Nonlinear friction dynamics on polymer surface under accelerated movement
Directory of Open Access Journals (Sweden)
Yuuki Aita
2017-04-01
Full Text Available Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.
Nonlinear dynamic analysis of a structure with a friction-based seismic base isolation system
Suy, H.M.R.; Fey, R.H.B.; Galanti, F.M.B.; Nijmeijer, H.
2007-01-01
Abstract Many dynamical systems are subject to some form of non-smooth or discontinuous nonlinearity. One eminent example of such a nonlinearity is friction. This is caused by the fact that friction always opposes the direction of movement, thus changing sign when the sliding velocity changes sign.
Nonlinear dynamic analysis of a structure with a friction-based seismic base isolation system
Suy, H.M.R.; Fey, R.H.B.; Galanti, F.M.B.; Nijmeijer, H.
2007-01-01
Many dynamical systems are subject to some form of non-smooth or discontinuous nonlinearity. One eminent example of such a nonlinearity is friction. This is caused by the fact that friction always opposes the direction of movement, thus changing sign when the sliding velocity changes sign. In this
Nonlinear dynamics and modelling of various wooden toys with impact and friction
Leine, R.I.; Campen, van D.H.; Glocker, C.
2003-01-01
In this paper, we study bifurcations in systems with impact and friction, modeled with a rigid multibody approach. Knowledge from the field of nonlinear dynamics is therefore combined with theory from the field of non-smooth mechanics. We study the nonlinear dynamics of three commercial wooden toys.
International Nuclear Information System (INIS)
Zheng, Enlai; Zhu, Sihong; Zhou, Xinlong
2014-01-01
It is essential to establish a dynamic model to predict and evaluate the dynamic performance of a nonlinear dry friction mounting system during design procedure, when it is impossible to carry out the test of prototype. Unlike the conventional ideal dry friction model where the direction of dry friction force is always considered to be opposite to that of relative velocity, a new equivalent resistance model of dry friction force is proposed based on the bilinear hysteretic model by introducing a parameter g in this work. The equivalent resistance contains spring force and damping force, whose direction is not opposite to that of relative velocity. Then, a dynamic model of the block foundation with nonlinear dry friction mounting system is established. When the equivalent resistance is applied to the dynamic model, its dynamic responses are obtained under common practical forms of press loads: rectangular pulse, half-sine pulse, and triangular pulse. Compared to experimental results, the dynamic responses based on the equivalent resistance model are more consistent with the simulation results based on the ideal dry friction model and the validity of the equivalent resistance model for the bilinear hysteretic model in this work is verified. Furthermore, the effect of the pulse shape and pulse duration on the dynamic responses of the block foundation with nonlinear dry friction mounting system is investigated.
Fey, R.H.B.; Suy, H.M.R.; Galanti, F.M.B.; Nijmeijer, H.; Papadrakakis, M.; Charmpis, D.C.; Legaros, N.D.; Ssompanakis, Y.
2007-01-01
Many dynamic civil structures are subject to some form of non-smooth or discontinuous nonlinearity. One eminent example of such nonlinearity is friction. This is caused by the fact that friction always opposes the direction of movement, thus changing sign when the sliding velocity changes sign. In
DEFF Research Database (Denmark)
Friis, Tobias; Orfanos, Antonios; Katsanos, Evangelos
The identification of the modal characteristics of engineering systems under operational conditions is commonly conducted with the use of the Operational Modal Analysis (OMA), being a class of useful tools employed within various fields of structural, mechanical as well as marine and naval...... engineering. The current OMA methods have been advanced on the basis of two fundamental, though, restrictive assumptions: (i) linearity and (ii) stationarity. Nevertheless, there are several applications that are inherently related to various nonlinear mechanisms, which, in turn, violate the two cornerstones...... of OMA and hence, question its robustness and efficiency. Along these lines, the current study addresses the effect of friction-induced nonlinearity on OMA-identified dynamic characteristics of an experimental set up consisting of a pair of reduced scale offshore platform models that are connected...
1986-03-31
Martins, J.A.C. and Campos , L.T. [1986], "Existence and Local Uniqueness of Solutions to Contact Problems in Elasticity with Nonlinear Friction...noisy and ttoubl esome vibt.t4ons. If the sound generated by the friction-induced oscillations of Rviolin strings may be the delight of all music lovers...formulation. See 0den and Martins - [1985] and Rabier, Martins, Oden and Campos [1986]. - It is now simple to show, in a 6o’uman manner, that, for
Directory of Open Access Journals (Sweden)
Zheng Yang
2013-01-01
Full Text Available Torsional spring-loaded antibacklash gear which can improve the transmission precision is widely used in many precision transmission fields. It is very important to investigate the dynamic characteristics of antibacklash gear. In the paper, applied force analysis is completed in detail. Then, defining the starting point of double-gear meshing as initial position, according to the meshing characteristic of antibacklash gear, single- or double-tooth meshing states of two gear pairs and the transformation relationship at any moment are determined. Based on this, a nonlinear model of antibacklash gear with time-varying friction and meshing stiffness is proposed. The influences of friction and variations of torsional spring stiffness, damping ratio and preload on dynamic transmission error (DTE are analyzed by numerical calculation and simulation, and the results show that antibacklash gear can increase the composite meshing stiffness; when the torsional spring stiffness is large enough, the oscillating components of the DTE (ODTE and the RMS of the DTE (RDTE trend to be a constant value; the variations of ODTE and RDTE are not significant, unless preload exceeds a certain value.
Nonlinear friction model for servo press simulation
Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo
2013-12-01
The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.
Polymer friction Molecular Dynamics
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.
We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....
Mukhopadhyay, A. K.
1978-01-01
A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.
Friction modelling of preloaded tube contact dynamics
International Nuclear Information System (INIS)
Hassan, M.A.; Rogers, R.J.
2004-01-01
Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper, and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used. (authors)
Friction modelling of preloaded tube contact dynamics
International Nuclear Information System (INIS)
Hassan, M.A.; Rogers, R.J.
2005-01-01
Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used
Rubber friction and tire dynamics
International Nuclear Information System (INIS)
Persson, B N J
2011-01-01
We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.
Rubber friction and tire dynamics.
Persson, B N J
2011-01-12
We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.
Coupled bending and torsional vibration of a rotor system with nonlinear friction
International Nuclear Information System (INIS)
Hua, Chunli; Cao, Guohua; Zhu, Zhencai; Rao, Zhushi; Ta, Na
2017-01-01
Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.
Coupled bending and torsional vibration of a rotor system with nonlinear friction
Energy Technology Data Exchange (ETDEWEB)
Hua, Chunli; Cao, Guohua; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China); Rao, Zhushi; Ta, Na [Shanghai Jiao Tong University, Shanghai (China)
2017-06-15
Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Directory of Open Access Journals (Sweden)
Ren He
2015-01-01
Full Text Available Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and conducts the contrastive analysis on the dynamic characteristics based on this mathematical model. Meanwhile, the accuracy of the nonlinear coupling mathematical model proposed above is verified on the hardware in the loop simulation platform, and nonlinear coupling characteristics of the integrated system are also analyzed through experiments.
Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities
Directory of Open Access Journals (Sweden)
Y. N. Pavlov
2015-01-01
Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic
Nonlinear dynamics in Nuclotron
International Nuclear Information System (INIS)
Dinev, D.
1997-01-01
The paper represents an extensive study of the nonlinear beam dynamics in the Nuclotron. Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chromatic perturbations have been investigated taking into account the measured field imperfections. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated for different particle energies and betatron tunes
Nonlinear dynamics and astrophysics
International Nuclear Information System (INIS)
Vallejo, J. C.; Sanjuan, M. A. F.
2000-01-01
Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)
Intramolecular and nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Davis, M.J. [Argonne National Laboratory, IL (United States)
1993-12-01
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
Dynamic frictional contact for elastic viscoplastic material
Directory of Open Access Journals (Sweden)
Kenneth L. Kuttler
2007-05-01
Full Text Available Using a general theory for evolution inclusions, existence and uniqueness theorems are obtained for weak solutions to a frictional dynamic contact problem for elastic visco-plastic material. An existence theorem in the case where the friction coefficient is discontinuous is also presented.
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Nonlinear internal friction, chaos, fractal and musical instruments
International Nuclear Information System (INIS)
Sun, Z.Q.; Lung, C.W.
1995-08-01
Nonlinear and structure sensitive internal friction phenomena in materials are used for characterizing musical instruments. It may be one of the most important factors influencing timbre of instruments. As a nonlinear dissipated system, chaos and fractals are fundamental peculiarities of sound spectra. It is shown that the concept of multi range fractals can be used to decompose the frequency spectra of melody. New approaches are suggested to improve the fabrication, property characterization and physical understanding of instruments. (author). 18 refs, 4 figs
Non-linear friction in reciprocating hydraulic rod seals: Simulation and measurement
International Nuclear Information System (INIS)
Bullock, A K; Tilley, D G; Johnston, D N; Bowen, C R; Keogh, P S
2009-01-01
Non-linear seal friction can impede the performance of hydraulic actuation systems designed for high precision positioning with favourable dynamic response. Methods for predicting seal friction are required to help develop sealing systems for this type of application. Recent simulation techniques have claimed progress, although have yet to be validated experimentally. A conventional reciprocating rod seal is analysed using established elastohydrodynamic theory and the mixed lubrication Greenwood-Williamson-average Reynolds model. A test rig was used to assess the accuracy of the simulation results for both instroke and outstroke. Inverse hydrodynamic theory is shown to predict a U 0.5 power law between rod speed and friction. Comparison with experimental data shows the theory to be qualitatively inaccurate and to predict friction levels an order of magnitude lower than those measured. It was not possible to model the regions very close to the inlet and outlet due to the high pressure gradients at the edges of the contact. The mixed lubrication model produces friction levels within the correct order of magnitude, although incorrectly predicts higher friction during instroke than outstroke. Previous experiments have reported higher friction during instroke than outstroke for rectangular seals, suggesting that the mixed lubrication model used could possibly be suitable for symmetric seals, although not for seal tribology in general.
Perspectives of nonlinear dynamics
International Nuclear Information System (INIS)
Jackson, E.A.
1985-03-01
Four lectures were given weekly in October and November, 1984, and some of the ideas presented here will be of use in the future. First, a brief survey of the historical development of nonlinear dynamics since about 1890 was given, and then, a few topics were discussed in detail. The objective was to introduce some of many concepts and methods which are presently used for describing nonlinear dynamics. The symbiotic relationship between sciences of all types and mathematics, two main categories of the models describing nature, the method for describing the dynamics of a system, the idea of control parameters and topological dimension, the asymptotic properties of dynamics, abstract dynamics, the concept of embedding, singular perturbation theory, strange attractor, Fermi-Pasta-Ulam phenomena, an example of computer heuristics, the idea of elementary catastrophe theory and so on were explained. The logistic map is the simplest introduction to complex dynamics. The complicated dynamics is referred to as strange attractors. Two-dimensional maps are the highest dimensional maps commonly studied. These were discussed in detail. (Kako, I.)
Static and dynamic friction of hierarchical surfaces.
Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M
2016-12-01
Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.
DEFF Research Database (Denmark)
Mosekilde, Erik
Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...... food-web systems, nephron pressure and flow regulation, pulsatile secretion of hormones, thermostatically controlled radiator systems, post-stall maneuvering of aircrafts, transfer electron devices for microwave generation, economic long waves, human decision making behavior, and pattern formation...... in chemical reaction-diffusion systems....
Nonlinear dynamics in psychology
Directory of Open Access Journals (Sweden)
Stephen J. Guastello
2001-01-01
Full Text Available This article provides a survey of the applications of nonlinear dynamical systems theory to substantive problems encountered in the full scope of psychological science. Applications are organized into three topical areas – cognitive science, social and organizational psychology, and personality and clinical psychology. Both theoretical and empirical studies are considered with an emphasis on works that capture the broadest scope of issues that are of substantive interest to psychological theory. A budding literature on the implications of NDS principles in professional practice is reported also.
Global Analysis of Nonlinear Dynamics
Luo, Albert
2012-01-01
Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.
Mechanisms of shock-induced dynamic friction
International Nuclear Information System (INIS)
Winter, R E; Ball, G J; Keightley, P T
2006-01-01
The mechanism of shock-induced dynamic friction has been explored through an integrated programme of experiments and numerical simulations. A novel experimental technique has been developed for observing the sub-surface deformation in aluminium when sliding against a steel anvil at high velocity and pressure. The experimental observations suggest that slight differences in conditions at the interface between the metals affect frictional behaviour even at the very high-velocity, high-pressure regime studied here. However, a clear finding from the experimental work is the presence of two distinct modes of deformation termed deep and shallow. The deep deformation is observed in a region of the aluminium specimen where the interfacial velocity is relatively low and the shallow deformation is observed in a region where the interfacial velocity is higher. A 1D numerical treatment is presented which predicts the existence of two mechanisms for dynamic friction termed 'asymptotic melting' and 'slide-then-lock'. In both modes there is a warm-up phase in which the interface temperature is increased by frictional heating. For high initial sliding velocity, this is followed by the onset of the asymptotic melting state, in which the temperature is almost constant and melting is approached asymptotically. This mechanism produces low late-time frictional stress and shallow deformation. For lower initial sliding velocity, the warm-up terminates in a violent work hardening event that locks the interface and launches a strong plastic shear wave into the weaker material. This slide-then-lock mechanism is characterized by sustained high frictional stress and deep plastic deformation. These predicted mechanisms offer a plausible and consistent explanation for the abrupt transitions in the depth of sub-surface deformation observed in the experiments. A key conclusion arising from the current work is that the frictional stress does not vary smoothly with pressure or sliding velocity
Dynamic Portfolio Choice with Frictions
DEFF Research Database (Denmark)
Garleanu, Nicolae; Heje Pedersen, Lasse
2016-01-01
We show how portfolio choice can be modeled in continuous time with transitory and persistent transaction costs, multiple assets, multiple signals predicting returns, and general signal dynamics. The objective function is derived from the limit of discrete-time models with endogenous transaction...
Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction
International Nuclear Information System (INIS)
Li Zhi-Xin; Cao Qing-Jie; Alain, Léger
2016-01-01
We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. (paper)
A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems
J. Zhao (Jing); E.A.H. Vollebregt (Edwin); C.W. Oosterlee (Cornelis)
2015-01-01
htmlabstractThis paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One
Are there reliable constitutive laws for dynamic friction?
Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew
2015-09-28
Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).
Dynamic contact with Signorini's condition and slip rate dependent friction
Directory of Open Access Journals (Sweden)
Kenneth Kuttler
2004-06-01
Full Text Available Existence of a weak solution for the problem of dynamic frictional contact between a viscoelastic body and a rigid foundation is established. Contact is modelled with the Signorini condition. Friction is described by a slip rate dependent friction coefficient and a nonlocal and regularized contact stress. The existence in the case of a friction coefficient that is a graph, which describes the jump from static to dynamic friction, is established, too. The proofs employ the theory of set-valued pseudomonotone operators applied to approximate problems and a priori estimates.
Nonlinear Dynamic Phenomena in Mechanics
Warminski, Jerzy; Cartmell, Matthew P
2012-01-01
Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear
Nonlinear dynamics: Challenges and perspectives
Indian Academy of Sciences (India)
fields such as economics, social dynamics and so on [6–10]. These nonlinear ..... developing all-optical computers in homogeneous bulk media such as pho- ... suggestions have been given to develop effective chaos-based cryptographic.
Dynamics of nonlinear feedback control
Snippe, H.P.; Hateren, J.H. van
2007-01-01
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...
Directory of Open Access Journals (Sweden)
Yong Zhao
1997-01-01
Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.
Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects
Misel, J. E.; Nenno, S. B.; Takahashi, D.
1984-01-01
A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads.
Effect of time derivative of contact area on dynamic friction
Arakawa, Kazuo
2015-01-01
This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball’s angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F= μN+μη.dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is ...
Nonlinear dynamics in biological systems
Carballido-Landeira, Jorge
2016-01-01
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...
Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model
Directory of Open Access Journals (Sweden)
Xingming Wang
2017-01-01
Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.
Dynamics of nonlinear feedback control
Snippe, H.P.; Hateren, J.H. van
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain
Nonlinear Time Reversal Acoustic Method of Friction Stir Weld Assessment, Phase I
National Aeronautics and Space Administration — The goal of the project is demonstration of the feasibility of Friction Stir Weld (FSW) assessment by novel Nonlinear Time Reversal Acoustic (TRA) method. Time...
Directory of Open Access Journals (Sweden)
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
Nonlinear Dynamics in Spear Wigglers
International Nuclear Information System (INIS)
2002-01-01
BL11, the most recently installed wiggler in the SPEAR storage ring at SSRL, produces a large nonlinear perturbation of the electron beam dynamics, which was not directly evident in the integrated magnetic field measurements. Measurements of tune shifts with betatron oscillation amplitude and with closed orbit shifts were used to characterize the nonlinear fields of the SPEAR insertion devices (IDs). Because of the narrow pole width in BL11, the nonlinear fields seen along the wiggling electron trajectory are dramatically different than the flip coil measurements made along a straight line. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Corrector magnets to cancel the BL11 nonlinear fields are presently under construction
Device Applications of Nonlinear Dynamics
Baglio, Salvatore
2006-01-01
This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.
Nonlinear transport of dynamic system phase space
International Nuclear Information System (INIS)
Xie Xi; Xia Jiawen
1993-01-01
The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example
Nonlinear analysis of pupillary dynamics.
Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo
2016-02-01
Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.
Nonlinear Deformable-body Dynamics
Luo, Albert C J
2010-01-01
"Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...
Dynamics of nonlinear feedback control.
Snippe, H P; van Hateren, J H
2007-05-01
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.
A fast nonlinear conjugate gradient based method for 3D frictional contact problems
Zhao, J.; Vollebregt, E.A.H.; Oosterlee, C.W.
2014-01-01
This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from a 3D frictional contact problem. It incorporates an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar
Statistical methods in nonlinear dynamics
Indian Academy of Sciences (India)
Sensitivity to initial conditions in nonlinear dynamical systems leads to exponential divergence of trajectories that are initially arbitrarily close, and hence to unpredictability. Statistical methods have been found to be helpful in extracting useful information about such systems. In this paper, we review briefly some statistical ...
Nonlinear dynamics and plasma transport
International Nuclear Information System (INIS)
Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.
1992-01-01
In this paper we summarize the progress made over the last year in three different areas of research: (a) shear flow generation and reduced transport in fluids and plasma, (b) nonlinear dynamics and visualization of 3D flows, and (c) application of wavelet analysis to the study of fractal dimensions in experimental and numerical data
Analysis of Nonlinear Dynamic Structures
African Journals Online (AJOL)
Bheema
work a two degrees of freedom nonlinear system with zero memory was ... FRF is the most widely used method in structural dynamics which gives information about the ..... 3.6, which is the waterfall diagram of the same response, as well.
Understanding dynamic friction through spontaneously evolving laboratory earthquakes.
Rubino, V; Rosakis, A J; Lapusta, N
2017-06-29
Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source.
A technique for measuring dynamic friction coefficient under impact loading.
Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
Dynamics of translational friction in needle-tissue interaction during needle insertion.
Asadian, Ali; Patel, Rajni V; Kermani, Mehrdad R
2014-01-01
In this study, a distributed approach to account for dynamic friction during needle insertion in soft tissue is presented. As is well known, friction is a complex nonlinear phenomenon. It appears that classical or static models are unable to capture some of the observations made in systems subjected to significant frictional effects. In needle insertion, translational friction would be a matter of importance when the needle is very flexible, or a stop-and-rotate motion profile at low insertion velocities is implemented, and thus, the system is repeatedly transitioned from a pre-sliding to a sliding mode and vice versa. In order to characterize friction components, a distributed version of the LuGre model in the state-space representation is adopted. This method also facilitates estimating cutting force in an intra-operative manner. To evaluate the performance of the proposed family of friction models, experiments were conducted on homogeneous artificial phantoms and animal tissue. The results illustrate that our approach enables us to represent the main features of friction which is a major force component in needle-tissue interaction during needle-based interventions.
Nonlinear Dynamics of Nanomechanical Resonators
Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym
2007-03-01
Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).
Nonlinear Dynamic Characteristics of the Railway Vehicle
Uyulan, Çağlar; Gokasan, Metin
2017-06-01
The nonlinear dynamic characteristics of a railway vehicle are checked into thoroughly by applying two different wheel-rail contact model: a heuristic nonlinear friction creepage model derived by using Kalker 's theory and Polach model including dead-zone clearance. This two models are matched with the quasi-static form of the LuGre model to obtain more realistic wheel-rail contact model. LuGre model parameters are determined using nonlinear optimization method, which it's objective is to minimize the error between the output of the Polach and Kalker model and quasi-static LuGre model for specific operating conditions. The symmetric/asymmetric bifurcation attitude and stable/unstable motion of the railway vehicle in the presence of nonlinearities which are yaw damping forces in the longitudinal suspension system are analyzed in great detail by changing the vehicle speed. Phase portraits of the lateral displacement of the leading wheelset of the railway vehicle are drawn below and on the critical speeds, where sub-critical Hopf bifurcation take place, for two wheel-rail contact model. Asymmetric periodic motions have been observed during the simulation in the lateral displacement of the wheelset under different vehicle speed range. The coexistence of multiple steady states cause bounces in the amplitude of vibrations, resulting instability problems of the railway vehicle. By using Lyapunov's indirect method, the critical hunting speeds are calculated with respect to the radius of the curved track parameter changes. Hunting, which is defined as the oscillation of the lateral displacement of wheelset with a large domain, is described by a limit cycle-type oscillation nature. The evaluated accuracy of the LuGre model adopted from Kalker's model results for prediction of critical speed is higher than the results of the LuGre model adopted from Polach's model. From the results of the analysis, the critical hunting speed must be resolved by investigating the track tests
Non-linear Characteristic Modeling of Frictional Suspension Using Measured Data
Energy Technology Data Exchange (ETDEWEB)
Yoon, Chang Gyu; Jang, Jin Seok; Jin, Jae Hoon; Yoo, Wan Suk [Pusan National University, Busan (Korea, Republic of)
2015-01-15
Large-capacity of household washing machine can become unbalanced during the dehydration process. To solve this problem, several types of suspensions have been installed in a washing machine. In this study, physical tests were carried out on a frictional suspension, and the nonlinear characteristics were modeled by combining several simple physical models. The parameters were estimated based on the least squares solution. The simulation and test results were compared to verify the validity of the friction damper model.
Nonlinear dynamical triggering of slow slip
Energy Technology Data Exchange (ETDEWEB)
Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE
2010-12-10
Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred
Nonlinear dynamics in cardiac conduction
Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.
1988-01-01
Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.
Nonlinear Relaxation in Population Dynamics
Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo
We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.
Nonlinear analysis of dynamic signature
Rashidi, S.; Fallah, A.; Towhidkhah, F.
2013-12-01
Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.
Nonlinear dynamics aspects of particle accelerators
International Nuclear Information System (INIS)
Araki, H.; Ehlers, J.; Hepp, K.; Kippenhahn, R.; Weidenmuller, A.; Zittartz, J.
1986-01-01
This book contains 18 selections. Some of the titles are: Integrable and Nonintegrable Hamiltonian Systems; Nonlinear Dynamics Aspects of Modern Storage Rings; Nonlinear Beam-Beam Resonances; Synchro-Betatron Resonances; Review of Beam-Beam Simulations; and Perturbation Method in Nonlinear Dynamics
Directory of Open Access Journals (Sweden)
Xingjian Wang
2016-01-01
Full Text Available Attainment of high-performance motion/velocity control objectives for the Direct-Drive Rotary (DDR torque motor should fully consider practical nonlinearities in controller design, such as dynamic friction. The LuGre model has been widely utilized to describe nonlinear friction behavior; however, parameter identification for the LuGre model remains a challenge. A new dynamic friction parameter identification method for LuGre model is proposed in this study. Static parameters are identified through a series of constant velocity experiments, while dynamic parameters are obtained through a presliding process. Novel evolutionary algorithm (NEA is utilized to increase identification accuracy. Experimental results gathered from the identification experiments conducted in the study for a practical DDR torque motor control system validate the effectiveness of the proposed method.
Nonlinear dynamics between linear and impact limits
Pilipchuk, Valery N; Wriggers, Peter
2010-01-01
This book examines nonlinear dynamic analyses based on the existence of strongly nonlinear but simple counterparts to the linear models and tools. Discusses possible application to periodic elastic structures with non-smooth or discontinuous characteristics.
Nonlinear dynamics aspects of particle accelerators
International Nuclear Information System (INIS)
Jowett, J.M.; Turner, S.; Month, M.
1986-01-01
These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI)
Nonlinear dynamics aspects of particle accelerators. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Jowett, J M; Turner, S; Month, M
1986-01-01
These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI).
Frictional Heating During Sliding of two Semi-Spaces with Arbitrary Thermal Nonlinearity
Directory of Open Access Journals (Sweden)
Och Ewa
2014-12-01
Full Text Available Analytical and numerical solution for transient thermal problems of friction were presented for semi limited bodies made from thermosensitive materials in which coefficient of thermal conductivity and specific heat arbitrarily depend on the temperature (materials with arbitrary non-linearity. With the constant power of friction assumption and imperfect thermal contact linearization of nonlinear problems formulated initial-boundary thermal conductivity, using Kirchhoff transformation is partial. In order to complete linearization, method of successive approximations was used. On the basis of obtained solutions a numerical analysis of two friction systems in which one element is constant (cermet FMC-845 and another is variable (grey iron ChNMKh or aluminum-based composite alloy AL MMC was conducted
Friction Experiments for Dynamical Coefficient Measurement
Directory of Open Access Journals (Sweden)
J. J. Arnoux
2011-01-01
Full Text Available An experimental study, including three experimental devices, is presented in order to investigate dry friction phenomena in a wide range of sliding speeds for the steel on steel contact. A ballistic setup, with an air gun launch, allows to estimate the friction coefficient between 20 m/s and 80 m/s. Tests are completed by an adaptation of the sensor on a hydraulic tensile machine (0.01 m/s to 3 m/s and a pin-on-disk tribometer mounted on a CNC lathe (1 to 30 m/s. The interactions at the asperity scale are characterized by a white light interferometer surface analysis.
The Effect of Friction on the Nonlinear Vibration of the Cracked One-Stage Power Transmission
Directory of Open Access Journals (Sweden)
M. Rezaee
2016-01-01
Full Text Available : The gear systems are widely used in industry to transmit the power or change the direction of the torque. Due to the extensive usage of the gears, the detailed designing and the subsequent maintenance of these systems are more and more evident. System recognition can be achieved through modeling the system, investigating the system behavior, and comparing the results obtained through the model with the actual system behavior. Up to now, the effect of dry friction has not been taken into account in nonlinear vibration analysis and modeling of a cracked one-stage gear power transmission system. In this paper, the nonlinear vibration of a pair of cracked spur-gear system in presence of dry friction, static transmission error, clearance and time-variant mesh stiffness is investigated. To this end, the time-variant mesh stiffness of an intact tooth is calculated analytically. Then, the tooth root crack is modeled as a cracked cantilever beam. The governing nonlinear equation of motion is extracted accordingly, and in order to consider the effect of dry friction, the governing equation solved by Rung- Kutta method in three separate time spans. Finally, the frequency response and bifurcation diagrams are used to study the effect of the friction and tooth root crack on the nonlinear vibration behavior of the system.
