illustrated graphically and we conclude with a brief discussion of the implications of the resonance features arising from the calculations and their potential applications.

  7. Origin of nonlinear transport across the magnetically induced superconductor-metal-insulator transition in two dimensions.

    Science.gov (United States)

    Seo, Y; Qin, Y; Vicente, C L; Choi, K S; Yoon, Jongsoo

    2006-08-04

    We have studied the effect of perpendicular magnetic fields and temperatures on nonlinear electronic transport in amorphous Ta superconducting thin films. The films exhibit a magnetic field-induced metallic behavior intervening the superconductor-insulator transition in the zero temperature limit. We show that the phase-identifying nonlinear transport in the superconducting and metallic phases arises from an intrinsic origin, not from an electron heating effect. The nonlinear transport is found to accompany an extraordinarily long voltage response time.

  8. Small amplitude nonlinear electron acoustic solitary waves in weakly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata-700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Kolkata-700 064 (India)

    2013-01-15

    Nonlinear propagation of electron acoustic waves in homogeneous, dispersive plasma medium with two temperature electron species is studied in presence of externally applied magnetic field. The linear dispersion relation is found to be modified by the externally applied magnetic field. Lagrangian transformation technique is applied to carry out nonlinear analysis. For small amplitude limit, a modified KdV equation is obtained, the modification arising due to presence of magnetic field. For weakly magnetized plasma, the modified KdV equation possesses stable solitary solutions with speed and amplitude increasing temporally. The solutions are valid upto some finite time period beyond which the nonlinear wave tends to wave breaking.

  9. Accurate Simulations of Binary Black-Hole Mergers in Force-Free Electrodynamics

    CERN Document Server

    Alic, Daniela; Rezzolla, Luciano; Zanotti, Olindo; Jaramillo, Jose Luis

    2012-01-01

    We provide additional information on our recent study of the electromagnetic emission produced during the inspiral and merger of supermassive black holes when these are immersed in a force-free plasma threaded by a uniform magnetic field. As anticipated in a recent letter, our results show that although a dual-jet structure is present, the associated luminosity is ~ 100 times smaller than the total one, which is predominantly quadrupolar. We here discuss the details of our implementation of the equations in which the force-free condition is not implemented at a discrete level, but rather obtained via a damping scheme which drives the solution to satisfy the correct condition. We show that this is important for a correct and accurate description of the current sheets that can develop in the course of the simulation. We also study in greater detail the three-dimensional charge distribution produced as a consequence of the inspiral and show that during the inspiral it possesses a complex but ordered structure wh...

  10. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  11. Holographic Superconductors with Logarithmic Nonlinear Electrodynamics in an External Magnetic Field

    Science.gov (United States)

    Sheykhi, A.; Shamsi, F.

    2017-03-01

    Based on the matching method, we explore the effects of adding an external magnetic field on the s-wave holographic superconductors when the gauge field is in the form of the logarithmic nonlinear source. First, we obtain the critical temperature as well as the condensation operator in the presence of logarithmic nonlinear electrodynamics and understand that they depend on the nonlinear parameter b. We show that the critical temperature decreases with increasing b, which implies that the nonlinear gauge field makes the condensation harder. Then, we turn on the magnetic field in the bulk and find the critical magnetic field, B c , in terms of the temperature, which also depends on the nonlinear parameter b. We observe that for temperature smaller than the critical temperature, T superconductor with magnetic field in Maxwell theory.

  12. Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas

    CERN Document Server

    Timofeev, I V

    2012-01-01

    Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.

  13. Nonlinear optical and magneto-optical effects in non-spherical magnetic granular composite

    Institute of Scientific and Technical Information of China (English)

    Ping Xu(须萍); Zhenya Li(李振亚)

    2004-01-01

    The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylcr-expansion method. There is a weakly nonlinear relation between electric displacement D and elcctric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.

  14. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  15. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    CERN Document Server

    Yuan, Yajie; Zrake, Jonathan; East, William E; Blandford, Roger D

    2016-01-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short time scales. These are likely due to rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reaction. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased pol...

  16. Cosmic Ray Acceleration by E-Parallel Reconnection of Force-Free Fields

    CERN Document Server

    Colgate, S A; Colgate, Stirling A.; Li, Hui

    2004-01-01

    We propose that nearly every accelerated CR was part of the parallel current that maintains all force-free (f-f) magnetic fields. Charged particles are accelerated by the E-parallel (to the magnetic filed B) produced by reconnection. The inferred total energy in extra-galactic cosmic rays is 10^(60) ergs per galaxy spacing volume, provided that acceleration mechanisms assumed do not preferentially only accelerate ultra high energy cosmic rays (UHECRs). This total energy is about 10^5 times the parent galactic CR or magnetic energy. The formation energy of supermassive black holes (SMBHs) at galaxy centers, 10^(62) ergs, becomes the only feasible source. An efficient dynamo process converts gravitational free energy into magnetic energy in an accretion disk around a SMBH. Aided by Keplerian winding, this dynamo converts a poloidal seed field into f-f fields, which are transported into the general inter-galactic medium (IGM). This magnetic energy is also efficiently converted into particle energies, as evidence...

  17. Homogeneous solutions for elliptically polarized light in a cavity containing materials with electric and magnetic nonlinearities

    CERN Document Server

    Martin, D A

    2015-01-01

    We study evolution equations and stationary homogeneous solutions for electric and magnetic field amplitudes in a ring cavity with flat mirrors. The cavity is filled with a positive or negative refraction index material with third order Kerr-like electric nonlinearities and also magnetic nonlinearities, which can be relevant in metamaterials. We consider the degree of freedom of polarization in the incident beam. It is found that considering a magnetic nonlinearity increases the variety of possible qualitatively different solutions. A classification of solutions is proposed in terms of the number of bifurcations. The analysis can be useful for the implementation of optical switching or memory storage using ring cavities with non linear materials.

  18. Dynamic detection of a single bacterium: nonlinear rotation rate shifts of driven magnetic microsphere stages

    CERN Document Server

    McNaughton, B H; Kopelman, R; Agayan, Rodney R.; Kopelman, Raoul; Naughton, Brandon H. Mc

    2006-01-01

    We report on a new technique which was used to detect single Escherichia coli that is based on the changes in the nonlinear rotation of a magnetic microsphere driven by an external magnetic field. The presence of one Escherichia Coli bacterium on the surface of a 2.0 micron magnetic microsphere caused an easily measurable change in the drag of the system and, therefore, in the nonlinear rotation rate. The straight-forward measurement uses standard microscopy techniques and the observed average shift in the nonlinear rotation rate changed by a factor of ~3.8.

  19. Compact sensor for measuring nonlinear rotational dynamics of driven magnetic microspheres with biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Brandon H. [Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Applied Physics Program, University of Michigan, Ann Arbor, MI 48109-1040 (United States)], E-mail: bmcnaugh@umich.edu; Kinnunen, Paivo [Applied Physics Program, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Smith, Ron G.; Pei, S.N. [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Torres-Isea, Ramon [Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Kopelman, Raoul [Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Applied Physics Program, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Clarke, Roy [Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Applied Physics Program, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2009-05-15

    The nonlinear rotation response of a magnetic particle occurs when a driving magnetic field, used to rotate the magnetic particle, exceeds a critical frequency. This type of nonlinear rotational dynamic depends on several physical parameters, such as the rotational drag that the particle experiences. Shifts in this nonlinear rotational frequency offer a dynamic approach for the detection of bacteria, measurement of their growth, their response to chemical agents, and other biomedical applications. Therefore, we have developed a stand-alone prototype device that utilizes an elegant combination of a laser diode and photodiode to monitor particle rotation.

  20. Nonlinear dynamics of magnetic islands imbedded in small-scale turbulence.

    Science.gov (United States)

    Muraglia, M; Agullo, O; Benkadda, S; Garbet, X; Beyer, P; Sen, A

    2009-10-02

    The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.

  1. Nonlinear Dynamics of Magnetic Islands Imbedded in Small-Scale Turbulence

    CERN Document Server

    Muraglia, Magali; Benkadda, Sadruddin; Garbet, Xavier; Beyer, P; Sen, Abhijit; 10.1103/PhysRevLett.103.145001

    2011-01-01

    The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.

  2. A Two-Fluid Study of Oblique Tearing Modes in a Force-Free Current Sheet

    CERN Document Server

    Akcay, Cihan; Lukin, Vyacheslav S; Liu, Yi-Hsin

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underest...

  3. Expanded solutions of force-free electrodynamics on general Kerr black holes

    Science.gov (United States)

    Li, Huiquan; Wang, Jiancheng

    2017-07-01

    In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.

  4. Time Evolution of Relativistic Force-Free Fields Connecting a Neutron Star and its Disk

    CERN Document Server

    Asano, E; Matsumoto, R; Asano, Eiji; Uchida, Toshio; Matsumoto, Ryoji

    2005-01-01

    We study the magnetic interaction between a neutron star and its disk by solving the time-dependent relativistic force-free equations. At the initial state, we assume that the dipole magnetic field of the neutron star connects the neutron star and its equatorial disk, which deeply enters into the magnetosphere of the neutron star. Magnetic fields are assumed to be frozen to the star and the disk. The rotation of the neutron star and the disk is imposed as boundary conditions. We apply Harten-Lax-van Leer (HLL) method to simulate the evolution of the star-disk system. We carry out simulations for (1) a disk inside the corotation radius, in which the disk rotates faster than the star, and (2) a disk outside the corotation radius, in which the neutron star rotates faster than the disk. Numerical results indicate that for both models, the magnetic field lines connecting the disk and the star inflate as they are twisted by the differential rotation between the disk and the star. When the twist angle exceeds pi rad...

  5. The linear and non-linear magnetic response of a tri-uranium single molecule magnet

    Science.gov (United States)

    Shivaram, B. S.; Colineau, E.; Griveau, J.; Kumar, P.; Celli, V.

    2017-03-01

    We report here low temperature magnetization isotherms for the single molecule magnet, (UO2-L)3. By analyzing the low temperature magnetization in terms of M  =  χ 1 B  +  χ 3 B 3 we extract the linear susceptibility χ 1 and the leading order nonlinear susceptibility χ 3. We find that χ 1 exhibits a peak at a temperature of T 1  =  10.4 K with χ 3 also exhibiting a peak but at a reduced temperature T 3  =  5 K. At the lowest temperatures the isotherms exhibit a critical field B c  =  11.5 T marked by a clear point of inflection. A minimal Hamiltonian employing S  =  1 (pseudo) spins with only a single energy scale (successfully used to model the behavior of bulk f-electron metamagnets) is shown to provide a good description of the observed linear scaling between T 1, T 3 and B c. We further show that a Heisenberg Hamiltonian previously employed by Carretta et al (2013 J. Phys.: Condens. Matter 25 486001) to model this single molecule magnet gives formulas for the angle averaged susceptibilities (in the Ising limit) very similar to those of the minimal model.

  6. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    Science.gov (United States)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  7. A magnetic betelgeuse? Numerical simulations of non-linear dynamo action

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2004-01-01

    question regarding the nature of Betelgeuse and supergiants in general is whether these stars may be magnetically active. If so, that may in turn also contribute to their variability. By performing detailed numerical simulations, I find that both linear kinematic and non-linear dynamo action are possible...... and that the non-linear magnetic field saturates at a value somewhat below equipartition: in the linear regime there are two modes of dynamo action....

  8. Force-free black hole jet power from impedance matching

    CERN Document Server

    Penna, Robert F

    2015-01-01

    The standard model of spin-powered black hole jets is the Blandford-Znajek (BZ) model. Unfortunately, the BZ jet power depends on an arbitrary function, $\\Omega_F(\\theta)$, which controls the angular distribution of field line velocities at the horizon. In practice, this function is fixed by finding exact solutions of force-free electrodynamics (FFE) and reading off $\\Omega_F(\\theta)$. We prove that all stationary, axisymmetric solutions of FFE with roughly uniform distributions of field lines at the horizon and at infinity have $\\Omega_F/\\Omega_H\\approx 0.5$, where $\\Omega_H$ is the angular velocity of the horizon. We derive a formula for $\\Omega_F(\\theta)$ that depends only on the angular distribution of field lines at the horizon and at infinity (the full FFE solution is not needed). We give a physical interpretation of our results using the black hole membrane paradigm and a recent extension which treats future null infinity as a resistive membrane. We show that $\\Omega_F/\\Omega_H$ is controlled by impeda...

  9. Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses.

    Science.gov (United States)

    Kim, Kihong; Phung, D K; Rotermund, F; Lim, H

    2008-01-21

    We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.

  10. Schrödinger plasmon-solitons in Kerr nonlinear heterostructures with magnetic manipulation.

    Science.gov (United States)

    Davydova, M D; Dodonov, D V; Kalish, A N; Belotelov, V; Zvezdin, A K

    2015-12-01

    We investigate surface plasmon-soliton (SPS) propagation in transverse magnetic field in heterostructures with Kerr nonlinearity. The nonlinear Schrödinger equation in the framework of perturbation theory has been derived for three cases: a single-interface metal/nonlinear-dielectric structure and double-interface structures of nonlinear-dielectric/metal/dielectric with either ferromagnetic or nonmagnetic dielectric. The effect of the magneto-optical nonreciprocity in the Schrödinger equation is found. The estimations show that the effect is the strongest for the double-interface structure with a magnetic substrate in the vicinity of the resonant plasmonic frequency. We have also shown that the external magnetic field modifies SPS amplitude and width.

  11. Cavity equations for a positive- or negative-refraction-index material with electric and magnetic nonlinearities

    Science.gov (United States)

    Mártin, Daniel A.; Hoyuelos, Miguel

    2009-11-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  12. A practical nonlinear controller for levitation system with magnetic flux feedback

    Institute of Scientific and Technical Information of China (English)

    李金辉; 李杰

    2016-01-01

    This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedback are analyzed when compared with the current feedback. Then, a backstepping controller with magnetic flux feedback based on the mathematical model of levitation module is developed. To obtain magnetic flux signals for full-size maglev system, a physical method with induction coils installed to winding of the electromagnet is developed. Furthermore, to avoid its hardware addition, a novel conception of virtual magnetic flux feedback is proposed. To demonstrate the feasibility of the proposed controller, the nonlinear dynamic model of full-size maglev train with quintessential details is developed. Based on the nonlinear model, the numerical comparisons and related experimental validations are carried out. Finally, results illustrating closed-loop performance are provided.

  13. Magneto-elastic oscillator: Modeling and analysis with nonlinear magnetic interaction

    Science.gov (United States)

    Kumar, K. Aravind; Ali, Shaikh Faruque; Arockiarajan, A.

    2017-04-01

    The magneto-elastically buckled beam is a classic example of a nonlinear oscillator that exhibits chaotic motions. This system serves as a model to analyze the motion of elastic structures in magnetic fields. The system follows a sixth order magneto-elastic potential and may have up to five static equilibrium positions. However, often the non-dimensional Duffing equation is used to approximate the system, with the coefficients being derived from experiments. In few other instances, numerical methods are used to evaluate the magnetic field values. These field values are then used to approximate the nonlinear magnetic restoring force. In this manuscript, we derive analytical closed form expressions for the magneto-elastic potential and the nonlinear restoring forces in the system. Such an analytical formulation would facilitate tracing the effect of change in a parameter, such as the magnet dimension, on the dynamics of the system. The model is derived assuming a single mode approximation, taking into account the effect of linear elastic and nonlinear magnetic forces. The developed model is then numerically simulated to show that it is accurate in capturing the system dynamics and bifurcation of equilibrium positions. The model is validated through experiments based on forced vibrations of the magneto-elastic oscillator. To gather further insights about the magneto-elastic oscillator, a parametric study has been conducted based on the field strength of the magnets and the distance between the magnets and the results are reported.

  14. Holographic Superconductors with Logarithmic Nonlinear Electrodynamics in an External Magnetic Field

    CERN Document Server

    Sheykhi, A

    2016-01-01

    Based on the matching method, we explore the effects of adding an external magnetic field on the $s$-wave holographic superconductor when the gauge field is in the form of the logarithmic nonlinear source. First, we obtain the critical temperature as well as the condensation operator in the presence of logarithmic nonlinear electrodynamics and understand that they depend on the nonlinear parameter $b$. We show that the critical temperature decreases with increasing $b$, which implies that the nonlinear gauge field makes the condensation harder. Then, we turn on the magnetic field in the bulk and find the critical magnetic field, $B_c$, in terms of the temperature, which also depends on the nonlinear parameter $b$. We observe that for temperature smaller than the critical temperature, $Tmagnetic field increases with increasing $b$ and goes to zero as $T\\rightarrow T_c$, independent of the nonlinear parameter $b$. In the limiting case where $ b\\rightarrow0 $, all results restore those of ...

  15. Exact properties of force-free jets in the Kerr spacetime

    CERN Document Server

    Pan, Zhen

    2015-01-01

    The Blandford-Znajek (BZ) mechanism describes a process extracting rotation energy from a spinning black hole (BH) via magnetic field lines penetrating the event horizon of central BH. We report, for the first time, a general analytic approach to study force-free jets launched by the BZ mechanism, and its three immediate applications: (1) we present a high-order split monopole perturbation solution to the BZ mechanism, which accurately pins down the energy extraction rate $\\dot E$ and well describes the structure of BH magnetosphere for all range of BH spins ($0\\leq a\\leq 1$); (2) the approach yields an exact constraint for the monopole field configuration in the Kerr spacetime, $I = \\Omega (1-A_\\phi^2)$, where $A_\\phi$ is the $\\phi-$component of electromagnetic field potential, $\\Omega$ is the angular velocity of magnetic field lines and $I$ is the poloidal electric current. The constraint is of particular importance to benchmark the accuracy of numerical simulations; (3) we prove the uniqueness of solutions...

  16. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  17. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields

    Directory of Open Access Journals (Sweden)

    Medimagh Hanne

    2015-09-01

    Full Text Available Introduction: Magnetic Particle Imaging (MPI is an emerging medical imaging modality that detects super-paramagnetic particles exploiting their nonlinear magnetization response. Spatial encoding can be realized using a Field Free Line (FFL, which is generated, rotated and translated through the Field of View (FOV using a combination of magnetic gradient fields and homogeneous excitation fields. When scaling up systems and/or enlarging the FOV in comparison to the scanner bore, ensuring homogeneity and linearity of the magnetic fields becomes challenging. The present contribution describes the first comprehensive, systematic study on the influence of magnetic field imperfections in FFL MPI. Methods: In a simulation study, 14 different FFL scanner setups have been examined. Starting from an ideal scanner using perfect magnetic fields, defined imperfections have been introduced in a range of configurations (nonlinear gradient fields, inhomogeneous excitation fields, or inhomogeneous receive fields, or a combination thereof. In the first part of the study, the voltage induced in the receive channels parallel and perpendicular to the FFL translation have been studied for discrete FFL angles. In the second part, an imaging process has been simulated comparing different image reconstruction approaches. Results: The induced voltage signals demonstrate illustratively the effect of the magnetic field imperfections. In images reconstructed using a Radon-based approach, the magnetic field imperfections lead to pronounced artifacts, especially if a deconvolution using the point spread function is performed. In images reconstructed using a system function based approach, variations in local image quality become visible. Conclusion: For Radon-based image reconstruction in FFL MPI in the presence of inhomogeneous and nonlinear magnetic fields, artifact correction methods will have to be developed. In this regard, a first approach has recently been presented by

  18. Nonlinear dynamics of a magnetically driven Duffing-type spring-magnet oscillator in the static magnetic field of a coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-11-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet-coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels.

  19. A nonlinear stability analysis in a double-diffusive magnetized ferrofluid with magnetic-field-dependent viscosity saturating a porous medium

    National Research Council Canada - National Science Library

    Sunil; Mahajan, Amit

    2009-01-01

    A rigorous nonlinear stability result is derived by introducing a suitable generalized energy functional for a magnetized ferrofluid layer heated and soluted from below with magnetic-field-dependent (MFD...

  20. Kinetic treatment of nonlinear magnetized plasma motions - General geometry and parallel waves

    Science.gov (United States)

    Khabibrakhmanov, I. KH.; Galinskii, V. L.; Verheest, F.

    1992-01-01

    The expansion of kinetic equations in the limit of a strong magnetic field is presented. This gives a natural description of the motions of magnetized plasmas, which are slow compared to the particle gyroperiods and gyroradii. Although the approach is 3D, this very general result is used only to focus on the parallel propagation of nonlinear Alfven waves. The derivative nonlinear Schroedinger-like equation is obtained. Two new terms occur compared to earlier treatments, a nonlinear term proportional to the heat flux along the magnetic field line and a higher-order dispersive term. It is shown that kinetic description avoids the singularities occurring in magnetohydrodynamic or multifluid approaches, which correspond to the degenerate case of sound speeds equal to the Alfven speed, and that parallel heat fluxes cannot be neglected, not even in the case of low parallel plasma beta. A truly stationary soliton solution is derived.

  1. Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force

    Science.gov (United States)

    Thurgood, J. O.; McLaughlin, J. A.

    2013-07-01

    Context. In the linear, β = 0 MHD regime, the transient properties of magnetohydrodynamic (MHD) waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfvén waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfvén speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfvén waves about a 2D magnetic null point in nonlinear, β = 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfvén waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfvén wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. the ponderomotive force). These disturbances are dependent on the Alfvén wave and do not interact with the medium to excite magnetoacoustic waves, although the transverse daughter becomes focused at the null point. Additionally, an independently propagating fast magnetoacoustic wave is generated during the early stages, which transports some of the initial Alfvén wave energy towards the null point. Subsequently, despite undergoing dispersion and phase-mixing due to gradients in the Alfvén-speed profile (∇cA ≠ 0) there is no further nonlinear generation of fast waves. Conclusions: We find that Alfvén waves at 2D cold null points behave largely as in the linear regime, however they sustain transverse and longitudinal disturbances - effects absent in the linear regime - due to nonlinear magnetic pressure gradients.

  2. Some Considerations on Simple Non-Linear Magnetic Analysis-Based Optimum Design of Multi-Pole Permanent Magnet Machines

    Science.gov (United States)

    Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki

    This paper presents a simple non-linear magnetic analysis-based optimum design of a multi-pole permanent magnet machine as an assistant design tool of 3D-FEM. The proposed analysis is based on the equivalent magnetic circuit and the air gap permeance model between the stator and rotor teeth of the motor, taking into account the local magnetic saturation in the pointed end of teeth. The availability of the proposed analysis is verified by comparing with 3D-FEM analysis from the standpoints of the torque calculation accuracy for the variations of design free parameter and the computation time. After verification, the proposed analysis-based optimum design of the dimensions of permanent magnet is examined, by which the minimization of magnet volume is realized while keeping torque/current ratio at the specified value.

  3. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy) of the...

  4. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    NARCIS (Netherlands)

    Haynes, C.T.; Burgess, D.; Camporeale, E.; Sundberg, T.

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic

  5. Nonlinear Alfv\\'en wave dynamics at a 2D magnetic null point: ponderomotive force

    CERN Document Server

    Thurgood, J O

    2013-01-01

    Context : In the linear, {\\beta}=0 MHD regime, the transient properties of MHD waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfv\\'en waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfv\\'en speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfv\\'en waves about a 2D magnetic null point in nonlinear, {\\beta}= 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfv\\'en waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfv\\'en wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. t...

  6. Non-linear magnetization effects within the Kosterlitz-Thouless theory

    Science.gov (United States)

    Benfatto, Lara; Castellani, Claudio; Giamarchi, Thierry

    2008-03-01

    Recent experiments in cuprate superconductors have attracted the attention on the role of vortex fluctuations. Measurements of the field-induced magnetization showed that the correlation length diverge exponentially, as predicted within the Kosterlitz-Thouless (KT) theory. However, it is somehow puzzling thepersistence of strong non-linear magnetization effects at low field. Here we address this issue by means of a new theoretical approach to the KT transition at finite magnetic field, based on the sine-Gordon model. This approach is particularly useful in two respects. First, it leads to a straightforward definition of the field-induced magnetization as a function of the external magnetic field H instead of the magnetic induction B, which is crucial to get a consistent description of the Meissner phase. Second, it allows us to identify the cross-over field Hcr from linear to non-linear magnetization both below and above the transition. Above TKT Hcr turns out to scale as the inverse correlation length, so that it decreases as the transition is approached. As a consequence, the fact that only the non-linear regime is accessible experimentally should be interpreted as a typical signature of the fast divergence of the correlation length within the KT theory. L.Benfatto, C.Castellani and T.Giamarchi, Phys. Rev. Lett. 99, 207002 (2007)

  7. Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael [Old Dominion Univ., Norfolk, VA (United States)

    2012-08-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.

  8. A two-fluid study of oblique tearing modes in a force-free current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lukin, Vyacheslav S. [National Science Foundation, Arlington, Virginia 22230 (United States); Liu, Yi-Hsin [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.

  9. The origins of Causality Violations in Force Free Simulations of Black Hole Magnetospheres

    CERN Document Server

    Punsly, B; Punsly, Brian; Bini, Donato

    2004-01-01

    Recent simulations of force-free, degenerate (ffde) black hole magnetospheres indicate that the fast mode radiated from (or near) the event horizon can modify the global potential difference in the poloidal direction orthogonal to the magnetic field, V, in a black hole magnetosphere. There is a fundamental contradiction in a wave that alters V coming from near the horizon. The background fields in ffde satisfy the ``ingoing wave condition'' near the horizon (that arises from the requirement that all matter is ingoing at the event horizon), yet outgoing waves are radiated from this region in the simulation. Studying the properties of the waves in the simulations are useful tools to this end. It is shown that regularity of the stress-energy tensor in a freely falling frame requires that the outgoing (as viewed globally) waves near the event horizon are redshifted away and are ineffectual at changing V. It is also concluded that waves in massless MHD (ffde) are extremely inaccurate depictions of waves in a tenuo...

  10. A New Technique For Measuring The Twist Of Photospheric Active Regions Without Recourse To The Force-Free-Field Equation: Reconfirming The Hemispheric Helicity Trend

    Science.gov (United States)

    Nandy, Dibyendu; Calhoun, A.; Windschitl, J.; Canfield, R. C.; Linton, M. G.

    2007-05-01

    The twist component of magnetic helicity in solar active regions is known to be an important indicator of sub-photospheric flux tube dynamics and solar eruptive activity. Traditionally, estimates of the parameter alpha -- appearing in the force-free-field equation -- has been used to infer the twist of photospheric active regions. However, the photosphere is not force-free and this has lead to recent concerns on the validity of using the alpha parameter for determining photospheric active region twist. We have devised a new flux-tube-fitting technique for determining the twist of active regions without recourse to the force-free-field equation. This method assumes that the underlying active region flux system is cylindrically symmetric and uniformly twisted. By using this new technique, on a statistically compelling number of photospheric active region vector magnetograms, we re-confirm the hemispheric helicity rule independent of the force-free-field assumption. This research has been supported in parts by a NASA Living With a Star grant NNG05GE47G. A.C. and J.W. were supported by a NSF Research Experience for Undergraduates grant ATM-0243923 to Montana State University. M.G.L. acknowledges support from NASA and the Office of Naval Research.

  11. Nonlinear dynamics of breathers in the spiral structures of magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-06-15

    The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.

  12. Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation

    Science.gov (United States)

    Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.

    2016-02-01

    We propose a multi-modal vibration energy harvesting approach based on arrays of coupled levitated magnets. The equations of motion which include the magnetic nonlinearity and the electromagnetic damping are solved using the harmonic balance method coupled with the asymptotic numerical method. A multi-objective optimization procedure is introduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arrays in order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for only three coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequency range of 4.6-14.5 Hz, with a bandwidth of 190% and a normalized power of 20.2 {mW} {{cm}}-3 {{{g}}}-2.

  13. Varying self-inductance and energy storage in a sheared force-free arcade. [of coronal loops

    Science.gov (United States)

    Zuccarello, F.; Burm, H.; Kuperus, M.; Raadu, M.; Spicer, D. S.

    1987-01-01

    An electric circuit analogy is used to model the build-up and storage of magnetic energy in the coronal loops known to exist in the atmosphere of the sun. The present parameterization of magnetic energy storage in an electric circuit analog uses a bulk current I flowing in the circuit and a self-inductance L. Because the self-inductance is determined by the geometry of the magnetic configuration any change in its dimensions will change L. If L is increased, the amount of magnetic energy stored and the rate at which magnetic energy is stored are both increased. One way of increasing L is to shear the magnetic field lines and increase their effective geometrical length. Using the force-free field approximation for a magnetic arcade whose field lines are sheared by photospheric motions, it is demonstrated that the increase of magnetic energy is initially due to the increase of the current intensity I and later mainly due to the increase of the self-inductance.

