Solution of Contact Problems for Nonlinear Gao Beam and Obstacle
Directory of Open Access Journals (Sweden)
J. Machalová
2015-01-01
Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.
Andreani, Roberto; Friedlander, Ana; Mello, Margarida P.; Santos, Sandra A.
2005-06-01
In this work we show that the mixed nonlinear complementarity problem may be formulated as an equivalent nonlinear bound-constrained optimization problem that preserves the smoothness of the original data. One may thus take advantage of existing codes for bound-constrained optimization. This approach is implemented and tested by means of an extensive set of numerical experiments, showing promising results. The mixed nonlinear complementarity problems considered in the tests arise from the discretization of a motion planning problem concerning a set of rigid 3D bodies in contact in the presence of friction. We solve the complementarity problem associated with a single time frame, thus calculating the contact forces and accelerations of the bodies involved.
Directory of Open Access Journals (Sweden)
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
A Non-smooth Nonlinear Conjugate Gradient Method for Interactive Contact Force Problems
DEFF Research Database (Denmark)
Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...
Double pendulum contact problem
Directory of Open Access Journals (Sweden)
Špička J.
2014-06-01
Full Text Available The work concerns contact problems focused on biomechanical systems modelled by a multibody approach. The example is modelling of impact between a body and an infrastructure. The paper firstly presents algorithm for minimum distance calculation. An analytical approach using a tangential plain perpendicular to an initial one is applied. Contact force generated during impact is compared by three different continuous force models, namely the Hertz’s model, the spring-dashpot model and the non-linear damping model. In order to identify contact parameters of these particular models, the method of numerical optimization is used. Purpose of this method is to find the most corresponding results of numerical simulation to the original experiment. Numerical optimization principle is put upon a bouncing ball example for the purpose of evaluation of desirable contact force parameters. The contact modelling is applied to a double pendulum problem. The equation of motion of the double pendulum system is derived using Lagrange equation of the second kind with multipliers, respecting the contact phenomena. Applications in biomechanical research are hinted at arm gravity motion and a double pendulum impact example.
Scalable algorithms for contact problems
Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít
2016-01-01
This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...
Problems in nonlinear resistive MHD
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Nonlinear dynamics of incommensurately contacting surfaces : a model study
Consoli, Luca
2002-01-01
This PhD thesis is about the nonlinear dynamics of contacting surfaces. More specifically, it deals with the problem of modelling at the microscopic level some of the contributions that lead to the macroscopic effect of dry sliding friction. In chapter 1, we try to give an overview of the physical q
Nonlinear peltier effect in quantum point contacts
Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi
1998-11-01
A theoretical analysis of the Peltier effect in two-dimensional quantum point contacts, in field-free conditions and under the influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation. Oscillations of the Peltier coefficient in a magnetic field are demonstrated.
Solution procedure of dynamical contact problems with friction
Abdelhakim, Lotfi
2017-07-01
Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.
Non-linear scalable TFETI domain decomposition based contact algorithm
Dobiáš, J.; Pták, S.; Dostál, Z.; Vondrák, V.; Kozubek, T.
2010-06-01
The paper is concerned with the application of our original variant of the Finite Element Tearing and Interconnecting (FETI) domain decomposition method, called the Total FETI (TFETI), to solve solid mechanics problems exhibiting geometric, material, and contact non-linearities. The TFETI enforces the prescribed displacements by the Lagrange multipliers, so that all the subdomains are 'floating', the kernels of their stiffness matrices are known a priori, and the projector to the natural coarse grid is more effective. The basic theory and relationships of both FETI and TFETI are briefly reviewed and a new version of solution algorithm is presented. It is shown that application of TFETI methodology to the contact problems converts the original problem to the strictly convex quadratic programming problem with bound and equality constraints, so that the effective, in a sense optimal algorithms is to be applied. Numerical experiments show that the method exhibits both numerical and parallel scalabilities.
Unilateral contact problems variational methods and existence theorems
Eck, Christof; Krbec, Miroslav
2005-01-01
The mathematical analysis of contact problems, with or without friction, is an area where progress depends heavily on the integration of pure and applied mathematics. This book presents the state of the art in the mathematical analysis of unilateral contact problems with friction, along with a major part of the analysis of dynamic contact problems without friction. Much of this monograph emerged from the authors'' research activities over the past 10 years and deals with an approach proven fruitful in many situations. Starting from thin estimates of possible solutions, this approach is based on an approximation of the problem and the proof of a moderate partial regularity of the solution to the approximate problem. This in turn makes use of the shift (or translation) technique - an important yet often overlooked tool for contact problems and other nonlinear problems with limited regularity. The authors pay careful attention to quantification and precise results to get optimal bounds in sufficient conditions f...
A NONLINEAR FEASIBILITY PROBLEM HEURISTIC
Directory of Open Access Journals (Sweden)
Sergio Drumond Ventura
2015-04-01
Full Text Available In this work we consider a region S ⊂ given by a finite number of nonlinear smooth convex inequalities and having nonempty interior. We assume a point x 0 is given, which is close in certain norm to the analytic center of S, and that a new nonlinear smooth convex inequality is added to those defining S (perturbed region. It is constructively shown how to obtain a shift of the right-hand side of this inequality such that the point x 0 is still close (in the same norm to the analytic center of this shifted region. Starting from this point and using the theoretical results shown, we develop a heuristic that allows us to obtain the approximate analytic center of the perturbed region. Then, we present a procedure to solve the problem of nonlinear feasibility. The procedure was implemented and we performed some numerical tests for the quadratic (random case.
Robust Algorithms for Contact Problems with Constitutive Contact Laws
2016-01-01
This thesis is concerned with the solution of contact problems with advanced Coulomb friction in the 3D case using the finite element method. A Lagrange multiplier method modelling the contact traction is employed and the contact conditions are enforced in a weak sense leading to a surface-to-surface discretization. Here more precisely the dual mortar method is used allowing for a static condensation of the additional variables in the system before solving without loosing the optimality of...
Nonlinear Least Squares for Inverse Problems
Chavent, Guy
2009-01-01
Presents an introduction into the least squares resolution of nonlinear inverse problems. This title intends to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, that is, both wellposedness and optimizability
Projection-based model reduction for contact problems
Balajewicz, Maciej; Farhat, Charbel
2015-01-01
Large scale finite element analysis requires model order reduction for computationally expensive applications such as optimization, parametric studies and control design. Although model reduction for nonlinear problems is an active area of research, a major hurdle is modeling and approximating contact problems. This manuscript introduces a projection-based model reduction approach for static and dynamic contact problems. In this approach, non-negative matrix factorization is utilized to optimally compress and strongly enforce positivity of contact forces in training simulation snapshots. Moreover, a greedy algorithm coupled with an error indicator is developed to efficiently construct parametrically robust low-order models. The proposed approach is successfully demonstrated for the model reduction of several two-dimensional elliptic and hyperbolic obstacle and self contact problems.
A CONTACT SEARCHING ALGORITHM FOR CONTACT-IMPACT PROBLEMS
Institute of Scientific and Technical Information of China (English)
Wang Fujun; Cheng Jiangang; Yao Zhenhan
2000-01-01
A new contact searching algorithm for contact-impact systems is proposed in this paper. In terms of the cell structure and the linked-list, this algorithm solves the problem of sorting and searching contacts in three dimensions by transforming it to a retrieving process from two one-dimensional arrays, and binary searching is no longer required. Using this algorithm, the cost of contact searching is reduced to the order of O(N) instead of O(Nlog2N) for traditional ones, where N is the node number in the system. Moreover, this algorithm can handle contact systems with arbitrary mesh layouts. Due to the simplicity of this algorithm it can be easily implemented in a dynamic explicit finite element Program. Our numerical experimental result shows that this algorithm is reliable and efficient for contact searching of three dimensional systems.
On some nonlinear potential problems
Directory of Open Access Journals (Sweden)
M. A. Efendiev
1999-05-01
Full Text Available The degree theory of mappings is applied to a two-dimensional semilinear elliptic problem with the Laplacian as principal part subject to a nonlinear boundary condition of Robin type. Under some growth conditions we obtain existence. The analysis is based on an equivalent coupled system of domain--boundary variational equations whose principal parts are the Dirichlet bilinear form in the domain and the single layer potential bilinear form on the boundary, respectively. This system consists of a monotone and a compact part. Additional monotonicity implies convergence of an appropriate Richardson iteration.
The virial theorem for nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: paolo.amore@gmail.com, E-mail: fernande@quimica.unlp.edu.ar
2009-09-15
We show that the virial theorem provides a useful simple tool for approximating nonlinear problems. In particular, we consider conservative nonlinear oscillators and obtain the same main result derived earlier from the expansion in Chebyshev polynomials. (letters and comments)
A Perturbation Result for Dynamical Contact Problems
Institute of Scientific and Technical Information of China (English)
Corinna Klapproth; Peter Deuflhard; Anton Schiela
2009-01-01
This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover, it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method. We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies which is formulated via the Signorini contact conditions. For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law, we find a characterization of the class of problems which satisfy a perturbation result in a non-trivial mix of norms in function space. This characterization is given in the form of a stability condition on the contact stresses at the contact boundaries. Furthermore, we present perturbation results for two well-established approximations of the classical Signorini condition: The Signorini condition formulated in velocities and the model of normal compliance, both satisfying even a sharper version of our stability condition.
Quasistatic contact problems in viscoelasticity and viscoplasticity
Han, Weimin
2002-01-01
Phenomena of contact between deformable bodies or between deformable and rigid bodies abound in industry and in everyday life. A few simple examples are brake pads with wheels, tires on roads, and pistons with skirts. Common industrial processes such as metal forming and metal extrusion involve contact evolutions. Because of the importance of contact processes in structural and mechanical systems, considerable effort has been put into modeling and numerical simulations. This book introduces readers to a mathematical theory of contact problems involving deformable bodies. It covers mechanical modeling, mathematical formulations, variational analysis, and the numerical solution of the associated formulations. The authors give a complete treatment of some contact problems by presenting arguments and results in modeling, analysis, and numerical simulations. Variational analysis of the models includes existence and uniqueness results of weak solutions, as well as results of continuous dependence of the solution on...
Reduction technique for tire contact problems
Noor, Ahmed K.; Peters, Jeanne M.
1995-04-01
A reduction technique and a computational procedure are presented for predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of the reduction technique, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface.
A general-purpose contact detection algorithm for nonlinear structural analysis codes
Energy Technology Data Exchange (ETDEWEB)
Heinstein, M.W.; Attaway, S.W.; Swegle, J.W.; Mello, F.J.
1993-05-01
A new contact detection algorithm has been developed to address difficulties associated with the numerical simulation of contact in nonlinear finite element structural analysis codes. Problems including accurate and efficient detection of contact for self-contacting surfaces, tearing and eroding surfaces, and multi-body impact are addressed. The proposed algorithm is portable between dynamic and quasi-static codes and can efficiently model contact between a variety of finite element types including shells, bricks, beams and particles. The algorithm is composed of (1) a location strategy that uses a global search to decide which slave nodes are in proximity to a master surface and (2) an accurate detailed contact check that uses the projected motions of both master surface and slave node. In this report, currently used contact detection algorithms and their associated difficulties are discussed. Then the proposed algorithm and how it addresses these problems is described. Finally, the capability of the new algorithm is illustrated with several example problems.
Mixed finite element formulation for frictionless contact problems
Noor, Ahmed K.; Kim, Kyun O.
1989-01-01
Simple mixed finite element models and a computational procedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large-rotation theory of the structure with the effect of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (or stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. Numerical examples of axisymmetric deformations of a hemispherical shell and planar deformations of a circular ring are presented. Both structures are pressed against a rigid plate. Detailed information about the response of the structures is presented. The numerical studies demonstrate the high accuracy of the mixed models and the effectiveness of the computational procedure based on combining the geometrically nonlinear terms and the contact conditions in one iteration loop.
A Study of Thermal Contact using Nonlinear System Identification Models
Directory of Open Access Journals (Sweden)
M. H. Shojaeefard
2008-01-01
Full Text Available One interesting application of system identification method is to identify and control the heat transfer from the exhaust valve to the seat to keep away the valve from being damaged. In this study, two co-axial cylindrical specimens are used as exhaust valve and its seat. Using the measured temperatures at different locations of the specimens and with a semi-analytical method, the temperature distribution of the specimens is calculated and consequently, the thermal contact conductance is calculated. By applying the system identification method and having the temperatures at both sides of the contact surface, the temperature transfer function is calculated. With regard to the fact that the thermal contact has nonlinear behavior, two nonlinear black-box models called nonlinear ARX and NLN Hammerstein-Wiener models are taken for accurate estimation. Results show that the NLN Hammerstein-Wiener models with wavelet network nonlinear estimator is the best.
DEFF Research Database (Denmark)
Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny
2009-01-01
contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer - Newton method shows improved...... qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer - Newton method....
Studies of Nonlinear Problems. I
Fermi, E.; Pasta, J.; Ulam, S.
1955-05-01
A one-dimensional dynamical system of 64 particles with forces between neighbors containing nonlinear terms has been studied on the Los Alamos computer MANIAC I. The nonlinear terms considered are quadratic, cubic, and broken linear types. The results are analyzed into Fourier components and plotted as a function of time. The results show very little, if any, tendency toward equipartition of energy among the degrees of freedom.
The nonlinear fixed gravimetric boundary value problem
Institute of Scientific and Technical Information of China (English)
于锦海; 朱灼文
1995-01-01
The properly-posedness of the nonlinear fixed gravimetric boundary value problem is shown with the help of nonlinear functional analysis and a new iterative method to solve the problem is also given, where each step of the iterative program is reduced to solving one and the same kind of oblique derivative boundary value problem with the same type. Furthermore, the convergence of the iterative program is proved with Schauder estimate of elliptic differential equation.
Imaging of contact acoustic nonlinearity using synthetic aperture technique.
Yun, Dongseok; Kim, Jongbeom; Jhang, Kyung-Young
2013-09-01
The angle beam incidence and reflection technique for the evaluation of contact acoustic nonlinearity (CAN) at solid-solid contact interfaces (e.g., closed cracks) has recently been developed to overcome the disadvantage of accessing both the inner and outer surfaces of structures for attaching pulsing and receiving transducers in the through-transmission of normal incidence technique. This paper proposes a technique for B-mode imaging of CAN based on the above reflection technique, which uses the synthetic aperture focusing technique (SAFT) and short-time Fourier transform (STFT) to visualize the distribution of the CAN-induced second harmonic magnitude as well as the nonlinear parameter. In order to verify the usefulness of the proposed method, a solid-solid contact interface was tested and the change of the contact acoustic nonlinearity according to the increasing contact pressure was visualized in images of the second harmonic magnitude and the relative nonlinear parameter. The experimental results showed good agreement with the previously developed theory identifying the dependence of the scattered second harmonics on the contact pressure. This technique can be used for the detection and improvement of the sizing accuracy of closed cracks that are difficult to detect using the conventional linear ultrasonic technique.
THE CONTROL VARIATIONAL METHOD FOR ELASTIC CONTACT PROBLEMS
Directory of Open Access Journals (Sweden)
Mircea Sofonea
2010-07-01
Full Text Available We consider a multivalued equation of the form Ay + F(y = fin a real Hilbert space, where A is a linear operator and F represents the (Clarke subdifferential of some function. We prove existence and uniqueness results of the solution by using the control variational method. The main idea in this method is to minimize the energy functional associated to the nonlinear equation by arguments of optimal control theory. Then we consider a general mathematical model describing the contact between a linearly elastic body and an obstacle which leads to a variational formulation as above, for the displacement field. We apply the abstract existence and uniqueness results to prove the unique weak solvability of the corresponding contact problem. Finally, we present examples of contact and friction laws for which our results work.
Reduced projection augmented Lagrange bi-conjugate gradient method for contact and impact problems
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange biconjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear programming. For contact-impact problems, a larger time-step can be adopted arriving at numerical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to improve precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.
RESEARCH ON NONLINEAR PROBLEMS IN STRUCTURAL DYNAMICS.
Research on nonlinear problems structural dynamics is briefly summarized. Panel flutter was investigated to make a critical comparison between theory...panel flutter in aerospace vehicles, plausible simplifying assumptions are examined in the light of experimental results. Structural dynamics research
The role of nonlinearity in inverse problems
Snieder, Roel
1998-06-01
In many practical inverse problems, one aims to retrieve a model that has infinitely many degrees of freedom from a finite amount of data. It follows from a simple variable count that this cannot be done in a unique way. Therefore, inversion entails more than estimating a model: any inversion is not complete without a description of the class of models that is consistent with the data; this is called the appraisal problem. Nonlinearity makes the appraisal problem particularly difficult. The first reason for this is that nonlinear error propagation is a difficult problem. The second reason is that for some nonlinear problems the model parameters affect the way in which the model is being interrogated by the data. Two examples are given of this, and it is shown how the nonlinearity may make the problem more ill-posed. Finally, three attempts are shown to carry out the model appraisal for nonlinear inverse problems that are based on an analytical approach, a numerical approach and a common sense approach.
A Cauchy problem in nonlinear heat conduction
Energy Technology Data Exchange (ETDEWEB)
De Lillo, S [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia (Italy); Sanchini, G [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy)
2006-06-09
A Cauchy problem on the semiline for a nonlinear diffusion equation is considered, with a boundary condition corresponding to a prescribed thermal conductivity at the origin. The problem is mapped into a moving boundary problem for the linear heat equation with a Robin-type boundary condition. Such a problem is then reduced to a linear integral Volterra equation of II type which admits a unique solution.
Compressed Sensing with Nonlinear Observations and Related Nonlinear Optimisation Problems
Blumensath, Thomas
2012-01-01
Non-convex constraints have recently proven a valuable tool in many optimisation problems. In particular sparsity constraints have had a significant impact on sampling theory, where they are used in Compressed Sensing and allow structured signals to be sampled far below the rate traditionally prescribed. Nearly all of the theory developed for Compressed Sensing signal recovery assumes that samples are taken using linear measurements. In this paper we instead address the Compressed Sensing recovery problem in a setting where the observations are non-linear. We show that, under conditions similar to those required in the linear setting, the Iterative Hard Thresholding algorithm can be used to accurately recover sparse or structured signals from few non-linear observations. Similar ideas can also be developed in a more general non-linear optimisation framework. In the second part of this paper we therefore present related result that show how this can be done under sparsity and union of subspaces constraints, wh...
Combined algorithms in nonlinear problems of magnetostatics
Energy Technology Data Exchange (ETDEWEB)
Gregus, M.; Khoromsky, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.
1988-05-09
To solve boundary problems of magnetostatics in unbounded two- or three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method in nonlinear magnetostatic problems without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in nonlinear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given, too. 14 refs., 2 figs.
Monotone method for nonlinear nonlocal hyperbolic problems
Directory of Open Access Journals (Sweden)
Azmy S. Ackleh
2003-02-01
Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.
Lobachevsky geometry and modern nonlinear problems
Popov, Andrey
2014-01-01
This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound “geometrical roots” and numerous applications to modern nonlinear problems, it is treated as a universal “object” of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry.
Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps
Directory of Open Access Journals (Sweden)
Lanhao Zhao
2014-01-01
Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.
Elastoplastic frictional contact problem study on interference fits of compressor
Institute of Scientific and Technical Information of China (English)
Hongwu ZHANG; Aihua LIAO; Changhua WU
2008-01-01
The FE parametric quadratic programming (PQP) method developed from the parametric variational principle (PVP) was used for the analysis of the stress distribution of the 3D elastoplastic frictional contact of an impeller-shaft sleeve-shaft. A locomotive-type turbo-charger compressor with 24 blades under combined cen-trifugal and interference-fit loading was considered in the numerical analysis. The solution of elastoplastic frictional contact problems belongs to unspecified boundary pro-blems where the interaction between two kinds of nonli-nearities should occur. To save time in the numerical computation, a multi-substructure technique was adopted in the structural modeling. The effect of fit tolerance, wall thickness of the shaft sleeve, and rotational speed on the contact stress was discussed in detail in the numerical computation. To decrease the difficulty of the assembly process and ensure the safety of the working state, the amount of interference between the shaft sleeve and shaft by press-fitting should be controlled strictly to avoid the rapid increase of contact stress. The numerical results show that the algorithm has high accuracy and good con-vergence. The study can be referred to in deciding the proper fit tolerance and improving the design and man-ufacturing technology of compressor impellers.
Analysis of a Frictional Contact Problem with Adhesion
Directory of Open Access Journals (Sweden)
Z. Lerguet
2008-08-01
Full Text Available We consider a mathematical model which describes the contact between a deformable body and an obstacle, the so-called foundation. The contact is frictional and is modelled with aversion of normal compliance condition and the associated Coulomb's law of dry friction in which the adhesion of contact surfaces is taken into account. The evolution of the bonding fieldis described by a first order differential equation and the material's behavior is modelled with a nonlinear elastic constitutive law. We derive a variational formulation of the problem then, under a smallness assumption on the coefficient of friction, we prove the existence of a unique weak solution for the model. The proof is based on arguments of time-dependent variational inequalities, differential equations and Banach'sfixed point theorem. Finally, we extend our results in the case when the piezoelectric effect is taken into account, i.e. in the case when the material's behavior is modelled with a nonlinear electro-elastic constitutive law.
Laursen, Tod A
2003-01-01
This book comprehensively treats the formulation and finite element approximation of contact and impact problems in nonlinear mechanics. Intended for students, researchers and practitioners interested in numerical solid and structural analysis, as well as for engineers and scientists dealing with technologies in which tribological response must be characterized, the book includes an introductory but detailed overview of nonlinear finite element formulations before dealing with contact and impact specifically. Topics encompassed include the continuum mechanics, mathematical structure, variational framework, and finite element implementations associated with contact/impact interaction. Additionally, important and currently emerging research topics in computational contact mechanics are introduced, encompassing such topics as tribological complexity, conservative treatment of inelastic impact interaction, and novel spatial discretization strategies.
Moving contact line problem: Advances and perspectives
Directory of Open Access Journals (Sweden)
Yapu Zhao
2014-01-01
Full Text Available The solid-liquid interface, which is ubiquitous in nature and our daily life, plays fundamental roles in a variety of physical-chemical-biological-mechanical phenomena, for example in lubrication, crystal growth, and many biological reactions that govern the building of human body and the functioning of brain. A surge of interests in the moving contact line (MCL problem, which is still going on today, can be traced back to 1970s primarily because of the existence of the “Huh-Scriven paradox”. This paper, mainly from a solid mechanics perspective, describes very briefly the multidisciplinary nature of the MCL problem, then summarizes some major advances in this exciting research area, and some future directions are presented.
Finite element analysis of 3D elastic-plastic frictional contact problem for Cosserat materials
Zhang, S.; Xie, Z. Q.; Chen, B. S.; Zhang, H. W.
2013-06-01
The objective of this paper is to develop a finite element model for 3D elastic-plastic frictional contact problem of Cosserat materials. Because 3D elastic-plastic frictional contact problems belong to the unspecified boundary problems with nonlinearities in both material and geometric forms, a large number of calculations are needed to obtain numerical results with high accuracy. Based on the parametric variational principle and the corresponding quadratic programming method for numerical simulation of frictional contact problems, a finite element model is developed for 3D elastic-plastic frictional contact analysis of Cosserat materials. The problems are finally reduced to linear complementarity problems (LCP). Numerical examples show the feasibility and importance of the developed model for analyzing the contact problems of structures with materials which have micro-polar characteristics.
Nonlinear elliptic-parabolic problems
Kim, Inwon C
2012-01-01
We introduce a notion of viscosity solutions for a general class of elliptic-parabolic phase transition problems. These include the Richards equation, which is a classical model in filtration theory. Existence and uniqueness results are proved via the comparison principle. In particular, we show existence and stability properties of maximal and minimal viscosity solutions for a general class of initial data. These results are new even in the linear case, where we also show that viscosity solutions coincide with the regular weak solutions introduced in [Alt&Luckhaus 1983].
Advanced Research Workshop on Nonlinear Hyperbolic Problems
Serre, Denis; Raviart, Pierre-Arnaud
1987-01-01
The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
Nonlinear Seebeck and Peltier effects in quantum point contacts
Energy Technology Data Exchange (ETDEWEB)
Cipiloglu, M.A.; Turgut, S.; Tomak, M. [Department of Physics, Middle East Technical University, Ankara (Turkey)
2004-09-01
The charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. With a suitable choice of the average temperature and chemical potential, the lowest order nonlinear term in both cases appear to be of third order. The behavior of the third-order coefficients in both cases are then investigated for different contact parameters. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Nonlinear Seebeck and Peltier effects in quantum point contacts
Çipilolu, M. A.; Turgut, S.; Tomak, M.
2004-09-01
The charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. With a suitable choice of the average temperature and chemical potential, the lowest order nonlinear term in both cases appear to be of third order. The behavior of the third-order coefficients in both cases are then investigated for different contact parameters.
Topological invariants in nonlinear boundary value problems
Energy Technology Data Exchange (ETDEWEB)
Vinagre, Sandra [Departamento de Matematica, Universidade de Evora, Rua Roma-tilde o Ramalho 59, 7000-671 Evora (Portugal)]. E-mail: smv@uevora.pt; Severino, Ricardo [Departamento de Matematica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)]. E-mail: ricardo@math.uminho.pt; Ramos, J. Sousa [Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)]. E-mail: sramos@math.ist.utl.pt
2005-07-01
We consider a class of boundary value problems for partial differential equations, whose solutions are, basically, characterized by the iteration of a nonlinear function. We apply methods of symbolic dynamics of discrete bimodal maps in the interval in order to give a topological characterization of its solutions.
The study about planetary gearbox virtual prototyping with nonlinear gear contact characteristics
Yin, Huabing; Zhou, Guangming
2010-06-01
The virtual prototypes of gear transmission system built in most multi-body dynamic software have difficulties in describing the gear mesh characteristics. The gear mesh contact is modelled as rigid contact and this is not accurate for the gear mesh contact, which is elastic or flexible. The gear contact formula used in the multi-body dynamic software does not reveal the gear contact nonlinear stiffness characteristic. The model built with gear meshing contact is difficult to solve because of its time-consuming algorithm. In the paper a new method is put forward to build the virtual prototype of planetary gearbox system according to the nonlinear mesh stiffness and mesh phase obtained through FEM models. This new FEM method of gear mesh stiffness calculation is much more accurate than the common formulas. The gear mesh nonlinear stiffness of sun gear- pinion and pinion-ring gear of all the planetary gear sets in gearbox are obtained through MATALB code, which is used to read and plot the analyzing result data. The gear mesh phase differences between different pinions with suns or rings of different planetary gear set can be also obtained. With all these data modelled in simulink (or other software) and integrated with the multi-body dynamic planetary gearbox model and the gear meshing contact problem in multi-body gear models is solved easily and accurately. The interfaces for gear mesh stiffness and mesh phases are designed for multi-body dynamic model and simulink. The nonlinear planetary gear set prototyping models are integrated to become the whole planetary gear box model and the whole vehicle system model built in multi-body dynamic software can be integrated to simulate different duty conditions. At last high speed input is put into the nonlinear planetary transmission model and the different duty cases are simulated. The dynamic characteristics of different parts are obtained. The dynamic characteristic comparison between nonlinear and linear models is made
Multigrid Methods for Nonlinear Problems: An Overview
Energy Technology Data Exchange (ETDEWEB)
Henson, V E
2002-12-23
Since their early application to elliptic partial differential equations, multigrid methods have been applied successfully to a large and growing class of problems, from elasticity and computational fluid dynamics to geodetics and molecular structures. Classical multigrid begins with a two-grid process. First, iterative relaxation is applied, whose effect is to smooth the error. Then a coarse-grid correction is applied, in which the smooth error is determined on a coarser grid. This error is interpolated to the fine grid and used to correct the fine-grid approximation. Applying this method recursively to solve the coarse-grid problem leads to multigrid. The coarse-grid correction works because the residual equation is linear. But this is not the case for nonlinear problems, and different strategies must be employed. In this presentation we describe how to apply multigrid to nonlinear problems. There are two basic approaches. The first is to apply a linearization scheme, such as the Newton's method, and to employ multigrid for the solution of the Jacobian system in each iteration. The second is to apply multigrid directly to the nonlinear problem by employing the so-called Full Approximation Scheme (FAS). In FAS a nonlinear iteration is applied to smooth the error. The full equation is solved on the coarse grid, after which the coarse-grid error is extracted from the solution. This correction is then interpolated and applied to the fine grid approximation. We describe these methods in detail, and present numerical experiments that indicate the efficacy of them.
Pattern selection as a nonlinear eigenvalue problem
Büchel, P
1996-01-01
A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.Ft
Validation of a Hertzian contact model with nonlinear damping
Sierakowski, Adam
2015-11-01
Due to limited spatial resolution, most disperse particle simulation methods rely on simplified models for incorporating short-range particle interactions. In this presentation, we introduce a contact model that combines the Hertz elastic restoring force with a nonlinear damping force, requiring only material properties and no tunable parameters. We have implemented the model in a resolved-particle flow solver that implements the Physalis method, which accurately captures hydrodynamic interactions by analytically enforcing the no-slip condition on the particle surface. We summarize the results of a few numerical studies that suggest the validity of the contact model over a range of particle interaction intensities (i.e., collision Stokes numbers) when compared with experimental data. This work was supported by the National Science Foundation under Grant Number CBET1335965 and the Johns Hopkins University Modeling Complex Systems IGERT program.
A NEW METHOD FOR SOLUTION OF 3D ELASTIC-PLASTIC FRICTIONAL CONTACT PROBLEMS
Institute of Scientific and Technical Information of China (English)
张洪武; 钟万勰; 顾元宪
2001-01-01
The solution of 3 D elastic-plastic frictional contact problems belongs to the unspecified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for the solution of 3 D frictional contact problems, the key part is the determination of the tangential slip states at the contact points, and a great amount of computing work is needed for a high accuracy result. A new method based on a combination of programming and iteration methods, which are respectively known as two main kinds of methods for contact analysis, was put forward to deal with 3 D elastic-plastic contact problems. Numerical results demonstrate the efficiency of the algorithm illustrated here.
Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities
Energy Technology Data Exchange (ETDEWEB)
Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2013-11-15
A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.
RACIAL CONTACT, PERSONALITY, AND GROUP PROBLEM SOLVING.
ABNER, EDWARD V.; LEWIT, DAVID W.
THIS STUDY TESTS THE HYPOTHESIS THAT BIRACIAL GROUPS IN WHICH RACEMATES WERE PAIRED FOR DIRECT CONTACT WOULD PERFORM BETTER THAN THOSE IN WHICH RACEMATES WERE ISOLATED. IT ALSO ASSUMED THAT ETHNOCENTRIC SUBJECTS WOULD PERFORM BETTER WITH CONTACT WITH A RACEMATE, AND THAT AGGRESSIVE SUBJECTS WOULD GET ALONG WELL WITHOUT IT. THE SUBJECTS WERE BOYS…
Variationally consistent discretization schemes and numerical algorithms for contact problems
Wohlmuth, Barbara
We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of
A Note on Separable Nonlinear Least Squares Problem
Gharibi, Wajeb
2011-01-01
Separable nonlinear least squares (SNLS)problem is a special class of nonlinear least squares (NLS)problems, whose objective function is a mixture of linear and nonlinear functions. It has many applications in many different areas, especially in Operations Research and Computer Sciences. They are difficult to solve with the infinite-norm metric. In this paper, we give a short note on the separable nonlinear least squares problem, unseparated scheme for NLS, and propose an algorithm for solving mixed linear-nonlinear minimization problem, method of which results in solving a series of least squares separable problems.
