Nonlinear Dynamics and Control of Flexible Structures
1991-03-01
Freedom," Ph.D. Thesis, Department of Theoretical and Applied Mechanics, Cornell University, in preparation. 5I I URI Reorts Islam , Saiful and Mircea...Theoretical and Applied Mechanics I S. Islam Civil and Environmental Engineering I 2! I 3 URI Accomplishments 3 -Nonlinear Dynamics and Chaos in Flexible...Structures with Symmetry," 31 (1991) 265-285. Islam , S. and M. Grigoriu, "Nonlinear Random Vibration of Pin-Jointed Trusses with Imperfections," in
Control of nonlinear flexible space structures
Shi, Jianjun
With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of
The Effect of Nonlinearities on Flexible Structures.
1987-04-30
No. 87- 0777-CP, 1987. 4. Nayfeh, A. H. and Sanchez, N. E., ’Global Bifurcations Including Escape for a Softening Duffing Oscillator ", submitted for...biock number FIELD GROUP SUB. GR. _ ?onlinear Oscillations , Flexible structures, Resonances, Attractors, Bifurcations 19. 4 TACT jnt nue on r,.erse it...Excitation of Two Internally Resonant Oscillators ", Journal of Sound and Vibration, Vol. 119, No. 2, 1987. 3 4 2. Zavodney, L D. and Nayfeh, A. H., NThe
Nonlinear vibration with control for flexible and adaptive structures
Wagg, David
2015-01-01
This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...
Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics
2016-01-01
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...
The influence of and the identification of nonlinearity in flexible structures
Zavodney, Lawrence D.
1988-01-01
Several models were built at NASA Langley and used to demonstrate the following nonlinear behavior: internal resonance in a free response, principal parametric resonance and subcritical instability in a cantilever beam-lumped mass structure, combination resonance in a parametrically excited flexible beam, autoparametric interaction in a two-degree-of-freedom system, instability of the linear solution, saturation of the excited mode, subharmonic bifurcation, and chaotic responses. A video tape documenting these phenomena was made. An attempt to identify a simple structure consisting of two light-weight beams and two lumped masses using the Eigensystem Realization Algorithm showed the inherent difficulty of using a linear based theory to identify a particular nonlinearity. Preliminary results show the technique requires novel interpretation, and hence may not be useful for structural modes that are coupled by a guadratic nonlinearity. A literature survey was also completed on recent work in parametrically excited nonlinear system. In summary, nonlinear systems may possess unique behaviors that require nonlinear identification techniques based on an understanding of how nonlinearity affects the dynamic response of structures. In this was, the unique behaviors of nonlinear systems may be properly identified. Moreover, more accutate quantifiable estimates can be made once the qualitative model has been determined.
LINEAR AND NONLINEAR AERODYNAMIC THEORY OF INTERACTION BETWEEN FLEXIBLE LONG STRUCTURE AND WIND
Institute of Scientific and Technical Information of China (English)
徐旭; 曹志远
2001-01-01
In light of the characteristics of the interactions between flexible structure and wind in three directions, and based on the rational mechanical section-model of structure, a new aerodynamic force model is accepted, i. e. the coefficients of three component forces are the functions of the instantaneous attack angle and rotational speed Ci = Ci(β(t),θ),(i = D, L, M). So, a new method to formulate the linear and nonlinear aerodynamic items of wind and structure interacting has been put forward in accordance with "strip theory"and modified "quasi-static theory ", and then the linear and nonlinear coupled theory of super-slender structure for civil engineering analyzing are converged in one model. For the linear aerodynamic-force parts, the semi-analytical expressions of the items so-called "flutter derivatives" corresponding to the one in the classic equations have been given here,and so have the nonlinear parts. The study of the stability of nonlinear aerodynamic-coupled torsional vibration of the old Tacoma bridge shows that the form and results of the nonlinear control equation in rotational direction are in agreement with that of V. F. Bohm's.
Sun, Limin; Chen, Lin
2017-10-01
Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.
Directory of Open Access Journals (Sweden)
Paulo S. Varoto
2006-01-01
Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results
Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.
1993-01-01
Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.
Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco
2012-04-01
Large mechanical structures are often affected by high level vibrations due to their flexibility. These vibrations can reduce the system performances and lifetime and the use of active vibration control strategies becomes very attractive. In this paper a combination of resonant control and a disturbance estimator is proposed. This solution is able to improve the system performances during the transient motion and also to reject the disturbance forces acting on the system. Both control logics are based on a modal approach, since it allows to describe the structure dynamics considering only few degrees of freedom.
Weisshuhn, Philip C; Sheppard, Devon; Taylor, Paul; Whiteman, Pat; Lea, Susan M; Handford, Penny A; Redfield, Christina
2016-04-05
The Notch receptor is a key component of a core metazoan signaling pathway activated by Delta/Serrate/Lag-2 ligands expressed on an adjacent cell. This results in a short-range signal with profound effects on cell-fate determination, cell proliferation, and cell death. Key to understanding receptor function is structural knowledge of the large extracellular portion of Notch which contains multiple repeats of epidermal growth factor (EGF)-like domains. Here we investigate the EGF4-13 region of human Notch1 (hN1) using a multidisciplinary approach. Ca(2+)-binding measurements, X-ray crystallography, {(1)H}-(15)N heteronuclear nuclear Overhauser effects, and residual dipolar couplings support a non-linear organization for the EGF4-13 region with a rigid, bent conformation for EGF4-7 and a single flexible linkage between EGF9 and EGF10. These data allow us to construct an informed model for EGF10-13 which, in conjunction with comparative binding studies, demonstrates that EGF10 has an important role in determining Notch receptor sensitivity to Dll-4.
A nonlinear optimization approach for disturbance rejection in flexible space structures
Parlos, Alexander G.; Sunkel, John W.
1990-01-01
In this paper the design of an active control law for the rejection of persistent disturbances in large space structures is presented. The control system design approach is based on a deterministic model of the disturbances, with a model-based-compensator (MBC) structure, optimizing the magnitude of the disturbance that the structure can tolerate without violating certain predetermined constraints. In addition to closed-loop stability, the explicit treatment of state, control and control rate constraints, such as structural displacement, control actuator effort, and compensator time guarantees that the final design will exhibit desired performance characteristics. The technique is applied for the vibration damping of a simple two bay truss structure which is subjected to persistent disturbances, such as shuttle docking. Preliminary results indicate that the proposed control system can reject considerable persistent disturbances by utilizing most of the available control, while limiting the structural displacements to within desired tolerances. Further work, however, for incorporating additional design criteria, such as compensator robustness to be traded-off against performance specifications, is warranted.
NONLINEAR DYNAMIC ANALYSIS OF FLEXIBLE MULTIBODY SYSTEM
Institute of Scientific and Technical Information of China (English)
A.Y.T.Leung; WuGuorong; ZhongWeifang
2004-01-01
The nonlinear dynamic equations of a multibody system composed of flexible beams are derived by using the Lagrange multiplier method. The nonlinear Euler beam theory with inclusion of axial deformation effect is employed and its deformation field is described by exact vibration modes. A numerical procedure for solving the dynamic equations is presented based on the Newmark direct integration method combined with Newton-Raphson iterative method. The results of numerical examples prove the correctness and efficiency of the method proposed.
Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)
2014-01-01
A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.
Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft
Su, Weihua
This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation
Designing structural supply chain flexibility
Mulinski, Ksawery Jan
2012-01-01
In a continuously changing business environment the role of supply chain flexibility is constantly increasing. A flexible supply chain can ensure survival in quickly changing market conditions as well as enable sustainable growth. This thesis explores the topic of supply chain flexibility with focus on structural flexibility due to scarcity of previous research in that area. The purpose of the research is to answer a question: how can companies design structural supply chain flexibility? In a...
The rigid-flexible nonlinear robotic manipulator: Modeling and control
Fenili, André; Balthazar, José Manoel
2011-05-01
The State-Dependent Riccati Equation (SDRE) control of a nonlinear rigid-flexible two link robotic manipulator is investigated. Different cases are considered assuming small deviations and large deviations from the desired final states. The nonlinear governing equations of motion are coupled, providing considerable excitation of all the nonlinear terms. The results present satisfactory final states but also undesirable overshoot.
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Soil-structure interaction including nonlinear soil
Gicev, Vlado
2008-01-01
There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.
Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft
Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.
Analysis of flexible structures under lateral impact
Energy Technology Data Exchange (ETDEWEB)
Ramirez, D. F. [Paul C. Kizzo and Associates Inc., Seismic Structural Group, Oakland, CA 94612 (United States); Razavi, H. [AREVA Inc., Civil Seismic Group, San Jose, CA 95119 (United States)
2012-07-01
Three methods for analysis of flexible structures under lateral impact are presented. The first proposed method (Method A) consists of: (1) modifying an available deceleration on a rigid target with conservation principles to account for structural flexibility; and (2) transient nonlinear analysis of the structure with the corrected forcing function. The second proposed method (Method B) is similar to Method A in obtaining the forcing function but it solves the equations of motion of an idealized two-degree-of-freedom system instead of directly using conservation principles. The last method simply provides the maximum force in the structure using the conservation of energy and linear momentum. A coupled simulation is also performed in LS-DYNA and compared against the proposed methods. A case study is presented to illustrate the applicability of all three methods and the LS-DYNA simulation. (authors)
Nonlinear analysis of flexible plates lying on elastic foundation
Directory of Open Access Journals (Sweden)
Trushin Sergey
2017-01-01
Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.
Stability Analysis of Nonlinear Vibrations of a Deploying Flexible Beam
Institute of Scientific and Technical Information of China (English)
JunfengLI; ZhaolinWANG
1996-01-01
Consider a rigid-flexible coupled system which consists of a central rigid body deploying a flexible appendage,The appendage is modeled as a finite deflection beam having linear constitutive equations.By taking the energy integral as Lyapunov function,it is proved that nonlinear transverse vibrations of the beam undergoing uniform extension or retrieval are stable when there are not controlling moment in the central rigid body and driving force on the beam,according to the partial stablity theorem.
Adaptive Control of Nonlinear Flexible Systems
1994-05-26
Proceedings of the American Control Conference , pp. 547-551, San Francisco, June 1993. 3 2 1.3 Personnel Dr. Robert Kosut and Dr. M. Giintekin Kabuli worked on...Control of Nonlinear Systems Under Matching Conditions," Proceedings of the American Control Conference , pp. 549-555, San Diego, CA, May 1990. [10] I...Poolla, P. Khargonekar, A. Tikku, J. Krause and K. Nagpal, "A time-domain ap- proach to model validation," Proceedings
Directory of Open Access Journals (Sweden)
Changchuan Xie
2016-01-01
Full Text Available VFAs (very flexible aircraft have begun to attract significant attention because of their good flight performances and significant application potentials; however, they also bring some challenges to researchers due to their unusual lightweight designs and large elastic deformations. A framework for the geometrically nonlinear aeroelastic stability analysis of very flexible wings is constructed in this paper to illustrate the unique aeroelastic characteristics and convenient use of these designs in engineering analysis. The nonlinear aeroelastic analysis model includes the geometrically nonlinear structure finite elements and steady and unsteady nonplanar aerodynamic computations (i.e., the nonplanar vortex lattice method and nonplanar doublet-lattice method. Fully nonlinear methods are used to analyse static aeroelastic features, and linearized structural dynamic equations are established at the structural nonlinear equilibrium state to estimate the stability of the system through the quasimode of the stressed and deformed structure. The exact flutter boundary is searched via an iterative procedure. A wind tunnel test is conducted to validate this theoretical analysis framework, and reasonable agreement is obtained. Both the analysis and test results indicate that the geometric nonlinearity of very flexible wings presents significantly different aeroelastic characteristics under different load cases with large deformations.
Geometric nonlinear formulation for thermal-rigid-flexible coupling system
Fan, Wei; Liu, Jin-Yang
2013-10-01
This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.
Yahia, I. S.; Zahran, H. Y.; Alamri, F. H.
2017-10-01
Pyronin Y (PY) thin films of different thicknesses were deposited on a flexible polyacetate substrate by using the spin-coating method. Pyronin Y thin films have an amorphous structure as identified by X-ray diffraction method. The linear and nonlinear optical properties of PY thin films were studied in details as a function of wavelengths. Transmittance, absorbance and reflectance spectra of pyronin Y thin films were recorded in the wavelengths range from 300 to 2500 nm. The refractive and absorption indices have been computed from Fresnel's equation. The optical band gaps were calculated for the studied PY thin film of thicknesses 205, 140 and 95 nm. Both direct and indirect gaps were computed as a function of PY of different thicknesses. The dielectric constant, dielectric loss and dissipation factor were investigated for the studied material. Spectrophotometric data was used to determine the nonlinear refractive index and the third nonlinear optical susceptibility. Pyronin Y thin films/polymer flexible substrate can be used in many applications such as flexible optoelectronic/electronic devices and for nonlinear optics with specified band gap.
Nonlinear dynamics of a flexible portal frame under support excitation
de Paula, Aline Souza; Balthazar, José Manoel; Felix, Jorge Luis Palacios
2012-11-01
This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, which is provided by an electro-dynamical shaker. The problem is reduced to a mathematical model of four degrees of freedom and the equations of motion are derived via Lagrangian formulation. The main goal of this study is to investigate the dynamic interactions between a flexible portal frame and a non-ideal support excitation. The numerical analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaŕ sections and bifurcation diagrams..
Tracking control of a flexible beam by nonlinear boundary feedback
Directory of Open Access Journals (Sweden)
Bao-Zhu Guo
1995-01-01
Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.
Alignment of flexible protein structures.
Shatsky, M; Fligelman, Z Y; Nussinov, R; Wolfson, H J
2000-01-01
We present two algorithms which align flexible protein structures. Both apply efficient structural pattern detection and graph theoretic techniques. The FlexProt algorithm simultaneously detects the hinge regions and aligns the rigid subparts of the molecules. It does it by efficiently detecting maximal congruent rigid fragments in both molecules and calculating their optimal arrangement which does not violate the protein sequence order. The FlexMol algorithm is sequence order independent, yet requires as input the hypothesized hinge positions. Due its sequence order independence it can also be applied to protein-protein interface matching and drug molecule alignment. It aligns the rigid parts of the molecule using the Geometric Hashing method and calculates optimal connectivity among these parts by graph-theoretic techniques. Both algorithms are highly efficient even compared with rigid structure alignment algorithms. Typical running times on a standard desktop PC (400 MHz) are about 7 seconds for FlexProt and about 1 minute for FlexMol.
Confinement of Vibrations in Variable-Geometry Nonlinear Flexible Beam
Directory of Open Access Journals (Sweden)
W. Gafsi
2014-01-01
Full Text Available In this paper, we propose a novel strategy for controlling a flexible nonlinear beam with the confinement of vibrations. We focus principally on design issues related to the passive control of the beam by proper selection of its geometrical and physical parameters. Due to large deflections within the regions where the vibrations are to be confined, we admit a nonlinear model that describes with precision the beam dynamics. In order to design a set of physical and geometrical parameters of the beam, we first formulate an inverse eigenvalue problem. To this end, we linearize the beam model and determine the linearly assumed modes that guarantee vibration confinement in selected spatial zones and satisfy the boundary conditions of the beam to be controlled. The approximation of the physical and geometrical parameters is based on the orthogonality of the assumed linear mode shapes. To validate the strategy, we input the resulting parameters into the nonlinear integral-partial differential equation that describes the beam dynamics. The nonlinear frequency response curves of the beam are approximated using the differential quadrature method and the finite difference method. We confirm that using the linear model, the strategy of vibration confinement remains valid for the nonlinear beam.
Acoustic-gravity nonlinear structures
Directory of Open Access Journals (Sweden)
D. Jovanović
2002-01-01
Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.
Strain Monitoring of Flexible Structures
Litteken, Douglas A.
2017-01-01
One of the biggest challenges facing NASA's deep space exploration goals is structural mass. A long duration transit vehicle on a journey to Mars, for example, requires a large internal volume for cargo, supplies and crew support. As with all space structures, a large pressure vessel is not enough. The vehicle also requires thermal, micro-meteoroid, and radiation protection, a navigation and control system, a propulsion system, and a power system, etc. As vehicles get larger, their associated systems also get larger and more complex. These vehicles require larger lift capacities and force the mission to become extremely costly. In order to build large volume habitable vehicles, with only minimal increases in launch volume and mass, NASA is developing lightweight structures. Lightweight structures are made from non-metallic materials including graphite composites and high strength fabrics and could provide similar or better structural capability than metals, but with significant launch volume and mass savings. Fabric structures specifically, have been worked by NASA off and on since its inception, but most notably in the 1990's with the TransHAB program. These TransHAB developed structures use a layered material approach to form a pressure vessel with integrated thermal and micro-meteoroid and orbital debris (MMOD) protection. The flexible fabrics allow the vessel to be packed in a small volume during launch and expand into a much larger volume once in orbit. NASA and Bigelow Aerospace recently installed the first human-rated inflatable module on the International Space Station (ISS), known as the Bigelow Expandable Activity Module (BEAM) in May of 2016. The module provides a similar internal volume to that of an Orbital ATK Cygnus cargo vehicle, but with a 77% launch volume savings. As lightweight structures are developed, testing methods are vital to understanding their behavior and validating analytical models. Common techniques can be applied to fabric materials
Designing structural supply chain flexibility
Mulinski, Ksawery Jan
2012-01-01
In a continuously changing business environment the role of supply chain flexibility is constantly increasing. A flexible supply chain can ensure survival in quickly changing market conditions as well as enable sustainable growth. This thesis explores the topic of supply chain flexibility with focus
Designing structural supply chain flexibility
Mulinski, Ksawery Jan
2012-01-01
In a continuously changing business environment the role of supply chain flexibility is constantly increasing. A flexible supply chain can ensure survival in quickly changing market conditions as well as enable sustainable growth. This thesis explores the topic of supply chain flexibility with focus
Nonlinear Gust Response Analysis of Free Flexible Aircraft
Directory of Open Access Journals (Sweden)
Chen Shilu
2013-01-01
Full Text Available Gust response analysis plays a very important role in large aircraft design. This paper presents a methodology for calculating the flight dynamic characteristics and gust response of free flexible aircraft. A multidisciplinary coupled numerical tool is developed to simulate detailed aircraft models undergoing arbitrary free flight motion in the time domain, by Computational Fluid Dynamics (CFD, Computational Structure Dynamics (CSD and Computational Flight Mechanics (CFM coupling. To achieve this objective, a structured, time-accurate flow-solver is coupled with a computational module solving the flight mechanics equations of motion and a structural mechanics code determining the structural deformations. A novel method to determine the trim state of flexible aircraft is also stated. First, the field velocity approach is validated, after the trim state is attained, gust responses for the one-minus-cosine gust profile are analyzed for the longitudinal motion of a slender-wing aircraft configuration with and without the consideration of structural deformation.
Nonlinear transient analysis of joint dominated structures
Chapman, J. M.; Shaw, F. H.; Russell, W. C.
1987-01-01
A residual force technique is presented that can perform the transient analyses of large, flexible, and joint dominated structures. The technique permits substantial size reduction in the number of degrees of freedom describing the nonlinear structural models and can account for such nonlinear joint phenomena as free-play and hysteresis. In general, joints can have arbitrary force-state map representations but these are used in the form of residual force maps. One essential feature of the technique is to replace the arbitrary force-state maps describing the nonlinear joints with residual force maps describing the truss links. The main advantage of this replacement is that the incrementally small relative displacements and velocities across a joint are not monitored directly thereby avoiding numerical difficulties. Instead, very small and 'soft' residual forces are defined giving a numerically attractive form for the equations of motion and thereby permitting numerically stable integration algorithms. The technique was successfully applied to the transient analyses of a large 58 bay, 60 meter truss having nonlinear joints. A method to perform link testing is also presented.
Fault Isolation for Nonlinear Systems Using Flexible Support Vector Regression
Directory of Open Access Journals (Sweden)
Yufang Liu
2014-01-01
Full Text Available While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the method of flexible support vector regression (F-SVR, which is especially suited for modelling complicated sample distributions, as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution. Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have been obtained.
Energy Technology Data Exchange (ETDEWEB)
Ciorsac, Alecu, E-mail: aleciorsac@yahoo.co [Politehnica University of Timisoara, Department of Physical Education and Sport, 2 P-ta Victoriei, 300006, Timisoara (Romania); Craciun, Dana, E-mail: craciundana@gmail.co [Teacher Training Department, West University of Timisoara, 4 Boulevard V. Pirvan, Timisoara, 300223 (Romania); Ostafe, Vasile, E-mail: vostafe@cbg.uvt.r [Department of Chemistry, West University of Timisoara, 16 Pestallozi, 300115, Timisoara (Romania); Laboratory of Advanced Researches in Environmental Protection, Nicholas Georgescu-Roegen Interdisciplinary Research and Formation Platform, 4 Oituz, Timisoara, 300086 (Romania); Isvoran, Adriana, E-mail: aisvoran@cbg.uvt.r [Department of Chemistry, West University of Timisoara, 16 Pestallozi, 300115, Timisoara (Romania); Laboratory of Advanced Researches in Environmental Protection, Nicholas Georgescu-Roegen Interdisciplinary Research and Formation Platform, 4 Oituz, Timisoara, 300086 (Romania)
2011-04-15
Research highlights: lights: We focus our study on the glycolytic enzymes. We reveal correlation of hydrophobicity and flexibility along their chains. We also reveal fractal aspects of the glycolytic enzymes structures and surfaces. The glycolytic enzyme sequences are not random. Creation of fractal structures requires the operation of nonlinear dynamics. - Abstract: Nonlinear methods widely used for time series analysis were applied to glycolytic enzyme sequences to derive information concerning the correlation of hydrophobicity and average flexibility along their chains. The 20 sequences of different types of the 10 human glycolytic enzymes were considered as spatial series and were analyzed by spectral analysis, detrended fluctuations analysis and Hurst coefficient calculation. The results agreed that there are both short range and long range correlations of hydrophobicity and average flexibility within investigated sequences, the short range correlations being stronger and indicating that local interactions are the most important for the protein folding. This correlation is also reflected by the fractal nature of the structures of investigated proteins.
Resonant Electromagnetic Shunt Damping of Flexible Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker
2016-01-01
Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...
Piezoelectric RL shunt damping of flexible structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Krenk, Steen
2015-01-01
Resonant RL shunt circuits represent a robust and effective approach to piezoelectric damping, provided that the individual shunt circuit components are calibrated accurately with respect to the dynamic properties of the corresponding flexible structure. The balanced calibration procedure applied...
Nonlinear Absolute Nodal Coordinate Formulation of a Flexible Beam Considering Shear Effect
Institute of Scientific and Technical Information of China (English)
LIU Jin-yang; SHEN Ling-jie; HONG Jia-zhen
2005-01-01
Nonlinear modeling of a flexible beam with large deformation was investigated. Absolute nodal cooridnate formulation is employed to describe the motion, and Lagrange equations of motion of a flexible beam are derived based on the geometric nonlinear theory. Different from the previous nonlinear formulation with EulerBernoulli assumption, the shear strain and transverse normal strain are taken into account. Computational example of a flexible pendulum with a tip mass is given to show the effects of the shear strain and transverse normal strain. The constant total energy verifies the correctness of the present formulation.
Nonlinear Dynamics and Control of Flexible Structures
1990-10-10
control problem is to drive the outputs asymptotically to zero. Since output regulation problem seeks to enforce the set of constraints I hi() = , i = 1...K an m x m constant matrix, solves the output regulation problem if sliding can be achieved. In sliding the equivalent control is, Uq = -B(x)-KAz - B
Flexible joints in structural and multibody dynamics
O. A. Bauchau; Han, S.
2013-01-01
Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformat...
Vibration control of a flexible structure with electromagnetic actuators
DEFF Research Database (Denmark)
Gruzman, Maurício; Santos, Ilmar
2016-01-01
This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....
System Reduction and Damping of Flexible Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess; Krenk, Steen
2007-01-01
An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... frequency - containing the resulting modal damping via the imaginary part - is given by an explicit formula. For very flexible structures, e.g. cables, only moderate damping is involved, and the explicit approximation is very accurate. However, even for stiffer structures the explicit form gives a quite...
A Study of Flexible Composites for Expandable Space Structures
Scotti, Stephen J.
2016-01-01
Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.
Tuned mass absorber on a flexible structure
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
2014-01-01
The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping of a...
DEFF Research Database (Denmark)
Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.
2011-01-01
We experimentally demonstrate that digital non-linear equalization allows for using independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking.......We experimentally demonstrate that digital non-linear equalization allows for using independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking....
Progress on control experiments of flexible structures
Juang, Jer-Nan
1990-01-01
Progress at the NASA Langley Research Center in the area of control experiments for flexible structures is described. First the author presents the experimental results for a linear model which represents slewing maneuvers of a generic space station solar panel carried out to evaluate experimentally some control technologies. Then the status of the rotational/translational maneuvering experiment of a flexible steel panel carried by a translation cart is presented. Finally, experimental results of the NASA minimast testbed using velocity command stepper motors as reaction mass reactors are shown. All the test configurations are briefly described, including actuator and sensor, test setup, and test software. The status of some research activities oriented primarily to the experimental methods for control of flexible structures is presented.
Flexible Structural-Health-Monitoring Sheets
Qing, Xinlin; Kuo, Fuo
2008-01-01
A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.
Structural flexibility of moral judgment.
Krebs, D L; Denton, K L; Vermeulen, S C; Carpendale, J I; Bush, A
1991-12-01
One of the central assumptions of Kohlberg's theory of moral development--that moral judgment is organized in structures of the whole--was examined. Thirty men and 30 women were given 2 dilemmas from Kohlberg's Moral Judgment Interview, a 3rd involving prosocial behavior, and a 4th involving impaired driving. Half the Ss responded to the prosocial and impaired-driving dilemmas from the perspective of a hypothetical character, and half responded from the perspective of the self. No sex or perspective differences in moral maturity were observed. Ss scored highest in moral maturity on Kohlberg's dilemmas, intermediate on the prosocial dilemma, and lowest on the impaired-driving dilemma. In partial support of Kohlberg's contention that his test assesses moral competence, there was a negative linear relationship between scores on his test and the proportion of Stage 2 judgments on the 2 other dilemmas. An interactional model of moral judgment is advanced.
Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core
DEFF Research Database (Denmark)
Frostig, Y.; Thomsen, Ole Thybo
2005-01-01
nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...
FLEXIBLE STRUCTURE WITH INTEGRATED SENSOR/ACTUATOR
DEFF Research Database (Denmark)
2003-01-01
A polymer-based flexible structure with integrated sensing/actuator means is presented. Conventionally, silicon has been used as a piezo-resistive material due to its high gauge factor and thereby high sensitivity to strain changes in a sensor. By using the fact that e.g. an SU-8 based polymer...
ANFIS Modelling of Flexible Plate Structure
Directory of Open Access Journals (Sweden)
A. A. M. Al-Khafaji
2010-06-01
Full Text Available This paper presented an investigation into the performance of system identification using an Adaptive Neuro-Fuzzy Inference System (ANFIS technique for the dynamic modelling of a twodimensional flexible plate structure. It is confirmed experimentally, using National Instrumentation (NI Data Acquisition System (DAQ and flexible plate test rig that ANFIS can be effectively used for modelling the system with highly accurate results. The accuracy of the modelling results is demonstrated through validation tests including training and test validation and correlation tests.
Tip position control of a two-link flexible robot manipulator based on nonlinear deflection feedback
Energy Technology Data Exchange (ETDEWEB)
Oke, G. E-mail: oke@boun.edu.tr; Istefanopulos, Y
2003-07-01
The control of flexible link manipulators has gained an increasing importance in robotics, in recent years. To control the tip of a flexible manipulator, the joint angles should converge to the desired positions fast and elastic deflections must be effectively suppressed. In this study, a two-link flexible manipulator is controlled by three methods and the results are compared. These methods are, Pd control, PD control augmented by a nonlinear correction term feedback, where the correction term is a function of the deflection of each link, and an adaptive fuzzy controller with the nonlinear correction term feedback. Simulations have been carried out to compare the performances of all three methods.
Nonlinear structural analysis using integrated force method
Indian Academy of Sciences (India)
N R B Krishnam Raju; J Nagabhushanam
2000-08-01
Though the use of the integrated force method for linear investigations is well-recognised, no efforts were made to extend this method to nonlinear structural analysis. This paper presents the attempts to use this method for analysing nonlinear structures. General formulation of nonlinear structural analysis is given. Typically highly nonlinear bench-mark problems are considered. The characteristic matrices of the elements used in these problems are developed and later these structures are analysed. The results of the analysis are compared with the results of the displacement method. It has been demonstrated that the integrated force method is equally viable and efficient as compared to the displacement method.
Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves
Directory of Open Access Journals (Sweden)
Christof Wehmeyer
2014-08-01
Full Text Available The rising demand for renewable energy solutions is forcing the established industries to expand and continue evolving. For the wind energy sector, the vast resources in deep sea locations have encouraged research towards the installation of turbines in deeper waters. One of the most promising technologies able to solve this challenge is the floating wind turbine foundation. For the ultimate limit state, where higher order wave loads have a significant influence, a design tool that couples non-linear excitations with structural dynamics is required. To properly describe the behavior of such a structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial software, where the need for the coupled higher order dynamics proposed in this paper becomes evident.
You, Bin Di; Wen, Jian Min; Zhao, Yang
2014-03-01
In this paper, a nonlinear dynamic modeling method for a rigid-flexible coupling satellite antenna system composed of laminated shell reflector is proposed undergoing a large overall motion. For the study of the characteristics of the reflector using laminated shell structure, the displacement field description of a point in a 3-noded shell element is acquired in conjunction with the length stretch, lateral bending and torsional deformation. Hence, a nonlinear dynamic model of the satellite antenna system is deduced based on Lagrange's equations. The complete expressions of nonlinear terms of elastic deformation and coupling terms between rigid motion and large deflection are considered in the dynamic equations, and the dynamic behavior of the rigid-flexible coupling system is analyzed using linear model and nonlinear model, respectively. In order to eliminate the system vibration, the PD with vibration force feedback control strategy is used to achieve its desired angles and velocity in a much shorter duration, and can further accomplish reduction of residual vibration. Then, the asymptotic stability of the system is proved based on the Lyapunov method. Through numerical computation, the results show that the linear model cannot capture the motion-induced coupling terms and geometric nonlinearity variations. However, the nonlinear model is suitable for dealing with large deformation rigid-flexible problem undergoing large overall motions. Hence, the satellite antenna pointing accuracy would be predicted based on the nonlinear model. Furthermore, the results also show that the proposed control strategy can suppress system vibration quickly. The above conclusions would have important academic significance and engineering value.
Modeling and Control of Large Flexible Structures.
1984-07-31
systems with hybrid (lumped and distributed) structure. * -3.Development of stabilizing control strategies for nonlinear distributed models, including...process, but much more needs to be done. el .It ;,, "..- ,. ,-,,o’,, .4. : ") Part I: :i: ’i" ’" Wierner-Hopf Methods for Design of Stabilizing ... Control Systems :: Z’" ..-- -~ . . . . .. . . . . . . ... . . . . .......- ~ .. . . S 5 * * .5 .. ** .*% - * 5*55 * . . . . % % ’ * . ’ % , . :.:. -A
RESEARCH ON NONLINEAR PROBLEMS IN STRUCTURAL DYNAMICS.
Research on nonlinear problems structural dynamics is briefly summarized. Panel flutter was investigated to make a critical comparison between theory...panel flutter in aerospace vehicles, plausible simplifying assumptions are examined in the light of experimental results. Structural dynamics research
Design and Nonlinear Control of a 2-DOF Flexible Parallel Humanoid Arm Joint Robot
Directory of Open Access Journals (Sweden)
Leijie Jiang
2017-01-01
Full Text Available The paper focuses on the design and nonlinear control of the humanoid wrist/shoulder joint based on the cable-driven parallel mechanism which can realize roll and pitch movement. In view of the existence of the flexible parts in the mechanism, it is necessary to solve the vibration control of the flexible wrist/shoulder joint. In this paper, a cable-driven parallel robot platform is developed for the experiment study of the humanoid wrist/shoulder joint. And the dynamic model of the mechanism is formulated by using the coupling theory of the flexible body’s large global motion and small flexible deformation. Based on derived dynamics, antivibration control of the joint robot is studied with a nonlinear control method. Finally, simulations and experiments were performed to validate the feasibility of the developed parallel robot prototype and the proposed control scheme.
A method for regulating strong nonlinear vibration energy of the flexible arm
Yushu Bian; Ming Wang; Zhihui Gao; Baofeng Yuan; Ming Fan
2015-01-01
For an oscillating system, large amplitude indicates strong vibration energy. In this article, modal interaction is used as a useful means to regulate strong nonlinear vibration energy of the flexible arm undergoing rigid motion. A method is put forward to migrate and dissipate vibration energy based on modal interaction. By means of multiple-scale perturbation analysis, it is proven that internal resonance can be successfully established between modes of the flexible arm and the vibration ab...
Vibration isolation by exploring bio-inspired structural nonlinearity.
Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert
2015-10-08
Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.
Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh
Deng, Mingle; Yue, Baozeng
2017-04-01
This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.
Omnidirectional Structured Light in a Flexible Configuration
Directory of Open Access Journals (Sweden)
Luis Puig
2013-10-01
Full Text Available Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light emitter. Since the light emitter is visible in the omnidirectional image, the computation of its location is possible. With this information and the projected conic in the omnidirectional image, we are able to compute the conic reconstruction, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance.
Omnidirectional structured light in a flexible configuration.
Paniagua, Carmen; Puig, Luis; Guerrero, José J
2013-10-14
Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light emitter. Since the light emitter is visible in the omnidirectional image, the computation of its location is possible. With this information and the projected conic in the omnidirectional image, we are able to compute the conic reconstruction, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance.
Structural optimization for nonlinear dynamic response.
Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S
2015-09-28
Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.
BRST structure of non-linear superalgebras
Asorey, M; Radchenko, O V; Sugamoto, A
2008-01-01
In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.
H∞ Synthesis Method for Control of Non-linear Flexible Joint Models
Axelsson, Patrik; Pipeleers, Goele; Helmersson, Anders; Norrlöf, Mikael
2014-01-01
An H∞ synthesis method for control of a flexible joint, with non-linear spring characteristic, is proposed. The first step of the synthesis method is to extend the joint model with an uncertainty description of the stiffness parameter. In the second step, a non-linear optimisation problem, based on nominal performance and robust stability requirements, has to be solved. Using the Lyapunov shaping paradigm and a change of variables, the non-linear optimisation problem can be rewritten as a con...
Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity
Herrera, Christopher A.; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.
2017-02-01
This study presents a methodology for nonlinear quantification, i.e., the identification of the linear and nonlinear regimes and estimation of the degree of nonlinearity, for a cantilever beam with a local, strongly nonlinear stiffness element. The interesting feature of this system is that it behaves linearly in the limits of extreme values of the nonlinear stiffness. An Euler-Bernoulli cantilever beam with two nonlinear configurations is used to develop and demonstrate the methodology. One configuration considers a cubic spring attached at a distance from the beam root to achieve a smooth nonlinear effect. The other configuration considers a vibro-impact element that generates non-smooth effects. Both systems have the property that, in the limit of small and large values of a configuration parameter, the system is almost linear and can be modeled as such with negligible error. For the beam with a cubic spring attachment, the forcing amplitude is the varied parameter, while for the vibro-impact beam, this parameter is the clearance between the very stiff stops and the beam at static equilibrium. Proper orthogonal decomposition is employed to obtain an optimal orthogonal basis used to describe the nonlinear system dynamics for varying parameter values. The frequencies of the modes that compose the basis are then estimated using the Rayleigh quotient. The variations of these frequencies are studied to identify parameter values for which the system behaves approximately linearly and those for which the dynamical response is highly nonlinear. Moreover, a criterion based on the Betti-Maxwell reciprocity theorem is used to verify the existence of nonlinear behavior for the set of parameter values suggested by the described methodology. The developed methodology is general and applicable to discrete or continuous systems with smooth or nonsmooth nonlinearities.
A method for regulating strong nonlinear vibration energy of the flexible arm
Directory of Open Access Journals (Sweden)
Yushu Bian
2015-07-01
Full Text Available For an oscillating system, large amplitude indicates strong vibration energy. In this article, modal interaction is used as a useful means to regulate strong nonlinear vibration energy of the flexible arm undergoing rigid motion. A method is put forward to migrate and dissipate vibration energy based on modal interaction. By means of multiple-scale perturbation analysis, it is proven that internal resonance can be successfully established between modes of the flexible arm and the vibration absorber. Through examples and analyses, it is verified that this control method is effective in regulating strong vibration energy and can be used to suppress strong nonlinear vibration of the flexible arm undergoing rigid motion.