  14. Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes

    Science.gov (United States)

    Barbulescu, M.; Erdélyi, R.

    2016-05-01

    The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.

  15. Criterion of Magnetic Saturation and Simulation of Nonlinear Magnetization for a Linear Multi-core Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    曾正中; 蒯斌; 孙凤举; 丛培天; 邱爱慈

    2002-01-01

    The linear multi-core pulse transformer is an important primary driving source usedin pulsed power apparatus for the production of dense plasma owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data.

  16. Electron vortex magnetic holes: a nonlinear coherent plasma structure

    CERN Document Server

    Haynes, Christopher T; Camporeale, Enrico; Sundberg, Torbjorn

    2014-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional PIC simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is ...

  17. A new differential equations-based model for nonlinear history-dependent magnetic behaviour

    CERN Document Server

    Aktaa, J

    2000-01-01

    The paper presents a new kind of numerical model describing nonlinear magnetic behaviour. The model is formulated as a set of differential equations taking into account history dependence phenomena like the magnetisation hysteresis as well as saturation effects. The capability of the model is demonstrated carrying out comparisons between measurements and calculations.

  18. Weakly Nonlinear Stability Analysis of a Thin Magnetic Fluid during Spin Coating

    Directory of Open Access Journals (Sweden)

    Cha'o-Kuang Chen

    2010-01-01

    Full Text Available This paper investigates the stability of a thin electrically conductive fluid under an applied uniform magnetic filed during spin coating. A generalized nonlinear kinematic model is derived by the long-wave perturbation method to represent the physical system. After linearizing the nonlinear evolution equation, the method of normal mode is applied to study the linear stability. Weakly nonlinear dynamics of film flow is studied by the multiple scales method. The Ginzburg-Landau equation is determined to discuss the necessary conditions of the various critical flow states, namely, subcritical stability, subcritical instability, supercritical stability, and supercritical explosion. The study reveals that the rotation number and the radius of the rotating circular disk generate similar destabilizing effects but the Hartmann number gives a stabilizing effect. Moreover, the optimum conditions can be found to alter stability of the film flow by controlling the applied magnetic field.

  19. Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jian-Wen [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Yang, Wen-Li [Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China)

    2017-06-15

    Highlights: • Three different types of soliton excitations under the spin-wave background are demonstrated in spin chain system. • The magnetic moment distributions corresponding to these solitons are characterized in detail. • The formation mechanisms of those excitations are explained by the magnon density distribution. - Abstract: We study the nonlinear spin dynamics of an anisotropic Heisenberg helimagnet in a fourth-order integrable nonlinear Schrödinger equation. We demonstrate that there are three types of nonlinear spin excitations on a spin-wave background in the Heisenberg helimagnet, notably including anti-dark soliton, W-shaped soliton, and multi-peak soliton. The magnetic moment distribution that corresponds to each of these are characterized in detail. Additionally, the formation mechanism is clarified by the magnon density distribution.

  20. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Science.gov (United States)

    Haynes, Christopher T.; Burgess, David; Camporeale, Enrico; Sundberg, Torbjorn

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  1. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  2. A nonlinearity in permanent-magnet systems used in watt balances

    CERN Document Server

    Li, Shisong; Pratt, Jon

    2014-01-01

    Watt balances are used to measure the Planck constant and will be used in the future to realize mass at the kilogram level. They increasingly rely on permanent magnet systems to generate the magnetic flux. It has been known that the weighing current might effect the magnetization state of the permanent magnetic system used in these systems causing a systematic bias that can lead to an error in the result if not accounted for. In this article a simple model explaining the effect of the weighing current on the yoke of the magnet is developed. This model leads to a nonlinear dependence of the magnetic flux density in the gap that is proportional to the squared value of the coil current. The effect arises from changing the reluctance of the yoke by the additional field produced by the coil. Our analysis shows that the effect depends on the width of the air gap, the magnetic flux density in the air gap, and the $BH$ curve of the yoke material. Suggestions to reduce the nonlinear effect are discussed.

  3. Nonlinear Langmuir Wave Modulation in Weakly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans

    1978-01-01

    influence on the modulation stability of plane Langmuir waves. As in the unmagnetized case, kinetic results were found to deviate considerably from those obtained by using a fluid description for the ion dynamics. With particular attention to ionospheric phenomena, the effect is included of the spatially...... varying electron heating in the amplitude modulated Langmuir wave. For modulations travelling almost perpendicular to the magnetic field, this effect has a profound influence on a modulational instability...

  4. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Peixin; Chai, Feng [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001 (China); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bi, Yunlong [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Pei, Yulong, E-mail: peiyulong1@163.com [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Cheng, Shukang [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001 (China); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-11-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization. - Highlights: • The no-load magnetic field of poke-type motors is firstly calculated by analytical method. • The magnetic circuit model and iterative method are employed to calculate the permeability. • The analytical expression of each subdomain is derived.. • The proposed method can effectively reduce the predesign stages duration.

  5. Nonlinear effects associated with fast magnetosonic waves and turbulent magnetic amplification in laboratory and astrophysical plasmas

    Science.gov (United States)

    Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.

    2016-12-01

    This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.

  6. Electromagnetic nonlinearities in a Roebel-cable-based accelerator magnet prototype: variational approach

    Science.gov (United States)

    Ruuskanen, J.; Stenvall, A.; Lahtinen, V.; Pardo, E.

    2017-02-01

    Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet’s current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor’s critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.

  7. Enhancement of Second- and Third-Order Nonlinear Optical Susceptibilities in Magnetized Semiconductors

    Institute of Scientific and Technical Information of China (English)

    M. Singh; P. Aghamkar; S. Duhan

    2008-01-01

    Using electromagnetic treatment, an expression of effective nonlinear optical susceptibility Xe[= Xe(2) + Xe(3) E] is obtained for Ⅲ-Ⅴ semiconducting crystals in an applied transverse dc magnetic field under off-resonant transition regime. The origin of nonlinear interaction lies in nonlinear polarization arising from the crystal properties such as piezoelectricity and electrostriction. Numerical estimates have been made by a representative n-InSb crystal at 77K duly irradiated by a pulsed lO.6-μm CO2 laser under off-resonant transition regime. Efforts are dedicated to optimizing doping level and externally applied dc magnetic field to achieve maximum Xe(2) and Xe(3). The results are found to be in good agreement with the available literature. The analysis shows that Xe(2) and Xe(3)can be significantly enhanced in doped Ⅲ-Ⅴ semiconductors by the proper selection of doping concentration and dc magnetic field, which confirms its potential as a candidate material for the fabrication of nonlinear optical devices.

  8. UNBALANCE RESPONSE AND TOUCH-RUBBING THRESHOLD SPEED OF ROTOR SUBJECTED TO NONLINEAR MAGNETIC FORCES

    Institute of Scientific and Technical Information of China (English)

    JING Minqing; LI Zixin; LUO Min; YU Lie

    2008-01-01

    Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mechanical touch-rubbing when the system works at an operational speed closer to the critical speed. In order to investigate this problem, the linear model and nonlinear model of the single mass symmetric rigid rotor system supported by AMB are established respectively and the corresponding transfer functions of close-loop system are given. To pass through the numerical calculation by using MATLAB/Simulink, the effect of both the unbalance response and threshold speed of touch-rubbing of the system subjected to nonlinear magnetic forces and nonlinear output current of power amplifier are studied. Furthermore, threshold speed of touch-rubbing of the rotor-bearing system is defined and the results of numerical simulation are presented. Finally, based on above studies, two methods of increasing the touch-rubbing threshold speed are discussed.

  9. Nonlinear instability of an Oldroyd elastico–viscous magnetic nanofluid saturated in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Moatimid, Galal M., E-mail: gal-moa@hotmail.com [Department of Mathematics, Faculty of Education, Ain Shams University, Roxy (Egypt); Alali, Elham M. M., E-mail: dr-elham-alali@hotmail.com; Ali, Hoda S. M., E-mail: hoda-ali-1@hotmail.com [Department of Mathematics, Faculty of Science (Girls Branch), University of Tabuk, Tabuk, P.O. Box 741 (Saudi Arabia)

    2014-09-15

    Through viscoelastic potential theory, a Kelvin-Helmholtz instability of two semi-infinite fluid layers, of Oldroydian viscoelastic magnetic nanofluids (MNF), is investigated. The system is saturated by porous medium through two semi-infinite fluid layers. The Oldroyd B model is utilized to describe the rheological behavior of viscoelastic MNF. The system is influenced by uniform oblique magnetic field that acts at the surface of separation. The model is used for the MNF incorporated the effects of uniform basic streaming and viscoelasticity. Therefore, a mathematical simplification must be considered. A linear stability analysis, based upon the normal modes analysis, is utilized to find out the solutions of the equations of motion. The onset criterion of stability is derived; analytically and graphs have been plotted by giving numerical values to the various parameters. These graphs depict the stability characteristics. Regions of stability and instability are identified and discussed in some depth. Some previous studies are recovered upon appropriate data choices. The stability criterion in case of ignoring the relaxation stress times is also derived. To relax the mathematical manipulation of the nonlinear approach, the linearity of the equations of motion is taken into account in correspondence with the nonlinear boundary conditions. Taylor's theory is adopted to expand the governing nonlinear characteristic equation according to of the multiple time scales technique. This analysis leads to the well-known Ginzburg–Landau equation, which governs the stability criteria. The stability criteria are achieved theoretically. To simplify the mathematical manipulation, a special case is considered to achieve the numerical estimations. The influence of orientation of the magnetic fields on the stability configuration, in linear as well as nonlinear approaches, makes a dual role for the magnetic field strength in the stability graphs. Stability diagram is plotted

  10. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    Energy Technology Data Exchange (ETDEWEB)

    Oevguen, A. [Eastern Mediterranean Univ., Famagusta (Country Unknown). Dept. of Physics

    2017-02-15

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields. (orig.)

  11. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects

    Science.gov (United States)

    Cheng, J. L.; Vermeulen, N.; Sipe, J. E.

    2017-01-01

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response. PMID:28262762

  12. THE NONLINEAR EVOLUTION OF A TWIST IN A MAGNETIC SHOCKTUBE

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Taroyan, Youra [Department of Physics, IMPACS, Aberystwyth University, Aberystwyth (United Kingdom); Fedun, Viktor [Space Systems Laboratory, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield (United Kingdom)

    2016-02-01

    The interaction between a small twist and a horizontal chromospheric shocktube is investigated. The magnetic flux tube is modeled using 1.5-D magnetohydrodynamics. The presence of a supersonic yet sub-Alfvénic flow along the flux tube allows the Alfvénic pulse driven at the photospheric boundary to become trapped and amplified between the stationary shock front and photosphere. The amplification of the twist leads to the formation of slow and fast shocks. The pre-existing stationary shock is destabilized and pushed forward as it merges with the slow shock. The propagating fast shock extracts the kinetic energy of the flow and launches rapid twists of 10–15 km s{sup −1} upon each reflection. A cavity is formed between the slow and fast shocks where the flux tube becomes globally twisted within less than an hour. The resultant highly twisted magnetic flux tube is similar to those prone to kink instabilities, which may be responsible for solar eruptions. The generated torsional flux is calculated.

  13. Nonlinear damping effects in spin torque dynamics of magnetic tunnel junctions

    Science.gov (United States)

    Barsukov, Igor; Chen, Yu-Jin; Lee, Han Kyu; Goncalves, Alexandre; Katine, Jordan; Arias, Rodrigo; Ivanov, Boris; Krivorotov, Ilya

    2015-03-01

    Performance of nanoscale spin torque devices such as memory (STT-MRAM) and auto-oscillators critically depends on magnetic relaxation. It is commonly assumed that magnetization dynamics in the presence of spin torque can be understood as simple competition between antidamping arising from spin torque and Gilbert damping of the free layer. However our experiments reveal that the situation is more complex and that nonlinear damping processes in the free layer of magnetic tunnel junction (MTJ) nanopillars can strongly alter spin torque driven dynamics. We study elliptical MTJ nanopillars with in-plane magnetizations of the free layer and SAF layers by spin torque ferromagnetic resonance. We find an excitation spectrum associated with standing spin waves of the free layer. By varying the external field, the energy of a higher-order spin wave mode becomes twice the energy of the main mode. This opens up a nonlinear, resonant relaxation channel, giving rise to a damping increase of approximately 20 percent. With increasing spin torque provided by a DC bias current, we find that this relaxation channel competes with antidamping in a nonlinear manner, increasingly contributing to and even dominating the relaxation at subcritical currents.

  14. On the ill posedness of Force-Free Electrodynamics in Euler Potentials

    CERN Document Server

    Reula, Oscar A

    2016-01-01

    We prove that the initial value problem for Force-free Electrodynamics in Euler variables is not well posed. We establish this result showing that a well-posedness criterion provided by Kreiss fails to hold for this theory, using a theorem provided by Strang. To show the nature of the problem we display a particular bounded (in Sobolev norms) sequence of initial data for the Force-free equations such that at any given time as close to zero as one wishes, the corresponding evolution sequence is not bounded. Thus, the Force-free evolution is non continuous in that norm with respect to the initial data. We furthermore prove that this problem is also ill-posed in the Leray-Ohya sense.

  15. A Family of One-Dimensional Vlasov-Maxwell Equilibria for the Force-Free Harris Sheet

    CERN Document Server

    Wilson, Fiona

    2011-01-01

    A family of self-consistent collisionless distribution functions for the force-free Harris sheet is presented. This family includes the distribution function recently found by Harrison and Neukirch [Phys. Rev. Lett. 102, 135003 (2009)] as well as distribution functions with a different dependence on the particle energy, but with the same dependence on the canonical momenta. It is shown generally that the other distribution functions in the family give rise to the same pressure function and thus to the same current density and magnetic field as the known distribution function, provided certain conditions on the parameters are satisfied. A number of examples of distribution functions from the new family are given, which illustrate the use of the general method.

  16. Differentially rotating force-free magnetosphere of an aligned rotator: analytical solutions in split-monopole approximation

    CERN Document Server

    Timokhin, Andrey

    2007-01-01

    In this paper we consider stationary force-free magnetosphere of an aligned rotator when plasma in the open field line region rotates differentially due to presence of a zone with the accelerating electric field in the polar cap of pulsar. We study the impact of differential rotation on the current density distribution in the magnetosphere. Using split-monopole approximation we obtain analytical expressions for physical parameters of differentially rotating magnetosphere. We find the range of admitted current density distributions under the requirement that the potential drop in the polar cap is less than the vacuum potential drop. We show that the current density distribution could deviate significantly from the ``classical'' Michel distribution and could be made almost constant over the polar cap even when the potential drop in the accelerating zone is of the order of 10 per cents of the vacuum potential drop. We argue that differential rotation of the open magnetic field lines could play an important role ...

  17. A mathematical form of force-free magnetosphere equation around Kerr black holes and its application to Messier effect

    CERN Document Server

    Gong, Xiaobo; Xu, Zhaoyi

    2016-01-01

    Based on the Lagrangian of the steady axisymmetric force-free magnetosphere (FFM) equation around Kerr black holes(KBHs), we find that the FFM equation can be rewritten in a new form as $f_{,rr} / (1-\\mu^{2}) + f_{,\\mu\\mu} / \\Delta + K(f(r,\\mu),r,\\mu) = 0$, where $\\mu = -\\cos\\theta$. By coordinate transformation, the form of the above equation can be given by $s_{,yy} + s_{,zz} + D(s(y,z),y,z) = 0$. Based on the form, we prove finally that the Meissner effect is not possessed by a KBH-FFM with the condition where $d\\omega/d A_{\\phi} \\leqslant 0$ and $H_{\\phi}(dH_{\\phi}/dA_{\\phi}) \\geqslant 0$, here $A_{\\phi}$ is the $\\phi$ component of the vector potential $\\vec{A}$, $\\omega$ is the angular velocity of magnetic fields and ${H_{\\phi}}$ corresponds to twice the poloidal electric current.

  18. Nonlinear optics response of semiconductor quantum wells under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Chemla, D.S.

    1993-07-01

    Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW`s as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H {yields} {infinity}. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.

  19. Eversion of bistable shells under magnetic actuation: a model of nonlinear shapes

    Science.gov (United States)

    Seffen, Keith A.; Vidoli, Stefano

    2016-06-01

    We model in closed form a proven bistable shell made from a magnetic rubber composite material. In particular, we incorporate a non-axisymmetrical displacement field, and we capture the nonlinear coupling between the actuated shape and the magnetic flux distribution around the shell. We are able to verify the bistable nature of the shell and we explore its eversion during magnetic actuation. We show that axisymmetrical eversion is natural for a perfect shell but that non-axisymmetrical eversion rapidly emerges under very small initial imperfections, as observed in experiments and in a computational analysis. We confirm the non-uniform shapes of shell and we study the stability of eversion by considering how the landscape of total potential and magnetic energies of the system changes during actuation.

  20. Large Magnetic Shielding Factor Measured by Nonlinear Magneto-optical Rotation

    CERN Document Server

    Martin, Jeffery W; Klassen, Wolfgang; Cerasani, Cameron; Andalib, Taraneh; Bidinosti, Christopher P; Lang, Michael; Ostapchuk, David

    2014-01-01

    A passive magnetic shield was designed and constructed for magnetometer tests for the future neutron electric dipole moment experiment at TRIUMF. The axial shielding factor of the magnetic shield was measured using a magnetometer based on non-linear magneto-optical rotation of the plane of polarized laser light upon passage through a paraffin-coated vapour cell containing natural Rb at room temperature. The laser was tuned to the Rb D1 line, near the $^{85}$Rb $F=2\\rightarrow 2,3$ transition. The shielding factor was measured by applying an axial field externally and measuring the magnetic field internally using the magnetometer. The axial shielding factor was determined to be $(1.3\\pm 0.1)\\times 10^{7}$, from an applied axial field of 1.45~$\\mu$T in the background of Earth's magnetic field.

  1. Dynamics of magnetic flux tubes in close binary stars II. Nonlinear evolution and surface distributions

    CERN Document Server

    Holzwarth, V R

    2003-01-01

    Observations of magnetically active close binaries with orbital periods of a few days reveal the existence of starspots at preferred longitudes (with respect to the direction of the companion star). We numerically investigate the non-linear dynamics and evolution of magnetic flux tubes in the convection zoneof a fast-rotating component of a close binary system and explore whether the tidal effects are able to generate non-uniformities in the surface distribution of erupting flux tubes. Assuming a synchronised system with a rotation period of two days and consisting of two solar-type components, both the tidal force and the deviation of the stellar structure from spherical shape are considered in lowest-order perturbation theory. The magnetic field is initially stored in the form of toroidal magnetic flux rings within the stably stratified overshoot region beneath the convection zone. Once the field has grown sufficiently strong, instabilities initiate the formation of rising flux loops, which rise through the...

  2. Kinetic Study of Radiation-reaction-limited Particle Acceleration During the Relaxation of Unstable Force-free Equilibria

    Science.gov (United States)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.

  3. Interaction of Magnetic Field and Nonlinear Convection in the Stagnation Point Flow over a Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2016-01-01

    Full Text Available The steady two-dimensional boundary layer stagnation point flow due to a shrinking sheet is analyzed. The combined effects of magnetic field and nonlinear convection are taken into account. The governing equations for the flow are modeled and then simplified using the similarity transformation and boundary layer approach. The numerical solution of the reduced equations is obtained by the second-order finite difference scheme also known as Keller box method. The influence of the pertinent parameters of the problem on velocity and temperature profiles, skin friction, and sheet temperature gradient are presented through the graphs and tables and discussed. The magnetic field and nonlinear convection parameters significantly enhance the solution range.

  4. A magnetic betelgeuse? Numerical simulations of non-linear dynamo action

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2004-01-01

    Betelgeuse is an example of a cool super-giant displaying brightness fluctuations and irregular surface structures. Simulations by Freytag et al. (2002) of the convective envelope of the star have shown that the fluctuations in the star's luminosity may be caused by giant cell convection. A related...... question regarding the nature of Betelgeuse and supergiants in general is whether these stars may be magnetically active. If so, that may in turn also contribute to their variability. By performing detailed numerical simulations, I find that both linear kinematic and non-linear dynamo action are possible...... and that the non-linear magnetic field saturates at a value somewhat below equipartition: in the linear regime there are two modes of dynamo action....

  5. Non-linear MHD modeling of edge localized mode cycles and mitigation by resonant magnetic perturbations

    Science.gov (United States)

    Orain, François; Bécoulet, M.; Morales, J.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Garbet, X.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.

    2015-01-01

    The dynamics of a multi-edge localized mode (ELM) cycle as well as the ELM mitigation by resonant magnetic perturbations (RMPs) are modeled in realistic tokamak X-point geometry with the non-linear reduced MHD code JOREK. The diamagnetic rotation is found to be a key parameter enabling us to reproduce the cyclical dynamics of the plasma relaxations and to model the near-symmetric ELM power deposition on the inner and outer divertor target plates consistently with experimental measurements. Moreover, the non-linear coupling of the RMPs with unstable modes are found to modify the edge magnetic topology and induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. At larger diamagnetic rotation, a bifurcation from unmitigated ELMs—at low RMP current—towards fully suppressed ELMs—at large RMP current—is obtained.

  6. Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets three-dimensional effects

    CERN Document Server

    Keppens, R

    1999-01-01

    A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important ...

  7. Nonlinear Temperature Dependence of Magnetization of Two-Band Superconductors Near Upper Critical Field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Temperature dependence of the magnetization M(T) of two-band superconductors is studied in the vicinity of upper critical field Hc2 by using a two-band Ginzburg-Landau (GL) theory. It is shown that magnetization M(T) has a nonlinear character due to positive curvature of upper critical field Hc2(T) and temperature dependence of effective Ginzburg-Landau parameter (n)eff(T). The results are shown to be in qualitative agreement with experimental data for the superconducting magnesium diboride, MgB2.

  8. Nonlinear excitations of blood flow in large vessels under thermal radiations and uniform magnetic field

    Science.gov (United States)

    Tabi, C. B.; Motsumi, T. G.; Bansi Kamdem, C. D.; Mohamadou, A.

    2017-08-01

    A nonlinear model of blood flow in large vessels is addressed. The influence of radiations, viscosity and uniform magnetic fields on velocity and temperature distribution waveforms is studied. Exact solutions for the studied model are investigated through the F - expansion method. Based on the choice of parameter values, single-, multi-soliton and Jacobi elliptic function solutions are obtained. Viscosity and permanent magnetic field bring about wave spreading and reduce the velocity of blood, while radiations have reversed effects with strong impact on the waveform frequency of both the velocity and temperature distribution.

  9. Nonlinear resonances of three modes in a high-T{sub c} superconducting magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Masahiko, E-mail: galian@z2.keio.jp; Sakaguchi, Ryunosuke; Sugiura, Toshihiko, E-mail: sugiura@mach.keio.ac.jp

    2013-11-15

    Highlights: •We studied two nonlinear vibrations of a levitated beam supported by superconductors. •One of the vibrations is combination resonance of the 1st mode and the 3rd mode. •The other vibration is autoparametric resonance of the 2nd mode. •When the amplitude of the 2nd mode is small, the combination resonance is suppressed. •Otherwise, the two resonances can be resonated simultaneously. -- Abstract: In a high-T{sub c} superconducting magnetic levitation system, an object can levitate without control and contact. So it is expected to be applied to magnetically levitated transportation. To use it safely, lightening the levitated object is necessary. But this reduces the bending stiffness of the object. Besides, the system has nonlinearity. Therefore nonlinear elastic vibration can occur. This study focused on how plural nonlinear elastic vibrations of the 1st, 2nd and 3rd modes simultaneously occur. Our numerical calculation and experiment found out that the three modes simultaneously resonate when the amplitude of the 2nd mode is large enough whereas only the 2nd mode resonates when it is small.

  10. Nonlinear Resonance of the Rotating Circular Plate under Static Loads in Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    HU Yuda; WANG Tong

    2015-01-01

    The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.

  11. Design of a Discrete Tracking Controller for a Magnetic Levitation System: A Nonlinear Rational Model Approach

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Salas

    2015-01-01

    Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.

  12. Field computation in non-linear magnetic media using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. E-mail: amradlya@intouch.com; Abd-El-Hafiz, S.K

    2004-05-01

    This paper presents an automated particle swarm optimization approach using which field computations may be carried out in devices involving non-linear magnetic media. Among the advantages of the proposed approach are its ability to handle complex geometries and its computational efficiency. The proposed approach has been implemented and computations were carried out for an electromagnet subject to different DC excitation conditions. These computations showed good agreement with the results obtained by the finite-element approach.

  13. Validation of the magnetic energy vs. helicity scaling in solar magnetic structures

    CERN Document Server

    Tziotziou, K; Georgoulis, M K; Archontis, V

    2014-01-01

    We assess the validity of the free magnetic energy - relative magnetic helicity diagram for solar magnetic structures. We used two different methods of calculating the free magnetic energy and the relative magnetic helicity budgets: a classical, volume-calculation nonlinear force-free (NLFF) method applied to finite coronal magnetic structures and a surface-calculation NLFF derivation that relies on a single photospheric or chromospheric vector magnetogram. Both methods were applied to two different data sets, namely synthetic active-region cases obtained by three-dimensional magneto-hydrodynamic (MHD) simulations and observed active-region cases, which include both eruptive and noneruptive magnetic structures. The derived energy--helicity diagram shows a consistent monotonic scaling between relative helicity and free energy with a scaling index 0.84$\\pm$0.05 for both data sets and calculation methods. It also confirms the segregation between noneruptive and eruptive active regions and the existence of thresh...

  14. Validation and Benchmarking of a Practical Free Magnetic Energy and Relative Magnetic Helicity Budget Calculation in Solar Magnetic Structures

    CERN Document Server

    Moraitis, K; Georgoulis, M K; Archontis, V

    2014-01-01

    In earlier works we introduced and tested a nonlinear force-free (NLFF) method designed to self-consistently calculate the free magnetic energy and the relative magnetic helicity budgets of the corona of observed solar magnetic structures. The method requires, in principle, only a single, photospheric or low-chromospheric, vector magnetogram of a quiet-Sun patch or an active region and performs calculations in the absence of three-dimensional magnetic and velocity-field information. In this work we strictly validate this method using three-dimensional coronal magnetic fields. Benchmarking employs both synthetic, three-dimensional magnetohydrodynamic simulations and nonlinear force-free field extrapolations of the active-region solar corona. We find that our time-efficient NLFF method provides budgets that differ from those of more demanding semi-analytical methods by a factor of ~3, at most. This difference is expected from the physical concept and the construction of the method. Temporal correlations show mo...

  15. Nonlinear dynamics of beam-plasma instability in a finite magnetic field

    Science.gov (United States)

    Bogdankevich, I. L.; Goncharov, P. Yu.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-06-01

    The nonlinear dynamics of beam-plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam-plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ω B p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.

  16. On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field

    Science.gov (United States)

    Xu, Lanxi; Lan, Wanli

    2016-10-01

    Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M , where M is the maximum of the absolute value of the velocity field of the laminar flow.

  17. Spin–orbit interaction effect on nonlinear optical rectification of quantum wire in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Lahon, Siddhartha, E-mail: sid.lahon@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Jha, Pradip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, DDU College, University of Delhi, Delhi 110007 (India); Gumber, Sukirti; Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-04-01

    Here we have investigated the influence of external electric field and magnetic field on the nonlinear optical rectification of a parabolic confinement wire in the presence of Rashba spin–orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin–orbit interaction strength and photon energy. Our results indicate an increase of electric field gives the red-shift of the peak positions of nonlinear optical rectification. The role of confinement strength and spin–orbit interaction strength as control parameters on this nonlinear property have been demonstrated.

  18. Linear and Nonlinear Optical Absorptions of a Hydrogenic Donor in a Quantum Dot Under a Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2009-01-01

    The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L = 0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.

  19. Nonlinear electron acoustic cyclotron waves in presence of uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata 700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2013-04-15

    Nonlinear electron acoustic cyclotron waves (EACW) are studied in a quasineutral plasma in presence of uniform magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary charge neutral inhomogeneous background. In long wavelength limit, it is shown that the linear electron acoustic wave is modified by the uniform magnetic field similar to that of electrostatic ion cyclotron wave. Nonlinear equations for these waves are solved by using Lagrangian variables. Results show that the spatial solitary wave-like structures are formed due to nonlinearities and dispersions. These structures transiently grow to larger amplitude unless dispersive effect is actively operative and able to arrest this growth. We have found that the wave dispersion originated from the equilibrium inhomogeneity through collective effect and is responsible for spatiotemporal structures. Weak dispersion is not able to stop the wave collapse and singular structures of EACW are formed. Relevance of the results in the context of laboratory and space plasmas is discussed.