OPEN PROBLEM: Some nonlinear challenges in biology
Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David
2008-08-01
Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher-Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'.
UNILATERAL CONTACT PROBLEMS USING QUASI-ACTIVE SET STRATEGY
Institute of Scientific and Technical Information of China (English)
宣兆成; 李兴斯
2002-01-01
The unilateral contact problem can be formulated as a mathematical programming with inequality constraints. To resolve the difficulty in dealing with inequality constraints, a quasi-active set strategy algorithm was presented. At each iteration, it transforms the problem into one without contact in terms of the solution obtained in last iteration and initiates the current iteration using the solution of the transformed problem, and updates a group of contact pairs compared with Lemke algorithm that uqdates only one pair of contact points. The present algorithm greatly enhances the efficiency and numerical examples demonstrate the effectiveness and robustness of the proposed algorithm.
Some Duality Results for Fuzzy Nonlinear Programming Problem
Sangeeta Jaiswal; Geetanjali Panda
2012-01-01
The concept of duality plays an important role in optimization theory. This paper discusses some relations between primal and dual nonlinear programming problems in fuzzy environment. Here, fuzzy feasible region for a general fuzzy nonlinear programming is formed and the concept of fuzzy feasible solution is defined. First order dual relation for fuzzy nonlinear programming problem is studied.
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak
2012-07-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik\\'s ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
An Algorithm to Solve Separable Nonlinear Least Square Problem
Directory of Open Access Journals (Sweden)
Wajeb Gharibi
2013-07-01
Full Text Available Separable Nonlinear Least Squares (SNLS problem is a special class of Nonlinear Least Squares (NLS problems, whose objective function is a mixture of linear and nonlinear functions. SNLS has many applications in several areas, especially in the field of Operations Research and Computer Science. Problems related to the class of NLS are hard to resolve having infinite-norm metric. This paper gives a brief explanation about SNLS problem and offers a Lagrangian based algorithm for solving mixed linear-nonlinear minimization problem
The fully nonlinear stratified geostrophic adjustment problem
Coutino, Aaron; Stastna, Marek
2017-01-01
The study of the adjustment to equilibrium by a stratified fluid in a rotating reference frame is a classical problem in geophysical fluid dynamics. We consider the fully nonlinear, stratified adjustment problem from a numerical point of view. We present results of smoothed dam break simulations based on experiments in the published literature, with a focus on both the wave trains that propagate away from the nascent geostrophic state and the geostrophic state itself. We demonstrate that for Rossby numbers in excess of roughly 2 the wave train cannot be interpreted in terms of linear theory. This wave train consists of a leading solitary-like packet and a trailing tail of dispersive waves. However, it is found that the leading wave packet never completely separates from the trailing tail. Somewhat surprisingly, the inertial oscillations associated with the geostrophic state exhibit evidence of nonlinearity even when the Rossby number falls below 1. We vary the width of the initial disturbance and the rotation rate so as to keep the Rossby number fixed, and find that while the qualitative response remains consistent, the Froude number varies, and these variations are manifested in the form of the emanating wave train. For wider initial disturbances we find clear evidence of a wave train that initially propagates toward the near wall, reflects, and propagates away from the geostrophic state behind the leading wave train. We compare kinetic energy inside and outside of the geostrophic state, finding that for long times a Rossby number of around one-quarter yields an equal split between the two, with lower (higher) Rossby numbers yielding more energy in the geostrophic state (wave train). Finally we compare the energetics of the geostrophic state as the Rossby number varies, finding long-lived inertial oscillations in the majority of the cases and a general agreement with the past literature that employed either hydrostatic, shallow-water equation-based theory or
Studies in nonlinear problems of energy
Matkowsky, B. J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, termed fronts which must be found during the analysis, so that the problems are moving free boundary problems. The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion
The contact geometry of the restricted 3-body problem
Albers, Peter; van Koert, Otto; Paternain, Gabriel P
2010-01-01
We show that the planar circular restricted three body problem is of restricted contact type for all energies below the first critical value (action of the first Lagrange point) and for energies slightly above it. This opens up the possibility of using the technology of Contact Topology to understand this particular dynamical system.
Studies in nonlinear problems of energy
Energy Technology Data Exchange (ETDEWEB)
Matkowsky, B.J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.
A mixed variational problem with applications in contact mechanics
Sofonea, Mircea; Matei, Andaluzia
2015-12-01
We provide an existence result in the study of an abstract mixed variational problem which involves a history-dependent operator and two nondifferentiable functionals depending on the solution. The proof relies on generalized saddle point theory and a fixed point argument. Then we consider a new mathematical model which describes the quasistatic frictionless contact process between a viscoplastic body and an obstacle. The contact is modeled with a multivalued normal compliance condition and unilateral constraint. We use our abstract result to prove the weak solvability of this contact problem.
A coupling of FEM-BEM for a kind of Signorini contact problem
Institute of Scientific and Technical Information of China (English)
HU; Qiya
2001-01-01
［1］Carstensen,C.,Gwinner,J.,FEM and BEM coupling for a nonlinear transmission problem with Signorini contact,SIAM J.Numer.Anal.,1997,34(6):1845-1864.［2］Costabel,M.,Stephan,E.,Coupling of finite and boundary element methods for an elastoplastic interface problem,SIAM J.Numer.Anal.,1990,27(4):1212-1226.［3］Kikuchi,N.,Oden,J.,Contact problem in elasticity:a study of variational inequalities and finite element methods,Philadelphia,SIAM,1988.［4］Necas,J.,Introduction to the Theory of Nonlinear Elliptic Equations,Text 52,Leipzig:Teubner,1983.［5］Carstensen,C.,Interface problem in holonomic elastoplasticity,Math.Methods Appl.Sci.,1993,16(11):819-835.［6］Gatica,G.,Hsiao,G.,On the coupled BEM and FEM or a nonlinear exterior Dirichlet problem in R2,Numer.Math.,1992,61(2):171-214.［7］Mund,P.,Stephan,E.,An adaptive two-level method for the coupling of nonlinear FEM-BEM equations,SIAM J.Numer.Anal.,1999,36(3):1001-1021.［8］Meddahi,S.,An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements,SIAM J.Numer.Anal.,1998,35(4):1393-1415.［9］Yu,D.,The Mathematical Theory of the Natural Boundary Element Methods (in Chinese),Beijing:Science Press,1993.［10］Lions,J.,Magenes,E.,Non-homogeneous Boundary Value Problems and Applications,Vol.I,Berlin-Heidelberg-New York:Springer-Verlag,1972.［11］Zenisek,A.,Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations,London:Academic Press,1990.［12］Costabel,M.,Boundary integral operators on Lipschitz domains:Elementary results,SIAM J.Numer.Math.Anal.,1988,19(2):613-626.
A NEW SMOOTHING EQUATIONS APPROACH TO THE NONLINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
Chang-feng Ma; Pu-yan Nie; Guo-ping Liang
2003-01-01
The nonlinear complementarity problem can be reformulated as a nonsmooth equation. In this paper we propose a new smoothing Newton algorithm for the solution of the nonlinear complementarity problem by constructing a new smoothing approximation function. Global and local superlinear convergence results of the algorithm are obtained under suitable conditions. Numerical experiments confirm the good theoretical properties of the algorithm.
Nonlinear algebraic multigrid for constrained solid mechanics problems using Trilinos
Gee, M.W.; R. S. Tuminaro
2012-01-01
The application of the finite element method to nonlinear solid mechanics problems results in the neccessity to repeatedly solve a large nonlinear set of equations. In this paper we limit ourself to problems arising in constrained solid mechanics problems. It is common to apply some variant of Newton?s method or a Newton? Krylov method to such problems. Often, an analytic Jacobian matrix is formed and used in the above mentioned methods. However, if no analytic Jacobian is given, Newton metho...
Bifurcation of solutions of nonlinear Sturm–Liouville problems
Directory of Open Access Journals (Sweden)
Gulgowski Jacek
2001-01-01
Full Text Available A global bifurcation theorem for the following nonlinear Sturm–Liouville problem is given Moreover we give various versions of existence theorems for boundary value problems The main idea of these proofs is studying properties of an unbounded connected subset of the set of all nontrivial solutions of the nonlinear spectral problem , associated with the boundary value problem , in such a way that .
Multisplitting for linear, least squares and nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Renaut, R.
1996-12-31
In earlier work, presented at the 1994 Iterative Methods meeting, a multisplitting (MS) method of block relaxation type was utilized for the solution of the least squares problem, and nonlinear unconstrained problems. This talk will focus on recent developments of the general approach and represents joint work both with Andreas Frommer, University of Wupertal for the linear problems and with Hans Mittelmann, Arizona State University for the nonlinear problems.
Advances in reduction techniques for tire contact problems
Noor, Ahmed K.
1995-08-01
Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.
Modeling and analysis of a contact problem for a viscoelastic rod
Bartosz, Krzysztof; Sofonea, Mircea
2016-10-01
We consider a nonlinear viscoelastic rod which is in contact with a foundation along its length and is in contact with an obstacle at its end. The rod is acted up by body forces and, as a result, its mechanical state evolves. Our aim in this paper is twofold. The first one is to construct an appropriate mathematical model which describes the evolution of the rod. The second one is to prove the weak solvability of the problem. To this end, we use arguments on second-order inclusions with multivalued pseudomonotone operators.
DBEM crack propagation for nonlinear fracture problems
Directory of Open Access Journals (Sweden)
R. Citarella
2015-10-01
Full Text Available A three-dimensional crack propagation simulation is performed by the Dual Boundary Element Method (DBEM. The Stress Intensity Factors (SIFs along the front of a semi elliptical crack, initiated from the external surface of a hollow axle, are calculated for bending and press fit loading separately and for a combination of them. In correspondence of the latter loading condition, a crack propagation is also simulated, with the crack growth rates calculated using the NASGRO3 formula, calibrated for the material under analysis (steel ASTM A469. The J-integral and COD approaches are selected for SIFs calculation in DBEM environment, where the crack path is assessed by the minimum strain energy density criterion (MSED. In correspondence of the initial crack scenario, SIFs along the crack front are also calculated by the Finite Element (FE code ZENCRACK, using COD, in order to provide, by a cross comparison with DBEM, an assessment on the level of accuracy obtained. Due to the symmetry of the bending problem a pure mode I crack propagation is realised with no kinking of the propagating crack whereas for press fit loading the crack propagation becomes mixed mode. The crack growth analysis is nonlinear because of normal gap elements used to model the press fit condition with added friction, and is developed in an iterative-incremental procedure. From the analysis of the SIFs results related to the initial cracked configuration, it is possible to assess the impact of the press fit condition when superimposed to the bending load case.
LINEARIZATION AND CORRECTION METHOD FOR NONLINEAR PROBLEMS
Institute of Scientific and Technical Information of China (English)
何吉欢
2002-01-01
A new perturbation-like technique called linearization and correction method is proposed. Contrary to the traditional perturbation techniques, the present theory does not assume that the solution is expressed in the form of a power series of small parameter. To obtain an asymptotic solution of nonlinear system, the technique first searched for a solution for the linearized system, then a correction was added to the linearized solution. So the obtained results are uniformly valid for both weakly and strongly nonlinear equations.
A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems
Hansen, Glen
2011-07-01
Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO 2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. The accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.
Remarks on a benchmark nonlinear constrained optimization problem
Institute of Scientific and Technical Information of China (English)
Luo Yazhong; Lei Yongjun; Tang Guojin
2006-01-01
Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn-Tucker conditions.
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Said Mesloub
2008-03-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Mesloub Said
2008-01-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
Strength of anisotropy in a granular material: Linear versus nonlinear contact model.
La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina
2016-12-01
In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.
Strength of anisotropy in a granular material: Linear versus nonlinear contact model
La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina
2016-12-01
In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.
Nonlinear Second-Order Multivalued Boundary Value Problems
Indian Academy of Sciences (India)
Leszek Gasiński; Nikolaos S Papageorgiou
2003-08-01
In this paper we study nonlinear second-order differential inclusions involving the ordinary vector -Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operatory theory and from multivalued analysis, we obtain solutions for both the `convex' and `nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results.
Minimax theory for a class of nonlinear statistical inverse problems
Ray, Kolyan; Schmidt-Hieber, Johannes
2016-06-01
We study a class of statistical inverse problems with nonlinear pointwise operators motivated by concrete statistical applications. A two-step procedure is proposed, where the first step smoothes the data and inverts the nonlinearity. This reduces the initial nonlinear problem to a linear inverse problem with deterministic noise, which is then solved in a second step. The noise reduction step is based on wavelet thresholding and is shown to be minimax optimal (up to logarithmic factors) in a pointwise function-dependent sense. Our analysis is based on a modified notion of Hölder smoothness scales that are natural in this setting.
A Null Space Approach for Solving Nonlinear Complementarity Problems
Institute of Scientific and Technical Information of China (English)
Pu-yan Nie
2006-01-01
In this work, null space techniques are employed to tackle nonlinear complementarity problems(NCPs). NCP conditions are transform into a nonlinear programming problem, which is handled by null space algorithms. The NCP conditions are divided into two groups. Some equalities and inequalities in an NCP are treated as constraints. While other equalities and inequalities in an NCP are to be regarded as objective function.Two groups are all updated in every step. Null space approaches are extended to nonlinear complementarity problems. Two different solvers are employed for an NCP in an algorithm.
A Numerical Embedding Method for Solving the Nonlinear Optimization Problem
Institute of Scientific and Technical Information of China (English)
田保锋; 戴云仙; 孟泽红; 张建军
2003-01-01
A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.
Nonlinear screening of charges induced in graphene by metal contacts
Khomyakov, Petr; Starikov, A.A.; Brocks, G.; Kelly, Paul J.
2010-01-01
To understand the band bending caused by metal contacts, we study the potential and charge density induced in graphene in response to contact with a metal strip. We find that the screening is weak by comparison with a normal metal as a consequence of the ultrarelativistic nature of the electron
Testing and Modeling of Contact Problems in Resistance Welding
DEFF Research Database (Denmark)
Song, Quanfeng
As a part of the efforts towards a professional and reliable numerical tool for resistance welding engineers, this Ph.D. project is dedicated to refining the numerical models related to the interface behavior. An FE algorithm for the contact problems in resistance welding has been developed...... together two or three cylindrical parts as well as disc-ring pairs of dissimilar metals. The tests have demonstrated the effectiveness of the model. A theoretical and experimental study is performed on the contact resistance aiming at a more reliable model for numerical simulation of resistance welding....... The model currently employed is evaluated. It is found that the model may underestimate the constriction resistance because it is based on the assumption of continual contact area. A new model is proposed on the constriction resistance in resistance welding. A parametric study is performed on the contact...
Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boglaev Igor
2009-01-01
Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.
Analytical Solutions to Non-linear Mechanical Oscillation Problems
DEFF Research Database (Denmark)
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...
A Unified Approach for Solving Nonlinear Regular Perturbation Problems
Khuri, S. A.
2008-01-01
This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…
A coupling of FEM-BEM for a kind of Signorini contact problem
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper,we consider a kind of coupled nonlinear problem with Signorini contact conditions.To solve this problem,we discuss a new coupling of finite element and boundary element by adding an auxiliary circle.We first derive an asymptotic error estimate of the approximation to the coupled FEM-BEM variational inequality.Then we design an iterative method for solving the coupled system,in which only three standard subproblems without involving any boundary integral equation are solved.It will be shown that the convergence speed of this iteration method is independent of the mesh size.
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
QUASILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS WITH DISCONTINUOUS NONLINEARITIES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper we shall consider a discontinuous nonlinear nonmonotone elliptic boundary value problem, i.e. a quasilinear elliptic hemivariational inequality. This kind of problems is strongly motivated by various problems in mechanics. By use of the notion of the generalized gradient of Clarke and the theory of pseudomonotone operators, we will prove the existence of solutions.
Inverse Coefficient Problems for Nonlinear Elliptic Variational Inequalities
Institute of Scientific and Technical Information of China (English)
Run-sheng Yang; Yun-hua Ou
2011-01-01
This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic variational inequalities. The unknown coefficient of elliptic variational inequalities depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic variational inequalities is unique solvable for the given class of coefficients. The existence of quasisolutions of the inverse problems is obtained.
Modified Filled Function to Solve NonlinearProgramming Problem
Institute of Scientific and Technical Information of China (English)
2015-01-01
Filled function method is an approach to find the global minimum of nonlinear functions. Many Problems, such as computing,communication control, and management, in real applications naturally result in global optimization formulations in a form ofnonlinear global integer programming. This paper gives a modified filled function method to solve the nonlinear global integerprogramming problem. The properties of the proposed modified filled function are also discussed in this paper. The results ofpreliminary numerical experiments are also reported.
Iterative regularization methods for nonlinear ill-posed problems
Scherzer, Otmar; Kaltenbacher, Barbara
2008-01-01
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.
Nonlinear eigenvalue problems with semipositone structure
Directory of Open Access Journals (Sweden)
Alfonso Castro
2000-10-01
Full Text Available In this paper we summarize the developments of semipositone problems to date, including very recent results on semipositone systems. We also discuss applications and open problems.
Inverse Problems for Nonlinear Delay Systems
2011-03-15
Ba82]. For nonlinear delay systems such as those discussed here, approximation in the context of a linear semigroup framework as presented [BBu1, BBu2...linear part generates a linear semigroup as in [BBu1, BBu2, BKap]. One then uses the linear semigroup in a vari- ation of parameters implicit...BBu2, BKap] (for the linear semigroup ) plus a Gronwall inequality. An alternative (and more general) approach given in [Ba82] eschews use of the Trotter
New Variational Solution for the Space Contact Problem
Institute of Scientific and Technical Information of China (English)
CAI Ying; HAN Zhen
2008-01-01
In the recent thirty years, a great of investigations have been made in the Wiener-Hopf equations and variational inequalities as two mutually independent problems. In this paper, we investigate the equivalence of the solution of variational inequality and the inversion of the Toeplitz operator when the projection operators P, Q are linear. The solution of general Wiener-Hopf equation is concluded as the solution of a variational problem. Thus an approximation method of obtaining the maximum value by variational is proposed to obtain the approximation of general Wiener-Hopf equation and apply it to the space contact problems in the elasticity theory. Especially, the solution representation is given in case that the projection of contact surface is round. The closing-form solution is also given when the known displacement is a polynomial of even power.
A Solution Method for Large Deformation Contact Problems.
1984-10-01
number) Contact Problem Algorithm Implicit Solution Technique 20. ANSTNACT’ (rntftae r eves aIi N yaeemy mrd identify by block numnber) P. solution...WITHOUT oL0 H! 0-CONTACT ALGORITHM Z w 00 0 ev 0.8- w kL 0.0 0 U< O0.26 U)_ * z Z OBTINE 0H53 56 59 ANGE,4 Ficure~~~~~ ~*A G RI H 17 Peitdtatoso iesi itrae...41, Division of Applied Sciences, Harvard Univ., March 1983. [20] Rabinowicz , E., Friction and Wear of Materials, J. Wiley and Sons, 1965. [21
Parabolic Perturbation of a Nonlinear Hyperbolic Problem Arising in Physiology
Colli, P.; Grasselli, M.
We study a transport-diffusion initial value problem where the diffusion codlicient is "small" and the transport coefficient is a time function depending on the solution in a nonlinear and nonlocal way. We show the existence and the uniqueness of a weak solution of this problem. Moreover we discuss its asymptotic behaviour as the diffusion coefficient goes to zero, obtaining a well-posed first-order nonlinear hyperbolic problem. These problems arise from mathematical models of muscle contraction in the framework of the sliding filament theory.
THIRD-ORDER NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM
Institute of Scientific and Technical Information of China (English)
王国灿; 金丽
2002-01-01
Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established.Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained.The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems
Vázquez, Luis
2013-01-01
Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems explores how Newton's equation for the motion of one particle in classical mechanics combined with finite difference methods allows creation of a mechanical scenario to solve basic problems in linear algebra and programming. The authors present a novel, unified numerical and mechanical approach and an important analysis method of optimization. This book also: Presents mechanical method for determining matrix singularity or non-independence of dimension and complexity Illustrates novel mathematical applications of classical Newton’s law Offers a new approach and insight to basic, standard problems Includes numerous examples and applications Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems is an ideal book for undergraduate and graduate students as well as researchers interested in linear problems and optimization, and nonlinear dynamics.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
With the aid of a nonlinear transformation, a class of nonlinear convectiondiffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given
Studies in nonlinear problems of energy
Energy Technology Data Exchange (ETDEWEB)
Matkowsky, B.J.
1990-11-01
We carry out a research program with primary emphasis on the applications of Bifurcation and Stability Theory to Problems of energy, with specific emphasis on Problems of Combustion and Flame Propagation. In particular we consider the problem of transition from laminar to turbulent flame propagation. A great deal of progress has been made in our investigations. More than one hundred and thirty papers citing this project have been prepared for publication in technical journals. A list of the papers, including abstracts for each paper, is appended to this report.
Nonlinear Preserver Problems on B(H)
Institute of Scientific and Technical Information of China (English)
Jian Lian CUI
2011-01-01
Let H be a complex Hilbert space of dimension greater than 2, and B(H) denote the Banach algebra of all bounded linear operators on H. For A, B ∈ B(H), define the binary relation A ≤* B by A*A = A*B and AA* = AB*. Then (B(H), "≤*") is a partially ordered set and the relation "≤*" is called the star order on B(H). Denote by Bs(H) the set of all self-adjoint operators in B(H). In this paper, we first characterize nonlinear continuous bijective maps on Bs (H) which preserve the star order in both directions. We characterize also additive maps (or linear maps) on B(H) (or nest algebras) which are multiplicative at some invertible operator.
An Adaptive Neural Network Model for Nonlinear Programming Problems
Institute of Scientific and Technical Information of China (English)
Xiang-sun Zhang; Xin-jian Zhuo; Zhu-jun Jing
2002-01-01
In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.
Variational approach to various nonlinear problems in geometry and physics
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this survey, we will summarize the existence results of nonlinear partial differential equations which arises from geometry or physics by using variational method. We use the method to study Kazdan-Warner problem, Chern-Simons-Higgs model, Toda systems, and the prescribed Q-curvature problem in 4-dimension.
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
A Hybrid Method for Nonlinear Least Squares Problems
Institute of Scientific and Technical Information of China (English)
Zhongyi Liu; Linping Sun
2007-01-01
A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method,a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual,small-residual and large-residual problems.
Multigrid Reduction in Time for Nonlinear Parabolic Problems
Energy Technology Data Exchange (ETDEWEB)
Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Univ. of Colorado, Boulder, CO (United States); O' Neill, B. [Univ. of Colorado, Boulder, CO (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-01-04
The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.
A reduced order model for nonlinear vibroacoustic problems
Directory of Open Access Journals (Sweden)
Ouisse Morvan
2012-07-01
Full Text Available This work is related to geometrical nonlinearities applied to thin plates coupled with fluid-filled domain. Model reduction is performed to reduce the computation time. Reduced order model (ROM is issued from the uncoupled linear problem and enriched with residues to describe the nonlinear behavior and coupling effects. To show the efficiency of the proposed method, numerical simulations in the case of an elastic plate closing an acoustic cavity are presented.
Frozen Landweber Iteration for Nonlinear Ill-Posed Problems
Institute of Scientific and Technical Information of China (English)
J.Xu; B.Han; L.Li
2007-01-01
In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems.A convergence analysis for this iteration is presented.The numerical performance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared with that of the Landweber iteration.We obtain a shorter running time of the frozen Landweber iteration based on the same convergence accuracy.
Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
Inverse Coefficient Problems for Nonlinear Parabolic Differential Equations
Institute of Scientific and Technical Information of China (English)
Yun Hua OU; Alemdar HASANOV; Zhen Hai LIU
2008-01-01
This paper is devoted to a class of inverse problems for a nonlinear parabolic differential equation.The unknown coefficient of the equation depends on the gradient of the solution and belongs to a set of admissible coefficients.It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence.Based on this result the existence of a quasisolution of the inverse problem is obtained in the appropriate class of admissible coefficients.
Interval Arithmetic for Nonlinear Problem Solving
2013-01-01
Implementation of interval arithmetic in complex problems has been hampered by the tedious programming exercise needed to develop a particular implementation. In order to improve productivity, the use of interval mathematics is demonstrated using the computing platform INTLAB that allows for the development of interval-arithmetic-based programs more efficiently than with previous interval-arithmetic libraries. An interval-Newton Generalized-Bisection (IN/GB) method is developed in this platfo...
Zhao, J.; Vollebregt, E.A.H.; Oosterlee, C.W.
2014-01-01
This paper presents a full multigrid (FMG) technique, which combines a multigrid method, an active set algorithm and a nested iteration technique, to solve a linear complementarity problem (LCP) modeling elastic normal contact problems. The governing system in this LCP is derived from a Fredholm int
Analysis of nonlinear channel friction inverse problem
Institute of Scientific and Technical Information of China (English)
CHENG Weiping; LIU Guohua
2007-01-01
Based on the Backus-Gilbert inverse theory, the singular value decomposition (SVD) for general inverse matrices and the optimization algorithm are used to solve the channel friction inverse problem. The resolution and covari- ance friction inverse model in matrix form is developed to examine the reliability of solutions. Theoretical analyses demonstrate that the convergence rate of the general Newton optimization algorithm is in the second-order. The Wiggins method is also incorporated into the algorithm. Using the method, noise can be suppressed effectively, and the results are close to accurate solutions with proper control parameters. Also, the numerical stability can be improved.
A Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem
Directory of Open Access Journals (Sweden)
Meixia Li
2012-01-01
Full Text Available Based on the smoothing function of penalized Fischer-Burmeister NCP-function, we propose a new smoothing inexact Newton algorithm with non-monotone line search for solving the generalized nonlinear complementarity problem. We view the smoothing parameter as an independent variable. Under suitable conditions, we show that any accumulation point of the generated sequence is a solution of the generalized nonlinear complementarity problem. We also establish the local superlinear (quadratic convergence of the proposed algorithm under the BD-regular assumption. Preliminary numerical experiments indicate the feasibility and efficiency of the proposed algorithm.
Bonus algorithm for large scale stochastic nonlinear programming problems
Diwekar, Urmila
2015-01-01
This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...
Time reversal invariance for a one-dimensional model of contact acoustic nonlinearity
Blanloeuil, Philippe; Francis Rose, L. R.; Veidt, Martin; Wang, Chun H.
2017-04-01
The interaction of a one-dimensional (1D) wave packet with a contact interface characterized by a unilateral contact law is investigated analytically and through a finite difference model. It is shown that this interaction leads to the generation of higher harmonic, sub-harmonic and zero-frequency components in the reflected wave, resulting in a pulse distortion that is attributable to contact acoustic nonlinearity. However, the results also show that the re-emission of a time reversed version of this distorted first reflection results in a healing of the distortions and a perfect recovery of the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. A step-by-step analysis of the contact interaction provides insights into both the distortion arising from the first interaction and the subsequent healing during the second interaction. These findings suggest that time reversal invariance should also apply more generally for scatterers exhibiting non-dissipative contact acoustic nonlinearity.
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f|||h and
Directory of Open Access Journals (Sweden)
Song Hua
2015-01-01
Full Text Available The wheel/rail rolling contact can not only lead to rail fatigue damage but also bring rail corrugation. According to the wheel/rail rolling contact problem, based on the ANSYS/LS-DYNA explicit analysis software, this paper established the finite element model of wheel/rail rolling contact in non-linear steady-state curve negotiation, and proposed the explicit-explicit sequence calculation method that can be used to solve this model. The explicit-explicit sequence calculation method uses explicit solver in calculating the rail pre-stressing force and the process of wheel/rail rolling contact. Compared with the implicit-explicit sequence calculation method that has been widely applied, the explicit-explicit sequence calculation method including similar precision in calculation with faster speed and higher efficiency, make it more applicable to solve the wheel/rail rolling contact problem of non-linear steady-state curving with a large solving model or a high non-linear degree.
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
INITIAL BOUNDARY VALUE PROBLEM FOR A DAMPED NONLINEAR HYPERBOLIC EQUATION
Institute of Scientific and Technical Information of China (English)
陈国旺
2003-01-01
In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equationare proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.
Major open problems in chaos theory and nonlinear dynamics
Li, Y Charles
2013-01-01
Nowadays, chaos theory and nonlinear dynamics lack research focuses. Here we mention a few major open problems: 1. an effective description of chaos and turbulence, 2. rough dependence on initial data, 3. arrow of time, 4. the paradox of enrichment, 5. the paradox of pesticides, 6. the paradox of plankton.
Linear iterative technique for solution of nonlinear thermal network problems
Energy Technology Data Exchange (ETDEWEB)
Seabourn, C.M.
1976-11-01
A method for rapid and accurate solution of linear and/or nonlinear thermal network problems is described. It is a matrix iterative process that converges for nodal temperatures and variations of thermal conductivity with temperature. The method is computer oriented and can be changed easily for design studies.
A POSITIVE INTERIOR-POINT ALGORITHM FOR NONLINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
马昌凤; 梁国平; 陈新美
2003-01-01
A new iterative method, which is called positive interior-point algorithm, is presented for solving the nonlinear complementarity problems. This method is of the desirable feature of robustness. And the convergence theorems of the algorithm is established. In addition, some numerical results are reported.
Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs
Directory of Open Access Journals (Sweden)
Marco Calahorrano
2004-04-01
Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$
Institute of Scientific and Technical Information of China (English)
Lie-heng Wang
2000-01-01
In this paper, the linear finite element approximation to the elastic contact problem with curved contact boundary is considered. The error bound O(h1-2) is obtained with requirements of two times continuously differentiable for contact boundary and the usual regular triangulation, while I.Hlavacek et. al. obtained the error bound O(h ) with requirements of three times continuously differentiable for contact boundary and extra regularities of triangulation (c.f. [2]).
Some problems on nonlinear hyperbolic equations and applications
Peng, YueJun
2010-01-01
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.
Adomian decomposition method for nonlinear Sturm-Liouville problems
Directory of Open Access Journals (Sweden)
Sennur Somali
2007-09-01
Full Text Available In this paper the Adomian decomposition method is applied to the nonlinear Sturm-Liouville problem-y" + y(tp=λy(t, y(t > 0, t ∈ I = (0, 1, y(0 = y(1 = 0, where p > 1 is a constant and λ > 0 is an eigenvalue parameter. Also, the eigenvalues and the behavior of eigenfuctions of the problem are demonstrated.
Modified constrained differential evolution for solving nonlinear global optimization problems
2013-01-01
Nonlinear optimization problems introduce the possibility of multiple local optima. The task of global optimization is to find a point where the objective function obtains its most extreme value while satisfying the constraints. Some methods try to make the solution feasible by using penalty function methods, but the performance is not always satisfactory since the selection of the penalty parameters for the problem at hand is not a straightforward issue. Differential evolut...