Structural optimization for nonlinear dynamic response
DEFF Research Database (Denmark)
Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.
2015-01-01
condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped–clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...... by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance...
Nonlinear Dynamics of Structures with Material Degradation
Soltani, P.; Wagg, D. J.; Pinna, C.; Whear, R.; Briody, C.
2016-09-01
Structures usually experience deterioration during their working life. Oxidation, corrosion, UV exposure, and thermo-mechanical fatigue are some of the most well-known mechanisms that cause degradation. The phenomenon gradually changes structural properties and dynamic behaviour over their lifetime, and can be more problematic and challenging in the presence of nonlinearity. In this paper, we study how the dynamic behaviour of a nonlinear system changes as the thermal environment causes certain parameters to vary. To this end, a nonlinear lumped mass modal model is considered and defined under harmonic external force. Temperature dependent material functions, formulated from empirical test data, are added into the model. Using these functions, bifurcation parameters are defined and the corresponding nonlinear responses are observed by numerical continuation. A comparison between the results gives a preliminary insight into how temperature induced properties affects the dynamic response and highlights changes in stability conditions of the structure.
Supratransmission in a disordered nonlinear periodic structure
Yousefzadeh, B.; Phani, A. Srikantha
2016-10-01
We study the interaction among dispersion, nonlinearity, and disorder effects in the context of wave transmission through a discrete periodic structure, subjected to continuous harmonic excitation in its stop band. We consider a damped nonlinear periodic structure of finite length with disorder. Disorder is introduced throughout the structure by small changes in the stiffness parameters drawn from a uniform statistical distribution. Dispersion effects forbid wave transmission within the stop band of the linear periodic structure. However, nonlinearity leads to supratransmission phenomenon, by which enhanced wave transmission occurs within the stop band of the periodic structure when forced at an amplitude exceeding a certain threshold. The frequency components of the transmitted waves lie within the pass band of the linear structure, where disorder is known to cause Anderson localization. There is therefore a competition between dispersion, nonlinearity, and disorder in the context of supratransmission. We show that supratransmission persists in the presence of disorder. The influence of disorder decreases in general as the forcing frequency moves away from the pass band edge, reminiscent of dispersion effects subsuming disorder effects in linear periodic structures. We compute the dependence of the supratransmission force threshold on nonlinearity and strength of coupling between units. We observe that nonlinear forces are confined to the driven unit for weakly coupled systems. This observation, together with the truncation of higher-order nonlinear terms, permits us to develop closed-form expressions for the supratransmission force threshold. In sum, in the frequency range studied here, disorder does not influence the supratransmission force threshold in the ensemble-average sense, but it does reduce the average transmitted wave energy.
Robust disturbance rejection for flexible mechanical structures
Enzmann, Marc R.; Doeschner, Christian
2000-06-01
Topic of the presentation is a procedure to determine controller parameters using principles from Internal Model Control (IMC) in combination with Quantitative Feedback Theory (QFT) for robust vibration control of flexible mechanical structures. IMC design is based on a parameterization of all controllers that stabilize a given nominal plant, called the Q-parameter or Youla-parameter. It will be shown that it is possible to choose the controller structure and the Q- parameter in a very straightforward manner, so that a low order controller results, which stabilizes the given nominal model. Additional constraints can be implemented, so that the method allows for a direct and transparent trade-off between control performance and controller complexity and facilitates the inclusion of low-pass filters. In order to test (and if necessary augment) the inherent robust performance of the resulting controllers, boundaries based on the work of Kidron and Yaniv are calculated in the Nichols-Charts of the open loop and the complementary sensitivity function. The application of these boundaries is presented. Very simple uncertainty models for resonant modes are used to assess the robustness of the design. Using a simply structured plant as illustrative example we will demonstrate the design process. This will illuminate several important features of the design process, e.g. trade-off between conflicting objectives, trade- off between controller complexity and achievable performance.
Active vibration control techniques for flexible space structures
Parlos, Alexander G.; Jayasuriya, Suhada
1990-01-01
Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.
An efficient flexible-order model for 3D nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole
2009-01-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal...... scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular...
Viscoelastic fluid-structure interaction between a non-Newtonian fluid flow and flexible cylinder
Dey, Anita; Modarres-Sadeghi, Yahya; Rothstein, Jonathan
2016-11-01
It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. If the same flexible object is placed in non-Newtonian flows, however, the structure's response is still unknown. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable at infinitesimal Reynolds numbers due to a purely elastic flow instability. In this talk, we will present a series of experiments investigating the response of a flexible cylinder placed in the cross flow of a viscoelastic fluid. The elastic flow instabilities occurring at high Weissenberg numbers can exert fluctuating forces on the flexible cylinder thus leading to nonlinear periodic oscillations of the flexible structure. These oscillations are found to be coupled to the time-dependent state of viscoelastic stresses in the wake of the flexible cylinder. The static and dynamic responses of the flexible cylinder will be presented over a range of flow velocities, along with measurements of velocity profiles and flow-induced birefringence, in order to quantify the time variation of the flow field and the state of stress in the fluid.
Nonlinear system identification in offshore structural reliability
Energy Technology Data Exchange (ETDEWEB)
Spanos, P.D. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corporation, Houston, TX (United States)
1995-08-01
Nonlinear forces acting on offshore structures are examined from a system identification perspective. The nonlinearities are induced by ocean waves and may become significant in many situations. They are not necessarily in the form of Morison`s equation. Various wave force models are examined. The force function is either decomposed into a set of base functions or it is expanded in terms of the wave and structural kinematics. The resulting nonlinear system is decomposed into a number of parallel no-memory nonlinear systems, each followed by a finite-memory linear system. A conditioning procedure is applied to decouple these linear sub-systems; a frequency domain technique involving autospectra and cross-spectra is employed to identify the linear transfer functions. The structural properties and those force transfer parameters are determine with the aid of the coherence functions. The method is verified using simulated data. It provides a versatile and noniterative approach for dealing with nonlinear interaction problems encountered in offshore structural analysis and design.
Nonlinearities in Periodic Structures and Metamaterials
Denz, Cornelia; Kivshar, Yuri S
2010-01-01
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.
BASE Flexible Array Preliminary Lithospheric Structure Analysis
Yeck, W. L.; Sheehan, A. F.; Anderson, M. L.; Siddoway, C. S.; Erslev, E.; Harder, S. H.; Miller, K. C.
2009-12-01
The Bighorns Arch Seismic Experiment (BASE) is a Flexible Array experiment integrated with EarthScope. The goal of BASE is to develop a better understanding of how basement-involved foreland arches form and what their link is to plate tectonic processes. To achieve this goal, the crustal structure under the Bighorn Mountain range, Bighorn Basin, and Powder River Basin of northern Wyoming and southern Montana are investigated through the deployment of 35 broadband seismometers, 200 short period seismometers, 1600 “Texan” instruments using active sources and 800 “Texan” instruments monitoring passive sources, together with field structural analysis of brittle structures. The novel combination of these approaches and anticipated simultaneous data inversion will give a detailed structural crustal image of the Bighorn region at all levels of the crust. Four models have been proposed for the formation of the Bighorn foreland arch: subhorizontal detachment within the crust, lithospheric buckling, pure shear lithospheric thickening, and fault blocks defined by lithosphere-penetrating thrust faults. During the summer of 2009, we deployed 35 broadband instruments, which have already recorded several magnitude 7+ teleseismic events. Through P wave receiver function analysis of these 35 stations folded in with many EarthScope Transportable Array stations in the region, we present a preliminary map of the Mohorovicic discontinuity. This crustal map is our first test of how the unique Moho geometries predicted by the four hypothesized models of basement involved arches fit seismic observations for the Bighorn Mountains. In addition, shear-wave splitting analysis for our first few recorded teleseisms helps us determine if strong lithospheric deformation is preserved under the range. These analyses help lead us to our final goal, a complete 4D (3D spatial plus temporal) lithospheric-scale model of arch formation which will advance our understanding of the mechanisms
NONLINEAR DYNAMIC SIMULATION OF AN AXIALLY SLIDE-SPIN ROCKET FLEXIBLE SYSTEM WITH CLEARANCE
Institute of Scientific and Technical Information of China (English)
Zhu Huailiang; Zhang Fuxiang
2005-01-01
A hybrid approach is presented to investigate the dynamic behavior of an axially slide-spin flexible rocket with nonlinear clearance. The equations of motion of the flexible rocket are derived based upon Euler-Bernoulli beam theory and Hamilton principle and the finite element method. The characteristics of clearance between the spinning rocket and launcher are considered to be piecewise linear. Numerical solution is developed by direct integration method and demonstrates the validity of the method. The coupled dynamic behavior of axial motion and transverse vibrations of rocket are analyzed, and the influences of axially moving acceleration, spin speed, linking stiffness of elastic "shoes", and the nonlinearity of clearance on the motion attitude of rocket are studied.
An exact nonlinear hybrid-coordinate formulation for flexible multibody systems
Institute of Scientific and Technical Information of China (English)
Jinyang Liu; Jiazhen Hong; Lin Cui
2007-01-01
The previous low-order approximate nonlinear formulations succeeded in capturing the stiffening terms,but failed in simulation of mechanical systems with large deformation due to the neglect of the high-order deforma-tion terms. In this paper, a new hybrid-coordinate formu-lation is proposed, which is suitable for flexible multibody systems with large deformation. On the basis of exact strain-displacement relation, equations of motion for flexible multi-body system are derived by using virtual work principle. A matrix separation method is put forward to improve the efficiency of the calculation. Agreement of the present results with those obtained by absolute nodal coordinate formula-tion (ANCF) verifies the correctness of the proposed formu-lation. Furthermore, the present results are compared with those obtained by use of the linear model and the low-order approximate nonlinear model to show the suitability of the proposed models.
McNamara, John M; Stearne, David J
2013-06-01
Although there is considerable research on concurrent training, none has integrated flexible nonlinear periodization and maximal-effort cycling in the same design. The purpose of this investigation was to test outcome measures of strength and power using a pretest-posttest randomized groups design. A strength and endurance (SE) group was compared with a strength, endurance, and maximal-effort cycling (SEC) group. Both groups used a flexible nonlinear periodization design. Thirteen male and 7 female students (mean ± SD: age, 22.5 ± 4.1 years; height, 173.5 ± 12.4 cm; weight, 79.4 ± 20.2 kg; strength training experience, 2.4 ± 2.2 years) participated in this study. Groups were not matched for age, height, weight, strength training experience, or sex, but were randomly assigned to an SE (n = 10) or SEC (n = 10) group. All training was completed within 45 minutes, twice per week (Monday and Wednesday), over 12 consecutive weeks. Both groups were assigned 6.75 total hours of aerobic conditioning, and 13.5 hours of free weight and machine exercises totaling 3,188 repetitions ranging from 5 to 20 repetition maximums. The SEC group performed 2 cycling intervals per workout ranging from 10 to 45 seconds. Pretest and posttest measures included chest press and standing broad jump. Analysis of variance showed that there were no significant differences between the SE and SEC groups on measures of chest press or standing broad jump performance (p, not significant). Paired sample t-tests (p = 0.05) showed significant improvement in strength and power in all groups (pretest to posttest), except for SE jump performance (p, not significant). In conclusion, adding maximal-effort cycling does not provide additional strength or power benefits to a concurrent flexible nonlinear training program. However, an exercise professional can take confidence that a concurrent flexible nonlinear training program can increase strength and power in healthy individuals.
Tavakolpour-Saleh, A. R.; Haddad, M. A.
2017-03-01
In this paper, a novel robust vibration control scheme, namely, one degree-of-freedom fuzzy active force control (1DOF-FAFC) is applied to a nonlinear electromagnetic-actuated flexible plate system. First, the flexible plate with clamped-free-clamped-free (CFCF) boundary conditions is modeled and simulated. Then, the validity of the simulation platform is evaluated through experiment. A nonlinear electromagnetic actuator is developed and experimentally modeled through a parametric system identification scheme. Next, the obtained nonlinear model of the actuator is applied to the simulation platform and performance of the proposed control technique in suppressing unwanted vibrations is investigated via simulation. A fuzzy controller is applied to the robust 1DOF control scheme to tune the controller gain using acceleration feedback. Consequently, an intelligent self-tuning vibration control strategy based on an inexpensive acceleration sensor is proposed in the paper. Furthermore, it is demonstrated that the proposed acceleration-based control technique owns the benefits of the conventional velocity feedback controllers. Finally, an experimental rig is developed to investigate the effectiveness of the 1DOF-FAFC scheme. It is found that the first, second, and third resonant modes of the flexible system are attenuated up to 74%, 81%, and 90% respectively through which the effectiveness of the proposed control scheme is affirmed.
NONLINEAR DYNAMIC CHARACTERISTICS OF HYDRODYNAMIC JOURNAL BEARING-FLEXIBLE ROTOR SYSTEM
Institute of Scientific and Technical Information of China (English)
Lu Yanjun; Yu Lie; Liu Heng
2005-01-01
The nonlinear dynamic behaviors of flexible rotor system with hydrodynamic bearing supports are analyzed. The shaft is modeled by using the finite element method that takes the effect of inertia and shear into consideration. According to the nonlinearity of the hydrodynamic journal bearing-flexible rotor system, a modified modal synthesis technique with free-interface is represented to reduce degrees-of-freedom of model of the flexible rotor system. According to physical character of oil film, variational constrain approach is introduced to continuously revise the variational form of Reynolds equation at every step of dynamic integration and iteration. Fluid lubrication problem with Reynolds boundary is solved by the isoparametric finite element method without the increasing of computing efforts. Nonlinear oil film forces and their Jacobians are simultaneously calculated and -Newton-Floquet (PNF) method. A method, combining the predictor-corrector mechanism to the PNF method, is presented to calculate the bifurcation point of periodic motions to be subject to change of system parameters. The local stability and bifurcation behaviors of periodic motions are obtained by Floquet theory. The chaotic motions of the beating-rotor system are investigated by power spectrum.The numerical examples show that the scheme of this study saves computing efforts but also is of good precision.
Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings
Bhore, Skylab P.; Darpe, Ashish K.
2013-09-01
Investigation on nonlinear dynamics of a flexible rotor supported on the gas foil journal bearings is attempted. A time domain orbit simulation is carried out that couples the equations of rotor motion, unsteady Reynolds equation and foil deformation. The unsteady Reynolds equation is solved using control volume formulation with power law hybrid scheme and Gauss-Seidel method. The nonlinear dynamic response is analyzed using disc center and journal center trajectories, Poincaré maps, Fast Fourier transforms and bifurcation plots. The analysis is carried out for different system parameters, namely, rotating speed, unbalance eccentricity, compliance and loss factor of gas foil bearing. The analysis reveals highly nonlinear behavior with periodic, multi-periodic and quasiperiodic motion of the disc and the journal center. The present analysis can be useful in designing and selection of suitable operating parameters of rotor bearing system.
Fast Flexible Transistors with a Nanotrench Structure
Seo, Jung-Hun; Ling, Tao; Gong, Shaoqin; Zhou, Weidong; Ma, Alice L.; Guo, L. Jay; Ma, Zhenqiang
2016-04-01
The simplification of fabrication processes that can define very fine patterns for large-area flexible radio-frequency (RF) applications is very desirable because it is generally very challenging to realize submicron scale patterns on flexible substrates. Conventional nanoscale patterning methods, such as e-beam lithography, cannot be easily applied to such applications. On the other hand, recent advances in nanoimprinting lithography (NIL) may enable the fabrication of large-area nanoelectronics, especially flexible RF electronics with finely defined patterns, thereby significantly broadening RF applications. Here we report a generic strategy for fabricating high-performance flexible Si nanomembrane (NM)-based RF thin-film transistors (TFTs), capable of over 100 GHz operation in theory, with NIL patterned deep-submicron-scale channel lengths. A unique 3-dimensional etched-trench-channel configuration was used to allow for TFT fabrication compatible with flexible substrates. Optimal device parameters were obtained through device simulation to understand the underlying device physics and to enhance device controllability. Experimentally, a record-breaking 38 GHz maximum oscillation frequency fmax value has been successfully demonstrated from TFTs with a 2 μm gate length built with flexible Si NM on plastic substrates.
Fast Flexible Transistors with a Nanotrench Structure.
Seo, Jung-Hun; Ling, Tao; Gong, Shaoqin; Zhou, Weidong; Ma, Alice L; Guo, L Jay; Ma, Zhenqiang
2016-04-20
The simplification of fabrication processes that can define very fine patterns for large-area flexible radio-frequency (RF) applications is very desirable because it is generally very challenging to realize submicron scale patterns on flexible substrates. Conventional nanoscale patterning methods, such as e-beam lithography, cannot be easily applied to such applications. On the other hand, recent advances in nanoimprinting lithography (NIL) may enable the fabrication of large-area nanoelectronics, especially flexible RF electronics with finely defined patterns, thereby significantly broadening RF applications. Here we report a generic strategy for fabricating high-performance flexible Si nanomembrane (NM)-based RF thin-film transistors (TFTs), capable of over 100 GHz operation in theory, with NIL patterned deep-submicron-scale channel lengths. A unique 3-dimensional etched-trench-channel configuration was used to allow for TFT fabrication compatible with flexible substrates. Optimal device parameters were obtained through device simulation to understand the underlying device physics and to enhance device controllability. Experimentally, a record-breaking 38 GHz maximum oscillation frequency fmax value has been successfully demonstrated from TFTs with a 2 μm gate length built with flexible Si NM on plastic substrates.
CISM course on exploiting nonlinear behaviour in structural dynamics
Virgin, Lawrence; Exploiting Nonlinear Behavior in Structural Dynamics
2012-01-01
The articles in this volume give an overview and introduction to nonlinear phenomena in structural dynamics. Topics treated are approximate methods for analyzing nonlinear systems (where the level of nonlinearity is assumed to be relatively small), vibration isolation, the mitigation of undesirable torsional vibration in rotating systems utilizing specifically nonlinear features in the dynamics, the vibration of nonlinear structures in which the motion is sufficiently large amplitude and structural systems with control.
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Chortis, Dimitris I
2013-01-01
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...
A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up
Filippini, A. G.; Kazolea, M.; Ricchiuto, M.
2016-04-01
In this paper we evaluate hybrid strategies for the solution of the Green-Naghdi system of equations for the simulation of fully nonlinear and weakly dispersive free surface waves. We consider a two step solution procedure composed of: a first step where the non-hydrostatic source term is recovered by inverting the elliptic coercive operator associated to the dispersive effects; a second step which involves the solution of the hyperbolic shallow water system with the source term, computed in the previous phase, which accounts for the non-hydrostatic effects. Appropriate numerical methods, that can be also generalized on arbitrary unstructured meshes, are used to discretize the two stages: the standard C0 Galerkin finite element method for the elliptic phase; either third order Finite Volume or third order stabilized Finite Element method for the hyperbolic phase. The discrete dispersion properties of the fully coupled schemes obtained are studied, showing accuracy close to or better than that of a fourth order finite difference method. The hybrid approach of locally reverting to the nonlinear shallow water equations is used to recover energy dissipation in breaking regions. To this scope we evaluate two strategies: simply neglecting the non-hydrostatic contribution in the hyperbolic phase; imposing a tighter coupling of the two phases, with a wave breaking indicator embedded in the elliptic phase to smoothly turn off the dispersive effects. The discrete models obtained are thoroughly tested on benchmarks involving wave dispersion, breaking and run-up, showing a very promising potential for the simulation of complex near shore wave physics in terms of accuracy and robustness.
Likelihood Inference of Nonlinear Models Based on a Class of Flexible Skewed Distributions
Directory of Open Access Journals (Sweden)
Xuedong Chen
2014-01-01
Full Text Available This paper deals with the issue of the likelihood inference for nonlinear models with a flexible skew-t-normal (FSTN distribution, which is proposed within a general framework of flexible skew-symmetric (FSS distributions by combining with skew-t-normal (STN distribution. In comparison with the common skewed distributions such as skew normal (SN, and skew-t (ST as well as scale mixtures of skew normal (SMSN, the FSTN distribution can accommodate more flexibility and robustness in the presence of skewed, heavy-tailed, especially multimodal outcomes. However, for this distribution, a usual approach of maximum likelihood estimates based on EM algorithm becomes unavailable and an alternative way is to return to the original Newton-Raphson type method. In order to improve the estimation as well as the way for confidence estimation and hypothesis test for the parameters of interest, a modified Newton-Raphson iterative algorithm is presented in this paper, based on profile likelihood for nonlinear regression models with FSTN distribution, and, then, the confidence interval and hypothesis test are also developed. Furthermore, a real example and simulation are conducted to demonstrate the usefulness and the superiority of our approach.
Nonlinear vibration absorption for a flexible arm via a virtual vibration absorber
Bian, Yushu; Gao, Zhihui
2017-07-01
A semi-active vibration absorption method is put forward to attenuate nonlinear vibration of a flexible arm based on the internal resonance. To maintain the 2:1 internal resonance condition and the desirable damping characteristic, a virtual vibration absorber is suggested. It is mathematically equivalent to a vibration absorber but its frequency and damping coefficients can be readily adjusted by simple control algorithms, thereby replacing those hard-to-implement mechanical designs. Through theoretical analyses and numerical simulations, it is proven that the internal resonance can be successfully established for the flexible arm, and the vibrational energy of flexible arm can be transferred to and dissipated by the virtual vibration absorber. Finally, experimental results are presented to validate the theoretical predictions. Since the proposed method absorbs rather than suppresses vibrational energy of the primary system, it is more convenient to reduce strong vibration than conventional active vibration suppression methods based on smart material actuators with limited energy output. Furthermore, since it aims to establish an internal vibrational energy transfer channel from the primary system to the vibration absorber rather than directly respond to external excitations, it is especially applicable for attenuating nonlinear vibration excited by unpredictable excitations.
Humphrey, L. Dennis
1981-01-01
Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)
Gupta, Manoj Kumar; Aneesh, Janardhanakurup; Yadav, Rajesh; Adarsh, K. V.; Kim, Sang-Woo
2017-05-01
We present a high performance flexible piezoelectric nanogenerator (NG) device based on the hydrothermally grown lead-free piezoelectric lithium niobate (LiNbO3) nanowires (NWs) for scavenging mechanical energies. The non-linear optical coefficient and optical limiting properties of LiNbO3 were analyzed using femtosecond laser pulse assisted two photon absorption techniques for the first time. Further, a flexible hybrid type NG using a composite structure of the polydimethylsiloxane polymer and LiNbO3 NWs was fabricated, and their piezoelectric output signals were measured. A large output voltage of ˜4.0 V and a recordable large current density of about 1.5 μA cm-2 were obtained under the cyclic compressive force of 1 kgf. A subsequent UV-Vis analysis of the as-prepared sample provides a remarkable increase in the optical band gap (UV absorption cut-off, ˜251 nm) due to the nanoscale size effect. The high piezoelectric output voltage and current are discussed in terms of large band gap, significant nonlinear optical response, and electric dipole alignments under poling effects. Such high performance and unique optical properties of LiNbO3 show its great potential towards various next generation smart electronic applications and self-powered optoelectronic devices.
Passivity Motivated Controller Design for Flexible Structures
1993-01-18
theoretical approach to the control of systems containing lumped joint flexibility is based on the exact linearization method. for a summary see [4...feedforward compensation (for the exact linearization ) and the feedback stabilization are intertwined and errors in the feedforward may affect the closed loop
Model reference, sliding mode adaptive control for flexible structures
Yurkovich, S.; Ozguner, U.; Al-Abbass, F.
1988-01-01
A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.
Ultrafast Structure Switching through Nonlinear Phononics
Juraschek, D. M.; Fechner, M.; Spaldin, N. A.
2017-02-01
We describe a mechanism by which nonlinear phononics allows ultrafast coherent and directional control of transient structural distortions. With ErFeO3 as a model system, we use density functional theory to calculate the structural properties as input into an anharmonic phonon model that describes the response of the system to a pulsed optical excitation. We find that the trilinear coupling of two orthogonal infrared-active phonons to a Raman-active phonon causes a transient distortion of the lattice. In contrast to the quadratic-linear coupling that has been previously explored, the direction of the distortion is determined by the polarization of the exciting light, introducing a novel mechanism for nonlinear phononic switching. Since the occurrence of the coupling is determined by the symmetry of the system we propose that it is a universal feature of orthorhombic and tetragonal perovskites.
Identification of Nonlinearities in Joints of a Wing Structure
Sani M.S.M.; Ouyang H
2016-01-01
Nonlinear structural identification is essential in engineering. As new materials are being used andstructures become slender and lighter, nonlinear behaviour of structures becomes more important. There have been many studies into the development and application of system identification methods for structural nonlinearity based on changes in natural frequencies, mode shapes and damping ratios. A great challenge is to identify nonlinearity in large structural systems. Much work has been undert...
Nonlinear dynamics and control of flexible, articulated spacecraft - Application to SSF/MRMS
Bennett, W. H.; Kwatny, H. G.; Baek, M.-J.
1992-08-01
Results are presented of a study on the application of partial feedback linearization methods to the attitude control of an articulated spacecraft configuration representative of the Space Station Freedom with a mobile remote manipulator system (SSF/MRMS). The case considered is the attitude regulation of the SSF while the MRMS undergoes arbitrary prescribed maneuvers. The results of calculations confirm previous observations that MRMS motion can significantly degrade and even destabilize attitude regulation when linear controllers are applied to this nonlinear system. It is shown that, in the flexible case, the linear regulator must be significantly detuned in order to achieve stable responses.
Arlunno, Valeria; Zhang, Xu; Larsen, Knud J; Zibar, Darko; Monroy, Idelfonso Tafur
2011-12-12
An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also reported. © 2011 Optical Society of America
DEFF Research Database (Denmark)
Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.
2011-01-01
An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed...... carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also...
STIFFNESS EQUATION OF FINITE SEGMENT FOR FLEXIBLE BEAM-FORMED STRUCTURAL ELEMENTS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The finite segment modelling for the flexible beam-formed structural elemens is presented,in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method,and according to the element properties,the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable.Consequently, the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the arc differentiation is adopted for the differential beam segments.The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.
Continuous compliance compensation of position-dependent flexible structures
Kontaras, Nikolaos; Heertjes, Marcel; Zwart, Hans
2016-01-01
The implementation of lightweight high-performance motion systems in lithography and other applications imposes lower requirements on actuators, amplifiers, and cooling. However, the decreased stiffness of lightweight designs increases the effect of structural flexibilities especially when the point
Earthquake analysis of structures using nonlinear models
Cemalovic, Miran
2015-01-01
Throughout the governing design codes, several different methods are presented for the evaluation of seismic problems. This thesis assesses the non-linear static and dynamic procedures presented in EN 1998-1 through the structural response of a RC wall-frame building. The structure is designed in detail according to the guidelines for high ductility (DCH) in EN 1998-1. The applied procedures are meticulously evaluated and the requirements in EN 1998-1 are reviewed. In addition, the finite ele...
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Nonlinear helicons bearing multi-scale structures
Abdelhamid, Hamdi M.; Yoshida, Zensho
2017-02-01
The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here, we elucidate an intrinsic multi-scale property embodied by the combination of the dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing a wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution, which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.
Conditions on Structural Controllability of Nonlinear Systems: Polynomial Method
Directory of Open Access Journals (Sweden)
Qiang Ma
2011-03-01
Full Text Available In this paper the structural controllability of a class of a nonlinear system is investigated. The transfer function (matrix of nonlinear systems is obtained by putting the nonlinear system model on non-commutative ring. Conditions of structural controllability of nonlinear systems are presented according to the criterion of linear systems structural controllability in frequency domain. An example is used to testify the presented conditions finally.
Energy Technology Data Exchange (ETDEWEB)
Papalexandri, K.P.; Pistikopoulos, E.N. (Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology)
1994-07-01
A systematic framework for the synthesis and/or retrofit of flexible and structurally controllable heat exchanger networks is presented in this paper. Based on a multiperiod hyperstructure network representation, explicit structural controllability (total disturbance rejection) criteria are developed and included within a synthesis/retrofit mixed-integer nonlinear programming model, where a total annualized (operating and investment) cost is minimized. The proposed framework results in a network structure which features minimum annualized cost, while being (1) flexible to operate within a specified range (or discrete set) of uncertain stream flow rates, inlet temperature, and/or heat transfer coefficients and (2) structurally controllable for a given set of disturbances and control variables.
Dynamic analysis of a rotating rigid-flexible coupled smart structure with large deformations
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on Hamilton's principle, a new kind of fully coupled nonlinear dynamic model for a rotating rigid-flexible smart structure with a tip mass is proposed. The geometrically nonlinear effects of the axial, transverse displacement and rotation angle are considered by means of the first-order approximation coupling (FOAC) model theory, in which large deformations and the centrifugal stiffening effects are considered. Three kinds of systems are established respectively, which are a structure without piezoelectric layer, with piezoelectric layer in open circuit and closed circuit. Several simulations based on simplified models are presented to show the differences in characteristics between structures with and without the tip mass, between smart beams in closed and open circuit, and between the centrifugal effects in high speed rotating state or not. The last simulation calculates the dynamic response of the structure subjected to external electrical loading.
Gradient-based optimization in nonlinear structural dynamics
DEFF Research Database (Denmark)
Dou, Suguang
The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider, fr...
Toward a scalable flexible-order model for 3D nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Ducrozet, Guillaume; Bingham, Harry B.
for flexibility in the description of structures by the use of curvilinear boundary-fitted meshes. The mathematical equations for potential waves in the physical domain is transformed through $\\sigma$-mapping(s) to a time-invariant boundary-fitted domain which then becomes a basis for an efficient solution...
Directory of Open Access Journals (Sweden)
A. Bouzidane
2014-01-01
Full Text Available Linear and non linear models of a hydrostatic squeeze film damper are presented and numerically simulated by a step by step method on a modal basis, in order to study the non-linear dynamic behaviour of a flexible shaft. The Reynolds equation is solved at each step in order to evaluate the film forces. The equations of motion are then integrated by using the Newmark method with a variable step in order to obtain speeds and the position for the next step. The non-linear hydrostatic forces are determined by the application of the boundary conditions, and the integration of the pressure field is determined by resolution of Reynolds equation, by applying the central finite difference method. The aim of this research is to study the effect of pressure ratio, viscosity, and rotational speeds on the vibratory responses and the transmitted bearing forces. The results are discussed, analysed and compared to a linear approach which is restricted to only small vibrations around the equilibrium position. The results show good agreements between linear and non-linear methods when the unbalance force is small, and then the linear model may be used for small vibrations in order to reduce compilation time during the iterative process.
Nonlinear and Variable Structure Excitation Controller for Power System Stability
Institute of Scientific and Technical Information of China (English)
Wang Ben; Ronnie Belmans
2006-01-01
A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.
DEFF Research Database (Denmark)
Chen, X.; Cui, W.; Jensen, Jørgen Juncher
2003-01-01
The theory and typical numerical results of a second order nonlinear hydroelastic analysis of floating bodies are presented in a series of papers in which only nonlinearity in fluids is considered. Under the assumption of linear fluid, the hydroelastic analysis methods of nonlinear structure are ...
Identifying and visualizing macromolecular flexibility in structural biology
Directory of Open Access Journals (Sweden)
Martina Palamini
2016-09-01
Full Text Available Structural biology comprises a variety of tools to obtain atomic resolution data for the investigation of macromolecules. Conventional structural methodologies including crystallography, NMR and electron microscopy often do not provide sufficient details concerning flexibility and dynamics, even though these aspects are critical for the physiological functions of the systems under investigation. However, the increasing complexity of the molecules studied by structural biology (including large macromolecular assemblies, integral membrane proteins, intrinsically disordered systems, and folding intermediates continuously demands in-depth analyses of the roles of flexibility and conformational specificity involved in interactions with ligands and inhibitors. The intrinsic difficulties in capturing often subtle but critical molecular motions in biological systems have restrained the investigation of flexible molecules into a small niche of structural biology. Introduction of massive technological developments over the recent years, which include time-resolved studies, solution X-ray scattering, and new detectors for cryo-electron microscopy, have pushed the limits of structural investigation of flexible systems far beyond traditional approaches of NMR analysis. By integrating these modern methods with powerful biophysical and computational approaches such as generation of ensembles of molecular models and selective particle picking in electron microscopy, more feasible investigations of dynamic systems are now possible. Using some prominent examples from recent literature, we review how current structural biology methods can contribute useful data to accurately visualize flexibility in macromolecular structures and understand its important roles in regulation of biological processes.
Model updating of nonlinear structures from measured FRFs
Canbaloğlu, Güvenç; Özgüven, H. Nevzat
2016-12-01
There are always certain discrepancies between modal and response data of a structure obtained from its mathematical model and experimentally measured ones. Therefore it is a general practice to update the theoretical model by using experimental measurements in order to have a more accurate model. Most of the model updating methods used in structural dynamics are for linear systems. However, in real life applications most of the structures have nonlinearities, which restrict us applying model updating techniques available for linear structures, unless they work in linear range. Well-established frequency response function (FRF) based model updating methods would easily be extended to a nonlinear system if the FRFs of the underlying linear system (linear FRFs) could be experimentally measured. When frictional type of nonlinearity co-exists with other types of nonlinearities, it is not possible to obtain linear FRFs experimentally by using low level forcing. In this study a method (named as Pseudo Receptance Difference (PRD) method) is presented to obtain linear FRFs of a nonlinear structure having multiple nonlinearities including friction type of nonlinearity. PRD method, calculates linear FRFs of a nonlinear structure by using FRFs measured at various forcing levels, and simultaneously identifies all nonlinearities in the system. Then, any model updating method can be used to update the linear part of the mathematical model. In this present work, PRD method is used to predict the linear FRFs from measured nonlinear FRFs, and the inverse eigensensitivity method is employed to update the linear finite element (FE) model of the nonlinear structure. The proposed method is validated with different case studies using nonlinear lumped single-degree of freedom system, as well as a continuous system. Finally, a real nonlinear T-beam test structure is used to show the application and the accuracy of the proposed method. The accuracy of the updated nonlinear model of the
Protein flexibility in the light of structural alphabets
Directory of Open Access Journals (Sweden)
Pierrick eCraveur
2015-05-01
Full Text Available Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e. the classical secondary structures. . More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs, have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures.Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g. B-factor and computational methodology (e.g. Molecular Dynamic simulation, SAs turn out to be powerful tools to analyze protein dynamics, e.g. to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases.
Modeling and identification of flexible joints in vehicle structures
Lee, Kwangju
1991-01-01
A simple, design-oriented model of joints in vehicle structures is developed. This model accounts for the flexibility, the offsets of rotation centers of joint branches, and the coupling between rotations of a joint branch in different planes. The model parameters consist of torsional spring rates, the coordinates of the flexible hinges, and the orientations of planes in which the torsional springs are located. The model parameters are selected to be physically meaningful. In s...
Continuum secondary structure captures protein flexibility
DEFF Research Database (Denmark)
Anderson, C.A.F.; Palmer, A.G.; Brunak, Søren;
2002-01-01
The DSSP program assigns protein secondary structure to one of eight states. This discrete assignment cannot describe the continuum of thermal fluctuations. Hence, a continuous assignment is proposed. Technically, the continuum results from averaging over ten discrete DSSP assignments...... protein structure analysis, comparison, and prediction....... with different hydrogen bond thresholds. The final continuous assignment for a single NMR model successfully reflected the structural variations observed between all NMR models in the ensemble. The structural variations between NMR models were verified to correlate with thermal motion; these variations were...
Nonlinear Correlations of Protein Sequences and Symmetries of Their Structures
Institute of Scientific and Technical Information of China (English)
LI Ming-Feng; HUANG Yan-Zhao; XIAO Yi
2005-01-01
@@ We investigate the nonlinear correlations of protein sequences by using the nonlinear prediction method developed in nonlinear dynamical theory.It is found that a lot of protein sequences show strong nonlinear correlations and have deterministic structures.Further investigations show that the strong nonlinear correlations of these protein sequences are due to the symmetries of their tertiary structures.Furthermore, the correlation lengths of the sequences are related to the degrees of the symmetries.These results support the duplication mechanism of protein evolution and also reveal one aspect how amino acid sequences encode their spatial structures.
Flexibility of Data-driven Process Structures
Muller, D.; Reichert, M.U.; Herbst, J.; Eder, J.; Dustdar, S.
2006-01-01
The coordination of complex process structures is a fundamental task for enterprises, such as in the automotive industry. Usually, such process structures consist of several (sub-)processes whose execution must be coordinated and synchronized. Effecting this manually is both ineffective and
Flexibility of Data-driven Process Structures
Müller, D.; Reichert, M.U.; Herbst, J.; Eder, J.; Dustdar, S.