  20. Non-linear Model Predictive Control for cooling strings of superconducting magnets using superfluid helium

    CERN Document Server

    AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique

    In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...

  1. Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows.

    Science.gov (United States)

    Herault, J; Rincon, F; Cossu, C; Lesur, G; Ogilvie, G I; Longaretti, P-Y

    2011-09-01

    The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and nonaxisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large-scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understanding the transitional and statistical properties of subcritical magnetorotational turbulence.

  2. Linear and Nonlinear Analysis of Magnetic Bearing Bandwidth Due to Eddy Current Limitations

    Science.gov (United States)

    Kenny, Andrew; Palazzolo, Alan

    2000-01-01

    Finite element analysis was used to study the bandwidth of alloy hyperco50a and silicon iron laminated rotors and stators in magnetic bearings. A three dimensional model was made of a heteropolar bearing in which all the flux circulated in the plane of the rotor and stator laminate. A three dimensional model of a plate similar to the region of a pole near the gap was also studied with a very fine mesh. Nonlinear time transient solutions for the net flux carried by the plate were compared to steady state time harmonic solutions. Both linear and quasi-nonlinear steady state time harmonic solutions were calculated and compared. The finite element solutions for power loss and flux bandwidth were compared to those determined from classical analytical solutions to Maxwell's equations.

  3. Solitonic and chaotic behaviors for the nonlinear dust-acoustic waves in a magnetized dusty plasma

    Science.gov (United States)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong

    2016-05-01

    A model for the nonlinear dust-ion-acoustic waves in a two-ion-temperature, magnetized dusty plasma is studied in this paper. Via the symbolic computation, one-, two- and N-soliton solutions are obtained. It is found that when √{μeμi }parallel during the propagation on the x - y, x - t, and y - t planes, where x, y, and z are the scaled spacial coordinates, and t is the retarded time. Upon the introduction of the driving force Γ(t ) , both the developed and weak chaotic motions as well as the effect of Γ(t ) are explored. Via the phase projections and power spectra, we find the difference between the two chaotic motions roots in the relative magnitude of nonlinearity and external force. Increasing the frequency of the external force or the strength of the damped term can weaken the chaotic motions of such a forced model.

  4. Magnetically charged regular black hole in a model of nonlinear electrodynamics

    CERN Document Server

    Ma, Meng-Sen

    2015-01-01

    We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). "Physically" here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which we know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.

  5. Magnetic resonance imaging with nonlinear gradient fields signal encoding and image reconstruction

    CERN Document Server

    Schultz, Gerrit

    2013-01-01

    Within the past few decades magnetic resonance imaging has become one of the most important imaging modalities in medicine. For a reliable diagnosis of pathologies further technological improvements are of primary importance. This text deals with a radically new approach of image encoding: The fundamental principle of gradient linearity is challenged by investigating the possibilities of acquiring anatomical images with the help of nonlinear gradient fields. Besides a thorough theoretical analysis with a focus on signal encoding and image reconstruction, initial hardware implementations are tested using phantom as well as in-vivo measurements. Several applications are presented that give an impression about the implications that this technological advancement may have for future medical diagnostics.   Contents n  Image Reconstruction in MRI n  Nonlinear Gradient Encoding: PatLoc Imaging n  Presentation of Initial Hardware Designs n  Basics of Signal Encoding and Image Reconstruction in PatLoc Imaging n ...

  6. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    Science.gov (United States)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  7. Nonlinear phenomena in RF wave propagation in magnetized plasma: A review

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, Miklos

    2015-12-10

    Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7].

  8. Cavity equations for a positive or negative refraction index material with electric and magnetic non-linearities

    CERN Document Server

    Mártin, Daniel A; 10.1103/PhysRevE.80.056601

    2012-01-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative refraction index material with third order effective electric and magnetic non-linearities. Two coupled non-linear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  9. Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT.

    Science.gov (United States)

    Park, Chunjae; Lee, Byung Il; Kwon, Ohin; Woo, Eung Je

    2007-02-01

    Magnetic resonance electrical impedance tomography (MREIT) measures induced magnetic flux densities subject to externally injected currents in order to visualize conductivity distributions inside an electrically conducting object. Injection currents induce magnetic flux densities that appear in phase parts of acquired MR image data. In the conventional current injection method, we inject currents during the time segment between the end of the first RF pulse and the beginning of the reading gradient in order to ensure the gradient linearity. Noting that longer current injections can accumulate more phase changes, we propose a new pulse sequence called injection current nonlinear encoding (ICNE) where the duration of the injection current pulse is extended until the end of the reading gradient. Since the current injection during the reading gradient disturbs the gradient linearity, we first analyze the MR signal produced by the ICNE pulse sequence and suggest a novel algorithm to extract the induced magnetic flux density from the acquired MR signal. Numerical simulations and phantom experiments show that the new method is clearly advantageous in terms of the reduced noise level in measured magnetic flux density data. The amount of noise reduction depends on the choice of the data acquisition time and it was about 24% when we used a prolonged data acquisition time of 10.8 ms. The ICNE method will enhance the clinical applicability of the MREIT technique when it is combined with an appropriate phase artefact minimization method.

  10. Nonlinear Speed Control of Permanent Magnet Synchronous Motor with Salient Poles

    Directory of Open Access Journals (Sweden)

    K. Kyslan

    2015-12-01

    Full Text Available This paper presents the speed control of permanent magnet synchronous motor with salient poles based on two-step linearization method. In the first step, the direct compensation of the nonlinearities in the equations of current is used. In the second step, the input-output linearization in the state space is used for the decoupling of flux and torque axis. Simulated results are compared to the field oriented vector control structure with PI controllers in order to show differences in the performance of both approaches.

  11. Nonlinear interaction of charged particles with strong laser pulses in a magnetic undulator

    Directory of Open Access Journals (Sweden)

    H. K. Avetissian

    2010-08-01

    Full Text Available Laser acceleration due to the nonlinear-threshold phenomena of charged particle “reflection” and capture by slowed wave in a magnetic undulator is considered. The obtained numerical results prove the particle reflection and capture phenomena in the field of actual laser pulses with temporal and space profiles which lead to the particles acceleration. In contrast to the reflection regime where particle acceleration takes place already at the constant undulator step, in the capture regime it is necessary to increase adiabatically the undulator step along the laser pulse propagation direction by the certain self-consistent variation law corresponding to acceleration rate.

  12. Quantifying non-ergodic dynamics of force-free granular gases

    OpenAIRE

    Bodrova, Anna; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Metzler, Ralf

    2015-01-01

    Brownianmotion is ergodic in the Boltzmann–Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a...

  13. Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer

    CERN Document Server

    Chertovskih, Roman

    2015-01-01

    We present a new mechanism for generation of large-scale magnetic field by thermal convection which does not involve the alpha-effect. We consider weakly nonlinear perturbations of space-periodic steady convective magnetic dynamos in a rotating layer that were identified in our previous work. The perturbations have a spatial scale in the horizontal direction that is much larger than the period of the perturbed convective magnetohydrodynamic state. Following the formalism of the multiscale stability theory, we have derived the system of amplitude equations governing the evolution of the leading terms in expansion of the perturbations in power series in the scale ratio. This asymptotic analysis is more involved than in the cases considered earlier, because the kernel of the operator of linearisation has zero-mean neutral modes whose origin lies in the spatial invariance of the perturbed regime, the operator reduced on the generalised kernel has two Jordan normal form blocks of size two, and simplifying symmetri...

  14. Quantumlike description of the nonlinear and collective effects on relativistic electron beams in strongly magnetized plasmas

    CERN Document Server

    Tanjia, Fatema; Fedele, Renato; Shukla, P K; Jovanovic, Dusan

    2011-01-01

    A numerical analysis of the self-interaction induced by a relativistic electron/positron beam in the presence of an intense external longitudinal magnetic field in plasmas is carried out. Within the context of the Plasma Wake Field theory in the overdense regime, the transverse beam-plasma dynamics is described by a quantumlike Zakharov system of equations in the long beam limit provided by the Thermal Wave Model. In the limiting case of beam spot size much larger than the plasma wavelength, the Zakharov system is reduced to a 2D Gross-Pitaevskii-type equation, where the trap potential well is due to the external magnetic field. Vortices, "beam halos" and nonlinear coherent states (2D solitons) are predicted.

  15. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    Science.gov (United States)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2014-10-01

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  16. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan 731204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India)

    2014-10-15

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  17. Direct Measurements of Magnetic Twist in the Solar Corona

    CERN Document Server

    Malanushenko, A; Longcope, D W

    2012-01-01

    In the present work we study evolution of magnetic helicity in the solar corona. We compare the rate of change of a quantity related to the magnetic helicity in the corona to the flux of magnetic helicity through the photosphere and find that the two rates are similar. This gives observational evidence that helicity flux across the photosphere is indeed what drives helicity changes in solar corona during emergence. For the purposes of estimating coronal helicity we neither assume a strictly linear force-free field, nor attempt to construct a non-linear force-free field. For each coronal loop evident in Extreme Ultraviolet (EUV) we find a best-matching line of a linear force-free field and allow the twist parameter alpha to be different for each line. This method was introduced and its applicability was discussed in Malanushenko et. al. (2009). The object of the study is emerging and rapidly rotating AR 9004 over about 80 hours. As a proxy for coronal helicity we use the quantity averaged over many reconstruc...

  18. Nonlinear electromagnetic quasinormal modes and Hawking radiation of a regular black hole with magnetic charge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin [Chongqing University, Department of Physics, Chongqing (China); Lin, Kai [Universidade de Sao Paulo, Instituto de Fisica, CP 66318, Sao Paulo (Brazil); Yang, Nan [Huazhong University of Science and Technology, Department of Physics, Wuhan (China)

    2015-03-01

    Based on a regular exact black hole (BH) from nonlinear electrodynamics (NLED) coupled to general relativity, we investigate the stability of such BH through the Quasinormal Modes (QNMs) of electromagnetic (EM) field perturbations and its thermodynamics through Hawking radiation. In perturbation theory, we can deduce the effective potential from a nonlinear EM field. The comparison of the potential function between regular and RN BHs could predict similar QNMs. The QNM frequencies tell us the effect of the magnetic charge q, the overtone n, and the angular momentum number l on the dynamic evolution of NLED EM field. Furthermore we also discuss the cases of near-extreme conditions of such a magnetically charged regular BH. The corresponding QNM spectrum illuminates some special properties in the near-extreme cases. For the thermodynamics, we employ the Hamilton-Jacobi method to calculate the near-horizon Hawking temperature of the regular BH and reveal the relationship between the classical parameters of the black hole and its quantum effects. (orig.)

  19. Systematic parameter study of a nonlinear electromagnetic energy harvester with matched magnetic orientation: Numerical simulation and experimental investigation

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-02-01

    This paper reports the systematic parameter study of a tristable nonlinear electromagnetic energy harvester for ambient low-frequency vibration. Numerical simulations and experimental investigations are performed on the harvester which consists of a cantilever beam, a tip coil, two tip magnets and two external side magnets. The external side magnets are deployed symmetrically along a concave surface parallel to the trajectory of the cantilever tip with a controllable distance so that the magnetic orientation of the tip magnets are matched with that of the side magnets. Therefore, instead of the ternary position parameters (d, h, α), a binary parameters pair (d0, d) is used to characterize the position of the side magnets and the performance of the energy harvester. The magnetic force and magnetic field on the cantilever tip therefore depend on the relative distance in the tip displacement direction between the tip magnets and side magnets, but is independent of the position of the side magnets on the concave surface. The magnetic force (field)-distance relationship is measured experimentally and curve fitted to obtain explicit expressions, in order to characterize the magnetic force (field) when the side magnets are placed at varied positions along the concave surface. Numerical simulation is, then, performed to predict the electromagnetic voltage output and the bandwidth of the energy harvester. The simulation results coincided with the measured data. Significant broadband response is obtained experimentally and the maximum RMS power output is 40.2 mW at 0.45g of excitation. The proposed structure showcasing the matched magnetic orientation is characterized by the binary parameters pair (d0, d) and the systematic parametric approach could contribute to the design and study of nonlinear broadband energy harvesters.

  20. Nonlinear magnetic metamaterials and possible applications on all-optical comparers and bistabilities in Fabry-Perot cavities

    OpenAIRE

    Ding, Yi S.; Wang, Ruo-Peng

    2011-01-01

    We investigate the modulational instability and time-domain dynamics of nonlinear magnetic metamaterials composed of coupled split-ring resonators loaded by Kerr nonlinearity. Our results indicate that the recently proposed optical switching of local optical index based on uniform-response assumption seems fragile. We conceive two alternative schemes to utilize the valuable enhanced non- linearity, one is to focus on few-body systems and directly make use of the modulational instability (e.g....

  1. Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies

    Science.gov (United States)

    Tashiro, Hiroyuki; Sugiyama, Naoshi; Banerjee, Robi

    2006-01-01

    In this work we investigate the effects of primordial magnetic fields on cosmic microwave background anisotropies (CMB). Based on cosmological magneto-hydro dynamic (MHD) simulations [R. Banerjee and K. Jedamzik, Phys. Rev. DPRVDAQ0556-2821 70, 123003 (2004).10.1103/PhysRevD.70.123003] we calculate the CMB anisotropy spectra and polarization induced by fluid fluctuations (Alfvén modes) generated by primordial magnetic fields. The strongest effect on the CMB spectra comes from the transition epoch from a turbulent regime to a viscous regime. The balance between magnetic and kinetic energy until the onset of the viscous regime provides a one to one relation between the comoving coherence length L and the comoving magnetic field strength B, such as L˜30(B/10-9Gauss)3pc. The resulting CMB temperature and polarization anisotropies for the initial power law index of the magnetic fields n>3/2 are somewhat different from the ones previously obtained by using linear perturbation theory. In particular, differences can appear on intermediate scales l20000. On scales l0.7Mpc for the most extreme case, or B0.8Mpc for the most conservative case. We may also expect higher signals on large scales of the polarization spectra compared to linear calculations. The signal may even exceed the B-mode polarization from gravitational lensing depending on the strength of the primordial magnetic fields. On very small scales, the diffusion damping scale of nonlinear calculations turns out to be much smaller than the one of linear calculations if the comoving magnetic field strength B>16nGauss. If the magnetic field strength is smaller, the diffusion scales become smaller too. Therefore we expect to have both, temperature and polarization anisotropies, even beyond l>10000 regardless of the strength of the magnetic fields. The peak values of the temperature anisotropy and the B-mode polarization spectra are approximately 40μK and a few μK, respectively.

  2. Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    John E. Krommes

    2010-09-27

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a "pull-back" (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and diffculties) of deriving nonlinear gyro fluid equations suitable for rapid numerical solution -- although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  3. Magnetic and nonlinear optical properties of BaTiO3 nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Ramakanth

    2015-05-01

    Full Text Available In our earlier studies the BaTiO3 samples were processed at higher temperatures like 1000oC and explained the observed magnetism in it. It is found that the charge transfer effects are playing crucial role in explaining the observed ferromagnetism in it. In the present work the samples were processed at lower temperatures like 650oC-800oC. The carrier densities in these particles were estimated to be ∼ 1019-1020/cm3 range. The band gap is in the range of 2.53eV to 3.2eV. It is observed that magnetization increased with band gap narrowing. The higher band gap narrowed particles exhibited increased magnetization with a higher carrier density of 1.23×1020/cm3 near to the Mott critical density. This hint the exchange interactions between the carriers play a dominant role in deciding the magnetic properties of these particles. The increase in charge carrier density in this undoped BaTiO3 is because of oxygen defects only. The oxygen vacancy will introduce electrons in the system and hence more charge carriers means more oxygen defects in the system and increases the exchange interactions between Ti3+, Ti4+, hence high magnetic moment. The coercivity is increased from 23 nm to 31 nm and then decreased again for higher particle size of 54 nm. These particles do not show photoluminescence property and hence it hints the absence of uniformly distributed distorted [TiO5]-[TiO6] clusters formation and charge transfer between them. Whereas these charge transfer effects are vital in explaining the observed magnetism in high temperature processed samples. Thus the variation of magnetic properties like magnetization, coercivity with band gap narrowing, particle size and charge carrier density reveals the super paramagnetic nature of BaTiO3 nanoparticles. The nonlinear optical coefficients extracted from Z-scan studies suggest that these are potential candidates for optical imaging and signal processing applications.

  4. Magnetic and nonlinear optical properties of BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramakanth, S.; Venugopal Rao, S., E-mail: svrsp@uohyd.ernet.in [Advanced Centre of Research in High Energy Materials (ACRHEM),University of Hyderabad, Hyderabad 500046, Telangana (India); Hamad, Syed [School of Physics, University of Hyderabad, Hyderabad 500046, Telangana (India); James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in [Advanced Centre of Research in High Energy Materials (ACRHEM),University of Hyderabad, Hyderabad 500046, Telangana (India); School of Physics, University of Hyderabad, Hyderabad 500046, Telangana (India)

    2015-05-15

    In our earlier studies the BaTiO{sub 3} samples were processed at higher temperatures like 1000{sup o}C and explained the observed magnetism in it. It is found that the charge transfer effects are playing crucial role in explaining the observed ferromagnetism in it. In the present work the samples were processed at lower temperatures like 650{sup o}C-800{sup o}C. The carrier densities in these particles were estimated to be ∼ 10{sup 19}-10{sup 20}/cm{sup 3} range. The band gap is in the range of 2.53eV to 3.2eV. It is observed that magnetization increased with band gap narrowing. The higher band gap narrowed particles exhibited increased magnetization with a higher carrier density of 1.23×10{sup 20}/cm{sup 3} near to the Mott critical density. This hint the exchange interactions between the carriers play a dominant role in deciding the magnetic properties of these particles. The increase in charge carrier density in this undoped BaTiO{sub 3} is because of oxygen defects only. The oxygen vacancy will introduce electrons in the system and hence more charge carriers means more oxygen defects in the system and increases the exchange interactions between Ti3+, Ti4+, hence high magnetic moment. The coercivity is increased from 23 nm to 31 nm and then decreased again for higher particle size of 54 nm. These particles do not show photoluminescence property and hence it hints the absence of uniformly distributed distorted [TiO5]-[TiO6] clusters formation and charge transfer between them. Whereas these charge transfer effects are vital in explaining the observed magnetism in high temperature processed samples. Thus the variation of magnetic properties like magnetization, coercivity with band gap narrowing, particle size and charge carrier density reveals the super paramagnetic nature of BaTiO{sub 3} nanoparticles. The nonlinear optical coefficients extracted from Z-scan studies suggest that these are potential candidates for optical imaging and signal processing

  5. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    Science.gov (United States)

    Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-01

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  6. Analysis of a Gyroscope's Rotor Nonlinear Supported Magnetic Field Based on the B-Spline Wavelet-FEM

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-feng; YUAN Gan-nan; HUANG Xu; YU Li

    2005-01-01

    A supported framework of a gyroscope′s rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedron. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.

  7. Nonlinear dynamics of cold magnetized non-relativistic plasma in the presence of electron-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)

    2015-09-15

    A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.

  8. Effects of Nonlinear Couplings on Entanglement in a Two-Qutrit Heisenberg XXX Chain under an Inhomogeneous Magnetic Field

    Science.gov (United States)

    Qin, Meng; Ge, Xing; Zhai, Xiao-Yue; Liu, Cui-Cui; Wang, Bi-Li

    2011-03-01

    This paper investigates the entanglement of a two-qutrit Heisenberg XXX chain with nonlinear couplings under an inhomogeneous magnetic field. By the concept of negativity, we find that the critical temperature increases with the increase of inhomogeneous magnetic field b. Our study indicates that for any |K| > |J|, or |K| < |J| entanglement always exists for certain regions. We also find that at the critical point, the entanglement becomes a nonanalytic function of B and a quantum phase transition occurs.

  9. Effect of the mass center shift for force-free flexible spacecraft

    Science.gov (United States)

    Meirovitch, L.; Juang, J.-N.

    1975-01-01

    For a spinning flexible spacecraft the mass center generally shifts relative to the nominal undeformed position. It is thought that this shift of center complicates spacecraft stability analysis. It is proved, on the basis of results achieved by Meirovitch and Calico (1972), that for the general class of force-free single-spin flexible spacecraft it is possible to ignore this shift of center without affecting the stability criteria in any significant way. A new theorem on inequalities for quadratic forms is proved to demonstrate the validity of the stability analysis.

  10. Nonlinear resonance converse magnetoelectric effect modulated by voltage for the symmetrical magnetoelectric laminates under magnetic and thermal loadings

    Science.gov (United States)

    Zhou, Hao-Miao; Liu, Hui; Zhou, Yun; Hu, Wen-Wen

    2016-12-01

    Based on the tri-layer symmetrical magnetoelectric laminates, a equivalent circuit for the nonlinear resonance converse magnetoelectric coupling effect is established. Because the nonlinear thermo-magneto-mechanical constitutive equations of magnetostrictive material were introduced, a converse magnetoelectric coefficient model was derived from the equivalent circuit, which can describe the influence of bias electric field, bias magnetic field and ambient temperature on the resonance converse magnetoelectric coupling effect. Especially, the model can well predict the modulation effect of bias electric field/voltage on the magnetism of magnetoelectric composite or the converse magnetoelectric coefficient, which is absolutely vital in applications. Both of the converse magnetoelectric coefficient and the resonance frequency predicted by the model have good agreements with the existing experimental results in qualitatively and quantitatively, and the validity of the model is confirmed. On this basis, according to the model, the nonlinear trends of the resonance converse magnetoelectric effect under different bias voltages, bias magnetic fields and ambient temperatures are predicted. From the results, it can be found that the bias voltage can effectively modulate the curve of the resonance converse magnetoelectric coefficient versus bias magnetic field, and then change the corresponding optimal bias magnetic field of the maximum converse magnetoelectric coefficient; with the increasing volume ratio of piezoelectric layers, the modulation effect of bias voltage becomes more obvious; under different bias magnetic fields, the modulation effect of bias voltage on the converse magnetoelectric effect has nonvolatility in a wide temperature region.

  11. Determination of Magnetic Parameters of Maghemite (γ-Fe2O3) Core-Shell Nanoparticles from Nonlinear Magnetic Susceptibility Measurements

    Science.gov (United States)

    Syvorotka, Ihor I.; Pavlyk, Lyubomyr P.; Ubizskii, Sergii B.; Buryy, Oleg A.; Savytskyy, Hrygoriy V.; Mitina, Nataliya Y.; Zaichenko, Oleksandr S.

    2017-04-01

    Method of determining of magnetic moment and size from measurements of dependence of the nonlinear magnetic susceptibility upon magnetic field is proposed, substantiated and tested for superparamagnetic nanoparticles (SPNP) of the "magnetic core-polymer shell" type which are widely used in biomedical technologies. The model of the induction response of the SPNP ensemble on the combined action of the magnetic harmonic excitation field and permanent bias field is built, and the analysis of possible ways to determine the magnetic moment and size of the nanoparticles as well as the parameters of the distribution of these variables is performed. Experimental verification of the proposed method was implemented on samples of SPNP with maghemite core in dry form as well as in colloidal systems. The results have been compared with the data obtained by other methods. Advantages of the proposed method are analyzed and discussed, particularly in terms of its suitability for routine express testing of SPNP for biomedical technology.

  12. Improved energy confinement with nonlinear isotope effects in magnetically confined plasmas

    CERN Document Server

    Garcia, J; Jenko, F

    2016-01-01

    The efficient production of electricity from nuclear fusion in magnetically confined plasmas relies on a good confinement of the thermal energy. For more than thirty years, the observation that such confinement depends on the mass of the plasma isotope and its interaction with apparently unrelated plasma conditions has remained largely unexplained and it has become one of the main unsolved issues. By means of numerical studies based on the gyrokinetic theory, we quantitatively show how the plasma microturbulence depends on the isotope mass through nonlinear multiscale microturbulence effects involving the interplay between zonal flows, electromagnetic effects and the torque applied. This finding has crucial consequences for the design of future reactors since, in spite of the fact that they will be composed by multiple ion species, their extrapolation from present day experiments heavily relies on the knowledge obtained from a long experimental tradition based in single isotope plasmas.

  13. Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices

    Science.gov (United States)

    Sederberg, Shawn; Firby, Curtis J.; Greig, Shawn R.; Elezzabi, Abdulhakem Y.

    2017-01-01

    As modern complementary-metal-oxide-semiconductor (CMOS) circuitry rapidly approaches fundamental speed and bandwidth limitations, optical platforms have become promising candidates to circumvent these limits and facilitate massive increases in computational power. To compete with high density CMOS circuitry, optical technology within the plasmonic regime is desirable, because of the sub-diffraction limited confinement of electromagnetic energy, large optical bandwidth, and ultrafast processing capabilities. As such, nanoplasmonic waveguides act as nanoscale conduits for optical signals, thereby forming the backbone of such a platform. In recent years, significant research interest has developed to uncover the fundamental physics governing phenomena occurring within nanoplasmonic waveguides, and to implement unique optical devices. In doing so, a wide variety of material properties have been exploited. CMOS-compatible materials facilitate passive plasmonic routing devices for directing the confined radiation. Magnetic materials facilitate time-reversal symmetry breaking, aiding in the development of nonreciprocal isolators or modulators. Additionally, strong confinement and enhancement of electric fields within such waveguides require the use of materials with high nonlinear coefficients to achieve increased nonlinear optical phenomenon in a nanoscale footprint. Furthermore, this enhancement and confinement of the fields facilitate the study of strong-field effects within the solid-state environment of the waveguide. Here, we review current state-of-the-art physics and applications of nanoplasmonic waveguides pertaining to passive, magnetoplasmonic, nonlinear, and strong-field devices. Such components are essential elements in integrated optical circuitry, and each fulfill specific roles in truly developing a chip-scale plasmonic computing architecture.

  14. Nonlinear Dynamics of Magnons observed by AC Spin Pumping in Magnetic Hybrid Structures

    Science.gov (United States)

    Vilela-Leao, L. H.; Cunha, R. O.; Azevedo, A.; Rodriguez-Suarez, R. L.; Rezende, S. M.

    2015-03-01

    The electron spin degree of freedom constitutes the basic means to carry and store information in the field of spintronics. In the spin pumping process, the microwave driven magnetization dynamics in a ferromagnetic film generates a spin current in an attached metallic layer that can be converted into a charge current by means of the inverse spin Hall effect and detected by a voltage signal. While the time independent component (DC) of the spin current has been widely investigated in a variety of material structures, recently it has been recognized that the alternating current (AC) component is much larger, though more difficult to detect, and has many attractive features. We report experiments with microwave driven DC and AC spin pumping in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and platinum that reveal the nonlinear dynamics involving the driven mode and a pair of magnon modes with half frequency. This process occurs when the frequency is lowered below a critical value so that a three-magnon splitting process with energy conservation is made possible. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  15. Finite Larmor radius effects in the nonlinear dynamics of collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Del Sarto, D [Institut Jean Lamour, UMR 7198 CNRS-Nancy University, Campus Victor Grignard - BP 70239, 54506 Vandoeuvre-les-Nancy Cedex (France); Marchetto, C [Associazione EURATOM-ENEA sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Pegoraro, F; Califano, F, E-mail: daniele.delsarto@ijl.nancy-universite.fr, E-mail: marchetto@ifp.cnr.it, E-mail: pegoraro@df.unipi.it, E-mail: califano@df.unipi.it [Physics Department and CNISM, Pisa University, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2011-03-15

    We provide numerical evidence of the role of finite Larmor radius effects in the nonlinear dynamics of magnetic field line reconnection in high-temperature, strong guide field plasmas in a slab configuration, in the large {Delta}' regime. Both ion and electron temperature effects introduce internal energy variations related to mechanical compression terms in the energy balance, thus contributing to regularize the gradients of the ion density with respect to the cold regimes. For values of the Larmor radii that are not asymptotically small, the two temperature effects are no longer interchangeable, in contrast to what is expected from linear theory, and the differences are measurable in the numerical growth rates and in the nonlinear evolution of the density layers. We interpret such differences in terms of the change, due to ion temperature effects, of the Lagrangian advection of the 'plasma invariants' that are encountered in the cold-ion, warm-electron regime. The different roles of the ion and ion-sound Larmor radii in the reconnection dynamics near the X- and O-points are evidenced by means of a local quadratic expansion of the fields.

  16. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  17. New exact solutions of nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields

    Institute of Scientific and Technical Information of China (English)

    Li Hua-Mei

    2005-01-01

    By using the mapping method and an appropriate transformation, we find new exact solutions of nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions , triangular function solutions, bright and dark solitons, and soliton-like solutions.

