WorldWideScience

Sample records for nonlinear constraint effect

  1. Optimization under Nonlinear Constraints

    OpenAIRE

    1982-01-01

    In this paper a timesaving method is proposed for maximizing likelihood functions when the parameter space is subject to nonlinear constraints, expressible as second order polynomials. The suggested approach is especially attractive when dealing with systems with many parameters.

  2. Design with Nonlinear Constraints

    KAUST Repository

    Tang, Chengcheng

    2015-12-10

    Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.

  3. Experimental constraints on non-linearities induced by two-photon effects in elastic and inelastic Rosenbluth separations

    Energy Technology Data Exchange (ETDEWEB)

    Vladas Tvaskis; John Arrington; Michael Christy; Rolf Ent; Cynthia Keppel; Yongguang Liang; Grahame Vittorini

    2006-01-26

    The effects of two-photon exchange corrections, suggested to explain the difference between measurements of the proton elastic electromagnetic form factors using the polarization transfer and Rosenbluth techniques, have been studied in elastic and inelastic scattering data. Such corrections could introduce epsilon-dependent non-linearities in inelastic Rosenbluth separations, where epsilon is the virtual photon polarization parameter. It is concluded that such non-linear effects are consistent with zero for elastic, resonance, and deep-inelastic scattering for all Q{sup 2} and W{sup 2} values measured.

  4. Nonlinear Evolution of Aggregates with Inextensible Constraints

    Institute of Scientific and Technical Information of China (English)

    Ming-XiangCHEN; WeiYANG; 等

    1996-01-01

    Crystalline and semicrystalline polymers are formed as aggregates of grains with evolving inextensible axes.This inextensible constratint leads to texture evolution under large plastic deformation.This paper reveals the nonlinear texture evolution of crystalline polymers under axi-symmetric straining.

  5. Iterative restoration algorithms for nonlinear constraint computing

    Science.gov (United States)

    Szu, Harold

    A general iterative-restoration principle is introduced to facilitate the implementation of nonlinear optical processors. The von Neumann convergence theorem is generalized to include nonorthogonal subspaces which can be reduced to a special orthogonal projection operator by applying an orthogonality condition. This principle is shown to permit derivation of the Jacobi algorithm, the recursive principle, the van Cittert (1931) deconvolution method, the iteration schemes of Gerchberg (1974) and Papoulis (1975), and iteration schemes using two Fourier conjugate domains (e.g., Fienup, 1981). Applications to restoring the image of a double star and division by hard and soft zeros are discussed, and sample results are presented graphically.

  6. Nonlinear balance constraints in 3DVAR data assimilation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In many applications of 3DVAR, the balance constraints can be considered via two main approaches: weak constraint method which adds penalty terms to the cost function; and proper definition of the background error covariance matrix with non-zero cross-correlation sub-matrices. The weak constraint approach requires determining the weighting matrices of the penalty terms. The background error covariance approach does not require determining those additional weighting matrices. However, it is only applicable to those linear or linearized balance constraints. A novel approach is proposed based on the background error covariance approach by generalizing the so-called Derber-Bouttier formulation. An assimilation experiment of estimating temperature and salinity from the sea surface dynamic height observation is given to illustrate the proposed treatments of nonlinear balance constraints.

  7. CLASSIFICATION OF BIFURCATIONS FOR NONLINEAR DYNAMICAL PROBLEMS WITH CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    吴志强; 陈予恕

    2002-01-01

    Bifurcation of periodic solutions widely existed in nonlinear dynamical systems isa kind of constrained one in intrinsic quality because its amplitude is always non-negative.Classification of the bifurcations with the type of constraint was discussed. All its six typesof transition sets are derived, in which three types are newly found and a method isproposed for analyzing the constrained bifurcation.

  8. Eliminating material constraints for nonlinearity with plasmonic metamaterials

    Science.gov (United States)

    Neira, Andres D.; Olivier, Nicolas; Nasir, Mazhar E.; Dickson, Wayne; Wurtz, Gregory A.; Zayats, Anatoly V.