2006-01-01
The coordination of complex process structures is a fundamental task for enterprises, such as in the automotive industry. Usually, such process structures consist of several (sub-)processes whose execution must be coordinated and synchronized. Effecting this manually is both ineffective and error-pr
Active rejection of persistent disturbances in flexible space structures
Hwang, Cheng-Neng; Jayasuriya, Suhada; Parlos, Alexander G.; Sunkel, John W.
1990-01-01
A dynamic compensator for active rejection of persistent disturbances in flexible space structures is designed on the principle of the H(infinity)-optimization of the sensitivity transfer function matrix. A general state space solution is formulated to the multiinput multioutput H(infinity)-optimal control problem, allowing the use of the H(infinity)-optimal synthesis algorithm for the state-space models of space structures that result from model order reduction. Disturbances encountered in flexible space structures, such as shuttle docking, are investigated using the high-mode and the reduced-order models of a cantilevered two-bay truss, demonstrating the applicability of the H(infinity)-optimal approach.
Ko, William L.; Fleischer, Van Tran
2013-01-01
Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.
DEFF Research Database (Denmark)
Quaglia, Alberto; Sarup, Bent; Sin, Gürkan;
2013-01-01
The formulation of Enterprise-Wide Optimization (EWO) problems as mixed integer nonlinear programming requires collecting, consolidating and systematizing large amount of data, coming from different sources and specific to different disciplines. In this manuscript, a generic and flexible data...... structure for efficient formulation of enterprise-wide optimization problems is presented. Through the integration of the described data structure in our synthesis and design framework, the problem formulation workflow is automated in a software tool, reducing time and resources needed to formulate large...... problems, while ensuring at the same time data consistency and quality at the application stage....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Decentralized University Budgeting, United with a More Flexible Tuition Structure
Fethke, Gary
2014-01-01
With tuition revenues replacing state appropriations as the primary source of public university funding, it becomes difficult for universities to use historically based budget allocations and inflexible tuition structures to subsidize high-cost programs. It is argued here that combining targeted subsidies with a flexible tuition structure and…
A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates
Putcha, N. S.; Reddy, J. N.
1986-01-01
The present study is concerned with the development of a mixed shear flexible finite element with relaxed continuity for the geometrically linear and nonlinear analysis of laminated anisotropic plates. The formulation of the element is based on a refined higher-order theory. This theory satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate. Shear correction coefficients are not needed. The developed element consists of 11 degrees-of-freedom per node, taking into account three displacements, two rotations, and six moment resultants. An evaluation of the element is conducted with respect to the accuracy obtained in the bending of laminated anistropic rectangular plates with different lamination schemes, loadings, and boundary conditions.
Analysis and Flexible Structural Modeling for Oscillating Wing Utilizing Aeroelasticity
Institute of Scientific and Technical Information of China (English)
Shao Ke; Wu Zhigang; Yang Chao
2008-01-01
Making use of modal characteristics of the natural vibration of flexible structure to design the oscillating wing aircraft is proposed.A series of equations concerning the oscillating wing of flexible structures are derived. The kinetic equation for aerodynamic force coupled with elastic movement is set up, and relevant formulae are derived. The unsteady aerodynamic one in that formulae is revised. The design principle, design process and range of application of such oscillating wing analytical method are elaborated. A flexible structural oscillating wing model is set up, and relevant time response analysis and frequency response analysis are conducted. The analytical results indicate that adopting the new-type driving way for the oscillating wing will not have flutter problems and will be able to produce propulsive force. Furthermore, it will consume much less power than the fixed wing for generating the same lift.
Nonlinear rheological models for structured interfaces
Sagis, L.M.C.
2010-01-01
The GENERIC formalism is a formulation of nonequilibrium thermodynamics ideally suited to develop nonlinear constitutive equations for the stress–deformation behavior of complex interfaces. Here we develop a GENERIC model for multiphase systems with interfaces displaying nonlinear viscoelastic stres
Optimal resonant control of flexible structures
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
2009-01-01
When introducing a resonant controller for a particular vibration mode in a structure this mode splits into two. A design principle is developed for resonant control based oil equal damping of these two modes. First the design principle is developed for control of a system with a single degree of...
Modeling and Control of Flexible Structures.
1986-12-16
amount of viscous damping then stabilizing control can be computed. Since viscous effects will not be present in space applications one is faced with a...which involve the correctors and the data of the problem. f, - 4.3 Homogenization and Stabilizing Control of Lat- - tice Structures In this subsection we
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Aquatic plants are open flexible structures - a reply to Sukhodolov
DEFF Research Database (Denmark)
Sand-Jensen, K.
2005-01-01
flexible plant structure. Total wetted area was used as a reference area for drag because it can be measured with high accuracy and it was the most suitable measure of plant size impeding the flow and absorbing light for photosynthetic production. What is important is that it is made absolutely clear which......1. Aquatic plant stands are flexible, mesh-like open structures that undergo modification in shape and experience a cascade of declining flow velocities and micro-scale Reynolds numbers with increasing distance into the stands. It is not possible to define or measure the frontal area of this open...
A nonlinear variable structure stabilizer for power system stability
Energy Technology Data Exchange (ETDEWEB)
Cao, Y.; Jiang, L.; Cheng, S.; Chen, D. (Huazhong Univ. of Science and Technology, Wuhan (China). Dept. of Electrical Power Engineering); Malik, O.P.; Hope, G.S. (Univ. of Calgary, Alberta (Canada). Dept. of Electrical and Computer Engineering)
1994-09-01
A nonlinear variable structure stabilizer is proposed in this paper. Design of this stabilizer involves the nonlinear transformation technique, the variable structure control technique and the linear system theory. Performance of the proposed nonlinear variable structure controller in a single machine connected to an infinite bus power and a multi-machine system with multi-mode oscillations is simulated. The responses of the system with the proposed stabilizer are compared with those obtained with some other kinds of stabilizers when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure stabilizer gives satisfactory dynamic performance and good robustness.
Flexible filamentous virus structure from fiber diffraction
Energy Technology Data Exchange (ETDEWEB)
Stubbs, Gerald; Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah; McCullough, Ian; Shi, Jian; Stewart, Phoebe; Bullitt, Esther; Gore, David; Ghabrial, Said (IIT); (BU-M); (Vanderbilt); (Kentucky)
2008-10-24
Fiber diffraction data have been obtained from Narcissus mosaic virus, a potexvirus from the family Flexiviridae, and soybean mosaic virus (SMV), a potyvirus from the family Potyviridae. Analysis of the data in conjunction with cryo-electron microscopy data allowed us to determine the symmetry of the viruses and to make reconstructions of SMV at 19 {angstrom} resolution and of another potexvirus, papaya mosaic virus, at 18 {angstrom} resolution. These data include the first well-ordered data ever obtained for the potyviruses and the best-ordered data from the potexviruses, and offer the promise of eventual high resolution structure determinations.
DEM modeling of flexible structures against granular material avalanches
Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno
2016-04-01
This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.
Institute of Scientific and Technical Information of China (English)
Liu Bing-Can; Yu Li; Lu Zhi-Xin
2011-01-01
The analytic surface plasmon polaritons (SPPs) dispersion relation is studied in a system consisting of a thin metallic film bounded by two sides media of nonlinear dielectric of arbitrary nonlinearity is studied by applying a generalised first integral approach. We consider both asymmetric and symmetric structures. Especially, in the symmetric system, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the magnitude of the electric field at the interface appears and alters the dispersion relations. The changes in SPPs dispersion relations depending on film thicknesses and nonlinearity are studied.
Identification of Nonlinearities in Joints of a Wing Structure
Directory of Open Access Journals (Sweden)
Sani M.S.M.
2016-01-01
Full Text Available Nonlinear structural identification is essential in engineering. As new materials are being used andstructures become slender and lighter, nonlinear behaviour of structures becomes more important. There have been many studies into the development and application of system identification methods for structural nonlinearity based on changes in natural frequencies, mode shapes and damping ratios. A great challenge is to identify nonlinearity in large structural systems. Much work has been undertaken in the development of nonlinear system identification methods (e.g. Hilbert Transform, NARMAX, and Proper Orthogonal Decomposition, however, it is arguable that most of these methods are cumbersome when applied to realistic large structures that contain mostly linear modes with some local nonlinearity (e.g. aircraft engine pylon attachment to a wing. In this paper, a multi-shaker force appropriation method is developed to determine the underlying linear and nonlinear structural properties through the use of the measurement and generation of restoring force surfaces. One undamped mode is excited in each multi-shaker test. Essentially, this technique is a derivative of the restoring surface method and involves a non-linear curve fitting performed in modal space. A reduced finite element model is established and its effectiveness in revealing the nonlinear characteristics of the system is discussed. The method is demonstrated through both numerical simulations and experiments on a simple jointed laboratory structure with seeded faults, which represents an engine pylon structure that consists of a rectangular wing with two stores suspended underneath.
Experimental demonstration of active vibration control for flexible structures
Phillips, Douglas J.; Hyland, David C.; Collins, Emmanuel G., Jr.
1990-01-01
Active vibration control of flexible structures for future space missions is addressed. Three experiments that successfully demonstrate control of flexible structures are described. The first is the pendulum experiment. The structure is a 5-m compound pendulum and was designed as an end-to-end test bed for a linear proof mass actuator and its supporting electronics. Experimental results are shown for a maximum-entropy/optimal-projection controller designed to achieve 5 percent damping in the first two pendulum modes. The second experiment was based upon the Harris Multi-Hex prototype experiment (MHPE) apparatus. This is a large optical reflector structure comprising a seven-panel array and supporting truss which typifies a number of generic characteristics of large space systems. The third experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center. The authors conclude with some remarks on the lessons learned from conducting these experiments.
Data of structural flexibility - ConfC | LSDB Archive [Life Science Database Archive metadata
Lifescience Database Archive (English)
Full Text Available List Contact us ConfC Data of structural flexibility Data detail Data name Data of structural flexibility DO...I 10.18908/lsdba.nbdc00400-004 Description of data contents The regions of structural flexibility are select...disorder#en Data acquisition method PDB (Protein Data Bank) Data analysis method The regions of structural flexibility...tabase Site Policy | Contact Us Data of structural flexibility - ConfC | LSDB Archive ...
A Flexible Frame Structure for 5G Wide Area
DEFF Research Database (Denmark)
Pedersen, Klaus I.; Frederiksen, Frank; Berardinelli, Gilberto
2015-01-01
In this paper we present a 5G frame structure designed for efficient support of users with highly diverse service requirements, including mobile broadband (MBB) data, mission critical communication (MCC), and massive machine communication (MMC). The proposed solution encompasses flexible multiple...
Structure and flexibility of worm-like micelles
DEFF Research Database (Denmark)
Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.
1997-01-01
Small-angle neutron scattering and static light scattering experiments have been performed on worm-like micelles formed by soybean lecithin and trace amounts of water in deuterated iso-octane. The structure and flexibility of the aggregates have been investigated as a function of solution...
Dynamics of Rigid Bodies and Flexible Beam Structures
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre
of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...
Robust stabilization of general nonlinear systems with structural uncertainty
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.
Flexible learning of multiple speech structures in bilingual infants.
Kovács, Agnes Melinda; Mehler, Jacques
2009-07-31
Children acquire their native language according to a well-defined time frame. Surprisingly, although children raised in bilingual environments have to learn roughly twice as much about language as their monolingual peers, the speed of acquisition is comparable in monolinguals and bilinguals. Here, we show that preverbal 12-month-old bilingual infants have become more flexible at learning speech structures than monolinguals. When given the opportunity to simultaneously learn two different regularities, bilingual infants learned both, whereas monolinguals learned only one of them. Hence, bilinguals may acquire two languages in the time in which monolinguals acquire one because they quickly become more flexible learners.
FlexSnap: Flexible Non-sequential Protein Structure Alignment
Directory of Open Access Journals (Sweden)
Bystroff Chris
2010-01-01
Full Text Available Abstract Background Proteins have evolved subject to energetic selection pressure for stability and flexibility. Structural similarity between proteins that have gone through conformational changes can be captured effectively if flexibility is considered. Topologically unrelated proteins that preserve secondary structure packing interactions can be detected if both flexibility and Sequential permutations are considered. We propose the FlexSnap algorithm for flexible non-topological protein structural alignment. Results The effectiveness of FlexSnap is demonstrated by measuring the agreement of its alignments with manually curated non-sequential structural alignments. FlexSnap showed competitive results against state-of-the-art algorithms, like DALI, SARF2, MultiProt, FlexProt, and FATCAT. Moreover on the DynDom dataset, FlexSnap reported longer alignments with smaller rmsd. Conclusions We have introduced FlexSnap, a greedy chaining algorithm that reports both sequential and non-sequential alignments and allows twists (hinges. We assessed the quality of the FlexSnap alignments by measuring its agreements with manually curated non-sequential alignments. On the FlexProt dataset, FlexSnap was competitive to state-of-the-art flexible alignment methods. Moreover, we demonstrated the benefits of introducing hinges by showing significant improvements in the alignments reported by FlexSnap for the structure pairs for which rigid alignment methods reported alignments with either low coverage or large rmsd. Availability An implementation of the FlexSnap algorithm will be made available online at http://www.cs.rpi.edu/~zaki/software/flexsnap.
Hinge Atlas: relating protein sequence to sites of structural flexibility
Yang Julie; Lu Long J; Flores Samuel C; Carriero Nicholas; Gerstein Mark B
2007-01-01
Abstract Background Relating features of protein sequences to structural hinges is important for identifying domain boundaries, understanding structure-function relationships, and designing flexibility into proteins. Efforts in this field have been hampered by the lack of a proper dataset for studying characteristics of hinges. Results Using the Molecular Motions Database we have created a Hinge Atlas of manually annotated hinges and a statistical formalism for calculating the enrichment of v...
The Relationship between Financial Flexibility and Capital Structure Decisions
Directory of Open Access Journals (Sweden)
Shanaz Forozan
2013-04-01
Full Text Available Making decisions about capital structure is one of the most challenging and problematic issues companies face and thereby it is the most crucial decisions companies have to make for their survival. The aim of this study was to investigate the relationship between financial flexibility and capital structure decisions in accepted companies in Tehran Stock Exchange with using Falkner and Wang Model. Results of testing hypothesis which are based on a sample- that is consisted of 82 firms for a period of five years from 2006 to 2011- using multivariate linear regression models as well as panel data method, implied that marginal value of cash is negative in terms of market, i.e. the market is not willing to raise funds and will not evaluate this increase to be positive in funds. Furthermore, findings represent that there is no significant relationship between marginal value of financial flexibility and capital structure decisions of firms and firms would not pay attention to financial flexibility level in their decisions regarding increasing or decreasing debts, which in long term would result in loosing financial flexibility as well as profitable investment opportunities.
Effects of structure flexibility on horizontal axis wind turbine performances
Coiro, D. P.; Daniele, E.; Scherillo, F.
2013-10-01
This work illustrates the effects of flexibility of rotor blades and turbine tower on the performances of an horizontal axis wind turbine (HAWT) designed by our ADAG research group, by means of several example applied on a recent project for a active pitch controlled upwind 60 kW HAWT. The influence of structural flexibility for blade only, tower only and blade coupled with tower configuration is investigated using an aero-elastic computer-aided engineering (CAE) tool for horizontal axis wind turbines named FAST developed at National Renewable Energy Laboratory (NREL) of USA. For unsteady inflow conditions in front of the isolated HAWT the performances in rigid and flexible operation mode are computed and compared in order to illustrate the limitation included within a classical rigid body approach to wind turbine simulation.
Moraes, Eveline; Fleck, Steven J; Ricardo Dias, Marcelo; Simão, Roberto
2013-12-01
The aim of this study was to compare 2 models of resistance training (RT) programs, nonperiodized (NP) training and daily nonlinear periodized (DNLP) training, on strength, power, and flexibility in untrained adolescents. Thirty-eight untrained male adolescents were randomly assigned to 1 of 3 groups: a control group, NP RT program, and DNLP program. The subjects were tested pretraining and after 4, 8, and 12 weeks for 1 repetition maximum (1RM) resistances in the bench press and 45° leg press, sit and reach test, countermovement vertical jump (CMVJ), and standing long jump (SLJ). Both training groups performed the same sequence of exercises 3 times a week for a total of 36 sessions. The NP RT consisted of 3 sets of 10-12RM throughout the training period. The DNLP training consisted of 3 sets using different training intensities for each of the 3 training sessions per week. The total volume of the training programs was not significantly different. Both the NP and DNLP groups exhibited a significant increase in the 1RM for the bench press and 45° leg press posttraining compared with that pretraining, but there were no significant differences between groups (p ≤ 0.05). The DNLP group's 1RM changes showed greater percentage improvements and effect sizes. Training intensity for the bench press and 45° leg press did not significantly change during the training. In the CMVJ and SLJ tests, NP and DNLP training showed no significant change. The DNLP group showed a significant increase in the sit and reach test after 8 and 12 weeks of training compared with pretraining; this did not occur with NP training. In summary, in untrained adolescents during a 12-week training period, a DNLP program can be used to elicit similar and possible superior maximal strength and flexibility gains compared with an NP multiset training model.
Nonlinear structural damage detection using support vector machines
Xiao, Li; Qu, Wenzhong
2012-04-01
An actual structure including connections and interfaces may exist nonlinear. Because of many complicated problems about nonlinear structural health monitoring (SHM), relatively little progress have been made in this aspect. Statistical pattern recognition techniques have been demonstrated to be competitive with other methods when applied to real engineering datasets. When a structure existing 'breathing' cracks that open and close under operational loading may cause a linear structural system to respond to its operational and environmental loads in a nonlinear manner nonlinear. In this paper, a vibration-based structural health monitoring when the structure exists cracks is investigated with autoregressive support vector machine (AR-SVM). Vibration experiments are carried out with a model frame. Time-series data in different cases such as: initial linear structure; linear structure with mass changed; nonlinear structure; nonlinear structure with mass changed are acquired.AR model of acceleration time-series is established, and different kernel function types and corresponding parameters are chosen and compared, which can more accurate, more effectively locate the damage. Different cases damaged states and different damage positions have been recognized successfully. AR-SVM method for the insufficient training samples is proved to be practical and efficient on structure nonlinear damage detection.
Nonlinear damage detection in composite structures using bispectral analysis
Ciampa, Francesco; Pickering, Simon; Scarselli, Gennaro; Meo, Michele
2014-03-01
Literature offers a quantitative number of diagnostic methods that can continuously provide detailed information of the material defects and damages in aerospace and civil engineering applications. Indeed, low velocity impact damages can considerably degrade the integrity of structural components and, if not detected, they can result in catastrophic failure conditions. This paper presents a nonlinear Structural Health Monitoring (SHM) method, based on ultrasonic guided waves (GW), for the detection of the nonlinear signature in a damaged composite structure. The proposed technique, based on a bispectral analysis of ultrasonic input waveforms, allows for the evaluation of the nonlinear response due to the presence of cracks and delaminations. Indeed, such a methodology was used to characterize the nonlinear behaviour of the structure, by exploiting the frequency mixing of the original waveform acquired from a sparse array of sensors. The robustness of bispectral analysis was experimentally demonstrated on a damaged carbon fibre reinforce plastic (CFRP) composite panel, and the nonlinear source was retrieved with a high level of accuracy. Unlike other linear and nonlinear ultrasonic methods for damage detection, this methodology does not require any baseline with the undamaged structure for the evaluation of the nonlinear source, nor a priori knowledge of the mechanical properties of the specimen. Moreover, bispectral analysis can be considered as a nonlinear elastic wave spectroscopy (NEWS) technique for materials showing either classical or non-classical nonlinear behaviour.
Nonlinear Viscoelastic Characterization of Structural Adhesives.
1983-06-01
neat resin properties 20. ABSTRACT (Cainlnuo OR revaWco aide II necessay amd identify br blck number) Measurements of the nonlinear viscoelastic...which is utilized. 17. Key Words and Document Analysis. l7a. Descriptors Adhesives, nonlinear viscoelasticity, FM-73 and FM-300 neat resin properties 17b
Flexible PCPDTBT:PCBM solar cells with integrated grating structures
DEFF Research Database (Denmark)
Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten
2013-01-01
spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible......We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... with the lithographically processed grating structures are done in order to obtain the efficiency enhancement in thin, flexible devices. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....
Nonlinear structural finite element model updating and uncertainty quantification
Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.
2015-04-01
This paper presents a framework for nonlinear finite element (FE) model updating, in which state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with the maximum likelihood estimation method (MLE) to estimate time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure. The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem. A proof-of-concept example, consisting of a cantilever steel column representing a bridge pier, is provided to verify the proposed nonlinear FE model updating framework.
Nonlinear structure formation in Nonlocal Gravity
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2014-01-01
We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from $\\Lambda{\\rm CDM}$ by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ($\\sim 6\\%$ larger today). Compared to $\\Lambda{\\rm CDM}$ today, in the nonlocal model, massive haloes are slightly more abundant (by $\\sim 10\\%$ at $M \\sim 10^{14} M_{\\odot}/h$) and concentrated ($\\approx 8\\%$ enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For...
Flexible Mediation Analysis in the Presence of Nonlinear Relations: Beyond the Mediation Formula.
Loeys, Tom; Moerkerke, Beatrijs; De Smet, Olivia; Buysse, Ann; Steen, Johan; Vansteelandt, Stijn
2013-11-01
In the social sciences, mediation analysis has typically been formulated in the context of linear models using the Baron & Kenny (1986) approach. Extensions to nonlinear models have been considered but lack formal justification. By placing mediation analysis within the counterfactual framework of causal inference one can define causal mediation effects in a way that is not tied to a specific statistical model and identify them under certain no unmeasured confounding assumptions. Corresponding estimation procedures using parametric or nonparametric models, based on the so-called mediation formula, have recently been proposed in the psychological literature and made accessible through the R-package mediation. A number of limitations of the latter approach are discussed and a more flexible approach using natural effects models is proposed as an alternative. The latter builds on the same counterfactual framework but enables interpretable and parsimonious modeling of direct and mediated effects and facilitates tests of hypotheses that would otherwise be difficult or impossible to test. We illustrate the approach in a study of individuals who ended a romantic relationship and explore whether the effect of attachment anxiety during the relationship on unwanted pursuit behavior after the breakup is mediated by negative affect during the breakup.
Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan
2017-03-01
Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)
2015-10-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.
Nonlinear normal modes and their application in structural dynamics
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available Recent progress in the area of nonlinear modal analysis for structural systems is reported. Systematic methods are developed for generating minimally sized reduced-order models that accurately describe the vibrations of large-scale nonlinear engineering structures. The general approach makes use of nonlinear normal modes that are defined in terms of invariant manifolds in the phase space of the system model. An efficient Galerkin projection method is developed, which allows for the construction of nonlinear modes that are accurate out to large amplitudes of vibration. This approach is successfully extended to the generation of nonlinear modes for systems that are internally resonant and for systems subject to external excitation. The effectiveness of the Galerkin-based construction of the nonlinear normal modes is also demonstrated for a realistic model of a rotating beam.
Directory of Open Access Journals (Sweden)
Mustapha Lahmar
2015-04-01
Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.
Energy Technology Data Exchange (ETDEWEB)
Lidorikis, E. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Busch, K. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Instituet fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128, Karlsruhe (Germany); Li, Q. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Chan, C.T. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Soukoulis, C.M. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)
1997-12-01
We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in the {delta}-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very low, when the frequency of the incident wave matches that of the impurity mode of the structure. Numerical results for a nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler {delta}-function model. In addition, an analytical solution for the resonance states of an infinitely extended finite-width superlattice with a finite-width nonlinear impurity is presented. {copyright} {ital 1997} {ital The American Physical Society}
Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis
2006-01-01
International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...
Matrix Transfer Function Design for Flexible Structures: An Application
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
Mixed H 2 / H ∞ control of flexible structures
Directory of Open Access Journals (Sweden)
De Farias D. P.
2000-01-01
Full Text Available This paper addresses the design of full order linear dynamic output feedback controllers for flexible structures. Unstructured H ∞ uncertainty models are introduced for systems in modal coordinates and in reduced order form. Then a controller is designed in order to minimize a given H 2 performance function while keeping the maximum supported H ∞ perturbation below some appropriate level. To solve this problem we develop an algorithm able to provide local optimal solutions to optimization problems with convex constraints and non-convex but differentiable objective functions. A controller design procedure based on a trade-off curve is proposed and a simple example is solved, providing a comparison between the proposed method and the usual minimization of an upper bound H 2 to the norm. The method is applied to two different flexible structure theoretical models and the properties of the resulting controllers are shown in several simulations.
Flexibility of the genetic code with respect to DNA structure
DEFF Research Database (Denmark)
Baisnée, P. F.; Baldi, Pierre; Brunak, Søren
2001-01-01
Motivation. The primary function of DNA is to carry genetic information through the genetic code. DNA, however, contains a variety of other signals related, for instance, to reading frame, codon bias, pairwise codon bias, splice sites and transcription regulation, nucleosome positioning and DNA...... structure. Here we study the relationship between the genetic code and DNA structure and address two questions. First, to which degree does the degeneracy of the genetic code and the acceptable amino acid substitution patterns allow for the superimposition of DNA structural signals to protein coding...... sequences? Second, is the origin or evolution of the genetic code likely to have been constrained by DNA structure? Results. We develop an index for code flexibility with respect to DNA structure. Using five different di- or tri-nucleotide models of sequence-dependent DNA structure, we show...
Prolongation Structure of Semi-discrete Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schr(o)dinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
Vock, David M; Davidian, Marie; Tsiatis, Anastasios A
2014-01-01
Generalized linear and nonlinear mixed models (GMMMs and NLMMs) are commonly used to represent non-Gaussian or nonlinear longitudinal or clustered data. A common assumption is that the random effects are Gaussian. However, this assumption may be unrealistic in some applications, and misspecification of the random effects density may lead to maximum likelihood parameter estimators that are inconsistent, biased, and inefficient. Because testing if the random effects are Gaussian is difficult, previous research has recommended using a flexible random effects density. However, computational limitations have precluded widespread use of flexible random effects densities for GLMMs and NLMMs. We develop a SAS macro, SNP_NLMM, that overcomes the computational challenges to fit GLMMs and NLMMs where the random effects are assumed to follow a smooth density that can be represented by the seminonparametric formulation proposed by Gallant and Nychka (1987). The macro is flexible enough to allow for any density of the response conditional on the random effects and any nonlinear mean trajectory. We demonstrate the SNP_NLMM macro on a GLMM of the disease progression of toenail infection and on a NLMM of intravenous drug concentration over time.
Towards homoscedastic nonlinear cointegration for structural health monitoring
Zolna, Konrad; Dao, Phong B.; Staszewski, Wieslaw J.; Barszcz, Tomasz
2016-06-01
The paper presents the homoscedastic nonlinear cointegration. The method leads to stable variances in nonlinear cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity (or homoscedasticity) in the cointegration residuals obtained from the nonlinear cointegration analysis. Three different time series - i.e. one with a nonlinear quadratic deterministic trend, simulated vibration data and experimental wind turbine data - are used to illustrate the application of the proposed method. The proposed approach can be used for effective removal of nonlinear trends from various types of data and for reliable structural damage detection based on data that are corrupted by environmental and/or operational nonlinear trends.
Experimental implementation of adaptive control for flexible space structures
Mcgraw, Gary A.
1988-01-01
On-going research at The Aerospace Corporation studying the feasibility of applying adaptive control methodologies to the control of flexible space structures is described. A laboratory testbed was established to test system identification and control approaches. The laboratory set-up and controller design approach are discussed. The ARX least squares parameter estimation technique is analyzed in terms of frequency domain transfer function bias error. This analysis approach enables the determination of the effects of sampling rate, sensor type, and data prefiltering on the estimation performance. The ability to identify space structure dynamics over a range of frequencies is shown to be heavily dependent on these factors.
Structural phases of adsorption for flexible polymers on nanocylinder surfaces.
Gross, Jonathan; Vogel, Thomas; Bachmann, Michael
2015-11-11
By means of generalized-ensemble Monte Carlo simulations, we investigate the thermodynamic behavior of a flexible, elastic polymer model in the presence of an attractive nanocylinder. We systematically identify the structural phases that are formed by competing monomer-monomer and monomer-substrate interactions. The influence of the relative surface attraction strength on the structural phases in the hyperphase diagram, parameterized by cylinder radius and temperature, is discussed as well. In the limiting case of the infinitely large cylinder radius, our results coincide with previous outcomes of studies of polymer adsorption on planar substrates.
Nonlinear Vibration Characteristics of a Flexible Blade with Friction Damping due to Tip-Rub
Directory of Open Access Journals (Sweden)
Dengqing Cao
2011-01-01
Full Text Available An approximate approach is proposed in this paper for analyzing the two-dimensional friction contact problem so as to compute the dynamic response of a structure constrained by friction interfaces due to tip-rub. The dynamical equation of motion for a rotational cantilever blade in a centrifugal force field is established. Flow-induced distributed periodic forces and the internal material damping in the blade are accounted for in the governing equation of motion. The Galerkin method is employed to obtain a three-degree-of-freedom oscillator with friction damping due to tip-rub. The combined motion of impact and friction due to tip-rub produced a piecewise linear vibration which is actually nonlinear. Thus, a complete vibration cycle is divided into successive intervals. The system possesses linear vibration characteristic during each of these intervals, which can be determined using analytical solution forms. Numerical simulation shows that the parameters such as gap of the tip and the rotational speed of the blades have significant effects on the dynamical responses of the system. Finally, the nonlinear vibration characteristics of the blade are investigated in terms of the Poincare graph, and the frequency spectrum of the responses and the amplitude-frequency curves.
FLEXIBILITY ANALYSIS IN AN INFORMATION ECONOMY: STRUCTURAL EQUATION MODELING
Directory of Open Access Journals (Sweden)
Ricardo da Silva
2006-11-01
Full Text Available This paper analyzes the new concept of flexibility in organizations – of relevance both at micro and macro level. Information Economy (IE modern function is specifically analyzed. The purpose of this paper is not limited to the study of information economy flexibility, but extends its focus to other areas of organization and economic studies, having as reference the proposed model. Although not covering all aspects regarding objectives and hypotheses, results obtained demonstrate that subsequent studies can lead to success experiences, since the models presented are: stability in relation to the deviations presented in the resulting equations; values that are very close to what is desirable for adjustment indexes, factorial loads, t-values, extracted variances and reliability; as well as other necessary aspects for the application of the technique. The approach focuses the analysis of information economy flexibility based on structural equations modeling to serve as reference for the development of adaptation phenomenon studies in relation to structures, strategies and organizational processes, against the environmental dynamics contemporary society is faced with.
Nonlinear and stochastic dynamics of coherent structures
DEFF Research Database (Denmark)
Rasmussen, Kim
1997-01-01
system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...... phenomenon. We find numerically and analytically that the collapse can be delayed and ultimatively arrested by the fluctuations. Allowing the system to reach thermal equilibrium we further augment the model by a nonlineardamping term and find that this prohibits collapse in the strict mathematical se nse....... However a collapse like behavior still persists in the presence of the nonlinear damping . Apart from the absence of the collapse in the strict mathematical sense we find that the nonlinear damping term has rather weak influence on the interplay between fluctuations and self-focusing. The study...
Institute of Scientific and Technical Information of China (English)
张义民; 朱丽莎; 唐乐; 卢昊
2011-01-01
以工程实际中具有复杂结构的非线性转子系统为研究对象,以有限元分析软件和多体动力学仿真软件为平台,建立参数化刚柔混合非线性转子动力学模型,对转子系统进行动力学仿真,并结合神经网络技术,随机摄动技术,可靠性设计和可靠性灵敏度设计相关理论,建立动态应力可靠性模型,提出对具有复杂结构的非线性转子系统的可靠性灵敏度设计的新方法,研究设计参数的改变对转子系统可靠性的影响,得到可靠性对基本随机变量均值和方差的灵敏度,在基本随机变量是混合变量的情况下对其灵敏度进行量纲一化,将各个基本随机变量对可靠性的影响程度进行排序,为产品在设计阶段提供理论参考,有着积极的现实意义和理论价值.%A nonlinear rotor system with complex structure in engineering is studied and the finite element analysis software and the multi-body dynamics simulation software are used to establish and analyze the parametric dynamic model of the rigid-flexible rotor system. The dynamic simulation of the rotor system is carried out and the dynamic stress model for reliability analysis is established on the basis of artificial neural network (ANN) technique, stochastic perturbation method, reliability design and reliability-based sensitivity design theory. Thus, an efficient method is proposed to compute the reliability-based sensitivity of the non-linear rotor system with complex structure. The influence degree of the designed parameters on the reliability of rotor system is discussed, and the sensitivity of reliability to the mean value and variance of original random parameters is obtained. On condition that the units of original random parameters are different, the sensitivity is transformed into dimensionless value and each basic random variable is then sequenced by the influence degree of reliability. The proposed method provides theoretical reference for the
Directory of Open Access Journals (Sweden)
Kathryn A Loving
2014-07-01
Full Text Available Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets.
Nonlinear Phononic Periodic Structures and Granular Crystals
2012-02-10
of the advanced delay equation (13) and they compared the numerically obtained solutions with those of approximated PDEs. Recently, Starosvetsky... KdV ), a nonlinear partial differential equation , and have been discovered in myriad systems and discrete nonlinear lattices of all the above types...granular chain, and derived the following KdV equation : t 0 0 1/2 2 2 2 2 0 0 0 0 0 0, 2 6 , , . 6 xx x xc uc A R c R c Rc m σξ ξ γξ ξξ ξ δ γ σ δ
Crystalline structure and symmetry dependence of acoustic nonlinearity parameters
Cantrell, John H.
1994-01-01
A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic nonlinearity parameters. The nonlinearity parameters are defined for arbitrary propagation modes for solids of arbitrary crystalline symmetry and are determined along the pure mode propagation directions for 33 crystals of cubic symmetry from data reported in the literature. The magnitudes of the nonlinearity parameters are found to exhibit a strong dependence on the crystalline structure and symmetries associated with the modal direction in the solid. Calculations based on the Born-Mayer potential for crystals having a dominant repulsive contribution to the elastic constants from the interatomic pair potential suggest that the origin of the structure dependence is associated with the shape rather than the strength of the potential. Considerations based on variations in crystal symmetry during loading along pure mode propagation directions of face-centered-cubic solids provide a qualitative explanation for the dependence of the acoustic nonlinearity parameters on modal direction.
Coupled parametric processes in binary nonlinear photonic structures
Saygin, M Yu
2016-01-01
We study parametric interactions in a new type of nonlinear photonic structures, which is realized in the vicinity of a pair of nonlinear crystals. In this kind of structure, which we call binary, multiple nonlinear optical processes can be implemented simultaneously, owing to multiple phase-matching conditions, fulfilled separately in the constituent crystals. The coupling between the nonlinear processes by means of modes sharing similar frequency is attained by the spatially-broadband nature of the parametric fields. We investigate the spatial properties of the fields generated in the binary structure constructed from periodically poled crystals for the two examples: 1) single parametric down-conversion, and 2) coupled parametric down-conversion and up-conversion processes. The efficacy of the fields' generation in these examples is analyzed through comparison with the cases of traditional single periodically poled crystal and aperiodic photonic structure, respectively. It has been shown that the relative s...
International Conference on Structural Nonlinear Dynamics and Diagnosis
CSNDD 2012; CSNDD 2014
2015-01-01
This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics. Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...
Multiwave nonlinear couplings in elastic structures
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available This short contribution considers the essentials of nonlinear wave properties in typical mechanical systems such as an infinite straight bar, a circular ring, and a flat plate. It is found that nonlinear resonance is experienced in all the systems exhibiting continuous and discrete spectra, respectively. Multiwave interactions and the stability of coupled modes with respect to small perturbations are discussed. The emphasis is placed on mechanical phenomena, for example, stress amplification, although some analogies with some nonlinear optical systems are also obvious. The nonlinear resonance coupling in a plate within the Kirchhoff-Love approximation is selected as a two-dimensional example exhibiting a rich range of resonant wave phenomena. This is originally examined by use of Whitham's averaged Lagrangian method. In particular, the existence of three basic resonant triads between longitudinal, shear, and bending modes is shown. Some of these necessarily enter cascade wave processes related to the instability of some mode components of the triad under small perturbations.
SEISMIC RANDOM VIBRATION ANALYSIS OF LOCALLY NONLINEAR STRUCTURES
Institute of Scientific and Technical Information of China (English)
ZhaoYan; LinJiahao; ZhangYahui; AnWei
2003-01-01
A nonlinear seismic analysis method for complex frame structures subjected to stationary random ground excitations is proposed. The nonlinear elasto-plastic behaviors may take place only on a small part of the structure. The Bouc-Wen differential equation model is used to model the hysteretic characteristics of the nonlinear components. The Pseudo Excitation Method (PEM) is used in solving the linearized random differential equations to replace the solution of the less efficient Lyapunov equation. Numerical results of a real bridge show that .the method proposed is effective for practical engineering analysis.