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
Iterative total variation schemes for nonlinear inverse problems
Bachmayr, Markus; Burger, Martin
2009-10-01
In this paper we discuss the construction, analysis and implementation of iterative schemes for the solution of inverse problems based on total variation regularization. Via different approximations of the nonlinearity we derive three different schemes resembling three well-known methods for nonlinear inverse problems in Hilbert spaces, namely iterated Tikhonov, Levenberg-Marquardt and Landweber. These methods can be set up such that all arising subproblems are convex optimization problems, analogous to those appearing in image denoising or deblurring. We provide a detailed convergence analysis and appropriate stopping rules in the presence of data noise. Moreover, we discuss the implementation of the schemes and the application to distributed parameter estimation in elliptic partial differential equations.
Microscopic structures from reduction of continuum nonlinear problems
Lovison, Alberto
2011-01-01
We present an application of the Amann-Zehnder exact finite reduction to a class of nonlinear perturbations of elliptic elasto-static problems. We propose the existence of minmax solutions by applying Ljusternik-Schnirelmann theory to a finite dimensional variational formulation of the problem, based on a suitable spectral cut-off. As a by-product, with a choice of fit variables, we establish a variational equivalence between the above spectral finite description and a discrete mechanical model. By doing so, we decrypt the abstract information encoded in the AZ reduction and give rise to a concrete and finite description of the continuous problem.
Numerical solution of control problems governed by nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Heinkenschloss, M. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)
1994-12-31
In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.
A monomial chaos approach for efficient uncertainty quantification on nonlinear problems
Witteveen, J.A.S.; Bijl, H.
2008-01-01
A monomial chaos approach is presented for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equation
A monomial chaos approach for efficient uncertainty quantification on nonlinear problems
Witteveen, J.A.S.; Bijl, H.
2008-01-01
A monomial chaos approach is presented for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear
Lu, Bao-Liang; Ito, Koji
2003-09-01
In this paper we present a method for converting general nonlinear programming (NLP) problems into separable programming (SP) problems by using feedforward neural networks (FNNs). The basic idea behind the method is to use two useful features of FNNs: their ability to approximate arbitrary continuous nonlinear functions with a desired degree of accuracy and their ability to express nonlinear functions in terms of parameterized compositions of functions of single variables. According to these two features, any nonseparable objective functions and/or constraints in NLP problems can be approximately expressed as separable functions with FNNs. Therefore, any NLP problems can be converted into SP problems. The proposed method has three prominent features. (a) It is more general than existing transformation techniques; (b) it can be used to formulate optimization problems as SP problems even when their precise analytic objective function and/or constraints are unknown; (c) the SP problems obtained by the proposed method may highly facilitate the selection of grid points for piecewise linear approximation of nonlinear functions. We analyze the computational complexity of the proposed method and compare it with an existing transformation approach. We also present several examples to demonstrate the method and the performance of the simplex method with the restricted basis entry rule for solving SP problems.
Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.
Lectures on nonlinear evolution equations initial value problems
Racke, Reinhard
2015-01-01
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...
Franck, I M
2014-01-01
This paper presents an efficient Bayesian framework for solving nonlinear, high-dimensional model calibration problems. It is based on Variational Bayesian formulation that aims at approximating the exact posterior by means of solving an optimization problem in an appropriately selected family of distributions. The goal is two-fold. Firstly, to find lower-dimensional representations of the unknown parameter vector that capture as much as possible of the associated posterior density, and secondly to enable the computation of the approximate posterior density with as few forward calls as possible. We discuss how these objectives can be achieved by using a fully Bayesian argumentation and employing the marginal likelihood or evidence as the ultimate model validation metric for any proposed dimensionality reduction. We demonstrate the performance of the proposed methodology to problems in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, ...
On a mixed problem for a coupled nonlinear system
Directory of Open Access Journals (Sweden)
Marcondes R. Clark
1997-03-01
Full Text Available In this article we prove the existence and uniqueness of solutions to the mixed problem associated with the nonlinear system $$ u_{tt}-M(int_Omega |abla u|^2dxDelta u+|u|^ ho u+heta =f $$ $$ heta _t -Delta heta +u_{t}=g $$ where $M$ is a positive real function, and $f$ and $g$ are known real functions.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the ...
Application of homotopy analysis method for solving nonlinear Cauchy problem
Directory of Open Access Journals (Sweden)
V.G. Gupta
2012-11-01
Full Text Available In this paper, by means of the homotopy analysis method (HAM, the solutions of some nonlinear Cauchy problem of parabolic-hyperbolic type are exactly obtained in the form of convergent Taylor series. The HAM contains the auxiliary parameter \\hbar that provides a convenient way of controlling the convergent region of series solutions. This analytical method is employed to solve linear examples to obtain the exact solutions. The results reveal that the proposed method is very effective and simple.
A convergence theory for a class of nonlinear programming problems.
Rauch, S. W.
1973-01-01
A recent convergence theory of Elkin concerning methods for unconstrained minimization is extended to a certain class of nonlinear programming problems. As in Elkin's original approach, the analysis of a variety of step-length algorithms is treated entirely separately from that of several direction algorithms. This allows for their combination into many different methods for solving the constrained problem. These include some of the methods of Rosen and Zoutendijk. We also extend the results of Topkis and Veinott to nonconvex sets and drop their requirement of the uniform feasibility of a subsequence of the search directions.
A New Superlinearly Convergent SQP Algorithm for Nonlinear Minimax Problems
Institute of Scientific and Technical Information of China (English)
Jin-bao Jian; Ran Quan; Qing-jie Hu
2007-01-01
In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed algorithm, a main search direction is obtained by solving a Quadratic Programming (QP) which always has a solution. In order to avoid the Maratos effect, a correction direction is obtained by updating the main direction with a simple explicit formula. Under mild conditions without the strict complementarity, the global and superlinear convergence of the algorithm can be obtained. Finally, some numerical experiments are reported.
An Algorithm for Linearly Constrained Nonlinear Programming Programming Problems.
1980-01-01
ALGORITHM FOR LINEARLY CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS Mokhtar S. Bazaraa and Jamie J. Goode In this paper an algorithm for solving a linearly...distance pro- gramr.ing, as in the works of Bazaraa and Goode 12], and Wolfe [16 can be used for solving this problem. Special methods that take advantage of...34 Pacific Journal of Mathematics, Volume 16, pp. 1-3, 1966. 2. M. S. Bazaraa and J. j. Goode, "An Algorithm for Finding the Shortest Element of a
Properties of positive solutions to a nonlinear parabolic problem
Institute of Scientific and Technical Information of China (English)
2007-01-01
This paper deals with the properties of positive solutions to a quasilinear parabolic equation with the nonlinear absorption and the boundary flux. The necessary and sufficient conditions on the global existence of solutions are described in terms of different parameters appearing in this problem. Moreover, by a result of Chasseign and Vazquez and the comparison principle, we deduce that the blow-up occurs only on the boundary (?)Ω. In addition, for a bounded Lipschitz domainΩ, we establish the blow-up rate estimates for the positive solution to this problem with a= 0.
Inverse problem for multi-body interaction of nonlinear waves
Marruzzo, Alessia; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca
2016-01-01
The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable {\\em temperature}-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems.
Research on the Problem of Spur Gear Teeth Contact in the Car Gear Box
Directory of Open Access Journals (Sweden)
Viktor Skrickij
2011-04-01
Full Text Available The article presents research on the problem of two gear contact in the car gearbox. Contact stiffness is evaluated for the whole period of mesh. Also, contact stresses are evaluated in the contact place. The presented method can be used for calculating spur gear.Article in Lithuanian
Global Optimization of Nonlinear Blend-Scheduling Problems
Directory of Open Access Journals (Sweden)
Pedro A. Castillo Castillo
2017-04-01
Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.
2002-06-01
IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE
The relative degree enhancement problem for MIMO nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Schoenwald, D.A. [Oak Ridge National Lab., TN (United States); Oezguener, Ue. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering
1995-07-01
The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for a completely decentralized feedback linearization result for at least one input-output channel.
Lavrentiev regularization method for nonlinear ill-posed problems
Kinh, N V
2002-01-01
In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x sub 0 of non ill-posed problems F(x)=y sub o , where instead of y sub 0 noisy data y subdelta is an element of X with absolut(y subdelta-y sub 0) X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x subalpha supdelta are obtained by solving the singularly perturbed nonlinear operator equation F(x)+alpha(x-x*)=y subdelta with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x sub 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter alpha has been chosen properly.
Nonlinear programming for classification problems in machine learning
Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio
2016-10-01
We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.
Jacobi elliptic functions: A review of nonlinear oscillatory application problems
Kovacic, Ivana; Cveticanin, Livija; Zukovic, Miodrag; Rakaric, Zvonko
2016-10-01
This review paper is concerned with the applications of Jacobi elliptic functions to nonlinear oscillators whose restoring force has a monomial or binomial form that involves cubic and/or quadratic nonlinearity. First, geometric interpretations of three basic Jacobi elliptic functions are given and their characteristics are discussed. It is shown then how their different forms can be utilized to express exact solutions for the response of certain free conservative oscillators. These forms are subsequently used as a starting point for a presentation of different quantitative techniques for obtaining an approximate response for free perturbed nonlinear oscillators. An illustrative example is provided. Further, two types of externally forced nonlinear oscillators are reviewed: (i) those that are excited by elliptic-type excitations with different exact and approximate solutions; (ii) those that are damped and excited by harmonic excitations, but their approximate response is expressed in terms of Jacobi elliptic functions. Characteristics of the steady-state response are discussed and certain qualitative differences with respect to the classical Duffing oscillator excited harmonically are pointed out. Parametric oscillations of the oscillators excited by an elliptic-type forcing are considered as well, and the differences with respect to the stability chart of the classical Mathieu equation are emphasized. The adjustment of the Melnikov method to derive the general condition for the onset of homoclinic bifurcations in a system parametrically excited by an elliptic-type forcing is provided and compared with those corresponding to harmonic excitations. Advantages and disadvantages of the use of Jacobi elliptic functions in nonlinear oscillatory application problems are discussed and some suggestions for future work are given.
A FINITE ELEMENT MODEL FOR NUMERICAL SIMULATION OF THERMO-MECHANICAL FRICTIONAL CONTACT PROBLEMS
Institute of Scientific and Technical Information of China (English)
张洪武; 韩炜; 陈金涛; 段庆林
2003-01-01
Two kinds of variational principles for numerical simulation of heat transfer and contact analyses are respectively presented. A finite element model for numerical simulation of the thermal contact problems is developed with a pressure dependent heat transfer constitutive model across the contact surface. The numerical algorithm for the finite element analysis of the thermomechanical contact problems is thus developed. Numerical examples are computed and the results demonstrate the validity of the model and algorithm developed.
Application of genetic algorithms in nonlinear heat conduction problems.
Kadri, Muhammad Bilal; Khan, Waqar A
2014-01-01
Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Basis properties of eigenfunctions of nonlinear Sturm-Liouville problems
Peter E. Zhidkov
2000-01-01
We consider three nonlinear eigenvalue problems that consist of $$-y''+f(y^2)y=lambda y$$ with one of the following boundary conditions: $$displaylines{ y(0)=y(1)=0 quad y'(0)=p ,,cr y'(0)=y(1)=0 quad y(0)=p,, cr y'(0)=y'(1)=0 quad y(0)=p,, }$$ where $p$ is a positive constant. Under smoothness and monotonicity conditions on $f$, we show the existence and uniqueness of a sequence of eigenvalues ${lambda _n}$ and corresponding eigenfunctions ${y_n}$ such that $y_n(x)$ has precisely $n$ roots i...
Computer-aided analysis of nonlinear problems in transport phenomena
Brown, R. A.; Scriven, L. E.; Silliman, W. J.
1980-01-01
The paper describes algorithms for equilibrium and steady-state problems with coefficients in the expansions derived by the Galerkin weighted residual method and calculated from the resulting sets of nonlinear algebraic equations by the Newton-Raphson method. Initial approximations are obtained from nearby solutions by continuation techniques as parameters are varied. The Newton-Raphson technique is preferred because the Jacobian of the solution is useful for continuation, for analyzing the stability of solutions, for detecting bifurcation of solution families, and for computing asymptotic estimates of the effects on any solution of small changes in parameters, boundary conditions, and boundary shape.
2000-12-01
for the ALE problem, but for the so-called hypoelastic models of elastoplasticity in rate form. The interest in this work, however, lies in the...34 Algorithms in Nonlinear Dynamics . 103 III.1. Introduction ................. ........................... ... 104 111.2. Model Problem I: a Nonlinear Elastic...Representative numerical simulations ...... ............. .. 123 111.3. Model Problem II: a Simplified Model of Thin Beams ... ......... ... 127 III
Antolín, Pablo; Zhang, Nan; Goicolea, José M.; Xia, He; Astiz, Miguel Á.; Oliva, Javier
2013-03-01
In this work models with nonlinear wheel-rail contact forces are considered for analysing the dynamic interaction between high speed trains and bridges, in order to study dynamic effects both in the bridge and in the vehicles resulting from the coupling. Nonlinear contact models may be necessary for evaluating the stability and the safety of running traffic in situations such as vehicle overturn when the train is crossing a bridge under strong lateral winds or when an earthquake occurs. For studying the coupled dynamic response of trains and bridges, models of multibody dynamics are used for vehicles and the finite element method for structures. Special relevance is given here to the consideration of contact interaction forces between railway vehicles and the track. Four different interaction models are compared in this work: (1) a model where the vehicle wheelset is considered to be rigidly coupled to the track; (2) a staggered uncoupled method in which vehicle and structure are analysed separately; (3) a linear contact model in which lateral relative displacements between rails and train wheels are allowed, assuming biconic wheel and rail profiles and linear Kalker theory for tangential contact; (4) a nonlinear model in which realistic wheel and rail profiles, Hertz's nonlinear theory for normal contact and Kalker's nonlinear theory for tangential contact are used. The different models are applied and compared to experimental measurements for a test case of a high-speed train in China.
A NEW STATIC MECHANICS MODEL TO SOLVE CONTACT PROBLEMS IN MECHANICAL SYSTEMS
Institute of Scientific and Technical Information of China (English)
陆志华; 叶庆泰
2004-01-01
The coupling of the local contact problems between the components and the deformation of the components in the mechanical system were discovered. A series of coordinate systems have been founded to describe the mechanical system with the contact problems. The method of isolating the boundary of contact body from others has been used to describe the constraint between the contacting points. A more generalized static mechanics model of the mechanical system with the contact problems has been founded through the principle of virtual work. As an application, the model was used to study the multi-teeth engagement problems in the inner meshed planet gear systems. The stress distribution of contact gears was got. A test has verified that the static contact model and the computational method are right.
Approximation on computing partial sum of nonlinear differential eigenvalue problems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In computing the electronic structure and energy band in a system of multi-particles, quite a large number of problems are referred to the acquisition of obtaining the partial sum of densities and energies using the “first principle”. In the conventional method, the so-called self-consistency approach is limited to a small scale because of high computing complexity. In this paper, the problem of computing the partial sum for a class of nonlinear differential eigenvalue equations is changed into the constrained functional minimization. By space decomposition and perturbation method, a secondary approximating formula for the minimal is provided. It is shown that this formula is more precise and its quantity of computation can be reduced significantly
On the linear properties of the nonlinear radiative transfer problem
Pikichyan, H. V.
2016-11-01
In this report, we further expose the assertions made in nonlinear problem of reflection/transmission of radiation from a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness, when both of its boundaries are illuminated by intense monochromatic radiative beams. The new conceptual element of well-defined, so-called, linear images is noteworthy. They admit a probabilistic interpretation. In the framework of nonlinear problem of reflection/transmission of radiation, we derive solution which is similar to linear case. That is, the solution is reduced to the linear combination of linear images. By virtue of the physical meaning, these functions describe the reflectivity and transmittance of the medium for a single photon or their beam of unit intensity, incident on one of the boundaries of the layer. Thereby the medium in real regime is still under the bilateral illumination by external exciting radiation of arbitrary intensity. To determine the linear images, we exploit three well known methods of (i) adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance".
Boundary-Value Problems for Weakly Nonlinear Delay Differential Systems
Directory of Open Access Journals (Sweden)
A. Boichuk
2011-01-01
Full Text Available Conditions are derived of the existence of solutions of nonlinear boundary-value problems for systems of n ordinary differential equations with constant coefficients and single delay (in the linear part and with a finite number of measurable delays of argument in nonlinearity: ż(t=Az(t-τ+g(t+εZ(z(hi(t,t,ε, t∈[a,b], assuming that these solutions satisfy the initial and boundary conditions z(s:=ψ(s if s∉[a,b], lz(⋅=α∈Rm. The use of a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of sufficient conditions for the existence of solutions in a given space and, moreover, to the construction of an iterative process for finding the solutions of such problems in a general case when the number of boundary conditions (defined by a linear vector functional l does not coincide with the number of unknowns in the differential system with a single delay.
Energy Technology Data Exchange (ETDEWEB)
Velandia Arana, Gonzalo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1989-12-31
Different numerical techniques are presented based in the finite element method to obtain numerical solutions to contact and contact with friction problems between solid bodies, and compared between each other. [Espanol] Se presentan diferentes tecnicas numericas basadas en el metodo de elementos finitos para la obtencion de soluciones numericas de problemas de contacto y contacto con friccion entre cuerpos solidos, y se comparan entre si.
A gradient stable scheme for a phase field model for the moving contact line problem
Gao, Min
2012-02-01
In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.;
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...... and convenient for solving these problems....
An inverse problem of determining a nonlinear term in an ordinary differential equation
Kamimura, Yutaka
1998-01-01
An inverse problem for a nonlinear ordinary differential equation is discussed. We prove an existence theorem of a nonlinear term with which a boundary value problem admits a solution. This is an improvement of earlier work by A. Lorenzi. We also prove a uniqueness theorem of the nonlinear term.
Nonlinear Preconditioning and its Application in Multicomponent Problems
Liu, Lulu
2015-12-07
The Multiplicative Schwarz Preconditioned Inexact Newton (MSPIN) algorithm is presented as a complement to Additive Schwarz Preconditioned Inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. The ASPIN framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this dissertation, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size. We consider the additive and multiplicative types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Moreover, we provide the convergence analysis of the MSPIN algorithm. Under suitable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be
Modified Lagrangian and Least Root Approaches for General Nonlinear Optimization Problems
Institute of Scientific and Technical Information of China (English)
W. Oettli; X.Q. Yang
2002-01-01
In this paper we study nonlinear Lagrangian methods for optimization problems with side constraints.Nonlinear Lagrangian dual problems are introduced and their relations with the original problem are established.Moreover, a least root approach is investigated for these optimization problems.
Inverse problem for multi-body interaction of nonlinear waves.
Marruzzo, Alessia; Tyagi, Payal; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca
2017-06-14
The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable temperature-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems. The high versatility of the exposed techniques also concerns the number of expected interactions: results are presented for different graph topologies, ranging from sparse to dense graphs.
Fault detection for nonlinear systems - A standard problem approach
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, Hans Henrik
1998-01-01
The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The authors consider the existence of singular limit solutions for a family of nonlinear elliptic problems with exponentially dominated nonlinearity and Dirichlet boundary condition and generalize the results of [3].
A Hierarchy of New Nonlinear Evolution Equations Associated with a 3 × 3 Matrix Spectral Problem
Institute of Scientific and Technical Information of China (English)
GENG Xian-Guo; LI Fang
2009-01-01
A 3 × 3 matrix spectral problem with three potentials and the corresponding hierarchy of new nonlinear evolution equations are proposed. Generalized Hamiltonian structures for the hierarchy of nonlinear evolution equations are derived with the aid of trace identity.
Minimization and error estimates for a class of the nonlinear Schrodinger eigenvalue problems
Institute of Scientific and Technical Information of China (English)
MurongJIANG; JiachangSUN
2000-01-01
It is shown that the nonlinear eigenvaiue problem can be transformed into a constrained functional problem. The corresponding minimal function is a weak solution of this nonlinear problem. In this paper, one type of the energy functional for a class of the nonlinear SchrSdinger eigenvalue problems is proposed, the existence of the minimizing solution is proved and the error estimate is given out.
Koroleva, A A; Mishuris, G S
2015-01-01
A three-dimensional unilateral contact problem for articular cartilage layers attached to subchondral bones shaped as elliptic paraboloids is considered in the framework of the biphasic cartilage model. The main novelty of the study is in accounting not only for the normal (vertical), but also for tangential vertical (horisontal) displacements of the contacting surfaces. Exact general relationships have been established between the contact approach and some integral characteristics of the contact pressure, including the contact force. Asymptotic representations for the contact pressure integral characteristics are obtained in terms of the contact approach and some integral characteristics of the contact zone. The main result is represented by the first-order approximation problem.
An implicit and explicit solver for contact problems
Schutte, J.H.; Dannenberg, J.F.; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P; Bergen, B.
2010-01-01
The interaction of rolling tyres with road surfaces is one of the major contributions to road traffic noise. The generation mechanisms of tyre/road noise are usually separated in structure borne and airborne noise. In both mechanisms the contact zone is important. In order to reduce tyre/road noise
Mathematical Description and Finite Element Equation of 3D Coupled Thermo-elastic Contact Problem
Institute of Scientific and Technical Information of China (English)
Shi Yu; Xiao Yougang; Chen Guoxin
2006-01-01
Through defining slide yield function and floating potential function of thermo-contact surface, the complementary equation of thermo-contact boundary has been reached, the fundamental equations to solve 3D thermo-contact coupled problem have been listed. On this foundation, the finite element equation and definite solution condition of contact heat transfer have been given out. Based on virtual work principle and contact element technology, the finite element equation of 3D elastic contact system has been deduced under the effect of thermal stress. The pseudo load brought by contact gap have been introduced into this equation in order to reflect the contact state change. During iteration, once contact rigidity matrix is formed, it won't change,which will make calculation reduce greatly.
Energy Technology Data Exchange (ETDEWEB)
Zhang, H. [Univ. of Texas, Austin, TX (United States). Dept. of Mathematics
1994-10-01
In this paper the author considers a nonlinear evolution problem denoted in the paper as P. Problem (P) arises in the study of thermal evaporation of atoms and molecules from locally heated surface regions (spikes) invoked as one of several mechanisms of ion-bombardment-induced particle emission (sputtering). Then in the case of particle-induced evaporation, the Stefan-Boltzman law of heat loss by radiation is replaced by some activation law describing the loss of heat by evaporation. The equation in P is the so-called degenerate diffusion problem, which has been extensively studied in recent years. However, when dealing with the nonlinear flux boundary condition, {beta}({center_dot}) is usually assumed to be monotene. The purpose of this paper is to provide a general theory for problem P under a different assumption on {beta}({center_dot}), i.e., Lipschitz continuity instead of monotonicity. The main idea of the proof used here is to choose an appropriate test function from the corresponding linearized dual space of the solution. The similar idea has been used by many authors, e.g., Aronson, Crandall and Peletier, Bertsch and Hilhorst and Friedman. The author follows the proof of Bertsch and Hilhorst. The paper is organized as follows. They begin by stating the precise assumptions on the functions involved in P and by defining a weak solution. Then, in Section 2 they prove the existence of the solution by the method of parabolic regularization. The uniqueness is proved in Section 3. Finally, they study the large time behavior of the solution in Section 4.
Solution of dynamic contact problems by implicit/explicit methods. Final report
Energy Technology Data Exchange (ETDEWEB)
Salveson, M.W.; Taylor, R.L. [California Univ., Berkeley, CA (United States). Dept. of Civil and Environmental Engineering
1996-10-14
The solution of dynamic contact problems within an explicit finite element program such as the LLNL DYNA programs is addressed in the report. The approach is to represent the solution for the deformation of bodies using the explicit algorithm but to solve the contact part of the problem using an implicit approach. Thus, the contact conditions at the next solution state are considered when computing the acceleration state for each explicit time step.
Koneru, Suvarna Vani; Bhavani, Durga S
2015-01-01
A novel approach to Contact Map Overlap (CMO) problem is proposed using the two dimensional clusters present in the contact maps. Each protein is represented as a set of the non-trivial clusters of contacts extracted from its contact map. The approach involves finding matching regions between the two contact maps using approximate 2D-pattern matching algorithm and dynamic programming technique. These matched pairs of small contact maps are submitted in parallel to a fast heuristic CMO algorithm. The approach facilitates parallelization at this level since all the pairs of contact maps can be submitted to the algorithm in parallel. Then, a merge algorithm is used in order to obtain the overall alignment. As a proof of concept, MSVNS, a heuristic CMO algorithm is used for global as well as local alignment. The divide and conquer approach is evaluated for two benchmark data sets that of Skolnick and Ding et al. It is interesting to note that along with achieving saving of time, better overlap is also obtained for certain protein folds.
Modified Semi-Classical Methods for Nonlinear Quantum Oscillations Problems
Moncrief, Vincent; Maitra, Rachel
2012-01-01
We develop a modified semi-classical approach to the approximate solution of Schrodinger's equation for certain nonlinear quantum oscillations problems. At lowest order, the Hamilton-Jacobi equation of the conventional semi-classical formalism is replaced by an inverted-potential-vanishing-energy variant thereof. Under smoothness, convexity and coercivity hypotheses on its potential energy function, we prove, using the calculus of variations together with the Banach space implicit function theorem, the existence of a global, smooth `fundamental solution'. Higher order quantum corrections, for ground and excited states, are computed through the integration of associated systems of linear transport equations, and formal expansions for the corresponding energy eigenvalues obtained by imposing smoothness on the quantum corrections to the eigenfunctions. For linear oscillators our expansions naturally truncate, reproducing the well-known solutions for the energy eigenfunctions and eigenvalues. As an application, w...
Stability analysis for nonlinear multi－variable delay perturbation problems
Institute of Scientific and Technical Information of China (English)
WangHongshan; ZhangChengjian
2003-01-01
This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems(MVDPP) of the form x′(t) = f(x(t),x(t - τ1(t)),…,x(t -τm(t)),y(t),y(t - τ1(t)),…,y(t - τm(t))), and gy′(t) = g(x(t),x(t- τ1(t)),…,x(t- τm(t)),y(t),y(t- τ1(t)),…,y(t- τm(t))), where 0 < ε <<1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.
THREE POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Mujeeb ur Rehman; Rahmat Ali Khan; Naseer Ahmad Asif
2011-01-01
In this paper,we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type cDδ0+u(t) =f(t,u(t),cDσ0+u(t)),t ∈[0,T],u(0) =αu(η),u(T) =βu(η),where1 ＜δ＜2,0＜σ＜ 1,α,β∈R,η∈(0,T),αη(1-β)+(1-α)(T-βη) ≠0 and cDoδ+,cDσ0+ are the Caputo fractional derivatives.We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results.Examples are also included to show the applicability of our results.
On a shock problem involving a nonlinear viscoelastic bar
Directory of Open Access Journals (Sweden)
Tran Ngoc Diem
2005-11-01
Full Text Available We treat an initial boundary value problem for a nonlinear wave equation uttÃ¢ÂˆÂ’uxx+K|u|ÃŽÂ±u+ÃŽÂ»|ut|ÃŽÂ²ut=f(x,t in the domain 0
Jouriles, Ernest N; Rosenfield, David; McDonald, Renee; Vu, Nicole L; Rancher, Caitlin; Mueller, Victoria
2016-06-30
Children's contact with their mother's violent partner is a potentially important variable for understanding conduct problems among children exposed to intimate partner violence (IPV). Within the context of a treatment study evaluating a parenting intervention (Project Support) for families exiting a domestic violence shelter, this study tested four hypotheses regarding children's postshelter contact with their mother's violent partner: (1) participation in Project Support decreases the frequency of children's contact with their mother's violent partner; (2) postshelter contact is positively associated with children's conduct problems and is associated more strongly for girls than boys; (3) frequency of contact mediates Project Support's effects on children's conduct problems; and (4) frequency of contact is positively associated with IPV and partner-child aggression, and these latter associations help explain effects of contact on children's conduct problems. Participants were 66 women (26 White) with a child (32 girls) between 4 and 9 years. Families were assessed every 4 months for 20 months after departure from a domestic violence shelter. Project Support reduced the extent of partner-child contact. In addition, within-subject changes in contact over time were associated with girls', but not boys', conduct problems, and it partially mediated effects of Project Support on girls' conduct problems. Higher average levels of contact over time were also positively associated with further incidents of IPV and partner-child aggression, and partner-child aggression helped explain effects of contact on children's conduct problems. Children's postshelter contact with the mother's violent partner relates positively to several negative family outcomes.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we consider nonlinear infinity-norm minimization problems. We device a reliable Lagrangian dual approach for solving this kind of problems and based on this method we propose an algorithm for the mixed linear and nonlinear infinitynorm minimization problems. Numerical results are presented.
Directory of Open Access Journals (Sweden)
BuSeog Ju
2013-08-01
Full Text Available Recent years, domestic and international interest towards high-speed railway increases dramatically. As a consequence, researchers have shown interested on the track types and upper structure of railway too. Currently, generally used roadbed structure utilizes classical track. This structure has shown drawbacks including increased maintenance costs, train operation/run-ability at high speed, and decrease of passenger comfort. Therefore, many researches were conducted in order to overcome these challenges, by developing a concrete track structure, and asphalt trackbed system. The objective of current study was to evaluate the applicability of developed materials for an asphalt trackbed structure. Frictional force at the attached boundary between the developed asphalt materials and upperconcrete slab were assessed for performance evaluation. In the end, nonlinear contact model was developed, according to the result from performance evaluation. A wide sleeper for the actual asphalt trackbed was also designed using a developed non-linear attachment boundary model. Then, the structural safety evaluation was performed at HL-25 train load (the design load. In the case of HL-25 design load, RC wide sleepers showed a limitation on usability due to the tensile stress occurred in the lower part of the slab from the interaction with the asphalt trackbed. PC sleepers, with improved lower part tensile stress using a PC tendon, showed relatively stable structural behavior.
SOLVING CONTACT PROBLEM WITH FRICTION BY A NEW FAST BOUNDARY ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
1998-01-01
The formulation of boundary element method for handling contact problems with friction and the technique for high-speed contact analysis are presented. This formulation is based on the idea of modifying the length of contact elements without altering the total number of elements. The high precision of solution and high-speed analysis are verified according to the results of conventional method and analysis method.
Scaling properties of weakly nonlinear coefficients in the Faraday problem.