Self-oscillations of aircraft landing gear shock-strut at considerable non-linear friction
Directory of Open Access Journals (Sweden)
Б.М. Шифрин
2004-01-01
Full Text Available The report considers self-oscillations at ε >1. The previous works were dedicated to the elastic frictional L.G. shock strut oscillations, the mathematical model of which is a non-linear differential equation with low ε parameter of its right-hand part.
Measurement of Dynamic Friction Coefficient on the Irregular Free Surface
International Nuclear Information System (INIS)
Yeom, S. H.; Seo, K. S.; Lee, J. H.; Lee, K. H.
2007-01-01
A spent fuel storage cask must be estimated for a structural integrity when an earthquake occurs because it freely stands on ground surface without a restriction condition. Usually the integrity estimation for a seismic load is performed by a FEM analysis, the friction coefficient for a standing surface is an important parameter in seismic analysis when a sliding happens. When a storage cask is placed on an irregular ground surface, measuring a friction coefficient of an irregular surface is very difficult because the friction coefficient is affected by the surface condition. In this research, dynamic friction coefficients on the irregular surfaces between a concrete cylinder block and a flat concrete slab are measured with two methods by one direction actuator
International Conference on Applications in Nonlinear Dynamics
Longhini, Patrick; Palacios, Antonio
2017-01-01
This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
Probing into frictional contact dynamics by ultrasound and electrical simulations
Directory of Open Access Journals (Sweden)
Changshan Jin
2014-12-01
Full Text Available Friction arises in the interface of friction pair, and therefore, it is difficult to detect it. Ultrasonic means, as a NDT, is the correct alternative. This paper introduces a means of detecting dynamic contact and an interpretation of behaviors of dry friction. It has been determined that frictional surfaces have a specific property of dynamic response hardening (DRH. Dynamic response forces and oscillation arise during static–kinetic transition process. While the contact zone of sliding surfaces appears “hard” in motion, it appears “soft” at rest. Consequently, a separation of the surfaces occurs and the real area of contact is decreased as sliding velocity increases. This is the cause of F–v descent phenomenon. When the friction comes to a rest, the remaining process of DRH and micro-oscillation do not disappear instantaneously, instead they gradually return to their original static position. The contact area, therefore, is increased by rest period (F–T ascent characteristics. Based on analogies between a solid unit (η–m–k and an R-L-C circuit, the DRH is demonstrated by electrical simulations.
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
Indian Academy of Sciences (India)
We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...
Effect of electrostatic field on dynamic friction coefficient of pistachio
Directory of Open Access Journals (Sweden)
M. H Aghkhani
2016-04-01
Full Text Available Introduction: Separation and grading of agricultural products from the production to supply, has notable importance. The separation can be done based on physical, electrical, magnetic, optical properties and etc. It is necessary for any development of new systems to study enough on the properties and behavior of agricultural products. Some characteristics for separation are size (length, width and thickness, hardness, shape, density, surface roughness, color, speed limit, aerodynamic properties, electrical conductivity, elasticity and coefficient of static friction point. So far, the friction properties of agricultural products used in the separating process, but the effect of electrostatic charging on static and dynamic coefficients of friction for separation had little attention. The aim of this study was to find out the interactions between electrostatic and friction properties to find a way to separate products that separation is not possible with conventional methods or not sufficiently accurate. In this paper, the separation of close and smiley pistachios by electrostatic charging was investigated. Materials and Methods: Kallehghoochi pistachio cultivar has the top rank in production in Iran. Therefore, it was used as a sample. The experimental design that used in this study, had moisture content at three levels (24.2, 14.5 and 8.1 percent, electric field intensity at three levels (zero, 4000 and 7000 V, speed of movement on the surface at three levels (1300, 2500 and 3300 mm per minute, friction surface (galvanized sheet iron, aluminum and flat rubber and pistachio type at two levels (filled splits and closed that was measured and analyzed in completely randomized factorial design. A friction measuring device (built in Ferdowsi University of Mashhad used to measure the friction force. It has a removable table that can move in two directions with adjustable speed. The test sample put into the vessel with internal dimensions of 300 × 150
Nonlinear dynamics and plasma transport
International Nuclear Information System (INIS)
Liu, C.S.; Sagdeev, R.; Antonsen, T.; Drake, J.; Hassma, A.; Guzdar, P.N.
1995-12-01
This progress report reports work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE from 1992-1995. The purpose of this program has been to promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport and to fully utilize the scientific expertise of Russian fusion and plasma community in collaboration with our group to address outstanding fusion theory problems. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. We have also studied linear stability problems which incorporated important physics issues related to geometry involving closed field lines and open field lines. This allows for a deeper analysis and understanding of the system both analytically and numerically. The strong collaboration between the Russian visitors and the US participants has led to a fruitful and strong research program that taps the complementary analytic and numerical capabilities of the two groups. Over the years several distinguished Russian visitors have interacted with various members of the group and set up collaborative work which forms a significant part of proposed research. Dr. Galeev, Director of the Space Research Institute of Moscow and Dr. Novakovskii from the Kurchatov Institute are two such ongoing collaborations. 21 refs
Investigation of Dynamic Friction Induced by Shock Loading Conditions
International Nuclear Information System (INIS)
Juanicotena, A.; Szarzynski, S.
2006-01-01
Modeling the frictional sliding of one surface against another under high pressure is often required to correctly describe the response of complex systems to shock loading. In order to provide data for direct code and model comparison, a new friction experiment investigating dry sliding characteristics of metal on metal at normal pressures up to 10 GPa and sliding velocities up to 400 m/s has been developed. The test consists of a specifically designed target made of two materials. A plane shock wave generated by plate impact results in one material sliding against the other. The material velocity of the rear surface of the target is recorded versus time by Doppler Laser Interferometry. The dynamic friction coefficient μ is then indirectly determined by comparison with results of numerical simulations involving the conventional Coulomb law. Using this new experimental configuration, three dynamic friction experiments were performed on AA 5083-Al (H111) / AISI 321 stainless steel tribo-pair. Results suggest a decrease in the friction coefficient with increasing sliding velocity
Dynamic Behavior of a Friction Pendulum with Elastomeric Layer
Directory of Open Access Journals (Sweden)
Gilbert-Rainer Gillich
2012-01-01
Full Text Available Transient dynamic characteristics of a friction pendulum can be determined using experimental ways. Nowadays, numerical simulation techniques allow obtaining these characteristics using mathematical models. The express advantage is represented by almost unlimited possibilities to extract and quantified in the regime of "post processing" regarding the results. In terms of efficiency this means increased performance regarding the research and product development.
Universality in dynamic wetting dominated by contact-line friction.
Carlson, Andreas; Bellani, Gabriele; Amberg, Gustav
2012-04-01
We report experiments on the rapid contact-line motion present in the early stages of capillary-driven spreading of drops on dry solid substrates. The spreading data fail to follow a conventional viscous or inertial scaling. By integrating experiments and simulations, we quantify a contact-line friction μ(f) which is seen to limit the speed of the rapid dynamic wetting. A scaling based on this contact-line friction is shown to yield a universal curve for the evolution of the contact-line radius as a function of time, for a range of fluid viscosities, drop sizes, and surface wettabilities.
Nonlinear dynamics in human behavior
Energy Technology Data Exchange (ETDEWEB)
Huys, Raoul [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France); Marseille Univ. (France). Movement Science Inst.; Jirsa, Viktor K. (eds.) [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France); Marseille Univ. (France). Movement Science Inst.; Florida Atlantic Univ., Boca Raton, FL (United States). Center for Complex Systems and Brain Sciences
2010-07-01
Humans engage in a seemingly endless variety of different behaviors, of which some are found across species, while others are conceived of as typically human. Most generally, behavior comes about through the interplay of various constraints - informational, mechanical, neural, metabolic, and so on - operating at multiple scales in space and time. Over the years, consensus has grown in the research community that, rather than investigating behavior only from bottom up, it may be also well understood in terms of concepts and laws on the phenomenological level. Such top down approach is rooted in theories of synergetics and self-organization using tools from nonlinear dynamics. The present compendium brings together scientists from all over the world that have contributed to the development of their respective fields departing from this background. It provides an introduction to deterministic as well as stochastic dynamical systems and contains applications to motor control and coordination, visual perception and illusion, as well as auditory perception in the context of speech and music. (orig.)
Dynamics of a particle with friction and delay
Monteiro Marques, Manuel D. P.; Dzonou, Raoul
2018-03-01
We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration τ > 0). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings. xml:lang="fr"
Rotational and frictional dynamics of the slamming of a door
Klein, Pascal; Müller, Andreas; Gröber, Sebastian; Molz, Alexander; Kuhn, Jochen
2017-01-01
A theoretical and experimental investigation of the rotational dynamics, including friction, of a slamming door is presented. Based on existing work regarding different damping models for rotational and oscillatory motions, we examine different forms for the (angular) velocity dependence (ωn, n = 0, 1, 2) of the frictional force. An analytic solution is given when all three friction terms are present and several solutions for specific cases known from the literature are reproduced. The motion of a door is investigated experimentally using a smartphone, and the data are compared with the theoretical results. A laboratory experiment under more controlled conditions is conducted to gain a deeper understanding of the movement of a slammed door. Our findings provide quantitative evidence that damping models involving quadratic air drag are most appropriate for the slamming of a door. Examining this everyday example of a physical phenomenon increases student motivation, because they can relate it to their own personal experience.
Breakaway frictions of dynamic O-rings in mechanical seals
Lai, Tom; Kay, Peter
1993-05-01
Breakaway friction of a dynamic O-ring affects the mechanical seal's response to large axial shaft movement and face wear. However, little data exist to help designers. Therefore, a test rig was developed to measure breakaway friction. The research quantitatively shows the effects of lubrication with silicone grease and a change of surface finish. By using the Taguchi statistical experimental design method, the significance of test parameters was evaluated with a minimum number of tests. It was found that fluid pressure, dwell time, and O-ring percentage squeeze affect O-ring breakaway friction more than the O-ring cross sectional diameter and axial sliding speed within the range of values tested. The authors showed that breakaway friction increased linearly with pressure. However, O-rings made of different materials had significantly different increase rates, even if they had nominally the same durometer hardness. Breakaway friction also increased with logarithm of dwell time. Again, the increase rate depended strongly on the specific O-ring material tested. These observations led the authors to believe that the typical approach of generalizing data based on generic polymer type and durometer was inappropriate.
Nonlinear dynamics and numerical uncertainties in CFD
Yee, H. C.; Sweby, P. K.
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.
Some Aspects of Nonlinear Dynamics and CFD
Yee, Helen C.; Merriam, Marshal (Technical Monitor)
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.
Nonlinear dynamics aspects of modern storage rings
International Nuclear Information System (INIS)
Helleman, R.H.G.; Kheifets, S.A.
1986-01-01
It is argued that the nonlinearity of storage rings becomes an essential problem as the design parameters of each new machine are pushed further and further. Yet the familiar methods of classical mechanics do not allow determination of single particle orbits over reasonable lengths of time. It is also argued that the single particle dynamics of a storage ring is possibly one of the cleanest and simplest nonlinear dynamical systems available with very few degrees of freedom. Hence, reasons are found for accelerator physicists to be interested in nonlinear dynamics and for researchers in nonlinear dynamics to be interested in modern storage rings. The more familiar methods of treating nonlinear systems routinely used in acclerator theory are discussed, pointing out some of their limitations and pitfalls. 39 refs., 1 fig
Dynamics and vibrations progress in nonlinear analysis
Kachapi, Seyed Habibollah Hashemi
2014-01-01
Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...
Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures
International Nuclear Information System (INIS)
Zhao, Y.
1996-01-01
Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed
Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining
Zhang, Dekun; Chen, Kai; Guo, Yongbo
2018-01-01
This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677
Experimental studies of nonlinear beam dynamics
International Nuclear Information System (INIS)
Caussyn, D.D.; Ball, M.; Brabson, B.; Collins, J.; Curtis, S.A.; Derenchuck, V.; DuPlantis, D.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Jones, W.P.; Lamble, W.; Lee, S.Y.; Li, D.; Minty, M.G.; Sloan, T.; Xu, G.; Chao, A.W.; Ng, K.Y.; Tepikian, S.
1992-01-01
The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for betatron tunes near the third, fourth, fifth, and seventh integer resonances. This motion is described by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced
Nonlinear beam dynamics experimental program at SPEAR
International Nuclear Information System (INIS)
Tran, P.; Pellegrini, C.; Cornacchia, M.; Lee, M.; Corbett, W.
1995-01-01
Since nonlinear effects can impose strict performance limitations on modern colliders and storage rings, future performance improvements depend on further understanding of nonlinear beam dynamics. Experimental studies of nonlinear beam motion in three-dimensional space have begun in SPEAR using turn-by-turn transverse and longitudinal phase-space monitors. This paper presents preliminary results from an on-going experiment in SPEAR
Nonlinear dynamics experiment in the Tevatron
International Nuclear Information System (INIS)
Merminga, N.; Edwards, D.; Finley, D.
1989-01-01
Results of the continuing analysis of the nonlinear dynamics experiment E778 are presented. Sixteen special sextupoles introduced nonlinearities in the Tevatron. 'Smear,' which is one of the parameters used to quantify the degree of nonlinearity, was extracted from the data and compared with calculation. Injection efficiency in the presence of nonlinearities was studied. Measurements of the dynamic aperture were performed. The final results in one degree of freedom of the smear, the injection efficiency and the dynamic aperture are presented. Particles captured on nonlinear resonance islands were directly observed and measurements were performed. The capture efficiency was extracted from the data and compared with prediction. The influence of tune modulation on the stability of these islands was investigated. Plans for future measurements are discussed. 4 refs., 6 figs
Nonlinear PDEs a dynamical systems approach
Schneider, Guido
2017-01-01
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced...
Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi
Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to
Beam Stability and Nonlinear Dynamics. Proceedings
International Nuclear Information System (INIS)
Parsa, Z.
1997-01-01
These proceedings represent papers presented at the Beam Stability and Nonlinear Dynamics symposium held in Santa Barbara in December 1996. The symposium was sponsored by the National Science Foundation as part of the United States long term accelerator research. The focus of this symposium was on nonlinear dynamics and beam stability. The topics included single-particle and many-particle dynamics, and stability in large circular accelerators such as the Large Hadron Collider(LHC). Other subjects covered were spin dynamics, nonlinear aberration correction, collective effects in the LHC, sawtooth instability and Landau damping in the presence of strong nonlinearity. There were presentations concerning plasma physics including the effect of beam echo. There are 17 papers altogether in these proceedings and 8 of them have been abstracted for the Energy Science and Technology database
Nonlinear Dynamics of Electrostatically Actuated MEMS Arches
Al Hennawi, Qais M.
2015-01-01
In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using
Model reduction tools for nonlinear structural dynamics
Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.
1995-01-01
Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their
Nonlinear and Complex Dynamics in Real Systems
William Barnett; Apostolos Serletis; Demitre Serletis
2005-01-01
This paper was produced for the El-Naschie Symposium on Nonlinear Dynamics in Shanghai in December 2005. In this paper we provide a review of the literature with respect to fluctuations in real systems and chaos. In doing so, we contrast the order and organization hypothesis of real systems with nonlinear chaotic dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. Moreover, we look at the issue of where and when the ideas of chaos could p...
Nonlinear and Nonequilibrium Dynamics in Geomaterials
TenCate, James A.; Pasqualini, Donatella; Habib, Salman; Heitmann, Katrin; Higdon, David; Johnson, Paul A.
2004-01-01
The transition from linear to nonlinear dynamical elasticity in rocks is of considerable interest in seismic wave propagation as well as in understanding the basic dynamical processes in consolidated granular materials. We have carried out a careful experimental investigation of this transition for Berea and Fontainebleau sandstones. Below a well-characterized strain, the materials behave linearly, transitioning beyond that point to a nonlinear behavior which can be accurately captured by a s...
Periodic precursors of nonlinear dynamical transitions
International Nuclear Information System (INIS)
Jiang Yu; Dong Shihai; Lozada-Cassou, M.
2004-01-01
We study the resonant response of a nonlinear system to external periodic perturbations. We show by numerical simulation that the periodic resonance curve may anticipate the dynamical instability of the unperturbed nonlinear periodic system, at parameter values far away from the bifurcation points. In the presence of noise, the buried intrinsic periodic dynamics can be picked out by analyzing the system's response to periodic modulation of appropriate intensity
Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel
Aghalari, Alireza; Shahravi, Morteza
2017-12-01
The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.
Nonlinear dynamics of quadratically cubic systems
International Nuclear Information System (INIS)
Rudenko, O V
2013-01-01
We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)
Shah, Rehan; Van Gorder, Robert A
2016-03-01
We demonstrate the existence of localized structures along quantized vortex filaments in superfluid helium under the quantum form of the local induction approximation (LIA), which includes mutual friction and normal fluid effects. For small magnitude normal fluid velocities, the dynamics are dissipative under mutual friction. On the other hand, when normal fluid velocities are sufficiently large, we observe parametric amplification of the localized disturbances along quantized vortex filaments, akin to the Donnelly-Glaberson instability for regular Kelvin waves. As the waves amplify they will eventually cause breakdown of the LIA assumption (and perhaps the vortex filament itself), and we derive a characteristic time for which this breakdown occurs under our model. More complicated localized waves are shown to occur, and we study these asymptotically and through numerical simulations. Such solutions still exhibit parametric amplification for large enough normal fluid velocities, although this amplification may be less uniform than would be seen for more regular filaments such as those corresponding to helical curves. We find that large rotational velocities or large wave speeds of nonlinear waves along the filaments will result in more regular and stable structures, while small rotational velocities and wave speeds will permit far less regular dynamics.
Nonlinear and stochastic dynamics of coherent structures
DEFF Research Database (Denmark)
Rasmussen, Kim
1997-01-01
This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree of nonli......This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree...... introduces the nonlinear Schrödinger model in one and two dimensions, discussing the soliton solutions in one dimension and the collapse phenomenon in two dimensions. Also various analytical methods are described. Then a derivation of the nonlinear Schrödinger equation is given, based on a Davydov like...... system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...
Nonlinear dynamical system approaches towards neural prosthesis
International Nuclear Information System (INIS)
Torikai, Hiroyuki; Hashimoto, Sho
2011-01-01
An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.
MEMS linear and nonlinear statics and dynamics
Younis, Mohammad I
2011-01-01
MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of nume
Teaching nonlinear dynamics through elastic cords
International Nuclear Information System (INIS)
Chacon, R; Galan, C A; Sanchez-Bajo, F
2011-01-01
We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Fluid dynamics of airlift reactors; Two-phase friction factors
Energy Technology Data Exchange (ETDEWEB)
Garcia-Calvo, E. (Ingenieria Quimica, Facultad de Ciencias, Univ. de Alcala, 28871 Alcala de Henares (Spain))
1992-10-01
Airlift loop reactors (ALR) are useful equipment in biotechnology in a wide range of uses, however their design is not a simple task since prediction of fluid dynamics in these reactors is difficult. Most of the different strategies found in the literature in order to predict two main parameters, namely, gas holdup and liquid velocity, are based on energy or momentum balances. The balances include frictional effects, and it is not yet clear how to predict these effects. The objective of this article is to show how criteria corresponding to one-phase flow may be used in order to predict the frictional effects in ALRs. Based on a model proposed by Garcia-Calvo (1989, 1991), we simulated experimental data of liquid velocity profiles and gas holdup obtained by Young et al. in an ALR with two different configurations. Experimental data obtained in other three external ALRs with different shapes and sizes are also simulated.
Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity
Allison, K. L.; Dunham, E. M.
2016-12-01
We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.
Nonlinear dynamics and chaotic phenomena an introduction
Shivamoggi, Bhimsen K
2014-01-01
This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics -- integrable systems, Poincaré maps, chaos, fractals and strange attractors. The Baker’s transformation, the logistic map and Lorenz system are discussed in detail in view of their central place in the subject. There is a detailed discussion of solitons centered around the Korteweg-deVries equation in view of its central place in integrable systems. Then, there is a discussion of the Painlevé property of nonlinear differential equations which seems to provide a test of integrability. Finally, there is a detailed discussion of the application of fractals and multi-fractals to fully-developed turbulence -- a problem whose understanding has been considerably enriched by the application of the concepts and methods of modern nonlinear dynamics. On the application side, there is a special...
General relativistic chaos and nonlinear dynamics
International Nuclear Information System (INIS)
Barrow, J.D.
1982-01-01
How new ideas in dynamical systems theory find application in the description of general relativistic systems is described. The concept of dynamical entropy is explained and the associated invariant evaluated for the Mixmaster cosmological model. The description of cosmological models as measure preserving dynamical systems leads to a number of interconnections with new ideas in non-linear dynamics. This may provide a new avenue of approach to ascertaining the nature of the general solution to Einstein's equations. (author)
General relativistic chaos and nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Barrow, J D [California Univ., Berkeley (USA). Dept. of Physics
1982-06-01
How new ideas in dynamical systems theory find application in the description of general relativistic systems is described. The concept of dynamical entropy is explained and the associated invariant evaluated for the Mixmaster cosmological model. The description of cosmological models as measure preserving dynamical systems leads to a number of interconnections with new ideas in non-linear dynamics. This may provide a new avenue of approach to ascertaining the nature of the general solution to Einstein's equations.
NONLINEAR DYNAMICS OF ORGANIZATION DEVELOPMENT
Directory of Open Access Journals (Sweden)
Денис Антонович БУШУЕВ
2016-02-01
Full Text Available The nonlinear behavior of organizations in development projects is considered. The nonlinear behavior is initiated in the growth of organizations and requires a restructuring of governance in identifying dysfunctions. Such a restructuring is needed in the area of soft components, determining the organizational levels of competence in the management of projects, programs, portfolios and heads of the Project Management Office. An important component of the strategic development of the organization is the proposed concept for formation and management of development programs in the context according to their life cycle. It should take into account the non-linear behavior of the soft components of the system and violation of functional processes of the organization. The specific management syndromes of projects and programs are considered. Such as syndromes time management project linked to the singular points of the project. These syndromes are "shift to the right", "point of no return", "braking at the end of the project" and others.
Linear and Weakly Nonlinear Instability of Shallow Mixing Layers with Variable Friction
Directory of Open Access Journals (Sweden)
Irina Eglite
2018-01-01
Full Text Available Linear and weakly nonlinear instability of shallow mixing layers is analysed in the present paper. It is assumed that the resistance force varies in the transverse direction. Linear stability problem is solved numerically using collocation method. It is shown that the increase in the ratio of the friction coefficients in the main channel to that in the floodplain has a stabilizing influence on the flow. The amplitude evolution equation for the most unstable mode (the complex Ginzburg–Landau equation is derived from the shallow water equations under the rigid-lid assumption. Results of numerical calculations are presented.
Describing pediatric dysphonia with nonlinear dynamic parameters
Meredith, Morgan L.; Theis, Shannon M.; McMurray, J. Scott; Zhang, Yu; Jiang, Jack J.
2008-01-01
Objective Nonlinear dynamic analysis has emerged as a reliable and objective tool for assessing voice disorders. However, it has only been tested on adult populations. In the present study, nonlinear dynamic analysis was applied to normal and dysphonic pediatric populations with the goal of collecting normative data. Jitter analysis was also applied in order to compare nonlinear dynamic and perturbation measures. This study’s findings will be useful in creating standards for the use of nonlinear dynamic analysis as a tool to describe dysphonia in the pediatric population. Methods The study included 38 pediatric subjects (23 children with dysphonia and 15 without). Recordings of sustained vowels were obtained from each subject and underwent nonlinear dynamic analysis and percent jitter analysis. The resulting correlation dimension (D2) and percent jitter values were compared across the two groups using t-tests set at a significance level of p = 0.05. Results It was shown that D2 values covary with the presence of pathology in children. D2 values were significantly higher in dysphonic children than in normal children (p = 0.002). Standard deviations indicated a higher level of variation in normal children’s D2 values than in dysphonic children’s D2 values. Jitter analysis showed markedly higher percent jitter in dysphonic children than in normal children (p = 0.025) and large standard deviations for both groups. Conclusion This study indicates that nonlinear dynamic analysis could be a viable tool for the detection and assessment of dysphonia in children. Further investigations and more normative data are needed to create standards for using nonlinear dynamic parameters for the clinical evaluation of pediatric dysphonia. PMID:18947887
Quantitative theory of driven nonlinear brain dynamics.
Roberts, J A; Robinson, P A
2012-09-01
Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.
Nonlinear dynamics new directions models and applications
Ugalde, Edgardo
2015-01-01
This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...
Directory of Open Access Journals (Sweden)
Charlotte Desvages
2016-05-01
Full Text Available Recent bowed string sound synthesis has relied on physical modelling techniques; the achievable realism and flexibility of gestural control are appealing, and the heavier computational cost becomes less significant as technology improves. A bowed string sound synthesis algorithm is designed, by simulating two-polarisation string motion, discretising the partial differential equations governing the string’s behaviour with the finite difference method. A globally energy balanced scheme is used, as a guarantee of numerical stability under highly nonlinear conditions. In one polarisation, a nonlinear contact model is used for the normal forces exerted by the dynamic bow hair, left hand fingers, and fingerboard. In the other polarisation, a force-velocity friction curve is used for the resulting tangential forces. The scheme update requires the solution of two nonlinear vector equations. The dynamic input parameters allow for simulating a wide range of gestures; some typical bow and left hand gestures are presented, along with synthetic sound and video demonstrations.
A method for evaluating dynamical friction in linear ball bearings.
Fujii, Yusaku; Maru, Koichi; Jin, Tao; Yupapin, Preecha P; Mitatha, Somsak
2010-01-01
A method is proposed for evaluating the dynamical friction of linear bearings, whose motion is not perfectly linear due to some play in its internal mechanism. In this method, the moving part of a linear bearing is made to move freely, and the force acting on the moving part is measured as the inertial force given by the product of its mass and the acceleration of its centre of gravity. To evaluate the acceleration of its centre of gravity, the acceleration of two different points on it is measured using a dual-axis optical interferometer.
Structural stability of nonlinear population dynamics.
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Structural stability of nonlinear population dynamics
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Nonlinear waves and pattern dynamics
Pelinovsky, Efim; Mutabazi, Innocent
2018-01-01
This book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physi...
Dynamic nonlinear analysis of shells of revolution
International Nuclear Information System (INIS)
Riesemann, W.A. von; Stricklin, J.A.; Haisler, W.E.
1975-01-01
Over the past few years a series of finite element computer programs have been developed at Texas A and M University for the static and dynamic nonlinear analysis of shells of revolution. This paper discusses one of these, DYNAPLAS, which is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. (Auth.)
Dynamical Friction in Multi-component Evolving Globular Clusters
Alessandrini, Emiliano; Lanzoni, Barbara; Miocchi, Paolo; Ciotti, Luca; Ferraro, Francesco R.
2014-11-01
We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum. The main goal is to verify whether the dynamical friction time (t DF) develops a non-monotonic radial dependence that could explain the bimodality of the blue straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t DF are expected to be dependent on radius. We find that in spite of the presence of different masses, t DF is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This is because the radial dependence of t DF is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the blue straggler star (BSS) population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimations of t DF within the half-mass radius.
Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps
Directory of Open Access Journals (Sweden)
Lanhao Zhao
2014-01-01
Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.
Nonlinear Dynamic Models in Advanced Life Support
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Structural optimization for nonlinear dynamic response
DEFF Research Database (Denmark)
Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.
2015-01-01
by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...
Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials
Dellacorte, C.; Lukaszewicz, V.; Morris, D. E.; Steinetz, B. M.
1994-01-01
The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only.