  18. On the equivalence of the discrete nonlinear Schr\\"odinger equation and the discrete isotropic Heisenberg magnet

    OpenAIRE

    Hoffmann, Tim

    1999-01-01

    The equivalence of the discrete isotropic Heisenberg magnet (IHM) model and the discrete nonlinear Schr\\"odinger equation (NLSE) given by Ablowitz and Ladik is shown. This is used to derive the equivalence of their discretization with the one by Izergin and Korepin. Moreover a doubly discrete IHM is presented that is equivalent to Ablowitz' and Ladiks doubly discrete NLSE.

  19. Kinetic model of force-free current sheets with non-uniform temperature

    Science.gov (United States)

    Kolotkov, D. Y.; Vasko, I. Y.; Nakariakov, V. M.

    2015-11-01

    The kinetic model of a one-dimensional force-free current sheet (CS) developed recently by Harrison and Neukirch [Phys. Rev. Lett. 102(13), 135003 (2009)] predicts uniform distributions of the plasma temperature and density across the CS. However, in realistic physical systems, inhomogeneities of these plasma parameters may arise quite naturally due to the boundary conditions or local plasma heating. Moreover, as the CS spatial scale becomes larger than the characteristic kinetic scales (the regime often referred to as the MHD limit), it should be possible to set arbitrary density and temperature profiles. Thus, an advanced model has to allow for inhomogeneities of the macroscopic plasma parameters across the CS, to be consistent with the MHD limit. In this paper, we generalise the kinetic model of a force-free current sheet, taking into account the inhomogeneity of the density and temperature across the CS. In the developed model, the density may either be enhanced or depleted in the CS central region. The temperature profile is prescribed by the density profile, keeping the plasma pressure uniform across the CS. All macroscopic parameters, as well as the distribution functions for the protons and electrons, are determined analytically. Applications of the developed model to current sheets observed in space plasmas are discussed.

  20. The self-similar, non-linear evolution of rotating magnetic flux ropes

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    Full Text Available We study, in the ideal MHD approximation, the non-linear evolution of cylindrical magnetic flux tubes differentially rotating about their symmetry axis. Our force balance consists of inertial terms, which include the centrifugal force, the gradient of the axial magnetic pressure, the magnetic pinch force and the gradient of the gas pressure. We employ the "separable" class of self-similar magnetic fields, defined recently. Taking the gas to be a polytrope, we reduce the problem to a single, ordinary differential equation for the evolution function. In general, two regimes of evolution are possible; expansion and oscillation. We investigate the specific effect rotation has on these two modes of evolution. We focus on critical values of the flux rope parameters and show that rotation can suppress the oscillatory mode. We estimate the critical value of the angular velocity Ωcrit, above which the magnetic flux rope always expands, regardless of the value of the initial energy. Studying small-amplitude oscillations of the rope, we find that torsional oscillations are superimposed on the rotation and that they have a frequency equal to that of the radial oscillations. By setting the axial component of the magnetic field to zero, we study small-amplitude oscillations of a rigidly rotating pinch. We find that the frequency of oscillation ω is inversely proportional to the angular velocity of rotation Ω; the product ωΩbeing proportional to the inverse square of the Alfvén time. The period of large-amplitude oscillations of a rotating flux rope of low beta increases exponentially with the energy of the equivalent 1D oscillator. With respect to large-amplitude oscillations of a non-rotating flux rope, the only change brought about by rotation is to introduce a multiplicative factor greater than unity, which further increases the period. This multiplicative factor depends on the ratio of the azimuthal speed to the Alfvén speed

  1. Magnetic Field Restructuring Associated with Two Successive Solar Eruptions

    CERN Document Server

    Wang, Rui; Yang, Zhongwei; Hu, Huidong

    2014-01-01

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field (NLFFF) extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity, and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the "implosion" phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

  2. An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties.

    Science.gov (United States)

    Lin, Lizhi; Wan, Yongping; Li, Faxin

    2012-07-01

    In this work, we propose an analytical nonlinear model for laminate multiferroic composites in which the magnetic-field-induced strain in magnetostrictive phase is described by a standard square law taking the stress effect into account, whereas the ferroelectric phase retains a linear piezoelectric response. Furthermore, differing from previous models which assume uniform deformation, we take into account the stress attenuation and adopt non-uniform deformation along the layer thickness in both piezoelectric and magnetostrictive phases. Analysis of this model on L-T and L-L modes of sandwiched Terfenol-D/lead zirconate titanate/Terfenol-D composites can well reproduce the observed dc magnetic field (H(dc)) dependent magnetoelectric coefficients, which reach their maximum with the H(dc) all at about 500 Oe. The model also suggests that stress attenuation along the layer thickness in practical composites should be taken into account. Furthermore, the model also indicates that a high volume fraction of magnetostrictive phase is required to get giant magnetoelectric coupling, coinciding with existing models.

  3. Magnetic Dilaton Rotating Strings in the Presence of Exponential Nonlinear Electrodynamics

    Science.gov (United States)

    Sheykhi, A.; Mahmoudi, Z.

    2016-09-01

    In this paper, we construct a new class of four-dimensional spinning magnetic dilaton string solutions which produces a longitudinal nonlinear electromagnetic field. The Lagrangian of the matter field has the exponential form. We study the physical properties of the solution in ample details. Geometrical, causal and geodisical structures of the solutions are investigated, separately. We confirm that the spacetime is both null and geodesically complete. We find that these solutions have no curvature singularity and no horizon, but have a conic geometry. We investigate the effects of variation of charge and the intensity of the dilaton field, on the deficit angle. Due to the presence of the dilaton field, the asymptotic behavior of the solutions are neither flat nor (anti-) de Sitter [(A)dS]. Furthermore, we extend our study to the higher dimensions and obtain the ( n+1)-dimensional magnetic rotating dilaton strings with k≤[ n/2] rotation parameters and calculate conserved quantities of the solutions. Although these solutions are not asymptotically (A)dS, we use counterterm method to calculate conserved quantities. We also calculate electric charge and show that the net electric charge of the spinning string is proportional to the rotating parameter and the electric field only exists when the rotation parameter does not vanish.

  4. A Novel Method to Magnetic Flux Linkage Optimization of Direct-Driven Surface-Mounted Permanent Magnet Synchronous Generator Based on Nonlinear Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Qian Xie

    2016-07-01

    Full Text Available This paper pays attention to magnetic flux linkage optimization of a direct-driven surface-mounted permanent magnet synchronous generator (D-SPMSG. A new compact representation of the D-SPMSG nonlinear dynamic differential equations to reduce system parameters is established. Furthermore, the nonlinear dynamic characteristics of new D-SPMSG equations in the process of varying magnetic flux linkage are considered, which are illustrated by Lyapunov exponent spectrums, phase orbits, Poincaré maps, time waveforms and bifurcation diagrams, and the magnetic flux linkage stable region of D-SPMSG is acquired concurrently. Based on the above modeling and analyses, a novel method of magnetic flux linkage optimization is presented. In addition, a 2 MW D-SPMSG 2D/3D model is designed by ANSYS software according to the practical design requirements. Finally, five cases of D-SPMSG models with different magnetic flux linkages are simulated by using the finite element analysis (FEA method. The nephograms of magnetic flux density are agreement with theoretical analysis, which both confirm the correctness and effectiveness of the proposed approach.

  5. Effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency based nonlinear frequency conversion in quantum ring

    Science.gov (United States)

    Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man

    2016-10-01

    We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.

  6. Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects

    Science.gov (United States)

    Mustafa, M.; Khan, Junaid Ahmad

    2015-07-01

    Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.

  7. Ideal MHD(-Einstein) Solutions Obeying The Force-Free Condition

    CERN Document Server

    Chu, Yi-Zen

    2016-01-01

    We find two families of analytic solutions to the ideal magnetohydrodynamics (iMHD) equations, in a class of 4-dimensional (4D) curved spacetimes. The plasma current is null, and as a result, the stress-energy tensor of the plasma itself can be chosen to take a cosmological-constant-like form. Despite the presence of a plasma, the force-free condition - where the electromagnetic current is orthogonal to the Maxwell tensor - continues to be maintained. Moreover, a special case of one of these two families leads us to a fully self-consistent solution to the Einstein-iMHD equations: we obtain the Vaidya-(anti-)de Sitter metric sourced by the plasma and a null electromagnetic stress tensor. We also provide a Mathematica code that researchers may use to readily verify analytic solutions to these iMHD equations in any curved 4D geometry.

  8. Modeling of dynamic characteristics of a nonlinear oscillatory system with a magnetic spring. Part 1

    Directory of Open Access Journals (Sweden)

    R.P. Bondar

    2014-04-01

    Full Text Available A passive magnetic vibration isolator (a magnetic spring with cylindrical magnets is considered. A mathematical model is developed to calculate magnetic spring magnetic field and force. Numerical calculation of the vibration isolator magnetic field via a 3-D finite element method is performed. Experimental results presented prove adequacy of the computational data.

  9. Statistical study of free magnetic energy and flare productivity of solar active regions

    CERN Document Server

    Su, J T; Wang, S; Wiegelmann, T; Wang, H M

    2014-01-01

    Photospheric vector magnetograms from Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both non-linear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with ARs' flare index (FI) and find that there is a weak correlation ($<60\\%$) between FME and FI. FME shows slightly improved flare predictability relative to total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  10. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  11. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Science.gov (United States)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Huijsmans, G.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Chapman, I.; Kirk, A.; Thornton, A.; Hoelzl, M.; Cahyna, P.

    2013-10-01

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  12. Effect of magnetic islands on profiles, flows, turbulence and transport in nonlinear gyrokinetic simulations

    Science.gov (United States)

    Bañón Navarro, A.; Bardóczi, L.; Carter, T. A.; Jenko, F.; Rhodes, T. L.

    2017-03-01

    Neoclassical tearing modes have deleterious effects on plasma confinement and, if they grow large enough, they can lead to discharge termination. Therefore, they impose a major barrier in the development of operating scenarios of present-day tokamaks. Gyrokinetics offers a path toward studying multi-scale interactions with turbulence and the effect on plasma confinement. As a first step toward this goal, we have implemented static magnetic islands in nonlinear gyrokinetic simulations with the GENE code. We investigate the effect of the islands on profiles, flows, turbulence and transport and the scaling of these effects with respect to island size. We find a clear threshold island width, below which the islands have little or no effect while beyond this point the islands significantly perturb flows, increase turbulence and transport. Additionally, we study the effect of radially asymmetric islands on shear flows for the first time. We find that island induced shear flows can regulate turbulent fluctuation levels in the vicinity of the island separatrices. Throughout this work, we focus on experimentally relevant quantities, such as rms levels of density and electron temperature fluctuations, as well as amplitude and phasing of turbulence modulation. These simulations aim to provide guidelines for interpreting experimental results by comparing qualitative trends in the simulations with those obtained in tokamak experiments.

  13. Weak Nonlinear Thermal Instability Under Vertical Magnetic Field, Temperature Modulation And Heat Source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-02-01

    Full Text Available The present paper deals with a weak nonlinear stability problem of magneto-convection in an electrically conducting Newtonian liquid, confined between two horizontal surfaces, under a constant vertical magnetic field, and subjected to an imposed time-periodic boundary temperature (ITBT along with internal heating effects. In the case of (ITBT, the temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent oscillatory part. The temperature of both walls is modulated in this case. The disturbance is expanded in terms of power series of amplitude of convection, which is assumed to be small. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Using Ginzburg-Landau equation, the effect of modulations on heat transport is analyzed. Effect of various parameters on the heat transport is also discussed. Further, it is found that the heat transport can be controlled by suitably adjusting the external parameters of the system.

  14. Nonlinear Transition from Mitigation to Suppression of the Edge Localized Mode with Resonant Magnetic Perturbations in the EAST Tokamak.

    Science.gov (United States)

    Sun, Y; Liang, Y; Liu, Y Q; Gu, S; Yang, X; Guo, W; Shi, T; Jia, M; Wang, L; Lyu, B; Zhou, C; Liu, A; Zang, Q; Liu, H; Chu, N; Wang, H H; Zhang, T; Qian, J; Xu, L; He, K; Chen, D; Shen, B; Gong, X; Ji, X; Wang, S; Qi, M; Song, Y; Yuan, Q; Sheng, Z; Gao, G; Fu, P; Wan, B

    2016-09-01

    Evidence of a nonlinear transition from mitigation to suppression of the edge localized mode (ELM) by using resonant magnetic perturbations (RMPs) in the EAST tokamak is presented. This is the first demonstration of ELM suppression with RMPs in slowly rotating plasmas with dominant radio-frequency wave heating. Changes of edge magnetic topology after the transition are indicated by a gradual phase shift in the plasma response field from a linear magneto hydro dynamics modeling result to a vacuum one and a sudden increase of three-dimensional particle flux to the divertor. The transition threshold depends on the spectrum of RMPs and plasma rotation as well as perturbation amplitude. This means that edge topological changes resulting from nonlinear plasma response plays a key role in the suppression of ELM with RMPs.

  15. 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm

    Science.gov (United States)

    Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil

    2017-01-01

    3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.

  16. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect

    Science.gov (United States)

    Robles-Uriza, A. X.; Reyes Gómez, F.; Mejía-Salazar, J. R.

    2016-09-01

    We report the existence of multiple omnidirectional defect modes in the zero-nbar gap of photonic stacks, made of alternate layers of conventional dielectric and double-negative metamaterial, with a polaritonic defect layer. In the case of nonlinear magnetic metamaterials, the optical bistability phenomenon leads to switching from negligible to perfect transmission around these defect modes. We hope these findings have potential applications in the design and development of multichannel optical filters, power limiters, optical-diodes and optical-transistors.

  17. New 3D parallel GILD electromagnetic modeling and nonlinear inversion using global magnetic integral and local differential equation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, G.; Li, J.; Majer, E.; Zuo, D.

    1998-07-01

    This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.

  18. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

    Science.gov (United States)

    Tao, S.; Trzasko, J. D.; Gunter, J. L.; Weavers, P. T.; Shu, Y.; Huston, J., III; Lee, S. K.; Tan, E. T.; Bernstein, M. A.

    2017-01-01

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to

  19. Nonlinear magnetohydrodynamics. Progress report, December 15, 1977--December 14, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, G.

    1978-01-01

    Incompressible MHD turbulence is considered for both 2D and 3D plasmas in cylindrical geometry. It is found that for virtually all initial conditions (including quiescent ones) the plasma is nonlinearly unstable in that mean square turbulent velocity fields develop. However, there is a unique stable state of extremal magnetic helicity/energy ratio for which no turbulent fields develop (in 2D with B/sub z/ = const., it is the state of extremal mean square vector potential/energy). It is force free and is just the Taylor state. A conjecture can be put forward (based on a dual cascade argument for resistive MHD) to explain Taylor's hypothesis. In spherical geometry, the stable axisymmetric state is the spheromak.

  20. Quantifying non-ergodic dynamics of force-free granular gases.

    Science.gov (United States)

    Bodrova, Anna; Chechkin, Aleksei V; Cherstvy, Andrey G; Metzler, Ralf

    2015-09-14

    Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.

  1. Current Flow and Pair Creation at Low Altitude in Rotation-Powered Pulsars' Force-Free Magnetospheres: Space Charge Limited Flow

    Science.gov (United States)

    Timokhin, A. N.; Arons, J.

    2013-01-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are

  2. Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities

    CERN Document Server

    Bykov, Andrei M; Osipov, Sergei M; Vladimirov, Andrey E

    2014-01-01

    We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration (DSA) where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock, to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification (MFA), and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the d...

  3. Comparison of magnetic properties in a magnetic cloud and its solar source on April 11-14 2013

    CERN Document Server

    Vemareddy, P; Rollett, T; Mishra, W; Farrugia, C; Leitner, M

    2016-01-01

    In the context of Sun-Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during April 14-15, 2013. We use in-situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamic Observatory. The MCs magnetic structure is reconstructed from the Grad-Shafranov method which reveals a northern component of the axial field with left-handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by $117^o$ with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution ($10^{-7}-10^{-6}$ m$^{-1}$) at the sigmoid leg matches the range of twist number in the MC of 1-2 AU MFR. The MFR is non-linear force-free with decreasing twist from the axis (9 turns/AU) towards the edge. Therefore Gold-Hoyle (GH) config...

  4. Nonlinear behavior of electron acoustic waves in an un-magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata 700 108 (India)

    2011-10-15

    The nonlinear electron acoustic wave, which is found in the earth's magnetosphere by satellite observations, is studied analytically by Lagrangian fluid description. The basic linear mode is observed in a two temperature electron species plasma where ions form stationary charge neutral background. We have obtained nonlinear description of this mode, which depends on both time and space. A possible solution shows a soliton like structure, which is localized in space, and the amplitude increases with time in the absence of dispersion. Small dispersive correction, however, shows spread of the solution in space. This method can be generalized to study the nonlinear behavior of a general class of multispecies plasma.

  5. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction

    Directory of Open Access Journals (Sweden)

    Merboldt Klaus-Dietmar

    2010-07-01

    Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and

  6. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

    Science.gov (United States)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-07-01

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V‑1m‑1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices.

  7. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

    Science.gov (United States)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-01-01

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V−1m−1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices. PMID:27424885

  8. Variations of the 3-D coronal magnetic field associated with the X3.4-class solar flare event of AR 10930

    CERN Document Server

    He, Han; Yan, Yihua; Chen, P F; Fang, Cheng

    2016-01-01

    The variations of the 3-D coronal magnetic fields associated with the X3.4-class flare of active region 10930 are studied in this paper. The coronal magnetic field data are reconstructed from the photospheric vector magnetograms obtained by the Hinode satellite and using the nonlinear force-free field extrapolation method developed in our previous work (He et al., 2011). The 3-D force-free factor $\\alpha$, 3-D current density, and 3-D magnetic energy density are employed to analyze the coronal data. The distributions of $\\alpha$ and current density reveal a prominent magnetic connectivity with strong negative $\\alpha$ values and strong current density before the flare. This magnetic connectivity extends along the main polarity inversion line and is found to be totally broken after the flare. The distribution variation of magnetic energy density reveals the redistribution of magnetic energy before and after the flare. In the lower space of the modeling volume the increase of magnetic energy dominates, and in t...

  9. Effects of magnetic field on the terahertz nonlinear optical properties in donor-doped GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hasan [Faculty of Science, Department of Physics, Karabuek University, Karabuek 78050 (Turkey); Aslan, Bulent [Faculty of Science, Department of Physics, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey)

    2012-11-15

    Effects of the magnetic field on nonlinear optical properties at THz range in GaAs/AlGaAs quantum wells doped with donor atoms are investigated. Expressions for the third-order nonlinear optical susceptibilities are obtained through the solution of the density matrix equations of motion within the rotating wave approximation. Donor binding energies are calculated variationally by means of an iterative shooting algorithm. Magnetic field has strong effect on the nonlinear susceptibility: it removes the degeneracy in energies of 2p{sub {+-}} impurity states and increases the absolute value of the nonlinearity. It is also shown that a large and tunable optical nonlinear figure of merit is possible with the magnetic field applied in the growth direction. The nonlinear optical quantities are also calculated for donor distributions with different full width at half maximum values in the absence of magnetic field and the observed features at low energy part are attributed to the increasing homogeneity in the donor distribution. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Nonlinear evolution of electron shear flow instabilities in the presence of an external guide magnetic field

    CERN Document Server

    Jain, Neeraj

    2016-01-01

    The dissipation mechanism by which the magnetic field reconnects in the presence of an external (guide) magnetic field in the direction of the main current is not well understood. In thin electron current sheets (ECS) (thickness ~ an electron inertial length) formed in collisionless magnetic reconnection, electron shear flow instabilities (ESFI) are potential candidates for providing an anomalous dissipation mechanism which can break the frozen-in condition of the magnetic field affecting the structure and rate of reconnection. We investigate the evolution of ESFI in guide field magnetic reconnection. The properties of the resulting plasma turbulence and their dependence on the strength of the guide field are studied. Utilizing 3-D electron-magnetohydrodynamic simulations of ECS we show that, unlike the case of ECS self-consistently embedded in anti-parallel magnetic fields, the evolution of thin ECS in the presence of a guide field (equal to the asymptotic value of the reconnecting magnetic field or larger) ...

  11. Linear and nonlinear MHD mode coupling of the fast magnetoacoustic wave about a 3D magnetic null point

    Science.gov (United States)

    Thurgood, J. O.; McLaughlin, J. A.

    2012-09-01

    Context. Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfvén mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, β = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently decoupled from the Alfvén mode both linearly and nonlinearly for both proper and improper 3D null points. The pure fast mode also generates and sustains a nonlinear disturbance aligned along the equilibrium magnetic field. The resulting pure fast magnetoacoustic pulse has transient behaviour, which is found to be governed by the (equilibrium) Alfvén-speed profile, and a refraction effect focuses all the wave energy towards the null point. Conclusions: Thus, the main results from previous 2D work do indeed carry over to the fully 3D magnetic null points and so we conclude that 3D null points are locations for preferential heating in the corona by 3D fast magnetoacoustic waves.

  12. Local properties of magnetic reconnection in nonlinear resistive- and extended-magnetohydrodynamic toroidal simulations of the sawtooth crash

    Science.gov (United States)

    Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; Ferraro, N. M.

    2017-02-01

    We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m,n)=(1,1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibit a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. This study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.

  13. Interaction between emerging magnetic flux and the ambient solar coronal field

    Science.gov (United States)

    Cheung, M.; Derosa, M.

    2008-12-01

    We study the interaction between emerging magnetic flux and pre-existing coronal field by means of numerical simulations using the magneto-frictional method. By advancing the induction equation, the magneto-frictional method models the coronal magnetic field as a quasi-static sequence of non-linear force- free field configurations evolving in response to photospheric driving. A general feature of the simulations is the spontaneous formation of tangential discontinuities, interfaces where the field line torsional coefficient changes abruptly across separate domains of connectivity. Since the method evolves the vector potential, we can follow the evolution of the relative magnetic helicity and examine its relation to the magnetic free energy. Other tools, such as the squashing factor of Titov and Démoulin, are also used to study the topology of the field configurations.

  14. Effect of the curvature and the {\\beta} parameter on the nonlinear dynamics of a drift tearing magnetic island

    CERN Document Server

    Muraglia, Magali; Yagi, Masatoshi; Benkadda, Sadruddin; Peter, Beyer; Garbet, Xavier; Itoh, Sanae -I; Itoh, Kimitaka; Sen, Abhijit

    2011-01-01

    We present numerical simulation studies of 2D reduced MHD equations investigating the impact of the electronic \\beta parameter and of curvature effects on the nonlinear evolution of drift tearing islands. We observe a bifurcation phenomenon that leads to an amplification of the pressure energy, the generation of E \\times B poloidal flow and a nonlinear diamagnetic drift that affects the rotation of the magnetic island. These dynamical modifications arise due to quasilinear effects that generate a zonal flow at the onset point of the bifurcation. Our simulations show that the transition point is influenced by the \\beta parameter such that the pressure gradient through a curvature effect strongly stabilizes the transition. Regarding the modified rotation of the island, a model for the frequency is derived in order to study its origin and the effect of the \\beta parameter. It appears that after the transition, an E \\times B poloidal flow as well as a nonlinear diamagnetic drift are generated due to an amplificat...

  15. Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field

    Science.gov (United States)

    Çakır, Bekir; Yakar, Yusuf; Özmen, Ayhan

    2017-04-01

    We have calculated the wavefunctions and energy eigenvalues of spherical quantum dot with infinite potential barrier inside uniform magnetic field. In addition, we have investigated the magnetic field effect on optical transitions between Zeeman energy states. The results are expressed as a function of dot radius, incident photon energy and magnetic field strength. The results present that, in large dot radii, the external magnetic field affects strongly the optical transitions between Zeeman states. In the strong spatial confinement case, energy level is relatively insensitive to the magnetic field, and electron spatial confinement prevails over magnetic confinement. Also, while m varies from -1 to +1, the peak positions of the optical transitions shift toward higher energy (blueshift).

  16. Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus, 42075 Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus, 68100 Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus, 42075 Konya (Turkey)

    2017-04-01

    We have calculated the wavefunctions and energy eigenvalues of spherical quantum dot with infinite potential barrier inside uniform magnetic field. In addition, we have investigated the magnetic field effect on optical transitions between Zeeman energy states. The results are expressed as a function of dot radius, incident photon energy and magnetic field strength. The results present that, in large dot radii, the external magnetic field affects strongly the optical transitions between Zeeman states. In the strong spatial confinement case, energy level is relatively insensitive to the magnetic field, and electron spatial confinement prevails over magnetic confinement. Also, while m varies from −1 to +1, the peak positions of the optical transitions shift toward higher energy (blueshift).

  17. Null space imaging: nonlinear magnetic encoding fields designed complementary to receiver coil sensitivities for improved acceleration in parallel imaging.

    Science.gov (United States)

    Tam, Leo K; Stockmann, Jason P; Galiana, Gigi; Constable, R Todd

    2012-10-01

    To increase image acquisition efficiency, we develop alternative gradient encoding strategies designed to provide spatial encoding complementary to the spatial encoding provided by the multiple receiver coil elements in parallel image acquisitions. Intuitively, complementary encoding is achieved when the magnetic field encoding gradients are designed to encode spatial information where receiver spatial encoding is ambiguous, for example, along sensitivity isocontours. Specifically, the method generates a basis set for the null space of the coil sensitivities with the singular value decomposition and calculates encoding fields from the null space vectors. A set of nonlinear gradients is used as projection imaging readout magnetic fields, replacing the conventional linear readout field and phase encoding. Multiple encoding fields are used as projections to capture the null space information, hence the term null space imaging. The method is compared to conventional Cartesian SENSitivity Encoding as evaluated by mean squared error and robustness to noise. Strategies for developments in the area of nonlinear encoding schemes are discussed. The null space imaging approach yields a parallel imaging method that provides high acceleration factors with a limited number of receiver coil array elements through increased time efficiency in spatial encoding.

  18. Non-linear magnetic behavior around zero field of an assembly of superparamagnetic nanoparticles.

    Science.gov (United States)

    de Montferrand, Caroline; Lalatonne, Yoann; Bonnin, Dominique; Motte, Laurence; Monod, Philippe

    2012-05-21

    The MIAplex® device is a miniaturized detector, devoted to the high sensitive detection of superparamagnetic nanoprobes for multiparametric immunoassays. It measures a signal corresponding to the second derivative of the magnetization around zero field. Like any new technology, the real success of the MIAplex® detector can only be exploited through a deep understanding of the magnetic signature. In this letter, we study the magnetic behavior around zero-field of diluted lab-made and commercial ferrofluids by comparing together conventional SQUID magnetization and MIAplex® signature.

  19. Magnetic branes in Gauss-Bonnet gravity with nonlinear electrodynamics: correction of magnetic branes in Einstein-Maxwell gravity

    CERN Document Server

    Hendi, Seyed Hossein; Panah, Behzad Eslam

    2015-01-01

    In this paper, we are considering two first order corrections to both gravity and gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric which representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as the magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on deficit angle of spacetime near the origin.

  20. Magnetic branes in Gauss-Bonnet gravity with nonlinear electrodynamics: correction of magnetic branes in Einstein-Maxwell gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, Seyed Hossein [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, Shahram; Panah, Behzad Eslam [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2015-06-15

    In this paper, we consider two first order corrections to both the gravity and the gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on the deficit angle of spacetime near the origin. (orig.)

  1. Nonlinear Control for Magnetic Bearings in Deployment Test Rigs : Simulation and Experimental Results

    NARCIS (Netherlands)

    Scherpen, J.M.A.; Kerk, B. van der; Klaassens, J.B.; Lazeroms, M.; Kan, S.Y.

    1998-01-01

    In this paper three control schemes for a test set-up of a magnetic bearing system for deployment rigs of solar arrays are described. The air gap of the magnet has to be controlled to a constant value independent of the deployment of the solar array. The deployment of the rig has been modeled as a

  2. Nonlinear Control for Magnetic Bearings in Deployment Test Rigs : Simulation and Experimental Results

    NARCIS (Netherlands)

    Scherpen, J.M.A.; Kerk, B. van der; Klaassens, J.B.; Lazeroms, M.; Kan, S.Y.

    1998-01-01

    In this paper three control schemes for a test set-up of a magnetic bearing system for deployment rigs of solar arrays are described. The air gap of the magnet has to be controlled to a constant value independent of the deployment of the solar array. The deployment of the rig has been modeled as a v

  3. Nonlinear Control for Magnetic Bearings in Deployment Test Rigs : Simulation and Experimental Results

    NARCIS (Netherlands)

    Scherpen, J.M.A.; Kerk, B. van der; Klaassens, J.B.; Lazeroms, M.; Kan, S.Y.