Skeldon, A C; Porter, J
2011-07-01
Interesting and exotic surface wave patterns have regularly been observed in the Faraday experiment. Although symmetry arguments provide a qualitative explanation for the selection of some of these patterns (e.g., superlattices), quantitative analysis is hindered by mathematical difficulties inherent in a time-dependent, free-boundary Navier-Stokes problem. More tractable low viscosity approximations are available, but these do not necessarily capture the moderate viscosity regime of the most interesting experiments. Here we focus on weakly nonlinear behavior and compare the scaling results derived from symmetry arguments in the low viscosity limit with the computed coefficients of appropriate amplitude equations using both the full Navier-Stokes equations and a reduced set of partial differential equations due to Zhang and Vinãls. We find the range of viscosities over which one can expect "low viscosity" theories to hold. We also find that there is an optimal viscosity range for locating superlattice patterns experimentally-large enough that the region of parameters giving stable patterns is not impracticably small, yet not so large that crucial resonance effects are washed out. These results help explain some of the discrepancies between theory and experiment.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, P J; Ganon, G; Dekel, A; Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the mean error in the approximated relative density perturbation, $\\delta$, is smaller than 0.06, and the dispersion is 0.1. The \\rms\\ error in the estimated velocity is smaller than 60\\kms, and the dispersion is 40\\kms. For smoothing of 500\\kms\\ these numbers increase by about a factor $\\sim 2$ for $\\delta < 4-5$, but deteriorate at higher densities. The other approximations are comparable to those of Nusser \\etal for smoothing of 1000\\kms, but are much less successful for the smaller smoothing of 500\\kms.
Basis properties of eigenfunctions of nonlinear Sturm-Liouville problems
Directory of Open Access Journals (Sweden)
Peter E. Zhidkov
2000-04-01
Full Text Available We consider three nonlinear eigenvalue problems that consist of $$-y''+f(y^2y=lambda y$$ with one of the following boundary conditions: $$displaylines{ y(0=y(1=0 quad y'(0=p ,,cr y'(0=y(1=0 quad y(0=p,, cr y'(0=y'(1=0 quad y(0=p,, }$$ where $p$ is a positive constant. Under smoothness and monotonicity conditions on $f$, we show the existence and uniqueness of a sequence of eigenvalues ${lambda _n}$ and corresponding eigenfunctions ${y_n}$ such that $y_n(x$ has precisely $n$ roots in the interval $(0,1$, where $n=0,1,2,dots$. For the first boundary condition, we show that ${y_n}$ is a basis and that ${y_n/|y_n|}$ is a Riesz basis in the space $L_2(0,1$. For the second and third boundary conditions, we show that ${y_n}$ is a Riesz basis.
Solving frictional contact problems by two aggregate-function-based algorithms
Institute of Scientific and Technical Information of China (English)
Suyan He; Hongwu Zhang; Xingsi Li; Ron Marshall
2005-01-01
Three dimensional frictional contact problems are formulated as linear complementarity problems based on the parametric variational principle. Two aggregate-functionbased algorithms for solving complementarity problems are proposed. One is called the self-adjusting interior point algorithm, the other is called the aggregate function smoothing algorithm. Numerical experiment shows the efficiency of the proposed two algorithms.
Direct approach for solving nonlinear evolution and two-point boundary value problems
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-12-01
Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples including time-delayed nonlinear Burgers equation to illustrate the validity and the great potential of the differential transform method. Numerical experiments demonstrate the use and computational efﬁciency of the method. This method can easily be applied to many nonlinear problems and is capable of reducing the size of computational work.
A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS
Institute of Scientific and Technical Information of China (English)
Xiong Yuanbo; Long Shuyao; Hu De'an; Li Guangyao
2005-01-01
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation are imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
A mixed finite element method for the unilateral contact problem in elasticity
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, we provide a new mixed finite element approximation of the variational inequality resulting from the unilateral contact problem in elasticity. We use the continuous piecewise P2-P1 finite element to approximate the displacement field and the normal stress component on the contact region. Optimal convergence rates are obtained under the reasonable regularity hypotheses. Numerical example verifies our results.
Multigrid with FFT smoother for a simplified 2D frictional contact problem
Zhao, J.; Vollebregt, E.A.H.; Oosterlee, C.W.
2014-01-01
This paper aims to develop a fast multigrid (MG) solver for a Fredholm integral equation of the first kind, arising from the 2D elastic frictional contact problem. After discretization on a rectangular contact area, the integral equation gives rise to a linear system with the coefficient matrix bein
Zhou, S.-S.; Gao, X.-L.; He, Q.-C.
2011-02-01
A unified treatment of axisymmetric adhesive contact problems is provided using the harmonic potential function method for axisymmetric elasticity problems advanced by Green, Keer, Barber and others. The harmonic function adopted in the current analysis is the one that was introduced by Jin et al. (2008) to solve an external crack problem. It is demonstrated that the harmonic potential function method offers a simpler and more consistent way to treat non-adhesive and adhesive contact problems. By using this method and the principle of superposition, a general solution is derived for the adhesive contact problem involving an axisymmetric rigid punch of arbitrary shape and an adhesive interaction force distribution of any profile. This solution provides analytical expressions for all non-zero displacement and stress components on the contact surface, unlike existing ones. In addition, the newly derived solution is able to link existing solutions/models for axisymmetric non-adhesive and adhesive contact problems and to reveal the connections and differences among these solutions/models individually obtained using different methods at various times. Specifically, it is shown that Sneddon's solution for the axisymmetric punch problem, Boussinesq's solution for the flat-ended cylindrical punch problem, the Hertz solution for the spherical punch problem, the JKR model, the DMT model, the M-D model, and the M-D- n model can all be explicitly recovered by the current general solution.
Variational Problem with Complex Coefficient of a Nonlinear Schrödinger Equation
Indian Academy of Sciences (India)
Nigar Yildirim Aksoy; Bunyamin Yildiz; Hakan Yetiskin
2012-08-01
An optimal control problem governed by a nonlinear Schrödinger equation with complex coefficient is investigated. The paper studies existence, uniqueness and optimality conditions for the control problem.
Nonlinear predator-prey singularly perturbed Robin Problems for reaction diffusion systems
Institute of Scientific and Technical Information of China (English)
莫嘉琪; 韩祥临
2003-01-01
The nonlinear predator-prey reaction diffusion systems for singularly perturbed Robin Problems are considered. Under suitable conditions, the theory of differential inequalities can be used to study the asymptotic behavior of the solution for initial boundary value problems.
Institute of Scientific and Technical Information of China (English)
莫嘉琪
2003-01-01
The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.
THE CAUCHY PROBLEM FOR A CLASS OF DOUBLY DEGENERATE NONLINEAR PARABOLIC EQUATION
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This article studies the Cauchy problem for a class of doubly nonlinear deauthor considers its regularized problem and establishes some estimates. On the basis of the estimates, the existence and uniqueness of the generalized solutions in BV space are proved.
Institute of Scientific and Technical Information of China (English)
LiHongyu; SunJingxian
2005-01-01
By using topological method, we study a class of boundary value problem for a system of nonlinear ordinary differential equations. Under suitable conditions,we prove the existence of positive solution of the problem.
Institute of Scientific and Technical Information of China (English)
SU XIN-WEI
2011-01-01
This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects. The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in [B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, 3(2009), 251258].
ADHESIVE CONTACT PROBLEM OF AXISYMMETRIC MINIATURE CIRCULAR PLATES WITH CENTRAL RIGID BUMP
Institute of Scientific and Technical Information of China (English)
Fu Yiming; Li Sheng; Tian Yanping
2006-01-01
Considering the adhesive effect and geometric nonlinearity, the adhesive contact between an elastic substrate and a clamped miniature circular plate with two different central rigid bumps under the action of uniform transverse pressure and in-plane tensile force in the radial direction was analyzed. And an analytical solution is presented by using the perturbation method. The relation of surface adhesive energies with critical load to detach the contacted surfaces is obtained. In the numerical results, the effects of adhesive energy, in-plane tensile force, rigid bump size and contact radius on the critical load are discussed, and the relation of critical contact radius with the gap between the central rigid bump and the substrate for different adhesive energies is investigated.
Multisplitting Iteration Schemes for Solving a Class of Nonlinear Complementarity Problems
Institute of Scientific and Technical Information of China (English)
Chen-liang Li; Jin-ping Zeng
2007-01-01
We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.
Gharibi, Wajeb
2011-01-01
In this paper, we focus on nonlinear infinite-norm minimization problems that have many applications, especially in computer science and operations research. We set a reliable Lagrangian dual aproach for solving this kind of problems in general, and based on this method, we propose an algorithm for the mixed linear and nonlinear infinite-norm minimization cases with numerical results.
Particle Swarm Optimization-Proximal Point Algorithm for Nonlinear Complementarity Problems
Chai Jun-Feng; Wang Shu-Yan
2013-01-01
A new algorithm is presented for solving the nonlinear complementarity problem by combining the particle swarm and proximal point algorithm, which is called the particle swarm optimization-proximal point algorithm. The algorithm mainly transforms nonlinear complementarity problems into unconstrained optimization problems of smooth functions using the maximum entropy function and then optimizes the problem using the proximal point algorithm as the outer algorithm and particle swarm algorithm a...
Institute of Scientific and Technical Information of China (English)
Zi-you Gao; Tian-de Guo; Guo-ping He; Fang Wu
2002-01-01
In this paper, a new superlinearly convergent algorithm of sequential systems of linear equations (SSLE) for nonlinear optimization problems with inequality constraints is proposed. Since the new algorithm only needs to solve several systems of linear equations having a same coefficient matrix per iteration, the computation amount of the algorithm is much less than that of the existing SQP algorithms per iteration. Moreover, for the SQPtype algorithms, there exist so-called inconsistent problems, i.e., quadratic programming subproblems of the SQP algorithms may not have a solution at some iterations, but this phenomenon will not occur with the SSLE algorithms because the related systems of linear equations always have solutions. Some numerical results are reported.
Crestel, Benjamin; Alexanderian, Alen; Stadler, Georg; Ghattas, Omar
2017-07-01
The computational cost of solving an inverse problem governed by PDEs, using multiple experiments, increases linearly with the number of experiments. A recently proposed method to decrease this cost uses only a small number of random linear combinations of all experiments for solving the inverse problem. This approach applies to inverse problems where the PDE solution depends linearly on the right-hand side function that models the experiment. As this method is stochastic in essence, the quality of the obtained reconstructions can vary, in particular when only a small number of combinations are used. We develop a Bayesian formulation for the definition and computation of encoding weights that lead to a parameter reconstruction with the least uncertainty. We call these weights A-optimal encoding weights. Our framework applies to inverse problems where the governing PDE is nonlinear with respect to the inversion parameter field. We formulate the problem in infinite dimensions and follow the optimize-then-discretize approach, devoting special attention to the discretization and the choice of numerical methods in order to achieve a computational cost that is independent of the parameter discretization. We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-based expressions for the gradient of the objective function of the optimization problem for finding the A-optimal encoding weights. The proposed method is potentially attractive for real-time monitoring applications, where one can invest the effort to compute optimal weights offline, to later solve an inverse problem repeatedly, over time, at a fraction of the initial cost.
Meshless shape design sensitivity analysis and optimization for contact problem with friction
Kim, N. H.; Choi, K. K.; Chen, J. S.; Park, Y. H.
In this paper, a continuum-based shape design sensitivity formulation for a frictional contact problem with a rigid body is proposed using a meshless method. The contact condition is imposed using the penalty method that regularizes the solution of variational inequality. The shape dependency of the contact variational form with respect to the design velocity field is obtained. The dependency of the response with respect to the shape of the rigid body is also considered. It is shown that the sensitivity equation needs to be solved at the final converged load step for the frictionless contact problem, whereas for the frictional contact case the sensitivity solution is needed at the converged configuration of each load step because the sensitivity of the current load step depends on that of the previous load step. The continuum-based contact formulation and consistent linearization is critical for accurate shape design sensitivity results. The accuracy of the proposed method is compared with the finite difference result and excellent agreement is obtained for a door seal contact example. A design optimization problem is formulated and solved to reduce the contact gap opening successfully in a demonstration of the proposed method.
Analysis of 3-D Frictional Contact Mechanics Problems by a Boundary Element Method
Institute of Scientific and Technical Information of China (English)
KEUM Bangyong; LIU Yijun
2005-01-01
The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discretizations for solving 3-D boundary element models, which provide much needed flexibility in the boundary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D boundary element code and verified using several examples. For the numerical examples studied, the results using the new boundary element algorithms match very well with the results using a commercial finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 3-D contact analysis.
Institute of Scientific and Technical Information of China (English)
孙骅; 李文静
2012-01-01
According to the characteristics of aero product, the industry product must be as simple and light as possible under the premise of ensuring the load performance. By using the finite element analysis software ANSYS, a nonlinear contact model about a new type of composite shaft - hub connection structure of propeller is established. Based on the model,a optimization about the elastic ring, part of the shaft - hub connection structure, which defines the semi - cone angle and the width of the elastic ring as the design variables, the stress of the elastic ring as the state variable is carried out. The optimization results provide a theoretical basis of designing a composite shaft - hub connection structure which meets the requirement of aero product.%针对航空工业产品使用的情况分析:要求其在保证承载的前提下,在设计中尽可能使其结构紧凑或减重.利用ANSYS软件建立一种新型螺旋桨轴毂复合联接结构的有限元接触模型,并以其复合结构中关键零件弹性环的半锥角及宽度为设计变量、弹性环的最大应力为状态变量,对弹性环的结构尺寸进行优化分析,为设计一种能满足航空行业中使用要求的螺旋桨轴毂复合联接结构提供理论分析基础.
The axisymmetric torsional contact problem of a functionally graded piezoelectric coated half-space
Su, Jie; Ke, Liao-Liang; Wang, Yue-Sheng; Xiang, Yang
2017-01-01
In this article, we study the axisymmetric torsional contact problem of a half-space coated with functionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thickness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral transform technique and reduce the problem to a singular integral equation, and then numerically determine the unknown contact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.
Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis
Energy Technology Data Exchange (ETDEWEB)
Allagui, Anis, E-mail: aallagui@sharjah.ac.ae; Abdelkareem, Mohammad Ali [Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates); Rojas, Andrea Espinel [Institut de Recherche en Communications et Cybernétique de Nantes, Ecole Centrale de Nantes, 44300 Nantes (France); Bonny, Talal; Elwakil, Ahmed S. [Department of Electrical and Computer Engineering, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates)
2016-05-28
In the standard two-electrode configuration employed in electrolytic process, when the control dc voltage is brought to a critical value, the system undergoes a transition from conventional electrolysis to contact glow discharge electrolysis (CGDE), which has also been referred to as liquid-submerged micro-plasma, glow discharge plasma electrolysis, electrode effect, electrolytic plasma, etc. The light-emitting process is associated with the development of an irregular and erratic current time-series which has been arbitrarily labelled as “random,” and thus dissuaded further research in this direction. Here, we examine the current time-series signals measured in cathodic CGDE configuration in a concentrated KOH solution at different dc bias voltages greater than the critical voltage. We show that the signals are, in fact, not random according to the NIST SP. 800-22 test suite definition. We also demonstrate that post-processing low-pass filtered sequences requires less time than the native as-measured sequences, suggesting a superposition of low frequency chaotic fluctuations and high frequency behaviors (which may be produced by more than one possible source of entropy). Using an array of nonlinear time-series analyses for dynamical systems, i.e., the computation of largest Lyapunov exponents and correlation dimensions, and re-construction of phase portraits, we found that low-pass filtered datasets undergo a transition from quasi-periodic to chaotic to quasi-hyper-chaotic behavior, and back again to chaos when the voltage controlling-parameter is increased. The high frequency part of the signals is discussed in terms of highly nonlinear turbulent motion developed around the working electrode.
All-electrical nonlinear fano resonance in coupled quantum point contacts
Xiao, Shiran
This thesis is motivated by recent interest in the Fano resonance (FR). As a wave-interference phenomenon, this resonance is of increasing importance in optics, plasmon-ics, and metamaterials, where its ability to cause rapid signal modulations under variation of some suitable parameter makes it desirable for a variety of applications. In this thesis, I focus on a novel manifestation of this resonance in systems of coupled quantum point contacts (QPCs). The major finding of this work is that the FR in this system may be ma-nipulated by applying a nonlinear DC bias to the system. Under such conditions, we are able to induce significant distortions of resonance lineshape, providing a pathway to all-electrical manipulation of the FR. To interpret this behavior we apply a recently-developed model for a three-path FR, involving an additional "intruder" continuum. We have previously used this model to account for the magnetic-field induced distortions of the FR observed in coupled QPCs, and show here that this model also provides a frame-work for understanding the observed nonlinear behavior. Our work therefore reveals a new manifestation of the FR that can be sensitively tailored by external control, a finding that may eventually allow the application of this feature to nanoelectronics. Since the in-terference scheme involves in this thesis is a completely general one, it should be broadly applicable across a variety of different wave-based systems, including those in both pho-tonics and electronics and opening up the possibility of new applications in areas such as chemical and biological sensing and secure communications.
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems
Blackmore, Lars; Acikmese, Behcet; Carson, John M.,III
2012-01-01
In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field.
Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation.
Wu, Rengmao; Xu, Liang; Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu
2013-01-15
We propose an approach to deal with the problem of freeform surface illumination design without assuming any symmetry based on the concept that this problem is similar to the problem of optimal mass transport. With this approach, the freeform design is converted into a nonlinear boundary problem for the elliptic Monge-Ampére equation. The theory and numerical method are given for solving this boundary problem. Experimental results show the feasibility of this approach in tackling this freeform design problem.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Peng, Haijun; Wang, Xinwei; Zhang, Sheng; Chen, Biaosong
2017-07-01
Nonlinear state-delayed optimal control problems have complex nonlinear characters. To solve this complex nonlinear problem, an iterative symplectic pseudospectral method based on quasilinearization techniques, the dual variational principle and pseudospectral methods is proposed in this paper. First, the proposed method transforms the original nonlinear optimal control problem into a series of linear quadratic optimal control problems. Then, a symplectic pseudospectral method is developed to solve these converted linear quadratic state-delayed optimal control problems. Coefficient matrices in the proposed method are sparse and symmetric since the dual variational principle is used, which makes the proposed method highly efficient. Converged numerical solutions with high precision can be obtained after a few iterations due to the benefit of the local pseudospectral method and quasilinearization techniques. In the numerical simulations, other numerical methods were used for comparisons. The numerical simulation results show that the proposed method is highly accurate, efficient and robust.
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Zou, Li; Liang, Songxin; Li, Yawei; Jeffrey, David J.
2017-03-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Control design for the nonlinear benchmark problem via the output regulation method
Institute of Scientific and Technical Information of China (English)
Jie HUANG; Guoqiang HU
2004-01-01
The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, which has been an intensive research subject since 1995. In this paper, we will further investigate the solvability of the robust disturbance rejection problem of the RTAC system by the measurement output feedback control based on the robust output regulation method. We have obtained a design by overcoming two major obstacles: find a closed-form solution of the regulator equations; and devise a nonlinear internal model to account for non-polynomial nonlinearities.
Green's function for symmetric loading of an elastic sphere with application to contact problems
Titovich, A S
2012-01-01
A compact form for the static Green's function for symmetric loading of an elastic sphere is derived. The expression captures the singularity in closed form using standard functions and quickly convergent series. Applications to problems involving contact between elastic spheres are discussed. An exact solution for a point load on a sphere is presented and subsequently generalized for distributed loads. Examples for constant and Hertzian-type distributed loads are provided, where the latter is also compared to the Hertz contact theory for identical spheres. The results show that the form of the loading assumed in Hertz contact theory is valid for contact angles up to about 10 degrees. For larger angles, the actual displacement is smaller and the contact surface is no longer flat.
Semi-Smooth Newton Method for Solving 2D Contact Problems with Tresca and Coulomb Friction
Directory of Open Access Journals (Sweden)
Kristina Motyckova
2013-01-01
Full Text Available The contribution deals with contact problems for two elastic bodies with friction. After the description of the problem we present its discretization based on linear or bilinear finite elements. The semi--smooth Newton method is used to find the solution, from which we derive active sets algorithms. Finally, we arrive at the globally convergent dual implementation of the algorithms in terms of the Langrange multipliers for the Tresca problem. Numerical experiments conclude the paper.
Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design
Energy Technology Data Exchange (ETDEWEB)
Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC
2006-09-28
A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.
DEFF Research Database (Denmark)
Poulsen, Morten; Niebe, Sarah Maria; Erleben, Kenny
2010-01-01
In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating and control slipping between bodies. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifact...... and a minimum map reformulation. The resulting model is called the Projected Gauss–Seidel method. Quantitative research results are presented and can be used as a taxonomy for selecting a suitable heuristic when using the Projected Gauss–Seidel method....
DEFF Research Database (Denmark)
Poulsen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
2010-01-01
In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating and control slipping between bodies. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifact...... and a minimum map reformulation. The resulting model is called the Projected Gauss–Seidel method. Quantitative research results are presented and can be used as a taxonomy for selecting a suitable heuristic when using the Projected Gauss–Seidel method....
General framework for dynamic large deformation contact problems based on phantom-node X-FEM
Broumand, P.; Khoei, A. R.
2017-08-01
This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.
Efficient modelling of particle collisions using a non-linear viscoelastic contact force
Ray, Shouryya; Fröhlich, Jochen
2015-01-01
In this paper the normal collision of spherical particles is investigated. The particle interaction is modelled in a macroscopic way using the Hertzian contact force with additional linear damping. The goal of the work is to develop an efficient approximate solution of sufficient accuracy for this problem which can be used in soft-sphere collision models for Discrete Element Methods and for particle transport in viscous fluids. First, by the choice of appropriate units, the number of governing parameters of the collision process is reduced to one, thus providing a dimensionless parameter that characterizes all such collisions up to dynamic similitude. It is a simple combination of known material parameters as well as initial conditions. A rigorous calculation of the collision time and restitution coefficient from the governing equations, in the form of a series expansion in this parameter is provided. Such a first principles calculation is particularly interesting from a theoretical perspective. Since the gov...
Initial-boundary value problems for a class of nonlinear thermoelastic plate equations
Institute of Scientific and Technical Information of China (English)
Zhang Jian-Wen; Rong Xiao-Liang; Wu Run-Heng
2009-01-01
This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions,it obtains an existence and uniqueness theorem of global weak solutions of the nonlinear thermoelstic plate equations,by means of the Galerkin method. Moreover,it also proves the existence of strong and classical solutions.
Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.
2011-01-01
In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...
NONLOCAL INITIAL PROBLEM FOR NONLINEAR NONAUTONOMOUS DIFFERENTIAL EQUATIONS IN A BANACH SPACE
Institute of Scientific and Technical Information of China (English)
M.I.Gil＇
2004-01-01
The nonlocal initial problem for nonlinear nonautonomous evolution equations in a Banach space is considered. It is assumed that the nonlinearities have the local Lipschitz properties. The existence and uniqueness of mild solutions are proved. Applications to integro-differential equations are discussed. The main tool in the paper is the normalizing mapping (the generalized norm).
Cognitive Variables in Problem Solving: A Nonlinear Approach
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2005-01-01
We employ tools of complexity theory to examine the effect of cognitive variables, such as working-memory capacity, degree of field dependence-independence, developmental level and the mobility-fixity dimension. The nonlinear method correlates the subjects' rank-order achievement scores with each cognitive variable. From the achievement scores in…
CLASSIFICATION OF BIFURCATIONS FOR NONLINEAR DYNAMICAL PROBLEMS WITH CONSTRAINTS
Institute of Scientific and Technical Information of China (English)
吴志强; 陈予恕
2002-01-01
Bifurcation of periodic solutions widely existed in nonlinear dynamical systems isa kind of constrained one in intrinsic quality because its amplitude is always non-negative.Classification of the bifurcations with the type of constraint was discussed. All its six typesof transition sets are derived, in which three types are newly found and a method isproposed for analyzing the constrained bifurcation.
Nonlocal Cauchy problem for nonlinear mixed integrodifferential equations
Directory of Open Access Journals (Sweden)
H.L. Tidke
2010-12-01
Full Text Available The present paper investigates the existence and uniqueness of mild and strong solutions of a nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition. The results obtained by using Schauder fixed point theorem and the theory of semigroups.
History-Dependent Problems with Applications to Contact Models for Elastic Beams
Energy Technology Data Exchange (ETDEWEB)
Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna, E-mail: ochal@ii.uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland); Sofonea, Mircea [Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (France)
2016-02-15
We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations.
Novel Reduced Order in Time Models for Problems in Nonlinear Aeroelasticity Project
National Aeronautics and Space Administration — Research is proposed for the development and implementation of state of the art, reduced order models for problems in nonlinear aeroelasticity. Highly efficient and...
The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems
Institute of Scientific and Technical Information of China (English)
ZANG Zhen-chun
2001-01-01
In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.
LEAST-SQUARES MIXED FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS
Institute of Scientific and Technical Information of China (English)
Dan-ping Yang
2002-01-01
Two least-squares mixed finite element schemes are formulated to solve the initialboundary value problem of a nonlinear parabolic partial differential equation and the convergence of these schemes are analyzed.
Institute of Scientific and Technical Information of China (English)
张建军; 王德人
2004-01-01
In this paper, based on the resuls presented in part I of this paper[18],we present a numerical crabeding algorithm for soling the nonlinear complementarity problem, and prove its convergence carefully. Numerical experiments show that the algorithm is successful.
SIMILARITY REDUCTIONS FOR THE NONLINEAR EVOLUTION EQUATION ARISING IN THE FERMI-PASTA-ULAM PROBLEM
Institute of Scientific and Technical Information of China (English)
谢福鼎; 闫振亚; 张鸿庆
2002-01-01
Four families of similarity reductions are obtained for the nonlinear evolution equation arising in the Fermi-Pasta-Ulam problem via using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou.
Existence Theorems for Nonlinear Boundary Value Problems for Second Order Differential Inclusions
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S.
1996-11-01
In this paper we consider a nonlinear two-point boundary value problem for second order differential inclusions. Using the Leray-Schauder principle and its multivalued analog due to Dugundji-Granas, we prove existence theorems for convex and nonconvex problems. Our results are quite general and incorporate as special cases several classes of problems which are of interest in the literature.
A NUMERICAL EMBEDDING METHOD FOR SOLVING THE NONLINEAR COMPLEMENTARITY PROBLEM(Ⅰ)--THEORY
Institute of Scientific and Technical Information of China (English)
Jian-jun Zhang; De-ren Wang
2002-01-01
In this paper, we extend the numerical embedding method for solving the smooth equations to the nonlinear complementarity problem. By using the nonsmooth theory,we prove the existence and the continuation of the following path for the corresponding homotopy equations. Therefore the basic theory of the numerical embedding method for solving the nonlinear complementarity problem is established. In part Ⅱ of this paper, we will further study the implementation of the method and give some numerical exapmles.
Discussion of Some Problems About Nonlinear Time Series Prediction Using v-Support Vector Machine
Institute of Scientific and Technical Information of China (English)
GAO Cheng-Feng; CHEN Tian-Lun; NAN Tian-Shi
2007-01-01
Some problems in using v-support vector machine (v-SVM) for the prediction of nonlinear time series are discussed. The problems include selection of various net parameters, which affect the performance of prediction, mixture of kernels, and decomposition cooperation linear programming v-SVM regression, which result in improvements of the algorithm. Computer simulations in the prediction of nonlinear time series produced by Mackey-Glass equation and Lorenz equation provide some improved results.
Optimality Condition and Wolfe Duality for Invex Interval-Valued Nonlinear Programming Problems
Directory of Open Access Journals (Sweden)
Jianke Zhang
2013-01-01
Full Text Available The concepts of preinvex and invex are extended to the interval-valued functions. Under the assumption of invexity, the Karush-Kuhn-Tucker optimality sufficient and necessary conditions for interval-valued nonlinear programming problems are derived. Based on the concepts of having no duality gap in weak and strong sense, the Wolfe duality theorems for the invex interval-valued nonlinear programming problems are proposed in this paper.
Efficient Realization of the Mixed Finite Element Discretization for nonlinear Problems
Knabner, Peter; Summ, Gerhard
2016-01-01
We consider implementational aspects of the mixed finite element method for a special class of nonlinear problems. We establish the equivalence of the hybridized formulation of the mixed finite element method to a nonconforming finite element method with augmented Crouzeix-Raviart ansatz space. We discuss the reduction of unknowns by static condensation and propose Newton's method for the solution of local and global systems. Finally, we show, how such a nonlinear problem arises from the mixe...
Zhang, Songchuan; Xia, Youshen
2016-12-28
Much research has been devoted to complex-variable optimization problems due to their engineering applications. However, the complex-valued optimization method for solving complex-variable optimization problems is still an active research area. This paper proposes two efficient complex-valued optimization methods for solving constrained nonlinear optimization problems of real functions in complex variables, respectively. One solves the complex-valued nonlinear programming problem with linear equality constraints. Another solves the complex-valued nonlinear programming problem with both linear equality constraints and an ℓ₁-norm constraint. Theoretically, we prove the global convergence of the proposed two complex-valued optimization algorithms under mild conditions. The proposed two algorithms can solve the complex-valued optimization problem completely in the complex domain and significantly extend existing complex-valued optimization algorithms. Numerical results further show that the proposed two algorithms have a faster speed than several conventional real-valued optimization algorithms.
Nonlinear problems of complex natural systems: Sun and climate dynamics.
Bershadskii, A
2013-01-13
The universal role of the nonlinear one-third subharmonic resonance mechanism in generation of strong fluctuations in complex natural dynamical systems related to global climate is discussed using wavelet regression detrended data. The role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Niño phenomenon have been discussed in detail. The large fluctuations in the reconstructed temperature on millennial time scales (Antarctic ice core data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to the Earth's precession effect on the energy that the intertropical regions receive from the Sun. The effects of galactic turbulence on the temperature fluctuations are also discussed.
Some Problems in Nonlinear Dynamic Instability and Bifurcation Theory for Engineering Structures
Institute of Scientific and Technical Information of China (English)
彭妙娟; 程玉民
2005-01-01
In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on.
Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems
Frohne, Jörg
2015-08-06
© 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.
Lie and Conditional Symmetries of a Class of Nonlinear (1 + 2-Dimensional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Roman Cherniha
2015-08-01
Full Text Available A new definition of conditional invariance for boundary value problems involving a wide range of boundary conditions (including initial value problems as a special case is proposed. It is shown that other definitions worked out in order to find Lie symmetries of boundary value problems with standard boundary conditions, followed as particular cases from our definition. Simple examples of direct applicability to the nonlinear problems arising in applications are demonstrated. Moreover, the successful application of the definition for the Lie and conditional symmetry classification of a class of (1 + 2-dimensional nonlinear boundary value problems governed by the nonlinear diffusion equation in a semi-infinite domain is realised. In particular, it is proven that there is a special exponent, k ≠ —2, for the power diffusivity uk when the problem in question with non-vanishing flux on the boundary admits additional Lie symmetry operators compared to the case k ≠ —2. In order to demonstrate the applicability of the symmetries derived, they are used for reducing the nonlinear problems with power diffusivity uk and a constant non-zero flux on the boundary (such problems are common in applications and describing a wide range of phenomena to (1 + 1-dimensional problems. The structure and properties of the problems obtained are briefly analysed. Finally, some results demonstrating how Lie invariance of the boundary value problem in question depends on the geometry of the domain are presented.
A NUMERICAL CALCULATION METHOD FOR EIGENVALUE PROBLEMS OF NONLINEAR INTERNAL WAVES
Institute of Scientific and Technical Information of China (English)
SHI Xin-gang; FAN Zhi-song; LIU Hai-long
2009-01-01
Generally speaking, the background shear current U(z)must be taken into account in eigenvalue problems of nonlinear internal waves in ocean, as is different from those of linear internal waves. A numerical calculation method for eigenvalue problems of nonlinear internal waves is presented in this paper on the basis of the Thompson-Haskell's calculation method. As an application of this method, at a station (21°N, 117°15′E) in the South China Sea, a modal structure and parameters of nonlinear internal waves are calculated, and the results closely agree with the calculated results based on observation by Yang et al..