Optimal vibration control and co-design of very flexible actuated structures
Maraniello, S.; Palacios, R.
2016-09-01
The single shooting method is applied to the optimal control and combined structural and control design (co-design) of very flexible beams. The objective is to assess feasibility, advantages and limitations of an integrated design approach when dealing with actuated structures exhibiting large oscillations and, more generally, strongly nonlinear couplings. A gradient based approach is proposed for the large design space defined by both the optimal control and co-design problems. Numerical studies are presented for the case of a very flexible actuated pendulum with large rigid-body motion. The impact of local (B-splines) and global (discrete sines) set of basis functions is investigated for increasing levels of actuation authority, showing the importance of the time-frequency resolution of the parametrisation on the convergence properties and outcome quality of the process. Locking between control and structural disciplines around specific design points is found, thus highlighting the disadvantage of a sequential design approach. Simultaneous designing of control law and structure is seen, instead, to explore efficiently larger regions of the design space.
Variable structure attitude maneuver and vibration control of flexible spacecraft
Institute of Scientific and Technical Information of China (English)
HU Qing-lei; MA Cuang-fu
2008-01-01
A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator.In this design approach,the attitude control and the vibration suppression sub-systems ale designed separately using the lower order model.The design of attitude controller is based on the variable structure control (VSC)theory leading to a discontinuous control law.This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system.To actively suppress the flexible vibrations,the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages.In addition,a special configuration of actuators for three-axis attitude control is also investigated:the pitch attitude controlled by a momentum wheel,and the roll/yaw control achieved by on-off thrustem.which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history.Numerical simulations performed show that the rotational maneuver and vibration suppression ale accomplished in spite of the presence of disturbance torque and parameter uncertainty.
Characteristic modeling and the control of flexible structure
Institute of Scientific and Technical Information of China (English)
吴宏鑫; 刘一武; 刘忠汉; 解永春
2001-01-01
Appropriate modeling for a controlled plant has been a remarkable problem in the control field. A new modeling theory, i.e. characteristic modeling, is roundly demonstrated. It is deduced in detail that a general linear constant high_order system can be equivalently described with a two_order time_varying difference equation. The application of the characteristic modeling method to the control of flexible structure is also introduced. Especially, as an example, the Hubble Space Telescope is used to illustrate the application of the characteristic modeling and adaptive control method proposed in this paper.
The dynamics and control of large flexible space structures
Bainum, P. M.; Krishna, R.; Kumar, V. K.; Reddy, A. S. S. R.
1981-01-01
The dynamics and attitude and shape control of very large, inherently flexible spacecraft systems were investigated. Increasingly more complex examples were examined, beginning with a uniform free-free beam, next a free-free uniform plate/platform and finally by considering a thin shallow spherical shell structure in orbit. The effects devices were modeled. For given sets of assumed actuator locations, the controllability of these systems was first established. Control laws for each of the actuators were developed based on decoupling techniques (including distributed modal control) pole placement algorithms and a application of the linear regulator problem for optical control theory.
Parametric localized modes in quadratic nonlinear photonic structures
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole;
2001-01-01
We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi2) nonlinear interfaces embedded in a linear layered structure-a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear...... interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi2 equations) and find, numerically and analytically, the spatially localized solutions-discrete gap solitons. For a single nonlinear interface...... in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media....
Experimental investigation of jet pulse control on flexible vibrating structures
Karaiskos, Grigorios; Papanicolaou, Panos; Zacharopoulos, Dimitrios
2016-08-01
The feasibility of applying on-line fluid jet pulses to actively control the vibrations of flexible structures subjected to harmonic and earthquake-like base excitations provided by a shake table is explored. The operating principles and capabilities of the control system applied have been investigated in a simplified small-scale laboratory model that is a mass attached at the top free end of a vertical flexible slender beam with rectangular cross-section, the other end of which is mounted on an electrodynamic shaker. A pair of opposite jets placed on the mass at the top of the cantilever beam applied the appropriate forces by ejecting pressurized air pulses controlled by on/off solenoid electro-valves via in house developed control software, in order to control the vibration caused by harmonic, periodic and random excitations at pre-selected frequency content provided by the shaker. The dynamics of the structure was monitored by accelerometers and the jet impulses by pressure sensors. The experimental results have demonstrated the effectiveness and reliability of Jet Pulse Control Systems (JPCS). It was verified that the measured root mean square (RMS) vibration levels of the controlled structure from harmonic and earthquake base excitations, could be reduced by approximately 50% and 33% respectively.
Real time health monitoring and control system methodology for flexible space structures
Jayaram, Sanjay
This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.
Leadenham, Stephen; Erturk, Alper
2014-04-01
There has been growing interest in enabling wireless health and usage monitoring for rotorcraft applications, such as helicopter rotor systems. Large dynamic loads and acceleration fluctuations available in these environments make the implementation of vibration-based piezoelectric energy harvesters a very promising choice. However, such extreme loads transmitted to the harvester can also be detrimental to piezoelectric laminates and overall system reliability. Particularly flexible resonant cantilever configurations tuned to match the dominant excitation frequency can be subject to very large deformations and failure of brittle piezoelectric laminates due to excessive bending stresses at the root of the harvester. Design of resonant piezoelectric energy harvesters for use in these environments require nonlinear electroelastic dynamic modeling and strength-based analysis to maximize the power output while ensuring that the harvester is still functional. This paper presents a mathematical framework to design and analyze the dynamics of nonlinear flexible piezoelectric energy harvesters under large base acceleration levels. A strength-based limit is imposed to design the piezoelectric energy harvester with a proof mass while accounting for material, geometric, and dissipative nonlinearities, with a focus on two demonstrative case studies having the same linear fundamental resonance frequency but different overhang length and proof mass values. Experiments are conducted at different excitation levels for validation of the nonlinear design approach proposed in this work. The case studies in this work reveal that harvesters exhibiting similar behavior and power generation performance at low excitation levels (e.g. less than 0.1g) can have totally different strength-imposed performance limitations under high excitations (e.g. above 1g). Nonlinear modeling and strength-based design is necessary for such excitation levels especially when using resonant cantilevers with no
Decentralized control of large flexible structures by joint decoupling
Su, Tzu-Jeng; Juang, Jer-Nan
1994-01-01
This paper presents a novel method to design decentralized controllers for large complex flexible structures by using the idea of joint decoupling. Decoupling of joint degrees of freedom from the interior degrees of freedom is achieved by setting the joint actuator commands to cancel the internal forces exerting on the joint degrees of freedom. By doing so, the interactions between substructures are eliminated. The global structure control design problem is then decomposed into several substructure control design problems. Control commands for interior actuators are set to be localized state feedback using decentralized observers for state estimation. The proposed decentralized controllers can operate successfully at the individual substructure level as well as at the global structure level. Not only control design but also control implementation is decentralized. A two-component mass-spring-damper system is used as an example to demonstrate the proposed method.
Four experimental demonstrations of active vibration control for flexible structures
Phillips, Doug; Collins, Emmanuel G., Jr.
1990-01-01
Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.
Distributed digital signal processors for multi-body flexible structures
Lee, Gordon K. F.
1992-01-01
Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.
Energy Technology Data Exchange (ETDEWEB)
Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2015-09-15
In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.
Nonlinear Strain Measures, Shape Functions and Beam Elements for Dynamics of Flexible Beams
Energy Technology Data Exchange (ETDEWEB)
Sharf, I. [University of Victoria, Department of Mechanical Engineering (Canada)
1999-05-15
In this paper, we examine several aspects of the development of an explicit geometrically nonlinear beam element. These are: (i) linearization of the displacement field; (ii) the effect of a commonly adopted approximation for the nonlinear Lagrangian strain; and (iii) use of different-order shape functions for discretization. The issue of rigid-body check for a nonlinear beam element is also considered. An approximate check is introduced for an element based on an (approximate) intermediate strain measure. Several numerical examples are presented to support the analysis. The paper concludes with a discussion on the use of explicit nonlinear beam elements for multibody dynamics simulation.
Geometric and material nonlinear analysis of tensegrity structures
Institute of Scientific and Technical Information of China (English)
Hoang Chi Tran; Jaehong Lee
2011-01-01
A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stressstrain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.
A Backstepping Simple Adaptive Control Application to Flexible Space Structures
Institute of Scientific and Technical Information of China (English)
LIU Min; XU Shijie; HAN Chao
2012-01-01
Although the simple adaptive control (SAC) is widely studied both in theory and application in flexible space structure control and other control problems,it is restricted by the almost strictly positive real (ASPR) conditions.In most practical control problems,the ASPR conditions are not satisfied.Therefore,based on the SAC theory,this paper proposes a backstepping simple adaptive control algorithm which suits the system with arbitrary relative degree with no need of parallel feedforward compensator.The proposed control algorithm consists of decomposition of the arbitrary relative degree system into a known subsystem and an unknown ASPR subsystem which are eonneeted in cascade,design of constant outpul feedback controller for the known subsystem,and implementation of backstepping method and SAC of the unknown ASPR subsystem.Inheriting the characteristics of the SAC,this method can be adaptive online for the parameter uncertainties.Then,the application of the proposed controller to large flexible space structure with collocated sensors and actuators is studied,and the simulation results validate the proposed controller.It is a new strategy to apply the classical SAC to high relative degree plants.
Fiber optic shape sensing for monitoring of flexible structures
Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.
2012-04-01
Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows
Solution structure of proinsulin: connecting domain flexibility and prohormone processing.
Yang, Yanwu; Hua, Qing-Xin; Liu, Jin; Shimizu, Eri H; Choquette, Meredith H; Mackin, Robert B; Weiss, Michael A
2010-03-12
The folding of proinsulin, the single-chain precursor of insulin, ensures native disulfide pairing in pancreatic beta-cells. Mutations that impair folding cause neonatal diabetes mellitus. Although the classical structure of insulin is well established, proinsulin is refractory to crystallization. Here, we employ heteronuclear NMR spectroscopy to characterize a monomeric analogue. Proinsulin contains a native-like insulin moiety (A- and B-domains); the tethered connecting (C) domain (as probed by {(1)H}-(15)N nuclear Overhauser enhancements) is progressively less ordered. Although the BC junction is flexible, residues near the CA junction exhibit alpha-helical-like features. Relative to canonical alpha-helices, however, segmental (13)C(alpha/beta) chemical shifts are attenuated, suggesting that this junction and contiguous A-chain residues are molten. We propose that flexibility at each C-domain junction facilitates prohormone processing. Studies of protease SPC3 (PC1/3) suggest that C-domain sequences contribute to cleavage site selection. The structure of proinsulin provides a foundation for studies of insulin biosynthesis and its impairment in monogenic forms of diabetes mellitus.
Observability and Information Structure of Nonlinear Systems,
1985-10-01
defined by Shannon and used as a measure of mut.:al infor-mation between event x. and y4. If p(x.l IY.) I I(x., y.) xil -in (1/p(x.)) =- JInp (x.) (2...entropy H(x,y) in a similar way as H(x,y) = - fx,yp(xiy)lnp(x,y)cdlY, = -E[ JInp (x,y)]. (3-13) With the above definitions, mutual information between x...Observabiity of Nonlinear Systems, Eng. Cybernetics, Volume 1, pp 338-345, 1972. 18. Sen , P., Chidambara, M.R., Observability of a Class of Nonli-.ear
Nonlinear Quantum Optics in Artificially Structured Media
Helt, Lukas Gordon
This thesis presents an analysis of photon pairs generated via either spontaneous parametric downconversion or spontaneous four-wave mixing in channel waveguides as well as in microring resonators side-coupled to channel waveguides. The state of photons exiting a particular device is calculated within a general Hamiltonian formalism that simplifies the link between quantum nonlinear optics experiments and classical nonlinear optics experiments. This state contains information regarding photon pair production efficiency as well as modal and spectral correlations between the two photons, characterized by a two-dimensional spectral distribution function called the biphoton wave function. In the limit of a low probability of pair production, photon pair production efficiencies are cast into forms resembling corresponding well-known classical nonlinear optical frequency conversion efficiencies, making it easy to see what plays the role of a classical "seed" field in an un-seeded (quantum) process. This also allows photon pair production efficiencies to be calculated based on the results of classical nonlinear optical experiments. It is further calculated that, unless generated photons are collected over a very narrow frequency range, their generation efficiency does not scale the same way with device length in a channel waveguide, or resonance quality factor in a microring resonator, as might be expected from the corresponding classical frequency conversion efficiency. Although calculations do not include self- or cross-phase modulation, nor two-photon absorption or free-carrier absorption, it is calculated that their neglect is justified in the low pair production probability limit. Linear (scattering) loss is also neglected, though partially addressed in the final chapter of this thesis. Biphoton wave functions are calculated explicitly, such that their shape and orientation, including approximate analytic expressions for their widths, can easily be determined. This
Nonlinear Structure Formation with the Environmentally Dependent Dilaton
Brax, Phil; Davis, Anne-C; Li, Baojiu; Shaw, Douglas J
2011-01-01
We have studied the nonlinear structure formation of the environmentally dependent dilaton model using $N$-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their $\\Lambda$CDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.
Matt: local flexibility aids protein multiple structure alignment.
Directory of Open Access Journals (Sweden)
Matthew Menke
2008-01-01
Full Text Available Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists, an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these "bent" alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of alpha-helices and beta-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core
Directory of Open Access Journals (Sweden)
M. Li
2012-01-01
Full Text Available This paper proposes a mathematical model of the multirotor system with a flexible coupling on spring supports on Lagrange's approach, which has taken into account the effects of dynamic angular misalignment and mass unbalance. Then its nonlinear dynamic behaviors of the system are discussed based on the method of multiple scales and numerical technique, respectively. The results show that the responses of the system in lateral directions contain a similar component to that of the mass unbalanced system on both the vibrating frequency and amplitude and involve the typical nonlinear components such as the ones from some combined frequencies; the results also reveal that the numerical agreements on the above-mentioned methods are perfect for the transient responses.
Strength Analysis Modelling of Flexible Umbilical Members for Marine Structures
Directory of Open Access Journals (Sweden)
S. Sævik
2012-01-01
Full Text Available This paper presents a 3-dimensional finite element formulation for predicting the behaviour of complex umbilical cross-sections exposed to loading from tension, torque, internal and external pressure including bending. Helically wound armours and tubes are treated as thin and slender beams formulated within the framework of small strains but large displacements, applying the principle of virtual displacements to obtain finite element equations. Interaction between structural elements is handled by 2- and 3-noded contact elements based on a penalty parameter formulation. The model takes into account a number of features, such as material nonlinearity, gap and friction between individual bodies, and contact with external structures and with a full 3-dimensional description. Numerical studies are presented to validate the model against another model as well as test data.
Dissipative nonlinear structures in tokamak plasmas
Directory of Open Access Journals (Sweden)
K. A. Razumova
2001-01-01
Full Text Available A lot of different kinds of instabilities may be developed in high temperature plasma located in a strong toroidal magnetic field (tokamak plasma. Nonlinear effects in the instability development result in plasma self-organization. Such plasma has a geometrically complicated configuration, consisting of the magnetic surfaces imbedded into each other and split into islands with various characteristic numbers of helical twisting. The self-consistency of the processes means that the transport coefficients in plasma do not depend just on the local parameters, being a function of the whole plasma configuration and of the forces affecting it. By disrupting the bonds between separate magnetic surfaces filled with islands, one can produce zones of reduced transport in the plasma, i.e. “internal thermal barriers”, allowing one essentially to increase the plasma temperature and density.
Applications of nonlinear system identification to structural health monitoring.
Energy Technology Data Exchange (ETDEWEB)
Farrar, C. R. (Charles R.); Sohn, H. (Hoon); Robertson, A. N. (Amy N.)
2004-01-01
The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide an overview of nonlinear system identification techniques that are used for the feature extraction process. Specifically, three general approaches that apply nonlinear system identification techniques to the damage detection process are discussed. The first two approaches attempt to quantify the deviation of the system from its initial linear characteristics that is a direct result of damage. The third approach is to extract features from the data that are directly related to the specific nonlinearity associated with the damaged condition. To conclude this discussion, a summary of outstanding issues associated with the application of nonlinear system identification techniques to the SHM problem is presented.
National Aeronautics and Space Administration — ZONA Technology proposes to develop an innovative nonlinear structural reduced order model (ROM) - nonlinear aerodynamic ROM methodology for the inflatable...
Nonlinear Kalman Filtering in Affine Term Structure Models
DEFF Research Database (Denmark)
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;
When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... Monte Carlo experiment demonstrates that the unscented Kalman fi…lter is much more accurate than its extended counterpart in fi…ltering the states and forecasting swap rates and caps. Our fi…ndings suggest that the unscented Kalman fi…lter may prove to be a good approach for a number of other problems...... in fi…xed income pricing with nonlinear relationships between the state vector and the observations, such as the estimation of term structure models using coupon bonds and the estimation of quadratic term structure models....
Variable structure control of nonlinear systems through simplified uncertain models
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
A new topology optimization scheme for nonlinear structures
Energy Technology Data Exchange (ETDEWEB)
Eim, Young Sup; Han, Seog Young [Hanyang University, Seoul (Korea, Republic of)
2014-07-15
A new topology optimization algorithm based on artificial bee colony algorithm (ABCA) was developed and applied to geometrically nonlinear structures. A finite element method and the Newton-Raphson technique were adopted for the nonlinear topology optimization. The distribution of material is expressed by the density of each element and a filter scheme was implemented to prevent a checkerboard pattern in the optimized layouts. In the application of ABCA for long structures or structures with small volume constraints, optimized topologies may be obtained differently for the same problem at each trial. The calculation speed is also very slow since topology optimization based on the roulette-wheel method requires many finite element analyses. To improve the calculation speed and stability of ABCA, a rank-based method was used. By optimizing several examples, it was verified that the developed topology scheme based on ABCA is very effective and applicable in geometrically nonlinear topology optimization problems.
Computation of wind-induced vibrations of flexible shells and membranous structures
Glück, M.; Breuer, M.; Durst, F.; Halfmann, A.; Rank, E.
2003-04-01
A partitioned coupling approach for time-dependent fluid-structure interactions is applied to thin shells and membranous structures with large displacements. The frame algorithm connects a three-dimensional, finite volume-based multi-block flow solver for incompressible fluids with a finite element code for geometrically nonlinear structural problems using a commercial coupling interface. Thus a high modularity is achieved and the whole range of opportunities with these two powerful codes - each of them highly adapted to its specific field of application - can be used also for coupled simulations. Two completely different configurations were investigated. First, the coupling algorithm was applied to an academic test configuration consisting of one, two, and three flexible L-shaped plates being loaded by a steady far-field flow. Various investigations were carried out at different Reynolds numbers /(Re=50,200, and 500) in order to study phenomena such as vortex shedding, resonance, influence of the interaction between several flexible plates, whereas the second and third plates were placed in the wake of the first. The second part of the paper shows that in principle the coupling procedure can also deal with real-life structures as they occur in civil engineering. A membranous roof of glass-fiber synthetics with a complex shape was exposed to a time-dependent wind gust from diagonally above which was superimposed on a constant basic wind flow parallel to the ground. The structural model contains the pre-stressed textile roof including the taut cables at its circumference which are fastened at the pylons. As a structural response, the wind gust led to a displacement of the textile roof which disappeared again when the gust subsided. With the coupled algorithm proposed in the paper it is possible to study dynamic interactions for engineering applications.
Non-linear structural dynamics characterization using a scanning laser vibrometer
Pai, P. F.; Lee, S.-Y.
2003-07-01
This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal velocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second, third, and fourth natural frequencies are examined in detail. Influences of the fixture mass, gravity, mass centers of mode shapes, and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances, energy transfer from high-frequency modes to the first mode, and amplitude- and phase-modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.
Abrasion test of flexible protective materials on hydraulic structures
Directory of Open Access Journals (Sweden)
Xin WANG
2014-01-01
Full Text Available In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.
Fenili, André
2012-11-01
In this paper the author investigates the angular position and vibration control of a nonlinear rigid-flexible two link robotic manipulator considering fast angular maneuvers. The nonlinear control technique named State-Dependent Riccati Equation (SDRE) is used here to achieve these aims. In a more realistic approach, it is considered that some states can be measured and some states cannot be measured. The states not measured are estimated in order to be used for the SDRE control. These states are all the angular velocities and the velocity of deformation of the flexible link. A state-dependent Riccati equation-based estimator is used here. Not only different initial conditions between the system to be controlled (here named "real" system) and the estimator but also a different mathematical model is considered as the estimation model in order to verify the limitations of the proposed estimation and control techniques. The mathematical model that emulates the real system to be controlled considers two modes expansion and the estimation model considers only one mode expansion. The results for the different approaches are compared and discussed.
Structure-property relationships of flexible polyurethane foams
Aneja, Ashish
This study examined several features of flexible polyurethane foams from a structure-property perspective. A major part of this dissertation addresses the issue of connectivity of the urea phase and its influence on mechanical and viscoelastic properties of flexible polyurethane foams and their plaque counterparts. Lithium salts (LiCl and LiBr) were used as additives to systematically alter the phase separation behavior, and hence the connectivity of the urea phase at different scale lengths. Macro connectivity, or the association of the large scale urea rich aggregates typically observed in flexible polyurethane foams was assessed using SAXS, TEM, and AFM. These techniques showed that including a lithium salt in the foam formulation suppressed the formation of the urea aggregates and thus led to a loss in the macro level connectivity of the urea phase. WAXS and FTIR were used to demonstrate that addition of LiCl or LiBr systematically disrupted the local ordering of the hard segments within the microdomains, i.e., it led to a reduction of micro level connectivity or the regularity in segmental packing of the urea phase. Based on these observations, the interaction of the lithium salt was thought to predominantly occur with the urea hard segments, and this hypothesis was confirmed using quantum mechanical calculations. Another feature of this research investigated model trisegmented polyurethanes based on monofunctional polyols, or "monos", with water-extended toluene diisocyanate (TDI) based hard segments. The formulations of the monol materials were maintained similar to those of flexible polyurethane foams with the exceptions that the conventional polyol was substituted by an oligomeric monofunctional polyether of ca. 1000 g/mol molecular weight. Plaques formed from these model systems were shown to be solid materials even at their relatively low molecular weights of 3000 g/mol and less, AFM phase images, for the first time, revealed the ability of the hard
Nonlinear analysis and dynamic structure in the energy market
Aghababa, Hajar
This research assesses the dynamic structure of the energy sector of the aggregate economy in the context of nonlinear mechanisms. Earlier studies have focused mainly on the price of the energy products when detecting nonlinearities in time series data of the energy market, and there is little mention of the production side of the market. Moreover, there is a lack of exploration about the implication of high dimensionality and time aggregation when analyzing the market's fundamentals. This research will address these gaps by including the quantity side of the market in addition to the price and by systematically incorporating various frequencies for sample sizes in three essays. The goal of this research is to provide an inclusive and exhaustive examination of the dynamics in the energy markets. The first essay begins with the application of statistical techniques, and it incorporates the most well-known univariate tests for nonlinearity with distinct power functions over alternatives and tests different null hypotheses. It utilizes the daily spot price observations on five major products in the energy market. The results suggest that the time series daily spot prices of the energy products are highly nonlinear in their nature. They demonstrate apparent evidence of general nonlinear serial dependence in each individual series, as well as nonlinearity in the first, second, and third moments of the series. The second essay examines the underlying mechanism of crude oil production and identifies the nonlinear structure of the production market by utilizing various monthly time series observations of crude oil production: the U.S. field, Organization of the Petroleum Exporting Countries (OPEC), non-OPEC, and the world production of crude oil. The finding implies that the time series data of the U.S. field, OPEC, and the world production of crude oil exhibit deep nonlinearity in their structure and are generated by nonlinear mechanisms. However, the dynamics of the non
Fractal structures in nonlinear plasma physics.
Viana, R L; da Silva, E C; Kroetz, T; Caldas, I L; Roberto, M; Sanjuán, M A F
2011-01-28
Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.
National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...
Nonlinear analysis of flexible beams undergoing large rotations Via symbolic computations
Directory of Open Access Journals (Sweden)
Yuan Xiaofeng
2001-01-01
Full Text Available In this paper, a two-stage approach is presented for analyzing flexible beams undergoing large rotations. In the first stage, the symbolic forms of equations of motion and the Jacobian matrix are generated by means of MATLAB and written into a MATLAB script file automatically, where the flexible beams are described by the unified formulation presented in our previous paper. In the second stage, the derived equations of motion are solved by means of implicit numerical methods. Several comparison computations are performed. The two-stage approach proves to be much more efficient than pure numerical one.
Institute of Scientific and Technical Information of China (English)
GU Ji-jun; AN Chen; LEVI Carlos; SU Jian
2012-01-01
The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder.A nonlinear wake oscillator model was used to represent the cross-flow force acting on the cylinder,leading to a coupled system of second-order Partial Differential Equations (PDEs) in temporal variable.The GITT approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs),which was numerically solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library (IMSL).Numerical results were presented for comparison to those given by the finite difference method and experimental results,allowing a critical evaluation of the technique performance.The influence of variation of mean axial tension induced by elongation of flexible cylinder was evaluated,which was shown to be not negligible in numerical simulation of VIV of a long flexible cylinder.
Hinge Atlas: relating protein sequence to sites of structural flexibility
Directory of Open Access Journals (Sweden)
Yang Julie
2007-05-01
Full Text Available Abstract Background Relating features of protein sequences to structural hinges is important for identifying domain boundaries, understanding structure-function relationships, and designing flexibility into proteins. Efforts in this field have been hampered by the lack of a proper dataset for studying characteristics of hinges. Results Using the Molecular Motions Database we have created a Hinge Atlas of manually annotated hinges and a statistical formalism for calculating the enrichment of various types of residues in these hinges. Conclusion We found various correlations between hinges and sequence features. Some of these are expected; for instance, we found that hinges tend to occur on the surface and in coils and turns and to be enriched with small and hydrophilic residues. Others are less obvious and intuitive. In particular, we found that hinges tend to coincide with active sites, but unlike the latter they are not at all conserved in evolution. We evaluate the potential for hinge prediction based on sequence. Motions play an important role in catalysis and protein-ligand interactions. Hinge bending motions comprise the largest class of known motions. Therefore it is important to relate the hinge location to sequence features such as residue type, physicochemical class, secondary structure, solvent exposure, evolutionary conservation, and proximity to active sites. To do this, we first generated the Hinge Atlas, a set of protein motions with the hinge locations manually annotated, and then studied the coincidence of these features with the hinge location. We found that all of the features have bearing on the hinge location. Most interestingly, we found that hinges tend to occur at or near active sites and yet unlike the latter are not conserved. Less surprisingly, we found that hinge residues tend to be small, not hydrophobic or aliphatic, and occur in turns and random coils on the surface. A functional sequence based hinge predictor was
Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring Project
National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...
Control Lyapunov Stabilization of Nonlinear Systems with Structural Uncertainty
Institute of Scientific and Technical Information of China (English)
CAI Xiu-shan; HAN Zheng-zhi; TANG Hou-jun
2005-01-01
This paper deals with global stabilization problem for the nonlinear systems with structural uncertainty.Based on control Lyapunov function, a sufficient and necessary condition for the globally and asymptotically stabilizing the equailibrium of the closed system is given. Moreovery, an almost smooth state feedback control law is constructed. The simulation shows the effectiveness of the method.
Stable Solution of Nonlinear Age-structuredForest Evolution System
Institute of Scientific and Technical Information of China (English)
WANGDing-jiang; ZHAOTing-fang
2004-01-01
This paper studies the dynamical behavior of a class of total area dependent nonlinear age-structured forest evolution model. We give the problem of equal value for the forest system, and discuss the stable solution of system. We obtained the necessary and sufficient conditions for there exists the stable solution.
Maximum Likelihood Estimation of Nonlinear Structural Equation Models.
Lee, Sik-Yum; Zhu, Hong-Tu
2002-01-01
Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)
Case-Deletion Diagnostics for Nonlinear Structural Equation Models
Lee, Sik-Yum; Lu, Bin
2003-01-01
In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…
Local Influence Analysis of Nonlinear Structural Equation Models
Lee, Sik-Yum; Tang, Nian-Sheng
2004-01-01
By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…
Structure of Dirac matrices and invariants for nonlinear Dirac equations
2004-01-01
We present invariants for nonlinear Dirac equations in space-time ${\\mathbb R}^{n+1}$, by which we prove that a special choice of the Cauchy data yields free solutions. Our argument works for Klein-Gordon-Dirac equations with Yukawa coupling as well. Related problems on the structure of Dirac matrices are studied.
Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm
Directory of Open Access Journals (Sweden)
Xianjun Sheng
2016-01-01
Full Text Available Flexible structures have been widely used in many fields due to the advantages of light quality, small damping, and strong flexibility. However, flexible structures exhibit the vibration in the process of manipulation, which reduces the pointing precision of the system and causes fatigue of the machine. So, this paper focuses on the identification method for active vibration control of flexible structure. The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique designed according to the parameters identified from the Prony algorithm. Eventually, the proposed approach is applied to the most common flexible structure, a piezoelectric cantilever beam actuated by Macro Fiber Composite (MFC. The experimental results demonstrate that the Prony algorithm is very effective and accurate on the dynamic modeling of flexible structure and input shaper could significantly reduce the vibration and improve the response speed of system.
TCO/metal/TCO structures for energy and flexible electronics
Energy Technology Data Exchange (ETDEWEB)
Guillen, C., E-mail: c.guillen@ciemat.es; Herrero, J.
2011-10-31
There is increasing attention paid to improving transparent conductive electrodes for applications in large area photovoltaic devices and displays that are being developed for energy and electronics. To date, transparent and conductive oxides (TCO) based on In{sub 2}O{sub 3}, ZnO, or SnO{sub 2} are commonly used, but advanced devices require new electrodes with lower resistivities than previously achieved and with optical properties superior to those of the present generation. TCO/metal/TCO multilayer structures have emerged as an interesting alternative because they provide optical and electrical characteristics globally superior to those attainable with a single-layer TCO or metal electrode and can be deposited at low temperatures onto inexpensive plastic substrates. Indeed, the fabrication of thin film devices on flexible substrates has substantial interest for application to lightweight products and implementation of roll-to-roll deposition processes that can significantly reduce production costs. In this sense, organic electronics that require low deposition temperatures have the best chance to be the first transferred from conventional glass to inexpensive plastic substrates. The present critical review summarizes current TCO/metal/TCO research results, first analyzed for materials and thickness selection as a function of the optical transmittance and electrical resistance parameters, and then analyzed according to other important properties such as mechanical reliability and thermal and humidity stability. The review concludes with a brief discussion of the results obtained for TCO/metal/TCO structures applied as electrodes in several organic electronic devices.
Adaptive Control of Nonlinear Systems With Applications to the Control of Flexible Robot Arms
1991-10-28
parameters in order to review non. output regulation problem is reviewed and the robust- linear regulator theory in the absence of uncertainty. ness of...system is then rameter uncertainty in the nonlinear output regulation problem ., Recent work by Isidori and Byrnes [1) has z = f(z,9’)+g(z,9)u+p(:,9)w
Nonlinear feature identification of impedance-based structural health monitoring
Energy Technology Data Exchange (ETDEWEB)
Rutherford, A. C. (Amanda C.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)
2004-01-01
The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.
Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis
Directory of Open Access Journals (Sweden)
Moussa Leblouba
2016-01-01
Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.
2000-05-01
bodies of longitudinal accelerations must be included in the water and many other problems. In our application, if flexibility equations. the radial...energy due to gravity will come from our MW [0+1 - f q 1+V -wp PQ -(P’ + R) gravitational model. In the case of a "flat earth ": [V -S 0 R VP -UQ] 1 QR...electronic flight control system apparition [GAF (M, m/V)] ,z [gaf (M, p)] p = j.m The first historical model of the flexible aircraft consists Where in
A Nonlinear Theory for Smart Composite Structures
Chattopadhyay, Aditi
2002-01-01
The paper discusses the following: (1) Development of a completely coupled thermo-piezoelectric-mechanical theory for the analysis of composite shells with segmented and distributed piezoelectric sensor/actuators and shape memory alloys. The higher order displacement theory will be used to capture the transverse shear effects in anisotropic composites. The original theory will be modified to satisfy the stress continuity at ply interfaces. (2) Development of a finite element technique to implement the mathematical model. (3) Investigation of the coupled structures/controls interaction problem to study the complex trade-offs associated with the coupled problem.
Balas, M. J.
1981-01-01
Systems such as the Maypole deployable reflector have a distributed parameter nature. The flexible column and hoop structure and the circular antenna of 30-100 meter diameter which it supports are described by partial, rather than ordinary, differential equations. Progress completed in reduced order modelling andd controller design and digital parameter estimation and control is summarized. Topics covered include depolyment and on-orbit operation; quasi-static (steady state) operation; dynamic distributed parameter system; autoregressive moving average identification; frequency domain procedures; direct or implicit active control; adaptive observers; parameter estimation using a linear reinforcement learning factor; feedback control; and reduced order modeling for nonlinear systems.
Do horizontal propulsive forces influence the nonlinear structure of locomotion?
Directory of Open Access Journals (Sweden)
Stergiou Nicholas
2007-08-01
Full Text Available Abstract Background Several investigations have suggested that changes in the nonlinear gait dynamics are related to the neural control of locomotion. However, no investigations have provided insight on how neural control of the locomotive pattern may be directly reflected in changes in the nonlinear gait dynamics. Our simulations with a passive dynamic walking model predicted that toe-off impulses that assist the forward motion of the center of mass influence the nonlinear gait dynamics. Here we tested this prediction in humans as they walked on the treadmill while the forward progression of the center of mass was assisted by a custom built mechanical horizontal actuator. Methods Nineteen participants walked for two minutes on a motorized treadmill as a horizontal actuator assisted the forward translation of the center of mass during the stance phase. All subjects walked at a self-select speed that had a medium-high velocity. The actuator provided assistive forces equal to 0, 3, 6 and 9 percent of the participant's body weight. The largest Lyapunov exponent, which measures the nonlinear structure, was calculated for the hip, knee and ankle joint time series. A repeated measures one-way analysis of variance with a t-test post hoc was used to determine significant differences in the nonlinear gait dynamics. Results The magnitude of the largest Lyapunov exponent systematically increased as the percent assistance provided by the mechanical actuator was increased. Conclusion These results support our model's prediction that control of the forward progression of the center of mass influences the nonlinear gait dynamics. The inability to control the forward progression of the center of mass during the stance phase may be the reason the nonlinear gait dynamics are altered in pathological populations. However, these conclusions need to be further explored at a range of walking speeds.
Mathematical models for suspension bridges nonlinear structural instability
Gazzola, Filippo
2015-01-01
This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
Energy Technology Data Exchange (ETDEWEB)
Frostig, Yeoshua; Sheinman, Izhak [Technion-Israel Inst. of Technology, Faculty of Civil and Environmental Engineering, Haifa (Israel); Thomsen, Ole Thybo [Aalborg Univ., Inst. of Mechanical Engineering, Aalborg (Denmark)
2005-03-01
The paper presents a general geometrically non-linear high-order theory of sandwich panels that takes into account the high-order geometrical non-linearities in the core as well as in the face sheets and is based on a variational approach. The formulation, which yields a set of rather complicated governing equations, has been simplified in two different approaches and has been compared with FEA results for verification. The first formulation uses the kinematic relations of large displacements with moderate rotations for the face sheets, non-linear kinematic relations for the core and it assumes that the distribution of the vertical normal stresses through the depth of the core are linear. The second approach uses the general formulation to the non-linear high-order theory of sandwich panels (HSAPT) that considers geometrical non-linearities in the face sheets and only linear high-order effects in the core. The numerical results of the two formulations are presented for a three point bending loading scheme, which is associated with a limit point behavior. The results of the two formulations are compared in terms of displacements, bending moments and shear stresses and transverse (vertical) normal stresses at the face-core interfaces on one hand, and load versus these structural quantities on the other hand. The results have compared well with FEA results obtained using the commercial codes ADINA and ANSYS. (Author)
Dynamic structural correlation via nonlinear programming techniques
Ting, T.; Ojalvo, I. U.
1988-01-01
A solution to the correlation between structural dynamic test results and finite element analyses of the same components is presented in this paper. Basically, the method can be categorized as a Levenberg-Marquardt type Gauss-Newton method which requires only the differences between FE modal analyses and test results and their first derivatives with respect to preassigned design variables. With proper variable normalization and equation scaling, the method has been made numerically better-conditioned and the inclusion of the Levenberg-Marquardt technique overcomes any remaining difficulty encountered in inverting singular or near-singular matrices. An important feature is that each iteration requires only one function evaluation along with the associated design sensitivity analysis and so the procedure is computationally efficient.
Nonlinear dynamic analysis of quasi-symmetric anisotropic structures
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.