A molecular dynamics (MD simulation on tire-aggregate friction
Directory of Open Access Journals (Sweden)
Fengyan Sun
2017-07-01
Full Text Available The friction between tire and road surface is fundamentally depending on the molecular forces. In this paper, the nanoscale 3D contact model is employed to investigate the tire-aggregate friction mechanism. The tire and aggregate micro-structure are both constructed to evaluate the microscopic performance of tire-aggregate friction influence. Simulation results show for a high velocity, the energy dissipation of sliding on crystal structure is small, which results in a small friction coefficient; temperature will have influences on the friction coefficient, and with the increasing of velocity, the effect will gradually reduce. Keywords: Tire, Aggregate, Friction coefficient, Microscopic mechanism, MD simulation
Nonlinear dynamics in particle accelerators
Dilão, Rui
1996-01-01
This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev
Nonlinear dynamics as an engine of computation.
Kia, Behnam; Lindner, John F; Ditto, William L
2017-03-06
Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
Nonlinear dynamics of fractional order Duffing system
International Nuclear Information System (INIS)
Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian
2015-01-01
In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.
Nonlinear dynamics aspects of modern storage rings
International Nuclear Information System (INIS)
Helleman, R.H.G.; Kheifets, S.A.
1986-01-01
The authors try to address the following two questions: a. Why should accelerator physicists to be interested in the recent, sometimes abstract, developments in Nonlinear Dynamics, a field which will recently was mainly studied by mathematicians, theoretical physicists and astronomers? That such an interest to some extent already exists is apparent from the fact that many accelerator physicists attended this School and several analogous meetings in the past. b. Why should researchers from nonlinear dynamics be interested in modern Storage Rings which are largely designed and built by experimental physicists and engineers? At the moment few 'nonlinear scientists' work on storage rings (or in the field of accelerator physics). It is a hopeful sign that many (more) attended this School
Nonlinear Dynamics of the Woodpecker Toy
Leine, R.I.; Glocker, C.; Campen, van D.H.
2001-01-01
This paper studies bifurcations in systems with impact andfriction, modeled with a rigid multibody approach. Knowledgefrom the field of Nonlinear Dynamics is therefore combined withtheory from the field of Nonsmooth Mechanics. The nonlineardynamics is studied of a commercial wooden toy. The toyshows
Nonlinear Dynamics and the Growth of Literature.
Tabah, Albert N.
1992-01-01
Discussion of nonlinear dynamic mechanisms focuses on whether information production and dissemination can be described by similar mechanisms. The exponential versus linear growth of literature is discussed, the time factor is considered, an example using literature from the field of superconductivity is given, and implications for information…
Laser acceleration and nonlinear beam dynamics
International Nuclear Information System (INIS)
Pellegrini, C.
1991-01-01
This research contract covers the period April 1990, September 1991. The work to be done under the contract was theoretical research in the areas of nonlinear beam dynamics and laser acceleration. In this final report we will discuss the motivation for this work and the results obtained
Dynamic beam cleaning by a nonlinear resonance
Energy Technology Data Exchange (ETDEWEB)
Chao, A W; Month, M [Brookhaven National Lab., Upton, N.Y. (USA)
1976-03-15
The general framework for the dynamic cleaning of a stored proton beam by passing the beam through a nonlinear resonance is developed. The limitations and advantages of this technique are discussed. The method is contrasted with physical beam scraping, which is currently in use at the CERN ISR.
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-01-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-06-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering
Some Nonlinear Dynamic Inequalities on Time Scales
Indian Academy of Sciences (India)
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential ...
Nonlinear Dynamical Analysis for a Plain Bearing
Directory of Open Access Journals (Sweden)
Ali Belhamra
2014-03-01
Full Text Available This paper investigates the nonlinear dynamic behavior for a plain classic bearing (fluid bearing lubricated by a non-Newtonian fluid of a turbo machine rotating with high speed; this type of fluid contains additives viscosity (couple-stress fluid film. The solution of the nonlinear dynamic problem of this type of bearing is determined with a spatial discretisation of the modified Reynolds' equation written in dynamic mode by using the optimized short bearing theory and a temporal discretisation for equations of rotor motion by the help of Euler's explicit diagram. This study analyzes the dynamic behavior of a rotor supported by two couple-stress fluid film journal lubricant enhances the dynamic stability of the rotor-bearing system considerably compared to that obtained when using a traditional Newtonian lubricant. The analysis shows that the dynamic behavior of a shaft which turns with high velocities is strongly nonlinear even for poor eccentricities of unbalance; the presence of parameters of couple stress allows strongly attenuating the will synchrony (unbalance and asynchrony (whipping amplitudes of vibrations of the shaft which supports more severe conditions (large unbalances.
Position Control of Servo Systems Using Feed-Forward Friction Compensation
International Nuclear Information System (INIS)
Park, Min Gyu; Kim, Han Me; Shin, Jong Min; Kim, Jong Shik
2009-01-01
Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation
Nonlinear amplitude dynamics in flagellar beating.
Oriola, David; Gadêlha, Hermes; Casademunt, Jaume
2017-03-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.
Nonlinear Dynamics of Controlled Synchronizations of Manipulator System
Directory of Open Access Journals (Sweden)
Qingkai Han
2014-01-01
Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.
Nonlinear dynamics of drift structures in a magnetized dissipative plasma
International Nuclear Information System (INIS)
Aburjania, G. D.; Rogava, D. L.; Kharshiladze, O. A.
2011-01-01
A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense
Nonlinear Dynamics on Interconnected Networks
Arenas, Alex; De Domenico, Manlio
2016-06-01
Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).
Nonlinear dynamic properties of superconductors
International Nuclear Information System (INIS)
Kulik, I.O.
1977-06-01
A dynamical scheme for the theory of superconductivity is suggested which is directly based on the mean-field approximation in the real time representation. A kinetic equation and the respective electron-phonon collision integral have been derived. Characteristic times of evolution of the uniformly perturbed order parameter are determined. Depending on the initial distribution of quasi-particles, the evolution of the gap Δ can occur during times of the order of the inverse gap Δ -1 , of the inverse energy spread γ -1 of the distribution function (provided γ [de
Nonlinear dynamics of interacting populations
Bazykin, Alexander D
1998-01-01
This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the
Dynamic nonlinear elasticity in geo materials
International Nuclear Information System (INIS)
Ostrovsky, L.A.; Johnson, P.A.
2001-01-01
The nonlinear elastic behaviour of earth materials is an extremely rich topic, one that has broad implications to earth and materials sciences, including strong ground motion, rock physics, nondestructive evaluation and materials science. The mechanical properties of rock appear to place it in a broader class of materials, it can be named the Structural nonlinear elasticity class (also Mesoscopic/nano scale elasticity, or MS/NSE class). These terms are in contrast to materials that display classical, Atomic Elasticity, such as most fluids and monocrystalline solids. The difference between these two categories of materials is both in intensity and origin of their nonlinear response. The nonlinearity of atomic elastic materials is due to the atomic/molecular lattice anharmonicity. The latter is relatively small because the intermolecular forces are extremely strong. In contrast, the materials considered below contain small soft features that it is called the bond system (cracks, grain contacts, dislocations, etc.) within a hard matrix and relaxation (slow dynamical effects) are characteristic, non of which appear in atomic elastic materials. The research begins with a brief historical background from nonlinear acoustics to the recent developments in rock nonlinearity. This is followed by an overview of some representative laboratory measurements which serve as primary indicators of nonlinear behaviour, followed by theoretical development, and finally, mention a variety of observations of nonlinearity under field conditions and applications to nondestructive testing of materials. The goal is not to survey all papers published in the are but to demonstrate some experimental and theoretical results and ideas that will the reader to become oriented in this broad and rapidly growing area bridging macro-, meso- and microscale (nano scale) phenomena in physics, materials science, and geophysics
Nonlinear dynamics and quantum chaos an introduction
Wimberger, Sandro
2014-01-01
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Nonlinear Dynamic Response of Compliant Journal Bearings
Directory of Open Access Journals (Sweden)
Glavatskih S.
2012-07-01
Full Text Available This paper investigates the dynamic response of the compliant tilting pad journal bearings subjected to synchronous excitation. Bearing compliance is affected by the properties of pad liner and pad support geometry. Different unbalance eccentricities are considered. It is shown that bearing dynamic response is non-linear. Journal orbit complexity increases with pad compliance though the orbit amplitudes are marginally affected at low loads. At high loads, the journal is forced to operate outside the bearing clearance. The polymer liner reduces the maximum oil film pressure by a factor of 2 when compared to the white metal liner. The nonlinear dynamic response of compliant tilting pad journal bearings is thoroughly discussed.
Nonlinear Dynamics of a Diffusing Interface
Duval, Walter M. B.
2001-01-01
Excitation of two miscible-viscous liquids inside a bounded enclosure in a microgravity environment has shown the evolution of quasi-stationary waves of various modes for a range of parameters. We examine computationally the nonlinear dynamics of the system as the interface breakup and bifurcates to resonance structures typified by the Rayleigh-Taylor instability mechanism. Results show that when the mean steady field is much smaller than the amplitude of the sinusoidal excitation, the system behaves linearly, and growth of quasi-stationary waves occurs through the Kelvin-Helmholtz instability mechanism. However, as the amplitude of excitation increases, nonlinearity occurs through subharmonic bifurcation prior to broadband chaos.
Collective Dynamics of Nonlinear and Disordered Systems
Radons, G; Just, W
2005-01-01
Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.
Digital Communication Devices Based on Nonlinear Dynamics and Chaos
National Research Council Canada - National Science Library
Larson, Lawrence
2003-01-01
The final report of the ARO MURI "Digital Communications Based on Chaos and Nonlinear Dynamics" contains research results in the areas of chaos and nonlinear dynamics applied to wireless and optical communications...
Is DNA a nonlinear dynamical system where solitary conformational ...
Indian Academy of Sciences (India)
Unknown
DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The ... nonlinear differential equations and their soliton-like solu- .... structure and dynamics can be added till the most accurate.
4th International Conference on Structural Nonlinear Dynamics and Diagnosis
2018-01-01
This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi–Pasta–Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers a...
Nonlinear dynamics of two-phase flow
International Nuclear Information System (INIS)
Rizwan-uddin
1986-01-01
Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques
Nonlinear dynamics of the relativistic standard map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Horton, W.
1991-01-01
Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map (ST). Thus, it is natural to pose the question asking how the relativistic effects change the nonlinear dynamical behavior described by the classical ST map. The authors show that the speed of light limits the rate of advance of the phase in the relativistic standard map (RST) and introduces KAM surfaces persisting in the high momentum region. The RST map is a two parameter (k, β = ω/kc) family of dynamics reducing to the ST map when β → 0. For β ≠ 0 the relativity suppresses the onset of stochasticity. Chernikov et al. has also reported this effect. They have carried out extensive studies of nonlinear dynamics of the RST map and found very intricate structure of mixing of the higher order periodic orbits and chaotic orbits. They have shown that no matter how its gets chaotic the symmetry properties of the RST map determines its nonlinear dynamical behavior. 1 ref
Bubble nonlinear dynamics and stimulated scattering process
Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu
2016-02-01
A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).
Parametric Identification of Nonlinear Dynamical Systems
Feeny, Brian
2002-01-01
In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.
Non-Linear Dynamics and Fundamental Interactions
Khanna, Faqir
2006-01-01
The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.
Gradient-based optimization in nonlinear structural dynamics
DEFF Research Database (Denmark)
Dou, Suguang
The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider......, frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization......, and optimization of nonlinear structural dynamics. In the modelling, nonlinear finite elements are used. In the analysis, nonlinear frequency response and nonlinear normal modes are calculated based on a harmonic balance method with higher-order harmonics. In the characterization, nonlinear modal coupling...
Nonlinear dynamics, chaos and complex cardiac arrhythmias
Glass, L.; Courtemanche, M.; Shrier, A.; Goldberger, A. L.
1987-01-01
Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase-locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analyzed, which show some correspondence to clinical observations.
Ultrahigh energy neutrinos and nonlinear QCD dynamics
International Nuclear Information System (INIS)
Machado, Magno V.T.
2004-01-01
The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms
Nonlinear longitudinal dynamics studies at the ALS
International Nuclear Information System (INIS)
Byrd, J.M.; Cheng, W.-H.; De Santis, S.; Li, D.; Stupakov, G.; Zimmermann, F.
1999-01-01
We present a summary of results for a variety of studies of nonlinear longitudinal dynamics in the Advanced Light Source, an electron storage ring. These include observation of decoherence at injection, decay of an injected beam, forced synchrotron oscillations and diffusion from one bunch to the next. All of the measurements were made using a dual-scan streak camera which allowed the real-time observation of the longitudinal distribution of the electron beam
Predictable nonlinear dynamics: Advances and limitations
International Nuclear Information System (INIS)
Anosov, L.A.; Butkovskii, O.Y.; Kravtsov, Y.A.; Surovyatkina, E.D.
1996-01-01
Methods for reconstruction chaotic dynamical system structure directly from experimental time series are described. Effectiveness of general methods is illustrated with the results of numerical simulation. It is of common interest that from the single time series it is possible to reconstruct a set of interconnected variables. Predictive power of dynamical models, provided by the nonlinear dynamics inverse problem solution, is limited firstly by the noise level in the system under study and is characterized by the horizon of predictability. New physical results are presented, concerning nonstationary and bifurcation nonlinear systems: (1) algorithms for revealing of nonstationarity in random-like chaotic time-series are suggested based on discriminant analysis with nonlinear discriminant function; (2) an opportunity is established to predict the final state in bifurcation system with quickly varying control parameters; (3) hysteresis is founded out in bifurcation system with quickly varying parameters; (4) delayed correlation left-angle noise-prediction error right-angle in chaotic systems is revealed. copyright 1996 American Institute of Physics
Selected Problems in Nonlinear Dynamics and Sociophysics
Westley, Alexandra Renee
This Ph.D. dissertation focuses on a collection of problems on the dynamical behavior of nonlinear many-body systems, drawn from two substantially different areas. First, the dynamical behavior seen in strongly nonlinear lattices such as in the Fermi-Pasta-Ulam-Tsingou (FPUT) system (part I) and second, time evolution behavior of interacting living objects which can be broadly considered as sociophysics systems (part II). The studies on FPUT-like systems will comprise of five chapters, dedicated to the properties of solitary and anti-solitary waves in the system, how localized nonlinear excitations decay and spread throughout these lattices, how two colliding solitary waves can precipitate highly localized and stable excitations, a possible alternative way to view these localized excitations through Duffing oscillators, and finally an exploration of parametric resonance in an FPUT-like lattice. Part II consists of two problems in the context of sociophysics. I use molecular dynamics inspired simulations to study the size and the stability of social groups of chimpanzees (such as those seen in central Africa) and compare the results with existing observations on the stability of chimpanzee societies. Secondly, I use an agent-based model to simulate land battles between an intelligent army and an insurgency when both have access to equally powerful weaponry. The study considers genetic algorithm based adaptive strategies to infer the strategies needed for the intelligent army to win the battles.
Topological equivalence of nonlinear autonomous dynamical systems
International Nuclear Information System (INIS)
Nguyen Huynh Phan; Tran Van Nhung
1995-12-01
We show in this paper that the autonomous nonlinear dynamical system Σ(A,B,F): x' = Ax+Bu+F(x) is topologically equivalent to the linear dynamical system Σ(A,B,O): x' = Ax+Bu if the projection of A on the complement in R n of the controllable vectorial subspace is hyperbolic and if lipschitz constant of F is sufficiently small ( * ) and F(x) = 0 when parallel x parallel is sufficiently large ( ** ). In particular, if Σ(A,B,O) is controllable, it is topologically equivalent to Σ(A,B,F) when it is only that F satisfy ( ** ). (author). 18 refs
Nonlinear dynamics of biomimetic micro air vehicles
Energy Technology Data Exchange (ETDEWEB)
Hou, Y; Kong, J [College of Mechanical Automation, Wuhan University of Science and Technology, Wuhan, 430081 (China)], E-mail: fly_houyu@163.com.cn
2008-02-15
Flapping-wing micro air vehicles (FMAV) are new conceptual air vehicles that mimic the flying modes of birds and insects. They surpass the research fields of traditional airplane design and aerodynamics on application technologies, and initiate the applications of MEMS technologies on aviation fields. This paper studies a micro flapping mechanism that based upon insect thorax and actuated by electrostatic force. Because there are strong nonlinear coupling between the two physical domains, electrical and mechanical, the static and dynamic characteristics of this system are very complicated. Firstly, the nonlinear dynamic model of the electromechanical coupling system is set up according to the physical model of the flapping mechanism. The dynamic response of the system in constant voltage is studied by numerical method. Then the effect of damping and initial condition on dynamic characteristics of the system is analyzed in phase space. In addition, the dynamic responses of the system in sine voltage excitation are discussed. The results of research are helpful to the design, fabrication and application of the micro flapping mechanism of FMAV, and also to other micro electromechanical system that actuated by electrostatic force.
International Nuclear Information System (INIS)
Diesselhorst, T.; Diatschuk, P.; Schnellhammer, W.
2005-01-01
Concerning the design for hydraulic load cases there is always a sequence of fluid- and structural dynamic calculations, where the structural vibrations are induced by the time depending fluid forces. Therefore, in order to prevent excessive structural reactions, it is most important to avoid conservative fluid dynamic results. That refers to the maximum value of the pressure surge as well as to the damping of pressure oscillations. This is especially relevant in case of fluid-structure resonance. To meet these requirements the effect of dynamic wall friction was implemented in our fluid dynamic code. Thus, a more realistic damping behavior of the fluid forces was achieved. In the structural analysis code the damping of the pipe structure could be more accurate adapted to the real conditions. Additionally the local damping by viscous damper was included in the model. At supports now non-linear behavior like clearances can be simulated. The possibility of coupled calculation was installed to consider the effect of fluid structure interaction. The programmed effects are validated against measurement results from power plant systems. The favorable effects of the program improvements are demonstrated by typical examples. These included the realistic damping of pressure oscillations as well as a case of fluid-structure resonance. Additionally the effectiveness of the improved models of piping supports is demonstrated. (authors)
Energy Technology Data Exchange (ETDEWEB)
Guo, Y.; Keppens, R. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Xia, C. [Centre for mathematical Plasma-Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium); Valori, G., E-mail: guoyang@nju.edu.cn [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)
2016-09-10
We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov–Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax–Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.
Polarization dynamics in nonlinear anisotropic fibers
International Nuclear Information System (INIS)
Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois
2010-01-01
We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.
Allison, K. L.; Dunham, E. M.
2017-12-01
We simulate earthquake cycles on a 2D strike-slip fault, modeling both rate-and-state fault friction and an off-fault nonlinear power-law rheology. The power-law rheology involves an effective viscosity that is a function of temperature and stress, and therefore varies both spatially and temporally. All phases of the earthquake cycle are simulated, allowing the model to spontaneously generate earthquakes, and to capture frictional afterslip and postseismic and interseismic viscous flow. We investigate the interaction between fault slip and bulk viscous flow, using experimentally-based flow laws for quartz-diorite in the crust and olivine in the mantle, representative of the Mojave Desert region in Southern California. We first consider a suite of three linear geotherms which are constant in time, with dT/dz = 20, 25, and 30 K/km. Though the simulations produce very different deformation styles in the lower crust, ranging from significant interseismc fault creep to purely bulk viscous flow, they have almost identical earthquake recurrence interval, nucleation depth, and down-dip coseismic slip limit. This indicates that bulk viscous flow and interseismic fault creep load the brittle crust similarly. The simulations also predict unrealistically high stresses in the upper crust, resulting from the fact that the lower crust and upper mantle are relatively weak far from the fault, and from the relatively small role that basal tractions on the base of the crust play in the force balance of the lithosphere. We also find that for the warmest model, the effective viscosity varies by an order of magnitude in the interseismic period, whereas for the cooler models it remains roughly constant. Because the rheology is highly sensitive to changes in temperature, in addition to the simulations with constant temperature we also consider the effect of heat generation. We capture both frictional heat generation and off-fault viscous shear heating, allowing these in turn to alter the
Application of the Dahl friction model in the dynamics analysis of grab cranes
Directory of Open Access Journals (Sweden)
Urbaś A.
2016-01-01
Full Text Available The paper presents dynamics analysis of grab cranes. The cranes can be built out of any number of links, however, only selected links have their own drive that is considered in the flexible form. The cranes are mounted to the ground by means of any number of flexible supports. Joint coordinates and homogeneous transformation matrices are used to describe the cranes’ geometry. Equations of motion are derived using Lagrange equations. Friction phenomenon is taken into account in all joints. The joint forces and torques used to calculate friction torques in the revolute joints and friction forces in the prismatic joints are determined using the recursive Newton-Euler algorithm. Models of revolute and prismatic joints are worked out. Friction coefficients are defined using the Dahl friction model. The results of numerical calculations present the influence of friction on the driving torques, force and behaviour of the load.
Nonlinear dynamics non-integrable systems and chaotic dynamics
Borisov, Alexander
2017-01-01
This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.
Nonlinear and Stochastic Dynamics in the Heart
Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.
2014-01-01
In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems. PMID:25267872
Nonlinear and stochastic dynamics in the heart
Energy Technology Data Exchange (ETDEWEB)
Qu, Zhilin, E-mail: zqu@mednet.ucla.edu [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Hu, Gang [Department of Physics, Beijing Normal University, Beijing 100875 (China); Garfinkel, Alan [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 (United States); Weiss, James N. [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States)
2014-10-10
In a normal human life span, the heart beats about 2–3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems.
Nonlinear and stochastic dynamics in the heart
International Nuclear Information System (INIS)
Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.
2014-01-01
In a normal human life span, the heart beats about 2–3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems
Celtic Stone Dynamics Revisited Using Dry Friction and Rolling Resistance
Directory of Open Access Journals (Sweden)
J. Awrejcewicz
2012-01-01
Full Text Available The integral model of dry friction components is built with assumption of classical Coulomb friction law and with specially developed model of normal stress distribution coupled with rolling resistance for elliptic contact shape. In order to avoid a necessity of numerical integration over the contact area at each the numerical simulation step, few versions of approximate model are developed and then tested numerically. In the numerical experiments the simulation results of the Celtic stone with the friction forces modelled by the use of approximants of different complexity (from no coupling between friction force and torque to the second order Padé approximation are compared to results obtained from model with friction approximated in the form of piecewise polynomial functions (based on the Taylor series with hertzian stress distribution. The coefficients of the corresponding approximate models are found by the use of optimization methods, like as in identification process using the real experiment data.
Directory of Open Access Journals (Sweden)
Yurii M. Streliaiev
2016-06-01
Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.
Effects of internal friction on contact formation dynamics of polymer chain
Bian, Yukun; Li, Peng; Zhao, Nanrong
2018-04-01
A theoretical framework is presented to study the contact formation dynamics of polymer chains, in accompany with an electron-transfer quenching. Based on a non-Markovian Smoluchowski equation supplemented with an exponential sink term, we derive the mean time of contact formation under Wilemski-Fixman approximation. Our particular attentions are paid to the effect of internal friction. We find out that internal friction induces a novel fractional viscosity dependence, which will become more remarkable as internal friction increases. Furthermore, we clarify that internal friction inevitably promotes a diffusion-controlled mechanism by slowing the chain relaxation. Finally, we apply our theory to rationalise the experimental investigation for contact formation of a single-stranded DNA. The theoretical results can reproduce the experimental data very well with quite reasonable estimation for the intrinsic parameters. Such good agreements clearly demonstrate the validity of our theory which has appropriately addressed the very role of internal friction to the relevant dynamics.
International Nuclear Information System (INIS)
Sanborn, B.; Song, B.; Nishida, E.
2017-01-01
In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steel and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.
Hierarchical nonlinear dynamics of human attention.
Rabinovich, Mikhail I; Tristan, Irma; Varona, Pablo
2015-08-01
Attention is the process of focusing mental resources on a specific cognitive/behavioral task. Such brain dynamics involves different partially overlapping brain functional networks whose interconnections change in time according to the performance stage, and can be stimulus-driven or induced by an intrinsically generated goal. The corresponding activity can be described by different families of spatiotemporal discrete patterns or sequential dynamic modes. Since mental resources are finite, attention modalities compete with each other at all levels of the hierarchy, from perception to decision making and behavior. Cognitive activity is a dynamical process and attention possesses some universal dynamical characteristics. Thus, it is time to apply nonlinear dynamical theory for the description and prediction of hierarchical attentional tasks. Such theory has to include the analyses of attentional control stability, the time cost of attention switching, the finite capacity of informational resources in the brain, and the normal and pathological bifurcations of attention sequential dynamics. In this paper we have integrated today's knowledge, models and results in these directions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonlinear dynamics new directions theoretical aspects
Ugalde, Edgardo
2015-01-01
This book, along with its companion volume, Nonlinear Dynamics New Directions: Models and Applications, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Presents a rigorous treatment of fluctuations in dynamical systems and explores a range of topics in fractal analysis, among other fundamental topics · Features recent developments on...
Non-Linear Dynamics of Saturn's Rings
Esposito, L. W.
2016-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries
Beam stability & nonlinear dynamics. Formal report
Energy Technology Data Exchange (ETDEWEB)
Parsa, Z. [ed.
1996-12-31
his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.
Research on nonlinear stochastic dynamical price model
International Nuclear Information System (INIS)
Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng
2008-01-01
In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies
Nonlinear dynamic macromodeling techniques for audio systems
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
Beam stability ampersand nonlinear dynamics. Formal report
International Nuclear Information System (INIS)
Parsa, Z.
1996-01-01
This report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report
Nonlinear dynamics from lasers to butterflies
Ball, R
2003-01-01
This book is an inspirational introduction to modern research directions and scholarship in nonlinear dynamics, and will also be a valuable reference for researchers in the field. With the scholarly level aimed at the beginning graduate student, the book will have broad appeal to those with an undergraduate background in mathematical or physical sciences.In addition to pedagogical and new material, each chapter reviews the current state of the area and discusses classic and open problems in engaging, surprisingly non-technical ways. The contributors are Brian Davies (bifurcations in maps), Nal
International Nuclear Information System (INIS)
Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.
1989-01-01
Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities
Indirect learning control for nonlinear dynamical systems
Ryu, Yeong Soon; Longman, Richard W.
1993-01-01
In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.
Nonlinear Dynamics of Electrostatically Actuated MEMS Arches
Al Hennawi, Qais M.
2015-05-01
In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using a multi- mode Galarkin Reduced Order Model (ROM). We investigate the static response of the arch experimentally where we show several jumps due to the snap-through instability. Experimentally, a case study of in-plane silicon micromachined arch is studied and its mechanical behavior is measured using optical techniques. We develop an algorithm to extract various parameters that are needed to model the arch, such as the induced axial force, the modulus of elasticity, and the initially induced initial rise. After that, we excite the arch by a DC electrostatic force superimposed to an AC harmonic load. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Then, we excite the arch by an electric load of two AC frequency components, where we report a combination resonance of the summed type. Agreement is reported among the theoretical and experimental work.
Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu
2017-07-01
The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.
Overview of magnetic nonlinear beam dynamics in the RHIC
International Nuclear Information System (INIS)
Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.
2009-01-01
In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed
Bubble and Drop Nonlinear Dynamics experiment
2003-01-01
The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.
Dynamics of Nonlinear Time-Delay Systems
Lakshmanan, Muthusamy
2010-01-01
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...
Nonlinear dynamics of the relativistic standard map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Horton, W.
1991-04-01
Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs
Supercritical nonlinear parametric dynamics of Timoshenko microbeams
Farokhi, Hamed; Ghayesh, Mergen H.