    1998-01-01

    In this paper three control schemes for a test set-up of a magnetic bearing system for deployment rigs of solar arrays are described. The air gap of the magnet has to be controlled to a constant value independent of the deployment of the solar array. The deployment of the rig has been modeled as a v

  4. Nonlinear fast magnetoacoustic wave interaction with 2D magnetic X-points in the ion cyclotron range of frequencies

    CERN Document Server

    Threlfall, J W; De Moortel, I; McClements, K G; Arber, T D

    2012-01-01

    Context. This paper investigates the role of the Hall term in the propagation and dissipation of waves which interact with 2D magnetic X-points and considers the effect of the Hall term on the nature of the resulting reconnection. Aims. The goal is to determine how the evolution of a nonlinear fast magnetoacoustic wave pulse, and the behaviour of the oscillatory reconnection which results from the interaction of the pulse with a line-tied 2D magnetic X-point, is affected by the Hall term in the generalised Ohm's law. Methods. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (di) in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Results. In general, the fast wave is coupled to a shear wave and, for finite di, to whistler and ion cyclotron waves. Dispersive whistler effects...

  5. Nonlinear dynamics of superparamagnetic beads in a traveling magnetic-field wave.

    Science.gov (United States)

    Yellen, Benjamin B; Virgin, Lawrence N

    2009-07-01

    The nonlinear dynamic behavior of superparamagnetic beads exposed to a periodic array of micromagnets and an external rotating field is simulated as a function of the relative size of the bead with respect to the micromagnet size and the strength of the external field relative to the pole density of the substrate. For large bead sizes, it is confirmed that the motion of the beads corresponds to the dynamics of an overdamped nonlinear harmonic oscillator. For lower bead sizes, additional subharmonic locking effects are observed along with the emergence of bounded orbits. These results qualitatively support previous experimental investigations of traveling-wave magnetophoresis and provide guidelines for achieving nearly infinite separation resolution between differently sized beads.

  6. Effect of magnetic field on the propagation of quasi-transverse waves in a nonhomogeneous conducting medium under the theory of nonlinear elasticity

    Indian Academy of Sciences (India)

    D P Acharya; Asit Kumar Mondal

    2006-06-01

    The object of the present paper is to investigate the propagation of quasi-transverse waves in a nonlinear perfectly conducting nonhomogeneous elastic medium in the presence of a uniform magnetic field transverse to the direction of wave propagation. Different types of figures have been drawn to exhibit the distortion of waves due to the presence of magnetic field and the nonhomogeneous nature of the medium. Formation of shocks has also been numerically discussed.

  7. Mutual Inductance and Magnetic Force Calculations for Bitter Disk Coil (Pancake) with Nonlinear Radial Current and Filamentary Circular Coil with Azimuthal Current

    OpenAIRE

    Slobodan Babic; Cevdet Akyel

    2016-01-01

    Bitter coils are electromagnets used for the generation of extremely strong magnetic fields superior to 30 T. In this paper we calculate the mutual inductance and the magnetic force between Bitter disk (pancake) coil with the nonlinear radial current and the circular filamentary coil with the azimuthal current. The close form expressed over complete elliptic integrals of the first and second kind as well as Heuman’s Lambda function is obtained for this configuration either for the mutual indu...

  8. Solar Eruption and Local Magnetic Parameters

    Science.gov (United States)

    Lee, Jeongwoo; Liu, Chang; Jing, Ju; Chae, Jongchul

    2016-11-01

    It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5-1.5) and high decay index (0.9-1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.

  9. Study of Heat Transfer with Nonlinear Thermal Radiation on Sinusoidal Motion of Magnetic Solid Particles in a Dusty Fluid

    Science.gov (United States)

    Bhatti, M. M.; Zeeshan, A.; Ellahi, R.

    2016-09-01

    In this article, heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dust Jeffrey fluid has been studied. The effects of Magnetohydrodynamic (MHD) and hall current are also taken under consideration. The governing equation of motion and energy equation are modelled with help of Ohms law for fluid and dust phases. The solutions of the resulting ordinary coupled partial differential equations are solved analytically. The impact of all the physical parameters of interest such as Hartmann number, slip parameter, Hall parameter, radiation parameter, Prandtl number, Eckert number and particle volume fraction are demonstrated mathematically and graphically. Trapping mechanism is also discussed in detail by drawing contour lines. The present analysis affirms many interesting behaviours, which permit further study on solid particles motion with heat and mass transfer.

  10. Nonlinear coil sensitivity estimation for parallel magnetic resonance imaging using data-adaptive steering kernel regression method.

    Science.gov (United States)

    Fang, Sheng; Guo, Hua

    2013-01-01

    The parallel magnetic resonance imaging (parallel imaging) technique reduces the MR data acquisition time by using multiple receiver coils. Coil sensitivity estimation is critical for the performance of parallel imaging reconstruction. Currently, most coil sensitivity estimation methods are based on linear interpolation techniques. Such methods may result in Gibbs-ringing artifact or resolution loss, when the resolution of coil sensitivity data is limited. To solve the problem, we proposed a nonlinear coil sensitivity estimation method based on steering kernel regression, which performs a local gradient guided interpolation to the coil sensitivity. The in vivo experimental results demonstrate that this method can effectively suppress Gibbs ringing artifact in coil sensitivity and reduces both noise and residual aliasing artifact level in SENSE reconstruction.

  11. Nonlinear Magnetoelectric Response of Planar Ferromagnetic-Piezoelectric Structures to Sub-Millisecond Magnetic Pulses

    Directory of Open Access Journals (Sweden)

    Mikhail Shamonin

    2012-11-01

    Full Text Available The magnetoelectric response of bi- and symmetric trilayer composite structures to pulsed magnetic fields is experimentally investigated in detail. The structures comprise layers of commercially available piezoelectric (lead zirconate titanate and magnetostrictive (permendur or nickel materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 µs and amplitudes ranging from 500 Oe to 38 kOe. The time dependence of the resulting voltage is presented and explained by theoretical estimations. Appearance of voltage oscillations with frequencies much larger than the reciprocal pulse length is observed for sufficiently large amplitudes (~1–10 kOe of the magnetic-field pulse. The origin of these oscillations is the excitation of bending and planar acoustic oscillations in the structures. Dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated by digital signal processing and compared with those obtained by the method of harmonic field modulation. The results are of interest for developing magnetoelectric sensors of pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures.

  12. Non-linear optical response of an impurity in a cylindrical quantum dot under the action of a magnetic field

    Science.gov (United States)

    Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo

    2017-04-01

    The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.

  13. A Non-radial Eruption in a Quadrupolar Magnetic Configuration with a Coronal Null

    CERN Document Server

    Sun, Xudong; Liu, Yang; Chen, Qingrong; Hayashi, Keiji

    2012-01-01

    We report one of several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory (SDO). A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Non-linear force-free field (NLFFF) extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated ~2e31 erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60 degrees with respect to the radial direction, forming a jet-like, inverted-Y shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reco...

  14. Observing the release of twist by magnetic reconnection in a solar filament eruption.

    Science.gov (United States)

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-06-16

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist.

  15. Successive Injection of Opposite Magnetic Helicity in Solar Active Region NOAA 11928

    CERN Document Server

    Vemareddy, P

    2016-01-01

    Understanding the nature and evolution of the photospheric helicity flux transfer is a key to reveal the role of magnetic helicity in coronal dynamics of solar active regions. Using SDO/HMI photospheric vector magnetograms and the derived flow velocity field, we computed boundary driven helicity flux with a 12 minute cadence during the emergence of AR 11928. Accounting the foot point connectivity defined by non-linear force-free magnetic extrapolations, we derived and analyzed the corrected distribution of helicity flux maps. The photospheric helicity flux injection is found to changes sign during the steady emergence of the AR. This reversal is confirmed with the evolution of the photospheric electric currents and with the coronal connectivity as observed in EUV wavelengths with SDO/AIA. During about the three first days of emergence, the AR coronal helicity is positive while later on the field configuration is close to a potential field. As theoretically expected, the magnetic helicity cancelation is associ...

  16. Observing the release of twist by magnetic reconnection in a solar filament eruption

    Science.gov (United States)

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-06-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist.

  17. Observing the release of twist by magnetic reconnection in a solar filament eruption

    Science.gov (United States)

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-01-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. PMID:27306479

  18. Particle-in-Cell Simulations of Collisionless Magnetic Reconnection with a Non-Uniform Guide Field

    CERN Document Server

    Wilson, Fiona; Hesse, Michael; Harrison, Michael G; Stark, Craig R

    2015-01-01

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov-Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.

  19. Experimental study of the nonlinear diffusion of a magnetic field and skin explosion of cylindrical conductors

    Energy Technology Data Exchange (ETDEWEB)

    Chaikovsky, S. A.; Datsko, I. M.; Labetskaya, N. A.; Rybka, D. V.; Ratakhin, N. A. [Institute of High Current Electronics, SB, RAN, Tomsk (Russian Federation); Oreshkin, V. I. [Institute of High Current Electronics, SB, RAN, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation)

    2015-11-15

    The paper presents the results of an experimental study of the skin explosion of cylindrical conductors of diameter 1–3 mm (copper, aluminum, titanium, steel 3, and stainless steel) at a peak magnetic field of 200–600 T. The experiments were carried out on the MIG pulsed power generator at a current of up to 2.5 MA and a current rise time of 100 ns. The surface explosion of a conductor was identified by the appearance of a flash of extreme ultraviolet radiation. A minimum magnetic induction has been determined below which no plasma is generated at the conductor surface. For copper, aluminum, steel 3, titanium, and stainless steel, the minimum magnetic induction has been estimated to be (to within 10%) 375, 270, 280, 220, and 245 T, respectively.

  20. Solutions of the Force-Free Duffing-van der Pol Oscillator Equation

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2011-01-01

    Full Text Available A new approximate method for solving the nonlinear Duffing-van der pol oscillator equation is proposed. The proposed scheme depends only on the two components of homotopy series, the Laplace transformation and, the Padé approximants. The proposed method introduces an alternative framework designed to overcome the difficulty of capturing the behavior of the solution and give a good approximation to the solution for a large time. The Runge-Kutta algorithm was used to solve the governing equation via numerical solution. Finally, to demonstrate the validity of the proposed method, the response of the oscillator, which was obtained from approximate solution, has been shown graphically and compared with that of numerical solution.

  1. Chaos-induced resistivity in the magnetic null region: a nonlinear mechanism of collisionless dissipation.

    Science.gov (United States)

    Numata, Ryusuke; Yoshida, Zensho

    2003-07-01

    Magnetic null points act as scattering centers where particles describe chaotic orbits, and the mixing effect brings about increase of the kinetic entropy. The resultant "chaos-induced resistivity" may explain anomalous diffusion of current in magnetic null regions [Phys. Rev. Lett. 88, 045003 (2002)], which can be much larger than the conventional collisionless resistivity in a high temperature plasma. To study the statistical properties of the system (such as Lyapunov exponents and distribution functions), strong spatial inhomogeneity of the system has been studied to specify the responsible "chaos region."

  2. Nonlinearities in composition dependence of structure parameters and magnetic properties of nanocrystalline fcc/bcc-mixed Co-Ni-Fe thin films

    NARCIS (Netherlands)

    Chechenin, N. G.; Khomenko, E. V.; Vainchtein, D. I.; De Hosson, J. Th. M.

    2008-01-01

    In this report, the nonlinearities are analyzed in fcc-to-bcc (fcc/bcc) population ratio, lattice parameters (a(exp)(fcc)/a(ideal)(fcc) and a(exp)(bcc)/a(ideal)(bcc)) and saturation magnetization (I(S)(obs)/I(S)(a)) of the electrodeposited thin Co-Fe-Ni films as a function of average number of elect

  3. Nonlinear and chaotic magnetization dynamics near bifurcations of the Landau-Lifshitz-Gilbert equation

    Science.gov (United States)

    Ferona, Aaron M.; Camley, Robert E.

    2017-03-01

    The behavior of a uniformly magnetized domain of ellipsoidal shape subject to a static external field and oscillatory external driving field is analyzed near bifurcation events. The analysis includes the effects of both linear and circularly polarized driving fields and is performed using numerical simulations of the Landau-Lifshitz-Gilbert (LLG) equation. Under a linearly polarized driving field, the LLG equation is a nonautonomous differential equation which can lead to complex magnetization motions, such as bistability, multiperiodic orbits, quasiperiodicity, and chaos. Under a circularly polarized driving field, the LLG equation can be written in autonomous form by transforming to the frame rotating with the driving field. The autonomous nature allows one to perform a fixed-point analysis of the system for select demagnetization factors. Similarities and differences between the driven systems are highlighted through bifurcation diagrams, phase portraits, basins of attraction, and Lyapunov exponents. Magnetization switching, prolonged transients, quasiperiodicity, and chaos are observed with both linearly and circularly polarized driving fields in the magnetic systems investigated.

  4. Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields.

    Science.gov (United States)

    Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2013-09-01

    It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.

  5. Nonlinear magnetic resonance behavior and reversible adsorbed gas effects from trace ferromagnestism in Y-zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Iton, L.E.

    1977-01-01

    Unusual spin resonance observations made on a sample of rare earth ion-exchanged Y-zeolite have been attributed to the presence of a ferromagnetic impurity, and are qualitatively explained in terms of existing theories on nonlinear behavior in ferromagnetic resonance at high power. The effects included foldover and bistable response below 136 K, due to classical, anisotropy-based nonlinearity; above 136 K, apparent subsidiary absorption--the Suhl instability driven by coupling of low-frequency spin wave modes to the main resonance--predominated. Modification of the surface anisotropy is suggested to account for the complete suppression of the low-temperature effects when the zeolity sample was cooled in air, the high-temperature effects persisting after this cooling but with a loss of orientational anisotropy. Brief room temperature evacuation of the sample was sufficient to regenerate the original effects. Some details of the resonance behavior are very similar to recently published observations from magnetite impurities; those were there attributed to field-induced transitions. The limitations under which a field-dependent Verwey transition could be used to rationalize such observations have been schematically expounded, and the importance of the microwave field again appears to be the dominating factor.

  6. Comparison of Magnetic Properties in a Magnetic Cloud and Its Solar Source on 2013 April 11-14

    Science.gov (United States)

    Vemareddy, P.; Möstl, C.; Amerstorfer, T.; Mishra, W.; Farrugia, C.; Leitner, M.

    2016-09-01

    In the context of the Sun-Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14-15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory. The MCs magnetic structure is reconstructed from the Grad-Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10-7-10-6 m-1) at the sigmoid leg matches the range of twist number in the MC of 1-2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold-Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.

  7. Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Reena Mary, A P; Anantharaman, M R [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Suchand Sandeep, C S; Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Sadashivanagar, Bangalore-560080 (India); Narayanan, T N; Moloney, Padraig; Ajayan, P M, E-mail: reji@rri.res.in, E-mail: mraiyer@yahoo.com [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX-77005 (United States)

    2011-09-16

    Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of {approx} 5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field.

  8. Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction.

    Science.gov (United States)

    Soares Dos Santos, Marco P; Ferreira, Jorge A F; Simões, José A O; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P

    2016-01-04

    Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.

  9. Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction

    Science.gov (United States)

    Soares Dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.

    2016-01-01

    Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.

  10. The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field

    Science.gov (United States)

    Liu, Xin; Zou, LiLi; Liu, Chenglin; Zhang, Zhi-Hai; Yuan, Jian-Hui

    2016-03-01

    In the present work, the effects of hydrostatic pressure, temperature, and magnetic field on the nonlinear optical rectification (OR) and second-harmonic generation (SHG) in asymmetrical Gaussian potential quantum well (QW) have been investigated theoretically. Here, the expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. Simultaneously, the energy eigenvalues and their corresponding eigenfunctions have been obtained by using the finite difference method. The energy eigenvalues and the shape of the confined potential are modulated by the hydrostatic pressure, temperature, and magnetic field. So the results of a number of numerical experiments indicate that the nonlinear OR and SHG strongly depends on the hydrostatic pressure, temperature, and magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.

  11. Exchange-mediated, nonlinear, out-of-plane magnetic field dependence of the ferromagnetic vortex gyrotropic mode frequency driven by core deformation

    Science.gov (United States)

    Fried, Jasper P.; Fangohr, Hans; Kostylev, Mikhail; Metaxas, Peter J.

    2016-12-01

    We have performed micromagnetic simulations of low-amplitude gyrotropic dynamics of magnetic vortices in the presence of spatially uniform out-of-plane magnetic fields. For disks having small lateral dimensions, we observe a frequency drop-off when approaching the disk's out-of-plane saturation field. This nonlinear frequency response is shown to be associated with a vortex core deformation driven by nonuniform demagnetizing fields that act on the shifted core. The deformation results in an increase in the average out-of-plane magnetization of the displaced vortex state (contrasting the effect of gyrofield-driven deformation at low field), which causes the exchange contribution to the vortex stiffness to switch from positive to negative. This generates an enhanced reduction of the core stiffness at high field, leading to a nonlinear field dependence of the gyrotropic mode frequency.

  12. Using Coronal Loops to Reconstruct the Magnetic Field of an Active Region Before and After a Major Flare

    CERN Document Server

    Malanushenko, A; DeRosa, M L; Wheatland, M S

    2013-01-01

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the nonpotential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of AR 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around time of major flare activity on 2011/02/15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly (HMI and AIA, respectively) onboard the Solar Dynamics Observatory (SDO). The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input, and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a t...

  13. Automatic interpretation of magnetic data using Euler deconvolution with nonlinear background

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.; Ramana, M.V.; Desa, M.; Shailaja, B.

    applied the proposed algorithm to marine magnetic data along the western continental margin of India. The resultant fracture network agrees with the regional structural trends (SUBRAHMANAYAM et al., 1995) and shows positive correlation with bathymetry... to each other, such as the multiple fracture sets, sill etc, then the assumption of linear background breaks down and demands higher-order terms of Taylor series expansion [equation (2)] for unbiased solution. We explore the possibilities of using...

  14. Slow relaxation of the magnetization in non-linear optical active layered mixed metal oxalate chains.

    Science.gov (United States)

    Cariati, Elena; Ugo, Renato; Santoro, Giuseppe; Tordin, Elisa; Sorace, Lorenzo; Caneschi, Andrea; Sironi, Angelo; Macchi, Piero; Casati, Nicola

    2010-12-06

    New Co(II) members of the family of multifunctional materials of general formula [DAMS](4)[M(2)Co(C(2)O(4))(6)]·2DAMBA·2H(2)O (M(III) = Rh, Fe, Cr; DAMBA = para-dimethylaminobenzaldehyde and [DAMS(+)] = trans-4-(4-dimethylaminostyryl)-1-methylpyridinium) have been isolated and characterized. Such new hybrid mixed metal oxalates are isostructural with the previously investigated containing Zn(II), Mn(II), and Ni(II). This allows to preserve the exceptional second harmonic generation (SHG) activity, due to both the large molecular quadratic hyperpolarizability of [DAMS(+)] and the efficiency of the crystalline network which organizes [DAMS(+)] into head-to-tail arranged J-type aggregates, and to further tune the magnetic properties. In particular, the magnetic data of the Rh(III) derivative demonstrate that high spin octacoordinated Co(II) centers behave very similarly to the hexacoordinated Co(II) ones, being dominated by a large orbital contribution. The Cr(III) derivative is characterized by ferromagnetic Cr(III)-Co(II) interactions. Most relevantly, the Fe(III) compound is characterized by a moderate antiferromagnetic interaction between Fe(III) and Co(II), resulting in a ferrimagnetic like structure. Its low temperature dynamic magnetic properties were found to follow a thermally activated behavior (τ(0) = 8.6 × 10(-11) s and ΔE = 21.4 K) and make this a candidate for the second oxalate-based single chain magnet (SCM) reported up to date, a property which in this case is coupled to the second order non linear optical (NLO) ones.

  15. An improved exponential filter for fast nonlinear registration of brain magnetic resonance images

    Institute of Scientific and Technical Information of China (English)

    Zhiying Long; Li Yao; Kewei Chen; Danling Peng

    2009-01-01

    A linear elastic convolution filter was derived from the eigenfunctions of the Navier-Stokes differential operator by Bro-Nielsen in order to match images with large deformations. Due to the complexity of constructing the elastic convolution filter, the algorithm's effi-ciency reduces rapidly with the increase in the image's size. In our previous work, a simple two-sided exponential filter with high efficiency was proposed to approximate an elastic filter. However, its poor smoothness may degenerate the performance. In this paper, a new expo-nential filter was constructed by utilizing a modified nonlinear curve fitting method to approximate the elastic filter. The new filter's good smoothness makes its performance comparable to an elastic filter. Its simple and separable form makes the algorithm's speed faster than the elastic filter. Furthermore, our experiments demonstrated that the new filter was suitable for both the elastic and fluid models.

  16. A new nonlinear diffusion formalism in a magnetized plasma - Application to space physics and astrophysics

    Science.gov (United States)

    Karimbadi, H.; Krauss-Varban, D.

    1992-01-01

    A novel diffusion formalism that takes into account the finite width of resonances is presented. The resonance diagram technique is shown to reproduce the details of the particle orbits very accurately, and can be used to determine the acceleration/scattering in the presence of a given wave spectrum. Ways in which the nonlinear orbits can be incorporated into the diffusion equation are shown. The resulting diffusion equation is an extension of the Q-L theory to cases where the waves have large amplitudes and/or are coherent. This new equation does not have a gap at 90 deg in cases where the individual orbits can cross the gap. The conditions under which the resonance gap at 90-deg pitch angle exits are also examined.

  17. No compelling cosmological models come out of magnetic universes which are based in nonlinear electrodynamics

    CERN Document Server

    Garcia-Salcedo, Ricardo; Quiros, Israel

    2013-01-01

    Here we investigate the cosmic dynamics of Friedmann-Robertson-Walker universes -- flat spatial sections -- which are driven by nonlinear electrodynamics (NLED) Lagrangians. We pay special attention to the check of the sign of the square sound speed since, whenever the latter quantity is negative, the corresponding cosmological model is classically unstable against small perturbations of the background energy density. Besides, based on causality arguments, one has to require that the mentioned small perturbations of the background should propagate at most at the local speed of light. We also look for the occurrence of curvature singularities. Our results indicate that several cosmological models which are based in known NLED Lagrangians, either are plagued by curvature singularities of the sudden and/or big rip type, or are violently unstable against small perturbations of the cosmological background -- due to negative sign of the square sound speed -- or both. In addition, causality issues associated with su...

  18. Rapid Changes of Photospheric Magnetic Field after Tether-Cutting Reconnection and Magnetic Implosion

    CERN Document Server

    Liu, Chang; Liu, Rui; Lee, Jeongwoo; Wiegelmann, Thomas; Jing, Ju; Xu, Yan; Wang, Shuo; Wang, Haimin

    2011-01-01

    The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. This Letter reports such a rapid change of magnetic fields during the 2011 February 13 M6.6 flare in NOAA AR 11158 that we found from the vector magnetograms of the Helioseismic and Magnetic Imager with 12-min cadence. High-resolution magnetograms of Hinode that are available at ~-5.5, -1.5, 1.5, and 4 hrs relative to the flare maximum are used to reconstruct three-dimensional coronal magnetic field under the nonlinear force-free field (NLFFF) assumption. UV and hard X-ray images are also used to illuminate the magnetic field evolution and energy release. The rapid change is mainly detected by HMI in a compact region lying in the center of the magnetic sigmoid, where the mean horizontal field strength exhibited a significant increase by 28%. The region lies between the initial strong UV and hard X-ray sources in the chromosphere, which are cospatial with the central feet of...

  19. Estimation of coefficients of multivariable power series approximating magnetic nonlinearity of AC machines*

    Directory of Open Access Journals (Sweden)

    Sobczyk Tadeusz J.

    2015-09-01

    Full Text Available Energy based approach was used in the study to formulate a set of functions approximating the magnetic flux linkages versus independent currents. The simplest power series that approximates field co-energy and linked fluxes for a two winding core of an induction machine are described by a set of common unknown coefficients. The authors tested three algorithms for the coefficient estimation using Weighted Least-Squared Method for two different positions of the coils. The comparison of the approximation accuracy was accomplished in the specified area of the currents. All proposed algorithms of the coefficient estimation have been found to be effective. The algorithm based solely on the magnetic field co-energy values is significantly simpler than the method based on the magnetic flux linkages estimation concept. The algorithm based on the field co-energy and linked fluxes seems to be the most suitable for determining simultaneously the coefficients of power series approximating linked fluxes and field co-energy.

  20. The HMI Magnetic Field Pipeline

    Science.gov (United States)

    Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

    2009-05-01

    The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

  1. Effects of Magnetic Field and Nonlinear Temperature Profile on Marangoni Convection in Micropolar Fluid

    Directory of Open Access Journals (Sweden)

    M. N. Mahmud

    2009-01-01

    Full Text Available The combined effects of a uniform vertical magnetic field and a nonuniform basic temperature profile on the onset of steady Marangoni convection in a horizontal layer of micropolar fluid are studied. The closed-form expression for the Marangoni number M for the onset of convection, valid for polynomial-type basic temperature profiles upto a third order, is obtained by the use of the single-term Galerkin technique. The critical conditions for the onset of convection have been presented graphically.

  2. Measurement of magnetic turbulence structure and nonlinear mode coupling of tearing fluctuations in the Madison Symmetric Torus reversed field pinch edge

    Energy Technology Data Exchange (ETDEWEB)

    Assadi, S.

    1994-01-01

    Linear and nonlinear magnetohydrodynamic (MHD) stability of current-driven modes are studied in the MST reversed field pinch. Measured low frequency (f < 35 kHz) magnetic fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 35 kHz, the magnetic fluctuations were detected to be localized and externally resonant. Discrete dynamo events, ``sawtooth oscillations,`` have been observed in the experimental RFP plasmas. This phenomenon causes the plasma to become unstable to m = 1 tearing modes. The modes that may be important in different phases of these oscillations are identified. These results then assist in nonlinear studies and also help to interpret the spectral broadening of the measured data during a discrete dynamo event. Three-wave nonlinear coupling of spectral Fourier modes is measured in the MST by applying bispectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 poloidal and 32 toroidal modes. Comparison to bispectra predicted by resistive MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomitant with a broadened k-spectrum. During the sawtooth formation the plasma is undergoing a pure diffusive process. The dynamo only occurs during the sawtooth crash. High frequency activity prior to a sawtooth crash is caused by nonlinear frequency (small-scale) mode coupling. Growth rate and coupling coefficients of toroidal mode spectra are calculated by statistical modeling. Temporal evolution of edge toroidal mode spectra has been predicted by transfer function analysis. The driving sources of electrostatic fields are different than for the magnetic fields. The characteristics of tearing modes can be altered by external field errors and addition of impurities to the plasma.

  3. Force-free Currents and the Newman-Penrose Tetrad of a Kerr Black Hole: Exact Local Solutions

    CERN Document Server

    Menon, Govind

    2015-01-01

    In a previous article we derived a class of solutions to the force-free magnetosphere in a Kerr background. Here, the streaming surface, defined by constant values of the toriodal component of the electromagnetic vector potential $A$, were generated by constant values of $\\theta$. The electromagnetic current vector flowed along the in-falling principle null geodesic vector of the geometry. Subsequently, we generalized this to obtain an out-going principle null geodesic vector as well. In this article, we derive solutions that are complimentary to the above mentioned criteria. Namely, here the solution has a streaming surface generated by spheres of constant radial coordinate $r$, and the current vector is generated by linear combinations of $m$ and $m^\\star$, the remaining bases vectors in the Newman-Penrose null tetrad.

  4. Kerr/CFT correspondence in a 4D extremal rotating regular black hole with a non-linear magnetic monopole

    Directory of Open Access Journals (Sweden)

    Shingo Takeuchi

    2017-08-01

    Full Text Available We carry out the Kerr/CFT correspondence in a four-dimensional extremal rotating regular black hole with a non-linear magnetic monopole (NLMM. One problem in this study would be whether our geometry can be a solution or not. We search for the way making our rotating geometry into a solution based on the fact that the Schwarzschild regular geometry can be a solution. However, in the attempt to extend the Schwarzschild case that we can naturally consider, it turns out that it is impossible to construct a model in which our geometry can be a exact solution. We manage this problem by making use of the fact that our geometry can be a solution approximately in the whole space-time except for the black hole's core region. As a next problem, it turns out that the equation to obtain the horizon radii is given by a fifth-order equation due to the regularization effect. We overcome this problem by treating the regularization effect perturbatively. As a result, we can obtain the near-horizon extremal Kerr (NHEK geometry with the correction of the regularization effect. Once obtaining the NHEK geometry, we can obtain the central charge and the Frolov–Thorne temperature in the dual CFT. Using these, we compute its entropy through the Cardy formula, which agrees with the one computed from the Bekenstein–Hawking entropy.