Searching and optimizing structure ensembles for complex flexible sugars.
Xia, Junchao; Margulis, Claudio J; Case, David A
2011-10-05
NMR restrictions are suitable to specify the geometry of a molecule when a single well-defined global free energy minimum exists that is significantly lower than other local minima. Carbohydrates are quite flexible, and therefore, NMR observables do not always correlate with a single conformer but instead with an ensemble of low free energy conformers that can be accessed by thermal fluctuations. In this communication, we describe a novel procedure to identify and weight the contribution to the ensemble of local minima conformers based on comparison to residual dipolar couplings (RDCs) or other NMR observables, such as scalar couplings. A genetic algorithm is implemented to globally minimize the R factor comparing calculated RDCs to experiment. This is done by optimizing the weights of different conformers derived from the exhaustive local minima conformational search program, fast sugar structure prediction software (FSPS). We apply this framework to six human milk sugars, LND-1, LNF-1, LNF-2, LNF-3, LNnT, and LNT, and are able to determine corresponding population weights for the ensemble of conformers. Interestingly, our results indicate that in all cases the RDCs can be well represented by only a few most important conformers. This confirms that several, but not all of the glycosidic linkages in histo-blood group "epitopes" are quite rigid.
Persistent homology analysis of protein structure, flexibility and folding
Xia, Kelin; Wei, Guo-Wei
2014-01-01
Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics and transport is one of most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. Based on the correlation between protein compactness, rigidity and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins. PMID:24902720
A nonlinear cointegration approach with applications to structural health monitoring
Shi, H.; Worden, K.; Cross, E. J.
2016-09-01
One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.
Control system design for flexible structures using data models
Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.
1993-01-01
The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also
Salama, M.; Trubert, M.
1979-01-01
A formulation is given for the second order nonlinear equations of motion for spinning line-elements having little or no intrinsic structural stiffness. Such elements have been employed in recent studies of structural concepts for future large space structures such as the Heliogyro solar sailer. The derivation is based on Hamilton's variational principle and includes the effect of initial geometric imperfections (axial, curvature, and twist) on the line-element dynamics. For comparison with previous work, the nonlinear equations are reduced to a linearized form frequently found in the literature. The comparison has revealed several new spin-stiffening terms that have not been previously identified and/or retained. They combine geometric imperfections, rotary inertia, Coriolis, and gyroscopic terms.
Bayesian Methods for Nonlinear System Identification of Civil Structures
Directory of Open Access Journals (Sweden)
Conte Joel P.
2015-01-01
Full Text Available This paper presents a new framework for the identification of mechanics-based nonlinear finite element (FE models of civil structures using Bayesian methods. In this approach, recursive Bayesian estimation methods are utilized to update an advanced nonlinear FE model of the structure using the input-output dynamic data recorded during an earthquake event. Capable of capturing the complex damage mechanisms and failure modes of the structural system, the updated nonlinear FE model can be used to evaluate the state of health of the structure after a damage-inducing event. To update the unknown time-invariant parameters of the FE model, three alternative stochastic filtering methods are used: the extended Kalman filter (EKF, the unscented Kalman filter (UKF, and the iterated extended Kalman filter (IEKF. For those estimation methods that require the computation of structural FE response sensitivities with respect to the unknown modeling parameters (EKF and IEKF, the accurate and computationally efficient direct differentiation method (DDM is used. A three-dimensional five-story two-by-one bay reinforced concrete (RC frame is used to illustrate the performance of the framework and compare the performance of the different filters in terms of convergence, accuracy, and robustness. Excellent estimation results are obtained with the UKF, EKF, and IEKF. Because of the analytical linearization used in the EKF and IEKF, abrupt and large jumps in the estimates of the modeling parameters are observed when using these filters. The UKF slightly outperforms the EKF and IEKF.
Active Vibration Control of a Flexible Structure Using Piezoceramic Actuators
Directory of Open Access Journals (Sweden)
J. Fei
2008-03-01
Full Text Available Considerable attention has been devoted recently to active vibration control using intelligent materials as actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods, strain rate feedback control (SRF, positive position feedback control (PPF are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF control and PPF control achieve effective vibration suppression results of steel cantilever beam.
Chiral Huygens metasurfaces for nonlinear structuring of linearly polarized light
Lesina, A Calà; Ramunno, L
2016-01-01
We report on a chiral nanostructure, which we term a "butterfly nanoantenna," that, when used in a metasurface, allows the direct conversion of a linearly polarized beam into a nonlinear optical far-field of arbitrary complexity. The butterfly nanoantenna exhibits field enhancement in its gap for every incident linear polarization, which can be exploited to drive nonlinear optical emitters within the gap, for the structuring of light within a frequency range not accessible by linear plasmonics. As the polarization, phase and amplitude of the field in the gap are highly controlled, nonlinear emitters within the gap behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged on a surface to produce a highly structured far-field nonlinear optical beam with high purity. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance comp...
DEFF Research Database (Denmark)
Achiche, S.; Shlechtingen, M.; Raison, M.
2016-01-01
This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped with ...
Directory of Open Access Journals (Sweden)
J. Ju
2017-07-01
Full Text Available The flexible Cartesian robotic manipulator (FCRM is coming into widespread application in industry. Because of the feeble rigidity and heavy deflection, the dynamic characteristics of the FCRM are easily influenced by external disturbances which mainly concentrate in the driving end and the load end. Thus, with the influence of driving base disturbance and terminal load considered, the motion differential equations of the FCRM under the plane motion of the base are constructed, which contain the forced and non-linear parametric excitations originated from the disturbances of base lateral and axial motion respectively. Considering the relationship between the coefficients of the motion differential equations and the mode shapes of the flexible manipulator, the analytic expressions of the mode shapes with terminal load are deduced. Then, based on multiple scales method and rectangular coordinate transformation, the average equations of the FCRM are derived to analyze the influence mechanism of base disturbance and terminal load on the system parametric vibration stability. The results show that terminal load mainly affects the node locations of mode shapes and mode frequencies of the FCRM, and the axial motion disturbance of the driving base introduces parametric excitation while the lateral motion disturbance generates forced excitation for the transverse vibration model of the FCRM. Furthermore, with the increase of the base excitation acceleration and terminal load, the parametric vibration instability region of the FCRM increases significantly. This study will be helpful for the dynamic characteristics analysis and vibration control of the FCRM.
Indian Academy of Sciences (India)
Gajbir Singh; G Venkateswara Rao
2000-08-01
The objective of the present paper is to investigate the large amplitude vibratory behaviour of unsymmetrically laminated plates. For this purpose, an efficient and accurate four-node shear flexible rectangular material finite element(MFE) with six degrees offreedom per node (three displacements $(u;v;w)$ along the $x, y$ and axes, two rotations ($\\theta_x$ and $\\theta_y$) about and axes and twist $(\\theta_{xy})$) is developed. The element assumes bi-cubic polynomial distribution with sixteen generalized undetermined coefficients for the transverse displacement. The fields for section rotations $\\theta_x$ and $\\theta_y$, and in-plane displacements and are derived using moment-shear equilibrium and in-plane equilibrium equations of composite strips along the - and -axes. The displacement field so derived not only depends on the element coordinates but is a function of extensional, bending-extensional coupling, bending and transverse shear stiffness as well. The element stiffness and mass matrices are computed numerically by employing 3 × 3 Gauss-Legendre product rules. The element is found to be free of shear locking and does not exhibit any spurious modes. In orderto compute the nonlinearfrequencies, linear mode shape corresponding to the fundamental frequency is assumed as the spatial distribution and nonlinear finite element equations are reduced to a single nonlinear second-order differential equation. This equation is solved by employing the direct numerical integration method. A series of numerical examples are solved to demonstrate the efficacy of the proposed element.
Nonlinear Dynamic Analysis of Planar Flexible Underactuated Manipulators%平面柔性欠驱动机械臂的非线性动力学分析
Institute of Scientific and Technical Information of China (English)
何广平; 陆震
2005-01-01
The influence of passive joint on the dynamics of planar flexible underactuated manipulators is studied. A vibration reduction method based on the internal resonance phenomenon of multi-degree nonlinear dynamic system is proposed. The dynamic simulation results reveal that the harmonic input for the actuated joint will induce the passive joint deviating from its equilibrium position, the excursion speed and direction depend on the amplitude of the input. A passive joint position control scheme making use of the vibration of the flexible structure is suggested, and the numerical simulation results of a model of planar two-link flexible underactuated manipulator is shown.%研究了平面柔性欠驱动机械臂中被动关节对系统动态特性的影响,在动力学分析的基础上,提出了一种基于内共振原理的柔性欠驱动机械臂振动控制方法.在对系统的稳态周期运动进行分析研究的基础上,发现处于自由摆动状态的被动关节的平衡位置随系统结构的振动而发生漂移,并且被动关节平衡位置的漂移速度和方向与周期输入的振幅有关.提出利用结构柔性产生的振动实现被动关节位置控制的方法,通过平面二连杆柔性欠驱动机械臂进行了仿真计算.
On the dimension of complex responses in nonlinear structural vibrations
Wiebe, R.; Spottswood, S. M.
2016-07-01
The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to
Structure-based control of complex networks with nonlinear dynamics
Zañudo, Jorge G T; Albert, Réka
2016-01-01
Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...
DEFF Research Database (Denmark)
Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi;
In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations ar...... are included in the analysis. The full nonlinear stress-strain curves up to failure will be considered for the polymer foams at different temperatures to study the effect of material nonlinearity in detail....
Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.
2012-01-01
This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.
Cooperative tracking control of nonlinear multiagent systems using self-structuring neural networks.
Chen, Gang; Song, Yong-Duan
2014-08-01
This paper considers a cooperative tracking problem for a group of nonlinear multiagent systems under a directed graph that characterizes the interaction between the leader and the followers. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network (NN) with flexible structure is used to approximate the unknown dynamics at each node. Considering that the leader is a neighbor of only a subset of the followers and the followers have only local interactions, we introduce a cooperative dynamic observer at each node to overcome the deficiency of the traditional tracking control strategies. An observer-based cooperative controller design framework is proposed with the aid of graph tools, Lyapunov-based design method, self-structuring NN, and separation principle. It is proved that each agent can follow the active leader only if the communication graph contains a spanning tree. Simulation results on networked robots are provided to show the effectiveness of the proposed control algorithms.
Nonlinear analysis of the forced response of structural elements
Nayfeh, A. H.; Mook, D. T.; Sridhar, S.
1974-01-01
A general procedure is presented for the nonlinear analysis of the forced response of structural elements to harmonic excitations. Internal resonances (i.e., modal interactions) are taken into account. All excitations are considered, with special consideration given to resonant excitations. The general procedure is applied to clamped-hinged beams. The results reveal that exciting a higher mode may lead to a larger response in a lower interacting mode, contrary to the results of linear analyses.
Global stabilization of nonlinear systems with uncertain structure
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The global stabilization problem of nonlinear systems with uncertain structure is dealt with. Based on control Lyapunov function (CLF), a sufficient and necessary condition for Lyapunov stabilization is given. From the condition,several simply sufficient conditions for the globally asymptotical stability are deduced. A state feedback control law is designed to globally asymptotically stabilize the equilibrium of the closed system. Last, a simulation shows the effectiveness of the method.
Nonlinear Propagation of Light in One Dimensional Periodic Structures
Goodman, Roy H.; Weinstein, Michael I.; Philip J Holmes
2000-01-01
We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion...
Weakly nonlinear analysis and localised structures in nonlinear cavities with metamaterials
Slimani, N.; Makhoute, A.; Tlidi, M.
2016-04-01
We consider an optical ring cavity filled with a metamaterial and with a Kerr medium. The cavity is driven by a coherent radiation beam. The modelling of this device leads to the well known Lugiato-Lefever equation with high order diffraction term. We assume that both left-handed and right-handed materials possess a Kerr focusing type of nonlinearity. We show that close to the zero-diffraction regime, high-order diffraction effect allows us to stabilise dark localised structures in this device. These structures consist of dips or holes in the transverse profile of the intracavity field and do not exist without high-order diffraction effects. We show that high order diffraction effects alter in depth the space-time dynamics of this device. A weakly nonlinear analysis in the vicinity of the first threshold associated with the Turing instability is performed. This analysis allows us to determine the parameter regime where the transition from super- to sub-critical bifurcation occurs. When the modulational instability appears subcritically, we show that bright localised structures of light may be generated in two-dimensional setting. Close to the second threshold associated with the Turing instability, dark localised structures are generated.
Evaluation of model fit in nonlinear multilevel structural equation modeling
Directory of Open Access Journals (Sweden)
Karin eSchermelleh-Engel
2014-03-01
Full Text Available Evaluating model fit in nonlinear multilevel structural equation models (MSEM presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are nonnormally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of nonnormality, they were not yet investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.
Evaluation of model fit in nonlinear multilevel structural equation modeling.
Schermelleh-Engel, Karin; Kerwer, Martin; Klein, Andreas G
2014-01-01
Evaluating model fit in nonlinear multilevel structural equation models (MSEM) presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are non-normally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of non-normality, they have not yet been investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.
Rahman, T.
2009-01-01
In this thesis, a finite element based perturbation approach is presented for geometrically nonlinear analysis of thin-walled structures. Geometrically nonlinear static and dynamic analyses are essential for this class of structures. Nowadays nonlinear analysis of thin-walled shell structures is oft
Integration of mechanism and control for large-angle slew maneuvers of flexible structures
Chew, Meng-Sang
1991-01-01
A rolling contact noncircular gear system is applied to assist a desired controller in the slewing of a flexible space structure. The varying gear ratio in cooperation with the controller results in lower feedback gains at the controller, as well as considerably reducing flexural vibrations of the space structure. The noncircular gears consist of a pair of convex noncircular cylinders with specially designed profiles that are synthesized in conjunction with the optimal controller gains for minimizing the flexural vibrations of flexible structure during a slew maneuver. Convexity of the cylindrical profiles for this noncircular gear device must be ensured to maintain rolling contact between the two cylinders. Simulations of slewing control tasks for two kinds of flexible space structures, such as a planar flexible beam and the planar articulated flexible beams, are presented.
Institute of Scientific and Technical Information of China (English)
Cai-Wan Chang-Jian; Her-Terng Yau
2007-01-01
This study performs a dynamic analysis of a rotor supported by two squeeze couple stress fluid film journal bearings with nonlinear suspension. The numerical results show that the stability of the system varies with the non-dimensional speed ratios and the dimensionless parameter l*. It is found that the system is more stable with higher dimensionless parameter l*.Thus it can conclude that the rotor-bearing system lubricated with the couple stress fluid is more stable than that with the conventional Newtonian fluid. The modeling results thus obtained by using the method proposed in this paper can be used to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided.
Flexible organic solar cells including efficiency enhancing grating structures
DEFF Research Database (Denmark)
Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten
2013-01-01
enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...
Wake Vortex Structure Characteristics of a Flexible Oscillating Fin
Institute of Scientific and Technical Information of China (English)
Zhi-dong Wang; Pei Chen; Xiao-qing Zhang
2008-01-01
We compute the wake of a two-dimensional and three-dimensional flexible fin in an unsteady flow field with heaving and pitching motions using FLUENT. Deflexion mode is used for a non-uniform cantilever beam with non-uniformly distributed load. The effect of chordwise deflexion length on the characteristics of propulsion is discussed for two-dimensional flexible fin.The thrust coefficient decreases, propulsive efficiency increases and the intensity of turbulence attenuates gradually as the deflexion length increases. For a three-dimensional flexible fin, the intensity of the vortex in the plane of symmetry is higher than that in the plane at 3/4 span length of the caudal fro. But the propulsive performance achieved is not what we expected with the given deflexion mode.
The Behavior of Indonesian Stock Market: Structural Breaks and Nonlinearity
Directory of Open Access Journals (Sweden)
Rahmat Heru Setianto
2011-09-01
Full Text Available This study empirically examines the behaviour of Indonesian stock market under the efficient market hypothesis framework by emphasizing on the random walk behaviour and nonlinearity over the period of April 1983 - December 2010. In the first step, the standard linear unit root test, namely the augmented Dickey-Fuller (ADF test, Phillip-Perron (PP test and Kwiatkowski-Philllips-Schmidt-Shin (KPSS test identify the random walk behaviour in the indices. In order to take account the possible breaks in the index series Zivot and Adrews (1992 one break and Lumsdaine and Papell (1997 two breaks unit root test are employed to observe whether the presence of breaks in the data series will prevent the stocks from randomly pricing or vice versa. In the third step, we employ Harvey et al. (2008 test to examine the presence of nonlinear behaviour in Indonesian stock indices. The evidence of nonlinear behaviour in the indices, motivate us to use nonlinear unit root test procedure recently developed by Kapetanios et al. (2003 and Kruse (2010. In general, the results from standard linear unit root test, Zivot and Adrews (ZA test and Lumsdaine and Papell (LP test provide evidence that Jakarta Composite Index characterized by a unit root. In addition, structural breaks identified by ZA and LP test are corresponded to the events of financial market liberalization and financial crisis. The nonlinear unit root test procedure fail to rejects the null hypothesis of unit root for all indices, suggesting that Jakarta Composite Index characterized by random walk process supporting the theory of efficient market hypothesis.
Flexible organic solar cells including efficiency enhancing grating structures
DEFF Research Database (Denmark)
Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten
2013-01-01
In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Nonlinear dynamic behaviors of a floating structure in focused waves
Cao, Fei-feng; Zhao, Xi-zeng
2015-12-01
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.
Structural Health Monitoring under Nonlinear Environmental or Operational Influences
Directory of Open Access Journals (Sweden)
Jyrki Kullaa
2014-01-01
Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.
Structure and asymptotic theory for nonlinear models with GARCH errors
Directory of Open Access Journals (Sweden)
Felix Chan
2015-01-01
Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.
Nonlinear Helicons ---an analytical solution elucidating multi-scale structure
Abdelhamid, Hamdi M
2016-01-01
The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here we elucidate an intrinsic multi-scale property embodied by the combination of dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.
Fluid transport due to nonlinear fluid-structure interaction
Energy Technology Data Exchange (ETDEWEB)
Soendergaard Jensen, J.
1996-08-01
This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating uni-directional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness of the pipe. The behavior of the system in response to lateral resonant base excitation is analyzed numerically mode of vibration seems to be most effective for high mean fluid speed, whereas higher modes of vibration can be used to transport fluid with the same fluid speed but with smaller magnitude of pipe vibrations. The effect of the nonlinear geometrical terms is analyzed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement with theoretical predictions. (au) 16 refs.
Fluid transport due to nonlinear fluid-structure interaction
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
1997-01-01
This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...
How Do Resource Structuring and Strategic Flexibility Interact to Shape Radical Innovation?
DEFF Research Database (Denmark)
Li, Yuan; Li, Peter Ping; Wang, Haifeng
2017-01-01
flexibility could be complementary or substitutive, and the effective utilization of these two organizational dimensions as a joint force should be well aligned to achieve scientific breakthroughs. Specifically, this study explores how two different types of strategic flexibility (i.e., resource flexibility......As high resource consumption and high uncertainty are two of the most critical challenges to radical innovation, it is imperative to adopt resource structuring for an active management of resource portfolios, and also to adopt strategic flexibility for active management of contextual uncertainties......, especially for firms in the emerging economies characterized by serious resource deficiency and high contextual uncertainty. Though firms engaging in resource structuring and strategic flexibility separately could foster radical innovation, the interaction effect of resource structuring and strategic...
Graves, Philip L.
1989-01-01
A method of formulating the dynamical equations of a flexible, serial manipulator is presented, using the Method of Kinematic Influence. The resulting equations account for rigid body motion, structural motion due to link and joint flexibilities, and the coupling between these two motions. Nonlinear inertial loads are included in the equations. A finite order mode summation method is used to model flexibilities. The structural data may be obtained from experimental, finite element, or analytical methods. Nonlinear flexibilities may be included in the model.
Lecture Recording: Structural and Symbolic Information vs. Flexibility of Presentation
Stolzenberg, Daniel; Pforte, Stefan
2007-01-01
Rapid eLearning is an ongoing trend which enables flexible and cost-effective creation of learning materials. Especially, lecture recording has turned out to be a lightweight method particularly suited for existing lectures and blended learning strategies. In order to not only sequentially play back but offer full fledged navigation, search and…
Flexible organic solar cells including efficiency enhancing grating structures
Melina de Oliveira Hansen, Roana; Liu, Yinghui; Madsen, Morten; Rubahn, Horst-Günter
2013-04-01
In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications.
Chae, Eun Jung; Akcabay, Deniz Tolga; Young, Yin Lu
2013-11-01
There is an increasing interest to use innovative passive/active flexible lifting surfaces to take advantage of the fluid-structure interaction (FSI) response to improve performance or harvest energy. However, design and testing of flexible lifting surfaces are quite complicated, particularly for lightweight structures in a dense, viscous fluid. The objectives of this work are to (1) investigate the influence of varying fluid, material, and geometric parameters on the FSI response and stability boundaries, and (2) to develop generic parametric maps to facilitate the design of flexible lifting surfaces In particular, the focus is on the influence of solid-to-fluid density ratio, Reynolds number, relative stiffness ratio, and relative excitation frequency ratio on the FSI response and static/dynamic divergence and flutter stability boundaries. The results show that the governing failure mode transitions from flutter to dynamic divergence to static divergence when the solid-to-fluid added mass ratio decreases. In addition, classic linear potential theory is severely under-conservative in predicting the flutter boundary, and cannot predict the transition to dynamic divergence for cases in the low mass ratio regimes due to the strong nonlinear, viscous FSI response that develops when the fluid forces are comparable or greater than the solid forces. The Office of Naval Research (Grant no. N00014-11-1-0833); the National Research Foundation of Korea (GCRC-SOP Grant no. 2012-0004783).
Directory of Open Access Journals (Sweden)
Mojtaba Rostami Kandroodi
2014-03-01
Full Text Available This paper presents a variable structure rule-based fuzzy control for trajectory tracking and vibration control of a flexible joint manipulator by using chaotic anti-control. Based on Lyapunov stability theory for variable structure control and fuzzy rules, the nonlinear controller and some generic sufficient conditions for global asymptotic control are attained. The fuzzy rules are directly constructed subject to a Lyapunov function obtained from variable structure surfaces such that the error dynamics of control problem satisfy stability in the Lyapunov sense. Also in this study, the anti-control is applied to reduce the deflection angle of flexible joint system. To achieve this goal, the chaos dynamic must be created in the flexible joint system. So, the flexible joint system has been synchronized to chaotic gyroscope system. In this study, control and anti-control concepts are applied to achieve the high quality performance of flexible joint system. It is tried to design a controller which is capable to satisfy the control and anti- control aims. The performances of the proposed control are examined in terms of input tracking capability, level of vibration reduction and time response specifications. Finally, the efficacy of the proposed method is validated through experimentation on QUANSER’s flexible-joint manipulator.
NONLINEAR BUCKLING CHARACTERISTIC OF GRADED MULTIWEB STRUCTURE OF HETEROGENEOUS MATERIALS
Institute of Scientific and Technical Information of China (English)
LI Yong; ZHANG Zhi-min
2005-01-01
The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application in aeroplane aerofoil structure and automobile lightweight structure. On the basis of laminate buckling theory,the equivalent rigidity method is adopted to establish the corresponding constitutive relation and the non-linear buckling governing equation for the graded multiweb structure. In finding the solution, the critical load of buckling under different complicated boundary conditions together with combined loads were obtained and testification of the experimental analysis shows that the calculation results can satisfy the requirements of engineering design in a satisfactory way. Results obtained from the research say that: graded materials can reduce the concentrated stress on the interface in an effective way and weaken the effect of initial defect in materials and thereby improve the strength and toughness of materials.
Shahmoradi, Amir; Spielman, Stephanie J; Jackson, Eleisha L; Dawson, Eric T; Meyer, Austin G; Wilke, Claus O
2014-01-01
Several recent works have shown that protein structure can predict site-specific evolutionary sequence variation. In particular, sites that are buried and/or have many contacts with other sites in a structure have been shown to evolve more slowly, on average, than surface sites with few contacts. Here, we present a comprehensive study of the extent to which numerous structural properties can predict sequence variation. The structural properties we considered include buriedness (relative solvent accessibility and contact number), structural flexibility (B factors, root-mean-square fluctuations, and variation in dihedral angles), and variability in designed structures. We obtained structural flexibility measures both from molecular dynamics simulations performed on 9 non-homologous viral protein structures and from variation in homologous variants of those proteins, where available. We obtained measures of variability in designed structures from flexible-backbone design in the Rosetta software. We found that mo...
Optimization of nonlinear structural resonance using the incremental harmonic balance method
DEFF Research Database (Denmark)
Dou, Suguang; Jensen, Jakob Søndergaard
2015-01-01
We present an optimization procedure for tailoring the nonlinear structural resonant response with time-harmonic loads. A nonlinear finite element method is used for modeling beam structures with a geometric nonlinearity and the incremental harmonic balance method is applied for accurate nonlinea...
Helical waves and non-linear dynamics of fluid/structure interactions in a tube row
Energy Technology Data Exchange (ETDEWEB)
Moon, F.C.; Thothadri, M. [Cornell Univ., Ithaca, NY (United States)
1997-12-31
The goal of this study has been to investigate low-dimensional models for fluid-structure dynamics of flow across a row of cylindrical tubes. Four principle results of this experimental-theoretical study are discussed. (i) Experimental evidence has shown that the dynamic instability of the tube row is a subcritical Hopf bifurcation. (ii) The critical flow velocity decreases as the number of flexible cylinders increases. (iii) The linear model exhibits coupled helical wave solutions in the tube dynamics. (iv) A nonlinear model of the tube motions shows a complex subcritical Hopf bifurcation with a secondary bifurcation to a torus or quasi-periodic oscillation. In this analysis the tools of center manifolds, normal forms and numerical simulation are used.
The mildly nonlinear imprint of structure on the CMB
Gebbie, T
1999-01-01
I outline some nonperturbative relativistic effects that arise from gravitational corrections to the Boltzmann equations. These may be important for the study of CMB temperature anisotropies, particularly their interpretation. These terms are not included in the canonical treatment as they arise from the exact equations. Here a weakly nonlinear investigation of these effects is defined and investigated with an emphasis on a Rees-Sciama sourced effect -- the imprint of structure evolution on the CMB. It is shown that gravitational nonlinearity in the weakly nonlinear extension of almost-FLRW temperature anisotropies leads to cancellation on small-scales when threading in the Newtonian frame. In the general frame this cancellation does not occur. In the context of a flat almost-FLRW CDM model I provide a heuristic argument for a nonperturbative small scale correction, due to the Rees-Sciama effect, of not more than $\\Delta T/T \\sim 10^{-6}-10^{-5}$ near $\\ell \\sim 100 - 300$. The effect of mild gravitational no...
Analysis of Nonlinear Structural Dynamics and Resonance in Trees
Directory of Open Access Journals (Sweden)
H. Doumiri Ganji
2012-01-01
Full Text Available Wind and gravity both impact trees in storms, but wind loads greatly exceed gravity loads in most situations. Complex behavior of trees in windstorms is gradually turning into a controversial concern among ecological engineers. To better understand the effects of nonlinear behavior of trees, the dynamic forces on tree structures during periods of high winds have been examined as a mass-spring system. In fact, the simulated dynamic forces created by strong winds are studied in order to determine the responses of the trees to such dynamic loads. Many of such nonlinear differential equations are complicated to solve. Therefore, this paper focuses on an accurate and simple solution, Differential Transformation Method (DTM, to solve the derived equation. In this regard, the concept of differential transformation is briefly introduced. The approximate solution to this equation is calculated in the form of a series with easily computable terms. Then, the method has been employed to achieve an acceptable solution to the presented nonlinear differential equation. To verify the accuracy of the proposed method, the obtained results from DTM are compared with those from the numerical solution. The results reveal that this method gives successive approximations of high accuracy solution.
Nonlinear Aerodynamics-Structure Time Simulation for HALE Aircraft Design/Analysis Project
National Aeronautics and Space Administration — Time simulation of a nonlinear aerodynamics model (NA) developed at Virginia Tech coupled with a nonlinear structure model (NS) is proposed as a design/analysis...
Nonlinear phononics and structural control of strongly correlated materials
Energy Technology Data Exchange (ETDEWEB)
Mankowsky, Roman
2016-01-20
Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal
X-HALE: A Very Flexible UAV for Nonlinear Aeroelastic Tests
2010-04-01
Response of Composite Beams and Blades with Elastic Couplings,” Composite Engineering, Vol. 2, Nos. 5-7, 1992, pp. 347-374. 16. Minguet, P. and Dugundji ... Dugundji , J., “Experiments and Analysis for Structurally Coupled Composite Blades Under Large Deflections. Part 2 – Dynamic Behavior,” AIAA Journal
Power-transfer effects in monomode optical nonlinear waveguiding structures.
Jakubczyk, Z; Jerominek, H; Patela, S; Tremblay, R; Delisle, C
1987-09-01
We describe power-transfer effects, over a certain threshold, among constituents of planar waveguiding structures consisting of an optical linear layer deposited onto a nonlinear substrate (CdS(x)Se(1-x)-doped glass). Proper selection of the thickness of the linear waveguiding film and the refractive index of the linear cladding allows one to obtain optical transistor action and to construct all-optical AND, OR, NOT, and XOR logic gates. The effects appear for the TE(0) guided mode.
Structural Optimization for Reliability Using Nonlinear Goal Programming
El-Sayed, Mohamed E.
1999-01-01
This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.
Particle-fluid-structure interaction for debris flow impact on flexible barriers
A. Leonardi; Wittel, F. K.; Mendoza, M.; Vetter, R.; Herrmann, H.J.
2014-01-01
Flexible barriers are increasingly used for the protection from debris flow in mountainous terrain due to their low cost and environmental impact. However, a numerical tool for rational design of such structures is still missing. In this work, a hybrid computational framework is presented, using a total Lagrangian formulation of the Finite Element Method (FEM) to represent a flexible barrier. The actions exerted on the structure by a debris flow are obtained from simultaneous simulations of t...
High Efficiency Flexible Battery Based on Graphene-carbon Nanotube Hybrid Structure
2015-02-26
transparent and flexible polyethylene terephthalate (PET) film through a simple lamination process- structural integrity, low contact resistance...and flexible polyethylene terephthalate (PET) film through a simple lamination process- structural integrity, low contact resistance, excellent C...Choi, Carbon 77 1065(2014) 2. Hierarchical NiCo2O4 @nickel-sulfide nanoplate arrays for high-performance supercapacitors, Chu Q, Wang W, Wang X
Flexible perovskite solar cells based on the metal-insulator-semiconductor structure.
Wei, Jing; Li, Heng; Zhao, Yicheng; Zhou, Wenke; Fu, Rui; Pan, Huiyue; Zhao, Qing
2016-09-14
The metal-insulator-semiconductor (MIS) structure is applied to perovskite solar cells, in which the traditional compact layer TiO2 is replaced by Al2O3 as the hole blocking material to realize an all-low-temperature process. Flexible devices based on this structure are also realized with excellent flexibility, which hold 85% of their initial efficiency after bending 100 times.
Structural Improvements of Flexible Pavements Using Geosynthetics for Base Course Reinforcement
2009-10-01
ER D C/ CR R EL T R -0 9 -1 1 Transportation Pooled Fund Program Structural Improvements of Flexible Pavements Using Geosynthetics for...2009 Structural Improvements of Flexible Pavements Using Geosynthetics for Base Course Reinforcement Karen Henry, Ph.D., P.E. Department of Civil...concrete, thin or moderate base course thickness, and soft subgrades—see, for example, the summary of 15-years of geosynthetic -reinforced base research
Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures
Ferrera, M.; Razzari, L.; Duchesne, D.; Morandotti, R.; Yang, Z.; Liscidini, M.; Sipe, J. E.; Chu, S.; Little, B. E.; Moss, D. J.
2008-12-01
Photonic integrated circuits are a key component of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses and semiconductors, such as silicon and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at λ = 1,550 nm, in high-index, doped silica glass ring resonators. The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits.
Directory of Open Access Journals (Sweden)
Jiang Ruinan
2015-01-01
Full Text Available The old cement pavement damage status directly affect the design of the paving renovation. Based on the state of the old road investigation, combined with the research data at home and abroad, use the control index that average deflection, deflection value and CBR value to determine the reasonable time to overlay. Draw up the typical pavement structure according to the principle of combination of old cement pavement overlay structure design, and calculated that the tensile stress and shear stress in asphalt layer ,semi-flexible layer and the tensile in the old cement pavement adopting BISA3.0 statics finite element analysis model when modulus in the old road was diminishing. Use the computed result to analyses the influence of old road damage condition the influence of pavement structure.
Bond, Wie
1991-01-01
The results of active control experiments performed for the Mini-Mast truss structure are presented. The primary research objectives were: (1) to develop active structural control concepts and/or techniques; (2) to verify the concept of robust non-minimum-phase compensation for a certain class of non-colocated structural control problems through ground experiments; (3) to verify a 'dipole' concept for persistent disturbance rejection control of flexible structures; and (4) to identify CSI (Control Structure Interaction) issues and areas of emphasis for the next generation of large flexible spacecraft. The classical SISO (Single Input and Single Output) control design approach was employed.
Thioborates: potential nonlinear optical materials with rich structural chemistry.
Lian, Yu-Kun; Wu, Li-Ming; Chen, Ling
2017-03-27
Nonlinear optical (NLO) crystal materials with good performance are urgently needed. Various compounds have been explored to date. Metal chalcogenides and borates are common sources of potential NLO materials with desirable properties, particularly in the IR and UV regions, respectively. However, these two types of crystals have their specific drawbacks. Thioborates, as an emerging system, have unique advantages by combining the merits of borates and sulfides, i.e., the high laser damage thresholds and rich structural diversity of borates with large optical nonlinearity and the favorable transparency range of sulfides. However, only a limited number of thioborates are known. This paper summarizes the known thioborates according to structural motifs that range from zero-dimension to three-dimension, most of which are formed by sharing corners of the basic building units (BS3)(3-) and (BS4)(5-). Although nearly one-third of the known thioborates are noncentrosymmetric, most of their properties, especially their NLO behaviors, are unexplored. Further attempts and additional investigations are required with respect to design syntheses, property improvements and micro-mechanism studies.
Current-mode analog nonlinear function synthesizer structures
Popa, Cosmin Radu
2013-01-01
This book is dedicated to the analysis and design of analog CMOS nonlinear function synthesizer structures, based on original superior-order approximation functions. A variety of analog function synthesizer structures are discussed, based on accurate approximation functions. Readers will be enabled to implement numerous circuit functions with applications in analog signal processing, including exponential, Gaussian or hyperbolic functions. Generalizing the methods for obtaining these particular functions, the author analyzes superior-order approximation functions, which represent the core for developing CMOS analog nonlinear function synthesizers. · Describes novel methods for generating a multitude of circuit functions, based on superior-order improved accuracy approximation functions; · Presents techniques for analog function synthesizers that can be applied easily to a wide variety of analog signal processing circuits; · Enables the design of analog s...
Role of nonlinear localized structures and turbulence in magnetized plasma
Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.
2016-09-01
In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.
Nonlinear thermoelectric efficiency of superlattice-structured nanowires
Karbaschi, Hossein; Lovén, John; Courteaut, Klara; Wacker, Andreas; Leijnse, Martin
2016-09-01
We theoretically investigate nonlinear ballistic thermoelectric transport in a superlattice-structured nanowire. By a special choice of nonuniform widths of the superlattice barriers—analogous to antireflection coating in optical systems—it is possible to achieve a transmission which comes close to a square profile as a function of energy. We calculate the low-temperature output power and power-conversion efficiency of a thermoelectric generator based on such a structure and show that the efficiency remains high also when operating at a significant power. To provide guidelines for experiments, we study how the results depend on the nanowire radius, the number of barriers, and on random imperfections in barrier width and separation. Our results indicate that high efficiencies can indeed be achieved with today's capabilities in epitaxial nanowire growth.
Structurally-Tailorable, Nonlinear, Snap-Through Spring
Starnes, James H., Jr.; Farley, Gary L.; Mantay, Wayne R.
1989-01-01
Abrupt change in load/deflection response controllable and predictable. Structurally-tailorable, nonlinear, snap-through spring (STNSTS) exhibits controllable and predictable abrupt change in load/deflection response and based upon known phenomenon of snap-through structural response. Composed of pin-connected two-bar linkage which depicts combined tension/compression springs. As load applied to STNSTS, stiffness is function of internal spring and bending stiffness of pin-connected bars. As load increases, bars deform laterally until they collapse and snap through. Has application in passively-tailored rotor-blade flap, pitch, and lag response, to improve aerodynamic performance and stability characteristics of rotors; in aerodynamically- and aeroelastically-tailored wing spars and ribs, to produce tailored deformation state for improved effectiveness in maneuvering, aerodynamic performance, and stability characteristics; and in energy absorbers for automobile bumpers and aircraft land
An Enhanced Asymptotic Expansion for the Stability of Nonlinear Elastic Structures
DEFF Research Database (Denmark)
Christensen, Claus Dencker; Byskov, Esben
2010-01-01
A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns ...