Wang, Qing; Yao, Jing-Zheng
2010-12-01
Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.
Institute of Scientific and Technical Information of China (English)
Igor Boglaev; Matthew Hardy
2008-01-01
This paper presents and analyzes a monotone domain decomposition algorithm for solving nonlinear singularly perturbed reaction-diffusion problems of parabolic type.To solve the nonlinear weighted average finite difference scheme for the partial differential equation,we construct a monotone domain decomposition algorithm based on a Schwarz alternating method and a box-domain decomposition.This algorithm needs only to solve linear discrete systems at each iterative step and converges monotonically to the exact solution of the nonlinear discrete problem. The rate of convergence of the monotone domain decomposition algorithm is estimated.Numerical experiments are presented.
DEFF Research Database (Denmark)
Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari
2010-01-01
Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...... and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However...
From the Nano- to the Macroscale - Bridging Scales for the Moving Contact Line Problem
Nold, Andreas; Sibley, David; Goddard, Benjamin; Kalliadasis, Serafim; Complex Multiscale Systems Team
2016-11-01
The moving contact line problem remains an unsolved fundamental problem in fluid mechanics. At the heart of the problem is its multiscale nature: a nanoscale region close to the solid boundary where the continuum hypothesis breaks down, must be resolved before effective macroscale parameters such as contact line friction and slip can be obtained. To capture nanoscale properties very close to the contact line and to establish a link to the macroscale behaviour, we employ classical density-functional theory (DFT), in combination with extended Navier-Stokes-like equations. Using simple models for viscosity and slip at the wall, we compare our computations with the Molecular Kinetic Theory, by extracting the contact line friction, depending on the imposed temperature of the fluid. A key fluid property captured by DFT is the fluid layering at the wall-fluid interface, which has a large effect on the shearing properties of a fluid. To capture this crucial property, we propose an anisotropic model for the viscosity, which also allows us to scrutinize the effect of fluid layering on contact line friction.
Zhang, Xuening; Han, Qinkai; Peng, Zhike; Chu, Fulei
2015-05-01
A great deal of research work has been done on the dynamic behaviors of the rotor-bearing system. However, the important effects of load and variation of contact angle on the bearing performance have not been focused on sufficiently. In this paper, a five-degree-of-freedom load distribution model is set up considering the bearing preload and the loads due to the rotor imbalance. Utilizing this model, the variation of the bearing contact angle is investigated thoroughly. The comparisons of the obtained contact angle against the results from literature validate that the proposed load distribution model is effective. With this model, the static ball deformations are obtained considering variation of the contact angle. Through resolving the dynamic displacements of the rotor, the dynamic ball deformations could also be obtained. Then the total restoring forces and moments of the bearings could be formulated. By introducing these nonlinear forces and moments into the rotating system, a new dynamic model considering the preload and the variation of contact angle is set up. The present analyses indicate that the bearing contact angle will be changed remarkably with the effect of bearing load. The deflection vibration of the rotor-bearing system will be underestimated without considering the varying contact angle. With the effect of varying contact angle, the ball passage frequency and its combinations with the shaft rotating frequency become more noticeable. The main resonance regions for the rotor-bearing system shift to the lower speed ranges when the variation of contact angle is taken into account.
Institute of Scientific and Technical Information of China (English)
高永馨
2002-01-01
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equation y(4n)= f( t,y,y' ,y",… ,y(4n－1) ) (a) with the boundary conditions g2i(y(2i) (a) ,y(2i+1) (a)) = 0,h2i(y(2i) (c) ,y(2i+1) (c)) = 0, (I= 0,1,…,2n － 1 ) (b) where the functions f, gi and hi are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equation y(n) = f(t,y,y',y",… ,y(n－1)) many results have been given at the present time. But the existence of solutions of boundary value problem (a), (b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, I.e. Existence of solutions of the boundary value problem. Y(4n) = f(t,y,y',y",… ,y(4n－1) ) a2iy(2i) (at) + a2i+1y(2i+1) (a) = b2i ,c2iy(2O ( c ) + c2i+1y(2i+1) ( c ) = d2i, ( I = 0,1 ,…2n － 1) has not been dealt with in previous works.
Renouf, Mathieu; Alart, Pierre
2005-01-01
International audience; This paper presents gradient type algorithms to solve frictional multi contact problems written as quasi optimization problems. A single loop scheme formally close to the classical conjugate gradient method is proposed with some adap tations of the iterate corrections and gradient projections. Since the convergence is difficult to prove, various tests in the field of granular media are performed with comparison with the non linear Gauss Seidel scheme.
2016-01-01
A review of studies performed using the R-functions theory to solve problems of nonlinear dynamics of plates and shallow shells is presented. The systematization of results and studies for the problems of free and parametric vibrations and for problems of static and dynamic stability is fulfilled. Expansion of the developed original method of discretization for nonlinear movement equations on new classes of nonlinear problems is shown. These problems include researches of vibratio...
Enokida, Ryuta; Takewaki, Izuru; Stoten, David
2014-12-01
The problem of control system design can be conceptualised as identifying an input signal to a plant (the system to be controlled) so that the corresponding output matches that of a pre-defined reference signal. Primarily, this problem is solved via well-known techniques based upon the principle of feedback design, an essential component for ensuring stability and robustness of the controlled system. However, feedforward design techniques also have a large part to play, whereby (in the absence of feedback control and assuming that the plant is stable) a model of the plant dynamics can be used to modify the reference signal so that the resultant feedforward input signal generates a plant output signal that is sufficiently close to the original reference signal. The principal objective of this paper is to introduce a new nonlinear control method, called nonlinear signal-based control (NSBC) that can be executed as an on-line technique of feedforward compensation (used synonymously here with the phrase 'input identification') and an off-line technique of feedback compensation. NSBC determines the feedforward input signal to the plant by using an error signal, determined from the difference between the output signals from a linear model of the plant and from the nonlinear plant, under the same input signal. The efficacy of NSBC is examined via numerical examples using Matlab/Simulink and compared with alternative well-known methods based upon inverse transfer function compensation and also the method of high gain feedback control. NSBC was found to provide the most accurate input identification in all the examined cases of linear or nonlinear single-input, single-output and single-input, multi-output (SIMO) systems. Furthermore, in problems of structural and earthquake engineering, NSBC was also found to be particularly effective in estimating the original ground motion from a nonlinear SIMO system and its response.
Zhang, Jie
2014-01-01
Based on the plenty method, this paper describes a numerical method for 2D non-smooth contact problems with Coulomb friction and bilateral constraints and its application to the simulation of statics and dynamics for a frictional translational joint. Comparison is made with results obtained using a finite element program, ANSYS.
The efficiency of direct integration methods in elastic contact-impact problems
Institute of Scientific and Technical Information of China (English)
Ibrahim H. Guzelbey; Ahmet Erklig; Bahattin Kanber; Keren Wang
2005-01-01
A comparison of direct integration methods is made and their efficiency is investigated for impact problems. Newmark, Wilson-θ, Central Difference and Houbolt Methods are used as direct integration methods. Impact analysis includes that of elastic and large deformation based upon updated Lagrangian including buckling check. The results show that the direct integration methods give different results in different contact-impact cases.
Contact of boundary-value problems and nonlocal problems in mathematical models of heat transfer
Lyashenko, V.; Kobilskaya, O.
2015-10-01
In this paper the mathematical models in the form of nonlocal problems for the two-dimensional heat equation are considered. Relation of a nonlocal problem and a boundary value problem, which describe the same physical heating process, is investigated. These problems arise in the study of the temperature distribution during annealing of the movable wire and the strip by permanent or periodically operating internal and external heat sources. The first and the second nonlocal problems in the mobile area are considered. Stability and convergence of numerical algorithms for the solution of a nonlocal problem with piecewise monotone functions in the equations and boundary conditions are investigated. Piecewise monotone functions characterize the heat sources and heat transfer conditions at the boundaries of the area that is studied. Numerous experiments are conducted and temperature distributions are plotted under conditions of internal and external heat sources operation. These experiments confirm the effectiveness of attracting non-local terms to describe the thermal processes. Expediency of applying nonlocal problems containing nonlocal conditions - thermal balance conditions - to such models is shown. This allows you to define heat and mass transfer as the parameters of the process control, in particular heat source and concentration of the substance.
Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.
2016-09-01
This lecture offers an updated review on the Generalized Integral Transform Technique (GITT), with focus on handling complex geometries, coupled problems, and nonlinear convection-diffusion, so as to illustrate some new application paradigms. Special emphasis is given to demonstrating novel developments, such as a single domain reformulation strategy that simplifies the treatment of complex geometries, an integral balance scheme in handling multiscale problems, the adoption of convective eigenvalue problems in dealing with strongly convective formulations, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Representative application examples are then provided that employ recent extensions on the Generalized Integral Transform Technique (GITT), and a few numerical results are reported to illustrate the convergence characteristics of the proposed eigenfunction expansions.
DOUBLE TRIALS METHOD FOR NONLINEAR PROBLEMS ARISING IN HEAT TRANSFER
Directory of Open Access Journals (Sweden)
Chun-Hui He
2011-01-01
Full Text Available According to an ancient Chinese algorithm, the Ying Buzu Shu, in about second century BC, known as the rule of double false position in West after 1202 AD, two trial roots are assumed to solve algebraic equations. The solution procedure can be extended to solve nonlinear differential equations by constructing an approximate solution with an unknown parameter, and the unknown parameter can be easily determined using the Ying Buzu Shu. An example in heat transfer is given to elucidate the solution procedure.
Characterization of the shape stability for nonlinear elliptic problems
Bucur, Dorin
We characterize all geometric perturbations of an open set, for which the solution of a nonlinear elliptic PDE of p-Laplacian type with Dirichlet boundary condition is stable in the L-norm. The necessary and sufficient conditions are jointly expressed by a geometric property associated to the γ-convergence. If the dimension N of the space satisfies N-1
Method of guiding functions in problems of nonlinear analysis
Obukhovskii, Valeri; Van Loi, Nguyen; Kornev, Sergei
2013-01-01
This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.
Dynamics of parabolic problems with memory. Subcritical and critical nonlinearities
Li, Xiaojun
2016-08-01
In this paper, we study the long-time behavior of the solutions of non-autonomous parabolic equations with memory in cases when the nonlinear term satisfies subcritical and critical growth conditions. In order to do this, we show that the family of processes associated to original systems with heat source f(x, t) being translation bounded in Lloc 2 ( R ; L 2 ( Ω ) ) is dissipative in higher energy space M α , 0 < α ≤ 1, and possesses a compact uniform attractor in M 0 .
Li, Dongfang; Zhang, Jiwei
2016-10-01
Anomalous diffusion behavior in many practical problems can be described by the nonlinear time-fractional parabolic problems on unbounded domain. The numerical simulation is a challenging problem due to the dependence of global information from time fractional operators, the nonlinearity of the problem and the unboundedness of the spacial domain. To overcome the unboundedness, conventional computational methods lead to extremely expensive costs, especially in high dimensions with a simple treatment of boundary conditions by making the computational domain large enough. In this paper, based on unified approach proposed in [25], we derive the efficient nonlinear absorbing boundary conditions (ABCs), which reformulates the problem on unbounded domain to an initial boundary value problem on bounded domain. To overcome nonlinearity, we construct a linearized finite difference scheme to solve the reduced nonlinear problem such that iterative methods become dispensable. And the stability and convergence of our linearized scheme are proved. Most important, we prove that the numerical solutions are bounded by the initial values with a constant coefficient, i.e., the constant coefficient is independent of the time. Overall, the computational cost can be significantly reduced comparing with the usual implicit schemes and a simple treatment of boundary conditions. Finally, numerical examples are given to demonstrate the efficiency of the artificial boundary conditions and theoretical results of the schemes.
Nonlinear boundary value problem for biregular functions in Clifford analysis
Institute of Scientific and Technical Information of China (English)
黄沙
1996-01-01
The biregular function in Clifford analysis is discussed. Plemelj’s formula is obtained andnonlinear boundary value problem: is considered. Applying the methodof integral equations and Schauder fixed-point theorem, the existence of solution for the above problem is proved.
A Class of Dynamic Nonlinear Resource Allocation Problems
1989-10-01
algorithm and presents some numerical results in [5]. Matlin [6] provides a review of the literature on weapon-target allocation problems. Several...weapon, multi-target assignment problem," Working Paper 26957, MITRE, Feb. 1986. [6] S. M. Matlin , "A review of the literature on the missile
Nonlinear problems of complex natural systems: Sun and climate dynamics
Bershadskii, A
2012-01-01
Universal role of the nonlinear one-third subharmonic resonance mechanism in generation of the strong fluctuations in such complex natural dynamical systems as global climate and global solar activity is discussed using wavelet regression detrended data. Role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Nino phenomenon have been discussed in detail. The large fluctuations of the reconstructed temperature on the millennial time-scales (Antarctic ice cores data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to Earth precession effect on the energy that the intertropical regions receive from the Sun. Effects of Galactic turbulence on the temperature fluctuations are discussed in this content. It is also shown that the one-third subharmonic resonance can be considered as a background for the 11-years solar cycle, and again the global (solar) rotation and chaoti...
Multiple optimal solutions to a sort of nonlinear optimization problem
Institute of Scientific and Technical Information of China (English)
Xue Shengjia
2007-01-01
The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions ( ifthe uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0153 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mittelmann, Hans D 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...problems. The size 16 three-dimensional quadratic assignment problem Q3AP from wireless communications was solved using a sophisticated approach...placement of the sensors. However, available MINLP solvers are not sufficiently effective, even in the convex case, and a hybrid Benders
About Solution of Contact Problem for Semi-Plane with Elastic Stringer
Directory of Open Access Journals (Sweden)
Aghayan K.L.
2008-03-01
Full Text Available The new approach to the solution of singular integro-differential equation in finite interval is showed at example of contact problem for elastic semi-plane [1] by Fourier transformation and Wiener-Hopf method. The solution is obtained in the form of power series with segregated singularities. The definition of coefficients is reduced to the system of regular infinite system of linear algebraic equations with simple structure in regard to residue of Fourier’s transformant of unknown contact strains.
Directory of Open Access Journals (Sweden)
Mahdi Sohrabi-Haghighat
2014-06-01
Full Text Available In this paper, a new algorithm based on SQP method is presented to solve the nonlinear inequality constrained optimization problem. As compared with the other existing SQP methods, per single iteration, the basic feasible descent direction is computed by solving at most two equality constrained quadratic programming. Furthermore, there is no need for any auxiliary problem to obtain the coefficients and update the parameters. Under some suitable conditions, the global and superlinear convergence are shown. Keywords: Global convergence, Inequality constrained optimization, Nonlinear programming problem, SQP method, Superlinear convergence rate.
CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
Institute of Scientific and Technical Information of China (English)
Xinlong FENG; Yinnian HE
2016-01-01
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second-order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nicolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank-Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the effcient performance of the proposed scheme.
Asymptotic solution for a class of weakly nonlinear singularly perturbed reaction diffusion problem
Institute of Scientific and Technical Information of China (English)
TANG Rong-rong
2009-01-01
Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter e and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of O(ε2).
Institute of Scientific and Technical Information of China (English)
鲁世平
2003-01-01
By employing the theory of differential inequality and some analysis methods, a nonlinear boundary value problem subject to a general kind of second-order Volterra functional differential equation was considered first. Then, by constructing the right-side layer function and the outer solution, a nonlinear boundary value problem subject to a kind of second- order Volterra functional differential equation with a small parameter was studied further. By using the differential mean value theorem and the technique of upper and lower solution, a new result on the existence of the solutions to the boundary value problem is obtained, and a uniformly valid asymptotic expansions of the solution is given as well.
A Symmetric Characteristic Finite Volume Element Scheme for Nonlinear Convection-Diffusion Problems
Institute of Scientific and Technical Information of China (English)
Min Yang; Yi-rang Yuan
2008-01-01
In this paper, we implement alternating direction strategy and construct a symmetric FVE scheme for nonlinear convection-diffusion problems. Comparing to general FVE methods, our method has two advantages. First, the coefficient matrices of the discrete schemes will be symmetric even for nonlinear problems.Second, since the solution of the algebraic equations at each time step can be inverted into the solution of several one-dimensional problems, the amount of computation work is smaller. We prove the optimal H1-norm error estimates of order O(△t2 + h) and present some numerical examples at the end of the paper.
Regularization method with two parameters for nonlinear ill-posed problems
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper is devoted to the regularization of a class of nonlinear ill-posed problems in Banach spaces. The operators involved are multi-valued and the data are assumed to be known approximately. Under the assumption that the original problem is solvable, a strongly convergent approximation procedure is designed by means of the Tikhonov regularization method with two pa- rameters.
A Smooth Newton Method for Nonlinear Programming Problems with Inequality Constraints
Directory of Open Access Journals (Sweden)
Vasile Moraru
2012-02-01
Full Text Available The paper presents a reformulation of the Karush-Kuhn-Tucker (KKT system associated nonlinear programming problem into an equivalent system of smooth equations. Classical Newton method is applied to solve the system of equations. The superlinear convergence of the primal sequence, generated by proposed method, is proved. The preliminary numerical results with a problems test set are presented.
Multipoint Singular Boundary-Value Problem for Systems of Nonlinear Differential Equations
Directory of Open Access Journals (Sweden)
Zdeněk Šmarda
2009-01-01
Full Text Available A singular Cauchy-Nicoletti problem for a system of nonlinear ordinary differential equations is considered. With the aid of combination of Ważewski's topological method and Schauder's principle, the theorem concerning the existence of a solution of this problem (having the graph in a prescribed domain is proved.
COYOTE: a finite-element computer program for nonlinear heat-conduction problems
Energy Technology Data Exchange (ETDEWEB)
Gartling, D.K.
1982-10-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.
Existence of Solutions for Nonlinear Four-Point -Laplacian Boundary Value Problems on Time Scales
Directory of Open Access Journals (Sweden)
Topal SGulsan
2009-01-01
Full Text Available We are concerned with proving the existence of positive solutions of a nonlinear second-order four-point boundary value problem with a -Laplacian operator on time scales. The proofs are based on the fixed point theorems concerning cones in a Banach space. Existence result for -Laplacian boundary value problem is also given by the monotone method.
The Cauchy problem for non-autonomous nonlinear Schr(o)dinger equations
Institute of Scientific and Technical Information of China (English)
Peter Y. H. Pang; TANG Hongyan; WANG Youde
2005-01-01
In this paper we study the Cauchy problem for cubic nonlinear Schr(o)dinger equation with space-and time-dependent coefficients on Rm and Tm. By an approximation argument we prove that for suitable initial values, the Cauchy problem admits unique local solutions. Global existence is discussed in the cases of m=1,2.
On high-continuity transfinite element formulations for linear-nonlinear transient thermal problems
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
This paper describes recent developments in the applicability of a hybrid transfinite element methodology with emphasis on high-continuity formulations for linear/nonlinear transient thermal problems. The proposed concepts furnish accurate temperature distributions and temperature gradients making use of a relatively smaller number of degrees of freedom; and the methodology is applicable to linear/nonlinear thermal problems. Characteristic features of the formulations are described in technical detail as the proposed hybrid approach combines the major advantages and modeling features of high-continuity thermal finite elements in conjunction with transform methods and classical Galerkin schemes. Several numerical test problems are evaluated and the results obtained validate the proposed concepts for linear/nonlinear thermal problems.
SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-08-01
This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. The notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.
Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow
Zhijian, Yang
2006-01-01
The paper studies the existence, both locally and globally in time, stability, decay estimates and blowup of solutions to the Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow. Under the assumption that the nonlinear term of the equations is of polynomial growth order, say [alpha], it proves that when [alpha]>1, the Cauchy problem admits a unique local solution, which is stable and can be continued to a global solution under rather mild conditions; when [alpha][greater-or-equal, slanted]5 and the initial data is small enough, the Cauchy problem admits a unique global solution and its norm in L1,p(R) decays at the rate for 2
nonlinear term, the local solutions of the Cauchy problem blow up in finite time.
Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential
Directory of Open Access Journals (Sweden)
Runzhang Xu
2012-11-01
Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].
A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS
Institute of Scientific and Technical Information of China (English)
XingJ.T; PriceW.G; ChenY.G
2005-01-01
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.
A Weak Solution of a Stochastic Nonlinear Problem
Directory of Open Access Journals (Sweden)
M. L. Hadji
2015-01-01
Full Text Available We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.
Institute of Scientific and Technical Information of China (English)
Jeong Ja Bae
2012-01-01
In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary,while the other is a Kirchhoff type wave equation with nonlinear memory.
An Efficient Pseudospectral Method for Solving a Class of Nonlinear Optimal Control Problems
Emran Tohidi; Atena Pasban; Kilicman, A.; S. Lotfi Noghabi
2013-01-01
This paper gives a robust pseudospectral scheme for solving a class of nonlinear optimal control problems (OCPs) governed by differential inclusions. The basic idea includes two major stages. At the first stage, we linearize the nonlinear dynamical system by an interesting technique which is called linear combination property of intervals. After this stage, the linearized dynamical system is transformed into a multi domain dynamical system via computational interval partitioning. Moreover,...
Institute of Scientific and Technical Information of China (English)
TAO Hua-xue; GUO Jin-yun
2005-01-01
The unknown parameter's variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now,which didn't appear in the internal and external referencing documents. The unknown parameter's variance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source,multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...... analytically by He's Parameter Expanding Methods. It is shown that one term in series expansions is sufficient to obtain a highly accurate solution which is valid for the whole domain. Comparison of the obtained solutions with those obtained using numerical method shows that this method is effective...
SOME BOUNDARY VALUE PROBLEMS FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS OF SECOND ORDER
Institute of Scientific and Technical Information of China (English)
Wen Guochun
2007-01-01
The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.
OBLIQUE DERIVATIVE PROBLEMS FOR SECOND ORDER NONLINEAR MIXED EQUATIONS WITH DEGENERATE LINE
Institute of Scientific and Technical Information of China (English)
Wen Guochun
2008-01-01
The present article deals with oblique derivative problems for some nonlin-ear mixed equations with parabolic degeneracy, which include the Tricomi problem as a special case. First, the formulation of the problems for the equations is given; next, the representation and estimates of solutions for the above problems are obtained; finally, the existence of solutions for the problems is proved by the successive iteration and the com-pactness principle of solutions of the problems. In this article, the author uses the complex method, namely, the complex functions in the elliptic domain and the hyperbolic complex functions in hyperbolic domain are used.
A monotonic method for solving nonlinear optimal control problems
Salomon, Julien
2009-01-01
Initially introduced in the framework of quantum control, the so-called monotonic algorithms have shown excellent numerical results when dealing with various bilinear optimal control problems. This paper aims at presenting a unified formulation of such procedures and the intrinsic assumptions they require. In this framework, we prove the feasibility of the general algorithm. Finally, we explain how these assumptions can be relaxed.
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
A-monotonicity and applications to nonlinear variational inclusion problems
Directory of Open Access Journals (Sweden)
Ram U. Verma
2004-01-01
Full Text Available A new notion of the A-monotonicity is introduced, which generalizes the H-monotonicity. Since the A-monotonicity originates from hemivariational inequalities, and hemivariational inequalities are connected with nonconvex energy functions, it turns out to be a useful tool proving the existence of solutions of nonconvex constrained problems as well.
Wang, Kai; Su, Zhongqing
2016-04-01
Targeting quantitative estimate of fatigue damage, a dedicated analytical model was developed based on the modal decomposition method and the variational principle. The model well interprets the contact acoustic nonlinearity induced by a "breathing" crack in a two-dimensional scenario, and the nonlinear characteristics of guided ultrasonic waves (GUWs) (e.g., reflection, transmission, mode conversion and high-order generation) when GUWs traversing the crack. Based on the model, a second-order reflection index was defined. Using the index, a fatigue damage evaluation framework was established, showing demonstrated capacity of estimating the severity of fatigue damage in a quantitative manner. The approach, in principle, does not entail a benchmarking process against baseline signals pre-acquired from pristine counterparts. The results obtained using the analytical modeling were compared with those from finite element simulation, showing good coincidence. Limitations of the model were also discussed.
Some comparison of restarted GMRES and QMR for linear and nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Morgan, R. [Baylor Univ., Waco, TX (United States); Joubert, W. [Los Alamos National Lab., NM (United States)
1994-12-31
Comparisons are made between the following methods: QMR including its transpose-free version, restarted GMRES, and a modified restarted GMRES that uses approximate eigenvectors to improve convergence, For some problems, the modified GMRES is competitive with or better than QMR in terms of the number of matrix-vector products. Also, the GMRES methods can be much better when several similar systems of linear equations must be solved, as in the case of nonlinear problems and ODE problems.
Antiplane contact problem for elastic half-space with cracks and stringers
Directory of Open Access Journals (Sweden)
Aghayan K.L
2016-03-01
Full Text Available The contact problem of load transfer of a thin elastic plate to the elastic half-space is considered. The half-space weakened by a system of finite length collinear tunnel cracks which are perpendicular to the half-space boundary. The border of half-space reinforced by stringers. By external forces applied to the plates and the banks of the cracks, the half-space - plate system deformed under antiplane strain. In the frame of well-known Melan model for stringer the solution of the problem is reduced to a system of singular integral equations, whose solution is built by numerically - analytical method of mechanical quadratures. The behavior of the contact stresses and stress intensity factors at the crack tip and the end points of stringers is investigated.
A NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATIONS
Institute of Scientific and Technical Information of China (English)
YANJINHAI
1996-01-01
The existenoe and limit hehaviour of the solution for a kind of nonloeal noulinear boundary value condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the function of the total flux. When this part of boundary shrinks to a point in a certain way, this condition either results in a Dirac measure or simply disappears in the corresponding problem.
Nodal Solutions for a Nonlinear Fourth-Order Eigenvalue Problem
Institute of Scientific and Technical Information of China (English)
Ru Yun MA; Bevan THOMPSON
2008-01-01
We are concerned with determining the values of λ, for which there exist nodal solutions of the fourth-order boundary value problem y =λa(x)f(y),00 for all u ≠0. We give conditions on the ratio f (s)/s,at infinity and zero, that guarantee the existence of nodal solutions.The proof of our main results is based upon bifurcation techniques.
Fast Inverse Nonlinear Fourier Transforms for Fiber Bragg Grating Design and Related Problems
Wahls, Sander
2016-01-01
The problem of constructing a fiber Bragg grating profile numerically such that the reflection coefficient of the grating matches a given specification is considered. The well-known analytic solution to this problem is given by a suitable inverse nonlinear Fourier transform (also known as inverse scattering transform) of the specificed reflection coefficient. Many different algorithms have been proposed to compute this inverse nonlinear Fourier transform numerically. The most efficient ones require $\\mathcal{O}(D^{2})$ floating point operations (flops) to generate $D$ samples of the grating profile. In this paper, two new fast inverse nonlinear Fourier transform algorithms that require only $\\mathcal{O}(D\\log^{2}D)$ flops are proposed. The merits of our algorithms are demonstrated in numerical examples, in which they are compared to a conventional layer peeling method, the Toeplitz inner bordering method and integral layer peeling. One of our two algorithms also extends to the design problem for fiber-assiste...
Application of a new method of nonlinear dynamical system identification to biochemical problems.
Karnaukhov, A V; Karnaukhova, E V
2003-03-01
The system identification method for a variety of nonlinear dynamic models is elaborated. The problem of identification of an original nonlinear model presented as a system of ordinary differential equations in the Cauchy explicit form with a polynomial right part reduces to the solution of the system of linear equations for the constants of the dynamical model. In other words, to construct an integral model of the complex system (phenomenon), it is enough to collect some data array characterizing the time-course of dynamical parameters of the system. Collection of such a data array has always been a problem. However difficulties emerging are, as a rule, not principal and may be overcome almost without exception. The potentialities of the method under discussion are demonstrated by the example of the test problem of multiparametric nonlinear oscillator identification. The identification method proposed may be applied to the study of different biological systems and in particular the enzyme kinetics of complex biochemical reactions.
Directory of Open Access Journals (Sweden)
Paras Bhatnagar
2012-10-01
Full Text Available Kaul and Kaur [7] obtained necessary optimality conditions for a non-linear programming problem by taking the objective and constraint functions to be semilocally convex and their right differentials at a point to be lower semi-continuous. Suneja and Gupta [12] established the necessary optimality conditions without assuming the semilocal convexity of the objective and constraint functions but their right differentials at the optimal point to be convex. Suneja and Gupta [13] established necessary optimality conditions for an efficient solution of a multiobjective non-linear programming problem by taking the right differentials of the objective functions and constraintfunctions at the efficient point to be convex. In this paper we obtain some results for a properly efficient solution of a multiobjective non-linear fractional programming problem involving semilocally convex and related functions by assuming generalized Slater type constraint qualification.
Contact and Impact Dynamic Modeling Capabilities of LS-DYNA for Fluid-Structure Interaction Problems
2010-12-02
integration scheme developed by Lucy Gingold and Monaghan (1977) to avoid the limitations of mesh tangling encountered in extreme deformation problems...into account the artificial viscosity, an artificial viscous pressure term ij [ Monaghan and Gingold 1983] is added such that: i i ijp p...Conference,April, pp. 23-26, Waikiki, HI, USA. Wriggers, P., 2002. “Computational Contact Mechanics,” John Wiley & Sons Ltd. Wriggers, P., and
A MIXED FINITE ELEMENT METHOD FOR THE CONTACT PROBLEM IN ELASTICITY
Institute of Scientific and Technical Information of China (English)
Dong-ying Hua; Lie-heng Wang
2005-01-01
Based on the analysis of [7] and [10], we present the mixed finite element approximation of the variational inequality resulting from the contact problem in elasticity. The convergence rate of the stress and displacement field are both improved from O(hs/4) to quasi-optimal O(h|logh|1/4). If stronger but reasonable regularity is available, the convergence rate can be optimal O(h).
A closed-form solution of the three-dimensional contact problem for biphasic cartilage layers
Argatov, I I
2010-01-01
A three-dimensional unilateral contact problem for articular cartilage layers is considered in the framework of the biphasic cartilage model. The articular cartilages bonded to subchondral bones are modeled as biphasic materials consisting of a solid phase and a fluid phase. It is assumed that the subchondral bones are rigid and shaped like elliptic paraboloids. The obtained analytical solution is valid over long time periods and can be used for increasing loading conditions.
Adaptive Meshing Technique Applied to an Orthopaedic Finite Element Contact Problem
Roarty, Colleen M; Grosland, Nicole M.
2004-01-01
Finite element methods have been applied extensively and with much success in the analysis of orthopaedic implants.6,7,12,13,15 Recently a growing interest has developed, in the orthopaedic biomechanics community, in how numerical models can be constructed for the optimal solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of improved implants for orthopaedic surgery. Finite element and other computational techniques are widely ap...