    2015-01-01

    Nonlinear optical materials comprise the foundation of modern photonics, offering functionalities ranging from ultrafast lasers to optical switching, harmonic and soliton generation. Optical nonlinearities are typically strong near the electronic resonances of a material and thus provide limited tuneability for practical use. Here we show that in plasmonic nanorod metamaterials, the Kerr-type nonlinearity is not limited by the nonlinear properties of the constituents. Compared with gold's nonlinearity, the measured nonlinear absorption and refraction demonstrate more than two orders of magnitude enhancement over a broad spectral range that can be engineered via geometrical parameters. Depending on the metamaterial's effective plasma frequency, either a focusing or defocusing nonlinearity is observed. The ability to obtain strong and fast optical nonlinearities in a given spectral range makes these metamaterials a flexible platform for the development of low-intensity nonlinear applications. PMID:26195182

  9. Spin glasses and nonlinear constraints in portfolio optimization

    Energy Technology Data Exchange (ETDEWEB)

    Andrecut, M., E-mail: mircea.andrecut@gmail.com

    2014-01-17

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  10. Spin glasses and nonlinear constraints in portfolio optimization

    Science.gov (United States)

    Andrecut, M.

    2014-01-01

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  11. A Nonlinear Flow Control Scheme Under Capacity Constraints

    Institute of Scientific and Technical Information of China (English)

    Yi Fan; Zhong-Ping Jiang

    2005-01-01

    We present a nonlinear flow control scheme based on a buffer management model with physical constraints. It extends previous result of Pitsillides et al. in [6] by improving the queue length regulation for better service of network traffics. Besides a single node system, we also address the decentralized control of many cascaded nodes. The proposed discontinuous controller asymptotically regulates the buffer queue length at the output port of a router/switch to a constant reference value, under unknown time varying interfering traffics and saturation constraints on control input and states. Its continuous approximation achieves practical regulation with an ultimate bound on the regulation error tunable by a design parameter.

  12. An SQP algorithm for mathematical programs with nonlinear complementarity constraints

    Institute of Scientific and Technical Information of China (English)

    Zhi-bin ZHU; Jin-bao JIAN; Cong ZHANG

    2009-01-01

    In this paper,we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of smooth programs to approximate the MPCC. Using an l1 penalty function,the line search assures global convergence,while the superlinear convergence rate is shown under the strictly complementary and second-order sufficient conditions. Moreover,we prove that the current iterated point is an exact stationary point of the mathematical programs with equilibrium constraints (MPEC) when the algorithm terminates finitely.

  13. Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization

    Directory of Open Access Journals (Sweden)

    Xiaobing Kong

    2013-01-01

    Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.

  14. Scleronomic holonomic constraints and conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, R; Gonzalez-Garcia, G; Izquierdo-De La Cruz, E Izquierdo-De La [Universidad Autonoma de la Ciudad de Mexico, Centro Historico, Fray Servando Teresa de Mier 92, Col Centro, Del Cuauhtemoc, Mexico DF, CP 06080 (Mexico); Fernandez-Anaya, G, E-mail: rodrigo.munoz@uacm.edu.mx, E-mail: gggharper@gmail.com, E-mail: erickidc@gmail.com, E-mail: guillermo.fernandez@uia.mx [Universidad Iberoamericana, Departamento de Fisica y Matematicas, Prolongacon Paseo de de la Reforma 880, Col Lomas de Santa Fe, Del Alvaro Obregn, Mexico DF, CP 01219 (Mexico)

    2011-05-15

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present cases in which the effective potential acting on the bead is not analytical around a minimum. The small oscillation approximation cannot be applied to such pathological cases. Nonetheless, these latter instances are studied with other standard techniques.

  15. An Improved Control Vector Iteration Approach for Nonlinear Dynamic Optimization. II. Problems with Path Constraints

    Institute of Scientific and Technical Information of China (English)

    胡云卿; 刘兴高; 薛安克

    2014-01-01

    This paper considers dealing with path constraints in the framework of the improved control vector it-eration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be di-rectly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the l1 penalty function and a novel smoothing technique are in-troduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algo-rithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reactor operation problem are in agreement with the literature reports, and the computational efficiency is also high.