Energy Technology Data Exchange (ETDEWEB)
Nayfeh, A.H.; Burns, J.A.; Cliff, E.M.
1990-05-18
The report summarizes results of experimental and theoretical investigations into the nonlinear response and control of structural elements. Methods for the analysis and design of control procedures applicable to certain nonlinear distributed parameter systems were investigated. Analytical and computational techniques were developed for evaluating the nonlinear effects on control designs. Bench-type experiments were conducted for validating some of the theoretical results.
Modeling structure and flexibility of Candida antarctica lipase B in organic solvents
Directory of Open Access Journals (Sweden)
Pleiss Jürgen
2008-02-01
Full Text Available Abstract Background The structure and flexibility of Candida antarctica lipase B in water and five different organic solvent models was investigated using multiple molecular dynamics simulations to describe the effect of solvents on structure and dynamics. Interactions of the solvents with the protein and the distribution of water molecules at the protein surface were examined. Results The simulated structure was independent of the solvent, and had a low deviation from the crystal structure. However, the hydrophilic surface of CALB in non-polar solvents decreased by 10% in comparison to water, while the hydrophobic surface is slightly increased by 1%. There is a large influence on the flexibility depending on the dielectric constant of the solvent, with a high flexibility in water and a low flexibility in organic solvents. With decreasing dielectric constant, the number of surface bound water molecules significantly increased and a spanning water network with an increasing size was formed. Conclusion The reduced flexibility of Candida antarctica lipase B in organic solvents is caused by a spanning water network resulting from less mobile and slowly exchanging water molecules at the protein-surface. The reduced flexibility of Candida antarctica lipase B in organic solvent is not only caused by the interactions between solvent-protein, but mainly by the formation of a spanning water network.
Flexibility of Bricard's linkages and other structures via resultants and computer algebra.
Lewis, Robert H; Coutsias, Evangelos A
2016-07-01
Flexibility of structures is extremely important for chemistry and robotics. Following our earlier work, we study flexibility using polynomial equations, resultants, and a symbolic algorithm of our creation that analyzes the resultant. We show that the software solves a classic arrangement of quadrilaterals in the plane due to Bricard. We fill in several gaps in Bricard's work and discover new flexible arrangements that he was apparently unaware of. This provides strong evidence for the maturity of the software, and is a wonderful example of mathematical discovery via computer assisted experiment.
Nonlinear structure formation in the Cubic Galileon gravity model
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2013-01-01
We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the {\\tt ECOSMOG} code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by $\\sim 25%$ with respect to the standard $\\Lambda$CDM model today. The modified expansion rate accounts for $\\sim 20%$ of this enhancement, while the fifth force is responsible for only $\\sim 5%$. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime ($k \\gtrsim 0.1 h\\rm{Mpc}^{-1}$), the fifth force leads to only a modest increase ($\\lesssim 8%$) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other...
Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive
Energy Technology Data Exchange (ETDEWEB)
Popelar, C.F.; Liechti, K.M. [Univ. of Texas, Austin, TX (United States)
1997-07-01
Many polymeric materials, including structural adhesives, exhibit a nonlinear viscoelastic response. The nonlinear free volume approach is based on the Doolittle concept that the free volume controls the mobility of polymer molecules and, thus, the inherent time scale of the material. It then follows that factors such as temperature and moisture, which change the free volume, will influence the time scale. Furthermore, stress-induced dilatation will also affect the free volume and, hence, the time scale. However, during this investigation dilatational effects alone were found to be insufficient in describing the response of near pure shear tests performed on a bisphenol A epoxy with an amido amine hardener. Thus, the free volume approach presented here has been modified to include distortional effects in the inherent time scale of the material. In addition to predicting the global response under a variety of multiaxial stress states, the modified free volume theory also accurately predicts the local displacement fields, including those associated with a localized region, as determined from geometric moire measurements at various stages of deformation.
Gao, Jie; Liu, Chengyan; Miao, Lei; Wang, Xiaoyang; Peng, Ying; Chen, Yu
2016-11-01
With a high flexibility and an adjustable electronic structure, reduced graphene oxide (RGO) is a potential candidate for flexible thermoelectric materials. Here, we report that flexible RGO/tellurium nanowires (Te NWs)/RGO sandwich structure hybrid films are prepared on glass fabrics through the drop-cast method. The addition of 20 wt.% Te NWs into a RGO matrix remarkably improves the Seebeck coefficient from 15.2 μV/K to 89.7 μV/K while maintaining relatively high electrical conductivity, thus resulting in a one order of magnitude higher power factor value compared with the Te NWs. According to the values of carrier mobility and concentration of hybrid films, the improved thermoelectric properties are presented because of the energy filtering effect on the interfaces in hybrid films. This article suggests that RGO/Te NWs/RGO hybrid films would be promising for fabricating flexible energy sources.
Gao, Jie; Liu, Chengyan; Miao, Lei; Wang, Xiaoyang; Peng, Ying; Chen, Yu
2017-05-01
With a high flexibility and an adjustable electronic structure, reduced graphene oxide (RGO) is a potential candidate for flexible thermoelectric materials. Here, we report that flexible RGO/tellurium nanowires (Te NWs)/RGO sandwich structure hybrid films are prepared on glass fabrics through the drop-cast method. The addition of 20 wt.% Te NWs into a RGO matrix remarkably improves the Seebeck coefficient from 15.2 μV/K to 89.7 μV/K while maintaining relatively high electrical conductivity, thus resulting in a one order of magnitude higher power factor value compared with the Te NWs. According to the values of carrier mobility and concentration of hybrid films, the improved thermoelectric properties are presented because of the energy filtering effect on the interfaces in hybrid films. This article suggests that RGO/Te NWs/RGO hybrid films would be promising for fabricating flexible energy sources.
Finsler geometry of nonlinear elastic solids with internal structure
Clayton, J. D.
2017-02-01
Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem
Energy Technology Data Exchange (ETDEWEB)
Djurado, David [Laboratoire d' Electronique Moleculaire Organique and Hybride, DRFMC/SPrAM/CEA Grenoble, UMR CEA-CNRS-UJF 5819, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Curtet, Jean Pierre; Bee, Marc [Laboratoire de Spectrometrie Physique (UMR CNRS-UJF-5588) Universite J. Fourier, Grenoble I, Domaine Universitaire, B.P. 87 38402 St Martin d' Heres Cedex (France); Michot, Christophe [Department of Chemistry, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C JJ7 (Canada); Armand, Michel [Department of Chemistry, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C JJ7 (Canada); Laboratoire de Reactivite et de Chimie des Solides, Universite de Picardie Jules Verne, UMR 6007 CNRS, 33 rue Saint-Leu, 80039 Amiens (France)
2007-12-31
The structure of a family of copolyimides in which are alternating stiff/redox pyromellitimide units and flexible/solvating polyethyleneoxide (PEO) strands were studied by using wide angle and small angle X-ray scattering techniques and is fully discussed. It is shown that the rich variety of structures exhibited by these compounds can be understood by considering the dramatic change of flexibility of the chain induced by the variation of the length of the PEO strand compared to that of the pyromellimide segment. In this respect, concerning the compounds which exhibit fully amorphous structures a better understanding of their structural behavior can be obtained in the framework of Flory's theory of semi-rigid polymers. In this approach, the degree of flexibility of the chain is mainly resulting from the relative amount of flexible units constituting the repetition unit of the polymer chain. The final structural mode adopted by each compound in the solid state is then directly a consequence of this intrinsic property of the chain. The introduction of a lithium salt in contact with the copolymer chains induces some structure changes which can also be explained by the modification of the degree of flexibility of the chain. It is found that the best performances in terms of electroactivity and mixed conduction are precisely obtained with the only compound which keeps full amorphicity in absence and in presence of the lithium salt. (author)
Flexible Work Systems and the Structure of Wages: Evidence from Matched Employer- Employee Data
Bauer, Thomas K.; Bender, Stefan
2001-01-01
A growing literature is concerned with the effects of flexible workplace systems or High Performance Work Organizations (HPWOs) on wages. This paper makes use of a new employer-employee-linked panel data set for Germany to examine the effects of adopting HPWOs on wages as well as on the wage structure within firms. The empirical results suggest that, depending on the particular practice, flexible workplace systems benefit employees through higher wages. HPWOs further increase within firm wage...
Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2016-06-01
Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.
Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models
Institute of Scientific and Technical Information of China (English)
Jochen Aβfalg; Frank Allg(o)wer
2007-01-01
This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.
Nonlinear Electrodynamics Analysis Of The Fine Structure Constant
Mbelek, Jean Paul
2010-10-01
It has been claimed that during the late time history of our universe, the fine structure constant, α, has been increasing [1],[2]. However, other teams has claimed a discordant result [3],[4]. Also, the current precision of laboratory tests is not sufficient to either comfort or reject any of these astronomical observations. Here we suggest that a nonlinear electrodynamics (NLED) interaction of photons with the weak local background magnetic fields of a gas cloud absorber can reconcile the null result of refs.[3] and [4] with the negative variation found by refs. [2] and [1] and also to find a bridge with the positive variation found later by Levshakov et al.. [5]-[7]. Moreover, NLED photon propagation in a vacuum permeated by a background magnetic field is actually in full agreement with constraints from Oklo natural reactor data.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2006-01-01
Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...
Vibration suppression in flexible structures via the sliding-mode control approach
Drakunov, S.; Oezguener, Uemit
1994-01-01
Sliding mode control became very popular recently because it makes the closed loop system highly insensitive to external disturbances and parameter variations. Sliding algorithms for flexible structures have been used previously, but these were based on finite-dimensional models. An extension of this approach for differential-difference systems is obtained. That makes if possible to apply sliding-mode control algorithms to the variety of nondispersive flexible structures which can be described as differential-difference systems. The main idea of using this technique for dispersive structures is to reduce the order of the controlled part of the system by applying an integral transformation. We can say that transformation 'absorbs' the dispersive properties of the flexible structure as the controlled part becomes dispersive.
Broadband Liquid Dampers to Stabilize Flexible Spacecraft Structures
Kuiper, J.M.
2012-01-01
Mass-spring and liquid dampers enable structural vibration control to attenuate single, coupled lateral and torsional vibrations in diverse structures. Out of these, the passively tuned liquid damper (TLD) class is wanted due to its broad applicability, extreme reliability, robustness, long life tim
Active disturbance rejection in large flexible space structures
Parlos, Alexander G.; Sunkel, John W.
1990-01-01
The design of an active control law for the rejection of persistent disturbances, in large space structures is presented. The control system design approach is based on a deterministic model of the disturbances and it optimizes the magnitude of the disturbance that the structure can tolerate without violating certain predetermined constraints. In addition to closed-loop stability, the explicit treatment of state, control, and control rate constraints, such as structural displacement and control actuator effort, guarantees that the final design will exhibit desired performance characteristics. The technique is applied to a simple two-bay truss structure, and its response is compared with that obtained using a linear-quadratic-Gaussian/loop-transfer-recovery (LQG/LTR) compensator. Preliminary results indicate that the proposed control system can reject persistent disturbances of greater magnitude by utilizing most of the available control, while limiting the structural displacements to within desired tolerances.
Energy Technology Data Exchange (ETDEWEB)
Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)
2013-12-15
Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.
Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures
Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.
2012-01-01
Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.
Taylor, Lawrence W., Jr.; Rajiyah, H.
1991-01-01
Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.
Taylor, Lawrence W., Jr.; Rajiyah, H.
Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.
Optimization procedure to control the coupling of vibration modes in flexible space structures
Walsh, Joanne L.
1987-01-01
As spacecraft structural concepts increase in size and flexibility, the vibration frequencies become more closely-spaced. The identification and control of such closely-spaced frequencies present a significant challenge. To validate system identification and control methods prior to actual flight, simpler space structures will be flown. To challenge the above technologies, it will be necessary to design these structures with closely-spaced or coupled vibration modes. Thus, there exists a need to develop a systematic method to design a structure which has closely-spaced vibration frequencies. This paper describes an optimization procedure which is used to design a large flexible structure to have closely-spaced vibration frequencies. The procedure uses a general-purpose finite element analysis program for the vibration and sensitivity analyses and a general-purpose optimization program. Results are presented from two studies. The first study uses a detailed model of a large flexible structure to design a structure with one pair of closely-spaced frequencies. The second study uses a simple equivalent beam model of a large flexible structure to obtain a design with two pairs of closely-spaced frequencies.
Effect of Fluid Structure Interaction on the Wake Structure of a Thin Flexible Cylinder
Gurram, Harika; Subramanian, Chelakara; Kanherkar, Priyanka
2016-11-01
Previous studies by the authors of the drag coefficient for thin flexible cylinders (diameter O(mm)) in a cross flow for Reynolds's numbers range between 100-1000 showed about 20 - 30 percent reduction compared to literature values. At free stream low Reynolds number around 100 the spectral analysis of the hotwire signals in the wake showed tonal and broadband frequencies suggesting features similar to transition flows. To better understand the flow behind the cylinder and wake structure interaction with boundary layer for above range of Reynolds number DNS simulations were conducted. The computational study is performed for two cases: (1) flow on rigid thin cylinder, and (2) flow with 3-D fluid structure interaction for the thin cylinder. It is observed the coefficient of drag values computed for the rigid wire were 8 -12 percent lower compared to the experimental results, while simulation with the fluid structure interaction gave results within 4 percent of the experimental values. The wake structure results based on the experiment and computational study will be discussed. Graduate Student.
Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries
Wei, Di
2013-09-01
The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.
PCI-SS: MISO dynamic nonlinear protein secondary structure prediction
Directory of Open Access Journals (Sweden)
Aboul-Magd Mohammed O
2009-07-01
Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input
Structural Protein-based Flexible Whispering Gallery Mode Resonators
Yilmaz, Huzeyfe; Shreiner, Robert; Szwejkowski, Chester J; Jung, Huihun; Hopkins, Patrick; Ozdemir, Sahin Kaya; Yang, Lan; Demirel, Melik C
2016-01-01
Nature provides a set of solutions for photonic structures that are finely tuned, organically diverse and optically efficient. Exquisite knowledge of structure-property relationships in proteins aids in the design of materials with desired properties for building devices with novel functionalities, which are difficult to achieve or previously unattainable. Recent bio-inspired photonic platforms made from proteinaceous materials lay the groundwork for many functional device applications, such as electroluminescence in peptide nucleic acids1, multiphoton absorption in amyloid fibers2 and silk waveguides and inverse opals3-5. Here we report whispering-gallery-mode (WGM) microresonators fabricated entirely from semi-crystalline structural proteins (i.e., squid ring teeth, SRT, from Loligo vulgaris and its recombinant, and silk from Bombyx mori) with unconventional thermo-optic response. We present a striking example of how small modifications at the molecular level lead to structural changes and alter macroscopic...
Lim, Byung-Wook; Lee, Young-Jun; Kim, Joo-Hyung; Jeong, Hyeon-Taek; Ha, Tae-Won; Kim, Eun-Mi; Heo, Gi-Seok; Kim, Young-Baek; Kim, Hyeon-Ju; Lee, Ho-Saeng
2015-10-01
Thin film transparent oxides have attracted considerable attention over the last few decades for transparent electronic applications, such as flat panel displays, solar cells, touch-pads, and mobile devices. Metallic doped InZnO (IZO) films have been suggested for the transparent layer exhibiting semiconducting or metallic properties because of its controllable mobility and excellent electrical properties, but they show a degradation of the electrical performance under bending conditions. This study assessed Ni doped IZO (NIZO) films as a flexible transparent electrode on different flexible transparent substrates for flexible electronic applications. Thin NIZO films were deposited on cellulose, PES and glass substrates using a sputtering system with a single NIZO target (In2O3 73.8/ZnO 15.7/NiO 10.5 mol.%) at room temperature. During deposition of the NIZO films, the total flow rate of the carrier gas was maintained using a regulating system. The effects of the oxygen content in the carrier gas on the structural, electrical and optical properties of the thin films deposited on flexible substrates was characterized. The results highlight the feasibility of the transparent NIZO oxide layer on flexible substrates as a flexible electrode with a relatively high sheet resistance, which is strongly related to the crystallographic structure and oxygen content during the film deposition process.
Structural dynamics studies of rotating bladed-disk assemblies coupled with flexible shaft motions
Loewy, R. G.; Khader, N.
1983-01-01
In order to analyze the dynamic behavior of the first stage compressor/fan of the 'E3' turbofan engine, a classical structural dynamics approach is employed to couple the motions of a flexible bladed disk to a rotating flexible shaft. The analysis accounts for flexible disk displacements which are transverse to the plane of rotation, and radial as well as tangential, and also accounts for rigid disk translations along, and rotations about, axes normal to the undeformed shaft axes. In the case of a wide range of E3 engine shaft flexibilities and speeds, some of the one-diametral node frequencies are shown to be affected by shaft degrees of freedom whose stiffness values are in general range of design practice. Coriolis forces are also found to significantly affect natural frequencies where strong coupling between certain modes is present.
Operational modal analysis via image based technique of very flexible space structures
Sabatini, Marco; Gasbarri, Paolo; Palmerini, Giovanni B.; Monti, Riccardo
2013-08-01
Vibrations represent one of the most important topics of the engineering design relevant to flexible structures. The importance of this problem increases when a very flexible system is considered, and this is often the case of space structures. In order to identify the modal characteristics, in terms of natural frequencies and relevant modal parameters, ground tests are performed. However, these parameters could vary due to the operative conditions of the system. In order to continuously monitor the modal characteristics during the satellite lifetime, an operational modal analysis is mandatory. This kind of analysis is usually performed by using classical accelerometers or strain gauges and by properly analyzing the acquired output. In this paper a different approach for the vibrations data acquisition will be performed via image-based technique. In order to simulate a flexible satellite, a free flying platform is used; the problem is furthermore complicated by the fact that the overall system, constituted by a highly rigid bus and very flexible panels, must necessarily be modeled as a multibody system. In the experimental campaign, the camera, placed on the bus, will be used to identify the eigenfrequencies of the vibrating structure; in this case aluminum thin plates simulate very flexible solar panels. The structure is excited by a hammer or studied during a fast attitude maneuver. The results of the experimental activity will be investigated and compared with respect to the numerical simulation obtained via a FEM-multibody software and the relevant results will be proposed and discussed.
Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs
Footdale, Joseph N.; Murphey, Thomas W.
2014-01-01
The detailed mechanical design of a novel deployable support structure that positions and tensions a membrane optic for space imagining applications is presented. This is a complex three-dimensional deployment using freely deploying rollable composite tape spring booms that become load bearing structural members at full deployment. The deployment tests successfully demonstrate a new architecture based on rolled and freely deployed composite tape spring members that achieve simultaneous deployment without mechanical synchronization. Proper design of the flexible component mounting interface and constraint systems, which were critical in achieving a functioning unit, are described. These flexible composite components have much potential for advancing the state of the art in deployable structures, but have yet to be widely adopted. This paper demonstrates the feasibility and advantages of implementing flexible composite components, including the design details on how to integrate with required traditional mechanisms.
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Approximation in control of flexible structures, theory and application
Gibson, J. S.
1983-01-01
The sense in which the feedback control law based on an approximate finite dimensional model of a continuous structure approximates a control law which is optimal for the distributed, or infinite dimensional, model of the structure is studied. From the analysis of the various control and stability issues associated with this basis question, useful information for designing finite dimensional compensators which produce near-optimal performance in infinite dimensional systems is gained. Some of the important predictions that can be made about large-order finite dimensional control laws, using the theory of infinite dimensional Riccati equations are indicated.
Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin
2016-08-01
This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.
Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors
Yang, H. Q.; West, Jeff; Harris, Robert E.
2014-01-01
Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor
Passive Control of Flexible Structures by Confinement of Vibrations
Directory of Open Access Journals (Sweden)
M. Ouled Chtiba
2007-01-01
Full Text Available We propose a two-step strategy for the design of passive controllers for the simultaneous confinement and suppression of vibrations (SCSV in mechanical structures. Once the sensitive and insensitive elements of these structures are identified, the first design step synthesizes an active control law, which is referred to as the reference control law (RCL, for the SCSV. We show that the problem of SCSV can be formulated as an LQR-optimal control problem through which the maximum amplitudes, associated with the control input and the displacements of the sensitive and insensitive parts, can be regulated. In the second design step, a transformation technique that yields an equivalent passive controller is used. Such a technique uses the square root of sum of squares method to approximate an equivalent passive controller while maximizing the effects of springs and dampers characterizing passive elements that are added to the original structure. The viability of the proposed control design is illustrated using a three-DOF mechanical system subject to an excitation. It is assumed that all of the masses are sensitive to the excitation, and thus the vibratory energy must be confined in the added passive elements (insensitive parts. We show that the vibration amplitudes associated with the sensitive masses are attenuated at fast rate at the expense of slowing down the convergence of the passive elements to their steady states. It is also demonstrated that a combination of the RCL and the equivalent passive control strategy leads to similar structural performance.
Molecular flexibility and structural instabilities in crystalline L-methionine
Fischer, Jennifer; Lima, Jose A.; Freire, Paulo T. C.; Melo, Francisco E. A.; Havenith, Remco W. A.; Mendes Filho, Josue; Broer, Ria; Eckert, Juergen; Bordallo, Heloisa N.
2013-01-01
We have investigated the dynamics in polycrystalline samples of L-methionine related to the structural transition at about 307 K by incoherent inelastic and quasielastic neutron scattering, X-ray powder diffraction as well as ab-initio calculations. L-Methionine is a sulfur amino acid which can be c
Linear control strategies for damping of flexible structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess; Krenk, Steen
2006-01-01
Starting from the two-component representation technique for damping of structures the possible increase in damping efficiency obtained by introducing collocated active damping is illustrated. The two-component representation of the damped vibration mode is constructed as a linear combination of ...
Score region algebra : a flexible framework for structured information retrieval
Mihajlovic, Vojkan
2006-01-01
Approximately three decades ago researchers realized that they would have to structure data to be able to store and access large amounts of data streams that were produced each day. As a result, database management systems were designed and developed, used to keep the data in one place and for findi
Spatial structure of cyclosporin A and insight into its flexibility
Efimov, S. V.; Karataeva, F. Kh.; Aganov, A. V.; Berger, S.; Klochkov, V. V.
2013-03-01
The molecule of immunosuppressant drug cyclosporin A (CsA) exhibits different properties when dissolved in different media. In apolar solvents it is stabilized by intramolecular hydrogen bonds, but there also exist some less populated conformations. Existence of minor forms is clearly seen from 1H NMR spectra. Using nuclear Overhauser effect (NOE) spectroscopy and analysis of residual dipolar couplings, we obtained data on the molecular structure of the dominant conformers. Based on these data, the spatial structure of the main conformer of cyclosporin in chloroform was determined by molecular dynamics simulation. The kinetics of exchange between the major and minor forms was also studied. Energy barrier (ΔG‡) between the two states is 81 ± 2 kJ/mol. The conformation of CsA in complex with sodium dodecyl sulphate micelles was determined from NOE data. Use of independent structural data improves the reliability of the simulated results. The structure of the minor forms, which exist in organic solvents and also in micellar solution, cannot be assessed by means of nuclear magnetic resonance. Spectroscopic and thermodynamic parameters, however, point to their certain properties. In particular, the minor conformer of CsA in chloroform differs from the main one by a peptide bond (in cis- rather than trans-conformation) in the region of residues from 4 to 7.
Structural flexibility of DABCO. Ab initio and DFT benchmark study
Nizovtsev, Anton S.; Ryzhikov, Maxim R.; Kozlova, Svetlana G.
2017-01-01
The energy and structural parameters of 1,4-diazabicyclo[2.2.2]octane (DABCO) obtained by various DFT methods are examined versus ab initio and experimental data. The features of twisting potentials of DABCO and closely-related species (1-azabicyclo[2.2.2]octane and bicyclo[2.2.2]octane) are discussed in light of computational schemes applied.
A COMPUTER PROGRAMME FOR THE NON-LINEAR ANALYSIS OF COMPLETE STRUCTURES
Directory of Open Access Journals (Sweden)
Turgay ÇOŞGUN
2003-02-01
Full Text Available The progress made on the analysis of the structures by using non-linear theory and the significant findings on both theorical and empirical works, enable better understanding of the behaviours of structures under external loads. Determination of the failure load and designing the structures accordingly requires developments of analysis methods, which take both the non-linear behaviour of structural elements and the non-linear effects of geometric changes into consideration. Therefore, in this study, a FORTRAN code, which analyses structures and calculates the failure loads by considering the non-linear behaviour of materials under increasing loads (due to the non-linear relationship of stress-strain and moment-curvature and second-order theory of structural systems is developed.
Some Problems in Nonlinear Dynamic Instability and Bifurcation Theory for Engineering Structures
Institute of Scientific and Technical Information of China (English)
彭妙娟; 程玉民
2005-01-01
In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on.
Predictive Dynamic Stimulation of Structures with Non-Smooth Nonlinearities
2005-06-30
bang- bang, dead band, and Duffing type nonlinearity. Nonlinear damping has been considered in the form of Coulomb damping, velocity-squared damping...or 2,000 DOF reduced to 5 or 10 DOF) of simple oscillator systems capture the free oscillation decay and the steady state response to harmonic...smooth or non-smooth), the linear based reduced model tends to overestimate the change in oscillation frequency due to the nonlinearity. Specifically
Extreme value distribution and reliability of nonlinear stochastic structures
Institute of Scientific and Technical Information of China (English)
Chen Jianbing; Li Jie
2005-01-01
A new approach to evaluate the extreme value distribution (EVD) of the response and reliability of general multi-DOF nonlinear stochastic structures is proposed. The approach is based on the recently developed probability density evolution method, which enables the instantaneous probability density functions of the stochastic responses to be captured.In the proposed method, a virtual stochastic process is first constructed to satisfy the condition that the extreme value of the response equals the value of the constructed process at a certain instant of time. The probability density evolution method is then applied to evaluate the instantaneous probability density function of the response, yielding the EVD. The reliability is therefore available through a simple integration over the safe domain. A numerical algorithm is developed using the Number Theoretical Method to select the discretized representative points. Further, a hyper-ball is imposed to sieve the points from the preceding point set in the hypercube. In the numerical examples, the EVD of random variables is evaluated and compared with the analytical solution. A frame structure is analyzed to capture the EVD of the response and the dynamic reliability. The investigations indicate that the proposed approach provides reasonable accuracy and efficiency.
Time-domain seismic reliability of nonlinear structures
Indian Academy of Sciences (India)
Achintya Haldar; Jungwon Huh; Ali Mehrabian
2006-08-01
A novel reliability analysis technique is presented to estimate the reliability of real structural systems. Its unique feature is that the dynamic loadings can be applied in time domain. It is a nonlinear stochastic ﬁnite element logarithm combined with the response surface method (RSM). It generates the response surface around the most probable failure point and incorporates information of the distribution of the random variables in the RSM formulation. It is veriﬁed using the Monte Carlo simulation technique, and is found to be very efﬁcient and accurate. Most sources of nonlinearlity and uncertainty can be explicitly incorporated in the formulation. The ﬂexibility of connections, represented by moment-relative rotation $(M–\\theta )$ curves, is addressed. After the Northridge earthquake of 1994, several improved steel connections were proposed. Structural Sesimic Design Associates (SSDA) tested several full-scale proprietory slotted web beam–column connections. The authors suggested $(M–\\theta )$ curves for this connection using actual test data. Behaviours of steel frames, assuming the connections are fully restrained, partially restrained, consisting of pre- and post-Northridge connections are evaluated and compared. Desirable features of the post-Northridge connections observed during testing are analytically conﬁrmed. Laterally weak steel frame is then strengthened with concrete shear walls. Capabilities and the advanced nature of the method are demonstrated with the help of realistic examples.
Janzen, F. C.; Tusset, A. M.; Piccirillo, V.; Balthazar, J. M.; Brasil, R. M. L. R. F.
2015-11-01
This work presents two approaches to the problem of vibration and positioning control of a flexible structural beam driven by a DC motor. The position is controlled by the current applied to the DC motor armature. A Shape Memory Alloy (SMA) actuator controls vibrations of the flexible structural beam. The State Dependent Riccati Equation (SDRE) technique is used to provide a control action which uses sub-optimal control and system local stability search. The robustness of these two controllers is tested by sensitivity analysis to parametric uncertainties. Numerical simulations results are presented to demonstrate the effectiveness of the proposed control strategy.
Collins, Emmanuel G., Jr.; Richter, Stephen
1990-01-01
One well known deficiency of LQG compensators is that they do not guarantee any measure of robustness. This deficiency is especially highlighted when considering control design for complex systems such as flexible structures. There has thus been a need to generalize LQG theory to incorporate robustness constraints. Here we describe the maximum entropy approach to robust control design for flexible structures, a generalization of LQG theory, pioneered by Hyland, which has proved useful in practice. The design equations consist of a set of coupled Riccati and Lyapunov equations. A homotopy algorithm that is used to solve these design equations is presented.
STUDY ON DYNAMICS, STABILITY AND CONTROL OF MULTI-BODY FLEXIBLE STRUCTURE SYSTEM IN FUNCTIONAL SPACE
Institute of Scientific and Technical Information of China (English)
徐建国; 贾军国
2001-01-01
The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern mathematics. First,the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained.These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.
Active control synthesis for flexible space structures excited by persistent disturbances
Wie, Bong; Gonzalez, Marcelo
1990-01-01
Both classical and state-space synthesis methods for active control of flexible space structures in the presence of persistent disturbances are presented. The methods exploit the so-called internal model principle for asymptotic disturbance rejection. A generic example of flexible space structures is used to illustrate the simplicity of the proposed design methodologies. The concept of a disturbance rejection filter dipole is introduced from a classical control viewpoint. It is shown that the proposed design methods will invariably make use of non-minimum-phase compensation for a class of noncolocated control problems. The need for tradeoffs between performance and parameter robustness is discussed.
Composite structures for the enhancement of nonlinear optical materials.
Neeves, A E; Birnboim, M H
1988-12-01
Calculations of the nonlinear optical behavior are developed for model composites consisting of nanospheres with a metallic core and a nonlinear shell suspended in a nonlinear medium. The concept for the enhancement of optical phase conjugation from all these nonlinear regions is that the optical field can be concentrated both inside and in the neighborhood of the metallic core, aided by surface-mediated plasmon resonance. Calculations for gold cores and aluminum cores indicate that phase-conjugate reflectivity enhancements of 10(8) may be possible.
Effects of Structural Flexibility on Aircraft-Engine Mounts
Phillips, W. H.
1986-01-01
Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.
Analytical and Ecperimental Modeling and Control of Flexible Structures
1991-01-30
measured or controlled, which the use of small piezoceramic patches to provideE leads to cancellation of the sensor signal or re- point moments also for...the performed by Forward (1981) where external cir- external electric circuits and applying Hamilton’s cuits were attached to piezoceramic patches ...signal is the sum of the An uIput Feedback Control Formuation undeflccted beam position, 0. and the deflection due to the structural rot:tion it the
Flexible mapping of homology onto structure with Homolmapper
Directory of Open Access Journals (Sweden)
Lagarias J Clark
2007-04-01
Full Text Available Abstract Background Over the past decade, a number of tools have emerged for the examination of homology relationships among protein sequences in a structural context. Most recent software implementations for such analysis are tied to specific molecular viewing programs, which can be problematic for collaborations involving multiple viewing environments. Incorporation into larger packages also adds complications for users interested in adding their own scoring schemes or in analyzing proteins incorporating unusual amino acid residues such as selenocysteine. Results We describe homolmapper, a command-line application for mapping information from a multiple protein sequence alignment onto a protein structure for analysis in the viewing software of the user's choice. Homolmapper is small (under 250 K for the application itself and is written in Python to ensure portability. It is released for non-commercial use under a modified University of California BSD license. Homolmapper permits facile import of additional scoring schemes and can incorporate arbitrary additional amino acids to allow handling of residues such as selenocysteine or pyrrolysine. Homolmapper also provides tools for defining and analyzing subfamilies relative to a larger alignment, for mutual information analysis, and for rapidly visualizing the locations of mutations and multi-residue motifs. Conclusion Homolmapper is a useful tool for analysis of homology relationships among proteins in a structural context. There is also extensive, example-driven documentation available. More information about homolmapper is available at http://www.mcb.ucdavis.edu/faculty-labs/lagarias/homolmapper_home/homolmapper%20web%20page.htm.
Comparison of reconfigurable structures for flexible word-length multiplication
Directory of Open Access Journals (Sweden)
O. A. Pfänder
2008-05-01
Full Text Available Binary multiplication continues to be one of the essential arithmetic operations in digital circuits. Even though field-programmable gate arrays (FPGAs are becoming more and more powerful these days, the vendors cannot avoid implementing multiplications with high word-lengths using embedded blocks instead of configurable logic. But on the other hand, the circuit's efficiency decreases if the provided word-length of the hard-wired multipliers exceeds the precision requirements of the algorithm mapped into the FPGA. Thus it is beneficial to use multiplier blocks with configurable word-length, optimized for area, speed and power dissipation, e.g. regarding digital signal processing (DSP applications.
In this contribution, we present different approaches and structures for the realization of a multiplication with variable precision and perform an objective comparison. This includes one approach based on a modified Baugh and Wooley algorithm and three structures using Booth's arithmetic operand recoding with different array structures. All modules have the option to compute signed two's complement fix-point numbers either as an individual computing unit or interconnected to a superior array. Therefore, a high throughput at low precision through parallelism, or a high precision through concatenation can be achieved.
Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.
2017-09-01
A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.
Directory of Open Access Journals (Sweden)
Tuğba Seda Çolak
2016-01-01
Full Text Available Forgiveness flexibility is the skill to minimize the negative effect of an event by using cognitive, affective and behavioral skills while taking a stand at the end of an injurious process. A number of studies were conducted to test the flexibility of the structure of forgiveness. The theoretical structure, structural validity and the confirmatory factor analysis supported the theoretical structure of forgiveness flexibility. The criterion validity evaluated in similar manners was found high. Forgiveness flexibility designed as a three dimensional structure and its sub-dimensions was confirmed theoretically as the recognition of forgivenessand the internalization of forgiveness through insight and its practice.
DEFF Research Database (Denmark)
Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.
2014-01-01
Optical properties of one-dimensional photonic structures consisting of Kerr-type nonlinear and magnetic layers under the action of an external static magnetic field in the Faraday geometry are investigated. The structure is a periodic arrangement of alternating nonlinear and magnetic layers (a one...
DEFF Research Database (Denmark)
Lindgaard, Esben; Lund, Erik
2012-01-01
This paper presents a novel FEM-based approach for fiber angle optimal design of laminated composite structures exhibiting complicated nonlinear buckling behavior, thus enabling design of lighter and more cost-effective structures. The approach accounts for the geometrically nonlinear behavior...
Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables
Song, Xin-Yuan; Lee, Sik-Yum
2005-01-01
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Estimating Nonlinear Structural Models: EMM and the Kenny-Judd Model
Lyhagen, Johan
2007-01-01
The estimation of nonlinear structural models is not trivial. One reason for this is that a closed form solution of the likelihood may not be feasible or does not exist. We propose to estimate nonlinear structural models using the efficient method of moments, as generating data according to the models is often very easy. A simulation study of the…
Avionics/Control co-design for large flexible space structures
2013-01-01
In this paper, a multi-model H1 synthesis scheme for fixed-structure controller design is developed and applied to the attitude control of a highly flexible earth-observation satellite. The particularity of the proposed approach is that the decision variables optimized by the fixed-structure Hinfinity solver include the structured controller parameters but also some parameters which characterize the avionics. Furthermore the proposed control scheme can be very easily adapted to a new confi...
Flexible DNA bending in HU-DNA cocrystal structures.
Swinger, Kerren K; Lemberg, Kathryn M; Zhang, Ying; Rice, Phoebe A
2003-07-15
HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles ( approximately 105-140 degrees ). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU-DNA and IHF-DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU's role as an architectural cofactor in many different systems that may require differing geometries.