Directory of Open Access Journals (Sweden)
Suxiang He
2014-01-01
Full Text Available An implementable nonlinear Lagrange algorithm for stochastic minimax problems is presented based on sample average approximation method in this paper, in which the second step minimizes a nonlinear Lagrange function with sample average approximation functions of original functions and the sample average approximation of the Lagrange multiplier is adopted. Under a set of mild assumptions, it is proven that the sequences of solution and multiplier obtained by the proposed algorithm converge to the Kuhn-Tucker pair of the original problem with probability one as the sample size increases. At last, the numerical experiments for five test examples are performed and the numerical results indicate that the algorithm is promising.
On a nonlinear elliptic problem with critical potential in R2
Institute of Scientific and Technical Information of China (English)
SHEN; Yaotian; YAO; Yangxin; HEN; Zhihui
2004-01-01
Consider the existence of nontrivial solutions of homogeneous Dirichlet problem for a nonlinear elliptic equation with the critical potential in R2. By establishing a weighted inequality with the best constant, determine the critical potential in R2, and study the eigenvalues of Laplace equation with the critical potential. By the Pohozaev identity of a solution with a singular point and the Cauchy-Kovalevskaya theorem, obtain the nonexistence result of solutions with singular points to the nonlinear elliptic equation. Moreover, for the same problem, the existence results of multiple solutions are proved by the mountain pass theorem.
The Modified Adomian Decomposition Method for Nonlinear Fractional Boundary Value Problems
Institute of Scientific and Technical Information of China (English)
WANG Jie
2012-01-01
We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem Dα0+u(x)=f(x,u(x)), 0＜x＜1, 3＜α≤4u(0) =α0, u″(0) =α2 (1)u(1) =β0, u″(1) =β2where Dα0+u is Caputo fractional derivative and α0,α2,β0,β2 is not zero at all,and f:[0,1] x R → R is continuous.The calculated numerical results show reliability and efficiency of the algorithm given.The numerical procedure is tested on linear and nonlinear problems.
ASYMPTOTIC THEORY OF INITIAL VALUE PROBLEMS FOR NONLINEAR PERTURBED KLEIN-GORDON EQUATIONS
Institute of Scientific and Technical Information of China (English)
GAN Zai-hui; ZHANG Jian
2005-01-01
The asymptotic theory of initial value problems for a class of nonlinear perturbed Klein-Gordon equations in two space dimensions is considered. Firstly, using the contraction mapping principle, combining some priori estimates and the convergence of Bessel function, the well-posedness of solutions of the initial value problem in twice continuous differentiable space was obtained according to the equivalent integral equation of initial value problem for the Klein-Gordon equations. Next, formal approximations of initial value problem was constructed by perturbation method and the asymptotic validity of the formal approximation is got. Finally, an application of the asymptotic theory was given, the asymptotic approximation degree of solutions for the initial value problem of a specific nonlinear Klein-Gordon equation was analyzed by using the asymptotic approximation theorem.
Directory of Open Access Journals (Sweden)
I. Yu. Belyaeva
1997-01-01
Full Text Available Manifestations of the so-called structure induced nonlinearity are considered for the case of a granular medium, the latter being a generally accepted model of nonconsolidated rocks in seismics. The consideration is carried out using the medium model in the form of the 'ideal' random packing of spherical elastic granules in which the interparticle space can be filled with a fluid. A physical equation of such a medium is derived; the dependencies of nonlinear parameters on the grain material elastic moduli, the fluid compressibility and the initial medium strain are analyzed. The influence of defects in nonideal grain packings (that is, the presence of a fraction of unloaded intergranular contacts upon the nonlinear properties of the medium is investigated. It is shown that the packing nonideality has the stronger effect on higher-order nonlinear properties. It is demonstrated that the nonlinear parameters may be used in exploration seismology as a much more sensitive and informative characteristic compared with conventionally used linear moduli.
A boundary control problem with a nonlinear reaction term
Directory of Open Access Journals (Sweden)
John R. Cannon
2009-04-01
Full Text Available The authors study the problem $u_t=u_{xx}-au$, $0
Kounadis, A. N.
1992-05-01
An efficient and easily applicable, approximate analytic technique for the solution of nonlinear initial and boundary-value problems associated with nonlinear ordinary differential equations (O.D.E.) of any order and variable coefficients, is presented. Convergence, uniqueness and upper bound error estimates of solutions, obtained by the successive approximations scheme of the proposed technique, are thoroughly established. Important conclusions regarding the improvement of convergence for large time and large displacement solutions in case of nonlinear initial-value problems are also assessed. The proposed technique is much more efficient than the perturbations schemes for establishing the large postbuckling response of structural systems. The efficiency, simplicity and reliability of the proposed technique is demonstrated by two illustrative examples for which available numerical results exist.
Directory of Open Access Journals (Sweden)
Bonić Zoran
2010-01-01
Full Text Available The paper presents application of nonlinear material models in the software package Ansys. The development of the model theory is presented in the paper of the mathematical modeling of material nonlinear problems in structural analysis (part I - theoretical foundations, and here is described incremental-iterative procedure for solving problems of nonlinear material used by this package and an example of modeling of spread footing by using Bilinear-kinematics and Drucker-Prager mode was given. A comparative analysis of the results obtained by these modeling and experimental research of the author was made. Occurrence of the load level that corresponds to plastic deformation was noted, development of deformations with increasing load, as well as the distribution of dilatation in the footing was observed. Comparison of calculated and measured values of reinforcement dilatation shows their very good agreement.
Analysis of search-extension method for finding multiple solutions of nonlinear problem
Institute of Scientific and Technical Information of China (English)
2008-01-01
For numerical computations of multiple solutions of the nonlinear elliptic problemΔu+ f（u）=0 inΩ, u=0 onΓ, a search-extension method （SEM） was proposed and systematically studied by the authors. This paper shall complete its theoretical analysis. It is assumed that the nonlinearity is non-convex and its solution is isolated, under some conditions the corresponding linearized problem has a unique solution. By use of the compactness of the solution family and the contradiction argument, in general conditions, the high order regularity of the solution u∈H1+α,α>0 is proved. Assume that some initial value searched by suitably many eigenbases is already fallen into the neighborhood of the isolated solution, then the optimal error estimates of its nonlinear finite element approximation are shown by the duality argument and continuation method.
Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Cho Yeol
2011-01-01
Full Text Available Abstract In this paper, the existing theorems and methods for finding solutions of systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces are studied. To overcome the difficulties, due to the presence of a proper convex lower semi-continuous function, φ and a mapping g, which appeared in the considered problem, we have used some applications of the resolvent operator technique. We would like to point out that although many authors have proved results for finding solutions of the systems of nonlinear set-valued (mixed variational inequalities problems, it is clear that it cannot be directly applied to the problems that we have considered in this paper because of φ and g. 2000 AMS Subject Classification: 47H05; 47H09; 47J25; 65J15.
Roul, Pradip
2016-06-01
This paper presents a new iterative technique for solving nonlinear singular two-point boundary value problems with Neumann and Robin boundary conditions. The method is based on the homotopy perturbation method and the integral equation formalism in which a recursive scheme is established for the components of the approximate series solution. This method does not involve solution of a sequence of nonlinear algebraic or transcendental equations for the unknown coefficients as in some other iterative techniques developed for singular boundary value problems. The convergence result for the proposed method is established in the paper. The method is illustrated by four numerical examples, two of which have physical significance: The first problem is an application of the reaction-diffusion process in a porous spherical catalyst and the second problem arises in the study of steady-state oxygen-diffusion in a spherical cell with Michaelis-Menten uptake kinetics.
A high-performance feedback neural network for solving convex nonlinear programming problems.
Leung, Yee; Chen, Kai-Zhou; Gao, Xing-Bao
2003-01-01
Based on a new idea of successive approximation, this paper proposes a high-performance feedback neural network model for solving convex nonlinear programming problems. Differing from existing neural network optimization models, no dual variables, penalty parameters, or Lagrange multipliers are involved in the proposed network. It has the least number of state variables and is very simple in structure. In particular, the proposed network has better asymptotic stability. For an arbitrarily given initial point, the trajectory of the network converges to an optimal solution of the convex nonlinear programming problem under no more than the standard assumptions. In addition, the network can also solve linear programming and convex quadratic programming problems, and the new idea of a feedback network may be used to solve other optimization problems. Feasibility and efficiency are also substantiated by simulation examples.
The solution of singular optimal control problems using direct collocation and nonlinear programming
Downey, James R.; Conway, Bruce A.
1992-08-01
This paper describes work on the determination of optimal rocket trajectories which may include singular arcs. In recent years direct collocation and nonlinear programming has proven to be a powerful method for solving optimal control problems. Difficulties in the application of this method can occur if the problem is singular. Techniques exist for solving singular problems indirectly using the associated adjoint formulation. Unfortunately, the adjoints are not a part of the direct formulation. It is shown how adjoint information can be obtained from the direct method to allow the solution of singular problems.
Long step homogeneous interior point algorithm for the p* nonlinear complementarity problems
Directory of Open Access Journals (Sweden)
Lešaja Goran
2002-01-01
Full Text Available A P*-Nonlinear Complementarity Problem as a generalization of the P*-Linear Complementarity Problem is considered. We show that the long-step version of the homogeneous self-dual interior-point algorithm could be used to solve such a problem. The algorithm achieves linear global convergence and quadratic local convergence under the following assumptions: the function satisfies a modified scaled Lipschitz condition, the problem has a strictly complementary solution, and certain submatrix of the Jacobian is nonsingular on some compact set.
Institute of Scientific and Technical Information of China (English)
Jingsun Yao; Jiaqi Mo
2005-01-01
The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.
A smart nonstandard finite difference scheme for second order nonlinear boundary value problems
Erdogan, Utku; Ozis, Turgut
2011-01-01
A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed. Numer
ON THE NONLINEAR RIEMANN PROBLEMS FOR GENERAL FIRST ELLIPTIC SYSTEMS IN THE PLANE
Institute of Scientific and Technical Information of China (English)
李明忠; 宋洁
2005-01-01
The nonlinear Riemann problem for general systems of the first-order linear and quasi-linear equations in the plane are considered. It translates them to singular integral equations and proves the existence of the solution by means of contract principle or. general contract principle. The known results are generalized.
On the solvability of initial-value problems for nonlinear implicit difference equations
Directory of Open Access Journals (Sweden)
Yen Ha Thi Ngoc
2004-01-01
Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.
THE CAUCHY PROBLEM OF NONLINEAR SCHR(O)DINGER-BOUSSINESQ EQUATIONS IN Hs(Rd)
Institute of Scientific and Technical Information of China (English)
Han Yongqian
2005-01-01
In this paper, the local well posedness and global well posedness of solutions for the initial value problem (IVP) of nonlinear Schrodinger-Boussinesq equations is considered in Hs(Rd) by resorting Besov spaces, where real number s ≥ 0.
On the solvability of initial-value problems for nonlinear implicit difference equations
Directory of Open Access Journals (Sweden)
Ha Thi Ngoc Yen
2004-07-01
Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.
A smart nonstandard finite difference scheme for second order nonlinear boundary value problems
Erdogan, Utku; Ozis, Turgut
2011-01-01
A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed.
Solutions of Multi Objective Fuzzy Transportation Problems with Non-Linear Membership Functions
Directory of Open Access Journals (Sweden)
Dr. M. S. Annie Christi
2016-11-01
Full Text Available Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is compared with the solution got by using a linear membership function. Some numerical examples are presented to illustrate this.
Nonlinear quarter-plane problem for the Korteweg-de Vries equation
Directory of Open Access Journals (Sweden)
Nikolai A. Larkin
2011-08-01
Full Text Available This article concerns an initial-boundary value problem in a quarter-plane for the Korteweg-de Vries (KdV equation. For general nonlinear boundary conditions we prove the existence and uniqueness of a global regular solution.
Institute of Scientific and Technical Information of China (English)
Yepeng Xing; Qiong Wang; Valery G. Romanovski
2009-01-01
We prove several new comparison results and develop the monotone iterative tech-nique to show the existence of extremal solutions to a kind of periodic boundary value problem (PBVP) for nonlinear integro-differential equation of mixed type on time scales.
Positive Solutions of a Nonlinear Fourth-order Integral Boundary Value Problem
Directory of Open Access Journals (Sweden)
Benaicha Slimane
2016-07-01
Full Text Available In this paper, the existence of positive solutions for a nonlinear fourth-order two-point boundary value problem with integral condition is investigated. By using Krasnoselskii’s fixed point theorem on cones, sufficient conditions for the existence of at least one positive solutions are obtained.
THE NONLINEAR BOUNDARY VALUE PROBLEM FOR A CLASS OF INTEGRO-DIFFERENTIAL SYSTEM
Institute of Scientific and Technical Information of China (English)
Rongrong Tang
2006-01-01
In this paper, using the theory of differential inequalities, we study the nonlinear boundary value problem for a class of integro-differential system. Under appropriate assumptions, the existence of solution is proved and the uniformly valid asymptotic expansions for arbitrary n-th order approximation and the estimation of remainder term are obtained simply and conveniently.
Scenarios for solving a non-linear transportation problem in multi-agent systems
DEFF Research Database (Denmark)
Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan
2017-01-01
We introduce and provide an evaluation on two scenarios and related algorithms for implementation of a multi-agent system to solve a type of non-linear transportation problem using distributed optimization algorithms based on dual decomposition and consensus. The underlying fundamental optimization...
EXISTENCE AND UNIQUENESS RESULTS FOR NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEM
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,we investigate a nonlinear third-order three-point boundary value problem. By several well-known fixed point theorems,the existence of positive solutions is discussed. Besides,the uniqueness results are obtained by imposing growth restrictions on f.
Institute of Scientific and Technical Information of China (English)
Yaohong LI; Xiaoyan ZHANG
2013-01-01
In this paper,we consider boundary value problems for systems of nonlinear thirdorder differential equations.By applying the fixed point theorems of cone expansion and compression of norm type and Leggett-Williams fixed point theorem,the existence of multiple positive solutions is obtained.As application,we give some examples to demonstrate our results.
Existence of three solutions for impulsive nonlinear fractional boundary value problems
Directory of Open Access Journals (Sweden)
Shapour Heidarkhani
2017-01-01
Full Text Available In this work we present new criteria on the existence of three solutions for a class of impulsive nonlinear fractional boundary-value problems depending on two parameters. We use variational methods for smooth functionals defined on reflexive Banach spaces in order to achieve our results.
Existence of Two Solutions of Nonlinear m-Point Boundary Value Problems
Institute of Scientific and Technical Information of China (English)
任景莉; 葛渭高
2003-01-01
Sufficient conditions for the existence of at least two positive solutions of a nonlinear m-points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.
Institute of Scientific and Technical Information of China (English)
CHENGYan
2003-01-01
In this paper,the fixed-point theorem is used to estimated an asymptotic solution of intial val-ue problems for a class of third nonlinear differential equations which has double initial-layer properties.We obtain the uniformly valid asymptotic expansion of any orders including boundary layers.
A two-phase free boundary problem for a nonlinear diffusion-convection equation
Energy Technology Data Exchange (ETDEWEB)
De Lillo, S; Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia (Italy)], E-mail: silvana.delillo@pg.infn.it
2008-04-11
A two-phase free boundary problem associated with a diffusion-convection equation is considered. The problem is reduced to a system of nonlinear integral equations, which admits a unique solution for small times. The system admits an explicit two-component solution corresponding to a two-component shock wave of the Burgers equation. The stability of such a solution is also discussed.
Directory of Open Access Journals (Sweden)
M. G. Crandall
1999-07-01
Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.
Nonlinear boundary value problems for first order impulsive integro-differential equations
Directory of Open Access Journals (Sweden)
Xinzhi Liu
1989-01-01
Full Text Available In this paper, we investigate a class of first order impulsive integro-differential equations subject to certain nonlinear boundary conditions and prove, with the help of upper and lower solutions, that the problem has a solution lying between the upper and lower solutions. We also develop monotone iterative technique and show the existence of multiple solutions of a class of periodic boundary value problems.
On the System of Nonlinear Mixed Implicit Equilibrium Problems in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Yeol Je Cho
2010-01-01
Full Text Available We use the Wiener-Hopf equations and the Yosida approximation notions to prove the existence theorem of a system of nonlinear mixed implicit equilibrium problems (SMIE in Hilbert spaces. The algorithm for finding a solution of the problem (SMIE is suggested; the convergence criteria and stability of the iterative algorithm are discussed. The results presented in this paper are more general and are viewed as an extension, refinement, and improvement of the previously known results in the literature.
Directory of Open Access Journals (Sweden)
Xiaofei Cao
2016-11-01
Full Text Available In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theory of Lagrange multipliers.
Error estimations of mixed finite element methods for nonlinear problems of shallow shell theory
Karchevsky, M.
2016-11-01
The variational formulations of problems of equilibrium of a shallow shell in the framework of the geometrically and physically nonlinear theory by boundary conditions of different main types, including non-classical, are considered. Necessary and sufficient conditions for their solvability are derived. Mixed finite element methods for the approximate solutions to these problems based on the use of second derivatives of the bending as auxiliary variables are proposed. Estimations of accuracy of approximate solutions are established.
Initial value problem for a class of fourth-order nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
Guo-wang CHEN; Chang-shun HOU
2009-01-01
In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.
A URI 4-NODE QUADRILATERAL ELEMENT BY ASSUMED STRAIN METHOD FOR NONLINEAR PROBLEMS
Institute of Scientific and Technical Information of China (English)
WANG Jinyan; CHEN Jun; LI Minghui
2004-01-01
In this paper one-point quadrature "assumed strain" mixed element formulation based on the Hu-Washizu variational principle is presented. Special care is taken to avoid hourglass modes and volumetric locking as well as shear locking. The assumed strain fields are constructed so that those portions of the fields which lead to volumetric and shear locking phenomena are eliminated by projection, while the implementation of the proposed URI scheme is straightforward to suppress hourglass modes. In order to treat geometric nonlinearities simply and efficiently, a corotational coordinate system is used. Several numerical examples are given to demonstrate the performance of the suggested formulation, including nonlinear static/dynamic mechanical problems.
Local-instantaneous filtering in the integral transform solution of nonlinear diffusion problems
Macêdo, E. N.; Cotta, R. M.; Orlande, H. R. B.
A novel filtering strategy is proposed to be utilized in conjunction with the Generalized Integral Transform Technique (GITT), in the solution of nonlinear diffusion problems. The aim is to optimize convergence enhancement, yielding computationally efficient eigenfunction expansions. The proposed filters include space and time dependence, extracted from linearized versions of the original partial differential system. The scheme automatically updates the filter along the time integration march, as the required truncation orders for the user requested accuracy begin to exceed a prescribed maximum system size. A fully nonlinear heat conduction example is selected to illustrate the computational performance of the filtering strategy, against the classical single-filter solution behavior.
Solution of transient optimization problems by using an algorithm based on nonlinear programming
Teren, F.
1977-01-01
A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.
Nonlinear evolution equations associated with the chiral-field spectral problem
Energy Technology Data Exchange (ETDEWEB)
Bruschi, M.; Ragnisco, O. (Istituto Nazionale di Fisica Nucleare, Roma (Italy); Dipt. di Fisica, Univ. Rome (Italy))
1985-08-11
In this paper we derive and investigate the class of nonlinear evolution equations (NEEs) associated with the linear problem psisub(x) = lambdaApsi. It turns out that many physically interesting NEEs pertain to this class: for instance, the chiral-field equation, the nonlinear Klein-Gordon equations, the Heisenberg and Papanicolau spin chain models, the modified Boussinesq equation, the Wadati-Konno-Ichikawa equations, etc. We display also the Baecklund transformations for such a class and exploit them to derive in a special case the one-soliton solution.
An iterative regularization method for nonlinear problems based on Bregman projections
Maaß, Peter; Strehlow, Robin
2016-11-01
In this paper, we present an iterative method for the regularization of ill-posed, nonlinear problems. The approach is based on the Bregman projection onto stripes the width of which is controlled by both the noise level and the structure of the operator. In our investigations, we follow (Lorenz et al 2014 SIAM J. Imaging Sci. 7 1237-62) and extend the respective method to the setting of nonlinear operators. Furthermore, we present a proof for the regularizing properties of the method.
On the Cauchy problem for nonlinear Schrödinger equations with rotation
Antonelli, Paolo
2011-10-01
We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.
The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation
Directory of Open Access Journals (Sweden)
Bergfinnur Durhuus
2010-06-01
Full Text Available We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger equation in an even number of space dimensions. With rather weak conditions on the degree of nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution, and also has solitary wave solutions if the interaction potential is suitably chosen. We demonstrate how to set up a scattering framework for equations of this type, including appropriate decay estimates of the free time evolution and the construction of wave operators defined for small scattering data in the general case and for arbitrary scattering data in the rotationally symmetric case.
Solution of transient optimization problems by using an algorithm based on nonlinear programming
Teren, F.
1977-01-01
A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Energy Technology Data Exchange (ETDEWEB)
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
Energy Technology Data Exchange (ETDEWEB)
Kim, D.; Ghanem, R. [State Univ. of New York, Buffalo, NY (United States)
1994-12-31
Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.
Institute of Scientific and Technical Information of China (English)
Shuang Ping TAO; Shang Bin CUI
2005-01-01
This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation ()u/()t+ a u2()u/()m + β()3u/()x3 + γ()5u-()x5 = 0, (x, t) ∈ We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.
A LQP BASED INTERIOR PREDICTION-CORRECTION METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
Bing-sheng He; Li-zhi Liao; Xiao-ming Yuan
2006-01-01
To solve nonlinear complementarity problems (NCP), at each iteration, the classical proximal point algorithm solves a well-conditioned sub-NCP while the LogarithmicQuadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system). This paper presents a practical LQP method-based prediction-correction method for NCP.The predictor is obtained via solving the LQP system approximately under significantly relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit formula derived from the original LQP method. The implementations are very easy to be carried out. Global convergence of the method is proved under the same mild assumptions as the original LQP method. Finally, numerical results for traffic equilibrium problems are provided to verify that the method is effective for some practical problems.
Numerical simulations of the moving contact line problem using a diffuse-interface model
Afzaal, Muhammad; Sibley, David; Duncan, Andrew; Yatsyshin, Petr; Duran-Olivencia, Miguel A.; Nold, Andreas; Savva, Nikos; Schmuck, Markus; Kalliadasis, Serafim
2015-11-01
Moving contact lines are a ubiquitous phenomenon both in nature and in many modern technologies. One prevalent way of numerically tackling the problem is with diffuse-interface (phase-field) models, where the classical sharp-interface model of continuum mechanics is relaxed to one with a finite thickness fluid-fluid interface, capturing physics from mesoscopic lengthscales. The present work is devoted to the study of the contact line between two fluids confined by two parallel plates, i.e. a dynamically moving meniscus. Our approach is based on a coupled Navier-Stokes/Cahn-Hilliard model. This system of partial differential equations allows a tractable numerical solution to be computed, capturing diffusive and advective effects in a prototypical case study in a finite-element framework. Particular attention is paid to the static and dynamic contact angle of the meniscus advancing or receding between the plates. The results obtained from our approach are compared to the classical sharp-interface model to elicit the importance of considering diffusion and associated effects. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
Murphy, Patrick Charles
1985-01-01
An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.
Modelling and solution of contact problem for infinite plate and cross-shaped embedment
Directory of Open Access Journals (Sweden)
O.B. Kozin
2016-09-01
Full Text Available Development of efficient methods of determination of an intense-strained state of thin-walled constructional designs with inclusions, reinforcements and other stress raisers is an important problem both with theoretical, and from the practical point of view, considering their wide practical application. Aim: The aim of this research is to develop the analytical mathematical method of studying of an intense-strained state of infinite plate with cross-shaped embedment at a bend. Materials and Methods: The method of boundary elements is an efficient way of the boundary value problems solution for systems of differential equations. The methods based on boundary integral equations get wide application in many branches of science and technique, calculation of plates and shells. One of methods of solution of a numerous class of the integral equations and systems arising on the basis of a method of boundary integral equations is the analytical method of construction of these equations and systems to Riemann problems with their forthcoming decision. Results: The integral equation for the analysis of deflections and the analysis of an intense-strained state of a thin rigid plate with rigid cross-shaped embedment is received. The precise solution of this boundary value problem is received by reduction to a Riemann problem and its forthcoming solution. An asymptotical behavior of contact efforts at the ends of embedment is investigated.
Risk for alcoholic liver cirrhosis after an initial hospital contact with alcohol problems
DEFF Research Database (Denmark)
Askgaard, Gro; Leon, David A; Kjaer, Mette S
2017-01-01
cirrhosis in these patients relative to the general population. Age and alcohol diagnosis were significant predictors of alcoholic liver cirrhosis risk in men and women, whereas civil status, education, and type of hospital care were not. In men, the 15-year absolute risk was 0.7% (95%CI 0.4, 0.8) for 20......Alcoholic liver cirrhosis is usually preceded by many years of heavy drinking, in which cessation in drinking could prevent the disease. Alcohol problems are not consistently managed in hospital patients. We followed all Danish patients with an initial hospital contact with alcohol problems...... (intoxication, harmful use, or dependence) during 1998-2002 for alcoholic liver cirrhosis development (n = 36,044). In this registry-based cohort we identified predictors of the absolute risk for alcoholic liver cirrhosis. Incidence rate ratios (IRR) were estimated as the incidence rate of alcoholic liver...
A GLOBALLY DERIVATIVE-FREE DESCENT METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
Hou-duo Qi; Yu-zhong Zhang
2000-01-01
Based on a class of functions. which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for short) as an equivalent unconstrained optimization problem, for which we propose a derivative-free descent method in monotone case. We show its global convergence under some mild conditions. If F, the function involved in NCP, is Ro－function, the optimization problem has bounded level sets. A local property of the merit function is discussed. Finally, we report some numerical results.
Institute of Scientific and Technical Information of China (English)
Qin Ni
2001-01-01
An NGTN method was proposed for solving large-scale sparse nonlinear programming (NLP) problems. This is a hybrid method of a truncated Newton direction and a modified negative gradient direction, which is suitable for handling sparse data structure and possesses Q-quadratic convergence rate. The global convergence of this new method is proved,the convergence rate is further analysed, and the detailed implementation is discussed in this paper. Some numerical tests for solving truss optimization and large sparse problems are reported. The theoretical and numerical results show that the new method is efficient for solving large-scale sparse NLP problems.
Rezaee, Hamed; Abdollahi, Farzaneh
2016-12-06
The leaderless consensus problem over a class of high-order nonlinear multiagent systems (MASs) is studied. A robust protocol is proposed which guarantees achieving consensus in the network in the presences of uncertainties in agents models. Achieving consensus in the case of stochastic links failure is studied as well. Based on the concept super-martingales, it is shown that if the probability of the network connectivity is not zero, under some conditions, achieving almost sure consensus in the network can be guaranteed. Despite existing consensus protocols for high-order stochastic networks, the proposed consensus protocol in this paper is robust to uncertain nonlinearities in the agents models, and it can be designed independent of knowledge on the set of feasible topologies (topologies with nonzero probabilities). Numerical examples for a team of single-link flexible joint manipulators with fourth-order models verify the accuracy of the proposed strategy for consensus control of high-order MASs with uncertain nonlinearities.
An iterative HAM approach for nonlinear boundary value problems in a semi-infinite domain
Zhao, Yinlong; Lin, Zhiliang; Liao, Shijun
2013-09-01
In this paper, we propose an iterative approach to increase the computation efficiency of the homotopy analysis method (HAM), a analytic technique for highly nonlinear problems. By means of the Schmidt-Gram process (Arfken et al., 1985) [15], we approximate the right-hand side terms of high-order linear sub-equations by a finite set of orthonormal bases. Based on this truncation technique, we introduce the Mth-order iterative HAM by using each Mth-order approximation as a new initial guess. It is found that the iterative HAM is much more efficient than the standard HAM without truncation, as illustrated by three nonlinear differential equations defined in an infinite domain as examples. This work might greatly improve the computational efficiency of the HAM and also the Mathematica package BVPh for nonlinear BVPs.
Directory of Open Access Journals (Sweden)
Sie Long Kek
2015-01-01
Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.
EXACT AUGMENTED LAGRANGIAN FUNCTION FOR NONLINEAR PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS
Institute of Scientific and Technical Information of China (English)
DU Xue-wu; ZHANG Lian-sheng; SHANG You-lin; LI Ming-ming
2005-01-01
An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions,the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, from the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow
Kucala, Alec; Noble, David; Martinez, Mario
2016-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Higher and sub-harmonic Lamb wave mode generation due to debond-induced contact nonlinearity
Guha, Anurup; Bijudas, C. R.
2016-04-01
Non-cumulative higher and sub-harmonic Lamb wave mode generation as a result of partial-debond of piezoelectric wafer transducers (PWT) bonded onto an Aluminium plate, is numerically investigated and experimentally validated. The influence of excitation frequency on the extent of nonlinearity due to clapping mechanism of the partially-debonded PWTs is discussed. A set of specific frequency range is arrived at based on the Eigen-value and Harmonic analyses of PWTs used in the model. It is found that, at these frequencies, which are integral multiple of the first width-direction mode of a PWT, significantly higher amplitudes of higher-harmonics are observed. It is also seen that at specific debond-positions and lengths, sharp sub-harmonics in addition to higher-harmonics are present. Signal processing is carried out using Fast Fourier transform, which is normalized for comparisons.
Variational ansatz for the nonlinear Landau-Zener problem for cold atom association
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, A [Institute for Physical Research NAS of Armenia, 0203 Ashtarak-2 (Armenia); Joulakian, B [LPMC, Universite Paul Verlaine-Metz, 1 Bld Arago, 57078 Metz Cedex 3 (France); Suominen, K-A [Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto (Finland)
2009-11-28
We present a rigorous analysis of the Landau-Zener linear-in-time term crossing problem for quadratic-nonlinear systems relevant to the coherent association of ultracold atoms in degenerate quantum gases. Our treatment is based on an exact third-order nonlinear differential equation for the molecular state probability. Applying a variational two-term ansatz, we construct a simple approximation that accurately describes the whole-time dynamics of the coupled atom-molecular system for any set of involved parameters. Ensuring an absolute error of less than 10{sup -5} for the final transition probability, the resultant solution improves by several orders of magnitude the accuracy of the previous approximations by A Ishkhanyan et al developed separately for the weak coupling (2005 J. Phys. A: Math. Gen. 38 3505) and strong interaction (2006 J. Phys. A: Math. Gen. 39 14887) limits. In addition, the constructed approximation covers the whole moderate-coupling regime, providing this intermediate regime with the same accuracy as the two mentioned limits. The obtained results reveal the remarkable observation, that for the strong-coupling limit the resonance crossing is mostly governed by the nonlinearity, while the coherent atom-molecular oscillations arising soon after the resonance has been crossed are basically of a linear nature. This observation is supposed to be of a general character, due to the basic attributes of the resonance-crossing processes in the nonlinear quantum systems of the discussed type of involved quadratic nonlinearity. (fast track communication)
Nonlinear quantum mechanics, the superposition principle, and the quantum measurement problem
Indian Academy of Sciences (India)
Kinjalk Lochan; T P Singh
2011-01-01
There are four reasons why our present knowledge and understanding of quantum mechanics can be regarded as incomplete. (1) The principle of linear superposition has not been experimentally tested for position eigenstates of objects having more than about a thousand atoms. (2) There is no universally agreed upon explanation for the process of quantum measurement. (3) There is no universally agreed upon explanation for the observed fact that macroscopic objects are not found in superposition of position eigenstates. (4) Most importantly, the concept of time is classical and hence external to quantum mechanics: there should exist an equivalent reformulation of the theory which does not refer to an external classical time. In this paper we argue that such a reformulation is the limiting case of a nonlinear quantum theory, with the nonlinearity becoming important at the Planck mass scale. Such a nonlinearity can provide insights into the aforesaid problems. We use a physically motivated model for a nonlinear Schr ¨odinger equation to show that nonlinearity can help in understanding quantum measurement. We also show that while the principle of linear superposition holds to a very high accuracy for atomic systems, the lifetime of a quantum superposition becomes progressively smaller, as one goes from microscopic to macroscopic objects. This can explain the observed absence of position superpositions in macroscopic objects (lifetime is too small). It also suggests that ongoing laboratory experiments may be able to detect the ﬁnite superposition lifetime for mesoscopic objects in the near future.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R. K.
-numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...... of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.
Energy Technology Data Exchange (ETDEWEB)
Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering
1997-09-01
A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.
Homotopy deform method for reproducing kernel space for nonlinear boundary value problems
Indian Academy of Sciences (India)
MIN-QIANG XU; YING-ZHEN LIN
2016-10-01
In this paper, the combination of homotopy deform method (HDM) and simplified reproducing kernel method (SRKM) is introduced for solving the boundary value problems (BVPs) of nonlinear differential equations. The solution methodology is based on Adomian decomposition and reproducing kernel method (RKM). By the HDM, the nonlinear equations can be converted into a series of linear BVPs. After that, the simplified reproducing kernel method, which not only facilitates the reproducing kernel but also avoids the time-consuming Schmidt orthogonalization process, is proposed to solve linear equations. Some numerical test problems including ordinary differential equations and partial differential equations are analysed to illustrate the procedure and confirm the performance of the proposed method. The results faithfully reveal that our algorithm is considerably accurate and effective as expected.
Numerical solution of a nonlinear least squares problem in digital breast tomosynthesis
Landi, G.; Loli Piccolomini, E.; Nagy, J. G.
2015-11-01
In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation (i.e., a set of 2D slices) of the object. In this paper we describe some mathematical models for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. A polyenergetic model helps to reduce beam hardening artifacts, but the disadvantage is that it requires solving a large-scale nonlinear ill-posed inverse problem. We formulate the image reconstruction process (i.e., the method to solve the ill-posed inverse problem) in a nonlinear least squares framework, and use a Levenberg-Marquardt scheme to solve it. Some implementation details are discussed, and numerical experiments are provided to illustrate the performance of the methods.
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Directory of Open Access Journals (Sweden)
Morteza Ebrahimi
2012-01-01
Full Text Available The purpose of the present study is to provide a fast and accurate algorithm for identifying the medium temperature and the unknown radiation term from an overspecified condition on the boundary in an inverse problem of linear heat equation with nonlinear boundary condition. The design of the paper is to employ Taylor’s series expansion for linearize nonlinear term and then finite-difference approximation to discretize the problem domain. Owing to the application of the finite difference scheme, a large sparse system of linear algebraic equations is obtained. An approach of Monte Carlo method is employed to solve the linear system and estimate unknown radiation term. The Monte Carlo optimization is adopted to modify the estimated values. Results show that a good estimation on the radiation term can be obtained within a couple of minutes CPU time at pentium IV-2.4 GHz PC.
Murio, Diego A.
1991-01-01
An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.
Directory of Open Access Journals (Sweden)
MOHAMED KEZZAR
2015-08-01
Full Text Available In this research, an efficient technique of computation considered as a modified decomposition method was proposed and then successfully applied for solving the nonlinear problem of the two dimensional flow of an incompressible viscous fluid between nonparallel plane walls. In fact this method gives the nonlinear term Nu and the solution of the studied problem as a power series. The proposed iterative procedure gives on the one hand a computationally efficient formulation with an acceleration of convergence rate and on the other hand finds the solution without any discretization, linearization or restrictive assumptions. The comparison of our results with those of numerical treatment and other earlier works shows clearly the higher accuracy and efficiency of the used Modified Decomposition Method.
Solution of the nonlinear inverse scattering problem by T -matrix completion. II. Simulations
Levinson, Howard W.; Markel, Vadim A.
2016-10-01
This is Part II of the paper series on data-compatible T -matrix completion (DCTMC), which is a method for solving nonlinear inverse problems. Part I of the series [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043317 (2016), 10.1103/PhysRevE.94.043317] contains theory and here we present simulations for inverse scattering of scalar waves. The underlying mathematical model is the scalar wave equation and the object function that is reconstructed is the medium susceptibility. The simulations are relevant to ultrasound tomographic imaging and seismic tomography. It is shown that DCTMC is a viable method for solving strongly nonlinear inverse problems with large data sets. It provides not only the overall shape of the object, but the quantitative contrast, which can correspond, for instance, to the variable speed of sound in the imaged medium.
ON TRANSMISSION PROBLEM FOR VISCOELASTIC WAVE EQUATION WITH A LOCALIZED A NONLINEAR DISSIPATION
Institute of Scientific and Technical Information of China (English)
Jeong Ja BAE; Seong Sik KIM
2013-01-01
In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component being a Kirchhoff type wave equation with time dependent localized dissipation which is effective only on a neighborhood of certain part of boundary,while the other being a Kirchhoff type viscoelastic wave equation with nonlinear memory.
EXISTENCE OF SOLUTIONS OF A FAMILY OF NONLINEAR BOUNDARY VALUE PROBLEMS IN L2-SPACES
Institute of Scientific and Technical Information of China (English)
WeiLi; ZhouHaiyun
2005-01-01
By using the perturbation results of sums of ranges of accretive mappings of Calvert and Gupta (1978),the abstract results on the existence of solutions of a family of nonlinear boundary value problems in L2 (Ω) are studied. The equation discussed in this paper and the methods used here are extension and complement to the corresponding results of Wei Li and He Zhen's previous papers. Especially,some new techniques are used in this paper.
Analytical Approximation Method for the Center Manifold in the Nonlinear Output Regulation Problem
Suzuki, Hidetoshi; Sakamoto, Noboru; Celikovský, Sergej
In nonlinear output regulation problems, it is necessary to solve the so-called regulator equations consisting of a partial differential equation and an algebraic equation. It is known that, for the hyperbolic zero dynamics case, solving the regulator equations is equivalent to calculating a center manifold for zero dynamics of the system. The present paper proposes a successive approximation method for obtaining center manifolds and shows its effectiveness by applying it for an inverted pendulum example.
C-L METHOD AND ITS APPLICATION TO ENGINEERING NONLINEAR DYNAMICAL PROBLEMS
Institute of Scientific and Technical Information of China (English)
陈予恕; 丁千
2001-01-01
The C-L method was generalized from Liapunov-Schmidt reduction method,combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used , as an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing tech niques of control to subharmonic instability of large rotating machinery.
Numerical method for nonlinear two-phase displacement problem and its application
Institute of Scientific and Technical Information of China (English)
YUAN Yi-rang; LIANG Dong; RUI Hong-xing; DU Ning; WANG Wen-qia
2008-01-01
For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schemes were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.
Solvability of a three-point nonlinear boundary-value problem
Directory of Open Access Journals (Sweden)
Assia Guezane-Lakoud
2010-09-01
Full Text Available Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u= 0,quad 0
Positive solutions for a nonlinear periodic boundary-value problem with a parameter
Directory of Open Access Journals (Sweden)
Jingliang Qiu
2012-08-01
Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$
A New Subspace Correction Method for Nonlinear Unconstrained Convex Optimization Problems
Institute of Scientific and Technical Information of China (English)
Rong-liang CHEN; Jin-ping ZENG
2012-01-01
This paper gives a new subspace correction algorithm for nonlinear unconstrained convex optimization problems based on the multigrid approach proposed by S.Nash in 2000 and the subspace correction algorithm proposed by X.Tai and J.Xu in 2001.Under some reasonable assumptions,we obtain the convergence as well as a convergence rate estimate for the algorithm.Numerical results show that the algorithm is effective.
Validation of Finite Element Solutions of Nonlinear, Periodic Eddy Current Problems
Directory of Open Access Journals (Sweden)
Plasser René
2014-12-01
Full Text Available An industrial application is presented to validate a finite element analysis of 3-dimensional, nonlinear eddy-current problems with periodic excitation. The harmonic- balance method and the fixed-point technique are applied to get the steady state solution using the finite element method. The losses occurring in steel reinforcements underneath a reactor due to induced eddy-currents are computed and compared to measurements.
Morozov-type discrepancy principle for nonlinear ill-posed problems under -condition
Indian Academy of Sciences (India)
M Thamban Nair
2015-05-01
For proving the existence of a regularization parameter under a Morozov-type discrepancy principle for Tikhonov regularization of nonlinear ill-posed problems, it is required to impose additional nonlinearity assumptions on the forward operator. Lipschitz continuity of the Freéchet derivative and requirement of the Lipschitz constant to depend on a source condition is one such restriction (Ramlau P, Numer. Funct. Anal. Optim. 23(1&22) (2003) 147–172). Another nonlinearity condition considered by Scherzer (Computing, 51 (1993) 45–60) was by requiring the forward operator to be close to a linear operator in a restricted sense. A seemingly natural nonlinear assumption which appears in many applications which attracted attention in various contexts of the study of nonlinear problems is the so-called -condition. However, a Morozov-type discrepancy principle together with -condition does not seem to have been studied, except in a recent paper by the author (Bull. Aust. Math. Soc. 79 (2009) 337–342), where error estimates under a general source condition is derived, by assuming the existence of the parameter. In this paper, the existence of the parameter satisfying a Morozov-type discrepancy principle is proved under the -condition on the forward operator, by assuming the source condition as in the papers of Scherzer (Computing, 51 (1993) 45–60) and Ramlau (Numer. Funct. Anal. Optim. 23(1&22) (2003) 147–172). This source condition is, in fact, a special case of the source condition in the author’s paper (Bull. Aust. Math. Soc. 79 (2009) 337–342).
Bifocal contact lenses: History, types, characteristics, and actual state and problems
Directory of Open Access Journals (Sweden)
Hiroshi Toshida
2008-07-01
Full Text Available Hiroshi Toshida, Kozo Takahashi, Kazushige Sado, Atsushi Kanai, Akira MurakamiDepartment of Ophthalmology, Juntendo University School of Medicine, Tokyo, JapanAbstract: Since people who wear contact lenses (CL often continue using CL even when they develop presbyopia, there are growing expectations for bifocal CL. To understand actual state and problems, history, types, and their characteristics are summarized in this review. Bifocal CL have a long history over 70 years. Recently, bifocal CL have achieved remarkable progress. However, there still is an impression that prescription of bifocal CL is not easy. It should also be remembered that bifocal CL have limits, including limited addition for near vision, as well as the effects of aging and eye diseases in the aged, such as dry eye, astigmatism, cataract, etc. Analysis of the long-term users of bifocal CL among our patients has revealed the disappearance of bifocal CL that achieved unsatisfactory vision and poor contrast compared with those provided by other types of CL. Changing the prescription up to 3 times for lenses of the same brand may be appropriate. Lenses that provide poor contrast sensitivity, suffer from glare, or give unsatisfactory vision have been weeded out. The repeated replacement of products due to the emergence of improved or new products will be guessed.Keywords: bifocal contact lens, presbyopia, accommodation
The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability
Wang, Yanjin
2011-01-01
We consider the free boundary problem for two layers of immiscible, viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom in a three-dimensional horizontally periodic setting. The effect of surface tension is either taken into account at both free boundaries or neglected at both. We are concerned with the Rayleigh-Taylor instability, so we assume that the upper fluid is heavier than the lower fluid. When the surface tension at the free internal interface is below a critical value, which we identify, we establish that the problem under consideration is nonlinearly unstable.
Directory of Open Access Journals (Sweden)
Ying Wang
2015-03-01
Full Text Available In this article, we study the existence of multiple positive solutions for singular semipositone boundary-value problem (BVP with integral boundary conditions on infinite intervals. By using the properties of the Green's function and the Guo-Krasnosel'skii fixed point theorem, we obtain the existence of multiple positive solutions under conditions concerning the nonlinear functions. The method in this article can be used for a large number of problems. We illustrate the validity of our results with an example in the last section.
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
Verified solutions of two-point boundary value problems for nonlinear oscillators
Bünger, Florian
Using techniques introduced by Nakao [4], Oishi [5, 6] and applied by Takayasu, Oishi, Kubo [11, 12] to certain nonlinear two-point boundary value problems (see also Rump [7], Chapter 15), we provide a numerical method for verifying the existence of weak solutions of two-point boundary value problems of the form -u″ = a(x, u) + b(x, u)u‧, 0 b are functions that fulfill some regularity properties. The numerical approximation is done by cubic spline interpolation. Finally, the method is applied to the Duffing, the van der Pol and the Toda oscillator. The rigorous numerical computations were done with INTLAB [8].
Nonlinear systems of differential inequalities and solvability of certain boundary value problems
Directory of Open Access Journals (Sweden)
Tvrdý Milan
2001-01-01
Full Text Available In the paper we present some new existence results for nonlinear second order generalized periodic boundary value problems of the form These results are based on the method of lower and upper functions defined as solutions of the system of differential inequalities associated with the problem and their relation to the Leray–Schauder topological degree of the corresponding operator. Our main goal consists in a fairly general definition of these functions as couples from . Some conditions ensuring their existence are indicated, as well.
A mixed Newton-Tikhonov method for nonlinear ill-posed problems
Institute of Scientific and Technical Information of China (English)
Chuan-gang KANG; Guo-qiang HE
2009-01-01
Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems,which have attracted extensive attention.However,computational cost of Newton type methods is high because practical problems are complicated.We propose a mixed Newton-Tikhonov method,i.e.,one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method.Convergence and stability of this method are proved under some conditions.Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.
An NE/SQP method for the bounded nonlinear complementarity problem
Energy Technology Data Exchange (ETDEWEB)
Gabriel, S.A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.
1995-05-30
NE/SQP is a recent algorithm that has proven quite effective for solving the pure and mixed forms of the nonlinear complementarity problem (NCP). NE/SQP is robust in the sense that its direction-finding subproblems are always solvable; in addition, the convergence rate of this method is Q-quadratic. In this paper the author considers a generalized version of NE/SQP proposed by Pang and Qi, that is suitable for the bounded NCP. The author extends their work by demonstrating a stronger convergence result and then tests a proposed method on several numerical problems.
Sakhnovich, Lev A; Roitberg, Inna Ya
2013-01-01
This monograph fits theclearlyneed for books with a rigorous treatment of theinverse problems for non-classical systems and that of initial-boundary-value problems for integrable nonlinear equations. The authorsdevelop a unified treatment of explicit and global solutions via the transfer matrix function in a form due to Lev A. Sakhnovich. The book primarily addresses specialists in the field. However, it is self-contained andstarts with preliminaries and examples, and hencealso serves as an introduction for advanced graduate students in the field.
Three-dimensional fundamental thermo-elastic solutions applied to contact problems
Wang, Z. P.; Wang, T.; Li, P. D.; Li, X. Y.; Chen, W. Q.; Müller, R.
2016-11-01
This paper aims to develop three-dimensional fundamental thermo-elastic solutions for an infinite/half-infinite space of a two-dimensional hexagonal quasi-crystal, which is subjected to a point heat source. Starting from the newly developed general solution in terms of quasi-harmonic potential functions, the corresponding fundamental solutions are derived by means of the trial-and-error technique. Six appropriate potential functions involved in the general solution are observed. The present fundamental solutions are applied to construct boundary integral equations governing the contact problems. Numerical calculations are performed to show the distributions of the thermo-elastic coupling field variables in a half-space subjected to a point thermal source.
Improved simple optimization (SOPT algorithm for unconstrained non-linear optimization problems
Directory of Open Access Journals (Sweden)
J. Thomas
2016-09-01
Full Text Available In the recent years, population based meta-heuristic are developed to solve non-linear optimization problems. These problems are difficult to solve using traditional methods. Simple optimization (SOPT algorithm is one of the simple and efficient meta-heuristic techniques to solve the non-linear optimization problems. In this paper, SOPT is compared with some of the well-known meta-heuristic techniques viz. Artificial Bee Colony algorithm (ABC, Particle Swarm Optimization (PSO, Genetic Algorithm (GA and Differential Evolutions (DE. For comparison, SOPT algorithm is coded in MATLAB and 25 standard test functions for unconstrained optimization having different characteristics are run for 30 times each. The results of experiments are compared with previously reported results of other algorithms. Promising and comparable results are obtained for most of the test problems. To improve the performance of SOPT, an improvement in the algorithm is proposed which helps it to come out of local optima when algorithm gets trapped in it. In almost all the test problems, improved SOPT is able to get the actual solution at least once in 30 runs.
A high performance neural network for solving nonlinear programming problems with hybrid constraints
Tao, Qing; Cao, Jinde; Xue, Meisheng; Qiao, Hong
2001-09-01
A continuous neural network is proposed in this Letter for solving optimization problems. It not only can solve nonlinear programming problems with the constraints of equality and inequality, but also has a higher performance. The main advantage of the network is that it is an extension of Newton's gradient method for constrained problems, the dynamic behavior of the network under special constraints and the convergence rate can be investigated. Furthermore, the proposed network is simpler than the existing networks even for solving positive definite quadratic programming problems. The network considered is constrained by a projection operator on a convex set. The advanced performance of the proposed network is demonstrated by means of simulation of several numerical examples.
A Semismooth Newton Method for Nonlinear Parameter Identification Problems with Impulsive Noise
Clason, Christian
2012-01-01
This work is concerned with nonlinear parameter identification in partial differential equations subject to impulsive noise. To cope with the non-Gaussian nature of the noise, we consider a model with L 1 fitting. However, the nonsmoothness of the problem makes its efficient numerical solution challenging. By approximating this problem using a family of smoothed functionals, a semismooth Newton method becomes applicable. In particular, its superlinear convergence is proved under a second-order condition. The convergence of the solution to the approximating problem as the smoothing parameter goes to zero is shown. A strategy for adaptively selecting the regularization parameter based on a balancing principle is suggested. The efficiency of the method is illustrated on several benchmark inverse problems of recovering coefficients in elliptic differential equations, for which one- and two-dimensional numerical examples are presented. © by SIAM.
Luo, Xiaodong
2014-10-01
The ensemble Kalman filter (EnKF) is an efficient algorithm for many data assimilation problems. In certain circumstances, however, divergence of the EnKF might be spotted. In previous studies, the authors proposed an observation-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations and the simulated ones of the state estimates, in the hope that by doing so one may be able to obtain better estimation accuracy. In the present study, residual nudging is extended and modified in order to handle nonlinear observation operators. Such extension and modification result in an iterative filtering framework that, under suitable conditions, is able to achieve the objective of residual nudging for data assimilation problems with nonlinear observation operators. The 40-dimensional Lorenz-96 model is used to illustrate the performance of the iterative filter. Numerical results show that, while a normal EnKF may diverge with nonlinear observation operators, the proposed iterative filter remains stable and leads to reasonable estimation accuracy under various experimental settings.
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
The iterative technique of sign-changing solution is studied for a nonlinear third-order two-point boundary value problem, where the nonlinear term has the time sin-gularity. By applying the monotonically iterative technique, an existence theorem is established and two useful iterative schemes are obtained.
On large-scale nonlinear programming techniques for solving optimal control problems
Energy Technology Data Exchange (ETDEWEB)
Faco, J.L.D.
1994-12-31
The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.
Institute of Scientific and Technical Information of China (English)
WANG Rouhuai
2006-01-01
The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.
Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems
Energy Technology Data Exchange (ETDEWEB)
Massoudi, M.C.; Tran, P.X.
2006-01-01
We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.
Analytical approximate technique for strongly nonlinear oscillators problem arising in engineering
Directory of Open Access Journals (Sweden)
Y. Khan
2012-12-01
Full Text Available In this paper, a novel method called generalized of the variational iteration method is presented to obtain an approximate analytical solution for strong nonlinear oscillators problem associated in engineering phenomena. This approach resulted in the frequency of the motion as a function of the amplitude of oscillation. It is determined that the method works very well for the whole range of parameters and an excellent agreement is demonstrated and discussed between the approximate frequencies and the exact one. The most significant features of this method are its simplicity and excellent accuracy for the whole range of oscillation amplitude values. Also, the results reveal that this technique is very effective and convenient for solving conservative oscillatory systems with complex nonlinearities. Results obtained by the proposed method are compared with Energy Balance Method (EBM and exact solution showed that, contrary to EBM, simply one or two iterations are enough for obtaining highly accurate results.
Initial-value problem for the Gardner equation applied to nonlinear internal waves
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
DEFF Research Database (Denmark)
Johansen, J D; Andersen, T F; Veien, N;
1997-01-01
in a questionnaire prior to patch testing with the European standard series. The questionnaire contained questions about skin symptoms from the use of scented and unscented products as well as skin reactions from contact with spices, flowers and citrus fruits that could indicate fragrance sensitivity. A highly...... of Peru balsam in detecting relevant fragrance contact allergy is limited, while most fragrance mix-positive patients are aware that the use of scented products may cause skin problems....
Mawhin, Jean; Ure??a, Antonio J.
2002-01-01
A generalization of the well-known Hartman-Nagumo inequality to the case of the vector ordinary p-Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
Directory of Open Access Journals (Sweden)
Ureña Antonio J
2002-01-01
Full Text Available A generalization of the well-known Hartman–Nagumo inequality to the case of the vector ordinary -Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
Renormalization-group symmetries for solutions of nonlinear boundary value problems
Kovalev, V F
2008-01-01
Approximately 10 years ago, the method of renormalization-group symmetries entered the field of boundary value problems of classical mathematical physics, stemming from the concepts of functional self-similarity and of the Bogoliubov renormalization group treated as a Lie group of continuous transformations. Overwhelmingly dominating practical quantum field theory calculations, the renormalization-group method formed the basis for the discovery of the asymptotic freedom of strong nuclear interactions and underlies the Grand Unification scenario. This paper describes the logical framework of a new algorithm based on the modern theory of transformation groups and presents the most interesting results of application of the method to differential and/or integral equation problems and to problems that involve linear functionals of solutions. Examples from nonlinear optics, kinetic theory, and plasma dynamics are given, where new analytical solutions obtained with this algorithm have allowed describing the singular...
Nonlinear Inverse Problem for an Ion-Exchange Filter Model: Numerical Recovery of Parameters
Directory of Open Access Journals (Sweden)
Balgaisha Mukanova
2015-01-01
Full Text Available This paper considers the problem of identifying unknown parameters for a mathematical model of an ion-exchange filter via measurement at the outlet of the filter. The proposed mathematical model consists of a material balance equation, an equation describing the kinetics of ion-exchange for the nonequilibrium case, and an equation for the ion-exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion-exchange and several parameters. First, a numerical solution of the direct problem, the calculation of the impurities concentration at the outlet of the filter, is provided. Then, the inverse problem, finding the parameters of the ion-exchange process in nonequilibrium conditions, is formulated. A method for determining the approximate values of these parameters from the impurities concentration measured at the outlet of the filter is proposed.
Institute of Scientific and Technical Information of China (English)
高自友; 贺国平; 吴方
1997-01-01
For current sequential quadratic programming (SQP) type algorithms, there exist two problems; (i) in order to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the computation amount of this algorithm is very large. So they are not suitable for the large-scale problems; (ii) the SQP algorithms require that the related quadratic programming subproblems be solvable per iteration, but it is difficult to be satisfied. By using e-active set procedure with a special penalty function as the merit function, a new algorithm of sequential systems of linear equations for general nonlinear optimization problems with arbitrary initial point is presented This new algorithm only needs to solve three systems of linear equations having the same coefficient matrix per iteration, and has global convergence and local superlinear convergence. To some extent, the new algorithm can overcome the shortcomings of the SQP algorithms mentioned above.
Institute of Scientific and Technical Information of China (English)
胡云卿; 刘兴高; 薛安克
2014-01-01
This paper considers dealing with path constraints in the framework of the improved control vector it-eration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be di-rectly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the l1 penalty function and a novel smoothing technique are in-troduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algo-rithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reactor operation problem are in agreement with the literature reports, and the computational efficiency is also high.
Ma, Weilin; Liu, Jiande; Dong, Sheng; Zhang, Xin; Ma, Xiaozhou
2017-02-01
In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two-dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline's inner walls and between pipeline's outer wall and slip-on buckle arrestor's inner wall during buckle propagation. In addition, some reverse springs are added to prevent the wall of left and right sides separating from the inner wall of slip-on buckle arrestors. Considering large deformation kinematics relations and the elastic-plastic constitutive relation of material, balance equations were established with the principle of virtual work. The variation of external pressure with respect to the cross-sectional area of pipelines was analyzed, and the lower bound of the crossover pressure of slip-on buckle arrestors was calculated based on Maxwell's energy balance method. By comparing the theoretical results with experiment and finite element numerical simulation, the theoretical method is proved to be correct and reliable.
Nonlinear gauge interactions: a possible solution to the "measurement problem" in quantum mechanics
Hansson, Johan
2010-01-01
Two fundamental, and unsolved problems in physics are: i) the resolution of the "measurement problem" in quantum mechanics ii) the quantization of strongly nonlinear (nonabelian) gauge theories. The aim of this paper is to suggest that these two problems might be linked, and that a mutual, simultaneous solution to both might exist. We propose that the mechanism responsible for the "collapse of the wave function" in quantum mechanics is the nonlinearities already present in the theory via nonabelian gauge interactions. Unlike all other models of spontaneous collapse, our proposal is, to the best of our knowledge, the only one which does not introduce any new elements into the theory. A possible experimental test of the model would be to compare the coherence lengths - here defined as the distance over which quantum mechanical superposition is still valid - for, \\textit{e.g}, electrons and photons in a double-slit experiment. The electrons should have a finite coherence length, while photons should have a much ...
Park, Y. C.; Chang, M. H.; Lee, T.-Y.
2007-06-01
A deterministic global optimization method that is applicable to general nonlinear programming problems composed of twice-differentiable objective and constraint functions is proposed. The method hybridizes the branch-and-bound algorithm and a convex cut function (CCF). For a given subregion, the difference of a convex underestimator that does not need an iterative local optimizer to determine the lower bound of the objective function is generated. If the obtained lower bound is located in an infeasible region, then the CCF is generated for constraints to cut this region. The cutting region generated by the CCF forms a hyperellipsoid and serves as the basis of a discarding rule for the selected subregion. However, the convergence rate decreases as the number of cutting regions increases. To accelerate the convergence rate, an inclusion relation between two hyperellipsoids should be applied in order to reduce the number of cutting regions. It is shown that the two-hyperellipsoid inclusion relation is determined by maximizing a quadratic function over a sphere, which is a special case of a trust region subproblem. The proposed method is applied to twelve nonlinear programming test problems and five engineering design problems. Numerical results show that the proposed method converges in a finite calculation time and produces accurate solutions.
Institute of Scientific and Technical Information of China (English)
Shuang Ping TAO; Shang Bin CUI
2005-01-01
This paper is devoted to studying the initial value problems of the nonlinear KaupKupershmidt equations (e)u/(e)t + α1u(e)2u/(e)x2+β(e)3u/(e)x3+γ(e)5u/( )x5= 0, (x, t) ∈ R2, and (e)u/(e)t+α2 (e)u/(e)x (e)2u/(e)x2+β(e)3u/(e)x3+γ(e)5u/(e)x5 = 0, (x, t) ∈R2. Several important Strichartz type estimates for the fundamental solution of the corresponding linear problem are established. Then we apply such estimates to prove the local and global existence of solutions for the initial value problems of the nonlinear Kaup-Kupershmidt equations. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R), and s ≥ 5/4 for the first equation and s ≥ 301/108 for the second equation.
Kong, Chao; Hai, Kuo; Tan, Jintao; Chen, Hao; Hai, Wenhua
2016-03-01
Nonlinear Kronig-Penney model has been frequently employed to study transmission problem of electron wave in a doped semiconductor superlattice or in a nonlinear electrified chain. Here from an integral equation we derive a novel exact solution of the problem, which contains a simple nonlinear map connecting transmission coefficient with system parameters. Consequently, we propose a scheme to manipulate electronic distribution and transmission by adjusting the system parameters. A new quantum coherence effect is evidenced by the strict expression of transmission coefficient, which results in the aperiodic electronic distributions and different transmission coefficients including the approximate zero transmission and total transmission, and the multiple transmissions. The method based on the concise exact solution can be applied directly to some nonlinear cold atomic systems and a lot of linear Kronig-Penney systems, and also can be extended to investigate electronic transport in different discrete nonlinear systems.
Global well-posedness for nonlinear nonlocal Cauchy problems arising in elasticity
Directory of Open Access Journals (Sweden)
Hantaek Bae
2017-02-01
Full Text Available In this article, we prove global well-posedness for a family of one dimensional nonlinear nonlocal Cauchy problems arising in elasticity. We consider the equation $$ u_{tt}-\\delta Lu_{xx}=\\big(\\beta \\ast [(1-\\deltau+u^{2n+1}]\\big_{xx}\\,, $$ where $L$ is a differential operator, $\\beta$ is an integral operator, and $\\delta =0$ or 1. (Here, the case $\\delta=1$ represents the additional doubly dispersive effect. We prove the global well-posedness of the equation in energy spaces.
The exact solutions of nonlinear problems by Homotopy Analysis Method (HAM
Directory of Open Access Journals (Sweden)
Hafiz Abdul Wahab
2016-06-01
Full Text Available The present paper presents the comparison of analytical techniques. We establish the existence of the phenomena of the noise terms in the perturbation series solution and find the exact solution of the nonlinear problems. If the noise terms exist, the Homotopy Analysis method gives the same series solution as in Adomian Decomposition Method as well as homotopy Perturbation Method (Wahab et al, 2015 and we get the exact solution using the initial guess in Homotopy Analysis Method using the results obtained by Adomian Decomposition Method.
Smoothing Newton Algorithm for Nonlinear Complementarity Problem with a P* Function
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By using a smoothing function, the P* nonlinear complementarity problem (P* NCP) can be reformulated as a parameterized smooth equation. A Newton method is proposed to solve this equation. The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P* NCP has a nonempty solution set. This assumption is weaker than the ones used in most existing smoothing algorithms. In particular, the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P* NCP without any additional assumption.
THE DEMAND DISRUPTION MANAGEMENT PROBLEM FOR A SUPPLY CHAIN SYSTEM WITH NONLINEAR DEMAND FUNCTIONS
Institute of Scientific and Technical Information of China (English)
Minghui XU; Xiangtong QI; Gang YU; Hanqin ZHANG; Chengxiu GAO
2003-01-01
This paper addresses the problem of handling the uncertainty of demand in aone-supplier-one-retailer supply chain system. Demand variation often makes the real productiondifferent from what is originally planned, causing a deviation cost from the production plan. Assumethe market demand is sensitive to the retail price in a nonlinear form, we show how to effectivelyhandle the demand uncertainty in a supply chain, both for the case of centralized-decision-makingsystem and the case of decentralized-decision-making system with perfect coordination.