  5. Nonlinear Burn Control in Tokamaks using Heating, Non-axisymmetric Magnetic Fields, Isotopic fueling and Impurity injection

    Science.gov (United States)

    Pajares, Andres; Schuster, Eugenio

    2016-10-01

    Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.

  6. Influence of the nonlinearity parameter on the solar-wind sub-ion magnetic energy spectrum: FLR-Landau fluid simulations

    CERN Document Server

    Sulem, P L; Laveder, D; Borgogno, D

    2015-01-01

    The cascade of kinetic Alfv\\'en waves (KAWs) at the sub-ion scales in the solar wind is numerically simulated using a fluid approach that retains ion and electron Landau damping, together with ion finite Larmor radius corrections. Assuming initially equal and isotropic ion and electron temperatures, and an ion beta equal to unity, different simulations are performed by varying the propagation direction and the amplitude of KAWs that are randomly driven at a transverse scale of about one fifth of the proton gyroradius in order to maintain a prescribed level of turbulent fluctuations. The resulting turbulent regimes are characterized by the nonlinearity parameter, defined as the ratio of the characteristic times of Alfv\\'en wave propagation and of the transverse nonlinear dynamics. The corresponding transverse magnetic energy spectra display power laws with exponents spanning a range of values consistent with spacecraft observations. The meandering of the magnetic field lines together with the ion temperature h...

  7. A note on a nonlinear equation arising in discussions of the steady fall of a resistive, viscous, isothermal fluid across a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Lerche, I., E-mail: lercheian@yahoo.com [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle, D-06099 Halle (Germany)

    2015-11-15

    This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are of use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].

  8. Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, M. [WCI Center for Fusion Theory, NFRI (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, NFRI (Korea, Republic of); CMTFO and CASS, UCSD, California 92093 (United States)

    2012-05-15

    In this work, we study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows, and confinement in the framework of resistive drift wave turbulence. We extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large ({delta}B{sub r}/B{sub 0}). Both the vorticity flux (Reynolds stress) and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolution of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. We find states that are similar to the ZF-dominated state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude, the energy of zonal flows decreases and the turbulence energy increases with ({delta}B{sub r}/B{sub 0}), corresponding to a damping of zonal flows.

  9. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    Directory of Open Access Journals (Sweden)

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  10. Spin–orbit interaction effect on the linear and nonlinear properties of quantum wire in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lahon, Siddhartha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Kumar, Manoj, E-mail: manojmalikdu@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jha, Pradip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, DDU College, University of Delhi, Delhi 110007 (India); Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2013-12-15

    Here we have investigated the influence of external electric field and magnetic field on the optical absorption and refractive index changes of a parabolically confinement wire in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate an increase of electric field redshifts the peak positions of absorption coefficient and refractive index changes. The role of confinement strength and spin orbit interaction strength as control parameters on the linear and nonlinear properties have been demonstrated. -- Highlights: • We study nonlinear properties in a quantum wire. • We have solved the effect of external electric and magnetic field with Rashba spin orbit interaction on linear and nonlinear properties in quantum wire. • We have used density matrix theory approach. • We find that the absorption coefficients and changes in refractive index are shifted.

  11. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  12. A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability

    Science.gov (United States)

    Patsourakos, S.; Georgoulis, M. K.

    2017-07-01

    Patsourakos et al. ( Astrophys. J. 817, 14, 2016) and Patsourakos and Georgoulis ( Astron. Astrophys. 595, A121, 2016) introduced a method to infer the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the solar corona and farther away in the interplanetary medium. The method, based on the conservation principle of magnetic helicity, uses the relative magnetic helicity of the solar source region as input estimates, along with the radius and length of the corresponding CME flux rope. The method was initially applied to cylindrical force-free flux ropes, with encouraging results. We hereby extend our framework along two distinct lines. First, we generalize our formalism to several possible flux-rope configurations (linear and nonlinear force-free, non-force-free, spheromak, and torus) to investigate the dependence of the resulting CME axial magnetic field on input parameters and the employed flux-rope configuration. Second, we generalize our framework to both Sun-like and active M-dwarf stars hosting superflares. In a qualitative sense, we find that Earth may not experience severe atmosphere-eroding magnetospheric compression even for eruptive solar superflares with energies {≈} 104 times higher than those of the largest Geostationary Operational Environmental Satellite (GOES) X-class flares currently observed. In addition, the two recently discovered exoplanets with the highest Earth-similarity index, Kepler 438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic fields that are much higher than that of Earth.

  13. Generation of geodesic acoustic mode by nonlinear coupling of magnetic island and island-driven beta-induced Alfvén eigenmode

    Science.gov (United States)

    Marchenko, V. S.; Panwar, A.; Reznik, S. N.; Ryu, C. M.

    2017-09-01

    In a recent work, we have shown that the plasma flow around the magnetic island can excite the beta-induced Alfvén eigenmode (BAE) (Marchenko et al 2016 Nucl. Fusion 56 106021). In the present communication, it is shown that coupling of this primary BAE and magnetic island generates secondary geodesic acoustic mode (GAM), which has the frequency and mode structure identical to those of the primary BAE. The fixed GAM/BAE amplitude ratio, determined by the plasma neutrality, is comparable with the plasma/magnetic pressure ratio. This nonlinear coupling can be responsible for axis-symmetric modes, which accompany island-driven Alfvénic modes observed on HL-2A tokamak (Chen et al 2013 Nucl. Fusion 53 113010).

  14. Magnetic field-induced off-resonance third-order optical nonlinearity of iron oxide nanoparticles incorporated mesoporous silica thin films during heat treatment.

    Science.gov (United States)

    Cui, Fangming; Feng, Chude; Xie, Rongjun; Hua, Zile; Ohtsuka, Hideyuki; Sakka, Yoshio; Shi, Jianlin

    2010-02-01

    Highly dispersed and uniform Fe(2)O(3) nanoparticles (NPs) have been incorporated into the pore channels of SBA-15 mesoporous silica thin films (MSTFs). And such Fe(2)O(3) NPs incorporated MSTFs did not show detectable nonlinear optical (NLO) signals at off-resonance wavelength 1064 nm by Z-scan technique. However after a vacuum heat treatment at 800 degrees C for 1 h under 6 T magnetic field, the Fe(2)O(3) NPs incorporated MSTFs with very low Fe content (0.8 approximately 1.5 at.%) presented distinctive NLO signals with chi(3) value in an order of 10(-10) esu. We proposed the physical reason for the NLO property generation to be the magnetic domain orientation of the iron oxide NPs incorporated within the pore channels of the MSTFs by the magnetic field heat treatment.

  15. Linear and nonlinear optical absorption coefficients and refractive index changes in modulation-doped quantum wells: Effects of the magnetic field and hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, M.; Karimi, M.J., E-mail: karimi@sutech.ac.ir; Keshavarz, A.

    2013-11-01

    In this study, the linear, the third-order nonlinear and total optical absorption coefficients and refractive index changes of a modulation-doped GaAs/Al{sub x}Ga{sub 1−x}As quantum well are investigated numerically. In the effective-mass approximation, the electronic structure of modulation-doped quantum well is calculated by solving the Schrödinger and Poisson equations self-consistently. Optical properties are obtained using the compact density matrix approach. The effects of structure parameters, the applied magnetic field and the hydrostatic pressure on the optical properties of the modulation-doped quantum well are studied. Results show that the resonant peaks shift toward the higher (lower) energies with the increase in the magnetic field (pressure). The magnitude of the resonant peaks of the optical properties decreases with the increasing magnetic field or pressure.

  16. Mutual Inductance and Magnetic Force Calculations for Bitter Disk Coil (Pancake with Nonlinear Radial Current and Filamentary Circular Coil with Azimuthal Current

    Directory of Open Access Journals (Sweden)

    Slobodan Babic

    2016-01-01

    Full Text Available Bitter coils are electromagnets used for the generation of extremely strong magnetic fields superior to 30 T. In this paper we calculate the mutual inductance and the magnetic force between Bitter disk (pancake coil with the nonlinear radial current and the circular filamentary coil with the azimuthal current. The close form expressed over complete elliptic integrals of the first and second kind as well as Heuman’s Lambda function is obtained for this configuration either for the mutual inductance or for the magnetic force. The results of this method are compared with those obtained by the improved modified filament method for the presented configuration. All results are in an excellent agreement.

  17. Study on Nonlinear Magnetic Force of Magnetic Suspended Flywheel System Using ANSYS Electromagnetic Analysis%基于ANSYS电磁场分析的磁悬浮飞轮非线性磁力研究

    Institute of Scientific and Technical Information of China (English)

    陈小飞; 刘昆

    2011-01-01

    The nonlinear magnetic force of Magnetic Suspended Flywheel System(MSFS) is studied using ANSYS electromagnetic analysis method.MSFS is modeled using ANSYS Parametric Design Language(APDL) and the magnetic force is calculated by ANSYS.The magnetic force and corresponding parameters are analyzed to locate the dominating nonlinear items.The simulation results indicate that the 2nd order coefficients are enough to approximate the nonlinear magnetic force with respect to displacement or control current;the displacement coupling and current coupling between two radial axes are remarkably strong;moreover,the radial movement does affect axial movement without obvious rule while axial movement has little effects on radial movement in reverse.%为研究磁悬浮飞轮动力学模型,基于ANSYS电磁场分析讨论非线性磁力。采用ANSYS参数化语言建立磁悬浮飞轮有限元模型,实现变参数批量计算,根据计算结果讨论磁悬浮飞轮各自由度参数与磁轴承磁力关系,确定较为显著的非线性项。分析表明:二次项系数已足以表明磁力与位移和控制电流的非线性关系;磁轴承径向两个通道间的位置耦合和电流耦合显著;轴向运动对径向运动的影响较小,而径向运动对轴向运动的影响较大,但规律不确定。

  18. Preliminary investigation of force-reduced superconducting magnet configurations for advanced technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, J.X.

    1992-12-01

    The feasibility of new high-field low specific weight superconducting magnet designs using force-free fields is being explored analytically and numerically. This report attempts to assess the technical viability of force-free field concepts to produce high-field, low specific weight and large bore volume magnets, which could promote the use of high temperature superconductors. Several force-free/force-reduced magnet configurations are first reviewed, then discussed and assessed. Force-free magnetic fields, fields for which the current flows parallel to the field, have well-known mathematical solutions extending upon infinite domains. These solutions, however, are no longer force-free everywhere for finite geometries. In this preliminary study, force-free solutions such as the Lundquist solutions truncated to a size where the internal field of the coil matches an externally cylindrical magnetic field (also called a Lundquist coil) are numerically modeled and explored. Significant force-reduction for such coils was calculated, which may have some importance for the design of lighter toroidal magnets used in thermonuclear fusion power generation, superconducting magnetic energy storage (SMES), and mobile MHD power generation and propulsion.

  19. Modelling the Propagation of a Weak Fast-Mode MHD Shock Wave near a 2D Magnetic Null Point Using Nonlinear Geometrical Acoustics

    Science.gov (United States)

    Afanasyev, A. N.; Uralov, A. M.

    2012-10-01

    We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.

  20. Effects of applied electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field

    Science.gov (United States)

    Ungan, Fatih

    2017-01-01

    In this present study, the effects of electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field have been investigated theoretically. The energy eigenvalues and their corresponding eigenfunctions are obtained by solving Schrödinger equation within the framework of effective mass approximation. The analytic expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. The numerical results are presented for a typical GaAs/Ga1- x Al x As quantum well. The results show that the nonlinear optical rectification and second-harmonic generation coefficients are considerably affected by the electromagnetic fields and intense laser field.

  1. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  2. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Science.gov (United States)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-01

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  3. Modelling the Propagation of a Weak Fast-Mode MHD Shock Wave near a 2D Magnetic Null Point Using Nonlinear Geometrical Acoustics

    CERN Document Server

    Afanasyev, Andrey N

    2012-01-01

    We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.

  4. Quantifying the Topology and Evolution of a Magnetic Flux Rope Associated with Multi-flare Activities

    CERN Document Server

    Yang, Kai; Ding, M D

    2016-01-01

    Magnetic flux rope (MFR) plays an important role in solar activities. A quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and the associated activities. In this paper, we investigate the magnetic field of active region 12017 from 2014 March 28 to 29, where 12 flares were triggered by the intermittent eruptions of a filament (either successful or confined). Using the vector magnetic field data from the Helioseismic and Magnetic Imager on board the \\textit{Solar Dynamics Observatory}, we calculate the magnetic energy and helicity injection in the active region, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR by a closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The re...

  5. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsov, Maxim A., E-mail: shevtsov-max@mail.ru [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); A.L. Polenov Russian Research Scientific Institute of Neurosurgery, Mayakovsky str. 12, St. Petersburg 191014 (Russian Federation); Nikolaev, Boris P. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Ryzhov, Vyacheslav A. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Yakovleva, Ludmila Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Dobrodumov, Anatolii V. [Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, St. Petersburg 199004 (Russian Federation); Marchenko, Yaroslav Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Margulis, Boris A. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); Pitkin, Emil [The Wharton School, University of Pennsylvania, 3730 Walnut St., Philadelphia, PA 19104 (United States); Guzhova, Irina V. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation)

    2015-08-15

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M{sub 2}). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T{sub 2}-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M{sub 2} measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M{sub 2} ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates

  6. Non-linear exciton spin-splitting in single InAs/GaAs self-assembled quantum structures in ultrahigh magnetic fields

    OpenAIRE

    Babinski, A.; Ortner, G.; Raymond, S.; Potemski, M.; Bayer, M.; Hawrylak, P.; Forchel, A.; Wasilewski, Z.; Fafard,S.

    2005-01-01

    We report on the magnetic field dispersion of the exciton spin-splitting and diamagnetic shift in single InAs/GaAs quantum dots (QDs) and dot molecules (QDMs) up to $B$ = 28 T. Only for systems with strong geometric confinement, the dispersions can be well described by simple field dependencies, while for dots with weaker confinement considerable deviations are observed: most importantly, in the high field limit the spin-splitting shows a non-linear dependence on $B$, clearly indicating light...

  7. Three dimensional non-linear evolution of a magnetic flux tube in a spherical shell: Influence of turbulent convection and associated mean flows

    CERN Document Server

    Jouve, Laurene

    2009-01-01

    We present the first 3D MHD study in spherical geometry of the non-linear dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone. We study numerically the rise of magnetic toroidal flux ropes from the base of a modelled convection zone up to the top of our computational domain where bipolar patches are formed. We compare the dynamical behaviour of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional circulation and differential rotation, with reference calculations done in a quiet isentropic zone. We find that two parameters influence the tubes during their rise through the convection zone: the initial field strength and amount of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or high). By contrast, weaker field cases indicate that downflows and upflow...

  8. Superparamagnetic state by linear and non-linear AC magnetic susceptibility in Mn0.5Zn0.5Fe2O4 ferrites nanoparticles.

    Science.gov (United States)

    Suneetha, T; Kundu, S; Kashyap, Subhash C; Gupta, H C; Nath, T K

    2013-01-01

    The Mn0.5Zn0.5Fe2O4 nanoparticles has been synthesized using citrate-gel-precursor method. The direct mixing of nitrates and acetates yields homogeneous nanoparticles. Phase formation and crystal structure of the synthesized powder were examined through the X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectra of the sample confirm the spinel structure. The average particle size was determined by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The average particle size is found to be about 13 nm. Superparamagnetic-like nature of the nanoparticles of Mn0.5Zn0.5Fe2O4 has been revealed through various dc and linear and non-linear ac magnetization measurements. However, the nanoparticles do not behave like ideal non-interacting superparamagnets. The magnetic particle size is found to be about 8 nm with saturation magnetization about 18.1 emu/g. The blocking temperature (T(B)) of the nanoparticle assembly is found to be about 150 K as observed from dc and ac magnetization measurements. The frequency dependence of the blocking temperature (T(B)) is found to follow Vogel-Fulcher law. The associated characteristic time tau0 is found to be 10(-5) s. This value is different from that generally found for non-interacting superparamagnetic (SPM) systems (tau0 = 10(-9)-10(-10) s).

  9. The nonlinear-electrodynamic bending of the x-ray and gamma-ray in the magnetic field of pulsars and magnetars

    CERN Document Server

    Denisov, V Yu; Svertilov, S I; Denisov, Victor I.; Denisova, Irene P.; Svertilov, Sergey I.

    2001-01-01

    It was shown that according to the non-linear electrodynamics of vacuum electromagnetic rays should bend in the field of magnetic dipole. The angles of ray bending in the gravitational and magnetic fields of pulsars and magnetars were obtained. In the case of pulsars with $b\\sim R\\sim $ 100 km, $B_0\\sim 10^{13} G$ the value of the angle of non-linear electrodynamic bending of a ray in the Heisenberg-Euler theory will reach the value of $\\delta \\psi_{NED}\\sim 30'',$ and in the case of a magnetar with $B_0\\sim 10^{15} G$ the angle $\\delta \\psi_{NED}$ will increase to $\\delta \\psi_{NED}\\sim 1 rad\\sim 60^\\circ .$ The angle of gravitational bending of a ray at neutron star with $r_g$ = 3 km in the same conditions will be equal to $\\delta \\psi_g\\sim 0.06$ rad $\\sim 4^\\circ >.$ Observations can only be made in X- rays and gamma-rays, for which the agnetosphere is quite opaque. Because the distance from the Earth to the well-known pulsars and magnetars is too large to observe the pure effect of a ray bending. The non...

  10. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    Science.gov (United States)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Marchenko, Yaroslav Y.; Margulis, Boris A.; Pitkin, Emil; Guzhova, Irina V.

    2015-08-01

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION-Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M2). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T2-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION-Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors.

  11. Modeling coronal magnetic field using spherical geometry: cases with several active regions

    CERN Document Server

    Tadesse, Tilaye; Olson, K; MacNeice, P J

    2013-01-01

    The magnetic fields in the solar atmosphere structure the plasma, store free magnetic energy and produce a wide variety of active solar phenomena, like flare and coronal mass ejections(CMEs). The distribution and strength of magnetic fields are routinely measured in the solar surface(photosphere). Therefore, there is considerable interest in accurately modeling the 3D structure of the coronal magnetic field using photospheric vector magnetograms. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma. Nonlinear force-free field (NLFFF) models are thought to be viable tools for those task. Usually those models use Cartesian geometry. However, the spherical nature of the solar surface cannot be neglected when the field of view is large. In this work, we model the coronal magnetic field above multiple active regions using NLFFF extrapolation code using vector magnetograph data from the Synoptic Optical Long-term...

  12. Photon and dilepton spectra from nonlinear QED effects in supercritical magnetic fields induced by heavy-ion collisions

    CERN Document Server

    Hattori, Koichi

    2015-01-01

    We discuss properties of photons in extremely strong magnetic fields induced by the relativistic heavy-ion collisions. We investigate the vacuum birefringence, the real-photon decay, and the photon splitting which are all forbidden in the ordinary vacuum, but become possible in strong magnetic fields. These effects potentially give rise to anisotropies in photon and dilepton spectra.

  13. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Science.gov (United States)

    Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin

    2017-06-01

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  14. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  15. Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling

    Science.gov (United States)

    Gunár, S.; Mackay, D. H.

    2016-07-01

    Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.

  16. On the Force-Freeness of the Photospheric Sunspot Magnetic Fields as Observed from Hinode (SOT/SP)

    CERN Document Server

    Tiwari, Sanjiv Kumar

    2011-01-01

    A magnetic field is force-free if there is no interaction between the magnetic field and plasma in surrounding atmosphere i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. Computation of various magnetic parameters such as magnetic energy, gradient of twist of sunspot fields and any kind of extrapolations, heavily hinge on the force-free approximation of the photospheric sunspot magnetic fields. Thus it is important to inspect the force-freeness of sunspot fields. The force-freeness of sunspot magnetic fields has been examined earlier by some researchers ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. We use several such vector magnetograms obtained from the Solar Optical Telescope/Spectro-Polarimeter aboard the Hinode. Both necessary and sufficient conditions for force-freeness are examined by checking global and local nature of magnetic forces ...

  17. Nonlinear magnetoinductive transmission lines

    CERN Document Server

    Lazarides, Nikos; Tsironis, G P

    2011-01-01

    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent cap...

  18. Magnetic structure of Coronal Mass Ejections

    CERN Document Server

    Lyutikov, Maxim

    2012-01-01

    We present several models of the magnetic structure of solar coronal mass ejections (CMEs). First, we model CMEs as expanding force-free magnetic structures. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, while the field structures remain force-free. Second, expansion of a CME can drive resistive dissipation within the CME changing the ionization states of different ions. We fit in situ measurements of ion charge states to the resistive spheromak solutions. Finally, we consider magnetic field structures of fully confined stable magnetic clouds containing both toroidal and poloidal magnetic fields and having no surface current sheets. Expansion of such clouds may lead to sudden onset of reconnection events.

  19. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Restrepo, R.L. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Ungan, F.; Yesilgul, U.; Sari, H. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-03-15

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga{sub 1−x}Al{sub x}As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width.

  20. Alignment-to-orientation conversion in a magnetic field at nonlinear excitation of the D2 line of rubidium: Experiment and theory

    Science.gov (United States)

    Auzinsh, M.; Berzins, A.; Ferber, R.; Gahbauer, F.; Kalvans, L.; Mozers, A.; Spiss, A.

    2015-05-01

    We studied alignment-to-orientation conversion caused by excited-state level crossings in a nonzero magnetic field of both atomic rubidium isotopes. Experimental measurements were performed on the transitions of the D2 line of rubidium. These measured signals were described by a theoretical model that takes into account all neighboring hyperfine transitions, the mixing of magnetic sublevels in an external magnetic field, the coherence properties of the exciting laser radiation, and the Doppler effect. In the experiments, laser-induced fluorescence components were observed at linearly polarized excitation and their difference was taken afterwards. By observing the two oppositely circularly polarized components, we were able to see structures not visible in the difference graphs, which give deeper insight into the processes responsible for these signals. We studied how these signals are dependent on intensity and how they are affected when the exciting laser is tuned to different hyperfine transitions. The comparison between experiment and theory was carried out fulfilling the nonlinear absorption conditions. The theoretical curves described the experimental measurements satisfactorily, reproducing even small features in the shapes of the curves.

  1. Effect of Self-Magnetic Fields on the Nonlinear Dynamics of Relativistic Electron Beam with Virtual Cathode

    CERN Document Server

    Hramov, A E; Koronovskii, A A; Filatova, A E; 10.1063/1.4765062

    2013-01-01

    The report is devoted to the results of the numerical study of the virtual cathode formation conditions in the relativistic electron beam under the influence of the self-magnetic and external axial magnetic fields. The azimuthal instability of the relativistic electron beam leading to the formation of the vortex electron structure in the system was found out. This instability is determined by the influence of the self-magnetic fields of the relativistic electron beam and it leads to the decrease of the critical value of the electron beam current (current when the non-stationary virtual cathode is formed in the drift space). The typical dependencies of the critical current on the external uniform magnetic field value were discovered. The effect of the beam thickness on the virtual cathode formation conditions was also analyzed.

  2. Onset and Evolution of Magnetic Reconnection in Line-Tied Systems

    Science.gov (United States)

    Daughton, W. S.; Akcay, C.; Billey, Z.; Finn, J.; Zweibel, E.; Gekelman, W. N.

    2014-12-01

    In space and astrophysical plasmas, current sheets arise spontaneously from the interaction of large-scale flows or magnetic structures. As these current layers approach kinetic scales, they may become unstable to the collisionless tearing instability, resulting in the formation and interaction of magnetic flux ropes. While theoretical treatments of the tearing instability have largely focused on 1D equilibria with periodic boundary conditions, current sheets in nature have a finite spatial extent and are embedded within larger open systems. In many applications, the field boundary conditions are line-tied as in the case of flux ropes on the dayside magnetopause where the ionosphere acts as a conducting surface. To assess the applicability of existing tearing theory to these more realistic configurations, we consider a series of 3D kinetic simulations of initially force-free current layers with line-tied boundary conditions for the fields, and open boundaries for the particles. The geometry and plasma parameters are motivated by a new laboratory experiment on the Large Plasma Device at UCLA. For sufficiently long systems, we demonstrate that key aspects of the theory remain valid, and a threshold condition is derived for the onset of reconnection in line-tied systems. To gain additional insight into the nonlinear evolution, field-line mapping diagnostics are employed to characterize the 3D structure of the magnetic field, the nonlinear reconnection rate and the dominant non-ideal terms in the generalized Ohm's law.

  3. 纵向辅磁双稳态压电悬臂梁非线性动力学%Nonlinear Dynamicson Auxiliary Magnet for a Bistable Piezoelectric Cantilever Beam

    Institute of Scientific and Technical Information of China (English)

    姚明辉; 李印波; 张伟

    2015-01-01

    为了解决双稳态压电悬臂梁输出电压小等问题,引入了上吸引下排斥纵向辅助磁力,通过实验研究了辅助磁力对于双稳态压电悬臂梁复杂非线性动力学行为的影响. 实验所用的材料为上下对称的层合梁,压电层的材料为极化后的PVDF,基层的材料为黄铜. 对压电悬臂梁进行简谐激励,通过电压和位移的正向扫频和逆向扫频研究系统的跳跃现象,研究辅助磁力对于系统动力学行为的影响,分析纵向辅助磁力对系统由倍周期分叉进入混沌运动的影响. 实验结果表明:当辅助磁铁与主磁铁之间的距离较大时,该双稳态系统表现出明显的硬弹簧特性;当辅助磁铁与主磁铁之间的距离较小时,该双稳态系统表现出明显的软弹簧特性;当辅助磁铁与主磁铁之间的距离由小变大时,系统表现出复杂化的非线性行为.%This paper introduced the auxiliary magnetic force based on the bistable piezoelectric cantilever beam in order to improve the voltage output of the bistable piezoelectric cantilever beam. The influence of the auxiliary magnetic force on the complex nonlinear dynamic responses of the bistable piezoelectric cantilever beam was studied. The experiment structure was a symmetric laminated beam. The material of the piezoelectric layer was PVDF, and the material of the basic layer was brass. The excitation of the piezoelectric cantilever beam was the harmonic excitation. The jump phenomenon was studied by the forward sweep frequency and the reverse sweep frequency of the voltage and displacement. The effect of longitudinal auxiliary magnetic force on the chaotic motion of the system was researched. Experimental results showed that when the distance between the auxiliary magnet and the primary magnet is large, the bistable system exhibits obvious hard spring characteristic. When the distance between the auxiliary magnet and the primary magnet is small, the bistable system exhibits

  4. The formation of an inverse S-shaped active-region filament driven by sunspot motion and magnetic reconnection

    CERN Document Server

    Yan, X L; Guo, Q L; Xue, Z K; Wang, J C; Yang, L H

    2016-01-01

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from October 31 to November 2, 2013. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities under the upper part of the filament. Nonlinear force-free field (NLFFF) extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.

  5. Structure, Stability, and Evolution of Magnetic Flux Ropes from the Perspective of Magnetic Twist

    CERN Document Server

    Liu, Rui; Titov, Viacheslav S; Chen, Jun; Wang, Yuming; Wang, Haimin; Liu, Chang; Xu, Yan; Wiegelmann, Thomas

    2015-01-01

    We investigate the evolution of NOAA Active Region 11817 during 2013 August 10--12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number $\\mathcal{T}_w$ for each individual field line. The MFR is moderately twisted ($|\\mathcal{T}_w| < 2$) and has a well-defined boundary of high squashing factor $Q$. We found that the field line with the extremum $|\\mathcal{T}_w|$ is a reliable proxy of the rope axis, and that the MFR's peak $|\\mathcal{T}_w|$ temporarily increases within half an hour before each flare while it decreases after the flare peak for both confined and eruptive flares. This pre-flare increase in $|\\mathcal{T}_w|$ has li...

  6. A Non-radial Eruption in a Quadrupolar Magnetic Configuration with a Coronal Null

    Science.gov (United States)

    Sun, Xudong; Hoeksema, J. Todd; Liu, Yang; Chen, Qingrong; Hayashi, Keiji

    2012-10-01

    We report one of the several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory. A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Nonlinear force-free field extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated ~2 × 1031 erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60° with respect to the radial direction, forming a jet-like, inverted-Y-shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reconnection signatures appeared near the inferred null. Part of the magnetic setting resembles that of a blowout-type jet; the observed inverted-Y structure likely outlines the open field lines along the separatrix surface. Owing to the asymmetrical photospheric flux distribution, the confining magnetic pressure decreases much faster horizontally than upward. This special field geometry likely guided the non-radial eruption during its initial stage.