Protein flexibility: coordinate uncertainties and interpretation of structural differences
Energy Technology Data Exchange (ETDEWEB)
Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); Rashin, Abraham H. L. [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); Rutgers, The State University of New Jersey, 22371 BPO WAY, Piscataway, NJ 08854-8123 (United States); Jernigan, Robert L. [LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States)
2009-11-01
Criteria for the interpretability of coordinate differences and a new method for identifying rigid-body motions and nonrigid deformations in protein conformational changes are developed and applied to functionally induced and crystallization-induced conformational changes. Valid interpretations of conformational movements in protein structures determined by X-ray crystallography require that the movement magnitudes exceed their uncertainty threshold. Here, it is shown that such thresholds can be obtained from the distance difference matrices (DDMs) of 1014 pairs of independently determined structures of bovine ribonuclease A and sperm whale myoglobin, with no explanations provided for reportedly minor coordinate differences. The smallest magnitudes of reportedly functional motions are just above these thresholds. Uncertainty thresholds can provide objective criteria that distinguish between true conformational changes and apparent ‘noise’, showing that some previous interpretations of protein coordinate changes attributed to external conditions or mutations may be doubtful or erroneous. The use of uncertainty thresholds, DDMs, the newly introduced CDDMs (contact distance difference matrices) and a novel simple rotation algorithm allows a more meaningful classification and description of protein motions, distinguishing between various rigid-fragment motions and nonrigid conformational deformations. It is also shown that half of 75 pairs of identical molecules, each from the same asymmetric crystallographic cell, exhibit coordinate differences that range from just outside the coordinate uncertainty threshold to the full magnitude of large functional movements. Thus, crystallization might often induce protein conformational changes that are comparable to those related to or induced by the protein function.
Discrete Simulation of Flexible Plate Structure Using State-Space Formulation
Institute of Scientific and Technical Information of China (English)
S. Md. Salleh; M. O. Tokhi
2008-01-01
This paper presents the development of dynamic simulation of a flexible plate structure with various boundary conditions. A flexible square plate is considered. A finite-difference method is used to discretise the governing partial differential equation formulation describing its dynamic behaviour. The model thus developed has been validated against characteristic parameters of the plate. The model thus developed is further formulated using discrete state-space representation, to allow easy and fast implementation for simulating the dynamic behaviour of the plate with various boundary conditions. The simulation algorithm thus developed is validated, and accurate results with representation of the first five modes of vibration of the plate have been achieved. The algorithm thus developed is used in subsequent research work as a platform for development and verification of suitable control strategies for vibration suppression of flexible plate structures.
Zhao, Li; Zhang, Pupu; Long, Shiyang; Wang, Linlin; Tian, Pu
2015-08-01
Sulfotransferases catalyze transfer of the sulfuryl-group (-SO3) from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to a large number of substrates. They play an important role in phase II metabolic process. The impact of the cofactor (PAPS) on the structure and flexibility of the enzyme has been studied extensively, and the response of the active-cap region to cofactor binding was proposed as the molecular basis for substrate selectivity. In this study, individual and cooperative effects of the cofactor and substrate on the structure and flexibility of the enzyme were investigated. Molecular dynamics simulations were performed for four systems, including free enzyme, binary complexes (cofactor or substrate bound enzyme) and ternary complex (both cofactor and substrate bound enzyme). The influence of ligands (the cofactor and the substrate) on the structure and flexibility of the enzyme, especially that of the active-site cap region, was analyzed. Moreover, mutual structural impact of the ligands was examined as well. The results show that the impact of both the cofactor and the substrate was significant. Our study indicated that the substrate, such as lithocholic acid (LCA), participated in regulating the structure and flexibility of the enzyme actively rather than merely being selected passively. Additionally, the observed synergistic effects of the cofactor and the substrate demonstrated the importance of examining both ligands in understanding enzymes.
Nonlinear Control Structure of Grid Connected Modular Multilevel Converters
DEFF Research Database (Denmark)
Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza
2017-01-01
in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab/Simulink...
Nonlinear Control Structure of Grid Connected Modular Multilevel Converters
DEFF Research Database (Denmark)
Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza
2017-01-01
in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab...
Nonlinear evolution of large-scale structure in the universe
Energy Technology Data Exchange (ETDEWEB)
Frenk, C.S.; White, S.D.M.; Davis, M.
1983-08-15
Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r/sub 0/ = 5.1; its expected value in a neutrino dominated universe is 4(..cap omega..h)/sup -1/ (H/sub 0/ = 100h km s/sup -1/ Mpc/sup -1/). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Ly..cap alpha.. absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with ..cap omega..<1.
Static inelastic analysis of steel frames with flexible connections
Directory of Open Access Journals (Sweden)
Nefovska-Danilović M.
2004-01-01
Full Text Available The effects of connection flexibility and material yielding on the behavior of plane steel frames subjected to static (monotonic loads are presented in this paper. Two types of material nonlinearities are considered: flexible nodal connections and material yielding, as well as geometric nonlinearity of the structure. To account for material yielding, a plastic hinge concept is adopted. A flexible connection is idealized by nonlinear rotational spring. Plastic hinge is also idealized by nonlinear rotational spring attached in series with the rotational spring that accounts for connection flexibility. The stiffness matrix for the beam with flexible connections and plastic hinges at its ends is obtained. To illustrate the validity and accuracy of the proposed numerical model, several examples have been conducted.
Flexible Virtual Structure Consideration in Dynamic Modeling of Mobile Robots Formation
El Kamel, A. Essghaier; Beji, L.; Lerbet, J.; Abichou, A.
2009-03-01
In cooperative mobile robotics, we look for formation keeping and maintenance of a geometric configuration during movement. As a solution to these problems, the concept of a virtual structure is considered. Based on this idea, we have developed an efficient flexible virtual structure, describing the dynamic model of n vehicles in formation and where the whole formation is kept dependant. Notes that, for 2D and 3D space navigation, only a rigid virtual structure was proposed in the literature. Further, the problem was limited to a kinematic behavior of the structure. Hence, the flexible virtual structure in dynamic modeling of mobile robots formation presented in this paper, gives more capabilities to the formation to avoid obstacles in hostile environment while keeping formation and avoiding inter-agent collision.
Znajdek, Katarzyna; Sibiński, Maciej; Przymecki, Krzysztof; Wróblewski, Grzegorz; Lisik, Zbigniew
2016-12-01
The purpose of the work is to find an appropriate flexible material to replace commonly used transparent conductive oxides (TCO) in photovoltaic (PV) emitter electrode applications. Authors show the alternative, potential possibility of using PEDOT conductive polymer as transparent emitter contacts for thin-film, flexible photovoltaic structures. The vast majority of contacts made of TCO layers, dominantly indium tin oxide ITO, are electrically unstable under the influence of mechanical stresses [1,2,3]. This drawback inhibits their usage in flexible devices, such as solar cells. The need of the development in the field of flexible PV structures induces searching for new materials. Investigated transparent conductive layers (TCL) were made of organic compositions based on PEDOT polymer and their parameters were compared with equally measured parameters of carbon nanotube (CNT) layers, commercial ITO and AgHT ultra-thin silver layers. Transparent conductive layers based on PEDOT:PSS compound were deposited on flexible substrates by screen printing technique. The analysis of achieved results shows the broad spectrum of application possibilities for PEDOT layers.
Shuai, Xingtian; Zhu, Pengli; Zeng, Wenjin; Hu, Yougen; Liang, Xianwen; Zhang, Yu; Sun, Rong; Wong, Ching-Ping
2017-08-09
Flexible pressure sensors have attracted increasing research interest because of their potential applications for wearable sensing devices. Herein, a highly sensitive flexible pressure sensor is exhibited based on the elastomeric electrodes and a microarray architecture. Polydimethylsiloxane (PDMS) substrate, coated with silver nanowires (AgNWs), is used as the top electrode, while polyvinylidene fluoride (PVDF) as the dielectric layer. Several transfer processes are applied on seeking facile strategy for the preparation of the bottom electrode via embedding AgNWs into the PDMS film of microarray structure. The flexible pressure sensor integrates the top electrode, dielectric layer, and microarray electrode in a sandwich structure. It is demonstrated that such sensors possess the superiorities of high sensitivity (2.94 kPa(-1)), low detection limit (flexible pressure sensor exhibits good performance even in a noncontact way, such as detecting voice vibrations and air flow. Due to its superior performance, this designed flexible pressure sensor demonstrates promising potential in the application of electronic skins, as well as wearable healthcare monitors.
First order coupled dynamic model of flexible space structures with time-varying configurations
Wang, Jie; Li, Dongxu; Jiang, Jianping
2017-03-01
This paper proposes a first order coupled dynamic modeling method for flexible space structures with time-varying configurations for the purpose of deriving the characteristics of the system. The model considers the first time derivative of the coordinate transformation matrix between the platform's body frame and the appendage's floating frame. As a result it can accurately predict characteristics of the system even if flexible appendages rotate with complex trajectory relative to the rigid part. In general, flexible appendages are fixed on the rigid platform or forced to rotate with a slow angular velocity. So only the zero order of the transformation matrix is considered in conventional models. However, due to neglecting of time-varying terms of the transformation matrix, these models introduce severe error when appendages, like antennas, for example, rotate with a fast speed relative to the platform. The first order coupled dynamic model for flexible space structures proposed in this paper resolve this problem by introducing the first time derivative of the transformation matrix. As a numerical example, a central core with a rotating solar panel is considered and the results are compared with those given by the conventional model. It has been shown that the first order terms are of great importance on the attitude of the rigid body and dynamic response of the flexible appendage.
Directory of Open Access Journals (Sweden)
V. V. Myamlin
2014-04-01
Full Text Available Purpose. The article is aimed to improve the methods of car repair organization using the search of rational structures of flexible flows. Methodology. For operation analyses of the car repair flows the simulation modeling was used. The initial data for random value generation of cars repair duration are the statistical data. They were collected at the existing car repair enterprises. Findings. Obtained results show that at the same amount of modules the flexible repair flow is more efficient. Flexible flow increases the working capacity, improves the removal of cars from one module and reduces car detention time in repair. Originality. There were identified the mechanisms, which allow establishing links between the different structural variants of flexible flow and their operational performance. Concrete data that give a fresh look to the organization of car repair production were obtained. Practical value. These results can be used in designing the new perspective enterprises for car repair and also under reconstruction or expansion of existing enterprises in order to transfer them to the flexible flow. It is recommended to incorporate the obtained results and try to put them into production during designing and construction of new car enterprises.
Institute of Scientific and Technical Information of China (English)
张健; 向锦武
2011-01-01
High-altitude long-endurance (HALE) aircraft features slender and flexible structures, which under nominal operation conditions may result in large structural deformation, aerodynamic stall, and coupling between the low-frequency structural vibration and the rigid body motion of the aircraft. These nonlinearities and interactions affect dramatically the static and dynamic behaviors of a HALE flexible aircraft. This paper developed a coupled model of aeroelasticity and flight dynamics for high-aspect-ratio flexible aircraft based on the geometrically exact, fully intrinsic beam theory, ONERA aerodynamic stall model, and a six degree of freedom model of the rigid body motion. This model takes into consideration the geometrical non-linearities, dynamic stall and material anisotropy, etc. Two case models of the conventional configuration and the flying-wing configuration are used to investigate the characteristics of the trim, dynamic stability and time-domain response of the high-aspect-ratio flexible aircraft with nonlinear aeroelasticity and flight dynamics coupled. The results obtained indicate that when the wing deformation is relatively small, the angle of attack required for the trim of the flexible aircraft is smaller than that for a rigid aircraft, and stall may occur along the whole wing span, which may cause altitude decrease quickly due to the dramatic reduction in the total lift of the complete aircraft. When the wing deformation is relatively large, the angle of attack required for the trim of the flexible aircraft is larger than that for a rigid aircraft, and stall occurs in a limited region near the wing tip. In addition, the motion of a flexible aircraft may become unstable due to large deformation of its wings, which can be improved by applying aeroelastic tailoring.%高空长航时(HALE)飞机结构细长、具有柔性,在常规飞行条件下可发生结构大变形、气动失速以及结构低频振动与刚体运动耦合,这些现象显著影
Nonlinear density fluctuation field theory for large scale structure
Institute of Scientific and Technical Information of China (English)
Yang Zhang; Hai-Xing Miao
2009-01-01
We develop an effective field theory of density fluctuations for a Newtonian self-gravitating N-body system in quasi-equilibrium and apply it to a homogeneous uni-verse with small density fluctuations. Keeping the density fluctuations up to second or-der, we obtain the nonlinear field equation of 2-pt correlation ξ(r), which contains 3-pt correlation and formal ultra-violet divergences. By the Groth-Peebles hierarchical ansatz and mass renormalization, the equation becomes closed with two new terms beyond the Gaussian approximation, and their coefficients are taken as parameters. The analytic solu-tion is obtained in terms of the hypergeometric functions, which is checked numerically.With one single set of two fixed parameters, the correlation ξ(r) and the corresponding power spectrum P(k) simultaneously match the results from all the major surveys, such as APM, SDSS, 2dfGRS, and REFLEX. The model gives a unifying understanding of several seemingly unrelated features of large scale structure from a field-theoretical per-spective. The theory is worth extending to study the evolution effects in an expanding universe.
A Flexible 5G Frame Structure Design for Frequency-Division Duplex Cases
DEFF Research Database (Denmark)
Pedersen, Klaus I.; Berardinelli, Gilberto; Frederiksen, Frank
2016-01-01
A 5G frame structure designed for efficient support of users with highly diverse service requirements is proposed. It includes support for mobile broadband data, mission-critical communication, and massive machine communication. The solution encompasses flexible multiplexing of users on a shared ...
Method for analyzing structural changes of flexible metal-organic frameworks induced by adsorbates
Dubbeldam, D.; Krishna, R.; Snurr, R.Q.
2009-01-01
Metal−organic frameworks (MOFs) have crystal structures that exhibit unusual flexibility. An extreme example is that of the "breathing MOF" MIL-53 that expands or shrinks to admit guest molecules like CO2 and water. We present a powerful simulation tool to quickly calculate unit cell shape and size
Liang, Suqing; Li, Yaoyao; Zhou, Tingjiao; Yang, Jinbin; Zhou, Xiaohu; Zhu, Taipeng; Huang, Junqiao; Zhu, Julie; Zhu, Deyong; Liu, Yizhen; He, Chuanxin; Zhang, Junmin; Zhou, Xuechang
2017-02-01
A low-cost, solution-processed, versatile, microfluidic approach is developed for patterning structures of highly conductive metals (e.g., copper, silver, and nickel) on chemically modified flexible polyethylene terephthalate thin films by in situ polymer-assisted electroless metal deposition. This method has significantly lowered the consumption of catalyst as well as the metal plating solution.
Enhanced moisture-barrier property and flexibility of zirconium oxide/polymer hybrid structures
Energy Technology Data Exchange (ETDEWEB)
Lim, Se Hee; Seo, Seung-Woo; Jung, Eun; Chae, Heeyeop; Cho, Sung Min [Sungkyunkwan University, Suwon (Korea, Republic of)
2016-03-15
New zirconium oxide (ZrO{sub 2})-based organic-inorganic multilayers were fabricated and tested for flexible moisture barriers and compared with typical aluminum oxide (Al{sub 2}O{sub 3})-based multilayers. We report that amorphous ZrO{sub 2} had a better intrinsic barrier property than that of amorphous Al{sub 2}O{sub 3}. Due to the lower elastic modulus of ZrO{sub 2}, the ZrO{sub 2}-based structures had better flexibility than that of the Al{sub 2}O{sub 3}-based structures. The ZrO{sub 2}-based barrier was superior to the Al{sub 2}O{sub 3}-based barrier not only for flexibility but also for barrier performance. The barrier property and flexibility of the ZrO{sub 2}-based structures were enhanced by about 20% and 30% over those of the Al{sub 2}O{sub 3}-based structures, respectively.
Method for analyzing structural changes of flexible metal-organic frameworks induced by adsorbates
Dubbeldam, D.; Krishna, R.; Snurr, R.Q.
2009-01-01
Metal−organic frameworks (MOFs) have crystal structures that exhibit unusual flexibility. An extreme example is that of the "breathing MOF" MIL-53 that expands or shrinks to admit guest molecules like CO2 and water. We present a powerful simulation tool to quickly calculate unit cell shape and size
Accurate calibration of RL shunts for piezoelectric vibration damping of flexible structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Krenk, Steen
2016-01-01
Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of dominantvibration modes of a flexible structure and their efficiency relies on precise calibration of the shuntcomponents. In the present paper improved calibration accuracy is attained by an extension ...
Shultz, Sarah P; Song, Jinsup; Kraszewski, Andrew P; Hafer, Jocelyn F; Rao, Smita; Backus, Sherry; Hillstrom, Rajshree M; Hillstrom, Howard J
2017-07-01
It has been suggested that foot type considers not only foot structure (high, normal, low arch), but also function (overpronation, normal, oversupination) and flexibility (reduced, normal, excessive). Therefore, this study used canonical regression analyses to assess which variables of foot structure, function, and flexibility can accurately discriminate between clinical foot type classifications. The feet of 61 asymptomatic, healthy adults (18-77 years) were classified as cavus (N = 24), rectus (N = 54), or planus (N = 44) using standard clinical measures. Custom jigs assessed foot structure and flexibility. Foot function was assessed using an emed-x plantar pressure measuring device. Canonical regression analyses were applied separately to extract essential structure, flexibility, and function variables. A third canonical regression analysis was performed on the extracted variables to identify a combined model. The initial combined model included 30 extracted variables; however 5 terminal variables (malleolar valgus index, arch height index while sitting, first metatarsophalangeal joint laxity while standing, pressure-time integral and maximum contact area of medial arch) were able to correctly predict 80.7% of foot types. These remaining variables focused on specific foot characteristics (hindfoot alignment, arch height, midfoot mechanics, Windlass mechanism) that could be essential to discriminating foot type.
Preparation of Flexible and Elastic Poly(trimethylene carbonate) Structures by Stereolithography
Schuller-Ravoo, Sigrid; Feijen, Jan; Grijpma, Dirk W.
2011-01-01
3D porous and non-porous structures are designed and prepared by stereolithography using resins based on PTMC macromers. Tough, flexible network films prepared in this manner show E moduli of approximate to 3.8MPa and high elongations at break >900% tensile strengths are approximate to 4.2MPa. These
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint
Energy Technology Data Exchange (ETDEWEB)
Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan
2016-01-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.
The emergence of a coherent structure for coherent structures: localized states in nonlinear systems
Dawes, Jonathan
2010-01-01
Coherent structures emerge from the dynamics of many kinds of dissipative, externally driven, nonlinear systems, and continue to provoke new questions that challenge our physical and mathematical understanding. In one specific sub-class of such problems, where a pattern-forming, or `Turing', instability occurs, rapid progress has been made recently in our understanding of the formation of localized states: patches of regular pattern surrounded by the unpatterned homogeneous background state. ...
Nonlinear Kalman Filtering in Affine Term Structure Models
DEFF Research Database (Denmark)
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;
2014-01-01
The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...
Advanced Seismic Fragility Modeling using Nonlinear Soil-Structure Interaction Analysis
Energy Technology Data Exchange (ETDEWEB)
Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talaat, Mohamed [Simpson-Gupertz & Heger, Waltham, MA (United States); Hashimoto, Philip [Simpson-Gupertz & Heger, Waltham, MA (United States)
2015-09-01
The goal of this effort is to compare the seismic fragilities of a nuclear power plant system obtained by a traditional seismic probabilistic risk assessment (SPRA) and an advanced SPRA that utilizes Nonlinear Soil-Structure Interaction (NLSSI) analysis. Soil-structure interaction (SSI) response analysis for a traditional SPRA involves the linear analysis, which ignores geometric nonlinearities (i.e., soil and structure are glued together and the soil material undergoes tension when the structure uplifts). The NLSSI analysis will consider geometric nonlinearities.
Structural Identification of Nonlinear Static System on Basis of Analysis Sector Sets
Directory of Open Access Journals (Sweden)
Nikolay Karabutov
2013-12-01
Full Text Available Methods of structural identification of static systems with a vector input and several nonlinearities in the conditions of uncertainty are considered. We consider inputs irregular. The concept of structural space is introduced. In this space special structures (virtual portraits are analyzed. The Holder condition is applied to construction of sector set, to which belongs a virtual portrait of system of identification. Criteria of decision-making on a class of nonlinear functions on the basis of the analysis of proximity of sector sets are described. Procedures of an estimation of structural parameters of two classes of nonlinearities are stated: power and a hysteresis.
Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures
DEFF Research Database (Denmark)
Lindgaard, Esben; Lund, Erik
2011-01-01
, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....
Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials
Energy Technology Data Exchange (ETDEWEB)
Tsitsas, N.L. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Horikis, T.P. [Department of Mathematics, University of Ioannina, Ioannina 45110 (Greece); Shen, Y.; Kevrekidis, P.G.; Whitaker, N. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J., E-mail: dfrantz@phys.uoa.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)
2010-03-01
We consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Two short-pulse equations (SPEs) are derived for the high- and low-frequency 'band gaps' (where linear electromagnetic waves are evanescent) with linear effective permittivity epsilon<0 and permeability mu>0. The structure of the solutions of the SPEs is also briefly discussed, and connections with the soliton solutions of the nonlinear Schroedinger equation are made.
Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin
2012-01-24
A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management.
UV-nanoimprint lithography: structure, materials and fabrication of flexible molds.
Lan, Hongbo; Liu, Hongzhong
2013-05-01
Large-area nanopatterning technology has demonstrated high potential which can significantly enhance the performance of a variety of devices and products such as LEDs, solar cells, hard disk drives, laser diodes, wafer-level optics, etc. But various existing patterning technologies cannot well meet industrial-level application requirements in term of high resolution, high throughput, low cost, large patterned areas, and the ability to pattern on non-ideal surfaces or waters. Soft UV-nanoimprint lithography (UV-NIL) by using a flexible mold has been proven to be a cost-effective mass production method for patterning large-area structures up to wafer-level (300 mm) in the micrometer and nanometer scale, fabricating complex 3-D micro/nano structures, especially making large-area patterns on the non-planar surfaces even curved substrates at low-cost and with high throughput. In particular, it provides an ideal solution and a powerful tool for mass producing micro/nanostructures over large areas at low cost for the applications in compound semiconductor optoelectronics and nanophotonic devices, especially for LED patterning. That opens the way for many applications not previously conceptualized or economically feasible. The flexible mold is the most critical elements for soft UV-NIL. The performance of the flexible mold has a decisive effect on the soft UV-NIL in term of resolution, patterning area, throughput, uniformity of the imprinted patterns, and repeatability of multi-imprinting. The key enabler that can fulfill mass production of micro-and nanostructures over large areas by NIL is the continual advancement of mold techniques (structures, materials and fabrication processes) towards higher resolution over a larger area at a lower cost. This paper provides a comprehensive review on the structural types, materials used and fabrication methods of various flexible molds in soft UV-NIL, surveys major progress in various flexible molds, particularly highlights some
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A complex number mode analysis approach is proposed for vibration reducing of structural flexible redundant manipulators by utilizing self-motion. In the proposed approach, the self-motion is evaluated to nullify the modal exciting-force of flexural motion, and the approach can be freely used when the degree of freedom of flexural motion is much greater than the available degree of reundancy. The availability and effectiveness of the proposed approach are demonstrated through numerical simulation with a four-link spatial robotic manipulator possessing an end flexible link.
Directory of Open Access Journals (Sweden)
Jiang-Yi Zheng
2014-01-01
Full Text Available AC pulse-modulated electrohydrodynamic direct-writing (EDW was utilized to direct-write orderly micro/nanofibrous structure on the flexible insulating polyethylene terephthalate (PET substrate. During the EDW process, AC electrical field induced charges to reciprocate along the jet and decreased the charge repulsive force that applied on charged jet. Thanks to the smaller charge repulsive force, stable straight jet can be built up to direct-write orderly micro/nanofibrous structures on the insulating substrate. The minimum motion velocity required to direct-write straight line fibrous structure on insulating PET substrate was 700 mm/s. Moreover, the influences of AC voltage amplitude, frequency, and duty cycle ratio on the line width of fibrous structures were investigated. This work proposes a novel solution to overcome the inherent charge repulsion emerging on the insulating substrate, and promotes the application of EDW technology on the flexible electronics.
Analysis of Dynamic Model of a Structure with Nonlinear Damped Behavior
Directory of Open Access Journals (Sweden)
G. Domairry
2010-04-01
Full Text Available In this work, it has been attempted to analytically treat the nonlinear behavior of structures. Since analysing nonlinear problems is of great difficulty, different numerical methods and software are advised to treat such problems. Despite the increasing expenses of building structures to maintain their linear behavior, nonlinearity has been inevitable, and therefore, nonlinear analysis has beenof great importance to the scientists in the field. As structures confront lateral forces and intense earthquakes especially near fault regions, a part of the structure remains linear, but some part of itbehaves nonlinearly for example dampers, columns and beams. This is simulated by a damped in nonlinear oscillator. In this paper, the nonlinear equation of oscillator with damping which has nonlinear behavior is representative of the dynamic behavior of a structure has been solved analytically. In the end, the obtained results are compared with numerical ones and shown in graphs and in tables;analytical solutions are in good agreement with those of the numerical method.
Damage detection in structures through nonlinear excitation and system identification
Hajj, Muhammad R.; Bordonaro, Giancarlo G.; Nayfeh, Ali H.; Duke, John C., Jr.
2008-03-01
Variations in parameters representing natural frequency, damping and effective nonlinearities before and after damage initiation in a beam carrying a lumped mass are assessed. The identification of these parameters is performed by exploiting and modeling nonlinear behavior of the beam-mass system and matching an approximate solution of the representative model with quantities obtained from spectral analysis of measured vibrations. The representative model and identified coefficients are validated through comparison of measured and predicted responses. Percentage variations of the identified parameters before and after damage initiation are determined to establish their sensitivities to the state of damage of the beam. The results show that damping and effective nonlinearity parameters are more sensitive to damage initiation than the system's natural frequency. Moreover, the sensitivity of nonlinear parameters to damage is better established using a physically-derived parameter rather than spectral amplitudes of harmonic components.
Indications of nonlinear structures in brain electrical activity
Gautama, Temujin; Mandic, Danilo P.; van Hulle, Marc M.
2003-04-01
The dynamical properties of electroencephalogram (EEG) segments have recently been analyzed by Andrzejak and co-workers for different recording regions and for different brain states, using the nonlinear prediction error and an estimate of the correlation dimension. In this paper, we further investigate the nonlinear properties of the EEG signals using two established nonlinear analysis methods, and introduce a “delay vector variance” (DVV) method for better characterizing a time series. The proposed DVV method is shown to enable a comprehensive characterization of the time series, allowing for a much improved classification of signal modes. This way, the analysis of Andrzejak and co-workers can be extended toward classification of different brain states. The obtained results comply with those described by Andrzejak et al., and provide complementary indications of nonlinearity in the signals.
Nonlinear characterization of a bolted, industrial structure using a modal framework
Roettgen, Daniel R.; Allen, Matthew S.
2017-02-01
This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.
Wells, Stephen A; Crennell, Susan J; Danson, Michael J
2014-10-01
Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.
Vibration control of flexible structures via electrorheological-fluid-based dampers
Wang, Kon-Well; Kim, Y. S.; Lee, H. S.; Shea, D. B.
1993-09-01
The semi-active control approach has been recognized to be effective for vibration suppression of flexible structures. The electrorheological (ER) fluid-based device is a good candidate for such applications. In this research, a new control law is developed to maximize the damping effect of ER dampers for structural vibration suppression under actuator constraints and viscous-frictional-combined damping. Both numerical simulations and experimental work have been carried out to evaluate and validate the theoretical predictions.
RESEARCH ON THE GENERALIZED MODULAR DESIGN METHOD WITH FLEXIBLE MODULES OF PRODUCT STRUCTURES
Institute of Scientific and Technical Information of China (English)
Xu Yanshen; Xu Qianli; Chen Yongliang; Hou Liang
2004-01-01
A new generalized modular design (GMD) method is proposed based on design practice of frame structure of hydraulic press machines. By building a series of flexible modules (FMs), design knowledge and structure features are integrated into parametric models. Then, parametric design and variational analysis methods for GMD are presented according to user defined design objectives and customized product characteristics. A FM-centered GMD system is developed and successfully used in the rapid design of relevant products.
Vibration control of flexible spacecraft actuated by piezoceramics via variable structure strategy
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper presented a hybrid control scheme to vibration reduction of flexible spacecraft during rotational maneuver by using variable structure output feedback control(VSOFC)and piezoelectric materials. The control configuration included the attitude controller based on VSOFC method and vibration attenuator designed by constant-gain negative velocity feedback control. The attitude controller consisted of a linear feedback term and a discontinuous feedback term. With the presence of this attitude controller, an additional flexible control system acting on the flexible parts can be designed for vibration control. Compared with conventional proportional-derivative(PD)control, the developed control scheme guarantees not only the stability of the closed-loop system, but also yields better performance and robustness in the presence of parametric uncertainties and external disturbance. Simulation results are presented for the spacecraft model to show the effectiveness of the proposed control techniques.
Zuo, Siyang; Masamune, Ken; Kuwana, Kenta; Tomikawa, Morimasa; Ieiri, Satoshi; Ohdaira, Takeshi; Hashizume, Makoto; Dohi, Takeyoshi
2011-01-01
Single port access (SPA) surgery is a laparoscopic procedure using only one transumbilical-placed port. Natural orifice transluminal endoscopic surgery (NOTES) offers the possibility of surgery without visible scars. To address the access and stability problems in SPA and NOTES, we developed a device called rigid-flexible outer sheath. This sheath can be switched between flexible and rigid modes by a novel pneumatic shapelocking mechanism, and it has a double curvature structure that enables it to flex in four directions at the distal end and three directions on the rigid-flexible shaft. The insertion part of the prototype is 300 mm long with a 20 mm outer diameter, and the part is equipped with four working channels. In vivo experiments using a swine show that the outer sheath has high potential for solving access and stability problems. We expect that the outer sheath will be useful for SPA and NOTES.
Jerke, Götz; Pedersen, Jan Skov; Egelhaaf, Stefan Ulrich; Schurtenberger, Peter
1997-11-01
We report a systematic investigation of the static structure factor S(q,c) of polymerlike reverse micelles formed by soybean lecithin and trace amounts of water in deuterated isooctane using small-angle neutron scattering and static light scattering. The experimental data for different concentrations in the dilute and semidilute regime cover approximately three decades of scattering vectors. The data have been analyzed using polymer renormalization-group theory and a nonlinear least-squares fitting procedure based upon a numerical expression for the single chain scattering function of a wormlike chain with excluded-volume effects. Furthermore, the influence of interaction effects on the static structure factor have been successfully examined within a modified random-phase approximation. Additional information on the local scale has been extracted by applying indirect Fourier transformation and square-root deconvolution techniques. We demonstrate that we can determine structural properties such as the micellar cross-section profile and flexibility as well as quantitatively incorporate the influence of micellar growth and excluded-volume effects on S(q,c).
Energy Technology Data Exchange (ETDEWEB)
Hanke-Rauschenbach, R.
2007-10-26
In the first part of this work a model structuring concept for electrochemical systems is presented. The application of such a concept for the structuring of a process model allows it to combine different fuel cell models to form a whole model family, regardless of their level of detail. Beyond this the concept offers the opportunity to flexibly exchange model entities on different model levels. The second part of the work deals with the nonlinear behaviour of PEM fuel cells. With the help of a simple, spatially lumped and isothermal model, bistable current-voltage characteristics of PEM fuel cells operated with low humidified feed gases are predicted and discussed in detail. The cell is found to exhibit current-voltage curves with pronounced local extrema in a parameter range that is of practical interest when operated at constant feed gas flow rates. (orig.)
DEFF Research Database (Denmark)
Kragh, Knud Abildgaard; Thomsen, Jon Juel; Tcherniak, Dmitri
2010-01-01
exists. The present study suggests a framework for the detection of structural nonlinearities. Two methods for detection are compared, the homogeneity method and a Hilbert transform based method. Based on these two methods, a nonlinearity index is suggested. Through simulations and laboratory experiments...
Nonlinear Super Integrable Couplings of Super Dirac Hierarchy and Its Super Hamiltonian Structures
Institute of Scientific and Technical Information of China (English)
尤福财
2012-01-01
We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra. Then its super Hamiltonian structure is furnished by super trace identity. As its reduction, we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.
Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes
DEFF Research Database (Denmark)
Dou, Suguang; Jensen, Jakob Søndergaard
2016-01-01
/softening behavior of nonlinear mechanical systems. The iterative optimization procedure consists of calculation of nonlinear normal modes, solving an adjoint equation system for sensitivity analysis and an update of design variables using a mathematical programming tool. We demonstrate the method with examples......Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes, we present a gradient-based structural optimization method for tailoring the hardening...
Weakly nonlinear dispersion and stop-band effects for periodic structures
DEFF Research Database (Denmark)
Sorokin, Vladislav; Thomsen, Jon Juel
Continua and structures composed of periodically repeated elements (cells) are used in many fields of science and technology. Examples of continua are composite materials, consisting of alternating volumes of substances with different properties, mechanical filters and wave guides. Examples of en...... suggested. The work is carried out with financial support from the Danish Council for Independent Research and COFUND: DFF – 1337-00026...... of these methods for studying nonlinear problems isimpossible or cumbersome, since Floquet theory is applicable only for linear systems. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applications may demand effects of nonlinearity on structural response...
Preininger, Anita M.; Meiler, Jens; Hamm, Heidi
2013-01-01
Structure and dynamics of G proteins and their cognate receptors, both alone and in complex, are becoming increasingly accessible to experimental techniques. Understanding the conformational changes and timelines which govern these changes can lead to new insights into the processes of ligand binding and associated G protein activation. Experimental systems may involve the use of, or otherwise stabilize, non-native environments. This can complicate our understanding of structural and dynamical features of processes such as the ionic lock, Tryptophan toggle, and G protein flexibility. While elements in the receptor’s transmembrane helices and the C-terminal α5 helix of Gα undergo well defined structural changes, regions subject to conformational flexibility may be important in fine-tuning the interactions between activated receptors and G proteins. The pairing of computational and experimental approaches will continue to provide powerful tools to probe the conformation and dynamics of receptor-mediated G protein activation. PMID:23602809
Burton, Andrew R.; Kurata, Masahiro; Nishino, Hiromichi; Lynch, Jerome P.
2016-04-01
New advances in nanotechnology and material processing is creating opportunities for the design and fabrication of a new generation of thin film sensors that can used to assess structural health. In particular, thin film sensors attached to large areas of the structure surface has the potential to provide spatially rich data on the performance and health of a structure. This study focuses on the development of a fully integrated strain sensor that is fabricated on a flexible substrate for potentially use in sensing skins. This is completed using a carbon nanotube-polymer composite material that is patterned on a flexible polyimide substrate using optical lithography. The piezoresistive carbon nanotube elements are integrated into a complete sensing system by patterning copper electrodes and integrating off-the-shelf electrical components on the flexible film for expanded functionality. This diverse material utilization is realized in a versatile process flow to illustrate a powerful toolbox for sensing severity, location, and failure mode of damage on structural components. The fully integrated patterned carbon nanotube strain sensor is tested on a quarter-scale, composite beam column connection. The results and implications for future structural damage detection are discussed.
A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors
Yang, H. Q.; West, Jeff
2014-01-01
A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.
Vibration suppression of distributed parameter flexible structures by Integral Consensus Control
Omidi, Ehsan; Mahmoodi, S. Nima
2016-03-01
Integral Consensus Control (ICC) is proposed and implemented in this paper for the first time, as a novel approach for vibration control in distributed parameter flexible structures. The ICC consists of multiple parallel first-order lossy integrators, with the goal of targeting all major participating resonant modes in the oscillation of the structure. The vibration control design is taken to a different level, by integrating the concept of consensus control design into the new dynamics. Each control patch on the flexible structure is considered as a node of a network, and a communication topology with consensus control terms are augmented in the controller design dynamics. The result is an effective vibration controller, which is also robust to failures and inconsistencies in the control system. A cantilever is used as a sample flexible structure to investigate the control method. Multi-agent representation of the system, state estimator dynamics and the ICC model are designed for the structure. Extensive numerical simulations have been conducted to show the suppression performance of the ICC under different input disturbances. A comparative study is presented to show the advantage of the decentralized design over the conventional centralized approach. The new consensus control design provides new possibilities to vibration control problems, where an effective, robust and synchronized suppression is needed.
Nonlinear system identification in structural dynamics: 10 more years of progress
Noël, J. P.; Kerschen, G.
2017-01-01
Nonlinear system identification is a vast research field, today attracting a great deal of attention in the structural dynamics community. Ten years ago, an MSSP paper reviewing the progress achieved until then [1] concluded that the identification of simple continuous structures with localised nonlinearities was within reach. The past decade witnessed a shift in emphasis, accommodating the growing industrial need for a first generation of tools capable of addressing complex nonlinearities in larger-scale structures. The objective of the present paper is to survey the key developments which arose in the field since 2006, and to illustrate state-of-the-art techniques using a real-world satellite structure. Finally, a broader perspective to nonlinear system identification is provided by discussing the central role played by experimental models in the design cycle of engineering structures.