2018-06-01
The nonlinear supercritical parametric dynamics of a Timoshenko microbeam subject to an axial harmonic excitation force is examined theoretically, by means of different numerical techniques, and employing a high-dimensional analysis. The time-variant axial load is assumed to consist of a mean value along with harmonic fluctuations. In terms of modelling, a continuous expression for the elastic potential energy of the system is developed based on the modified couple stress theory, taking into account small-size effects; the kinetic energy of the system is also modelled as a continuous function of the displacement field. Hamilton's principle is employed to balance the energies and to obtain the continuous model of the system. Employing the Galerkin scheme along with an assumed-mode technique, the energy terms are reduced, yielding a second-order reduced-order model with finite number of degrees of freedom. A transformation is carried out to convert the second-order reduced-order model into a double-dimensional first order one. A bifurcation analysis is performed for the system in the absence of the axial load fluctuations. Moreover, a mean value for the axial load is selected in the supercritical range, and the principal parametric resonant response, due to the time-variant component of the axial load, is obtained - as opposed to transversely excited systems, for parametrically excited system (such as our problem here), the nonlinear resonance occurs in the vicinity of twice any natural frequency of the linear system; this is accomplished via use of the pseudo-arclength continuation technique, a direct time integration, an eigenvalue analysis, and the Floquet theory for stability. The natural frequencies of the system prior to and beyond buckling are also determined. Moreover, the effect of different system parameters on the nonlinear supercritical parametric dynamics of the system is analysed, with special consideration to the effect of the length-scale parameter.
Neuromechanical tuning of nonlinear postural control dynamics
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Bubble and Drop Nonlinear Dynamics (BDND)
Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.
1998-01-01
Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.
Cheng, Ryan R.; Hawk, Alexander T.; Makarov, Dmitrii E.
2013-02-01
Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.
Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness
International Nuclear Information System (INIS)
Kawaguchi, T.; Matsukawa, H.
1997-01-01
Static and dynamic frictional phenomena at the interface with random impurities are investigated in a two-chain model with incommensurate structure. Static frictional force is caused by the impurity pinning and/or by the pinning due to the regular potential, which is responsible for the breaking of analyticity transition for impurity-free cases. It is confirmed that the static frictional force is always finite in the presence of impurities, in contrast to the impurity-free system. The nature of impurity pinning is discussed in connection with that in density waves. The kinetic frictional force of a steady sliding state is also investigated numerically. The relationship between the sliding velocity dependence of the kinetic frictional force and the strength of impurity potential is discussed. copyright 1997 The American Physical Society
The influence of suspension components friction on race car vertical dynamics
Benini, Claudio; Gadola, Marco; Chindamo, Daniel; Uberti, Stefano; Marchesin, Felipe P.; Barbosa, Roberto S.
2017-03-01
This work analyses the effect of friction in suspension components on a race car vertical dynamics. It is a matter of fact that race cars aim at maximising their performance, focusing the attention mostly on aerodynamics and suspension tuning: suspension vertical and rolling stiffness and damping are parameters to be taken into account for an optimal setup. Furthermore, friction in suspension components must not be ignored. After a test session carried out with a F4 on a Four Poster rig, friction was detected on the front suspension. The real data gathered allow the validation of an analytical model with friction, confirming that its influence is relevant for low frequency values closed to the car pitch natural frequency. Finally, some setup proposals are presented to describe what should be done on actual race cars in order to correct vehicle behaviour when friction occurs.
High precision tracking control of a servo gantry with dynamic friction compensation.
Zhang, Yangming; Yan, Peng; Zhang, Zhen
2016-05-01
This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Niederberger, S.; Gracias, D. H.; Komvopoulos, K.; Somorjai, G. A.
2000-01-01
The dynamic friction mechanisms of polyethylene and silicon were investigated for apparent contact pressures and contact areas in the ranges of 8 MPa-18 GPa and 17 nm2-9500 μm2, respectively. Friction force measurements were obtained with a friction force microscope, scanning force microscope, and pin-on-disk tribometer. Silicon and diamond tips with a nominal radius of curvature between 100 nm and 1.2 mm were slid against low- and high-density polyethylene and Si(100) substrates under contact loads in the range of 5 nN-0.27 N. The low friction coefficients obtained with all material systems at low contact pressures indicated that deformation at the sliding interface was primarily elastic. Alternatively, the significantly higher friction coefficients at higher contact pressures suggested that plastic deformation was the principal mode of deformation. The high friction coefficients of polyethylene observed with large apparent contact areas are interpreted in terms of the microstructure evolution involving the rearrangement of crystalline regions (lamellae) nearly parallel to the sliding direction, which reduces the surface resistance to plastic shearing. Such differences in the friction behavior of polyethylene resulting from stress-induced microstructural changes were found to occur over a relatively large range of the apparent contact area. The friction behavior of silicon was strongly affected by the presence of a native oxide film. Results are presented to demonstrate the effect of the scale of deformation at the contact interface on the dynamic friction behavior and the significance of contact parameters on the friction measurements obtained with different instruments. (c) 2000 American Institute of Physics
Simulating Dynamics of the System of Articulated Rigid Bodies with Joint Friction
Directory of Open Access Journals (Sweden)
M. V. Michaylyuk
2016-01-01
Full Text Available The subject of the work is to simulate dynamics of the system of articulated rigid bodies in the virtual environment complexes. The work aim is to develop algorithms and methods to simulate the multi-body system dynamics with joint friction to ensure all calculations in real time in line with visual realistic behavior of objects in a scene.The paper describes the multibody system based on a maximal set of coordinates, and to simulate the joint friction is used a Coulomb's law of dry friction. Joints are described using the holonomic constraints and their derivatives that specify the constraints on velocities of joined bodies. Based on The Coulomb’s law a correlation for the friction impulse values has been derived as an inequality. If the friction impulse performs a constraint that is a lack of relative motion of two joint-joined bodies, there is a static friction in the joint. Otherwise, there is a dynamic friction in the joint. Using a semi-implicit Euler method allows us to describe dynamics of articulated rigid bodies with joint friction as a system of linear algebraic equations and inequalities for the unknown velocities and impulse values.To solve the obtained system of equations and inequalities is used an iterative method of sequential impulses, which sequentially processes constraints for each joint with impulse calculation and its application to the joined bodies rather than considers the entire system. To improve the method convergence, at each iteration the calculated impulses are accumulated for their further using as an initial approximation at the next step of simulation.The proposed algorithms and methods have been implemented in the training complex dynamics subsystem, developed in SRISA RAS. Evaluation of these methods and algorithms has demonstrated their full adequacy to requirements for virtual environment systems and training complexes.
Bifurcation methods of dynamical systems for handling nonlinear ...
Indian Academy of Sciences (India)
physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.
Static and dynamic friction in sliding colloidal monolayers.
Vanossi, Andrea; Manini, Nicola; Tosatti, Erio
2012-10-09
In a pioneer experiment, Bohlein et al. realized the controlled sliding of two-dimensional colloidal crystals over laser-generated periodic or quasi-periodic potentials. Here we present realistic simulations and arguments that besides reproducing the main experimentally observed features give a first theoretical demonstration of the potential impact of colloid sliding in nanotribology. The free motion of solitons and antisolitons in the sliding of hard incommensurate crystals is contrasted with the soliton-antisoliton pair nucleation at the large static friction threshold F(s) when the two lattices are commensurate and pinned. The frictional work directly extracted from particles' velocities can be analyzed as a function of classic tribological parameters, including speed, spacing, and amplitude of the periodic potential (representing, respectively, the mismatch of the sliding interface and the corrugation, or "load"). These and other features suggestive of further experiments and insights promote colloid sliding to a unique friction study instrument.
Non-linear dynamics in Parkinsonism
Directory of Open Access Journals (Sweden)
Olivier eDarbin
2013-12-01
Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.
Departure of microscopic friction from macroscopic drag in molecular fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Hanasaki, Itsuo [Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Fujiwara, Daiki; Kawano, Satoyuki, E-mail: kawano@me.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531 (Japan)
2016-03-07
Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.
Nonlinear dynamic processes in modified ionospheric plasma
Kochetov, A.; Terina, G.
Presented work is a contribution to the experimental and theoretical study of nonlinear effects arising on ionospheric plasma under the action of powerful radio emission (G.I. Terina, J. Atm. Terr. Phys., 1995, v.57, p.273; A.V. Kochetov et. al., Advances in Space Research, 2002, in press). The experimental results were obtained by the method of sounding of artificially disturbed ionosphere by short radio pulses. The amplitude and phase characteristics of scattered signal as of "caviton" type (CS) (analogy of narrow-band component of stimulation electromagnetic emission (SEE)) as the main signal (MS) of probing transmitter are considered. The theoretical model is based on numerical solution of driven nonlinear Shrödinger equation (NSE) in inhomogeneous plasma. The simulation allows us to study a self-consistent spatial-temporal dynamics of field and plasma. The observed evolution of phase characteristics of MS and CS qualitatively correspond to the results of numerical simulation and demonstrate the penetration processes of powerful electromagnetic wave in supercritical (in linear approach) plasma regions. The modeling results explain also the periodic generation of CS, the travel CS maximum down to density gradient, the aftereffect of CS. The obtained results show the excitation of strong turbulence and allow us to interpret CS, NC and so far inexplicable phenomena as "spikes" too. The work was supported in part by Russian Foundation for Basic Research (grants Nos. 99-02-16642, 99-02- 16399).
Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces
Tal, Yuval; Hager, Bradford H.
2017-09-01
This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.
Nonlinear structural mechanics theory, dynamical phenomena and modeling
Lacarbonara, Walter
2013-01-01
Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...
Nonlinear dynamic analysis of flexible multibody systems
Bauchau, Olivier A.; Kang, Nam Kook
1991-01-01
Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.
Nonlinear Multibody Dynamics of Wind Turbines
DEFF Research Database (Denmark)
Holm-Jørgensen, Kristian
individually and next couple them by use of joints. This gives a high level of modelling flexibility, where parts of the structure with relative ease can be interchanged to analyze other possibilities in a design process, or if a higher detail level is wanted for some components. In a multibody formulation...... turbine blade with large nonlinear displacements it has shown most favorable to use the end points in the substructure for updating the moving frames. For speeding up dynamical simulations for use in e.g. active control or parameter studies, system reduction of substructures in the multibody formulation...... element parameters also can determine e.g. torsional stiffness and the position of the shear center. The method makes use of three node triangular elements where the different material layers in the blade profile are taken into consideration. The results are compared to a similar tool which makes use...
Efficiency-wage competition and nonlinear dynamics
Guerrazzi, Marco; Sodini, Mauro
2018-05-01
In this paper we develop a nonlinear version of the efficiency-wage competition model pioneered by Hahn (1987) [27]. Under the assumption that the strategic relationship among optimal wage bids put forward by competing firms is non-monotonic, we show that market wage offers can actually display persistent fluctuations described by a piece-wise non-invertible map. Thereafter, assuming that employers are never constrained in the labour market, we give evidence that in the parameter region of chaotic dynamics, the model is able to reproduce the business cycle regularity according to which in the short-run average wages fluctuate less than aggregate employment. In addition, we show that the efficiency-wage competition among firms leads to some inefficiencies in the wage setting process.
Nonlinear dynamics in the relativistic field equation
International Nuclear Information System (INIS)
Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An
2007-01-01
We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
Nonlinear Dynamics: Integrability, Chaos and Patterns
International Nuclear Information System (INIS)
Grammaticos, B
2004-01-01
When the editorial office of Journal of Physics A: Mathematical and General of the Institute of Physics Publishing asked me to review a book on nonlinear dynamics I experienced an undeniable apprehension. Indeed, the domain is a rapidly expanding one and writing a book aiming at a certain degree of completeness looks like an almost impossible task. My uneasiness abated somewhat when I saw the names of the authors, two well-known specialists of the nonlinear domain, but it was only when I held the book in my hands that I felt really reassured. The book is not just a review of the recent (and less so) findings on nonlinear systems. It is also a textbook. The authors set out to provide a detailed, step by step, introduction to the domain of nonlinearity and its various subdomains: chaos, integrability and pattern formation (although this last topic is treated with far less detail than the other two). The public they have in mind is obviously that of university students, graduate or undergraduate, who are interested in nonlinear phenomena. I suspect that a non-negligible portion of readers will be people who have to teach topics which figure among those included in the book: they will find this monograph an excellent companion to their course. The book is written in a pedagogical way, with a profusion of examples, detailed explanations and clear diagrams. The point of view is that of a physicist, which to my eyes is a major advantage. The mathematical formulation remains simple and perfectly intelligible. Thus the reader is not bogged down by fancy mathematical formalism, which would have discouraged the less experienced ones. A host of exercises accompanies every chapter. This will give the novice the occasion to develop his/her problem-solving skills and acquire competence in the use of nonlinear techniques. Some exercises are quite straightforward, like 'verify the relation 14.81'. Others are less so, such as 'prepare a write-up on a) frequency-locking and b) devil
Nonlinear Dynamics: Integrability, Chaos and Patterns
Energy Technology Data Exchange (ETDEWEB)
Grammaticos, B [GMPIB, Universite Paris VII, Tour 24--14, 5e etage, Case 7021, 75251 Paris (France)
2004-02-06
When the editorial office of Journal of Physics A: Mathematical and General of the Institute of Physics Publishing asked me to review a book on nonlinear dynamics I experienced an undeniable apprehension. Indeed, the domain is a rapidly expanding one and writing a book aiming at a certain degree of completeness looks like an almost impossible task. My uneasiness abated somewhat when I saw the names of the authors, two well-known specialists of the nonlinear domain, but it was only when I held the book in my hands that I felt really reassured. The book is not just a review of the recent (and less so) findings on nonlinear systems. It is also a textbook. The authors set out to provide a detailed, step by step, introduction to the domain of nonlinearity and its various subdomains: chaos, integrability and pattern formation (although this last topic is treated with far less detail than the other two). The public they have in mind is obviously that of university students, graduate or undergraduate, who are interested in nonlinear phenomena. I suspect that a non-negligible portion of readers will be people who have to teach topics which figure among those included in the book: they will find this monograph an excellent companion to their course. The book is written in a pedagogical way, with a profusion of examples, detailed explanations and clear diagrams. The point of view is that of a physicist, which to my eyes is a major advantage. The mathematical formulation remains simple and perfectly intelligible. Thus the reader is not bogged down by fancy mathematical formalism, which would have discouraged the less experienced ones. A host of exercises accompanies every chapter. This will give the novice the occasion to develop his/her problem-solving skills and acquire competence in the use of nonlinear techniques. Some exercises are quite straightforward, like 'verify the relation 14.81'. Others are less so, such as 'prepare a write-up on a) frequency
Friction and diffusion dynamics of adsorbates at surfaces
Fusco, C.
2005-01-01
A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it
The nonlinear dynamics of a coupled fission system
International Nuclear Information System (INIS)
Bilanovic, Z.; Harms, A.A.
1993-01-01
The dynamic properties of a nonlinear and in situ vibrationally perturbed nuclear-to-thermal coupled neutron multiplying medium are examined. Some unique self-organizational temporal patterns appear in such fission systems and suggest a complex underlying dynamic. (Author)
Dynamic response of piping system on rack structure with gaps and frictions
International Nuclear Information System (INIS)
Kobayashi, Hiroe; Yoshida, Misutoyo; Ochi, Yoshio
1989-01-01
In the seismic design of a piping system on a rack structure, the interaction between the piping system and the rack structure must be evaluated under the condition that the rack structure is not stiff and heavy enough compared with the piping system. Moreover, there are local nonlinearities due to the gap and friction between the piping system and the rack structure. This paper presents the influence of the interaction and the local nonlinearities upon the seismic response by numerical study and a vibration test using a shaking table. In the numerical study, the piping system and the rack structure were represented by the three degrees of freedom mass-spring model taking a vibration mode of the piping system into account. The nonlinearities due to gap and friction were defined as a function of motion and treated as the pseudo force vector (additional applied force) in an equation of motion. From the results of the numerical study and the vibration test, it was clarified that seismic response of both the rack structure and the piping system is reduced by gap and friction. Moreover, the piping system and rack structure can be represented by the three degrees of freedom mass spring model. And the local nonlinearities can be treated by the pseudo force in an equation of motion. (orig.)
XXIII International Conference on Nonlinear Dynamics of Electronic Systems
Stoop, Ruedi; Stramaglia, Sebastiano
2017-01-01
This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.
Influence of damage and basal friction on the grounding line dynamics
Brondex, Julien; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Durand, Gael
2016-04-01
The understanding of grounding line dynamics is a major issue in the prediction of future sea level rise due to ice released from polar ice sheets into the ocean. This dynamics is complex and significantly affected by several physical processes not always adequately accounted for in current ice flow models. Among those processes, our study focuses on ice damage and evolving basal friction conditions. Softening of the ice due to damaging processes is known to have a strong impact on its rheology by reducing its viscosity and therefore promoting flow acceleration. Damage creates where shear stresses are high enough which is usually the case at shear margins and in the vicinity of pinning points in contact with ice-shelves. Those areas are known to have a buttressing effect on ice shelves contributing to stabilize the grounding line. We aim at evaluating the extent to which this stabilizing effect is hampered by damaging processes. Several friction laws have been proposed by various author to model the contact between grounded-ice and bedrock. Among them, Coulomb-type friction laws enable to account for reduced friction related to low effective pressure (the ice pressure minus the water pressure). Combining such a friction law to a parametrization of the effective pressure accounting for the fact that the area upstream the grounded line is connected to the ocean, is expected to have a significant impact on the grounding line dynamics. Using the finite-element code Elmer/Ice within which both the Coulomb-type friction law, the effective pressure parametrization and the damage model have been implemented, the goal of this study is to investigate the sensitivity of the grounding line dynamics to damage and to an evolving basal friction. The relative importance between those two processes on the grounding line dynamics is addressed as well.
Comparison of stochastic resonance in static and dynamical nonlinearities
International Nuclear Information System (INIS)
Ma, Yumei; Duan, Fabing
2014-01-01
We compare the stochastic resonance (SR) effects in parallel arrays of static and dynamical nonlinearities via the measure of output signal-to-noise ratio (SNR). For a received noisy periodic signal, parallel arrays of both static and dynamical nonlinearities can enhance the output SNR by optimizing the internal noise level. The static nonlinearity is easily implementable, while the dynamical nonlinearity has more parameters to be tuned, at the risk of not exploiting the beneficial role of internal noise components. It is of interest to note that, for an input signal buried in the external Laplacian noise, we show that the dynamical nonlinearity is superior to the static nonlinearity in obtaining a better output SNR. This characteristic is assumed to be closely associated with the kurtosis of noise distribution. - Highlights: • Comparison of SR effects in arrays of both static and dynamical nonlinearities. • Static nonlinearity is easily implementable for the SNR enhancement. • Dynamical nonlinearity yields a better output SNR for external Laplacian noise
Dynamic state switching in nonlinear multiferroic cantilevers
Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Lofland, Samuel E.; Takeuchi, Ichiro
2013-03-01
We demonstrate read-write-read-erase cyclical mechanical-memory properties of all-thin-film multiferroic heterostructured Pb(Zr0.52Ti0.48) O3 / Fe0.7Ga0.3 cantilevers when a high enough voltage around the resonant frequency of the device is applied on the Pb(Zr0.52Ti0.48) O3 piezo-film. The device state switching process occurs due to the presence of a hysteresis loop in the piezo-film frequency response, which comes from the nonlinear behavior of the cantilever. The reference frequency at which the strain-mediated Fe0.7Ga0.3 based multiferroic device switches can also be tuned by applying a DC magnetic field bias that contributes to the increase of the cantilever effective stiffness. The switching dynamics is mapped in the phase space of the device measured transfer function characteristic for such high piezo-film voltage excitation, providing additional information on the dynamical stability of the devices.
Nonlinear Dynamics of the Cosmic Neutrino Background
Inman, Derek
At least two of the three neutrino species are known to be massive, but their exact masses are currently unknown. Cosmic neutrinos decoupled from the rest of the primordial plasma early on when the Universe was over a billion times hotter than it is today. These relic particles, which have cooled and are now non-relativistic, constitute the Cosmic Neutrino Background and permeate the Universe. While they are not observable directly, their presence can be inferred by measuring the suppression of the matter power spectrum. This suppression is a linear effect caused by the large thermal velocities of neutrinos, which prevent them from collapsing gravitationally on small scales. Unfortunately, it is difficult to measure because of degeneracies with other cosmological parameters and biases arising from the fact that we typically observe point-like galaxies rather than a continous matter field. It is therefore important to look for new effects beyond linear suppression that may be more sensitive to neutrinos. This thesis contributes to the understanding of the nonlinear dynamics of the cosmological neutrino background in the following ways: (i) the development of a new injection scheme for neutrinos in cosmological N-body simulations which circumvents many issues associated with simulating neutrinos at large redshifts, (ii) the numerical study of the relative velocity field between cold dark matter and neutrinos including its reconstruction from density fields, (iii) the theoretical description of neutrinos as a dispersive fluid and its use in modelling the nonlinear evolution of the neutrino density power spectrum, (iv) the derivation of the dipole correlation function using linear response which allows for the Fermi-Dirac velocity distribution to be properly included, and (v) the numerical study and detection of the dipole correlation function in the TianNu simulation. In totality, this thesis is a comprehensive study of neutrino density and velocity fields that may
Nonlinear dynamics of thin current sheets
International Nuclear Information System (INIS)
Daughton, William
2002-01-01
Observations indicate that the current sheet in the Earth's geomagnetic tail may compress to a thickness comparable to an ion gyro-radius prior to substorm onset. In recent years, there has been considerable controversy regarding the kinetic stability of these thin structures. In particular, the growth rate of the kink instability and its relevance to magnetotail dynamics is still being debated. In this work, a series of fully kinetic particle-in-cell simulations are performed for a thin Harris sheet. The ion to electron mass ratio is varied between m i /m e =4→400 and careful comparisons are made with a formally exact approach to the linear Vlasov theory. At low mass ratio m i /m e <64, the simulations are in excellent agreement with the linear theory, but at high mass ratio the kink instability is observed to grow more rapidly in the kinetic simulations than predicted by theory. The resolution to this apparent discrepancy involves the lower hybrid instability which is active on the edge of the sheet and rapidly produces nonlinear modifications to the initial equilibrium. The nature of this nonlinear deformation is characterized and a simple model is proposed to explain the physics. After the growth and saturation of the lower hybrid fluctuations, the deformed current sheet is similar in structure to a Harris equilibrium with an additional background population. This may explain the large growth rate of the kink instability at later times, since this type of modification to the Harris sheet has been shown to greatly enhance the growth rate of the kink mode
Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.
2017-12-01
This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.
COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U
Energy Technology Data Exchange (ETDEWEB)
Sun, Y.; Borland, Michael
2017-06-25
Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Sieberling, S.; Chu, Q.P.; Mulder, J.A.
2010-01-01
This paper presents a flight control strategy based on nonlinear dynamic inversion. The approach presented, called incremental nonlinear dynamic inversion, uses properties of general mechanical systems and nonlinear dynamic inversion by feeding back angular accelerations. Theoretically, feedback of
Nonlinear dynamics of attractive magnetic bearings
Hebbale, K. V.; Taylor, D. L.
1987-01-01
The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.
Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen
2016-05-01
Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....
Maghsoudi, Mohammad Javad; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H. I.; Ahmad, S. M.
2017-08-01
This paper proposes an improved input shaping scheme for an efficient sway control of a nonlinear three dimensional (3D) overhead crane with friction using the particle swarm optimization (PSO) algorithm. Using this approach, a higher payload sway reduction is obtained as the input shaper is designed based on a complete nonlinear model, as compared to the analytical-based input shaping scheme derived using a linear second order model. Zero Vibration (ZV) and Distributed Zero Vibration (DZV) shapers are designed using both analytical and PSO approaches for sway control of rail and trolley movements. To test the effectiveness of the proposed approach, MATLAB simulations and experiments on a laboratory 3D overhead crane are performed under various conditions involving different cable lengths and sway frequencies. Their performances are studied based on a maximum residual of payload sway and Integrated Absolute Error (IAE) values which indicate total payload sway of the crane. With experiments, the superiority of the proposed approach over the analytical-based is shown by 30-50% reductions of the IAE values for rail and trolley movements, for both ZV and DZV shapers. In addition, simulations results show higher sway reductions with the proposed approach. It is revealed that the proposed PSO-based input shaping design provides higher payload sway reductions of a 3D overhead crane with friction as compared to the commonly designed input shapers.
Directory of Open Access Journals (Sweden)
Bai Minli
2011-01-01
Full Text Available Abstract Impact and friction model of nanofluid for molecular dynamics simulation was built which consists of two Cu plates and Cu-Ar nanofluid. The Cu-Ar nanofluid model consisted of eight spherical copper nanoparticles with each particle diameter of 4 nm and argon atoms as base liquid. The Lennard-Jones potential function was adopted to deal with the interactions between atoms. Thus motion states and interaction of nanoparticles at different time through impact and friction process could be obtained and friction mechanism of nanofluids could be analyzed. In the friction process, nanoparticles showed motions of rotation and translation, but effected by the interactions of nanoparticles, the rotation of nanoparticles was trapped during the compression process. In this process, agglomeration of nanoparticles was very apparent, with the pressure increasing, the phenomenon became more prominent. The reunited nanoparticles would provide supporting efforts for the whole channel, and in the meantime reduced the contact between two friction surfaces, therefore, strengthened lubrication and decreased friction. In the condition of overlarge positive pressure, the nanoparticles would be crashed and formed particles on atomic level and strayed in base liquid.
The effects of dynamic friction in oblique motorcycle helmet impacts
Bonugli, Enrique
The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and 'typical' roadway surfaces. These values were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impacts. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate off-centered oblique collision. Head accelerations and impact forces were measured for each test. Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and cement in magnitude, duration and onset. Reduction in head acceleration, both linear and angular, were observed when asphalt and cement were used as the impacting surface. Roofing shingle was determined to be a more suitable material to simulate 'typical' roadway surfaces however, this may not be ideal for use in a controlled laboratory setting. In a laboratory setting, the author recommends cement as a best-fit material to simulate roadway surface for use in oblique motorcycle helmet impacts since this material displayed characteristics that closely resemble asphalt and is currently used as a roadway construction material.
Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity
Jeevarekha, A.; Paul Asir, M.; Philominathan, P.
2016-06-01
This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.
Nonlinear switching dynamics in a photonic-crystal nanocavity
International Nuclear Information System (INIS)
Yu, Yi; Palushani, Evarist; Heuck, Mikkel; Vukovic, Dragana; Peucheret, Christophe; Yvind, Kresten; Mork, Jesper
2014-01-01
We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching contrast.
Nonlinear switching dynamics in a photonic-crystal nanocavity
DEFF Research Database (Denmark)
Yu, Yi; Palushani, Evarist; Heuck, Mikkel
2014-01-01
We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When...... of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching...... the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms...
The numerical dynamic for highly nonlinear partial differential equations
Lafon, A.; Yee, H. C.
1992-01-01
Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.
Nonlinear dynamic range transformation in visual communication channels.
Alter-Gartenberg, R
1996-01-01
The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.