  7. A NON-RADIAL ERUPTION IN A QUADRUPOLAR MAGNETIC CONFIGURATION WITH A CORONAL NULL

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xudong; Hoeksema, J. Todd; Liu Yang; Hayashi, Keiji [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Chen Qingrong, E-mail: xudong@sun.stanford.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2012-10-01

    We report one of the several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory. A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Nonlinear force-free field extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated {approx}2 Multiplication-Sign 10{sup 31} erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60 Degree-Sign with respect to the radial direction, forming a jet-like, inverted-Y-shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reconnection signatures appeared near the inferred null. Part of the magnetic setting resembles that of a blowout-type jet; the observed inverted-Y structure likely outlines the open field lines along the separatrix surface. Owing to the asymmetrical photospheric flux distribution, the confining magnetic pressure decreases much faster horizontally than upward. This special field geometry likely guided the non-radial eruption during its initial stage.

  8. Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields

    Science.gov (United States)

    Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Kasapoglu, E.; Duque, C. A.

    2015-05-01

    The effects of electric and magnetic fields on the nonlinear optical rectification and second harmonic generation coefficients related with intersubband transitions in a semi-parabolic quantum well under intense laser field are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the conduction band Schrödinger-like equation in the parabolic approximation and the envelope function approach. Numerical calculations are presented for a typical GaAs/Ga1-xAlxAs quantum well. The results show that both the non-resonant intense laser field and the static external fields have significant influences on the magnitude and resonant peak energy positions of the coefficients under study.

  9. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Krommes

    2009-05-19

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  10. Effect of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic-nanofluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    M. Jayachandra Babu

    2016-09-01

    Full Text Available The current study covers the relative study of non-aligned magnetohydrodynamic stagnation point flow of a nanofluid comprising gyrotactic microorganisms across a stretching sheet in the presence of nonlinear thermal radiation and variable viscosity. The governing equations transitioned as nonlinear ordinary differential equations with suited similarity transformations. With the assistance of Runge-Kutta based shooting method, we derived solutions. Results for oblique and free stream flow cases are exhibited through plots for the parameters of concern. In tabular form, heat and mass transfer rate along with the local density of the motile microorganisms are analyzed for some parameters. It is found that local density of the motile microorganisms is highly influenced by the Biot and Peclet numbers. Rising values of the magnetic field parameter, Biot number, thermal radiation parameter and thermophoresis parameter increase the thermal boundary layer. Bioconvection Peclet number and bioconvection Lewis number have tendency to reduce the density of the motile microorganisms. It is also found that thermal and concentration boundary layers become high in free stream flow when compared with the oblique flow.

  11. Deriving Potential Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Welsch, Brian T.; Fisher, George H.

    2016-08-01

    The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampère's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used with available line-of-sight magnetic field measurements, which approximate the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid, "least-squares" potential field, which minimizes the integrated square of the residual between the potential and actual fields. We also explore weighting the residuals in the fit by spatially uniform measurement uncertainties. This has advantages both in not overfitting the radial field used for the Neumann BC, and in maximizing consistency with the observations. We demonstrate our methods with SDO/HMI vector magnetic field observations of active region 11158, and find that residual discrepancies between the observed and potential fields are significant, and they are consistent with nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid-potential fields have significantly less energy than the Neumann fields in every case - by more than 10^{32} erg in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.

  12. Influence of the combined effect of magnetic field and rotation on the onset of a non-Newtonian viscoelastic nanofluid layer: Linear and nonlinear analyses

    Science.gov (United States)

    Khurana, Meenakshi; Rana, Puneet; Srivastava, Sangeet

    2016-12-01

    In the present paper, we present both linear and nonlinear analyses to investigate thermal instability on a rotating non-Newtonian viscoelastic nanofluid layer under the influence of a magnetic field. In the linear stability analysis, the stationary and oscillatory modes of convection are obtained for various controlling parameters using the normal mode technique. Both Nusselt and Sherwood numbers are calculated after employing the minimal truncated Fourier series to steady and unsteady state. The main findings conclude that rotation and strain retardation parameter increase the value of the critical Rayleigh number in the neutral stability curve which delays the onset of convection in the nanofluid layer while the stress relaxation parameter enhances the convection. The magnetic field stabilizes the system for low values of the Taylor number (rotation) but an inverse trend is observed for high Taylor number. Both Nusselt and Sherwood numbers initially oscillate with time until the steady state prevails and they decrease with both Chandrasekhar and Taylor numbers. The magnitude of the streamlines and the contours of both isotherms and iso-nanohalines concentrate near the boundaries for large values of Ra, indicating an increase in convection.

  13. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    CERN Document Server

    Cheng, X; Zhang, J; Sun, X D; Guo, Y; Wang, Y M; Kliem, B; Deng, Y Y

    2014-01-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field s...

  14. Eruption of the magnetic flux rope in a quick decaying active region

    Science.gov (United States)

    Yang, Shangbin; Xie, Wenbin; Liu, Jihong

    2015-03-01

    An isolated and quickly decaying active region (NOAA 9729) was observed as it passed across the solar disk. There was only one CME associated with the active region, which provides a good opportunity to investigate the whole process of the CME. A filament in this active region was observed to rise rapidly before stalling and disintegrating into flare loops. The rising filament seen in EIT images separates into two parts just before eruption. A new filament reforms several hours later after the CME; the axis of this new filament is rotated clockwise approximately 22° compared with that of the first filament,due to a changed orientation of the polarity inversion line. We also observed a bright transient slightly S-shaped X-ray sigmoid, which appears immediately after the filament eruption. The X-ray sigmoid quickly develops into a soft X-ray cusp and rises before dropping back down. Two magnetic cancelation regions were observed clearly just before filament eruption. The eruption process of the sigmoid structure in this quick decaying active region could be explained by using the 3D Tether-Cutting model. The magnetic flux rope erupted as the magnetic helicity approached its maximum and the normalized helicity was -0.036 when the magnetic flux rope erupted, which is an order of magnitude smaller than the simulation results of the kink and torus instability, but is close to the predicted value of Zhang et al. (2008) based on the theoretical non-linear force-free model.

  15. Rotating Magnetic Structures Associated with a Quasi-circular Ribbon Flare

    Science.gov (United States)

    Li, Haidong; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Hong, Junchao; Bi, Yi

    2017-02-01

    We present the detection of a small eruption and the associated quasi-circular ribbon flare during the emergence of a bipole occurring on 2015 February 3. Under a fan dome, a sigmoid was rooted in a single magnetic bipole, which was encircled by negative polarity. The nonlinear force-free field extrapolation shows the presence of twisted field lines, which can represent a sigmoid structure. The rotation of the magnetic bipole may cause the twisting of magnetic field lines. An initial brightening appeared at one of the footpoints of the sigmoid, where the positive polarity slides toward a nearby negative polarity field region. The sigmoid displayed an ascending motion and then interacted intensively with the spine-like field. This type of null point reconnection in corona led to a violent blowout jet, and a quasi-circular flare ribbon was also produced. The magnetic emergence and rotational motion are the main contributors to the energy buildup for the flare, while the cancellation and collision might act as a trigger.

  16. Formation of Magnetic Flux Ropes during Confined Flaring Well Before the Onset of a Pair of Major Coronal Mass Ejections

    CERN Document Server

    Chintzoglou, Georgios; Vourlidas, Angelos

    2015-01-01

    NOAA Active Region (AR) 11429 was the source of twin super-fast Coronal Mass Ejections (CMEs). The CMEs took place within a hour from each other, with the onset of the first taking place in the beginning of March 7, 2012. This AR fulfills all the requirements for a "super active region"; namely, Hale's law incompatibility and a $\\delta$-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ($D_{st}=-143$ nT) was associated with one of these events. Magnetic Flux Ropes (MFRs) are twisted magnetic structures in the corona, best seen in $\\sim$10 MK hot plasma emission and are often considered the core of erupting structures. However, their "dormant" existence in the solar atmosphere (i.e. prior to eruptions), is an open question. Aided by multi-wavelength observations (SDO/HMI/AIA and STEREO EUVI B) and a Non-Linear Force-Free (NLFFF) model for the coronal magnetic field, our work uncovers two separate, weakly-twisted magnetic flux systems which suggest the existence of pre-eruption MF...

  17. Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach

    Science.gov (United States)

    Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver

    2016-01-01

    In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.

  18. Linear and nonlinear MHD mode coupling of the fast magnetoacoustic wave about a 3D magnetic null point

    CERN Document Server

    Thurgood, J O; 10.1051/0004-6361/201219850

    2012-01-01

    Context: Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfv\\'en mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, {\\beta} = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently d...

  19. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. A. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); Artemyev, A. V. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); University of California, Los Angeles, California 90095 (United States); Yushkov, E. V. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation)

    2016-07-15

    Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.

  20. Image-based gradient non-linearity characterization to determine higher-order spherical harmonic coefficients for improved spatial position accuracy in magnetic resonance imaging.

    Science.gov (United States)

    Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Tryggestad, Erik J; Gunter, Jeffrey L; McGee, Kiaran P; Litwiller, Daniel V; Hwang, Ken-Pin; Bernstein, Matt A

    2017-05-01

    Spatial position accuracy in magnetic resonance imaging (MRI) is an important concern for a variety of applications, including radiation therapy planning, surgical planning, and longitudinal studies of morphologic changes to study neurodegenerative diseases. Spatial accuracy is strongly influenced by gradient linearity. This work presents a method for characterizing the gradient non-linearity fields on a per-system basis, and using this information to provide improved and higher-order (9th vs. 5th) spherical harmonic coefficients for better spatial accuracy in MRI. A large fiducial phantom containing 5229 water-filled spheres in a grid pattern is scanned with the MR system, and the positions all the fiducials are measured and compared to the corresponding ground truth fiducial positions as reported from a computed tomography (CT) scan of the object. Systematic errors from off-resonance (i.e., B0) effects are minimized with the use of increased receiver bandwidth (±125kHz) and two acquisitions with reversed readout gradient polarity. The spherical harmonic coefficients are estimated using an iterative process, and can be subsequently used to correct for gradient non-linearity. Test-retest stability was assessed with five repeated measurements on a single scanner, and cross-scanner variation on four different, identically-configured 3T wide-bore systems. A decrease in the root-mean-square error (RMSE) over a 50cm diameter spherical volume from 1.80mm to 0.77mm is reported here in the case of replacing the vendor's standard 5th order spherical harmonic coefficients with custom fitted 9th order coefficients, and from 1.5mm to 1mm by extending custom fitted 5th order correction to the 9th order. Minimum RMSE varied between scanners, but was stable with repeated measurements in the same scanner. The results suggest that the proposed methods may be used on a per-system basis to more accurately calibrate MR gradient non-linearity coefficients when compared to vendor

  1. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  2. Analysis of Nonlinear Electromagnetic Metamaterials

    CERN Document Server

    Poutrina, Ekaterina; Smith, David R

    2010-01-01

    We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16, 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility...

  3. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    OpenAIRE

    Regnier, Stephane; Priest, Eric

    2007-01-01

    To understand the physics of solar flares, including the local reorganisation of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...

  4. Application of linear and non-linear methods for modeling removal efficiency of textile dyes from aqueous solutions using magnetic Fe3O4 impregnated onto walnut shell

    Science.gov (United States)

    Ashrafi, Motahare; Arab Chamjangali, Mansour; Bagherian, Ghadamali; Goudarzi, Nasser

    2017-01-01

    The performance of the Nano-magnetite Fe3O4 impregnated onto walnut shell (Fe3O4-WNS), which possessed the adsorption features of walnut shell and the magnetic property of Fe3O4, was investigated for the elimination of the methyl violet and Rhodamine 6G from contaminated aqueous solutions. The effects of different experimental variables on the removal efficiency of the cited dyes were examined. Then these variables were used as the inputs to generate linear and non-linear models such as the multiple linear regression, random forest, and artificial neural network to predict the removal efficiency of these dye species at different experimental conditions. The validation studies of these models were performed using the test set, which was not present in the modeling procedure. It was found that ANN had a higher ability to predict the adsorption process under different experimental conditions, and could be applied for the development of an automated dye wastewater removal plant. Also the maximum adsorption capacity (qmax) indicated that the qmax value for Fe3O4-WNS for removal of cationic dyes was comparable or better than that for some reported adsorbents. Also it should be cited that exhausted Fe3O4-WNS was regenerated using dishwashing liquid, and reused for removal of the cited dye species from aqueous solutions.

  5. Influence of crossed electric and quantizing magnetic fields on the Einstein relation in nonlinear optical, optoelectronic and related materials: Simplified theory, relative comparison and suggestion for experimental determination

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, S. [Administration Department, Jadavpur University, Kolkata 700 032 (India); Bhattacharya, S. [Nano Scale Device Research Laboratory, Centre for Electronics Design and Technology, Indian Institute of Science, Bangalore 560 012 (India); De, D. [Department of Computer Science and Engineering, West Bengal University of Technology, BF 142, Sector I, Kolkata 700 064, West Bengal (India); Adhikari, S.M.; Niyogi, A. [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Dey, A. [Department of Electronics, Kalyani Government of Engineering College, Kalyani, Nadia (India); Paitya, N. [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Saha, S.C. [Department of Electronics, Mallabhum Institute of Technology, Brajaradhanagar, Gosanipur, Bankura (India); Ghatak, K.P., E-mail: kamakhyaghatak@yahoo.co.i [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Bose, P.K. [National Institute of Technology, Agartala, Jirania, Tripura (West) 799055 (India)

    2010-09-15

    An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs{sub 2}, n-Hg{sub 1-x}Cd{sub x}Te, n-In{sub 1-x}Ga{sub x}As{sub y}P{sub 1-y} lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested.

  6. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  7. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  8. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  9. Linear and nonlinear obliquely propagating ion-acoustic waves in magnetized negative ion plasma with non-thermal electrons

    Science.gov (United States)

    Mishra, M. K.; Jain, S. K.; Jain

    2013-10-01

    Ion-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg-de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (α c ), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of α c decreases with increase in γ.

  10. 三相磁集成VRM的微分几何非线性控制研究%Research on differential geometry non-linearization control of 3-phase integrating magnetic voltage regulator model

    Institute of Scientific and Technical Information of China (English)

    黄朝志; 肖发远

    2011-01-01

    This paper obtains the nonlinear decoupled control laws of 3-phase integrating magnetic VRM by differential geometry theory. The unified switch impulse function is given, and the three input and three output affine nonlinear model is built up;the state variable feedback linearization control law of 3-phase integrating magnetic VRM is given based on the differential geometry theory. At last, the simulation results show the performance on dynamic and steady state of integrating magnetic VRM is good based on differential geometry theory non-linearization control.%以三相磁集成VRM为研究对象,应用微分几何理论实现三相磁集成VRM的非线性解耦控制.在统一的开关脉冲函数下,基于微分几何理论得到三相磁集成VRM的状态反馈线性化解耦控制规律.建立三输入三输出仿射非线性模型,仿真实验表明,基于微分几何非线性控制的磁集成VRM具有良好的动态品质和稳态特性.

  11. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  13. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  15. BIDIRECTIONAL OUTFLOWS AS EVIDENCE OF MAGNETIC RECONNECTION LEADING TO A SOLAR MICROFLARE

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jie; Ding, M. D.; Li, Ying; Yang, Kai; Cheng, Xin; Fang, Cheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Chen, Feng [Max-Plank-Institut für Sonnensystemforschung, D-37077, Göttingen (Germany); Cao, Wenda, E-mail: dmd@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States)

    2016-03-20

    Magnetic reconnection is a rapid energy release process that is believed to be responsible for flares on the Sun and stars. Nevertheless, such flare-related reconnection is mostly detected to occur in the corona, while there have been few studies concerning the reconnection in the chromosphere or photosphere. Here, we present both spectroscopic and imaging observations of magnetic reconnection in the chromosphere leading to a microflare. During the flare peak time, chromospheric line profiles show significant blueshifted/redshifted components on the two sides of the flaring site, corresponding to upflows and downflows with velocities of ±(70–80) km s{sup −1}, comparable with the local Alfvén speed as expected by the reconnection in the chromosphere. The three-dimensional nonlinear force-free field configuration further discloses twisted field lines (a flux rope) at a low altitude, cospatial with the dark threads in He i 10830 Å images. The instability of the flux rope may initiate the flare-related reconnection. These observations provide clear evidence of magnetic reconnection in the chromosphere and show the similar mechanisms of a microflare to those of major flares.

  16. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

    CERN Document Server

    Aschwanden, M J; Jess, D

    2016-01-01

    The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (0.1") from the Interferometric Bidimensional Spectrometer (IBIS) in the Ca II 8542 A line, the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument in the H-alpha 6563 A line, the Interface Region Imaging Spectrograph (IRIS) in the 2796 A line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly (AIA) in coronal (171 A, etc.) and in chromospheric (304 A) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-Current Approximation Non-Linear Force Free Field (VCA-NLFFF) code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constrainin...

  17. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  18. Anomalous resistivity and the evolution of magnetic field topology

    Science.gov (United States)

    Parker, E. N.

    1993-01-01

    This paper explores the topological restructuring of a force-free magnetic field caused by the hypothetical sudden onset of a localized region of strong anomalous resistivity. It is shown that the topological complexity increases, with the primitive planar force-free field with straight field lines developing field lines that wrap half a turn around each other, evidently providing a surface of tangential discontinuity in the wraparound region. It is suggested that the topological restructuring contributes to the complexity of the geomagnetic substorm, the aurora, and perhaps some of the flare activity on the sun, or other star, and the Galactic halo.

  19. Magnetic Field Confinement in the Corona: The Role of Magnetic Helicity Accumulation

    CERN Document Server

    Zhang, M; Zhang, Mei; Low, Natasha Flyer & Boon Chye

    2006-01-01

    A loss of magnetic field confinement is believed to be the cause of coronal mass ejections (CMEs), a major form of solar activity in the corona. The mechanisms for magnetic energy storage are crucial in understanding how a field may possess enough free energy to overcome the Aly limit and open up. Previously, we have pointed out that the accumulation of magnetic helicity in the corona plays a significant role in storing magnetic energy. In this paper, we investigate another hydromagnetic consequence of magnetic-helicity accumulation. We propose a conjecture that there is an upper bound on the total magnetic helicity that a force-free field can contain. This is directly related to the hydromagnetic property that force-free fields in unbounded space have to be self-confining. Although a mathematical proof of this conjecture for any field configuration is formidable, its plausibility can be demonstrated with the properties of several families of power-law, axisymmetric force-free fields. We put forth mathematica...

  20. Application of a data-driven simulation method to the reconstruction of the coronal magnetic field

    Institute of Scientific and Technical Information of China (English)

    Yu-Liang Fan; Hua-Ning Wang; Han He; Xiao-Shuai Zhu

    2012-01-01

    Ever since the magnetohydrodynamic (MHD) method for extrapolation of the solar coronal magnetic field was first developed to study the dynamic evolution of twisted magnetic flux tubes,it has proven to be efficient in the reconstruction of the solar coronal magnetic field.A recent example is the so-called data-driven simulation method (DDSM),which has been demonstrated to be valid by an application to model analytic solutions such as a force-free equilibrium given by Low and Lou.We use DDSM for the observed magnetograms to reconstruct the magnetic field above an active region.To avoid an unnecessary sensitivity to boundary conditions,we use a classical total variation diminishing Lax-Friedrichs formulation to iteratively compute the full MHD equations.In order to incorporate a magnetogram consistently and stably,the bottom boundary conditions are derived from the characteristic method.In our simulation,we change the tangential fields continually from an initial potential field to the vector magnetogram.In the relaxation,the initial potential field is changed to a nonlinear magnetic field until the MHD equilibrium state is reached.Such a stable equilibrium is expected to be able to represent the solar atmosphere at a specified time.By inputting the magnetograms before and after the X3.4 flare that occurred on 2006 December 13,we find a topological change after comparing the magnetic field before and after the flare.Some discussions are given regarding the change of magnetic configuration and current distribution.Furthermore,we compare the reconstructed field line configuration with the coronal loop observations by XRT onboard Hinode.The comparison shows a relatively good correlation.

  1. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  2. Properties of Nonlinear Dynamo Waves

    Science.gov (United States)

    Tobias, S. M.

    1997-01-01

    Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.

  3. Experimental Confirmation of Nonlinear-Model- Predictive Control Applied Offline to a Permanent Magnet Linear Generator for Ocean-Wave Energy Conversion

    KAUST Repository

    Tom, Nathan

    2015-01-01

    To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.

  4. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  5. Nonlinear supratransmission

    Energy Technology Data Exchange (ETDEWEB)

    Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)

    2003-05-07

    A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.

  6. Set Your Creative Forces Free!

    DEFF Research Database (Denmark)

    Meier Sørensen, Bent; Villadsen, Kaspar

    Critical studies of new forms of flexible, delegating and even artistic forms of management demonstrate how power relations between employees and management do not dissolve but rather re-configure. This paper addresses this problematic by exploring how an artistic form of allegedly ‘non-hierarchi......Critical studies of new forms of flexible, delegating and even artistic forms of management demonstrate how power relations between employees and management do not dissolve but rather re-configure. This paper addresses this problematic by exploring how an artistic form of allegedly ‘non...... against managerial authority....

  7. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  8. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  9. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  10. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  11. Nonlinear evolution of drift instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.

    1984-01-01

    The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.

  12. Electronic and magnetic phase separation in EuB{sub 6}. Fluctuation spectroscopy and nonlinear transport; Elektronische und magnetische Phasenseparation in EuB{sub 6}. Fluktuationsspektroskopie und nichtlinearer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Amyan, Adham

    2013-07-09

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB{sub 6} as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB{sub 6} and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T{sub MI} and T{sub C}. Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  13. The role of magnetic handedness in magnetic cloud propagation

    Directory of Open Access Journals (Sweden)

    U. Taubenschuss

    2010-05-01

    Full Text Available We investigate the propagation of magnetic clouds (MCs through the inner heliosphere using 2.5-D ideal magnetohydrodynamic (MHD simulations. A numerical solution is obtained on a spherical grid, either in a meridional plane or in an equatorial plane, by using a Roe-type approximate Riemann solver in the frame of a finite volume approach. The structured background solar wind is simulated for a solar activity minimum phase. In the frame of MC propagation, special emphasis is placed on the role of the initial magnetic handedness of the MC's force-free magnetic field because this parameter strongly influences the efficiency of magnetic reconnection between the MC's magnetic field and the interplanetary magnetic field. Magnetic clouds with an axis oriented perpendicular to the equatorial plane develop into an elliptic shape, and the ellipse drifts into azimuthal direction. A new feature seen in our simulations is an additional tilt of the ellipse with respect to the direction of propagation as a direct consequence of magnetic reconnection. During propagation in a meridional plane, the initial circular cross section develops a concave-outward shape. Depending on the initial handedness, the cloud's magnetic field may reconnect along its backside flanks to the ambient interplanetary magnetic field (IMF, thereby losing magnetic flux to the IMF. Such a process in combination with a structured ambient solar wind has never been analyzed in detail before. Furthermore, we address the topics of force-free magnetic field conservation and the development of equatorward flows ahead of a concave-outward shaped MC. Detailed profiles are presented for the radial evolution of magnetoplasma and geometrical parameters. The principal features seen in our MHD simulations are in good agreement with in-situ measurements performed by spacecraft. The 2.5-D studies presented here may serve as a basis under more simple geometrical conditions to understand more complicated

  14. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    Science.gov (United States)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a

  15. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

    Science.gov (United States)

    Aschwanden, Markus J.; Reardon, Kevin; Jess, Dave B.

    2016-07-01

    The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (≈ 0\\buildrel{\\prime\\prime}\\over{.} 2{--}0\\buildrel{\\prime\\prime}\\over{.} 3), from the Interferometric Bidimensional Spectrometer in the Ca ii 8542 Å line, the Rapid Oscillations in the Solar Atmosphere instrument in the Hα 6563 Å line, the Interface Region Imaging Spectrograph in the 2796 Å line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly in coronal (171 Å, etc.) and in chromospheric (304 Å) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-current Approximation Nonlinear Force Free Field code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constraining magnetic modeling; (2) that these curvi-linear structures are field-aligned with the best-fit solution by a median misalignment angle of {μ }2≈ 4^\\circ -7° (3) the free energy computed from coronal data may underestimate that obtained from cromospheric data by a factor of ≈ 2-4, (4) the height range of chromospheric features is confined to h≲ 4000 km, while coronal features are detected up to h = 35,000 km; and (5) the plasma-β parameter is β ≈ {10}-5{--}{10}-1 for all traced features. We conclude that chromospheric images reveal important magnetic structures that are complementary to coronal images and need to be included in comprehensive magnetic field models, something that is currently not accomodated in standard NLFFF codes.

  16. Practical Nonlinearities

    Science.gov (United States)

    2016-07-01

    Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9

  17. Evolution of Magnetic Field and Energy in A Major Eruptive Active Region Based on SDO/HMI Observation

    CERN Document Server

    Sun, Xudong; Liu, Yang; Wiegelmann, Thomas; Hayashi, Keiji; Chen, Qingrong; Thalmann, Julia

    2012-01-01

    We report the evolution of magnetic field and its energy in NOAA active region 11158 over 5 days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated non-linear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with sheared kilogauss field in the filament channel. The computed magnetic free energy reaches a maximum of ~2.6e32 erg, about 50% of which is stored below 6 Mm. It decreases by ~0.3e32 erg within 1 hour of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to...

  18. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  19. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  20. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  1. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  2. Nonlinear analysis

    CERN Document Server

    Nanda, Sudarsan

    2013-01-01

    "Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.

  3. Mimetic Methods for Lagrangian Relaxation of Magnetic Fields

    CERN Document Server

    Candelaresi, Simon; Hornig, Gunnar

    2014-01-01

    We present a new code that performs a relaxation of a magnetic field towards a force-free state (Beltrami field) using a Lagrangian numerical scheme. Beltrami fields are of interest for the dynamics of many technical and astrophysical plasmas as they are the lowest energy states that the magnetic field can reach. The numerical method strictly preserves the magnetic flux and the topology of magnetic field lines. In contrast to other implementations we use mimetic operators for the spatial derivatives in order to improve accuracy for high distortions of the grid. Compared with schemes using direct derivatives we find that the final state of the simulation approximates a force-free state with a significantly higher accuracy. We implement the scheme in a code which runs on graphical processing units (GPU), which leads to an enhanced computing speed compared to previous relaxation codes.

  4. The road towards nonlinear magneto-plasmonics

    Science.gov (United States)

    Zheng, Wei; Liu, Xiao; Lüpke, Günter; Hanbicki, Aubrey T.; Jonker, Berend T.

    2016-10-01

    Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. NMP can be referred to as interdisciplinary studies at the intersection of Nonlinear Plasmonics (NP), Magneto- Plasmonics (MP), and nanoscience. In NMP systems, nanostructures are the bases, Surface Plasmons (SPs) work as catalyst due to strong field enhancement effects, and the nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method. Many new effects were discovered recently, which include enhanced magnetization-induced harmonic generation, controlled and enhanced magnetic contrast, magneto-chiral effect, correlation between giant magnetroresistance (GMR) and nonlinear MOKE, etc. We review the structures, experiments, findings, and the applications of NMP.

  5. Nonlinear electrodynamics with birefringence

    CERN Document Server

    Kruglov, S I

    2015-01-01

    A new model of nonlinear electrodynamics with three parameters is suggested. The phenomena of vacuum birefringence takes place when there is the external constant magnetic field. We calculate the indices of refraction for two polarizations of electromagnetic waves, parallel and perpendicular to the magnetic induction field. From the Bir\\'{e}fringence Magn\\'{e}tique du Vide (BMV) experiment one of the coefficients, $\\gamma\\approx 10^{-20}$ T$^{-2}$, was estimated. The canonical, symmetrical Belinfante energy-momentum tensors and dilatation current were obtained. The dilatation symmetry and the dual symmetry are broken in the model considered.