ALE Fractional Step Finite Element Method for Fluid-Structure Nonlinear Interaction Problem
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.
New implicit method for analysis of problems in nonlinear structural dynamics
Directory of Open Access Journals (Sweden)
Gholampour A. A.
2011-06-01
Full Text Available In this paper a new method is proposed for direct time integration of nonlinear structural dynamics problems. In the proposed method the order of time integration scheme is higher than the conventional Newmark’s family of methods. This method assumes second order variation of the acceleration at each time step. Two variable parameters are used to increase the stability and accuracy of the method. The result obtained from this new higher order method is compared with two implicit methods; namely the Wilson-θ and the Newmark’s average acceleration methods.
A NEW SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Duoquan Li
2006-01-01
In [4],Fletcher and Leyffer present a new method that solves nonlinear programming problems without a penalty function by SQP-Filter algorithm. It has attracted much attention due to its good numerical results. In this paper we propose a new SQP-Filter method which can overcome Maratos effect more effectively. We give stricter acceptant criteria when the iterative points are far from the optimal points and looser ones vice-versa. About this new method,the proof of global convergence is also presented under standard assumptions. Numerical results show that our method is efficient.
SOLUTION OF NONLINEAR PROBLEMS IN WATER RESOURCES SYSTEMS BY GENETIC ALGORITHM
Directory of Open Access Journals (Sweden)
Ahmet BAYLAR
1998-03-01
Full Text Available Genetic Algorithm methodology is a genetic process treated on computer which is considering evolution process in the nature. The genetic operations takes place within the chromosomes stored in computer memory. By means of various operators, the genetic knowledge in chromosomes change continuously and success of the community progressively increases as a result of these operations. The primary purpose of this study is calculation of nonlinear programming problems in water resources systems by Genetic Algorithm. For this purpose a Genetic Algoritm based optimization program were developed. It can be concluded that the results obtained from the genetic search based method give the precise results.
Tang, Yao-Zong; Li, Xiao-Lin
2017-03-01
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis. Project supported by the National Natural Science Foundation of China (Grant No. 11471063), the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2015jcyjBX0083), and the Educational Commission Foundation of Chongqing City, China (Grant No. KJ1600330).
Directory of Open Access Journals (Sweden)
Slavica M. Perovich
2011-06-01
Full Text Available The subject of the theoretical analysis presented in this paper is an analytical approach to the temperature estimation, as an inverse problem, for different thermistors – linear resistances structures: series and parallel ones, by the STFT - Special Trans Functions Theory (S.M. Perovich. The mathematical formulae genesis of both cases is given. Some numerical and graphical simulations in MATHEMATICA program have been realized. The estimated temperature intervals for strongly determined values of the equivalent resistances of the nonlinear structures are given, as well.
A Reduced Basis Framework: Application to large scale non-linear multi-physics problems
Directory of Open Access Journals (Sweden)
Daversin C.
2013-12-01
Full Text Available In this paper we present applications of the reduced basis method (RBM to large-scale non-linear multi-physics problems. We first describe the mathematical framework in place and in particular the Empirical Interpolation Method (EIM to recover an affine decomposition and then we propose an implementation using the open-source library Feel++ which provides both the reduced basis and finite element layers. Large scale numerical examples are shown and are connected to real industrial applications arising from the High Field Resistive Magnets development at the Laboratoire National des Champs Magnétiques Intenses.
Institute of Scientific and Technical Information of China (English)
SONG Li-mei; WENG Pei-xuan
2012-01-01
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α ∈ (3,4],where the fractional derivative D0α+ is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
A (k, n-k) Conjugate Boundary Value Problem with Semip ositone Nonlinearity
Institute of Scientific and Technical Information of China (English)
Yao Qing-liu; Shi Shao-yun
2015-01-01
The existence of positive solution is proved for a (k, n−k) conjugate boundary value problem in which the nonlinearity may make negative values and may be singular with respect to the time variable. The main results of Agarwal et al. (Agarwal R P, Grace S R, O’Regan D. Semipositive higher-order differential equa-tions. Appl. Math. Letters, 2004, 14: 201–207) are extended. The basic tools are the Hammerstein integral equation and the Krasnosel’skii’s cone expansion-compression technique.
Institute of Scientific and Technical Information of China (English)
Chongwen Wang; Xing Chu; Weiyao Lan
2014-01-01
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback (CNF) control tech-nique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscil ations. The non-linear feedback part with wel-tuned parameters is introduced to improve the transient performance by smoothing the oscil atory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is il ustrated by a numeric example.
Energy Technology Data Exchange (ETDEWEB)
Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of); Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of); Cattani, C., E-mail: ccattani@unisa.it [Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (Italy); Maalek Ghaini, F.M., E-mail: maalek@yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)
2015-02-15
Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.
The wetting problem of fluids on solid surfaces: Dynamics of lines and contact angle hysteresis
Gouin, Henri
2001-01-01
8 pages; International audience; In 1805, Young was the first who introduced an expression for contact angle in static, but today, the motion of the contact-line formed at the intersection of two immiscible fluids and a solid is still subject to dispute. By means of the new physical concept of line viscosity, the equations of motions and boundary conditions for fluids in contact on a solid surface together with interface and contact-line are revisited. A new Young-Dupré equation for the dynam...
Numerical approximation on computing partial sum of nonlinear Schroedinger eigenvalue problems
Institute of Scientific and Technical Information of China (English)
JiachangSUN; DingshengWANG; 等
2001-01-01
In computing electronic structure and energy band in the system of multiparticles,quite a large number of problems are to obtain the partial sum of the densities and energies by using “First principle”。In the ordinary method,the so-called self-consistency approach,the procedure is limited to a small scale because of its high computing complexity.In this paper,the problem of computing the partial sum for a class of nonlinear Schroedinger eigenvalue equations is changed into the constrained functional minimization.By space decompostion and Rayleigh-Schroedinger method,one approximating formula for the minimal is provided.The numerical experiments show that this formula is more precise and its quantity of computation is smaller.
Pollicott, M
2002-01-01
In this paper we analyze a variant of the famous Schelling segregation model in economics as a dynamical system. This model exhibits, what appears to be, a new clustering mechanism. In particular, we explain why the limiting behavior of the non-locally determined lattice system exhibits a number of pronounced geometric characteristics. Part of our analysis uses a geometrically defined Lyapunov function which we show is essentially the total Laplacian for the associated graph Laplacian. The limit states are minimizers of a natural non-linear, non-homogeneous variational problem for the Laplacian, which can also be interpreted as ground state configurations for the lattice gas whose Hamiltonian essentially coincides with our Lyapunov function. Thus we use dynamics to explicitly solve this problem for which there is no known analytic solution. We prove an isoperimetric characterization of the global minimizers on the torus which enables us to explicitly obtain the global minimizers for the graph variational prob...
Directory of Open Access Journals (Sweden)
Samir Dey
2015-07-01
Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.
Large time behavior for solutions of nonlinear parabolic problems with sign-changing measure data
Directory of Open Access Journals (Sweden)
Francesco Petitta
2008-09-01
Full Text Available Let $Omegasubseteq mathbb{R}^N$ a bounded open set, $Ngeq 2$, and let $p>1$; in this paper we study the asymptotic behavior with respect to the time variable $t$ of the entropy solution of nonlinear parabolic problems whose model is $$displaylines{ u_{t}(x,t-Delta_{p} u(x,t=mu quad hbox{in } Omegaimes(0,infty,cr u(x,0=u_{0}(x quad hbox{in } Omega, }$$ where $u_0 in L^{1}(Omega$, and $muin mathcal{M}_{0}(Q$ is a measure with bounded variation over $Q=Omegaimes(0,infty$ which does not charge the sets of zero $p$-capacity; moreover we consider $mu$ that does not depend on time. In particular, we prove that solutions of such problems converge to stationary solutions.
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-02-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2014-01-01
Full Text Available To solve an unconstrained nonlinear minimization problem, we propose an optimal algorithm (OA as well as a globally optimal algorithm (GOA, by deflecting the gradient direction to the best descent direction at each iteration step, and with an optimal parameter being derived explicitly. An invariant manifold defined for the model problem in terms of a locally quadratic function is used to derive a purely iterative algorithm and the convergence is proven. Then, the rank-two updating techniques of BFGS are employed, which result in several novel algorithms as being faster than the steepest descent method (SDM and the variable metric method (DFP. Six numerical examples are examined and compared with exact solutions, revealing that the new algorithms of OA, GOA, and the updated ones have superior computational efficiency and accuracy.
Rahman, Md. Saifur; Lee, Yiu-Yin
2017-10-01
In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.
Yang, Haijian
2016-07-26
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem
Terekhov, Kirill M.; Mallison, Bradley T.; Tchelepi, Hamdi A.
2017-02-01
We present two new cell-centered nonlinear finite-volume methods for the heterogeneous, anisotropic diffusion problem. The schemes split the interfacial flux into harmonic and transversal components. Specifically, linear combinations of the transversal vector and the co-normal are used that lead to significant improvements in terms of the mesh-locking effects. The harmonic component of the flux is represented using a conventional monotone two-point flux approximation; the component along the parameterized direction is treated nonlinearly to satisfy either positivity of the solution as in [29], or the discrete maximum principle as in [9]. In order to make the method purely cell-centered, we derive a homogenization function that allows for seamless interpolation in the presence of heterogeneity following a strategy similar to [46]. The performance of the new schemes is compared with existing multi-point flux approximation methods [3,5]. The robustness of the scheme with respect to the mesh-locking problem is demonstrated using several challenging test cases.
UNSYMMETRICAL NONLINEAR BENDING PROBLEM OF CIRCULAR THIN PLATE WITH VARIABLE THICKNESS
Institute of Scientific and Technical Information of China (English)
WANG Xin-zhi; ZHAO Yong-gang; JU Xu; ZHAO Yan-ying; YEH Kai-yuan
2005-01-01
Firstly, the cross large deflection equation of circular thin plate with variable thickness in rectangular coordinates system was transformed into unsymmetrical large deflection equation of circular thin plate with variable thickness in polar coordinates system.This cross equation in polar coordinates system is united with radical and tangential equations in polar coordinates system, and then three equilibrium equations were obtained. Physical equations and nonlinear deformation equations of strain at central plane are substituted into superior three equilibrium equations, and then three unsymmetrical nonlinear equations with three deformation displacements were obtained. Solution with expression of Fourier series is substituted into fundamental equations; correspondingly fundamental equations with expression of Fourier series were obtained. The problem was solved by modified iteration method under the boundary conditions of clamped edges. As an example, the problem of circular thin plate with variable thickness subjected to loads with cosin form was studied.Characteristic curves of the load varying with the deflection were plotted. The curves vary with the variation of the parameter of variable thickness. Its solution is accordant with physical conception.
A limited memory BFGS method for a nonlinear inverse problem in digital breast tomosynthesis
Landi, G.; Loli Piccolomini, E.; Nagy, J. G.
2017-09-01
Digital breast tomosynthesis (DBT) is an imaging technique that allows the reconstruction of a pseudo three-dimensional image of the breast from a finite number of low-dose two-dimensional projections obtained by different x-ray tube angles. An issue that is often ignored in DBT is the fact that an x-ray beam is polyenergetic, i.e. it is composed of photons with different levels of energy. The polyenergetic model requires solving a large-scale, nonlinear inverse problem, which is more expensive than the typically used simplified, linear monoenergetic model. However, the polyenergetic model is much less susceptible to beam hardening artifacts, which show up as dark streaks and cupping (i.e. background nonuniformities) in the reconstructed image. In addition, it has been shown that the polyenergetic model can be exploited to obtain additional quantitative information about the material of the object being imaged. In this paper we consider the multimaterial polyenergetic DBT model, and solve the nonlinear inverse problem with a limited memory BFGS quasi-Newton method. Regularization is enforced at each iteration using a diagonally modified approximation of the Hessian matrix, and by truncating the iterations.
On the problems of non-smooth railway vehicle dynamics
DEFF Research Database (Denmark)
Thomsen, Per Grove; True, Hans
2005-01-01
Railway vehicle dynamics is inherently a problem of nonlinear dynamics. The unavoidable nonlinearities stem from the rail/wheel contact geometry and the stress/strain velocity relation in the rail/wheel contact surface. In addition motion delimiters and dry friction contact between elements...
DEFF Research Database (Denmark)
Johansen, J D; Andersen, T F; Veien, Niels
1997-01-01
The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, fill...... of Peru balsam in detecting relevant fragrance contact allergy is limited, while most fragrance mix-positive patients are aware that the use of scented products may cause skin problems....
A simple numerical model of a geometrically nonlinear Timoshenko beam
Keijdener, C.; Metrikine, A.
2015-01-01
In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and tran
Management of irritant contact dermatitis: continuously a problem for patients and dermatologists
DEFF Research Database (Denmark)
Andersen, F; Andersen, Klaus Ejner
2008-01-01
Skin irritants may induce irritant contact dermatitis (ICD) in various ways but the end result remains the same: a clinical picture which in most cases is practically indistinguishable from allergic contact dermatitis (ACD). A treatment that works for ACD does not necessarily work for ICD. Manage...
Adaptive meshing technique applied to an orthopaedic finite element contact problem.
Roarty, Colleen M; Grosland, Nicole M
2004-01-01
Finite element methods have been applied extensively and with much success in the analysis of orthopaedic implants. Recently a growing interest has developed, in the orthopaedic biomechanics community, in how numerical models can be constructed for the optimal solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of improved implants for orthopaedic surgery. Finite element and other computational techniques are widely applied in the analysis and design of hip and knee implants, with additional joints (ankle, shoulder, wrist) attracting increased attention. The objective of this investigation was to develop a simplified adaptive meshing scheme to facilitate the finite element analysis of a dual-curvature total wrist implant. Using currently available software, the analyst has great flexibility in mesh generation, but must prescribe element sizes and refinement schemes throughout the domain of interest. Unfortunately, it is often difficult to predict in advance a mesh spacing that will give acceptable results. Adaptive finite-element mesh capabilities operate to continuously refine the mesh to improve accuracy where it is required, with minimal intervention by the analyst. Such mesh adaptation generally means that in certain areas of the analysis domain, the size of the elements is decreased (or increased) and/or the order of the elements may be increased (or decreased). In concept, mesh adaptation is very appealing. Although there have been several previous applications of adaptive meshing for in-house FE codes, we have coupled an adaptive mesh formulation with the pre-existing commercial programs PATRAN (MacNeal-Schwendler Corp., USA) and ABAQUS (Hibbit Karlson and Sorensen, Pawtucket, RI). In doing so, we have retained several attributes of the commercial software, which are very attractive for orthopaedic implant applications.
Directory of Open Access Journals (Sweden)
Listrovoy Sergey Vladimirovich
2015-10-01
Full Text Available In this paper the probabilistic method is presented for solving the minimum vertex cover problem using systems of non-linear equations that are formed on the basis of a neighborhood relationship of a particular vertex of a given graph. The minimum vertex cover problem is one of the classic mathematical optimization problems that have been shown to be NP-hard. It has a lot of real-world applications in different fields of science and technology. This study finds solutions to this problem by means of the two basic procedures. In the first procedure three probabilistic pairs of variables according to the maximum vertex degree are formed and processed accordingly. The second procedure checks a given graph for the presence of the leaf vertices. Special software package to check the validity of these procedures was written. The experiment results show that our method has significantly better time complexity and much smaller frequency of the approximation errors in comparison with one of the most currently efficient algorithms.
Pikichyan, H. V.
2016-06-01
It is shown that for the nonlinear boundary value problem of determining the radiation field inside a one-dimensional anisotropic medium illuminated from outside at its boundaries on both sides, the formulas for adding layers in semilinear systems of differential equations for radiative transfer, invariant embedding, and total Ambartsumyan invariance can be used to reduce the equations for the problem to separable equations with initial conditions. The fields travelling to the left and right are thereby found independently of one another. In addition, when one of them has been determined, the other can be found directly using an explicit expression. A general equivalence property of operators with respect to a certain mathematical form, expression, or functional is formulated mathematically. New equations, referred to as kinetic equations of equivalency, are derived from the mutual equivalence of the differential operators of the Boltzmann kinetic equation (the equations of radiative transfer) and the functional equation of the Ambartsumian's complete invariance. Besides separability, these new equations also have the property of linearity. Formulas are also introduced for special problems of single sided illumination of a medium that in this case serve as supplementary information in the initial conditions for formulating Cauchy problems.
Solving nonlinear nonstationary problem of heat-conductivity by finite element method
Directory of Open Access Journals (Sweden)
Антон Янович Карвацький
2016-11-01
Full Text Available Methodology and effective solving algorithm of non-linear dynamic problems of thermal and electric conductivity with significant temperature dependence of thermal and physical properties are given on the basis of finite element method (FEM and Newton linearization method. Discrete equations system FEM was obtained with the use of Galerkin method, where the main function is the finite element form function. The methodology based on successive solving problems of thermal and electrical conductivity has been examined in the work in order to minimize the requirements for calculating resources (RAM. in particular. Having used Mathcad software original programming code was developed to solve the given problem. After investigation of the received results, comparative analyses of accurate solution data and results of numerical solutions, obtained with the use of Matlab programming products, was held. The geometry of one fourth part of the finite sized cylinder was used to test the given numerical model. The discretization of the calculation part was fulfilled using the open programming software for automated Gmsh nets with tetrahedral units, while ParaView, which is an open programming code as well, was used to visualize the calculation results. It was found out that the maximum value violation of potential and temperature determination doesn`t exceed 0,2-0,83% in the given work according to the problem conditions
Analysis of steady-state and dynamical radially-symmetric problems of nonlinear viscoelasticity
Stepanov, Alexey B.
This thesis treats radially symmetric steady states and radially symmetric motions of nonlinearly elastic and viscoelastic plates and shells subject to dead-load and hydrostatic pressures on their boundaries and with the plate subject to centrifugal force. The plates and shells are described by specializations of the exact (nonlinear) equations of three-dimensional continuum mechanics. The treatment in every case is very general and encompasses large classes of constitutive functions (characterizing the material response). We first treat the radially symmetric steady states of plates and shells and the radially symmetric steady rotations of plates. We show that the existence, multiplicity, and qualitative behavior of solutions for problems accounting for the live loads due to hydrostatic pressure and centrifugal force depend critically on the material properties of the bodies, physically reasonable refined descriptions of which are given and examined here with great care, and on the nature of boundary conditions. he treatment here, giving new and sharp results, employs several different mathematical tools, ranging from phase-plane analysis to the mathematically more sophisticated direct methods of the Calculus of Variations, fixed-point theorems, and global continuation methods, each of which has different strengths and weaknesses for handling intrinsic difficulties in the mechanics. We then treat the initial-boundary-value problems for the radially symmetric motions of annular plates and spherical shells that consist of a nonlinearly viscoelastic material of strain-rate type. We discuss a range of physically natural constitutive equations. We first show that when the material is strong in a suitable sense relative to externally applied loads, solutions exist for all time, depend continuously on the data, and consequently are unique. We study the role of the constitutive restrictions and that of the regularity of the data in ensuring the preclusion of a total
Directory of Open Access Journals (Sweden)
Mikaël Barboteu
2016-01-01
Full Text Available We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an obstacle. The contact is modelled with a combination of a normal compliance and a normal damped response law associated with a slip rate-dependent version of Coulomb’s law of dry friction. We derive a variational formulation and an existence and uniqueness result of the weak solution of the problem is presented. Next, we introduce a fully discrete approximation of the variational problem based on a finite element method and on an implicit time integration scheme. We study this fully discrete approximation schemes and bound the errors of the approximate solutions. Under regularity assumptions imposed on the exact solution, optimal order error estimates are derived for the fully discrete solution. Finally, after recalling the solution of the frictional contact problem, some numerical simulations are provided in order to illustrate both the behavior of the solution related to the frictional contact conditions and the theoretical error estimate result.
hp-Pseudospectral method for solving continuous-time nonlinear optimal control problems
Darby, Christopher L.
2011-12-01
In this dissertation, a direct hp-pseudospectral method for approximating the solution to nonlinear optimal control problems is proposed. The hp-pseudospectral method utilizes a variable number of approximating intervals and variable-degree polynomial approximations of the state within each interval. Using the hp-discretization, the continuous-time optimal control problem is transcribed to a finite-dimensional nonlinear programming problem (NLP). The differential-algebraic constraints of the optimal control problem are enforced at a finite set of collocation points, where the collocation points are either the Legendre-Gauss or Legendre-Gauss-Radau quadrature points. These sets of points are chosen because they correspond to high-accuracy Gaussian quadrature rules for approximating the integral of a function. Moreover, Runge phenomenon for high-degree Lagrange polynomial approximations to the state is avoided by using these points. The key features of the hp-method include computational sparsity associated with low-order polynomial approximations and rapid convergence rates associated with higher-degree polynomials approximations. Consequently, the hp-method is both highly accurate and computationally efficient. Two hp-adaptive algorithms are developed that demonstrate the utility of the hp-approach. The algorithms are shown to accurately approximate the solution to general continuous-time optimal control problems in a computationally efficient manner without a priori knowledge of the solution structure. The hp-algorithms are compared empirically against local (h) and global (p) collocation methods over a wide range of problems and are found to be more efficient and more accurate. The hp-pseudospectral approach developed in this research not only provides a high-accuracy approximation to the state and control of an optimal control problem, but also provides high-accuracy approximations to the costate of the optimal control problem. The costate is approximated by
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
Liu, Tianyu; Jiao, Licheng; Ma, Wenping; Shang, Ronghua
2017-03-01
In this paper, an improved quantum-behaved particle swarm optimization (CL-QPSO), which adopts a new collaborative learning strategy to generate local attractors for particles, is proposed to solve nonlinear numerical problems. Local attractors, which directly determine the convergence behavior of particles, play an important role in quantum-behaved particle swarm optimization (QPSO). In order to get a promising and efficient local attractor for each particle, a collaborative learning strategy is introduced to generate local attractors in the proposed algorithm. Collaborative learning strategy consists of two operators, namely orthogonal operator and comparison operator. For each particle, orthogonal operator is used to discover the useful information that lies in its personal and global best positions, while comparison operator is used to enhance the particle's ability of jumping out of local optima. By using a probability parameter, the two operators cooperate with each other to generate local attractors for particles. A comprehensive comparison of CL-QPSO with some state-of-the-art evolutionary algorithms on nonlinear numeric optimization functions demonstrates the effectiveness of the proposed algorithm.
Recent results and open problems on parabolic equations with gradient nonlinearities
Directory of Open Access Journals (Sweden)
Philippe Souplet
2001-03-01
Full Text Available We survey recent results and present a number of open problems concerning the large-time behavior of solutions of semilinear parabolic equations with gradient nonlinearities. We focus on the model equation with a dissipative gradient term $$u_t-Delta u=u^p-b|abla u|^q,$$ where $p$, $q>1$, $b>0$, with homogeneous Dirichlet boundary conditions. Numerous papers were devoted to this equation in the last ten years, and we compare the results with those known for the case of the pure power reaction-diffusion equation ($b=0$. In presence of the dissipative gradient term a number of new phenomena appear which do not occur when $b=0$. The questions treated concern: sufficient conditions for blowup, behavior of blowing up solutions, global existence and stability, unbounded global solutions, critical exponents, and stationary states.
An efficient numerical technique for the solution of nonlinear singular boundary value problems
Singh, Randhir; Kumar, Jitendra
2014-04-01
In this work, a new technique based on Green's function and the Adomian decomposition method (ADM) for solving nonlinear singular boundary value problems (SBVPs) is proposed. The technique relies on constructing Green's function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on the ADM, the proposed technique avoids solving a sequence of transcendental equations for the undetermined coefficients. It approximates the solution in the form of a series with easily computable components. Additionally, the convergence analysis and the error estimate of the proposed method are supplemented. The reliability and efficiency of the proposed method are demonstrated by several numerical examples. The numerical results reveal that the proposed method is very efficient and accurate.
A new analytic method with a convergence-control parameter for solving nonlinear problems
Zhang, Xiaolong
2016-01-01
In this paper, a new analytic method with a convergence-control parameter $c$ is first proposed. The parameter $c$ is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of $c$. Furthermore, a numerical approach for finding the optimal value of the convergence-control parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves. Moreover, the ideas proposed in this paper may offer us possibilities to greatly improve current analytic and numerical techniques.
Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems
Energy Technology Data Exchange (ETDEWEB)
Lee, Se Jung; Park, Gyung Jin [Hanyang University, Seoul (Korea, Republic of)
2014-05-15
In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.
The non-interior continuation methods for solving the P0 function nonlinear complementarity problem
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving the P0 function nonlinear complementarity problem (NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving the P0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP.
Institute of Scientific and Technical Information of China (English)
李仁贵; 刘立山
2001-01-01
New existence results are presented for the singular second-order nonlinear boundary value problems u" + g(t)f(u) = 0, 0 ＜ t ＜ 1, au(0) - βu′(0) = 0,γu(1) +δu'(l) = 0 under the conditions 0 ≤ fn+ ＜ M1, m1 ＜ f∞-≤∞ or 0 ≤ f∞+＜M1, m1 ＜ f 0-≤ ∞, where f +0＝ limu→of(u)/u, f∞-＝ limu-→∞(u)/u, f0-＝limu-→of(u)/u, f+∞＝ limu→=f(u)/u, g may be singular att ＝ 0 and/ort ＝ 1 . Theproof uses a fixed point theorem in cone theory.
Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem
Kostikova, E. K.; Zaika, Yu V.
2016-11-01
One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).
Energy Technology Data Exchange (ETDEWEB)
Blanford, M. [Sandia National Labs., Albuquerque, NM (United States)
1997-12-31
Most commercially-available quasistatic finite element programs assemble element stiffnesses into a global stiffness matrix, then use a direct linear equation solver to obtain nodal displacements. However, for large problems (greater than a few hundred thousand degrees of freedom), the memory size and computation time required for this approach becomes prohibitive. Moreover, direct solution does not lend itself to the parallel processing needed for today`s multiprocessor systems. This talk gives an overview of the iterative solution strategy of JAS3D, the nonlinear large-deformation quasistatic finite element program. Because its architecture is derived from an explicit transient-dynamics code, it does not ever assemble a global stiffness matrix. The author describes the approach he used to implement the solver on multiprocessor computers, and shows examples of problems run on hundreds of processors and more than a million degrees of freedom. Finally, he describes some of the work he is presently doing to address the challenges of iterative convergence for ill-conditioned problems.
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Directory of Open Access Journals (Sweden)
U. Filobello-Nino
2015-01-01
Full Text Available We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM. Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we consider a singular nth order three-point boundary value problem with sign changing nonlinearity. By the method of lower solution and topology degree theorem, we investigate the existence of positive solutions to the above problem. Moreover, the associated Green’s function for the above problem is also given. The results of this paper are new and extend the previous known results.
Badriev, I. B.; Banderov, V. V.; Makarov, M. V.
2017-06-01
In this paper we consider the geometrically nonlinear problem of determining the equilibrium position of a sandwich plate consisting of two external carrier layers and located between transversely soft core, connected with carrier layer by means of adhesive joint. We investigate the generalized statement of the problem. For its numerical implementation we offer a two-layer iterative process and investigate the convergence of the method. Numerical experiments are carried out for the model problem.
Llibre, Jaume; Ramírez, Rafael; Ramírez, Valentín
2017-09-01
We consider polynomial vector fields X with a linear type and with homogenous nonlinearities. It is well-known that X has a center at the origin if and only if X has an analytic first integral of the form H =1/2 (x2 +y2) + ∑ j = 3 ∞Hj, where Hj =Hj (x , y) is a homogenous polynomial of degree j. The classical center-focus problem already studied by H. Poincaré consists in distinguishing when the origin of X is either a center or a focus. In this paper we study the inverse center-focus problem. In particular for a given analytic function H defined in a neighborhood of the origin we want to determine the homogenous polynomials in such a way that H is a first integral of X and consequently the origin of X will be a center. We study the particular case of centers which have a local analytic first integral of the form H =1/2 (x2 +y2) (1 + ∑ j = 1 ∞ϒj) , in a neighborhood of the origin, where ϒj is a convenient homogenous polynomial of degree j, for j ≥ 1. These centers are called weak centers, they contain the class of center studied by Alwash and Lloyd, the uniform isochronous centers and the isochronous holomorphic centers, but they do not coincide with the class of isochronous centers. We give a classification of the weak centers for quadratic and cubic vector fields with homogenous nonlinearities.
Institute of Scientific and Technical Information of China (English)
李建宇; 潘少华; 张洪武
2009-01-01
Frictional contact problems frequently arise in various engineering applications, but their solutions, especially the solutions of three dimensional (3D) frictional contact problems, are challenging since the conditions for contact and friction are highly nonlinear and non-smooth. The 3D frictional contact problem is nonlinear and non-differentiable at least in three aspects: (1) The unilateral contact law, combining a geometric condition of impenetrability, a static condition of no-tension and an energy condition of complementarity, is represented by a multi-valued force-displacement relation. (2) The friction law, governed by a relation between reaction force and local relative velocity, is also multi-valued. (3) The Coulomb friction law in 3D space is expressed as a nonlinear inequality that is non-differentiable in the ordinary sense. In this paper, we propose a new linear second-order cone complementarity formulation for the numerical finite element analysis of 3D frictional contact problem by using the parametric variational principle. Specifically, we develop a regularization technique to resolve the multi-valued difficulty involved in the unilateral contact law, and utilize a second-order cone complementarity condition to handle the regularized Coulomb friction law in contact analysis. We reformulate the governing equations of the 3D frictional contact problem as a linear second-order cone complementarity problem (SOCCP) via the parametric variational principle and the finite element method. Compared with the linear complementarity formulation of 3D frictional contact problems, the proposal SOCCP formulation avoids the polyhedral approximation to the Coulomb friction cone so that the problem to be solved has much smaller size and the solution has better accuracy. A semismooth Newton method is used to solve the obtained linear SOCCP. Numerical examples are computed and the results confirm the effectiveness and robustness of the SOCCP formulation developed.%
Energy Technology Data Exchange (ETDEWEB)
Mihalache, D.; Panoiu, N.-C.; Moldoveanu, F.; Baboiu, D.-M. [Dept. of Theor. Phys., Inst. of Atomic Phys., Bucharest (Romania)
1994-09-21
We used the Riemann problem method with a 3*3 matrix system to find the femtosecond single soliton solution for a perturbed nonlinear Schroedinger equation which describes bright ultrashort pulse propagation in properly tailored monomode optical fibres. Compared with the Gel'fand-Levitan-Marchenko approach, the major advantage of the Riemann problem method is that it provides the general single soliton solution in a simple and compact form. Unlike the standard nonlinear Schroedinger equation, here the single soliton solution exhibits periodic evolution patterns. (author)
Kinematics and tribological problems of linear guidance systems in four contact points
Popescu, A.; Olaru, D.
2016-08-01
A procedure has been developed to determine both the value of the ball's angular velocity and the angular position of this velocity, according to the normal loads in a linear system with four contact points. The program is based on the variational analysis of the power losses in ball-races contacts. Based on this the two kinematics parameters of the ball (angular velocity and angular position) were determined, in a linear system type KUE 35 as function of the C/P ratio.