Nonlinear Modeling and Simulation of Thermal Effects in Microcantilever Resonators Dynamic
International Nuclear Information System (INIS)
Tadayon, M A; Sayyaadi, H; Jazar, G Nakhaie
2006-01-01
Thermal dependency of material characteristics in micro electromechanical systems strongly affects their performance, design, and control. Hence, it is essential to understand and model that in MEMS devices to optimize their designs. A thermal phenomenon introduces two main effects: damping due to internal friction, and softening due to Young modulus temperature relation. Based on some reported theoretical and experimental results, we model the thermal phenomena and use two Lorentzian functions to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, by considering capacitor nonlinearity, have been used. The response of the system is developed by employing multiple time scales perturbation method on nondimensionalized form of equations. Frequency response, resonant frequency and peak amplitude are examined for variation of dynamic parameters involved
International Nuclear Information System (INIS)
Lee, Song Hi
2010-01-01
We presented a molecular dynamics (MD) simulation study of friction behavior between two very massive Brownian particles (BPs) oriented along the z axis with BP centers at -R 12 /2 and R 12 /2 in a Lennard-Jones solvent as a function of the inter-particle separation, R 12 . In order to fix the BPs in space an MD simulation method with the mass of the BP as 10 90 g/mol was employed in which the total momentum of the system was conserved. The cross friction coefficients of x- and y-components are nearly insensitive to R 12 but that of z-component varies with R 12 in good accord with the simple hydrodynamic approximation. On the other hand, the self-friction coefficients are estimated as a very small difference from the single particle friction coefficients, ξ 0 , at all inter-particle separations which agrees with the simple hydrodynamic approximation. Consequently ξ (-) xx is nearly independent of R 12 and equal to its asymptotic value of twice the single particle friction coefficient, and the other relative friction, ξ (-) zz , is in good agreement with the simple hydrodynamic approximation. Molecular theory of Brownian motion of a single heavy particle in a fluid had received a considerable attention in earlier years. After molecular dynamics (MD) simulation technique was utilized, this subject has been widely studied by a variety of MD simulation methods. The common issues here were about the long time behavior of the force and velocity autocorrelation functions, the system size dependent friction coefficient of a massive Brownian particle, and test of the Stokes-Einstein law
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.
Nonlinear dynamics of semiconductors in strong THz electric fields
DEFF Research Database (Denmark)
Tarekegne, Abebe Tilahun
In this thesis, we investigate nonlinear interactions of an intense terahertz (THz) field with semiconductors, in particular the technologically relevant materials silicon and silicon carbide. We reveal the time-resolved dynamics of the nonlinear processes by pump-probe experiments that involve...
Nonlinear dynamic characterization of two-dimensional materials
Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.
2017-01-01
Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's
Friction and Surface Dynamics of Polymers on the Nanoscale by AFM
Schönherr, Holger; Schónherr, Holger; Samori, Paolo; Tocha, E.; Vancso, Gyula J.
2008-01-01
In this article the measurement and understanding of friction forces and surface dynamics of polymers on the one hand and the importance of molecular relaxation processes and viscoelasticity in polymers for advanced micro- and nanoscale applications on the other hand are discussed. Particular
Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems
Tavares, J. M.
2009-01-01
The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…
Oscillation criteria for fourth-order nonlinear delay dynamic equations
Directory of Open Access Journals (Sweden)
Yunsong Qi
2013-03-01
Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples
Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool, Phase I
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...
Nonlinear dynamics modelling of multistage micro-planetary gear transmission
Directory of Open Access Journals (Sweden)
Li Jianying
2018-01-01
Full Text Available The transmission structure of a 2K-H multistage micro-planetary gear transmission reducer is described in detail, and three assumptions are supposed in dynamic modelling. On basis of these assumptions, a three stages 2K-H micro-planetary gear transmission dynamic model is established, in which the relative displacement each meshing gear pairs can be obtained after including the comprehensive transmission error. According to gear kinematics, the friction arms between the sun gear, the ring gear and the nth planet are also obtained, and the friction coefficient in the mixed elastohydrodynamic lubrication is considered, the transmission system motion differential equations are obtained, including above factors and the time-varying meshing stiffness, damping and backlash, inter-stage coupling stiffness, it can be provided an theoretical foundation for further analysing the parameter sensitivity, dynamic stability and designing.
Nonlinear dynamics of a coherent polariton-biexciton system
International Nuclear Information System (INIS)
Nguyen Trung Dan; Vo Tinh
1994-08-01
The nonlinear dynamics of a coherent interacting polariton-biexciton system in optically excited semiconductors is investigated. We consider the case when two macroscopically coherent modes - a lower branch polariton and a biexciton existing simultaneously in a direct-gap semiconductor. The conditions for exhibiting optical bistability in stationary regime are obtained. Numerical simulation for the nonlinear dynamics equations of the system is also carried out. (author). 16 refs, 4 figs
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
The periodic structure of the natural record, and nonlinear dynamics.
Shaw, H.R.
1987-01-01
This paper addresses how nonlinear dynamics can contribute to interpretations of the geologic record and evolutionary processes. Background is given to explain why nonlinear concepts are important. A resume of personal research is offered to illustrate why I think nonlinear processes fit with observations on geological and cosmological time series data. The fabric of universal periodicity arrays generated by nonlinear processes is illustrated by means of a simple computer mode. I conclude with implications concerning patterns of evolution, stratigraphic boundary events, and close correlations of major geologically instantaneous events (such as impacts or massive volcanic episodes) with any sharply defined boundary in the geologic column. - from Author
Vibrational mechanics nonlinear dynamic effects, general approach, applications
Blekhman, Iliya I
2000-01-01
This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat
Epistemological and Treatment Implications of Nonlinear Dynamics
Stein, A. H.
The treatment implications of understanding mind as solely epiphenomenal to nonlinearly founded neurobiology are discussed. G. Klimovsky's epistemological understanding of psychoanalysis as a science is rejected and treatment approaches integrating W. R. Bion's and D. W. Winnicott's work are supported.
High velocity properties of the dynamic frictional force between ductile metals
International Nuclear Information System (INIS)
Hammerberg, James Edward; Hollan, Brad L.; Germann, Timothy C.; Ravelo, Ramon J.
2010-01-01
The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.
A dynamic unilateral contact problem with adhesion and friction in viscoelasticity
Cocou, Marius; Schryve, Mathieu; Raous, Michel
2010-08-01
The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin-Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.
On the dynamics of Airy beams in nonlinear media with nonlinear losses.
Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A
2015-04-06
We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.
Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors
Schöll, Eckehard
2005-08-01
Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.
Directory of Open Access Journals (Sweden)
S. V. Myamlin
2014-03-01
Full Text Available Purpose. The main requirements for the design of a new generation of cars, according to the Program of rolling stock renovation, are the requirements reducing the operating costs and increasing the cost-effectiveness of their use, taking into account the achievements of scientific and technical thought. Due to the urgency of this subject the paper is devoted to the study of the friction coefficient influence in the bearing connection «center plate – center bowl – bearers»of freight cars on their main dynamic parameters – coefficients of horizontal and vertical dynamics, body acceleration, frame strength, derailment stability factor. Methodology. The study was conducted by numerical integration and mathematical modeling of the freight car dynamic loading using the software package «Dynamics of Rail Vehicles» («DYNRAIL». Findings. Investigations have shown that the safety movement parameters are influenced by both the friction parameters in bearing connection «center plate – center bowl – bearers» of freight cars in empty and loaded state with bogies TSNII-X3 (model 18-100. Effect have other components of freight car dynamics, namely: radii of curved track sections, height of outer rail, etc. Originality. The author investigated the friction influence on the car dynamic loading using new approaches to solving the problem of predicting the rolling stock dynamics. Prediction was carried out on the basis of significantly updated theoretical material that covers all history of the friction theory and includes the results of recent experimental studies because of the speed on the straights and curves of small-and medium-range sections of the road.Practical value. The obtained results have practical orientation. During the research and after modeling with the improved method of accounting of friction processes dependencies of main dynamic parameters of a four-freight gondola on the value of the friction coefficient in the "body
International Conference on Structural Nonlinear Dynamics and Diagnosis
CSNDD 2012; CSNDD 2014
2015-01-01
This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics. Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F
2016-10-21
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-10-01
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Dynamical friction: The Hubble diagram as a cosmological test
International Nuclear Information System (INIS)
Gunn, J.E.; Tinsley, B.M.
1976-01-01
Effects on the Hubble diagram of the frictional accretion of small cluster galaxies by large ones, to which Ostriker and Tremaine have recently drawn attention, must be accurately determined if the magnitude-redshift relation is to become a viable cosmological test. We find that the process might be detectable through the concomitant change in galaxy colors, but that its effect on the dispersion of magnitudes of first-ranked cluster galaxies would be negligible even if the change in average magnitude is very important. The sign of the effect of accretion on the luminosity observed within a given aperture depends on the structures of the galaxies involved. The size of the effect not only depends sensitively on the galaxy structures, but is also amplified when the relatively recent collapse times of the clusters are taken into account. It is vital to answer the complicated observational and theoretical questions raised by these preliminary calculations, because the Hubble diagram remains the most promising approach to the deceleration parameter q 0 . Local tests of the density of the universe do not give equivalent information
A simple nonlinear dynamical computing device
International Nuclear Information System (INIS)
Miliotis, Abraham; Murali, K.; Sinha, Sudeshna; Ditto, William L.; Spano, Mark L.
2009-01-01
We propose and characterize an iterated map whose nonlinearity has a simple (i.e., minimal) electronic implementation. We then demonstrate explicitly how all the different fundamental logic gates can be implemented and morphed using this nonlinearity. These gates provide the full set of gates necessary to construct a general-purpose, reconfigurable computing device. As an example of how such chaotic computing devices can be exploited, we use an array of these maps to encode data and to process information. Each map can store one of M items, where M is variable and can be large. This nonlinear hardware stores data naturally in different bases or alphabets. We also show how this method of storing information can serve as a preprocessing tool for exact or inexact pattern-matching searches.
On the Theory of Nonlinear Dynamics and its Applications in Vehicle Systems Dynamics
DEFF Research Database (Denmark)
True, Hans
1999-01-01
We present a brief outline of nonlinear dynamics and its applications to vehicle systems dynamics problems. The concept of a phase space is introduced in order to illustrate the dynamics of nonlinear systems in a way that is easy to perceive. Various equilibrium states are defined...... of nonlinear dynamics in vehicle simulations is discussed, and it is argued that it is necessary to know the equilibrium states of the full nonlinear system before the simulation calculations are performed......., and the important case of multiple equilibrium states and their dependence on a parameter is discussed. It is argued that the analysis of nonlinear dynamic problems always should start with an analysis of the equilibrium states of the full nonlinear problem whereby great care must be taken in the choice...
Friction laws at the nanoscale.
Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela
2009-02-26
Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.
The dynamics of a frictionally-dominated Amazonian estuary
Directory of Open Access Journals (Sweden)
Nils Edvin Asp
2012-09-01
Full Text Available The hydrodynamics, morphology and sedimentology of the Taperaçu estuary were investigated. This is one of several estuaries located within the largest mangrove fringe in the world, bordering the Amazon region, subject to a macrotidal regime and regionally atypical negligible fresh water supply. The results reveal widespread sand banks that occupy the central portion of the estuarine cross-section. Well-sorted very fine sandy sediments of marine origin prevail. Shorter flood phases, with substantially higher current velocities, were observed in the upper sector of Taperaçu, as expected for a shallow, friction-dominated estuary. However, ebb domination can be expected for estuaries with large associated mangrove areas and substantial estuarine infilling, both of which situations occur on the Taperaçu. The tidal asymmetry favoring flood currents could be the result of the absence of an effective fluvial discharge. Furthermore, it was observed that the Taperaçu is connected by tidal creeks to the neighboring Caeté estuary, allowing a stronger flux during the flood and intensifying the higher flood currents. As a whole, the results have shown a complex interaction of morphological aspects (friction, fluvial drainage, connections with neighbor estuaries, infilling and large storage area in determining hydrodynamic patterns, thus improving the understanding of Amazon estuaries.A hidrodinâmica, morfologia e sedimentologia do estuário do Taperaçu foram investigadas. Este é um entre vários estuários do litoral amazônico que integram a maior extensão contínua de manguezais do mundo, apresentando uma descarga de água doce muito reduzida, atípica para a região. Os resultados revelam grandes bancos arenosos que ocupam em grande parte a porção central do estuário. Areias muito finas e bem selecionadas de origem marinha prevalecem. Fases de enchente mais curtas, com velocidades de corrente substancialmente mais altas, são observadas na por
Sekiguchi, Yusuke; Kato, Tomohisa; Honda, Keita; Kanetaka, Hiroyasu; Izumi, Shin-Ichi
2017-08-01
The effect of the grab bar on dynamic stability when elderly people enter the bathtub remains unclear. The purpose of the present study is to examine the age-related effect of the grab bar on dynamic stability during lateral stepping over an obstacle when entering bathtub. Sixteen young, healthy adults and sixteen elderly adults participated. The subjects performed lateral stepping over an obstacle with and without vertical and horizontal bars. Displacement and velocity of the center of mass and utilized friction, which is the required coefficient of friction to avoid slipping, were simultaneously measured by a three-dimensional motion analysis system and two force plates. A post hoc test for two-way ANOVA revealed that velocity of the center of mass in the vertical direction (pbar were significantly slower and smaller than those without the grab bar in young and elderly people. Moreover, the utilized friction at push off of the trailing leg with the vertical bar in elderly people was lower (pbar. The use of each grab bar while performing a lateral step over an obstacle may help maintaining balance in lateral and vertical directions. However, use of the vertical bar while lateral stepping over an object in elderly people may need low utilized friction to prevent slipping. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonlinear analysis on power reactor dynamics
International Nuclear Information System (INIS)
Konno, H.; Hayashi, K.
1997-01-01
We have shown that the origin of intermittent oscillation observed in a BWR can be ascribed to the couplings among the spatial modes starting from a non-linear center manifold equation with a delay-time and a spatial diffusion. We can reduce the problem to the stochastic coupled van der Pol oscillators with non-linear coupling term. This non-linear coupling term plays an important role to break the symmetry of the system and the non-linear damping of the system. The phenomenological generalization of van der Pol oscillator coupled by the linear diffusion term is not appropriate for describing the nuclear power reactors. However, one must start from the coupled partial differential equations by taking into account the two energy group neutrons, the thermo-hydraulic equations including two-phase flow. In this case, the diffusion constant must be a complex number as is demonstrated in a previous paper. The results will be reported in the near future. (J.P.N.)
Nonlinear dynamical phenomena in liquid crystals
International Nuclear Information System (INIS)
Wang, X.Y.; Sun, Z.M.
1988-09-01
Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs
Nonlinear dynamics based digital logic and circuits.
Kia, Behnam; Lindner, John F; Ditto, William L
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.
Role of nonlinear dynamics and chaos in applied sciences
International Nuclear Information System (INIS)
Lawande, Quissan V.; Maiti, Nirupam
2000-02-01
Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings. However, little attention was being paid to this dynamically rich field. With the advent of high speed computers with visual graphics, the field has proliferated over past few years. One of the most rewarding realization from nonlinear dynamics is the universally acclaimed field of chaos. Chaos has brought in order and has broken the disciplinary boundaries that existed until recently. With its universal phenomena, almost all disciplines following an evolutionary character can be treated on same footing. Chaotic dynamics has its grounding in the multidisciplinary field of synergetics founded by Professor Hermann Haken. In this report, we address some of the basics related to the field of chaos. We have discussed simple mechanisms for generating chaotic trajectories, ways and means of characterizing such systems and the manifestation of their signatures in the evolutions. We have mentioned the links of this field with other existing theories. We have outlined the topics on bifurcation and stability of dynamical systems. Information theoretic aspects and notions on fractal geometry are reviewed in the light of dynamical characterization of chaotic systems. Application oriented views of this novel dynamical phenomena are discussed through examples on simple nonlinear electronic circuits and a BWR reactor. Some ideas relating to control and synchronization in chaotic systems also addressed. In conclusion, we have explored the possibilities of exploiting nonlinear dynamics and chaos in the context of multidisciplinary character of BARC. (author)
Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.
Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B
2018-02-28
The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).
Mazza, Mirko
2015-12-01
Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifications and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the superstructure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber bearings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal components of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high values of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are
Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature
Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun
2017-12-01
The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference
Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.
Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C
2015-05-21
In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.
Dynamic nonlinear interaction of elastic plates on discrete supports
International Nuclear Information System (INIS)
Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.
1984-01-01
A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt
Jacobian projection reduced-order models for dynamic systems with contact nonlinearities
Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.
2018-02-01
In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.
Electron dynamics with radiation and nonlinear wigglers
International Nuclear Information System (INIS)
Jowett, J.M.
1986-06-01
The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches
A Survey of Nonlinear Dynamics (Chaos Theory)
1991-04-01
example of an n = 1 Hamiltonian system does have separatrices. This is the 1D pendulum (Fig. 4.2): 9=p, p=-asin9;H(9,p) =p2 /2- acosO . (4-5) Phase space...method. There is no substitute for the actual labor of applying the nonlinear operator to a sum of normal modes, producing a general Galerkin vector
Nonlinear mirror mode dynamics: Simulations and modeling
Czech Academy of Sciences Publication Activity Database
Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel
2008-01-01
Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008
Single Particle Linear and Nonlinear Dynamics
Energy Technology Data Exchange (ETDEWEB)
Cai, Y
2004-06-25
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form.
Single Particle Linear and Nonlinear Dynamics
International Nuclear Information System (INIS)
Cai, Y
2004-01-01
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form
Nonlinear laser dynamics from quantum dots to cryptography
Lüdge, Kathy
2012-01-01
A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research.By presenting both experimental and theoretical results, the distinguished authors consider solitary lase
Nonlinear dynamics and control of a vibrating rectangular plate
Shebalin, J. V.
1983-01-01
The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.
Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments
Brainard, W. A.; Buckley, D. H.
1975-01-01
Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.
Quantum dynamics and breakdown of classical realism in nonlinear oscillators
International Nuclear Information System (INIS)
Gat, Omri
2007-01-01
The leading nonclassical term in the quantum dynamics of nonlinear oscillators is calculated in the Moyal quasi-trajectory representation. The irreducibility of the quantum dynamics to phase-space trajectories is quantified by the discrepancy of the canonical quasi-flow and the quasi-flow of a general observable. This discrepancy is shown to imply the breakdown of classical realism that can give rise to a dynamical violation of Bell's inequalities. (fast track communication)
A nonlinear dynamics of trunk kinematics during manual lifting tasks.
Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin
2015-01-01
Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.
Nonlinear and Complex Dynamics in Economics
William Barnett; Apostolos Serletis; Demitre Serletis
2012-01-01
This paper is an up-to-date survey of the state-of-the-art in dynamical systems theory relevant to high levels of dynamical complexity, characterizing chaos and near chaos, as commonly found in the physical sciences. The paper also surveys applications in economics and �finance. This survey does not include bifurcation analyses at lower levels of dynamical complexity, such as Hopf and transcritical bifurcations, which arise closer to the stable region of the parameter space. We discuss the...
Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.
Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C
2014-01-01
Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.
Existence of solutions for the dynamic frictional contact problem of isotropic viscoelastic bodies
Czech Academy of Sciences Publication Activity Database
Eck, C.; Jarušek, Jiří
2003-01-01
Roč. 53, č. 2 (2003), s. 157-181 ISSN 0362-546X R&D Projects: GA AV ČR IAA1075005; GA AV ČR IAA1075707 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : dynamic contact problem * parabolic equation * Coulomb law of friction Subject RIV: BA - General Mathematics Impact factor: 0.354, year: 2003
Parameter and Structure Inference for Nonlinear Dynamical Systems
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
A Cumulant-based Analysis of Nonlinear Magnetospheric Dynamics
International Nuclear Information System (INIS)
Johnson, Jay R.; Wing, Simon
2004-01-01
Understanding magnetospheric dynamics and predicting future behavior of the magnetosphere is of great practical interest because it could potentially help to avert catastrophic loss of power and communications. In order to build good predictive models it is necessary to understand the most critical nonlinear dependencies among observed plasma and electromagnetic field variables in the coupled solar wind/magnetosphere system. In this work, we apply a cumulant-based information dynamical measure to characterize the nonlinear dynamics underlying the time evolution of the Dst and Kp geomagnetic indices, given solar wind magnetic field and plasma input. We examine the underlying dynamics of the system, the temporal statistical dependencies, the degree of nonlinearity, and the rate of information loss. We find a significant solar cycle dependence in the underlying dynamics of the system with greater nonlinearity for solar minimum. The cumulant-based approach also has the advantage that it is reliable even in the case of small data sets and therefore it is possible to avoid the assumption of stationarity, which allows for a measure of predictability even when the underlying system dynamics may change character. Evaluations of several leading Kp prediction models indicate that their performances are sub-optimal during active times. We discuss possible improvements of these models based on this nonparametric approach
Analysis of Nonlinear Dynamics by Square Matrix Method
Energy Technology Data Exchange (ETDEWEB)
Yu, Li Hua [Brookhaven National Lab. (BNL), Upton, NY (United States). Energy and Photon Sciences Directorate. National Synchrotron Light Source II
2016-07-25
The nonlinear dynamics of a system with periodic structure can be analyzed using a square matrix. In this paper, we show that because the special property of the square matrix constructed for nonlinear dynamics, we can reduce the dimension of the matrix from the original large number for high order calculation to low dimension in the first step of the analysis. Then a stable Jordan decomposition is obtained with much lower dimension. The transformation to Jordan form provides an excellent action-angle approximation to the solution of the nonlinear dynamics, in good agreement with trajectories and tune obtained from tracking. And more importantly, the deviation from constancy of the new action-angle variable provides a measure of the stability of the phase space trajectories and their tunes. Thus the square matrix provides a novel method to optimize the nonlinear dynamic system. The method is illustrated by many examples of comparison between theory and numerical simulation. Finally, in particular, we show that the square matrix method can be used for optimization to reduce the nonlinearity of a system.
Nonlinear dynamics research in the former Soviet Union
International Nuclear Information System (INIS)
McKenney, B.L.; Krafsig, J.; Moon, F.C.; Shlesinger, M.F.
1992-08-01
This assessment of nonlinear dynamics research in the former Soviet Union was performed by seven US scientists and engineers active in the fields examined. The topics covered include: solid-state systems and circuits, information theory and signal analysis, chaos in mechanical systems, turbulence and vortex dynamics, ocean processes, image processing, and lasers and nonlinear optics. The field of nonlinear dynamics and chaos blossomed in academic settings in both the West and the former Soviet Union during the 1980s. The field went from mathematical abstraction to interesting engineering application areas. Several generalizations can be drawn from the review of Soviet work: Soviet work generally began earlier than Western work, and, in areas that do not require extensive computational resources, that work has kept up with, and often leads, the West. This is especially true in the mathematical analysis of nonlinear phenomena. Soviet researchers have shown an ability to combine numerical or analytic ideas with laboratory experimentation in a smoother, less erratic fashion than Western researchers. Furthermore, contrary to Western practice, the same researchers often do both theoretical and experimental work. In areas that require numerical verification of ideas in the field, the Western work is leading that of the former Soviet Union. This is especially true in the areas of signal processing, simulations of turbulence, and communications. No evidence was found of any significant penetration of ideas of nonlinear dynamics into technological applications of a military or commercial area in the former Soviet Union. Opportunities abound, but specific applications are not apparent
Nonlinear dynamic phenomena in the beer model
DEFF Research Database (Denmark)
Mosekilde, Erik; Laugesen, Jakob Lund
2007-01-01
The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...
Dynamic nonlinear analysis of shells of revolution
International Nuclear Information System (INIS)
Von Riesemann, W.A.; Stricklin, J.A.; Haisler, W.E.
1975-01-01
DYNAPLAS is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. The present version, DYNAPLAS II, began with the programs SAMMSOR and DYNASOR. As is the case for the earlier programs, a driver program, SAMMSOR III, generates the stiffness and mass matrices for the harmonics under consideration. A highly refined meridionally curved axisymmetric thin shell of revolution element is used in conjunction with beam type ring stiffeners in the circumferential direction. The shell element uses a cubic displacement function and through static condensation a basic eight degree of freedom element is generated. The shell material may be isotropic or orthotropic. DYNAPLAS II uses the 'displacement' method of analysis in which the nonlinearities are treated as pseudo loads on the right-hand side of the equations of motion. The equations are written for each Fourier harmonic used in representing the asymmetric loading components, and although the left-hand side of the equations is uncoupled, the right-hand side is coupled by the nonlinear pseudo loads. The strain displacement equations of Novozhilov are used and the incremental theory of plasticity is used with the von Mises yield condition and associated flow rule. Either isotropic work hardening or the mechanical sublayer model may be used. Strain rate effects may be included. Either the explicit central difference method or the implcit Houbolt method are available. The program has found use in the analysis of containment vessels for light water reactors
Nonlinear dynamics of interest rate and inflation
Markku Lanne
2004-01-01
According to several empirical studies, US inflation and nominal interest rates, as well as the real interest rate, can be described as unit root processes. These results imply that nominal interest rates and expected inflation do not move one-for-one in the long run, which is not consistent with the theoretical models. In this paper we introduce a nonlinear bivariate mixture autoregressive model that seems to fit quarterly US data (1952 Q1 – 2000 Q2) reasonably well. It is found that the thr...
Nonlinear dynamics of boiling water reactors
International Nuclear Information System (INIS)
March-Leuba, J.; Cacuci, D.G.; Perez, R.B.
1983-01-01
Recent stability tests in Boiling Water Reactors (BWRs) have indicated that these reactors can exhibit the special nonlinear behavior of following a closed trajectory called limit cycle. The existence of a limit cycle corresponds to an oscillation of fixed amplitude and period. During these tests, such oscillations had their amplitudes limited to about +- 15% of the operating power. Since limit cycles are fairly insensitive to parameter variations, it is possible to operate a BWR under conditions that sustain a limit cycle (of fixed amplitude and period) over a finite range of reactor parameters
Nonlinear dynamics of the magnetosphere and space weather
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
Nonlinear dynamics of zigzag molecular chains (in Russian)
DEFF Research Database (Denmark)
Savin, A. V.; Manevitsch, L. I.; Christiansen, Peter Leth
1999-01-01
models (two-dimensional alpha-spiral, polyethylene transzigzag backbone, and the zigzag chain of hydrogen bonds) shows that the zigzag structure essentially limits the soliton dynamics to finite, relatively narrow, supersonic soliton velocity intervals and may also result in that several acoustic soliton......Nonlinear, collective, soliton type excitations in zigzag molecular chains are analyzed. It is shown that the nonlinear dynamics of a chain dramatically changes in passing from the one-dimensional linear chain to the more realistic planar zigzag model-due, in particular, to the geometry...
Exactly and completely integrable nonlinear dynamical systems
International Nuclear Information System (INIS)
Leznov, A.N.; Savel'ev, M.V.
1987-01-01
The survey is devoted to a consitent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including generalized (periodic and finite nonperiodic Toda lattice, nonlinear Schroedinger, Korteweg-de Vries, Lotka-Volterra equations, etc.) For exactly integrable systems the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed. Application of the developed methods to a differential geometry problem of classification of the integrable manifolds embeddings is discussed. For exactly integrable systems the supersymmetric extensions are constructed. By the example of the generalized Toda lattice a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their desription in terms of the quantum algebras of the Hopf type. Among multidimensional systems the four-dimensional self-dual Yang-Mills equations are investigated most attentively with a goal of constructing their general solutions
Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics
International Nuclear Information System (INIS)
Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.
1992-01-01
Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated
Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.
Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji
2016-09-01
It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.
Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.
2018-05-01
In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.
Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction
International Nuclear Information System (INIS)
Ha, Seung-Yeal; Ha, Taeyoung; Kim, Jong-Ho
2010-01-01
We study the asymptotic flocking dynamics for the Cucker-Smale-type second-order continuous-time dynamical system with the Rayleigh friction. For mean-field communications with a positive lower bound, we show that an asymptotic flocking occurs for any compactly supported initial configuration in a large coupling regime. In contrast, in a small coupling regime, an asymptotic flocking is possible for a restricted class of initial configurations near complete flocking states. We also present several numerical simulations and compare them with our analytical results.
Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction
Energy Technology Data Exchange (ETDEWEB)
Ha, Seung-Yeal [Department of Mathematical Sciences, Seoul National University, Seoul 151-747 (Korea, Republic of); Ha, Taeyoung; Kim, Jong-Ho, E-mail: syha@snu.ac.k, E-mail: tha@nims.re.k, E-mail: jhkim@nims.re.k [National Institute for Mathematical Sciences, 385-16, 3F Tower Koreana, Doryong-dong, Yuseong-gu, Daejeon, 305-340 (Korea, Republic of)
2010-08-06
We study the asymptotic flocking dynamics for the Cucker-Smale-type second-order continuous-time dynamical system with the Rayleigh friction. For mean-field communications with a positive lower bound, we show that an asymptotic flocking occurs for any compactly supported initial configuration in a large coupling regime. In contrast, in a small coupling regime, an asymptotic flocking is possible for a restricted class of initial configurations near complete flocking states. We also present several numerical simulations and compare them with our analytical results.
Design of advanced materials for linear and nonlinear dynamics
DEFF Research Database (Denmark)
Frandsen, Niels Morten Marslev
to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple......The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... but general model of inhomogeneous structural materials with nonlinear material characteristics. The second material system is an “engineered” material in the sense that a classical structural element, a linear elastic and homogeneous rod, is “enhanced” by applying a mechanism on its surface, amplifying...
Nonlinear dynamics of semiclassical coherent states in periodic potentials
International Nuclear Information System (INIS)
Carles, Rémi; Sparber, Christof
2012-01-01
We consider nonlinear Schrödinger equations with either local or nonlocal nonlinearities. In addition, we include periodic potentials as used, for example, in matter wave experiments in optical lattices. By considering the corresponding semiclassical scaling regime, we construct asymptotic solutions, which are concentrated both in space and in frequency around the effective semiclassical phase-space flow induced by Bloch’s spectral problem. The dynamics of these generalized coherent states is governed by a nonlinear Schrödinger model with effective mass. In the case of nonlocal nonlinearities, we establish a novel averaging-type result in the critical case. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
Nonlinear dynamical modes of climate variability: from curves to manifolds
Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander
2016-04-01
The necessity of efficient dimensionality reduction methods capturing dynamical properties of the system from observed data is evident. Recent study shows that nonlinear dynamical mode (NDM) expansion is able to solve this problem and provide adequate phase variables in climate data analysis [1]. A single NDM is logical extension of linear spatio-temporal structure (like empirical orthogonal function pattern): it is constructed as nonlinear transformation of hidden scalar time series to the space of observed variables, i. e. projection of observed dataset onto a nonlinear curve. Both the hidden time series and the parameters of the curve are learned simultaneously using Bayesian approach. The only prior information about the hidden signal is the assumption of its smoothness. The optimal nonlinearity degree and smoothness are found using Bayesian evidence technique. In this work we do further extension and look for vector hidden signals instead of scalar with the same smoothness restriction. As a result we resolve multidimensional manifolds instead of sum of curves. The dimension of the hidden manifold is optimized using also Bayesian evidence. The efficiency of the extension is demonstrated on model examples. Results of application to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510
High Dynamic Performance Nonlinear Source Emulator
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.
2016-01-01
As research and development of renewable and clean energy based systems is advancing rapidly, the nonlinear source emulator (NSE) is becoming very essential for testing of maximum power point trackers or downstream converters. Renewable and clean energy sources play important roles in both...... terrestrial and nonterrestrial applications. However, most existing NSEs have only been concerned with simulating energy sources in terrestrial applications, which may not be fast enough for testing of nonterrestrial applications. In this paper, a high-bandwidth NSE is developed that is able to simulate...... change in the input source but also to a load step between nominal and open circuit. Moreover, all of these operation modes have a very fast settling time of only 10 μs, which is hundreds of times faster than that of existing works. This attribute allows for higher speed and a more efficient maximum...
International Nuclear Information System (INIS)
Debut, V.; Antunes, J.; Delaune, X.
2010-01-01
For achieving realistic numerical simulations of bowed string instruments, based on physical modeling, a good understanding of the actual friction interaction phenomena is of great importance. Most work published in the field including our own has assumed that bow/string frictional forces behave according to the classical Coulomb stick-slip model, with an empirical velocity-dependent sliding friction coefficient. Indeed, the basic self-excited string motions (such as the Helmholtz regime) are well captured using such friction model. However, recent work has shown that the tribological behavior of the bow/string rosin interface is rather complex, therefore the basic velocity-dependent Coulomb model may be an over-simplistic representation of the friction force. More specifically, it was suggested that a more accurate model of the interaction force can be achieved by coupling the system dynamical equations with a thermal model which encapsulates the complex interface phenomena. In spite of the interesting work performed by Askenfelt, a direct measurement of the actual dynamical friction forces without disturbing the string motion is quite difficult. Therefore, in this work we develop a modal-based identification technique making use of inverse methods and optimization techniques, which enables the identification of the interface force, as well as the string self-excited motion, from the dynamical reactions measured at the string end supports. The method gives convincing results using simulated data originated from nonlinear computations of a bowed string. Furthermore, in cases where the force identifications are very sensitive to errors in the transfer function modal parameters, we suggest a method to improve the modal frequencies used for the identifications. Preliminary experimental results obtained using a basic bowing device, by which the string is excited with the stick of the bow, are then presented. Our identifications, from the two dynamical string reactions
Nonlinear Dynamics, Chaotic and Complex Systems
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
Internal Friction And Instabilities Of Rotors
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1992-01-01
Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.
Nonlinear dynamics and cavity cooling of levitated nanoparticles
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-09-01
We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.
Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers
DEFF Research Database (Denmark)
Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.
Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio...... the evolution of the fiber output beam in the few micro or milliseconds after the beam is turned on. The characterization of the temporal behavior of the thermal nonlinear response provides important information about the nonlocality associated with heat diffusion inside the fiber, thus enabling studies of long...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...
Nonlinearly coupled dynamics of irregularities in the equatorial electrojet
Energy Technology Data Exchange (ETDEWEB)
Atul, J.K., E-mail: jkatulphysics@gmail.com [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India); Sarkar, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Singh, S.K. [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India)
2016-04-01
Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.
Nonlinearly coupled dynamics of irregularities in the equatorial electrojet
International Nuclear Information System (INIS)
Atul, J.K.; Sarkar, S.; Singh, S.K.
2016-01-01
Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.
Nonlinear dynamical system identification using unscented Kalman filter
Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan
2016-11-01
Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.
Nonlinear dynamics of the human lumbar intervertebral disc.
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J
2015-02-05
Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meintanis, Evangelos Anastasios
We have extended the HOLA molecular dynamics (MD) code to run slider-on-block friction experiments for Al and Cu. Both objects are allowed to evolve freely and show marked deformation despite the hardness difference. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. Our first data also show a mechanism for decoupling between load and friction at high velocities. Such a mechanism can explain an increase in the coefficient of friction of metals with velocity. The study of the effects of currents on our system required the development of a suitable electrodynamic (ED) solver, as the disparity of MD and ED time scales threatened the efficiency of our code. Our first simulations combining ED and MD are presented.
Nonlinear Dynamics of Wind Turbine Wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther
, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....
Nonlinear dynamics of a vectored thrust aircraft
DEFF Research Database (Denmark)
Sørensen, C.B; Mosekilde, Erik
1996-01-01
With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three...
Some nonlinear dynamic inequalities on time scales
Indian Academy of Sciences (India)
In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...
Probing ultrafast carrier dynamics, nonlinear absorption
Indian Academy of Sciences (India)
We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the ...
Nonlinear dynamics mathematical models for rigid bodies with a liquid
Lukovsky, Ivan A
2015-01-01
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.
PWL approximation of nonlinear dynamical systems, part II: identification issues
International Nuclear Information System (INIS)
De Feo, O; Storace, M
2005-01-01
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes a black-box identification method based on state space reconstruction and PWL approximation, and applies it to some particularly significant dynamical systems (two topological normal forms and the Colpitts oscillator)
PWL approximation of nonlinear dynamical systems, part I: structural stability
International Nuclear Information System (INIS)
Storace, M; De Feo, O
2005-01-01
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topological normal forms). The structural stability of the PWL approximations of such systems is investigated through a bifurcation analysis (via continuation methods)
Nonlinear dynamics and predictability in the atmospheric sciences
Ghil, M.; Kimoto, M.; Neelin, J. D.
1991-01-01
Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.
Nonlinear dynamics of ultracold gases in double-well lattices
International Nuclear Information System (INIS)
Yukalov, V I; Yukalova, E P
2009-01-01
An ultracold gas is considered, loaded into a lattice, each site of which is formed by a double-well potential. Initial conditions, after the loading, correspond to a nonequilibrium state. The nonlinear dynamics of the system, starting with a nonequilibrium state, is analysed in the local-field approximation. The importance of taking into account attenuation, caused by particle collisions, is emphasized. The presence of this attenuation dramatically influences the system dynamics
Frictional melting dynamics in the upper conduit: A chemical answer to a complex physical question
Henton De Angelis, S.; Lavallee, Y.; Kendrick, J. E.; Hornby, A.; von Aulock, F. W.; Clesham, S.; Hirose, T.; Perugini, D.
2013-12-01
During volcanic eruptions the generation of frictional heat along the walls of the shallow conduit leads to melting of the rocks along the slip interface. Frictional melting has previously been described as a process out of thermodynamic equilibrium, but upon slip and mingling of the melt batches, homogeneity can be achieved, and may have an h important rheological control on the dynamics of slip. To test melt homogenization in the frictional melt zones of volcanic conduits we performed constant-rate slip experiments under controlled stress conditions using a high-velocity rotary shear apparatus. Volcanic dome samples from three different volcanoes (Volcán De Colima, Soufrière Hills Volcano and Santiaguito Volcano) were investigated. Each sample was subjected to a stress of 1 MPa and slip rate of 1 m/s. For each sample set 5 experiments were conducted: 1) experiment stopped at the onset of melting; 2) experiment stopped on the formation of a full melt layer; 3) experiment stopped after 5m of slip at steady state conditions; 4) experiment stopped after 10m of slip at steady state conditions; 5) experiment stopped after 15m of slip at steady state conditions. We analyzed the resulting proto-melt zones using micron sized X-ray spectroscopy in the high-brightness synchrotron beamline I18 (at Diamond Light Source UK). Particular focus was given to the concentration variance analysis of Rare Earth Elements as their mobilities can be used to precisely quantify the degree and timescale of homogenisation involved during frictional melting. This study refines our understanding of the chemical process of melting and mixing which carry important consequences for the rheological control on the physical dynamics of slip.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.
Jin, Leisheng; Li, Lijie
2017-12-01
In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.
Nonlinear chaos-dynamical approach to analysis of atmospheric ...
Indian Academy of Sciences (India)
false nearest neighbors, Lyapunov's exponents, surrogate data, nonlinear prediction ... Chaotic dynamics; time series of the 222Rn concentration; universal complex ... tems is due to a number of applications, including the ..... Computer Engineering. ... Ternovsky,Quantum Systems in Physics, Chemistry, and. Biology, pp.
On the dynamic buckling of a weakly damped nonlinear elastic ...
African Journals Online (AJOL)
In this paper we determine the dynamic buckling load of a strictly nonlinear but weakly damped elastic oscillatory model structure subjected to small perturbations The loading history is explicitly time dependent and varies slowly with time over a natural period of oscillation of the structure. A multiple timing regular ...
Report of the working group on single-particle nonlinear dynamics
International Nuclear Information System (INIS)
Bazzani, A.; Bongini, L.; Corbett, J.; Dome, G.; Fedorova, A.; Freguglia, P.; Ng, K.; Ohmi, K.; Owen, H.; Papaphilippou, Y.; Robin, D.; Safranek, J.; Scandale, W.; Terebilo, A.; Turchetti, G.; Todesco, E.; Warnock, R.; Zeitlin, M.
1999-01-01
The Working Group on single-particle nonlinear dynamics has developed a set of tools to study nonlinear dynamics in a particle accelerator. The design of rings with large dynamic apertures is still far from automatic. The Working Group has concluded that nonlinear single-particle dynamics limits the performance of accelerators. (AIP) copyright 1999 American Institute of Physics
Long-time predictions in nonlinear dynamics
Szebehely, V.
1980-01-01
It is known that nonintegrable dynamical systems do not allow precise predictions concerning their behavior for arbitrary long times. The available series solutions are not uniformly convergent according to Poincare's theorem and numerical integrations lose their meaningfulness after the elapse of arbitrary long times. Two approaches are the use of existing global integrals and statistical methods. This paper presents a generalized method along the first approach. As examples long-time predictions in the classical gravitational satellite and planetary problems are treated.
Neural network based adaptive control for nonlinear dynamic regimes
Shin, Yoonghyun
Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.
Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin
International Nuclear Information System (INIS)
Yang, Ciann-Dong; Weng, Hung-Jen
2012-01-01
Highlights: ► This paper reveals the internal nonlinear dynamics embedded in a molecular quantum state. ► Analyze quantum molecular dynamics in a deterministic way, while preserving the consistency with probability interpretation. ► Molecular vibration–rotation interaction and spin–orbital coupling are considered simultaneously. ► Spin is just the remnant angular motion when orbital angular momentum is zero. ► Spin is the “zero dynamics” of nonlinear quantum dynamics. - Abstract: For a given molecular wavefunction Ψ, the probability density function Ψ ∗ Ψ is not the only information that can be extracted from Ψ. We point out in this paper that nonlinear quantum dynamics of a diatomic molecule, completely consistent with the probability prediction of quantum mechanics, does exist and can be derived from the quantum Hamilton equations of motion determined by Ψ. It can be said that the probability density function Ψ ∗ Ψ is an external representation of the quantum state Ψ, while the related Hamilton dynamics is an internal representation of Ψ, which reveals the internal mechanism underlying the externally observed random events. The proposed internal representation of Ψ establishes a bridge between nonlinear dynamics and quantum mechanics, which allows the methods and tools already developed by the former to be applied to the latter. Based on the quantum Hamilton equations of motion derived from Ψ, vibration, rotation and spin motions of a diatomic molecule and the interactions between them can be analyzed simultaneously. The resulting dynamic analysis of molecular motion is compared with the conventional probability analysis and the consistency between them is demonstrated.
Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers
Directory of Open Access Journals (Sweden)
Nicolás Peréz Alvarez
2015-11-01
Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.
Advances in dynamic relaxation techniques for nonlinear finite element analysis
International Nuclear Information System (INIS)
Sauve, R.G.; Metzger, D.R.
1995-01-01
Traditionally, the finite element technique has been applied to static and steady-state problems using implicit methods. When nonlinearities exist, equilibrium iterations must be performed using Newton-Raphson or quasi-Newton techniques at each load level. In the presence of complex geometry, nonlinear material behavior, and large relative sliding of material interfaces, solutions using implicit methods often become intractable. A dynamic relaxation algorithm is developed for inclusion in finite element codes. The explicit nature of the method avoids large computer memory requirements and makes possible the solution of large-scale problems. The method described approaches the steady-state solution with no overshoot, a problem which has plagued researchers in the past. The method is included in a general nonlinear finite element code. A description of the method along with a number of new applications involving geometric and material nonlinearities are presented. They include: (1) nonlinear geometric cantilever plate; (2) moment-loaded nonlinear beam; and (3) creep of nuclear fuel channel assemblies
Self-Organized Biological Dynamics and Nonlinear Control
Walleczek, Jan
2006-04-01
The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological
International Nuclear Information System (INIS)
Liu Chunliang; Xie Xi; Chen Yinbao
1991-01-01
The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation
Internal rotor friction instability
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1990-01-01
The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.
Global investigation of the nonlinear dynamics of carbon nanotubes
Xu, Tiantian
2016-11-17
Understanding the complex nonlinear dynamics of carbon nanotubes (CNTs) is essential to enable utilization of these structures in devices and practical applications. We present in this work an investigation of the global nonlinear dynamics of a slacked CNT when actuated by large electrostatic and electrodynamic excitations. The coexistence of several attractors is observed. The CNT is modeled as an Euler–Bernoulli beam. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses. Critical computational challenges are posed due to the complicated form of the electrostatic force, which describes the interaction between the upper electrode, consisting of the cylindrically shaped CNT, and the lower electrode. Toward this, we approximate the electrostatic force using the Padé expansion. We explore the dynamics near the primary and superharmonic resonances. The nanostructure exhibits several attractors with different characteristics. To achieve deep insight and describe the complexity and richness of the behavior, we analyze the nonlinear response from an attractor-basins point of view. The competition of attractors is highlighted. Compactness and/or fractality of their basins are discussed. Both the effects of varying the excitation frequency and amplitude are examined up to the dynamic pull-in instability.
Dynamics of metastable breathers in nonlinear chains in acoustic vacuum
Sen, Surajit; Mohan, T. R. Krishna
2009-03-01
The study of the dynamics of one-dimensional chains with both harmonic and nonlinear interactions, as in the Fermi-Pasta-Ulam and related problems, has played a central role in efforts to identify the broad consequences of nonlinearity in these systems. Nevertheless, little is known about the dynamical behavior of purely nonlinear chains where there is a complete absence of the harmonic term, and hence sound propagation is not admissible, i.e., under conditions of “acoustic vacuum.” Here we study the dynamics of highly localized excitations, or breathers, which are known to be initiated by the quasistatic stretching of the bonds between adjacent particles. We show via detailed particle-dynamics-based studies that many low-energy pulses also form in the vicinity of the perturbation, and the breathers that form are “fragile” in the sense that they can be easily delocalized by scattering events in the system. We show that the localized excitations eventually disperse, allowing the system to attain an equilibrium-like state that is realizable in acoustic vacuum. We conclude with a discussion of how the dynamics is affected by the presence of acoustic oscillations.
Dynamical processes and epidemic threshold on nonlinear coupled multiplex networks
Gao, Chao; Tang, Shaoting; Li, Weihua; Yang, Yaqian; Zheng, Zhiming
2018-04-01
Recently, the interplay between epidemic spreading and awareness diffusion has aroused the interest of many researchers, who have studied models mainly based on linear coupling relations between information and epidemic layers. However, in real-world networks the relation between two layers may be closely correlated with the property of individual nodes and exhibits nonlinear dynamical features. Here we propose a nonlinear coupled information-epidemic model (I-E model) and present a comprehensive analysis in a more generalized scenario where the upload rate differs from node to node, deletion rate varies between susceptible and infected states, and infection rate changes between unaware and aware states. In particular, we develop a theoretical framework of the intra- and inter-layer dynamical processes with a microscopic Markov chain approach (MMCA), and derive an analytic epidemic threshold. Our results suggest that the change of upload and deletion rate has little effect on the diffusion dynamics in the epidemic layer.
Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas
Energy Technology Data Exchange (ETDEWEB)
Bonatto, A.; Pakter, R.; Rizzato, F.B. [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Rio Grande do Sul (Brazil)
2004-07-01
The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)
Superworld volume dynamics of super branes from nonlinear realizations
International Nuclear Information System (INIS)
Bellucci, S.; Ivanov, E.; Krivonos, S.
2000-01-01
Based on the concept of the partial breaking of global supersymmetry (PBGS), it has been derived the world volume superfield equations of motion for N=1, D=4 supermembrane, as well as for the space-time filling D2- and D3-branes, from nonlinear realizations of the corresponding supersymmetries. It has been argued that it is of no need to take care of the relevant automorphism groups when being interested in the dynamical equations. This essentially facilitates computations. As a by-product, it has been obtained a new polynomial representation for the d=3,4 Born-Infeld equations, with merely a cubic nonlinearity
An Energy Decaying Scheme for Nonlinear Dynamics of Shells
Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.
Nonlinear dynamics of a driven mode near marginal stability
International Nuclear Information System (INIS)
Berk, H.L.; Breizman, B.N.; Pekker, M.
1995-09-01
The nonlinear dynamics of a linearly unstable mode in a driven kinetic system is investigated to determine scaling of the saturated fields near the instability threshold. To leading order, this problem reduces to solving an integral equation with a temporally nonlocal cubic term. This equation can exhibit a self-similar solution that blows up in a finite time. When the blow-up occurs, higher nonlinearities become important and the mode saturates due to plateau formation arising from particle trapping in the wave. Otherwise, the simplified equation gives a regular solution that leads to a different saturation scaling reflecting the closeness to the instability threshold
Static and Dynamic Nonlinearity of A/D Converters
Directory of Open Access Journals (Sweden)
M. Villa
2005-04-01
Full Text Available The dynamic range of broadband digital system is mostly limited byharmonics and spurious arising from ADC nonlinearity. The nonlinearitymay be described in several ways. The distinction between static anddynamic contributions has strong theoretical motivations but it isdifficult to independently measure these contributions. A morepractical approach is based upon analysis of the complex spectrum,which is well defined, easily measured, and may be used to optimize theADC working point and to somehow characterize both static and dynamicnonlinearity. To minimize harmonics and spurious components we need asufficient level of input noise (dither, which destroys theperiodicity at multistage pipelined ADC, combined with a carefulanalysis of the different sources of nonlinearity.
Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas
International Nuclear Information System (INIS)
Bonatto, A.; Pakter, R.; Rizzato, F.B.
2004-01-01
The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)
Dissipative quantum dynamics and nonlinear sigma-model
International Nuclear Information System (INIS)
Tarasov, V.E.
1992-01-01
Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs
Nonlinear analysis and dynamic structure in the energy market
Aghababa, Hajar
This research assesses the dynamic structure of the energy sector of the aggregate economy in the context of nonlinear mechanisms. Earlier studies have focused mainly on the price of the energy products when detecting nonlinearities in time series data of the energy market, and there is little mention of the production side of the market. Moreover, there is a lack of exploration about the implication of high dimensionality and time aggregation when analyzing the market's fundamentals. This research will address these gaps by including the quantity side of the market in addition to the price and by systematically incorporating various frequencies for sample sizes in three essays. The goal of this research is to provide an inclusive and exhaustive examination of the dynamics in the energy markets. The first essay begins with the application of statistical techniques, and it incorporates the most well-known univariate tests for nonlinearity with distinct power functions over alternatives and tests different null hypotheses. It utilizes the daily spot price observations on five major products in the energy market. The results suggest that the time series daily spot prices of the energy products are highly nonlinear in their nature. They demonstrate apparent evidence of general nonlinear serial dependence in each individual series, as well as nonlinearity in the first, second, and third moments of the series. The second essay examines the underlying mechanism of crude oil production and identifies the nonlinear structure of the production market by utilizing various monthly time series observations of crude oil production: the U.S. field, Organization of the Petroleum Exporting Countries (OPEC), non-OPEC, and the world production of crude oil. The finding implies that the time series data of the U.S. field, OPEC, and the world production of crude oil exhibit deep nonlinearity in their structure and are generated by nonlinear mechanisms. However, the dynamics of the non
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
DEFF Research Database (Denmark)
Fraccaro, Marco; Kamronn, Simon Due; Paquet, Ulrich
2017-01-01
This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework...... for unsupervised learning of sequential data that disentangles two latent representations: an object’s representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate...
Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.
McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek
2018-02-16
Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.
Nonlinear dynamics of rotating shallow water methods and advances
Zeitlin, Vladimir
2007-01-01
The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa
Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase II
National Aeronautics and Space Administration — The Nonlinear Dynamic Flight Simulation (NL-DFS) system will be developed in the Phase II project by combining the classical nonlinear rigid-body flight dynamics...
Nonlinear dynamics of ITU TRIGA reactor
International Nuclear Information System (INIS)
Hizal, N.A.; Gencay, S.; Gungordu, E.; Geckinli, M.; Ciftcioglu, O.; Can, B.
1988-01-01
Complete dynamics of a reactor could be developed starting from the very basic principles. However such a detailed approach is often not worth the effort for a rather simple pool type reactor which may be subjected to various power excursion maneuvers without challenging its safety system. Therefore a coupled point kinetics-lumped thermal hydraulics model is taken up as the basis of the system model. Response of the reactor to ramp insertion of reactivity is observed by sampling the power channel, water, and fuel temperatures with the help of a PC. One of the important model parameters, fuel temperature feedback effect is studied during power excursions and the results are compared with those of static tests. (author)
Czech Academy of Sciences Publication Activity Database
Eck, Ch.; Jarušek, Jiří; Sofonea, M.
2010-01-01
Roč. 21, č. 3 (2010), s. 229-251 ISSN 0956-7925 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10190503 Keywords : elastic-vosco plastic material * dynamic contact problem * normal damped response * unilateral constraint * Coulomb friction * weak solution * penalitazion * smoothing Subject RIV: BA - General Mathematics Impact factor: 1.480, year: 2010 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7675484&fileId=S0956792510000045
Dynamics of braking vehicles: from Coulomb friction to anti-lock braking systems
International Nuclear Information System (INIS)
Tavares, J M
2009-01-01
The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and without sliding. The advantage of using an anti-lock braking system (ABS) is put in evidence, and a quantitative estimate of its efficiency is proposed and discussed
Photonic single nonlinear-delay dynamical node for information processing
Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel
2012-06-01
An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.
Nonlinear systems techniques for dynamical analysis and control
Lefeber, Erjen; Arteaga, Ines
2017-01-01
This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participan...
Measurement Model Nonlinearity in Estimation of Dynamical Systems
Majji, Manoranjan; Junkins, J. L.; Turner, J. D.
2012-06-01
The role of nonlinearity of the measurement model and its interactions with the uncertainty of measurements and geometry of the problem is studied in this paper. An examination of the transformations of the probability density function in various coordinate systems is presented for several astrodynamics applications. Smooth and analytic nonlinear functions are considered for the studies on the exact transformation of uncertainty. Special emphasis is given to understanding the role of change of variables in the calculus of random variables. The transformation of probability density functions through mappings is shown to provide insight in to understanding the evolution of uncertainty in nonlinear systems. Examples are presented to highlight salient aspects of the discussion. A sequential orbit determination problem is analyzed, where the transformation formula provides useful insights for making the choice of coordinates for estimation of dynamic systems.
Parallel processors and nonlinear structural dynamics algorithms and software
Belytschko, Ted
1989-01-01
A nonlinear structural dynamics finite element program was developed to run on a shared memory multiprocessor with pipeline processors. The program, WHAMS, was used as a framework for this work. The program employs explicit time integration and has the capability to handle both the nonlinear material behavior and large displacement response of 3-D structures. The elasto-plastic material model uses an isotropic strain hardening law which is input as a piecewise linear function. Geometric nonlinearities are handled by a corotational formulation in which a coordinate system is embedded at the integration point of each element. Currently, the program has an element library consisting of a beam element based on Euler-Bernoulli theory and trianglar and quadrilateral plate element based on Mindlin theory.
Applications of chaos and nonlinear dynamics in science and engineering
Rondoni, Lamberto; Mitra, Mala
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever the quantitative modeling and analysis of complex, nonlinear phenomena are required, chaos theory and its methods can play a key role. This second volume concentrates on reviewing further relevant, contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such as the spread of epidemics; electronic circuits; chaos control in mechanical devices; secure communication; and digital watermarking. Featuring contributions from active and leading research groups, this collection is ideal both as a reference work and as a ‘recipe book’ full of tried and tested, successf...
The landscape of nonlinear structural dynamics: an introduction.