  6. Bidirectional outflows as evidence of magnetic reconnection leading to a solar microflare

    CERN Document Server

    Hong, Jie; Li, Ying; Yang, Kai; Cheng, Xin; Chen, Feng; Fang, Cheng; Cao, Wenda

    2016-01-01

    Magnetic reconnection is a rapid energy release process that is believed to be responsible for flares on the Sun and stars. Nevertheless, such flare-related reconnection is mostly detected to occur in the corona, while there have been few studies concerning the reconnection in the chromosphere or photosphere. Here we present both spectroscopic and imaging observations of magnetic reconnection in the chromosphere leading to a microflare. During the flare peak time, chromospheric line profiles show significant blueshifted/redshifted components on the two sides of the flaring site, corresponding to upflows and downflows with velocities of $\\pm$(70--80) km s$^{-1}$, comparable with the local Alfv\\'{e}n speed as expected by the reconnection in the chromosphere. The three-dimensional nonlinear force-free field configuration further discloses twisted field lines (a flux rope) at a low altitude, cospatial with the dark threads in He I 10830 \\r{A} images. The instability of the flux rope may initiate the flare-related...

  7. Evidence for Solar Tether-cutting Magnetic Reconnection from Coronal Field Extrapolations

    CERN Document Server

    Liu, Chang; Lee, Jeongwoo; Wiegelmann, Thomas; Moore, Ronald L; Wang, Haimin

    2013-01-01

    Magnetic reconnection is one of the primary mechanisms for triggering solar eruptive events, but direct observation of its rapid process has been of challenge. In this Letter we present, using a nonlinear force-free field (NLFFF) extrapolation technique, a visualization of field line connectivity changes resulting from tether-cutting reconnection over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA AR 11158. Evidence for the tether-cutting reconnection was first collected through multiwavelength observations and then by the analysis of the field lines traced from positions of four conspicuous flare 1700 A footpoints observed at the event onset. Right before the flare, the four footpoints are located very close to the regions of local maxima of magnetic twist index. Especially, the field lines from the inner two footpoints form two strongly twisted flux bundles (up to ~1.2 turns), which shear past each other and reach out close to the outer two footpoints, respectively. Immediately after the fl...

  8. Coronal Magnetic Field Models

    Science.gov (United States)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  9. Estimation of Nonlinear DC-Motor Models Using a Sensitivity Approach

    DEFF Research Database (Denmark)

    Knudsen, Morten; Jensen, J.G.

    1995-01-01

    A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed.......A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed....

  10. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  12. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  13. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  14. Nonlinear Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2016-01-01

    We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.

  15. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  16. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t

  17. Gradiometer Based on Nonlinear Magneto-Optic Rotation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project will demonstrate sensitive measurements of magnetic field gradients by nonlinear atomic spectroscopy. The gradients are determined by...

  18. A finite element model of the LHC dipole cold mass with hysteretic, non-linear behavior and single turn description: towards the interpretation of magnet quenches

    CERN Document Server

    AUTHOR|(CDS)2067087

    In one of its acceptation, the word quench is synonym of destruction. And this is even more consistent with reality in the case of the Large Hadron Collider dipole magnets, whose magnetic field and stored energy are unprecedented: the uncontrolled transition from the superconducting to the resistive state can be the origin of dramatic events. This is why the protection of magnets is so important, and why so many studies and investigations have been carried out on quench origin. The production, cold testing and installation of the 1232 arc dipole magnets is completed. They have fulfilled all the requirements and the operation reliability of these magnets has already been partially confirmed. From an academic standpoint, nevertheless, the anomalous mechanical behaviour, which was sometimes observed during power tests, has not yet been given a clear explanation. The work presented in this thesis aims at providing an instrument to better understand the reasons for such anomalies, by means of finite element modell...

  19. Inertial Lévy Flight with Nonlinear Friction

    Institute of Scientific and Technical Information of China (English)

    L(U) Yan; BAO Jing-Dong

    2011-01-01

    Lévy Bight with nonlinear friction is studied. Due to the occurrence of extremely long jumps Levy flights often possess infinite variance and are physically problematic if describing the dynamics of a particle of finite mass. However, by introducing nonlinear friction, we show that the stochastic process subject to Levy noise exhibits finite variance, leading to a well-defined .kinetic energy. In the force-free fiIeld, normal diffusion behavior is observed and the diffusion coefficient decreases with Levy index μ. Furthermore, we find a kinetic resonance of the particle in the harmonic potential to the external oscillating field in the generally underdamped region and the value of the linear friction γo determines whether resonance occurs or not.%Lévy flight with nonlinear friction is studied.Due to the occurrence of extremely long jumps Lévy flights often possess infinite variance and are physically problematic if describing the dynamics of a particle of finite mass.However,by introducing nonlinear friction,we show that the stochastic process subject to Lévy noise exhibits finite variance,leading to a well-defined kinetic energy.In the force-free field,normal diffusion behavior is observed and the diffusion coefficient decreases with Lévy index μ.Furthermore,we find a kinetic resonance of the particle in the harmonic potential to the external oscillating field in the generally underdamped region and the value of the linear friction γ0 determines whether resonance occurs or not.The stable Lévy process,often called the Lévy flight,is used to model various phenomena such as self-diffusion in micelle systems,[1] special problems in reaction dynamics,[2] and even the flight of an albatross.

  20. Braided magnetic fields: equilibria, relaxation and heating

    CERN Document Server

    Pontin, D I; Russell, A J B; Hornig, G

    2015-01-01

    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling. The key results obtained from recent modelling efforts are summarised, in the context of testable predictions for the laboratory. We discuss the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We discuss the properties of this relaxation, and in particular the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor's hypo...

  1. MHD Turbulence and Magnetic Dynamos

    Science.gov (United States)

    Shebalin, John V

    2014-01-01

    investigation, by greatly extending the statistical theory of ideal MHD turbulence. The mathematical details of broken ergodicity, in fact, give a quantitative explanation of how coherent structure, dynamic alignment and force-free states appear in turbulent magnetofluids. The relevance of these ideal results to real MHD turbulence occurs because broken ergodicity is most manifest in the ideal case at the largest length scales and it is in these largest scales that a real magnetofluid has the least dissipation, i.e., most closely approaches the behavior of an ideal magnetofluid. Furthermore, the effects grow stronger when cross and magnetic helicities grow large with respect to energy, and this is exactly what occurs with time in a real magnetofluid, where it is called selective decay. The relevance of these results found in ideal MHD turbulence theory to the real world is that they provide at least a qualitative explanation of why confined turbulent magnetofluids, such as the liquid iron that fills the Earth's outer core, produce stationary, large-scale magnetic fields, i.e., the geomagnetic field. These results should also apply to other planets as well as to plasma confinement devices on Earth and in space, and the effects should be manifest if Reynolds numbers are high enough and there is enough time for stationarity to occur, at least approximately. In the presentation, details will be given for both theoretical and numerical results, and references will be provided.

  2. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  3. 永磁同步发电机与Boost斩波型变换器非线性速度控制%Nonlinear Speed Control for a Permanent Magnet Synchronous Generator and the Boost-Chopper Converter

    Institute of Scientific and Technical Information of China (English)

    耿强; 夏长亮; 王志强; 史婷娜

    2012-01-01

    直驱式永磁同步风电系统电机侧变换器的一种常见拓扑结构为二极管整流桥后接Boost斩波电路。此结构具有较强的非线性,采用普通PI控制器很难使系统在正常运行范围内保持较好的动态性能。针对其非线性特性,分区间建立了发电机与变换器整体非线性数学模型,在单区间内采用输入-输出反馈线性化方法将非线性系统转换为线性系统,在此基础上设计了转速最优控制器。该设计方法数学转换过程较为简单,参数整定方法较为成熟,且不同区间内线性控制器的参数相同。通过一套3kVA的实验系统,验证了该方法能明显改善系统动态性能,对此类风电系统电机侧变换器控制策略的设计具有一定的参考价值。%A diode bridge rectifier followed by a boost chopper circuit is a common topology of the generator side converter for a direct driven permanent magnet synchronous generator(PMSG)-based wind energy conversion system(WECS).Owing to its strong nonlinearity,it is difficult for the system to maintain good dynamic performance within a normal operating range under the ordinary proportional-integral(PI) controller.According to its nonlinear characteristics,the piecewise nonlinear mathematical model for the whole system including the surface permanent magnet synchronous generator(SPMSG) and the generator side converter is built.Then the nonlinear mathematical model is transformed into a linear one by the input-output feedback linearization(IOFL) method.In addition,a speed controller is designed based on the optimal control theory.The proposed strategy has the advantages of a simple conversion process,a relatively mature parameter tuning method and unchanged parameters for the linear optimal controller within different intervals.Experimental results are presented with a 3kVA prototype,verifying the effectiveness and practicability of the proposed strategy.

  4. Nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)

    1989-01-01

    Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.

  5. Nonlinear microrheology of living cells

    CERN Document Server

    Kollmannsberger, Philip; Fabry, Ben

    2009-01-01

    The linear rheology of adherent cells is characterized by a power-law creep or stress relaxation response, and proportionality between stiffness and internal prestress. It is unknown whether these observations hold in the physiologically relevant nonlinear regime. We used magnetic tweezers microrheology to measure the time- and force-dependent nonlinear creep response of adherent cells. Cell deformations in response to a stepwise increasing force applied to cytoskeletally bound magnetic beads were analyzed with a nonlinear superposition approach. The creep response followed a weak power law regardless of force. Stiffness and power law exponent both increased with force, indicating stress stiffening as well as fluidization of the cytoskeleton. Softer cells showed a more pronounced stress stiffening, which is quantitatively explained by their smaller internal prestress. Stiffer and more elastic cells showed a more pronounced force-induced fluidization, consistent with predictions from soft glassy rheology. Thes...

  6. 单电磁铁悬浮系统的非线性鲁棒控制%Single electric magnetic levitation system nonlinear robust control

    Institute of Scientific and Technical Information of China (English)

    林志雄; 李全国

    2014-01-01

    Based on the state feedback precise linearization and Linear robust control theory,one methord of designing Nonlinear robust controller is proposed,which contributes to the research of nonlin-ear robust control of single electromagnet levitation system.With wide application's needs,it characters conciseness and practical applicability.Firstly,we build an corresponding linear system robust control strategy by using feedback precise linearization.And then,we can figure out the original nonlinear system control law with preliminary feedback and have deduced that the control law possesses robustness in single electromagnet levitation system at last.%结合状态反馈精确线性化和线性鲁棒控制理论研究单电磁铁悬浮系统的非线性鲁棒控制问题,给出一种简洁实用的非线性鲁棒控制器设计方法,先用反馈精确线性化构造相应的线性系统的鲁棒控制策略,然后再用预反馈求出原非线性系统的控制律,最后证明该控制律对于单电磁铁悬浮系统具有鲁棒性。

  7. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  8. Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot

    Science.gov (United States)

    Tanhaei, M. H.; Rezaei, G.

    2016-10-01

    In this work, effects of an on-center hydrogenic impurity, external electric and magnetic fields on the optical rectification coefficient (ORC), second and third harmonic generations (SHG and THG) of a multi-layer spherical quantum dot (MLSQD) are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. Our results reveal that the hydrogenic impurity and external fields have a great influence on these optical quantities. Hydrogenic impurity reduces the magnitude of the resonant peaks and shifts them to the higher energies. An increase in the magnetic (electric) field, leads to increase (decrease) the interval energies and the dipole moment matrix elements. Therefore, resonant peaks of these optical quantities find an obvious blue (red) shift and their magnitudes enhance (diminish) with increasing the external magnetic (electric) field.

  9. Alignment-to-orientation conversion in a magnetic field at nonlinear excitation of the $D_2$ line of rubidium: experiment and theory

    CERN Document Server

    Auzinsh, M; Ferber, R; Gahbauer, F; Kalvans, L; Mozers, A; Spiss, A

    2015-01-01

    We studied alignment-to-orientation conversion caused by excited-state level crossings in a nonzero magnetic field of both atomic rubidium isotopes. Experimental measurements were performed on the transitions of the $D_2$ line of rubidium. These measured signals were described by a theoretical model that takes into account all neighboring hyperfine transitions, the mixing of magnetic sublevels in an external magnetic field, the coherence properties of the exciting laser radiation, and the Doppler effect. In the experiments laser induced fluorescence (LIF) components were observed at linearly polarized excitation and their difference was taken afterwards. By observing the two oppositely circularly polarized components we were able to see structures not visible in the difference graphs, which yields deeper insight into the processes responsible for these signals. We studied how these signals are dependent on laser power density and how they are affected when the exciting laser is tuned to different hyperfine tr...

  10. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...

  11. Effects of rotation and magnetic field on the nonlinear peristaltic flow of a second-order fluid in an asymmetric channel through a porous medium

    Institute of Scientific and Technical Information of China (English)

    A.M.Abd-Alla; S.M.Abo-Dahab; H.D.El-Shahrany

    2013-01-01

    In this paper,the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically.The material is represented by the constitutive equations for a second-order fluid.Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented.The analytical expressions for the pressure gradient,pressure rise,friction force,stream function,shear stress,and velocity are obtained in the physical domain.The effects of the non-dimensional wave amplitude,porosity,magnetic field,rotation,and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically.Numerical results are given and illustrated graphically in each case considered.Comparison was made with the results obtained in the presence and absence of rotation,magnetic field,and porosity.The results indicate that the effects of the non-dimensional wave amplitude,porosity,magnetic field,rotation,and the dimensionless time-mean flow are very pronounced in the phenomena.

  12. Nonlinear peltier effect in quantum point contacts

    Science.gov (United States)

    Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi

    1998-11-01

    A theoretical analysis of the Peltier effect in two-dimensional quantum point contacts, in field-free conditions and under the influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation. Oscillations of the Peltier coefficient in a magnetic field are demonstrated.

  13. Investigation of Force-Freeness of Solar Emerging Magnetic Field via Application of the Virial Theorem to MHD Simulations

    CERN Document Server

    Kang, Jihye

    2014-01-01

    Force-freeness of a solar magnetic field is a key to reconstructing invisible coronal magnetic structure of an emerging flux region on the Sun where active phenomena such as flares and coronal mass ejections frequently occur. We have performed magnetohydrodynamic (MHD) simulations which are adjusted to investigate force-freeness of an emerging magnetic field by using the virial theorem. Our focus is on how the force-free range of an emerging flux region develops and how it depends on the twist of a pre-emerged magnetic field. As an emerging flux region evolves, the upper limit of the force-free range continuously increases while the lower limit is asymptotically reduced to the order of a photospheric pressure scale height above the solar surface. As the twist becomes small the lower limit increases and then seems to be saturated. We also discuss the applicability of the virial theorem to an evolving magnetic structure on the Sun.

  14. Nonlinear PDEs

    OpenAIRE

    2015-01-01

    From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...

  15. Magnetized galactic halos and velocity lags

    CERN Document Server

    Henriksen, Richard N

    2016-01-01

    We present an analytic model of a magnetized galactic halo surrounding a Mestel gravitating disc. The magnetic field is taken to be in energy equipartition with the pressure dominant rotating halo gas ({\\it not} with the cosmic rays), and the whole system is in a steady state. A more flexible `anisotropic equipartition' model is also explored. A definite pressure law is required to maintain the equilibrium, but the halo density is constant. The velocity/magnetic system is scale-free. The objective is to find the rotational velocity lag in such a halo. The magnetic field is not force-free so that angular momentum may be transported from the halo to the intergalactic medium. We find that the `X'-shaped structure observed for halo magnetic fields can be obtained together with a simple analytic formula for the rate of decline of the velocity with height $z$. The formula also predicts the change in lag with radius, $r$.

  16. Nonlinear Resistivity for Magnetohydrodynamical Models

    CERN Document Server

    Lingam, Manasvi; Pfefferlé, David; Comisso, Luca; Bhattacharjee, Amitava

    2016-01-01

    A nonlinear current-dependent resistivity that accurately accounts for the collisional electron-ion momentum transfer rate is derived. It is shown that the Spitzer resistivity overestimates the resistivity in certain observationally relevant regimes. The nonlinear resistivity computed herein is a strictly decreasing function of the current, in contrast to some notable previous proposals. The relative importance of the new expression with respect to the well-established electron inertia and Hall terms is also examined. The subtle implications of this current-dependent resistivity are discussed in the context of plasma systems and phenomena such as magnetic reconnection.

  17. Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission

    Science.gov (United States)

    Wilder, F. D.; Ergun, R. E.; Goodrich, K. A.; Goldman, M. V.; Newman, D. L.; Malaspina, D. M.; Jaynes, A. N.; Schwartz, S. J.; Trattner, K. J.; Burch, J. L.; Argall, M. R.; Torbert, R. B.; Lindqvist, P.-A.; Marklund, G.; Le Contel, O.; Mirioni, L.; Khotyaintsev, Yu. V.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Plaschke, F.; Magnes, W.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J. C.

    2016-06-01

    We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data.

  18. Identifying nonlinear wave interactions in plasmas using two-point measurements a case study of Short Large Amplitude Magnetic Structures (SLAMS)

    CERN Document Server

    Dudok de Wit, T; Dunlop, M; Luehr, H

    1999-01-01

    A framework is described for estimating Linear growth rates and spectral energy transfers in turbulent wave-fields using two-point measurements. This approach, which is based on Volterra series, is applied to dual satellite data gathered in the vicinity of the Earth's bow shock, where Short Large Amplitude Magnetic Structures (SLAMS) supposedly play a leading role. The analysis attests the dynamic evolution of the SLAMS and reveals an energy cascade toward high-frequency waves.

  19. DoE Plasma Center for Momentum Transport and Flow Self-Organization in Plasmas: Non-linear Emergent Structure Formation in magnetized Plasmas and Rotating Magnetofluids

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Cary B. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    2016-11-10

    This report covers the UW-Madison activities that took place within a larger DoE Center Administered and directed by Professor George Tynan at the University of California, San Diego. The work at Wisconsin will also be covered in the final reporting for the entire center, which will be submitted by UCSD. There were two main activities, one experimental and one that was theoretical in nature, as part of the Center activities at the University of Wisconsin, Madison. First, the Center supported an experimentally focused postdoc (Chris Cooper) to carry out fundamental studies of momentum transport in rotating and weakly magnetized plasma. His experimental work was done on the Plasma Couette Experiment, a cylindrical plasma confinement device, with a plasma flow created through electromagnetically stirring plasma at the plasma edge facilitated by arrays of permanent magnets. Cooper's work involved developing optical techniques to measure the ion temperature and plasma flow through Doppler-shifted line radiation from the plasma argon ions. This included passive emission measurements and development of a novel ring summing Fabry-Perot spectroscopy system, and the active system involved using a diode laser to induce fluorescence. On the theoretical side, CMTFO supported a postdoc (Johannes Pueschel) to carry out a gyrokinetic extension of residual zonal flow theory to the case with magnetic fluctuations, showing that magnetic stochasticity disrupts zonal flows. The work included a successful comparison with gyrokinetic simulations. This work and its connection to the broader CMTFO will be covered more thoroughly in the final CMTFO report from Professor Tynan.

  20. Turbulent Erosion of Magnetic Flux Tubes

    CERN Document Server

    Petrovay, K

    1997-01-01

    Results from a numerical and analytical investigation of the solution of a nonlinear axially symmetric diffusion equation for the magnetic field are presented for the case when the nonlinear dependence of the diffusivity $\

  1. Nonlinear Alfvén waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: intermediate shocks?

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2005-01-01

    Full Text Available Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant 'turbulence' created by the Alfvén wave dissipation is quite complex. There are both propagating (waves and nonpropagating (mirror mode structures and MDs byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the 'turbulence' is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs. Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in

  2. Nonlinear helical MHD instability

    Energy Technology Data Exchange (ETDEWEB)

    Zueva, N.M.; Solov' ev, L.S.

    1977-07-01

    An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.

  3. EIT waves and coronal magnetic field diagnostics

    Institute of Scientific and Technical Information of China (English)

    CHEN PengFei

    2009-01-01

    Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

  4. Holographic paramagnetism-ferromagnetism phase transition with the nonlinear electrodynamics

    CERN Document Server

    Zhang, Cheng-Yuan; Zhang, Ya-Nan; Wang, Huan-Yu; Wu, Meng-Meng

    2016-01-01

    In the probe limit, we investigate the nonlinear electrodynamical effects of the both exponential form and the logarithmic form on the holographic paramagnetism-ferromagnetism phase transition in the background of a Schwarzschild-AdS black hole spacetime. Moreover, by comparing the exponential form of nonlinear electrodynamics with the logarithmic form of nonlinear electrodynamics and the Born-Infeld nonlinear electrodynamics which has been presented in Ref.~\\cite{Wu:2016uyj}, we find that the higher nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder form in the case without external field. Furthermore, the increase of nonlinear parameter b will result in extending the period of the external magnetic field. Especially, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noticeable.

  5. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  6. Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.

  7. Interpretation of Source Parameters from Total Gradient of Gravity and Magnetic Anomalies Caused by Thin Dyke using Nonlinear Global Optimization Technique

    Science.gov (United States)

    Biswas, A.

    2016-12-01

    A proficient way to deal with appraisal model parameters from total gradient of gravity and magnetic data in light of Very Fast Simulated Annealing (VFSA) has been exhibited. This is the first run through of applying VFSA in deciphering total gradient of potential field information with another detailing estimation brought on because of detached causative sources installed in the subsurface. The model parameters translated here are the amplitude coefficient (k), accurate origin of causative source (x0) depth (z0) and the shape factor (q). The outcome of VFSA improvement demonstrates that it can exceptionally decide all the model parameters when shape variable is fixed. The model parameters assessed by the present strategy, for the most part the shape and depth of the covered structures was observed to be in astounding concurrence with the genuine parameters. The technique has likewise the capability of dodging very uproarious information focuses and enhances the understanding results. Investigation of Histogram and cross-plot examination likewise proposes the translation inside the assessed ambiguity. Inversion of noise-free and noisy synthetic data information for single structures and field information shows the viability of the methodology. The procedure has been carefully and adequately connected to genuine field cases (Leona Anomaly, Senegal for gravity and Pima copper deposit, USA for magnetic) with the nearness of mineral bodies. The present technique can be to a great degree material for mineral investigation or ore bodies of dyke-like structure rooted in the shallow and more deep subsurface. The calculation time for the entire procedure is short.

  8. Accumulative coupling between magnetized tenuous plasma and gravitational waves

    Science.gov (United States)

    Zhang, Fan

    2016-07-01

    We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) traveling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW comoves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high-frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves that are generated directly by the latter as a second-order phenomenon.

  9. Accumulative coupling between magnetized tenuous plasma and gravitational waves

    CERN Document Server

    Zhang, Fan

    2016-01-01

    We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) travelling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW co-moves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves, that are generated directly by the latter as a second order phenomenon.

  10. Dynamic interaction between rotor and axially-magnetized passive magnetic bearing considering magnetic eccentricity

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar

    2014-01-01

    Passive magnetic bearings are known due to the excellent characteristics in terms of friction and no requirement of additional energy sources to work. However, passive magnetic bearings do not provide damping, are not stable and, depending on their design, may also introduce magnetic eccentricity....... Such magnetic eccentricities are generated by discrepancies in magnet fabrication. In this framework the main focus of the work is the theoretical as well as experimental investigation of the nonlinear dynamics of a rotor-bearing system with strong emphasis on the magnetic eccentricities and non......-linear stiffness. In this investigation passive magnetic bearings using axially- aligned neodymium cylinder magnets are investigated. The cylinder magnets are axially magnetised for rotor as well as bearings. Compared to bearings with radial magnetisation, the magnetic stiffness of axially-aligned bearings...

  11. Nonlinear Distortion Mechanisms and Efficiency of Balanced-Armature Loudspeakers

    DEFF Research Database (Denmark)

    Jensen, Joe

    ) and the linearity of the magnetic material is therefore of great importance. This thesis describes the inherent nonlinear parameters of the balanced-armature loudspeaker and demonstrates how the nonlinearity of these parameters may be reduced by design. A sim- ple technique for incorporating magnetic leakage...... and to validate simpler equivalent circuit models. A large scale model of a balanced-armature loudspeaker has been developed and its inherent nonlinear parameters have been measured and compared to the theoretically predicted values. A measurement setup for determining the magnetic properties of soft magnetic...... materials has also been developed, since it is of great importance to understand what kind of linear and nonlinear transformations the magnetic materials impose on the signal. In hearing aid applications the power efficiency of the loudspeaker is important because every reduction in power consumption...

  12. A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets

    CERN Document Server

    Hsu, S C

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting magnetic topology is dependent on the details of magnetic helicity injection, namely the force-free state eigenvalue alpha_gun imposed by the coaxial gun.

  13. Fluid Flow and Heat Transfer Analysis of a Nanofluid Containing Motile Gyrotactic Micro-Organisms Passing a Nonlinear Stretching Vertical Sheet in the Presence of a Non-Uniform Magnetic Field; Numerical Approach.

    Science.gov (United States)

    M Mehryan, S A; Moradi Kashkooli, Farshad; Soltani, M; Raahemifar, Kaamran

    2016-01-01

    The behavior of a water-based nanofluid containing motile gyrotactic micro-organisms passing an isothermal nonlinear stretching sheet in the presence of a non-uniform magnetic field is studied numerically. The governing partial differential equations including continuity, momentums, energy, concentration of the nanoparticles, and density of motile micro-organisms are converted into a system of the ordinary differential equations via a set of similarity transformations. New set of equations are discretized using the finite difference method and have been linearized by employing the Newton's linearization technique. The tri-diagonal system of algebraic equations from discretization is solved using the well-known Thomas algorithm. The numerical results for profiles of velocity, temperature, nanoparticles concentration and density of motile micro-organisms as well as the local skin friction coefficient Cfx, the local Nusselt number Nux, the local Sherwood number Shx and the local density number of the motile microorganism Nnx are expressed graphically and described in detail. This investigation shows the density number of the motile micro-organisms enhances with rise of M, Gr/Re2, Pe and Ω but it decreases with augment of Rb and n. Also, Sherwood number augments with an increase of M and Gr/Re2, while decreases with n, Rb, Nb and Nr. To show the validity of the current results, a comparison between the present results and the existing literature has been carried out.

  14. Fluid Flow and Heat Transfer Analysis of a Nanofluid Containing Motile Gyrotactic Micro-Organisms Passing a Nonlinear Stretching Vertical Sheet in the Presence of a Non-Uniform Magnetic Field; Numerical Approach

    Science.gov (United States)

    M. Mehryan, S. A.; Moradi Kashkooli, Farshad; Soltani, M.; Raahemifar, Kaamran

    2016-01-01

    The behavior of a water-based nanofluid containing motile gyrotactic micro-organisms passing an isothermal nonlinear stretching sheet in the presence of a non-uniform magnetic field is studied numerically. The governing partial differential equations including continuity, momentums, energy, concentration of the nanoparticles, and density of motile micro-organisms are converted into a system of the ordinary differential equations via a set of similarity transformations. New set of equations are discretized using the finite difference method and have been linearized by employing the Newton’s linearization technique. The tri-diagonal system of algebraic equations from discretization is solved using the well-known Thomas algorithm. The numerical results for profiles of velocity, temperature, nanoparticles concentration and density of motile micro-organisms as well as the local skin friction coefficient Cfx, the local Nusselt number Nux, the local Sherwood number Shx and the local density number of the motile microorganism Nnx are expressed graphically and described in detail. This investigation shows the density number of the motile micro-organisms enhances with rise of M, Gr/Re2, Pe and Ω but it decreases with augment of Rb and n. Also, Sherwood number augments with an increase of M and Gr/Re2, while decreases with n, Rb, Nb and Nr. To show the validity of the current results, a comparison between the present results and the existing literature has been carried out. PMID:27322536

  15. Colloquium: Nonlinear Collective Interactions in Dense Plasmas

    CERN Document Server

    Shukla, P K

    2010-01-01

    The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...

  16. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  17. Nonlinear predictive control in the LHC accelerator

    CERN Document Server

    Blanco, E; Cristea, S; Casas, J

    2009-01-01

    This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.

  18. Nonlinear singular vectors and nonlinear singular values

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.

  19. BOOK REVIEW: Nonlinear Magnetohydrodynamics

    Science.gov (United States)

    Shafranov, V.

    1998-08-01

    Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium

  20. Bootstrapping the Coronal Magnetic Field with STEREO

    Science.gov (United States)

    Aschwanden, Markus J.

    2010-05-01

    The 3D coronal magnetic field obtained from stereoscopically triangulated loops has been compared with standard photospheric magnetogram extrapolations. We found a large misalignment of 20-40 deg, depending on the complexity of an AR (Sandman et al. 2009; DeRosa et al. 2009). These studies prove that the magnetic field in the photosphere is not force-free and fundamentally cannot reproduce the coronal magnetic field. Bootstrapping with coronal loop 3D geometries are required to improve modeling of the coronal field. Such coronal field bootstrapping methods are currently developed using stereoscopically triangulated loops from STEREO/EUVI and preliminary results show already a significantly reduced misalignment of 10-20 deg.