Simulation and analysis of flexibly jointed manipulators
Murphy, Steve H.; Wen, John T.; Saridis, George M.
1990-01-01
Modeling, simulation, and analysis of robot manipulators with non-negligible joint flexibility are studied. A recursive Newton-Euler model of the flexibly jointed manipulator is developed with many advantages over the traditional Lagrange-Euler methods. The Newton-Euler approach leads to a method for the simulation of a flexibly jointed manipulator in which the number of computations grows linearly with the number of links. Additionally, any function for the flexibility between the motor and link may be used permitting the simulation of nonlinear effects, such as backlash, in a uniform manner for all joints. An analysis of the control problems for flexibly jointed manipulators is presented by converting the Newton-Euler model to a Lagrange-Euler form. The detailed structure available in the model is used to examine linearizing controllers and shows the dependency of the control on the choice of flexible model and structure of the manipulator.
Energy Technology Data Exchange (ETDEWEB)
Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu; Schwendeman, D.W., E-mail: schwed@rpi.edu
2016-01-15
We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solid Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.
Structure property relationships for the nonlinear optical response of fullerenes
Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.
1994-11-01
We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Jensen, Jørgen Juncher
2009-01-01
-induced loads are evaluated for specific operational profiles. Non-linearity in the wave bending moment is modeled using results derived from a second-order strip theory and water entry solutions for wedge type sections. Hence, bow flare slamming is accounted for through a momentum type of approach....... The stochastic properties of this non-linear response are calculated through a monotonic Hermite transformation. In addition, the impulse loading due to e.g. bottom slamming or a rapid change in bow flare is included using a modal expansion in the two lowest vertical vibration modes. These whipping vibrations...
A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS
Institute of Scientific and Technical Information of China (English)
XingJ.T; PriceW.G; ChenY.G
2005-01-01
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.
Nonlinear Optics in Doped Silica Glass Integrated Waveguide Structures
Duchesne, David; Razzari, Luca; Morandotti, Roberto; Little, Brent; Chu, Sai T; Moss, David J
2015-01-01
Integrated photonic technologies are rapidly becoming an important and fundamental milestone for wideband optical telecommunications. Future optical networks have several critical requirements, including low energy consumption, high efficiency, greater bandwidth and flexibility, which must be addressed in a compact form factor.
Generalized Dromion Structures of New (2 + 1)-Dimensional Nonlinear EvolutionEquation
Institute of Scientific and Technical Information of China (English)
ZHANG Jie-Fang
2001-01-01
We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released.
PATH INTEGRAL SOLUTION OF NONLINEAR DYNAMIC BEHAVIOR OF STRUCTURE UNDER WIND EXCITATION
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted.Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.
Nonlinear variable structure excitation and steam valving controllers for power system stability
Institute of Scientific and Technical Information of China (English)
Ben WANG; Zongyuan MAO
2009-01-01
A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper.On the basis of the classical dynamic equations of a generator,excitation control and steam valving control are si-multaneously considered.Design of these controllers combines the differential geometry theory with the variable structure controlling theory.The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant.The dynamic performance of the nonlinear variable structure controllers proposed for a single ma-chine connected to an infinite bus power system is simulated.Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.
Yang, Zhijian; Liu, Zhiming
2017-03-01
The paper investigates the well-posedness and the longtime dynamics of the quasilinear wave equations with structural damping and supercritical nonlinearities: {{u}tt}- Δ u+{{≤ft(- Δ \\right)}α}{{u}t}-\
Walker, Christoph
2010-01-01
A parameter-dependent model involving nonlinear diffusion for an age-structured population is studied. The parameter measures the intensity of the mortality. A bifurcation approach is used to establish existence of positive equilibrium solutions.
Energy Technology Data Exchange (ETDEWEB)
Kruse, Andrew C.; Huseby, Medora J.; Shi, Ke; Digre, Jeff; Ohlendorf, Douglas H.; Earhart, Cathleen A. (UMM)
2011-09-16
The 3.35 {angstrom} resolution crystal structure of a mutant form of the staphylococcal sphingomyelinase {beta} toxin in which a conserved hydrophobic {beta}-hairpin has been deleted is reported. It is shown that this mutation induces domain swapping of a C-terminal {beta}-strand, leading to the formation of dimers linked by a conformationally flexible hinge region. Eight dimers are seen in the asymmetric unit, exhibiting a broad spectrum of conformations trapped in place by intermolecular contacts within the crystal lattice. Furthermore, the 16 monomers within each asymmetric unit exhibit a remarkable heterogeneity in thermal factors, which can be accounted for by the varying degrees to which each monomer interacts with other molecules in the crystal. This structure provides a unique example of the challenges associated with crystallographic study of flexible proteins.
Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling
2017-03-01
In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.
Lin, Yiing-Yuh; Lin, Gern-Liang
1992-08-01
In this research, the dynamics and control of a rigid spacecraft with flexible structures were studied for the case of optimal simultaneous multiaxis reorientation. A model spacecraft consisting of a rigid hub in the middle and two solid bodies symmetrically connected to either side of the hub through uniformly distributed flexible beams is considered for the dynamic analysis and control simulation. To optimally reorienting the spacecraft, an optimal nominal control trajectory is found first through an iterative procedure. Linear flexural deformations are assumed for the beam structures and the assumed modes method is applied to find the vibration control law of the beams. The system overall optimal attitude control is achieved by following the open loop optimal reference control trajectory with an stabilizing guidance law.
Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure
Energy Technology Data Exchange (ETDEWEB)
Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Ying [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China); Liu, Wei [Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China)
2015-04-15
As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.
Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure
Directory of Open Access Journals (Sweden)
Pengwei Li
2015-04-01
Full Text Available As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.
Long term structural dynamics of mechanical systems with local nonlinearities
Fey, R.H.B.; Campen, D.H. van; Kraker, A. de
1996-01-01
This paper deals with the long term behavior of periodically excited mechanical systems consisting of linear components and local nonlinearities. The number of degrees of freedom of the linear components is reduced by applying a component mode synthesis technique. Lyapunov exponents are used to iden
Resonances in nonlinear structure vibrations under multifrequency excitations
Energy Technology Data Exchange (ETDEWEB)
El-Bassiouny, A F [Faculty of Science, Mathematics Department, Benha University, Benha 1358 (Egypt); El-Latif, G M Abd [Faculty of Science, Mathematics Department, Sohag University, Sohag (Egypt)
2006-10-15
The response of a single-degree-of-freedom system with quadratic, cubic and quartic nonlinearities subjected to a sinusoidal excitation that involves multiple frequencies is considered. The method of multiple scales is used to construct a first order uniform expansion yielding two first-order nonlinear ordinary differential equations that are derived for the evolution of the amplitude and phase. These oscillations involve a subharmonic oscillation of order one-fourth and superharmonic oscillation of order two. Steady state responses and their stability are computed for selected values of the system parameters. The effects of these (quadratic, cubic, and quartic) nonlinearities on these oscillations are specifically investigated. With this study, it has been verified that the qualitative effects of these nonlinearities are different. Regions of hardening (softening) behaviour of the system exist for the case of subharmonic resonance. The response curve is not affected by decreasing the damping factor for the case of superharmonic resonance. It is shown that the response curve contracts or expands as the parameters vary. The multivalued region increases or decreases when some parameters vary.
Note About Hamiltonian Structure of Non-Linear Massive Gravity
Kluson, J
2011-01-01
We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.
Structure and Asymptotic theory for Nonlinear Models with GARCH Errors
F. Chan (Felix); M.J. McAleer (Michael); M.C. Medeiros (Marcelo)
2011-01-01
textabstractNonlinear time series models, especially those with regime-switching and conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with li
Nonlinear analysis of a structure loaded by a stochastic excitation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
For a non-linear system excited by a stochastic load which is expressed as a time series, a recursive method based on the Z-transform is presented. To identify the obtained response time series, a discrete wavelet transform (DWT) technique is proposed.
Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.
2017-10-01
In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.
Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.
1991-01-01
Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...
DEFF Research Database (Denmark)
Saracho, C. M.; Santos, Ilmar
2003-01-01
The analysis of dynamical response of a system built by a non-rotating structure coupled to flexible rotating beams is the purpose of this work. The effect of rotational speed upon the beam natural frequencies is well-known, so that an increase in the angular speeds leads to an increase in beam...
Dynamic responses of space solar arrays considering joint clearance and structural flexibility
Directory of Open Access Journals (Sweden)
Yuanyuan Li
2016-06-01
Full Text Available This article numerically investigates the effects of revolute joint clearance and structural flexibility on the overall dynamic characteristics of a deployable solar array system. Considering torque spring, close cable loop configuration, and lock mechanism, a typical mechanism composed of a main body with a yoke and two panels is used as a demonstration case to study the effects of clearance and flexibility on the dynamic response of the deployable solar array system in the deployment and lock process. The normal contact force model and tangential friction model in clearance joint are established using Lankarani Nikravesh model and modified Coulomb friction model, respectively. The numerical simulation results reveal that the coupling of clearance and flexibility makes different effects on the dynamic characteristics of the deployable space solar arrays for different operation stages. Besides, the clearance and flexibility of a mechanical system play crucial roles in predicting accurately the dynamic response of the system, which is the foundation of mechanism design, precision analysis, and control system design.
Vortex and structural dynamics of a flexible cylinder in cross-flow
Energy Technology Data Exchange (ETDEWEB)
Shang, Jessica K., E-mail: jshang@princeton.edu; Stone, Howard A. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Smits, Alexander J. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Monash University, VIC 3800 (Australia)
2014-05-15
A low-density, flexible cantilevered cylinder was permitted to vibrate freely under the influence of vortex shedding in the laminar flow regime. We find that the vortex-induced vibrations (VIV) of a flexible cantilever depart from those of a flexible cylinder that is fixed at both ends. In particular, we find discontinuous regions of VIV behavior – here called states – as a function of the reduced velocity U{sup *}. These states are demarcated by discrete changes in the dominant eigenmodes of the structural response as the cylinder vibrates in progressively higher structural modes with increasing U{sup *}. The contribution of structural modes can be identified readily by a modal projection of the cylinder oscillation onto known cantilever beam modes. Oscillation frequencies do not monotonically increase with U{sup *}. The wake response between different states is also found to have distinct characteristics; of particular note is the occurrence of a P+S wake over one of these regions, which is associated with a high-amplitude vibration of the cylinder that is due to the constructive interference of contributing eigenmodes.
Garcia-Perez, Oscar A.; Silva-Navarro, G.; Peza-Solís, J. F.; Trujillo-Franco, L. G.
2015-04-01
This work deals with the robust asymptotic output tracking control problem of the tip position of a space frame flexible structure, mounted on a rigid revolute servomechanism actuated and controlled with a dc motor. The structure is also affected by undesirable vibrations due to excitation of its first lateral vibration modes and possible variations of the tip mass. The overall flexible structure is modeled by using finite element methods and this is validated via experimental modal analysis techniques. The tip position of the structure is estimated from acceleration and strain gauge measurements. The asymptotic output tracking problem is formulated and solved by means of Passivity-Based and Sliding-Mode Control techniques, applied to the dc motor coupled to the rigid part of the structure, and those undesirable vibrations are simultaneously attenuated by an active vibration control using Positive Position Feedback control schemes implemented on a PZT stack actuator properly located into the mechanical structure. The investigation also addresses the trajectory tracking problem of fast motions, with harmonic excitations close to the first vibration modes of the structure. The overall dynamic performance is evaluated and validated by numerical and experimental results.
A Flexible and Non-instrusive Approach for Computing Complex Structural Coverage Metrics
Whalen, Michael W.; Person, Suzette J.; Rungta, Neha; Staats, Matt; Grijincu, Daniela
2015-01-01
Software analysis tools and techniques often leverage structural code coverage information to reason about the dynamic behavior of software. Existing techniques instrument the code with the required structural obligations and then monitor the execution of the compiled code to report coverage. Instrumentation based approaches often incur considerable runtime overhead for complex structural coverage metrics such as Modified Condition/Decision (MC/DC). Code instrumentation, in general, has to be approached with great care to ensure it does not modify the behavior of the original code. Furthermore, instrumented code cannot be used in conjunction with other analyses that reason about the structure and semantics of the code under test. In this work, we introduce a non-intrusive preprocessing approach for computing structural coverage information. It uses a static partial evaluation of the decisions in the source code and a source-to-bytecode mapping to generate the information necessary to efficiently track structural coverage metrics during execution. Our technique is flexible; the results of the preprocessing can be used by a variety of coverage-driven software analysis tasks, including automated analyses that are not possible for instrumented code. Experimental results in the context of symbolic execution show the efficiency and flexibility of our nonintrusive approach for computing code coverage information
Investigation of planar barrier discharges for coherent nonlinear structures
Uzun-Kaymak, I. U.
2017-02-01
Nonlinear pattern formations are ubiquitous in nature. One of the analogous configurations in laboratory experiments to such nonlinear systems is the current filament formations observed in glow plasmas. These filaments can generate oscillatory fluctuations in glow, which are also observed in voltage and current measurements. Specifically, semiconductor-gas discharges are known to breed these types of current filaments naturally. The plasma discharge is initiated by applying a DC high voltage to electrodes while they are immersed in nitrogen gas at partial atmospheric pressure. Observed discharge behaves oscillatory in time. Harmonic frequency generation and coherency levels among these modes are investigated. Parametric scans are performed to study the transition to chaotic behavior. Observed results are discussed in detail.
Numerical Analysis of the Dynamics of Nonlinear Solids and Structures
2008-08-01
of the conservation/ dissipation properties in time for the elastoplastic case 64 11.6. Concluding remarks 70 References 71 li...development of stable time-stepping algorithms for nonlinear dynamics. The focus was on inelastic solids, including finite strain elastoplastic and...set of plas- tic/ damage evolution equations (usually of a unilaterally constrained character due to the presence of the so-called yield/ damage
Travelling and standing envelope solitons in discrete non-linear cyclic structures
Grolet, Aurelien; Hoffmann, Norbert; Thouverez, Fabrice; Schwingshackl, Christoph
2016-12-01
Envelope solitons are demonstrated to exist in non-linear discrete structures with cyclic symmetry. The analysis is based on the Non-Linear Schrodinger Equation for the weakly non-linear limit, and on numerical simulation of the fully non-linear equations for larger amplitudes. Envelope solitons exist for parameters in which the wave equation is focussing and they have the form of shape-conserving wave packages propagating roughly with group velocity. For the limit of maximum wave number, where the group velocity vanishes, standing wave packages result and can be linked via a bifurcation to the non-localised non-linear normal modes. Numerical applications are carried out on a simple discrete system with cyclic symmetry which can be seen as a reduced model of a bladed disk as found in turbo-machinery.
A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis
Thornton, E. A.; Dechaumphai, P.
1986-01-01
A Taylor-Galerkin finite element method for solving large, nonlinear thermal-structural problems is presented. The algorithm is formulated for coupled transient and uncoupled quasistatic thermal-structural problems. Vectorizing strategies ensure computational efficiency. Two applications demonstrate the validity of the approach for analyzing transient and quasistatic thermal-structural problems.
Directory of Open Access Journals (Sweden)
F. Nicot
2002-01-01
Full Text Available The search of improvement of protective techniques against natural phenomena such as snow avalanches continues to use classic methods for calculating flexible structures. This paper deals with a new method to design avalanche protection nets. This method is based on a coupled analysis of both net structure and snow mantle by using a Discrete Element Method. This has led to the development of computational software so that avalanche nets can be easily designed. This tool gives the evolution of the forces acting in several parts of the work as a function of the snow situation.
Development and estimation of a semi-compensatory model with flexible error structure
DEFF Research Database (Denmark)
Kaplan, Sigal; Shiftan, Yoram; Bekhor, Shlomo
-response model and the utility-based choice by alternatively (i) a nested-logit model and (ii) an error-component logit. In order to test the suggested methodology, the model was estimated for a sample of 1,893 ranked choices and respective threshold values from 631 students who participated in a web-based two......, a disadvantage of current semi-compensatory models versus compensatory models is their behaviorally non-realistic assumption of an independent error structure. This study proposes a novel semi-compensatory model incorporating a flexible error structure. Specifically, the model represents a sequence...
Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets
Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.
2017-01-01
In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.
Ultra-thin ZnSe: Anisotropic and flexible crystal structure
Bacaksiz, C.; Senger, R. T.; Sahin, H.
2017-07-01
By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal [11]. The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.
Khaldi, Alexandre; Falk, Daniel; Maziz, Ali; Jager, Edwin W. H.
2016-04-01
We are developing soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species including cells and surgical tools for minimal invasive surgery. Our aim is to produce tools with minimal dimensions of 100 μm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology. However, the displacement of the current developed micromanipulator remains limited due to the low ionic conductivity of the materials. Here, we present developed methods for the fabrication of conjugated polymer trilayer structure which exhibit potential to high stretchability/flexibility as well as a good adhesion between the three different layers. The outcomes of this study contribute to the realisation of low-foot print devices articulated with electroactive polymer actuators for which the physical interface with the power source has been a significant challenge limiting their application. Here, we present a new flexible trilayer structure, which will allow the fabrication of metal-free soft microactuators.
Development of flexible SAW sensors for non-destructive testing of structure
Takpara, R.; Duquennoy, M.; Courtois, C.; Gonon, M.; Ouaftouh, M.; Martic, G.; Rguiti, M.; Jenot, F.; Seronveaux, L.; Pelegris, C.
2016-02-01
In order to accurately examine structures surfaces, it is interesting to use surface SAW (Surface Acoustic Wave). Such waves are well suited for example to detect early emerging cracks or to test the quality of a coating. In addition, when coatings are thin or when emergent cracks are precocious, it is necessary to excite surface waves beyond 10MHz. Finally, when structures are not flat, it makes sense to have flexible or conformable sensors for their characterization. To address this problem, we propose to develop SAW type of interdigital sensors (or IDT for InterDigital Transducer), based on flexible piezoelectric plates. Initially, in order to optimize these sensors, we modeled the behavior of these sensors and identified the optimum characteristic sizes. In particular, the thickness of the piezoelectric plate and the width of the interdigital electrodes have been studied. Secondly, we made composites based on barium titanate foams in order to have flexible piezoelectric plates and to carry out thereafter sensors. Then, we studied several techniques in order to optimize the interdigitated electrodes deposition on this type of material. One of the difficulties concerns the fineness of these electrodes because the ratio between the length (typically several millimeters) and the width (a few tens of micrometers) of electrodes is very high. Finally, mechanical, electrical and acoustical characterizations of the sensors deposited on aluminum substrates were able to show the quality of our achievement.
Shi, Ya-Zhou; Jin, Lei; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie
2015-01-01
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions. PMID:26682822
Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus.
Jin, Bonghwan; Jeong, Ki-Woong; Kim, Yangmee
2014-08-29
The thermophilic bacterium Thermus aquaticus is a well-known source of Taq polymerase. Here, we studied the structure and dynamics of the T. aquaticus cold-shock protein (Ta-Csp) to better understand its thermostability using NMR spectroscopy. We found that Ta-Csp has a five-stranded β-barrel structure with five salt bridges which are important for more rigid structure and a higher melting temperature (76 °C) of Ta-Csp compared to mesophilic and psychrophilic Csps. Microsecond to millisecond time scale exchange processes occur only at the β1-β2 surface region of the nucleic acid binding site with an average conformational exchange rate constant of 674 s(-1). The results imply that thermophilic Ta-Csp has a more rigid structure and may not need high structural flexibility to accommodate nucleic acids upon cold shock compared to its mesophile and psychrophile counterparts.
A numerical-perturbation method for the nonlinear analysis of structural vibrations
Nayfeh, A. H.; Mook, D. T.; Lobitz, D. W.
1974-01-01
A numerical-perturbation method is proposed for the determination of the nonlinear forced response of structural elements. Purely analytical techniques are capable of determining the response of structural elements having simple geometries and simple variations in thickness and properties, but they are not applicable to elements with complicated structure and boundaries. Numerical techniques are effective in determining the linear response of complicated structures, but they are not optimal for determining the nonlinear response of even simple elements when modal interactions take place due to the complicated nature of the response. Therefore, the optimum is a combined numerical and perturbation technique. The present technique is applied to beams with varying cross sections.
DNA origami design of dolphin-shaped structures with flexible tails.
Andersen, Ebbe S; Dong, Mingdong; Nielsen, Morten M; Jahn, Kasper; Lind-Thomsen, Allan; Mamdouh, Wael; Gothelf, Kurt V; Besenbacher, Flemming; Kjems, Jørgen
2008-06-01
The DNA origami method allows the folding of long, single-stranded DNA sequences into arbitrary two-dimensional structures by a set of designed oligonucleotides. The method has revealed an unexpected strength and efficiency for programmed self-assembly of molecular nanostructures and makes it possible to produce fully addressable nanostructures with wide-reaching application potential within the emerging area of nanoscience. Here we present a user-friendly software package for designing DNA origami structures ( http://www.cdna.dk/origami ) and demonstrate its use by the design of a dolphin-like DNA origami structure that was imaged by high-resolution AFM in liquid. The software package provides automatic generation of DNA origami structures, manual editing, interactive overviews, atomic models, tracks the design history, and has a fully extendable toolbox. From the AFM images, it was demonstrated that different designs of the dolphin tail region provided various levels of flexibility in a predictable fashion. Finally, we show that the addition of specific attachment sites promotes dimerization between two independently self-assembled dolphin structures, and that these interactions stabilize the flexible tail.
Shi, Ya-Zhou; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie
2015-01-01
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we will further develop the model by improving the implicit-salt electrostatic potential and involving a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. As compared with the experimental data, the present model can predict 3D structures of RNA hairpins with bulge/internal loops (<77nt) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy, and the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different length at extensive divalent/monovalent ion conditions. In addition, the model successfully pred...
Guerin, Heather Lynch; Elliott, Dawn M
2007-04-01
The annulus fibrosus of the intervertebral disc is comprised of concentric lamella of oriented collagen fibers embedded in a hydrated proteoglycan matrix with smaller amounts of minor collagens, elastin, and small proteoglycans. Its structure and composition enable the disc to withstand complex loads and result in inhomogeneous, anisotropic, and nonlinear mechanical behaviors. The specific contributions of the annulus fibrosus constituent structures to mechanical function remain unclear. Therefore, the objective of this study was to use a structurally motivated, anisotropic, nonlinear strain energy model of annulus fibrosus to determine the relative contributions of its structural components to tissue mechanical behavior. A nonlinear, orthotropic hyperelastic model was developed for the annulus fibrosus. Terms to describe fibers, matrix, and interactions between annulus fibrosus structures (shear and normal to the fiber directions) were explicitly included. The contributions of these structures were analyzed by including or removing terms and determining the effect on the fit to multidimensional experimental data. Correlation between experimental and model-predicted stress, a Bland-Altman analysis of bias and standard deviation of residuals, and the contribution of structural terms to overall tissue stress were calculated. Both shear and normal interaction terms were necessary to accurately model multidimensional behavior. Inclusion of shear interactions more accurately described annulus fibrosus nonlinearity. Fiber stretch and shear interactions dominated contributions to circumferential direction stress, while normal and shear interactions dominated axial stress. The results suggest that interactions between fibers and matrix, perhaps facilitated by crosslinks, elastin, or minor collagens, augment traditional (i.e., fiber-uncrimping) models of nonlinearity.
Multipolar nonlinear nanophotonics
Smirnova, Daria
2016-01-01
Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...
Wei, Jingsong; Wang, Rui; Yan, Hui; Fan, Yongtao
2014-04-07
This study explores how interference manipulation breaks through the diffraction limit and induces super-resolution nano-optical hot spots through the nonlinear Fabry-Perot cavity structure. The theoretical analytical model is established, and the numerical simulation results show that when the thickness of the nonlinear thin film inside the nonlinear Fabry-Perot cavity structure is adjusted to centain value, the constructive interference effect can be formed in the central point of the spot, which causes the nanoscale optical hot spot in the central region to be produced. The simulation results also tell us that the hot spot size is sensitive to nonlinear thin film thickness, and the accuracy is required to be up to nanometer or even subnanometer scale, which is very large challenging for thin film deposition technique, however, slightly changing the incident laser power can compensate for drawbacks of low thickness accuracy of nonlinear thin films. Taking As(2)S(3) as the nonlinear thin film, the central hot spot with a size of 40nm is obtained at suitable nonlinear thin film thickness and incident laser power. The central hot spot size is only about λ/16, which is very useful in super-high density optical recording, nanolithography, and high-resolving optical surface imaging.
Directory of Open Access Journals (Sweden)
Bystroff Christopher
2011-10-01
Full Text Available Abstract Background Psychrophiles, cold-adapted organisms, have adapted to live at low temperatures by using a variety of mechanisms. Their enzymes are active at cold temperatures by being structurally more flexible than mesophilic enzymes. Even though, there are some indications of the possible structural mechanisms by which psychrophilic enzymes are catalytic active at cold temperatures, there is not a generalized structural property common to all psychrophilic enzymes. Results We examine twenty homologous enzyme pairs from psychrophiles and mesophiles to investigate flexibility as a key characteristic for cold adaptation. B-factors in protein X-ray structures are one way to measure flexibility. Comparing psychrophilic to mesophilic protein B-factors reveals that psychrophilic enzymes are more flexible in 5-turn and strand secondary structures. Enzyme cavities, identified using CASTp at various probe sizes, indicate that psychrophilic enzymes have larger average cavity sizes at probe radii of 1.4-1.5 Å, sufficient for water molecules. Furthermore, amino acid side chains lining these cavities show an increased frequency of acidic groups in psychrophilic enzymes. Conclusions These findings suggest that embedded water molecules may play a significant role in cavity flexibility, and therefore, overall protein flexibility. Thus, our results point to the important role enzyme flexibility plays in adaptation to cold environments.
Xu, Jiaxiong
2016-07-04
The metal molybdenum (Mo) thin films deposited on flexible substrates can act as the contact electrode of flexible Cu(In,Ga)Se2 or Cu2ZnSn(S,Se)4 solar cells. In this work, in order to enhance the structural and electrical characteristics of flexible Mo thin films, a negative substrate bias was applied during the direct current sputtering of Mo thin films. The flexible substrates used for growing the Mo films were stainless steel foils and polyimides. The characteristics of Mo thin films were studied by x-ray diffraction and sheet resistance measurements. The measured results reveal that an optimal value of negative substrate bias can be found for improving the electrical and structural characteristics of Mo thin films on flexible substrates. The minimum sheet resistances of Mo thin films are 2.50 Ω/sq and 2.73 Ω/sq for the stainless steel foil and polyimide substrates, respectively.
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
The present paper describes the development of a new hybrid computational approach for applicability for nonlinear/linear thermal structural analysis. The proposed transfinite element approach is a hybrid scheme as it combines the modeling versatility of contemporary finite elements in conjunction with transform methods and the classical Bubnov-Galerkin schemes. Applicability of the proposed formulations for nonlinear analysis is also developed. Several test cases are presented to include nonlinear/linear unified thermal-stress and thermal-stress wave propagations. Comparative results validate the fundamental capablities of the proposed hybrid transfinite element methodology.
DEFF Research Database (Denmark)
Thomsen, Jon Juel; Blekhman, Iliya I.
2007-01-01
, and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...
Preliminary results on the dynamics of large and flexible space structures in Halo orbits
Colagrossi, Andrea; Lavagna, Michèle
2017-05-01
The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around
Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength
Hou, Wenya; Kielhorn, Martin; Arai, Yoshiyuki; Nagai, Takeharu; Kessels, Michael M.; Qualmann, Britta; Heintzmann, Rainer
2016-01-01
Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM). To achieve the required nonlinear dependence in nonlinear SIM (NL-SIM) we exploited the photoswitching of the recently introduced fluorophore Kohinoor. It is particularly suitable due to its positive contrast photoswitching characteristics. Contrary to other reversibly photoswitchable fluorescent proteins which only have high photostability in living cells, Kohinoor additionally showed little degradation in fixed cells over many switching cycles. PMID:27783656
Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas
Zonca, Fulvio; Briguglio, Sergio; Fogaccia, Giuliana; Vlad, Gregorio; Wang, Xin
2014-01-01
A general theoretical framework for investigating nonlinear dynamics of phase space zonal structures is presented in this work. It is then, more specifically, applied to the limit where the nonlinear evolution time scale is smaller or comparable to the wave-particle trapping period. In this limit, both theoretical and numerical simulation studies show that non-adiabatic frequency chirping and phase locking could lead to secular resonant particle transport on meso- or macro-scales. The interplay between mode structures and resonant particles then provides the crucial ingredient to properly understand and analyze the nonlinear dynamics of Alfv\\'en wave instabilities excited by non-perturbative energetic particles in burning fusion plasmas. Analogies with autoresonance in nonlinear dynamics and with superradiance in free electron lasers are also briefly discussed.
Stabilization of nonlinear systems with parametric uncertainty using variable structure techniques
Energy Technology Data Exchange (ETDEWEB)
Schoenwald, D.A. [Oak Ridge National Lab., TN (United States); Oezguener, Ue. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering
1995-07-01
The authors present a result on the robust stabilization of a class of nonlinear systems exhibiting parametric uncertainty. They consider feedback linearizable nonlinear systems with a vector of unknown constant parameters perturbed about a known value. A Taylor series of the system about the nominal parameter vector coupled with a feedback linearizing control law yields a linear system plus nonlinear perturbations. Via a structure matching condition, a variable structure control law is shown to exponentially stabilize the full system. The novelty of the result is that the linearizing coordinates are completely known since they are defined about the nominal parameter vector, and fewer restrictions are imposed on the nonlinear perturbations than elsewhere in the literature.
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
conditions. 15. SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...associated Laplacian. We use the general theory for approximation of Hilbert complexes and the finite element exterior calculus and introduce some stable mixed...Ωk(B)→ Ωk+1(B) be the standard exterior derivative given by (dβ)I0⋯Ik = k ∑ i=0 (−1)iβI0⋯Îi⋯Ik, Ii , where the hat over an index implies the
Thermal rectification in non-linear structures with bulk losses
Schmidt, Martin; Kottos, Tsampikos
2013-03-01
A mechanism for thermal rectification based on the interplay between non-uniform bulk losses with nonlinearity is presented. We theoretically analyze the phenomenon using an anharmonic array of coupled oscillators coupled to the left and right with two Langevin reservoirs. A third probe thermostat (with temperature TB) is placed in an asymmetric position in the bulk of the lattice thus breaking the translational symmetry and leading to rectification of heat flow. We note that for TB = 0 this Langevin term is equivalent to a simple friction. We find that an increase of the friction strength can increase both the asymmetry and heat flux. Visiting Student from Germany
Fluid transport due to nonlinear fluid-structure interaction
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
1997-01-01
of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...
Microscopic structures from reduction of continuum nonlinear problems
Lovison, Alberto
2011-01-01
We present an application of the Amann-Zehnder exact finite reduction to a class of nonlinear perturbations of elliptic elasto-static problems. We propose the existence of minmax solutions by applying Ljusternik-Schnirelmann theory to a finite dimensional variational formulation of the problem, based on a suitable spectral cut-off. As a by-product, with a choice of fit variables, we establish a variational equivalence between the above spectral finite description and a discrete mechanical model. By doing so, we decrypt the abstract information encoded in the AZ reduction and give rise to a concrete and finite description of the continuous problem.
Indian Academy of Sciences (India)
Vahid Azimi; Mohammad Bagher Menhaj; Ahmad Fakharian
2015-04-01
In this paper, a robust H2/H∞ control with regional Pole-Placement is considered for tool position control of a nonlinear uncertain flexible robot manipulator. The uncertain nonlinear system is first approximated by Takagi and Sugeno's (T-S) fuzzy model. To achieve a better tracking, an extra state (error of tracking) is then augmented to the T-S model. Based on each local linear subsystem with augmented state, a regional pole-placement state feedback H2/H∞ controller is properly designed via linear matrix inequality (LMI) approach. Parallel Distributed Compensation (PDC) is also used to establish the whole controller for the overall system and the total linear system is obtained by using the weighted sum of the local linear systems. A fuzzy weighted online computation (FWOC) component is employed to update fuzzy weights in real time for different operating points of the system. Simula-tion results are presented to validate the effectiveness of the proposed controller like robustness and good load disturbance attenuation and accurate tracking, even in the presence of parameter variations and also load disturbances on the motor and the tool. The superiority of the proposed control scheme is finally highlighted in comparison with the Quantitative feedback theory (QFT) controller, the QFT controller of order 13, a polynomial controller and the so-called linear sliding-mode controller methods.
Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings
Energy Technology Data Exchange (ETDEWEB)
Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)
2011-03-15
Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.
2010-03-31
comprised linear structural dynamics (e.g. [7.2]), vibro-acoustics, aeroelasticity (e.g. [7.1]), rotordynamics [7.7] (including the joint simulation...2006. [7.7] Murthy, R., Mignolet, M.P., and El-Shafei, A., "Nonparametric Stochastic Modeling of Structural Uncertainty in Rotordynamic
Zheng, Wenjun; Tekpinar, Mustafa
2014-01-01
To circumvent the difficulty of directly solving high-resolution biomolecular structures, low-resolution structural data from Cryo-electron microscopy (EM) and small angle solution X-ray scattering (SAXS) are increasingly used to explore multiple conformational states of biomolecular assemblies. One promising venue to obtain high-resolution structural models from low-resolution data is via data-constrained flexible fitting. To this end, we have developed a new method based on a coarse-grained Cα-only protein representation, and a modified form of the elastic network model (ENM) that allows large-scale conformational changes while maintaining the integrity of local structures including pseudo-bonds and secondary structures. Our method minimizes a pseudo-energy which linearly combines various terms of the modified ENM energy with an EM/SAXS-fitting score and a collision energy that penalizes steric collisions. Unlike some previous flexible fitting efforts using the lowest few normal modes, our method effectively utilizes all normal modes so that both global and local structural changes can be fully modeled with accuracy. This method is also highly efficient in computing time. We have demonstrated our method using adenylate kinase as a test case which undergoes a large open-to-close conformational change. The EM-fitting method is available at a web server (http://enm.lobos.nih.gov), and the SAXS-fitting method is available as a pre-compiled executable upon request.
Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint
Energy Technology Data Exchange (ETDEWEB)
Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-14
Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designing wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.
Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography.
Schüller-Ravoo, Sigrid; Feijen, Jan; Grijpma, Dirk W
2011-12-01
3D porous and non-porous structures are designed and prepared by stereolithography using resins based on PTMC macromers. Tough, flexible network films prepared in this manner show E moduli of ≈3.8 MPa and high elongations at break >900%; tensile strengths are ≈4.2 MPa. These values increase with increasing PTMC macromer molecular weight. To reach suitable viscosities for processing, up to 45 wt% propylene carbonate is added as non-reactive diluent. The solid specimens have compression moduli of 3.1-4.2 MPa, similar to the values determined in tensile testing. The built porous structures show porosities of 53-66% and average pore sizes of 309-407 µm. The compression moduli of the porous structures are significantly lower than those of the solid structures.
National Research Council Canada - National Science Library
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-01-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an "in situ growth for conductive wrapping" and an electrode material of polypyrrole (PPy...
Adhesive nonlinearity in Lamb-wave-based structural health monitoring systems
Shan, Shengbo; Cheng, Li; Li, Peng
2017-02-01
Structural health monitoring (SHM) techniques with nonlinear Lamb waves have gained wide popularity due to their high sensitivity to microstructural changes for the detection of damage precursors. Despite the significant progress made, various unavoidable nonlinear sources in a practical SHM system, as well as their impact on the detection, have not been fully assessed and understood. For the real-time and online monitoring, transducers are usually permanently bonded on the structure under inspection. In this case, the inherent material nonlinear properties of the bonding layer, referred to as adhesive nonlinearity (AN), may create undesired interference to the SHM system, or even jeopardize the damage diagnosis if they become serious. In this paper, a nonlinear theoretical framework is developed, covering the process of wave generation, propagation and sensing, with the aim of investigating the mechanism and characteristics of AN-induced Lamb waves in plates, which potentially allows for further system optimization to minimize the influence of AN. The model shows that an equivalent nonlinear normal stress is generated in the bonding layer due to its nonlinear material behavior, which, through its coupling with the system, is responsible for the generation of second harmonic Lamb waves in the plate, subsequently resulting in the nonlinear responses in the captured signals. With the aid of the finite element (FE) modeling and a superposition method for nonlinear feature extraction, the theoretical model is validated in terms of generation mechanism of the AN-induced wave components as well as their propagating characteristics. Meanwhile, the influence of the AN is evaluated by comparing the AN-induced nonlinear responses with those caused by the material nonlinearity of the plate, showing that AN should be considered as a non-negligible nonlinear source in a typical nonlinear Lamb-wave-based SHM system. In addition, the theoretical model is also experimentally