Butlin, T; Woodhouse, J; Champneys, A R
2015-09-28
Nonlinear behaviour is ever-present in vibrations and other dynamical motions of engineering structures. Manifestations of nonlinearity include amplitude-dependent natural frequencies, buzz, squeak and rattle, self-excited oscillation and non-repeatability. This article primarily serves as an extended introduction to a theme issue in which such nonlinear phenomena are highlighted through diverse case studies. More ambitiously though, there is another goal. Both the engineering context and the mathematical techniques that can be used to identify, analyse, control or exploit these phenomena in practice are placed in the context of a mind-map, which has been created through expert elicitation. This map, which is available in software through the electronic supplementary material, attempts to provide a practitioner's guide to what hitherto might seem like a vast and complex research landscape. © 2015 The Authors.
Nonlinear dynamics of avian influenza epidemic models.
Liu, Sanhong; Ruan, Shigui; Zhang, Xinan
2017-01-01
Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.
A data driven nonlinear stochastic model for blood glucose dynamics.
Zhang, Yan; Holt, Tim A; Khovanova, Natalia
2016-03-01
The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Recurrence phase shift in Fermi-Pasta-Ulam nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Devine, N., E-mail: nnd124@rsphysse.anu.edu.au [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Ankiewicz, A. [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Genty, G. [Tampere University of Technology, Optics Laboratory, FI-33101 Tampere (Finland); Dudley, J.M. [Institut FEMTO-ST UMR 6174 CNRS/Universite de Franche-Comte, Besancon (France); Akhmediev, N. [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2011-11-07
We show that the dynamics of Fermi-Pasta-Ulam recurrence is associated with a nonlinear phase shift between initial and final states that are otherwise identical, after a full growth-return cycle. The properties of this phase shift are studied for the particular case of the self-focussing nonlinear Schroedinger equation, and we describe the magnitude of the phase shift in terms of the system parameters. This phase shift, accumulated during the nonlinear recurrence cycle, is a previously-unremarked feature of the Fermi-Pasta-Ulam problem, and we anticipate its wide significance as an essential feature of related dynamics in other systems. -- Highlights: → The dynamics of FPU recurrence is associated with a phase shift between initial and final states. → The properties of this phase shift are studied for the self-focussing NLS equation. → This phase shift is a previously-unremarked feature of the FPU growth-return cycle. → We anticipate its wide significance as an essential feature of related dynamics in other systems.
Recurrence phase shift in Fermi-Pasta-Ulam nonlinear dynamics
International Nuclear Information System (INIS)
Devine, N.; Ankiewicz, A.; Genty, G.; Dudley, J.M.; Akhmediev, N.
2011-01-01
We show that the dynamics of Fermi-Pasta-Ulam recurrence is associated with a nonlinear phase shift between initial and final states that are otherwise identical, after a full growth-return cycle. The properties of this phase shift are studied for the particular case of the self-focussing nonlinear Schroedinger equation, and we describe the magnitude of the phase shift in terms of the system parameters. This phase shift, accumulated during the nonlinear recurrence cycle, is a previously-unremarked feature of the Fermi-Pasta-Ulam problem, and we anticipate its wide significance as an essential feature of related dynamics in other systems. -- Highlights: → The dynamics of FPU recurrence is associated with a phase shift between initial and final states. → The properties of this phase shift are studied for the self-focussing NLS equation. → This phase shift is a previously-unremarked feature of the FPU growth-return cycle. → We anticipate its wide significance as an essential feature of related dynamics in other systems.
Nonlinear modal analysis in NPP dynamics: a proposal
International Nuclear Information System (INIS)
Suarez Antola, R.
2005-07-01
We propose and briefly suggest how to apply the analytical tools of nonlinear modal analysis (NMA) to problems of nuclear reactor kinetics, NPP dynamics, and NPP instrumentation and control. The proposed method is closely related with recent approaches by modal analysis using the reactivity matrix with feedbacks to couple neutron kinetics with thermal hydraulics in the reactors core. A nonlinear system of ordinary differential equations for mode amplitudes is obtained, projecting the dynamic equations of a model of NPP onto the eigenfunctions of a suitable adjoint operator. A steady state solution of the equations is taken as a reference, and the behaviour of transient solutions in some neighbourhood of the steady state solution is studied by an extension of Liapunov's First Method that enables to cope directly with the non-linear terms in the dynamics. In NPP dynamics these differential equations for the mode amplitudes are of polynomial type of low degree A few dominant modes can usually be identified. These mode amplitudes evolve almost independently of the other modes, more slowly and tending to slave the other mode amplitudes. Using asymptotic methods, it is possible to calculate a closed form analytical approximation to the response to finite amplitude perturbations from the given steady spatial pattern (the origin of the space of mode amplitudes).When there is finite amplitude instability, the method allows us to calculate the threshold amplitude as a well defined function of system's parameters. This is a most significant accomplishment that the other methods cannot afford
Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.
2016-10-01
A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.
Reconstructing a nonlinear dynamical framework for testing quantum mechanics
International Nuclear Information System (INIS)
Jordan, T.F.
1993-01-01
The nonlinear generalization of quantum dynamics constructed by Weinberg as a basis for experimental tests is reconstructed in terms of density-matrix elements to allow independent dynamics for subsystems. Dynamics is generated with a Lie bracket and a nonlinear Hamiltonian function. It takes density matrices to density matrices and pure states to pure states. Each density matrix has a Hamiltonian operator that makes its evolution for an infinitesimal time, but the Hamiltonian operator may be different for different density matrices and may change in time as the density matrix changes. A Hamiltonian function for a subsystem serves also for the entire system. Independence of separate subsystems is confirmed by seeing that brackets are zero for functions from different subsystems and by looking at the Hamiltonian operator for each density matrix. Scaling properties of Hamiltonian functions are found to be important in connection with locality. An example of all this is obtained from every one of the local nonlinear Schroedinger equations described by Bialynicki-Birula and Mycielski. Examples are worked out for spins coupled together or to fields, demonstrating Hamiltonian functions and equations of motion written directly in terms of physical mean values. Observables and states are taken to be the same as in ordinary quantum mechanics. An attempt to find nonlinear representations of observables by characterizing propositions as functions equal to their squares yields a negative result. Sharper interpretation of mixed states is proposed. In a mixture of parts that are prepared separately, time dependence must be calculated separately for each part so different mixtures that yield the same density matrix can be distinguished. No criticism has shown that a consistent interpretation cannot be made this way. Thus, nonlinearity remains a viable hypothesis for experimental tests. 16 refs
The coupled nonlinear dynamics of a lift system
Energy Technology Data Exchange (ETDEWEB)
Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk [The University of Northampton, School of Science and Technology, Avenue Campus, St George' s Avenue, Northampton (United Kingdom)
2014-12-10
Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.
Mathematica for Theoretical Physics Classical Mechanics and Nonlinear Dynamics
Baumann, Gerd
2005-01-01
Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear Dynamics This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by students and researchers alike. A...
A nonlinear dynamics for the scalar field in Randers spacetime
Energy Technology Data Exchange (ETDEWEB)
Silva, J.E.G. [Universidade Federal do Cariri (UFCA), Instituto de formação de professores, Rua Olegário Emídio de Araújo, Brejo Santo, CE, 63.260.000 (Brazil); Maluf, R.V. [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil)
2017-03-10
We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.
Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order
Directory of Open Access Journals (Sweden)
Taher S. Hassan
2016-01-01
Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t, i=1,…,n-1, with x0=x, ϕβ(u≔uβsgnu, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.
Without bounds a scientific canvas of nonlinearity and complex dynamics
Ryazantsev, Yuri; Starov, Victor; Huang, Guo-Xiang; Chetverikov, Alexander; Arena, Paolo; Nepomnyashchy, Alex; Ferrus, Alberto; Morozov, Eugene
2013-01-01
Bringing together over fifty contributions on all aspects of nonlinear and complex dynamics, this impressive topical collection is both a scientific and personal tribute, on the occasion of his 70th birthday, by many outstanding colleagues in the broad fields of research pursued by Prof. Manuel G Velarde. The topics selected reflect the research areas covered by the famous Instituto Pluridisciplinar at the Universidad Complutense of Madrid, which he co-founded over two decades ago, and include: fluid physics and related nonlinear phenomena at interfaces and in other geometries, wetting and spreading dynamics, geophysical and astrophysical flows, and novel aspects of electronic transport in anharmonic lattices, as well as topics in neurodynamics and robotics.
Nonlinear Dynamics in the SPEAR 3 Double-Waist Chicane
International Nuclear Information System (INIS)
Safranek, J.A.; Huang, X.; Terebilo, A.; SLAC
2007-01-01
One of the two 7.6 m long straight sections in SPEAR3 has been divided into two short straights to provide places for two new small-gap insertion devices (IDs). A chicane generates an angular separation of 10 mrad between the two straights. A quadrupole triplet has been added in the center of the 7.6 m long chicane to create a 'double-waist chicane' optics with β γ =1.6 m at the center of each of two future IDs. The new optics also reduces β γ to 2.5 m in the four 4.8 m straight sections. In this paper, the authors discuss nonlinear dynamic studies associated with design and implementation of the new optics. They present tracking results generated during the design stage and compare them to nonlinear dynamics measurements made with the quadrupole triplet installed in SPEAR3
Nonlinear dynamic analysis using Petrov-Galerkin natural element method
International Nuclear Information System (INIS)
Lee, Hong Woo; Cho, Jin Rae
2004-01-01
According to our previous study, it is confirmed that the Petrov-Galerkin Natural Element Method (PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin Natural Element Method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem
Soliton dynamics in periodic system with different nonlinear media
International Nuclear Information System (INIS)
Zabolotskij, A.A.
2001-01-01
To analyze pulse dynamics in the optical system consisting of periodic sequence of nonlinear media one uses a composition model covering a model of resonance interaction of light ultrashort pulse with energy transition of medium with regard to pumping of the upper level and quasi-integrable model describing propagation of light field in another medium with cubic nonlinearity and dispersion. One additionally takes account of losses and other types of interaction in the from of perturbation members. On the basis of the method of scattering back problem and perturbation theory one developed a simple method to study peculiarities of soliton evolution in such periodic system. Due to its application one managed to describe different modes of soliton evolution in such a system including chaotic dynamics [ru
Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes
International Nuclear Information System (INIS)
Liu Tao; Zhao Jun; Hill, David J.
2009-01-01
In this paper, we study the global synchronization of nonlinearly coupled complex delayed dynamical networks with both directed and undirected graphs. Via Lyapunov-Krasovskii stability theory and the network topology, we investigate the global synchronization of such networks. Under the assumption that coupling coefficients are known, a family of delay-independent decentralized nonlinear feedback controllers are designed to globally synchronize the networks. When coupling coefficients are unavailable, an adaptive mechanism is introduced to synthesize a family of delay-independent decentralized adaptive controllers which guarantee the global synchronization of the uncertain networks. Two numerical examples of directed and undirected delayed dynamical network are given, respectively, using the Lorenz system as the nodes of the networks, which demonstrate the effectiveness of proposed results.
Denisov, Dmitry V.; Lőrincz, Kinga A.; Wright, Wendelin J.; Hufnagel, Todd C.; Nawano, Aya; Gu, Xiaojun; Uhl, Jonathan T.; Dahmen, Karin A.; Schall, Peter
2017-03-01
Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics.
Reproduction of Economic Interests as a Nonlinear Dynamical System
Smiesova Viktoria L.
2017-01-01
The aim of the article is to define the system characteristics of reproduction of economic interests of actors, substantiate the possibility of its evolutionary and revolutionary development and the nonlinearity of its development in dynamics. The article justifies the main characteristics of the system of reproduction of economic interests. It is proved that in this system stability and variability are complementarily combined as integrated mechanisms of its development in statics and dynami...
Positive Nonlinear Dynamical Group Uniting Quantum Mechanics and Thermodynamics
Beretta, Gian Paolo
2006-01-01
We discuss and motivate the form of the generator of a nonlinear quantum dynamical group 'designed' so as to accomplish a unification of quantum mechanics (QM) and thermodynamics. We call this nonrelativistic theory Quantum Thermodynamics (QT). Its conceptual foundations differ from those of (von Neumann) quantum statistical mechanics (QSM) and (Jaynes) quantum information theory (QIT), but for thermodynamic equilibrium (TE) states it reduces to the same mathematics, and for zero entropy stat...
Lemrich, Laure; Carmeliet, Jan; Johnson, Paul A.; Guyer, Robert; Jia, Xiaoping
2017-12-01
A granular system composed of frictional glass beads is simulated using the discrete element method. The intergrain forces are based on the Hertz contact law in the normal direction with frictional tangential force. The damping due to collision is also accounted for. Systems are loaded at various stresses and their quasistatic elastic moduli are characterized. Each system is subjected to an extensive dynamic testing protocol by measuring the resonant response to a broad range of ac drive amplitudes and frequencies via a set of diagnostic strains. The system, linear at small ac drive amplitudes, has resonance frequencies that shift downward (i.e., modulus softening) with increased ac drive amplitude. Detailed testing shows that the slipping contact ratio does not contribute significantly to this dynamic modulus softening, but the coordination number is strongly correlated to this reduction. This suggests that the softening arises from the extended structural change via break and remake of contacts during the rearrangement of bead positions driven by the ac amplitude.
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.
Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal
2017-08-18
The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.
Deciphering the imprint of topology on nonlinear dynamical network stability
International Nuclear Information System (INIS)
Nitzbon, J; Schultz, P; Heitzig, J; Kurths, J; Hellmann, F
2017-01-01
Coupled oscillator networks show complex interrelations between topological characteristics of the network and the nonlinear stability of single nodes with respect to large but realistic perturbations. We extend previous results on these relations by incorporating sampling-based measures of the transient behaviour of the system, its survivability, as well as its asymptotic behaviour, its basin stability. By combining basin stability and survivability we uncover novel, previously unknown asymptotic states with solitary, desynchronized oscillators which are rotating with a frequency different from their natural one. They occur almost exclusively after perturbations at nodes with specific topological properties. More generally we confirm and significantly refine the results on the distinguished role tree-shaped appendices play for nonlinear stability. We find a topological classification scheme for nodes located in such appendices, that exactly separates them according to their stability properties, thus establishing a strong link between topology and dynamics. Hence, the results can be used for the identification of vulnerable nodes in power grids or other coupled oscillator networks. From this classification we can derive general design principles for resilient power grids. We find that striving for homogeneous network topologies facilitates a better performance in terms of nonlinear dynamical network stability. While the employed second-order Kuramoto-like model is parametrised to be representative for power grids, we expect these insights to transfer to other critical infrastructure systems or complex network dynamics appearing in various other fields. (paper)
Dynamical soil-structure interactions: influence of soil behaviour nonlinearities
International Nuclear Information System (INIS)
Gandomzadeh, Ali
2011-01-01
The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in
International Nuclear Information System (INIS)
Feng, Shidong; Qi, Li; Zhao, Fengli; Pan, Shaopeng; Li, Gong; Ma, Mingzhen; Liu, Riping
2015-01-01
Highlights: • Effects of internal friction on plasticity is investigated at the atomic level. • The simulations allow reproduction of images of internal friction evolution. • The simulation results are in good agreement with experiments and theories. • This simulation can predict the deformation mode with different internal friction. - Abstract: The effects of internal friction (IF) on Zr 65 Cu 35 metallic glass plasticity are investigated through molecular dynamics simulations. Results show that the Voronoi polyhedron 〈0, 3, 6, 3〉 increases as IF increases, thereby effectively inhibiting localized deformation and improving metallic glass plasticity. The simulations allow reproduction of images of IF evolution in metallic glasses subjected to isothermal annealing at 730 K and 850 K respectively, which can help explain the experimental observations. IF could be adjusted by selecting suitable annealing temperatures and cooling rates. The results of this work provide a strong foundation for future metallic glass designs
Dynamics in a nonlinear Keynesian good market model
International Nuclear Information System (INIS)
Naimzada, Ahmad; Pireddu, Marina
2014-01-01
In this paper, we show how a rich variety of dynamical behaviors can emerge in the standard Keynesian income-expenditure model when a nonlinearity is introduced, both in the cases with and without endogenous government spending. A specific sigmoidal functional form is used for the adjustment mechanism of income with respect to the excess demand, in order to bound the income variation. With the aid of analytical and numerical tools, we investigate the stability conditions, bifurcations, as well as periodic and chaotic dynamics. Globally, we study multistability phenomena, i.e., the coexistence of different kinds of attractors
Nonlinear dynamics, fractals, cardiac physiology and sudden death
Goldberger, Ary L.
1987-01-01
The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.
Classical black holes: the nonlinear dynamics of curved spacetime.
Thorne, Kip S
2012-08-03
Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.
Nonlinear 3-D dynamic time history analysis in the reracking modifications for a nuclear power plant
International Nuclear Information System (INIS)
Zhao, Y.; Stevenson, J.D.
1996-01-01
An independent seismic response evaluation of spent fuel storage racks was performed on the reracking modifications for a typical operating pressurized water reactor type nuclear power plant using nonlinear dynamic time history analysis methods per the U. S. nuclear regulatory commission (USNRC) criteria. The submerged free standing rack system and surrounding water are coupled due to fluid-structure-interaction effects using potential theory. Three dimensional (3-D) single rack and whole pool multiple rack finite element models were developed with features that allow the consideration of geometrically and materially nonlinearities including (1) the impact of a fuel bundle to a rack cell, a rack to adjacent racks or pool walls, and rack support legs to a pool floor; (2) the hydrodynamic coupling of a fuel assembly with a rack and of a rack with adjacent racks or pool walls; and (3) the tilting and frictional sliding of the rack supports. The methodologies and typical results using a 3-D single rack model as well as a 3-D whole pool multiple rack model developed herein are presented. (orig.)
Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems
Agarwal, S.; Wettlaufer, J. S.
2014-12-01
We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.
The influence of dynamical friction and mean motion resonances on terrestrial planet growth
Wallace, Spencer Clark; Quinn, Thomas R.
2018-04-01
We present a set of high-resolution direct N-body simulations of planetesimal coagulation at 1 AU. We follow the evolution of of 1 million planetesimals in a ring though the runaway and oligarchic growth phases. During oligarchic growth, the size frequency distribution (SFD) of planetesimals develops a bump at intermediate masses, which we argue is due to dynamical friction acting through mean motion resonances, heating the low mass planetesimals and inhibiting their growth. This feature is similar to the bump seen in the SFD of asteroid belt and Kuiper belt objects and we argue that a careful treatment of the dynamics of planetesimal interactions is required in order to adequately explain the observed SFD. Although our model does not account for fragmentation, our results show that a similar feature can be produced without it, which is in contention with previous studies.
International Nuclear Information System (INIS)
Zhao, Y.; Wilson, P.R.; Stevenson, J.D.
1995-01-01
The seismic evaluation of submerged free standing spent fuel storage racks is more complicated than most other nuclear structural systems. When subjected to three dimensional (3-D) floor seismic excitations the dynamic responses of racks in a pool are hydro dynamically coupled with each other, with the fuel assemblies water in gaps. The motion behavior of the racks is significantly different from that observed using a 3D single rack mode. Few seismic analyses using 3-D whole pool multiple rack models are available in the literature. I this paper an analysis was performed for twelve racks using potential theory for the fluid-structure interaction, and using a 3-D whole pool multi-rack finite element model developed herein. The analysis includes the potential nonlinear dynamic behavior of the impact of fuel-rack, rack-rack and rack-pool wall, the tilting or uplift and the frictional sliding of rack supports, and the impact of the rack supports to the pool floor. (author). 12 refs., 7 figs., 1 tab
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Klimov, V.; McBranch, D.; Schwarz, C.
1998-08-10
Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.
Nonlinear dynamics in micromechanical and nanomechanical resonators and oscillators
Dunn, Tyler
In recent years, the study of nonlinear dynamics in microelectromechanical and nanoelectromechanical systems (MEMS and NEMS) has attracted considerable attention, motivated by both fundamental and practical interests. One example is the phenomenon of stochastic resonance. Previous measurements have established the presence of this counterintuitive effect in NEMS, showing that certain amounts of white noise can effectively amplify weak switching signals in nanomechanical memory elements and switches. However, other types of noise, particularly noises with 1/falpha spectra, also bear relevance in these and many other systems. At a more fundamental level, the role which noise color plays in stochastic resonance remains an open question in the field. To these ends, this work presents systematic measurements of stochastic resonance in a nanomechanical resonator using 1/f alpha and Ornstein-Uhlenbeck noise types. All of the studied noise spectra induce stochastic resonance, proving that colored noise can also be beneficial; however, stronger noise correlations suppress the effect, decreasing the maximum signal-to-noise ratio and increasing the optimal noise intensity. Evidence suggests that 1/falpha noise spectra with increasing noise color lead to increasingly asymmetric switching, reducing the achievable amplification. Another manifestly nonlinear effect anticipated in these systems is modal coupling. Measurements presented here demonstrate interactions between various mode types on a wide scale, providing the first reported observations of coupling in bulk longitudinal modes of MEMS. As a result of anharmonic elastic effects, each mode shifts in frequency by an amount proportional to the squared displacement (or energy) of a coupled mode. Since all resonator modes couple in this manner, these effects enable nonlinear measurement of energy and mechanical nonlinear signal processing across a wide range of frequencies. Finally, while these experiments address nonlinear
Energy Technology Data Exchange (ETDEWEB)
Stepinski, Tadeusz (ed.); Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu [Uppsala Univ., Dept. of Materials Science (Sweden). Signals and Systems
2004-01-01
This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated.
International Nuclear Information System (INIS)
Stepinski, Tadeusz; Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu
2004-01-01
This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated
Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang
2016-12-01
Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.
Nonlinear dynamics of charged particles in the magnetotail
Chen, James
1992-01-01
An important region of the earth's magnetosphere is the nightside magnetotail, which is believed to play a significant role in energy storage and release associated with substorms. The magnetotail contains a current sheet which separates regions of oppositely directed magnetic field. Particle motion in the collisionless magnetotail has been a long-standing problem. Recent research from the dynamical point of view has yielded considerable new insights into the fundamental properties of orbits and of particle distribution functions. A new framework of understanding magnetospheric plasma properties is emerging. Some novel predictions based directly on nonlinear dynamics have proved to be robust and in apparent good agreement with observation. The earth's magnetotail may serve as a paradigm, one accessible by in situ observation, of a broad class of boundary regions with embedded current sheets. This article reviews the nonlinear dynamics of charged particles in the magnetotail configuration. The emphasis is on the relationships between the dynamics and physical observables. At the end of the introduction, sections containing basic material are indicated.
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
Nonlinear dynamics of tearing modes in the reversed field pinch
International Nuclear Information System (INIS)
Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.
1987-05-01
The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10 ≤ n ≤ 20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back-coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments. 13 refs., 21 figs., 1 tab
Nonlinear Analysis and Intelligent Control of Integrated Vehicle Dynamics
Directory of Open Access Journals (Sweden)
C. Huang
2014-01-01
Full Text Available With increasing and more stringent requirements for advanced vehicle integration, including vehicle dynamics and control, traditional control and optimization strategies may not qualify for many applications. This is because, among other factors, they do not consider the nonlinear characteristics of practical systems. Moreover, the vehicle wheel model has some inadequacies regarding the sideslip angle, road adhesion coefficient, vertical load, and velocity. In this paper, an adaptive neural wheel network is introduced, and the interaction between the lateral and vertical dynamics of the vehicle is analyzed. By means of nonlinear analyses such as the use of a bifurcation diagram and the Lyapunov exponent, the vehicle is shown to exhibit complicated motions with increasing forward speed. Furthermore, electric power steering (EPS and active suspension system (ASS, which are based on intelligent control, are used to reduce the nonlinear effect, and a negotiation algorithm is designed to manage the interdependences and conflicts among handling stability, driving smoothness, and safety. Further, a rapid control prototype was built using the hardware-in-the-loop simulation platform dSPACE and used to conduct a real vehicle test. The results of the test were consistent with those of the simulation, thereby validating the proposed control.
Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves
Tobita, Miwa; Omura, Yoshiharu
2018-03-01
We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.
Machine learning control taming nonlinear dynamics and turbulence
Duriez, Thomas; Noack, Bernd R
2017-01-01
This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...
Success Stories in Control: Nonlinear Dynamic Inversion Control
Bosworth, John T.
2010-01-01
NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.
Nonlinear dynamics of tearing modes in the reversed field pinch
International Nuclear Information System (INIS)
Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.
1988-01-01
The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10approx. < napprox. <20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments
Parameter and state estimation in nonlinear dynamical systems
Creveling, Daniel R.
This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling
Predicting Mood Changes in Bipolar Disorder through Heartbeat Nonlinear Dynamics.
Valenza, Gaetano; Nardelli, Mimma; Lanata', Antonio; Gentili, Claudio; Bertschy, Gilles; Kosel, Markus; Scilingo, Enzo Pasquale
2016-04-20
Bipolar Disorder (BD) is characterized by an alternation of mood states from depression to (hypo)mania. Mixed states, i.e., a combination of depression and mania symptoms at the same time, can also be present. The diagnosis of this disorder in the current clinical practice is based only on subjective interviews and questionnaires, while no reliable objective psychophysiological markers are available. Furthermore, there are no biological markers predicting BD outcomes, or providing information about the future clinical course of the phenomenon. To overcome this limitation, here we propose a methodology predicting mood changes in BD using heartbeat nonlinear dynamics exclusively, derived from the ECG. Mood changes are here intended as transitioning between two mental states: euthymic state (EUT), i.e., the good affective balance, and non-euthymic (non-EUT) states. Heart Rate Variability (HRV) series from 14 bipolar spectrum patients (age: 33.439.76, age range: 23-54; 6 females) involved in the European project PSYCHE, undergoing whole night ECG monitoring were analyzed. Data were gathered from a wearable system comprised of a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire ECGs. Each patient was monitored twice a week, for 14 weeks, being able to perform normal (unstructured) activities. From each acquisition, the longest artifact-free segment of heartbeat dynamics was selected for further analyses. Sub-segments of 5 minutes of this segment were used to estimate trends of HRV linear and nonlinear dynamics. Considering data from a current observation at day t0, and past observations at days (t1, t2,...,), personalized prediction accuracies in forecasting a mood state (EUT/non-EUT) at day t+1 were 69% on average, reaching values as high as 83.3%. This approach opens to the possibility of predicting mood states in bipolar patients through heartbeat nonlinear dynamics exclusively.
On-line control of the nonlinear dynamics for synchrotrons
Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.
2015-07-01
We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.
On-line control of the nonlinear dynamics for synchrotrons
Directory of Open Access Journals (Sweden)
J. Bengtsson
2015-07-01
Full Text Available We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of “smart sextupole knobs” attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.
Nonlinear dynamic analysis of nuclear reactor primary coolant systems
International Nuclear Information System (INIS)
Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.
1979-01-01
The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development
Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses
DEFF Research Database (Denmark)
Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech
2017-01-01
The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable mod...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....... of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based...
An introduction to complex systems society, ecology, and nonlinear dynamics
Fieguth, Paul
2017-01-01
This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or per...
Observing and modeling nonlinear dynamics in an internal combustion engine
International Nuclear Information System (INIS)
Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.
1998-01-01
We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society
Electron–soliton dynamics in chains with cubic nonlinearity
International Nuclear Information System (INIS)
Sales, M O; Moura, F A B F de
2014-01-01
In our work, we consider the problem of electronic transport mediated by coupling with solitonic elastic waves. We study the electronic transport in a 1D unharmonic lattice with a cubic interaction between nearest neighboring sites. The electron-lattice interaction was considered as a linear function of the distance between neighboring atoms in our study. We numerically solve the dynamics equations for the electron and lattice and compute the dynamics of an initially localized electronic wave-packet. Our results suggest that the solitonic waves that exist within this nonlinear lattice can control the electron dynamics along the chain. Moreover, we demonstrate that the existence of a mobile electron–soliton pair exhibits a counter-intuitive dependence with the value of the electron-lattice coupling. (paper)
Magnetically nonlinear dynamic model of synchronous motor with permanent magnets
International Nuclear Information System (INIS)
Hadziselimovic, Miralem; Stumberger, Gorazd; Stumberger, Bojan; Zagradisnik, Ivan
2007-01-01
This paper deals with a magnetically nonlinear two-axis dynamic model of a permanent magnet synchronous motor (PMSM). The geometrical and material properties of iron core and permanent magnets, the effects of winding distribution, saturation, cross-saturation and slotting effects are, for the first time, simultaneously accounted for in a single two-axis dynamic model of a three-phase PMSM. They are accounted for by current- and position-dependent characteristics of flux linkages. These characteristics can be determined either experimentally or by the finite element (FE) computations. The results obtained by the proposed dynamic model show a very good agreement with the measured ones and those obtained by the FE computation
Nonlinear dynamics in a Cournot duopoly with relative profit delegation
International Nuclear Information System (INIS)
Fanti, Luciano; Gori, Luca; Sodini, Mauro
2012-01-01
This paper analyses the dynamics of a nonlinear Cournot duopoly with managerial delegation and homogeneous players. We assume that the owners of both firms hire a manager and delegate output decisions to him or her. Each manager receives a fixed salary plus a bonus based on relative (profit) performance. Managers of both firms may collude or compete. In cases of both collusion and a low degree of competition, we find that synchronised dynamics take place. However, when the degree of competition is high, the dynamics may undergo symmetry-breaking bifurcations, which can cause significant global phenomena. Specifically, there is on–off intermittency and blow-out bifurcations for several parameter values. In addition, several attractors may coexist. The global behaviour of the noninvertible map is investigated through studying a transverse Lyapunov exponent and the folding action of the critical curves of the map. These phenomena are impossible under profit maximisation.
International Nuclear Information System (INIS)
Li Yingli; Xu Daolin; Fu Yiming; Zhou Jiaxi
2012-01-01
In this paper, the average method is adopted to analysis dynamic characteristics of nonlinear vibration isolation floating raft system with feedback control. The analytic results show that the purposes of reducing amplitude of oscillation and complicating the motion can be achieved by adjusting properly the system parameters, exciting frequency and control gain. The conclusions can provide some available evidences for the design and improvement of both the passive and active control of the vibration isolation systems. By altering the exciting frequency and control gain, complex motion of the system can be obtained. Numerical simulations show the system exhibits period vibration, double period vibration and quasi-period motion.
International Nuclear Information System (INIS)
Han, Seong Ik; Jeong, Chan Se; Yang, Soon Yong
2012-01-01
A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme
Energy Technology Data Exchange (ETDEWEB)
Han, Seong Ik [Pusan National University, Busan (Korea, Republic of); Jeong, Chan Se; Yang, Soon Yong [University of Ulsan, Ulsan (Korea, Republic of)
2012-04-15
A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme.
Sachs, Ulrich; Akkerman, Remko; Fetfatsidis, K.; Vidal-Sallé, E.; Schumacher, J.; Ziegmann, G.; Allaoui, S.; Hivet, G.; Maron, B.; Vanclooster, K.; Lomov, S.V.
2014-01-01
A benchmark exercise was conducted to compare various friction test set-ups with respect to the measured coefficients of friction. The friction was determined between Twintex®PP, a fabric of commingled yarns of glass and polypropylene filaments, and a metal surface. The same material was supplied to
The Dynamics of a Railway Freight Wagon Wheelset with dry friction Damping
DEFF Research Database (Denmark)
True, Hans; Asmund, Rolf
2002-01-01
is examined. We have included stick-slip and hysteresis in our model of the dry friction and assume that Coulomb's law holds during the slip phase. It is found that the action of dry friction completely changes the bifurcation diagram, and that the longitudinal component of the dry friction damping forces...
DYNAMICS OF VIBRATION FEEDERS WITH A NONLINEAR ELASTIC CHARACTERISTIC
Directory of Open Access Journals (Sweden)
V. I. Dyrda
2017-04-01
Full Text Available Purpose. Subject to the smooth and efficient operation of each production line, is the use of vehicles transporting high specification. It worked well in practice for transporting construction machines, which are used during the vibration. The use of vibration machines requires optimization of their operation modes. In the form of elastic link in them are increasingly using rubber-metallic elements, which are characterized by nonlinear damping properties. So it is necessary to search for new, more modern, methods of calculation of dynamic characteristics of the vibration machines on the properties of rubber as a cushioning material. Methodology. The dynamics of vibration machine that is as elastic rubber block units and buffer shock absorbers limiting the amplitude of the vibrations of the working body. The method of determining amplitude-frequency characteristics of the vibrating feeder is based on the principle of Voltaire, who in the calculations of the damping properties of the dampers will allow for elastic-hereditary properties of rubber. When adjusting the basic dynamic stiffness of the elastic ties and vibratory buffers, using the principle of heredity rubber properties, determine the dependence of the amplitude of the working body of the machine vibrations. This method is called integro-operator using the fractional-exponential kernels of relaxation. Findings. Using the derived formula for determining the amplitude of the resonance curve is constructed one-mass nonlinear system. It is established that the use of the proposed method of calculation will provide a sufficiently complete description of the damping parameters of rubber-metallic elements and at the same time be an effective means of calculating the amplitude-frequency characteristics of nonlinear vibration systems. Originality. The authors improved method of determining damping characteristics of rubber-metallic elements and the amplitude-frequency characteristics of nonlinear
Nonlinear dynamic analysis of framed structures including soil-structure interaction effects
International Nuclear Information System (INIS)
Mahmood, M.N.; Ahmed, S.Y.
2008-01-01
The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)
Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
Zhu, Yanqui; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions. Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz model as well as more realistic models of the means and atmosphere. A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter situations to allow for correct update of the ensemble members. The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to be quite puzzling in that results state estimates are worse than for their filter analogue. In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use the Lorenz model to test and compare the behavior of a variety of implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Nonlinear dynamical systems for theory and research in ergonomics.
Guastello, Stephen J
2017-02-01
Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.
Nonlinear Dynamic Buckling of Damaged Composite Cylindrical Shells
Institute of Scientific and Technical Information of China (English)
WANG Tian-lin; TANG Wen-yong; ZHANG Sheng-kun
2007-01-01
Based on the first order shear deformation theory(FSDT), the nonlinear dynamic equations involving transverse shear deformation and initial geometric imperfections were obtained by Hamilton's philosophy. Geometric deformation of the composite cylindrical shell was treated as the initial geometric imperfection in the dynamic equations, which were solved by the semi-analytical method in this paper. Stiffness reduction was employed for the damaged sub-layer, and the equivalent stiffness matrix was obtained for the delaminated area. By circumferential Fourier series expansions for shell displacements and loads and by using Galerkin technique, the nonlinear partial differential equations were transformed to ordinary differential equations which were finally solved by the finite difference method. The buckling was judged from shell responses by B-R criteria, and critical loads were then determined. The effect of the initial geometric deformation on the dynamic response and buckling of composite cylindrical shell was also discussed, as well as the effects of concomitant delamination and sub-layer matrix damages.
Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia
Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng
2015-03-01
Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.
31st IMAC Conference on Structural Dynamics
Adams, Douglas; Carrella, Alex; Mayes, Randy; Rixen, Daniel; Allen, Matt; Cunha, Alvaro; Catbas, Fikret; Pakzad, Shamim; Racic, Vitomir; Pavic, Aleksandar; Reynolds, Paul; Simmermacher, Todd; Cogan, Scott; Moaveni, Babak; Papadimitriou, Costas; Allemang, Randall; Clerck, James; Niezrecki, Christopher; Wicks, Alfred
2013-01-01
Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Oscillations Nonlinearities In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity.
Improvement of dynamic response in an impact absorber by frictional elements
International Nuclear Information System (INIS)
Bedolla, Jorge; Szwedowicz, Dariusz; Cortes, Claudia; Gutierrezwing, Enrique S.; Jimenez, Juan; Majewski, Tadeusz
2014-01-01
A novel device that uses friction between one or more pairs of elastic conical rings to dissipate the energy from an impacting body is presented. The device consists of one moving and one stationary cylinders coupled to each other using two pairs of conical rings and a spring. The spring is used to restore the system to its original configuration after the impact. The dynamic response of the system to the impact forces during impact events is analysed numerically and experimentally. The effects of several governing parameters, such as the mass ratio between the cylinders, the duration of the transient response of the device, the magnitude of the rest zone of the moving element and the peak impact force are investigated. The proposed system is applicable in sequential impact scenarios, in which remarkable improvements were observed over traditional solid-rod impact absorbers. The present study may serve as a guide for the design of improved damping devices for impact applications.
Internal friction studies on dynamic strain aging in P91 ferritic steel
International Nuclear Information System (INIS)
Zhou, Hongwei; Fang, Junfei; Chen, Yan; Yang, Lei; Zhang, Hui; Lu, Yun; He, Yizhu
2016-01-01
The temperature of dynamic strain aging (DSA) regime in P91 steel is between 523 K and 773 K. The activation energy (Q) for onset of DSA is 73 kJ/mol, while that for finale of DSA is 202 kJ/mol. Two main Internal friction (IF) speaks were observed, Snoek and SKK with the activation energy of 67.9 kJ/mol and 121 kJ/mol, respectively. IF shows that activation energy of 73 kJ/mol is equal to that of C atom body diffusion in α-Fe, and 202 kJ/mol is equal to binding energy between C atoms and moving dislocations. These results confirm that the mechanism of DSA can be explained by the diffusion of C atoms and pinning between C and moving dislocation. These investigations indicate that DSA in P91 steel is resulted from C atom diffusion, instead of Cr or Mo atoms.
Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding
Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.
2017-12-01
Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.
Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures
Alfosail, Feras
2015-01-01
Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration
Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator
Ruzziconi, Laura
2013-08-04
We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.
Nonlinear dynamical modeling and prediction of the terrestrial magnetospheric activity
International Nuclear Information System (INIS)
Vassiliadis, D.
1992-01-01
The irregular activity of the magnetosphere results from its complex internal dynamics as well as the external influence of the solar wind. The dominating self-organization of the magnetospheric plasma gives rise to repetitive, large-scale coherent behavior manifested in phenomena such as the magnetic substorm. Based on the nonlinearity of the global dynamics this dissertation examines the magnetosphere as a nonlinear dynamical system using time series analysis techniques. Initially the magnetospheric activity is modeled in terms of an autonomous system. A dimension study shows that its observed time series is self-similar, but the correlation dimension is high. The implication of a large number of degrees of freedom is confirmed by other state space techniques such as Poincare sections and search for unstable periodic orbits. At the same time a stability study of the time series in terms of Lyapunov exponents suggests that the series is not chaotic. The absence of deterministic chaos is supported by the low predictive capability of the autonomous model. Rather than chaos, it is an external input which is largely responsible for the irregularity of the magnetospheric activity. In fact, the external driving is so strong that the above state space techniques give results for magnetospheric and solar wind time series that are at least qualitatively similar. Therefore the solar wind input has to be included in a low-dimensional nonautonomous model. Indeed it is shown that such a model can reproduce the observed magnetospheric behavior up to 80-90 percent. The characteristic coefficients of the model show little variation depending on the external disturbance. The impulse response is consistent with earlier results of linear prediction filters. The model can be easily extended to contain nonlinear features of the magnetospheric activity and in particular the loading-unloading behavior of substorms
Synchronization in Complex Networks of Nonlinear Dynamical Systems
Wu, Chai Wah
2007-01-01
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide
Molecular nonlinear dynamics and protein thermal uncertainty quantification
Xia, Kelin; Wei, Guo-Wei
2014-01-01
This work introduces molecular nonlinear dynamics (MND) as a new approach for describing protein folding and aggregation. By using a mode system, we show that the MND of disordered proteins is chaotic while that of folded proteins exhibits intrinsically low dimensional manifolds (ILDMs). The stability of ILDMs is found to strongly correlate with protein energies. We propose a novel method for protein thermal uncertainty quantification based on persistently invariant ILDMs. Extensive comparison with experimental data and the state-of-the-art methods in the field validate the proposed new method for protein B-factor prediction. PMID:24697365
Nonlinear dynamic interrelationships between real activity and stock returns
DEFF Research Database (Denmark)
Lanne, Markku; Nyberg, Henri
We explore the differences between the causal and noncausal vector autoregressive (VAR) models in capturing the real activity-stock return-relationship. Unlike the conventional linear VAR model, the noncausal VAR model is capable of accommodating various nonlinear characteristics of the data....... In quarterly U.S. data, we find strong evidence in favor of noncausality, and the best causal and noncausal VAR models imply quite different dynamics. In particular, the linear VAR model appears to underestimate the importance of the stock return shock for the real activity, and the real activity shock...
Chaotic dynamics and chaos control in nonlinear laser systems
International Nuclear Information System (INIS)
Fang Jinqing; Yao Weiguang
2001-01-01
Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally
System Reduction in Nonlinear Multibody Dynamics of Wind Turbines
DEFF Research Database (Denmark)
Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune
2007-01-01
In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...
Invariant renormalization method for nonlinear realizations of dynamical symmetries
International Nuclear Information System (INIS)
Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.
1977-01-01
The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported
Non-Linear Dynamics of Saturn’s Rings
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
Nonlinear dynamics in the Einstein-Friedmann equation
International Nuclear Information System (INIS)
Tanaka, Yosuke; Mizuno, Yuji; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji
2009-01-01
We have studied the gravitational field equations on the basis of general relativity and nonlinear dynamics. The space component of the Einstein-Friedmann equation shows the chaotic behaviours in case the following conditions are satisfied: (i)the expanding ratio: h=x . /x max = +0.14) for the occurrence of the chaotic behaviours in the Einstein-Friedmann equation (0 ≤ λ ≤ +0.14). The numerical calculations are performed with the use of the Microsoft EXCEL(2003), and the results are shown in the following cases; λ = 2b = +0.06 and +0.14.
Nonlinear complex dynamics and Keynesian rigidity: A short introduction
Jovero, Edgardo
2005-09-01
The topic of this paper is to show that the greater acceptance and intense use of complex nonlinear dynamics in macroeconomics makes sense only within the neoKeynesian tradition. An example is presented regarding the behavior of an open-economy two-sector growth model endowed with Keynesian rigidity. The Keynesian view that structural instability globally exists in the aggregate economy is put forward, and therefore the need arises for policy to alleviate this instability in the form of dampened fluctuations is presented as an alternative view for macroeconomic theorizing.
Nonlinear dynamics and chaotic behaviour of spin wave instabilities
Energy Technology Data Exchange (ETDEWEB)
Rezende, S M; Aguiar, F.M. de.
1986-09-01
Recent experiments revealed that spin wave instabilities driven by microwave fields, either parallel or transverse to the static magnetic field, display chaotic dynamics similar to other physical systems. A theory based on the coupled nonlinear equations of motion for two spin wave modes is presented which explains most features of the experimental observations. The model predicts subharmonic routes to chaos that depend on the parameter values. For certain parameters the system exhibits a Feigenbaum scenario characteristic of one-dimensional maps. Other parameters lead to different subharmonic routes indicative of multidimensional behavior, as observed in some experiments.
Nonlinear dynamics of global atmospheric and earth system processes
Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu
1995-01-01
During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.
Non-linear calculation of PCRV using dynamic relaxation
International Nuclear Information System (INIS)
Schnellenbach, G.
1979-01-01
A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered
Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems
International Nuclear Information System (INIS)
Mikhlin, Yu V; Perepelkin, N V; Klimenko, A A; Harutyunyan, E
2012-01-01
Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.
Aluf, Ofer
2012-01-01
This book describes a new concept in analyzing circuits, which includes optoisolation elements. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual optoisolation circuits are innovative and can be broadly implemented in engineering applications. The dynamics of optoisolation circuits provides several ways to use them in a variety of applications covering wide areas. The presentation fills the gap of analytical methods for optoisolation circuits analysis, concrete examples, and geometric examples. The optoisolation circuits analysis is developed systematically, starting with basic optoisolation circuits differential equations and their bifurcations, followed by Fixed points analysis, limit cycles and their bifurcations. Optoisolation circuits can be characterized as Lorenz equations, chaos, iterated maps, period doubling and attractors. This book is aimed at electrical and electronic engineers, students and researchers in physics as well. A ...
Effect of dynamic and static friction on an asymmetric granular piston.
Talbot, Julian; Viot, Pascal
2012-02-01
We investigate the influence of dry friction on an asymmetric, granular piston of mass M, composed of two materials, undergoing inelastic collisions with bath particles of mass m. Numerical simulations of the Boltzmann-Lorentz equation reveal the existence of two scaling regimes depending on the friction strength. In the large friction limit, we introduce an exact model giving the asymptotic behavior of the Boltzmann-Lorentz equation. For small friction and for large mass ratio M/m, we derive a Fokker-Planck equation for which the exact solution is also obtained. Static friction attenuates the motor effect and results in a discontinuous velocity distribution. © 2012 American Physical Society
Nonlinear error dynamics for cycled data assimilation methods
International Nuclear Information System (INIS)
Moodey, Alexander J F; Lawless, Amos S; Potthast, Roland W E; Van Leeuwen, Peter Jan
2013-01-01
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at t k , k = 1, 2, 3, …, with a first guess given by the state propagated via a dynamical system model M k from time t k−1 to time t k . In particular, for nonlinear dynamical systems M k that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ‖e k ‖ ≔ ‖x (a) k − x (t) k ‖ between the estimated state x (a) and the true state x (t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system M k under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ‖e k ‖, depending on the size δ of the observation error, the reconstruction operator R α , the observation operator H and the Lipschitz constants K (1) and K (2) on the lower and higher modes of M k controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c‖R α ‖δ with some constant c. Since ‖R α ‖ → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz ‘63 system. (paper)
Sánchez Burillo, Guillermo; Beguería, Santiago; Latorre, Borja; Burguete, Javier
2014-05-01
Debris flows, snow and rock avalanches, mud and earth flows are often modeled by means of a particular realization of the so called shallow water equations (SWE). Indeed, a number of simulation models have been already developed [1], [2], [3], [4], [5], [6], [7]. Debris flow equations differ from shallow water equations in two main aspects. These are (a) strong bed gradient and (b) rheology friction terms that differ from the traditional SWE. A systematic analysis of the numerical solution of the hyperbolic system of equations rising from the shallow water equations with different rheological laws has not been done. Despite great efforts have been done to deal with friction expressions common in hydraulics (such as Manning friction), landslide rheologies are characterized by more complicated expressions that may deal to unphysical solutions if not treated carefully. In this work, a software that solves the time evolution of sliding masses over complex bed configurations is presented. The set of non- linear equations is treated by means of a first order upwind explicit scheme, and the friction contribution to the dynamics is treated with a suited numerical scheme [8]. In addition, the software incorporates various rheological models to accommodate for different flow types, such as the Voellmy frictional model [9] for rock and debris avalanches, or the Herschley-Bulkley model for debris and mud flows. The aim of this contribution is to release this code as a free, open source tool for the simulation of mass movements, and to encourage the scientific community to make use of it. The code uses as input data the friction coefficients and two input files: the topography of the bed and the initial (pre-failure) position of the sliding mass. In addition, another file with the final (post-event) position of the sliding mass, if desired, can be introduced to be compared with the simulation obtained result. If the deposited mass is given, an error estimation is computed by
Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells
Directory of Open Access Journals (Sweden)
Humberto Breves Coda
2009-01-01
Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.
Induced dynamic nonlinear ground response at Gamer Valley, California
Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.
2008-01-01
We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.
Nonlinear fluid dynamics of nanoscale hydration water layer
Jhe, Wonho; Kim, Bongsu; Kim, Qhwan; An, Sangmin
In nature, the hydration water layer (HWL) ubiquitously exists in ambient conditions or aqueous solutions, where water molecules are tightly bound to ions or hydrophilic surfaces. It plays an important role in various mechanisms such as biological processes, abiotic materials, colloidal interaction, and friction. The HWL, for example, can be easily formed between biomaterials since most biomaterials are covered by hydrophilic molecules such as lipid bilayers, and this HWL is expected to be significant to biological and physiological functions. Here (1) we present the general stress tensor of the hydration water layer. The hydration stress tensor provided the platform form for holistic understanding of the dynamic behaviors of the confined HWL including tapping and shear dynamics which are until now individually studied. And, (2) through fast shear velocity ( 1mm/s) experiments, the elastic turbulence caused by elastic property of the HWL is indirectly observed. Our results may contribute to a deeper study of systems where the HWL plays an important role such as biomolecules, colloidal particles, and the MEMS. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (2016R1A3B1908660).
Semiconductor Nonlinear Dynamics Study by Broadband Terahertz Spectroscopy
Ho, I.-Chen
Semiconductor nonlinearity in the terahertz (THz) frequency range has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This thesis introduces an ultrafast, time-resolved THz pump/THz probe approach to the study of semiconductor properties in the nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, is observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses is experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reports optical phonon responses, acoustic phonon modulations are addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This thesis starts with the design and performance of a table-top THz spectrometer which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz time-domain spectroscopy, the spectrometer integrates a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilizes selected gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. The newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms
Memory-induced nonlinear dynamics of excitation in cardiac diseases.
Landaw, Julian; Qu, Zhilin
2018-04-01
Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.
Information Dynamics of a Nonlinear Stochastic Nanopore System
Directory of Open Access Journals (Sweden)
Claire Gilpin
2018-03-01
Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.
Physical dynamics of quasi-particles in nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan [Department of Mathematics, Texas A and M University, College Station, TX 77843-3368 (United States)], E-mail: christov@alum.mit.edu; Christov, C.I. [Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 (United States)], E-mail: christov@louisiana.edu
2008-02-04
By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.
Physical dynamics of quasi-particles in nonlinear wave equations
International Nuclear Information System (INIS)
Christov, Ivan; Christov, C.I.
2008-01-01
By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field
Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects
Directory of Open Access Journals (Sweden)
Yi Hu
2014-01-01
Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.
Nonlinear flight dynamics and stability of hovering model insects
Liang, Bin; Sun, Mao
2013-01-01
Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714
STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS
Directory of Open Access Journals (Sweden)
Pagliari Carmen
2013-07-01
Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to
The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence
International Nuclear Information System (INIS)
Newman, D.E.
1993-09-01
Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E x B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics
Investigating the Nonlinear Dynamics of Emerging and Developed Stock Markets
Directory of Open Access Journals (Sweden)
K. Guhathakurta
2015-01-01
Full Text Available Financial time-series has been of interest of many statisticians and financial experts. Understanding the characteristic features of a financial-time series has posed some difficulties because of its quasi-periodic nature. Linear statistics can be applied to a periodic time series, but since financial time series is non-linear and non-stationary, analysis of its quasi periodic characteristics is not entirely possible with linear statistics. Thus, the study of financial series of stock market still remains a complex task having its specific requirements. In this paper keeping in mind the recent trends and developments in financial time series studies, we want to establish if there is any significant relationship existing between trading behavior of developing and developed markets. The study is conducted to draw conclusions on similarity or differences between developing economies, developed economies, developing-developed economy pairs. We take the leading stock market indices dataset for the past 15 years in those markets to conduct the study. First we have drawn probability distribution of the dataset to see if any graphical similarity exists. Then we perform quantitative techniques to test certain hypotheses. Then we proceed to implement the Ensemble Empirical Mode Distribution technique to draw out amplitude and phase of movement of index value each data set to compare at granular level of detail. Our findings lead us to conclude that the nonlinear dynamics of emerging markets and developed markets are not significantly different. This could mean that increasing cross market trading and involvement of global investment has resulted in narrowing the gap between emerging and developed markets. From nonlinear dynamics perspective we find no reason to distinguish markets into emerging and developed any more.
Nonlinear dynamic soil-structure interaction in earthquake engineering
International Nuclear Information System (INIS)
Nieto-Ferro, Alex
2013-01-01
The present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter sub-domain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions. (author)
Nonlinear dynamic analysis of high energy line pipe whip
International Nuclear Information System (INIS)
Hsu, L.C.; Kuo, A.Y.; Tang, H.T.
1983-01-01
To facilitate potential cost savings in pipe whip protection design, TVA conducted a 1'' high pressure line break test to investigate the pipe whip behavior. The test results are available to EPRI as a data base for a generic study on nonlinear dynamic behavior of piping systems and pipe whip phenomena. This paper describes a nonlinear dynamic analysis of the TVA high energy line tests using ABAQUS-EPGEN code. The analysis considers the effects of large deformation and high strain rate on resisting moment and energy absorption capability of the analyzed piping system. The numerical results of impact forces, impact velocities, and reaction forces at pipe supports are compared to the TVA test data. The pipe whip impact time and forces have also been calculated per the current NRC guidelines and compared. The calculated pipe support reaction forces prior to impact have been found to be in good agreement with the TVA test data except for some peak values at the very beginning of the pipe break. These peaks are believed to be due to stress wave propagation which cannot be addressed by the ABAQUS code. Both the effects of elbow crushing and strain rate have been approximately simulated. The results are found to be important on pipe whip impact evaluation. (orig.)
Nonlinear identification of process dynamics using neural networks
International Nuclear Information System (INIS)
Parlos, A.G.; Atiya, A.F.; Chong, K.T.
1992-01-01
In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios
Influence of forced respiration on nonlinear dynamics in heart rate variability
DEFF Research Database (Denmark)
Kanters, J K; Højgaard, M V; Agner, E
1997-01-01
Although it is doubtful whether the normal sinus rhythm can be described as low-dimensional chaos, there is evidence for inherent nonlinear dynamics and determinism in time series of consecutive R-R intervals. However, the physiological origin for these nonlinearities is unknown. The aim...... with a metronome set to 12 min(-1). Nonlinear dynamics were measured as the correlation dimension and the nonlinear prediction error. Complexity expressed as correlation dimension was unchanged from normal respiration, 9.1 +/- 0.5, compared with forced respiration, 9.3 +/- 0.6. Also, nonlinear determinism...... expressed as the nonlinear prediction error did not differ between spontaneous respiration, 32.3 +/- 3.4 ms, and forced respiration, 31.9 +/- 5.7. It is concluded that the origin of the nonlinear dynamics in heart rate variability is not a nonlinear input from the respiration into the cardiovascular...
Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.
2014-12-01
Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013
Seo, Ji-Hun; Tsutsumi, Yusuke; Kobari, Akinori; Shimojo, Masayuki; Hanawa, Takao; Yui, Nobuhiko
2015-02-07
A Velcro-like poly(ethylene glycol) (PEG) interface was prepared in order to control the friction dynamics of material surfaces. Graft- and loop-type PEGs were formed on mirror-polished Ti surfaces using an electrodeposition method with mono- and di-amine functionalized PEGs. The friction dynamics of various combinations of PEG surfaces (i.e., graft-on-graft, loop-on-loop, graft-on-loop, and loop-on-graft) were investigated by friction testing. Here, only the Velcro-like combinations (graft-on-loop and loop-on-graft) exhibited a reversible friction behavior (i.e., resetting the kinetic friction coefficient and the reappearance of the maximum static friction coefficient) during the friction tests. The same tendency was observed when the molecular weights of loop- and graft-type PEGs were tested at 1 k and 10 k, respectively. This indicates that a Velcro-like friction behavior could be induced by simply changing the conformation of PEGs, which suggests a novel concept of altering polymer surfaces for the effective control of friction dynamics.
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc
2017-12-19
The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.