  16. Simple procedures for imposing constraints for nonlinear least squares optimization

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, R. [Petrobras, Rio de Janeiro (Brazil); Thompson, L.G.; Redner, R.; Reynolds, A.C. [Univ. of Tulsa, OK (United States)

    1995-12-31

    Nonlinear regression method (least squares, least absolute value, etc.) have gained acceptance as practical technology for analyzing well-test pressure data. Even for relatively simple problems, however, commonly used algorithms sometimes converge to nonfeasible parameter estimates (e.g., negative permeabilities) resulting in a failure of the method. The primary objective of this work is to present a new method for imaging the objective function across all boundaries imposed to satisfy physical constraints on the parameters. The algorithm is extremely simple and reliable. The method uses an equivalent unconstrained objective function to impose the physical constraints required in the original problem. Thus, it can be used with standard unconstrained least squares software without reprogramming and provides a viable alternative to penalty functions for imposing constraints when estimating well and reservoir parameters from pressure transient data. In this work, the authors also present two methods of implementing the penalty function approach for imposing parameter constraints in a general unconstrained least squares algorithm. Based on their experience, the new imaging method always converges to a feasible solution in less time than the penalty function methods.

  17. A trust region algorithm for optimization with nonlinear equality and linear inequality constraints

    Institute of Scientific and Technical Information of China (English)

    陈中文; 韩继业

    1996-01-01

    A new algorithm of trust region type is presented to minimize a differentiable function ofmany variables with nonlinear equality and linear inequality constraints. Under the milder conditions, theglobal convergence of the main algorithm is proved. Moreover, since any nonlinear inequality constraint can beconverted into an equation by introducing a slack variable, the trust region method can be used in solving general nonlinear programming problems.

  18. Neural Network Control-Based Adaptive Learning Design for Nonlinear Systems With Full-State Constraints.

    Science.gov (United States)

    Liu, Yan-Jun; Li, Jing; Tong, Shaocheng; Chen, C L Philip

    2016-07-01

    In order to stabilize a class of uncertain nonlinear strict-feedback systems with full-state constraints, an adaptive neural network control method is investigated in this paper. The state constraints are frequently emerged in the real-life plants and how to avoid the violation of state constraints is an important task. By introducing a barrier Lyapunov function (BLF) to every step in a backstepping procedure, a novel adaptive backstepping design is well developed to ensure that the full-state constraints are not violated. At the same time, one remarkable feature is that the minimal learning parameters are employed in BLF backstepping design. By making use of Lyapunov analysis, we can prove that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded and the output is well driven to follow the desired output. Finally, a simulation is given to verify the effectiveness of the method.

  19. Effective Constraints for Quantum Systems

    CERN Document Server

    Bojowald, Martin; Skirzewski, Aureliano; Tsobanjan, Artur

    2008-01-01

    An effective formalism for quantum constrained systems is presented which allows manageable derivations of solutions and observables, including a treatment of physical reality conditions without requiring full knowledge of the physical inner product. Instead of a state equation from a constraint operator, an infinite system of constraint functions on the quantum phase space of expectation values and moments of states is used. The examples of linear constraints as well as the free non-relativistic particle in parameterized form illustrate how standard problems of constrained systems can be dealt with in this framework.

  20. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises.

    Science.gov (United States)

    Chang, Wen-Jer; Huang, Bo-Jyun

    2014-11-01

    The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method.

  1. Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.

    Science.gov (United States)

    Chen, Ziting; Li, Zhijun; Chen, C L Philip

    2016-03-17

    An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.

  2. AN SQP METHOD BASED ON SMOOTHING PENALTY FUNCTION FOR NONLINEAR OPTIMIZATION WITH INEQUALITY CONSTRAINT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juliang; ZHANG Xiangsun

    2001-01-01

    In this paper, we use the smoothing penalty function proposed in [1] as the merit function of SQP method for nonlinear optimization with inequality constraints. The global convergence of the method is obtained.

  3. Iterated non-linear model predictive control based on tubes and contractive constraints.

    Science.gov (United States)

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.

  4. Results on stabilization of nonlinear systems under finite data-rate constraints

    NARCIS (Netherlands)

    Persis, Claudio De

    2004-01-01

    We discuss in this paper a result concerning the stabilization problem of nonlinear systems under data-rate constraints using output feedback. To put the result in a broader context, we shall first review a number of recent contributions on the stabilization problem under data-rate constraints when

  5. Nonlinear effects in optical fibers

    CERN Document Server

    Ferreira, Mario F

    2011-01-01

    Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber

  6. Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems

    Science.gov (United States)

    Blackmore, Lars; Acikmese, Behcet; Carson, John M.,III

    2012-01-01

    In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field.

  7. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies.

  8. Nonlinear control of multiple spacecraft formation flying using the constraint forces in Lagrangian systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Getting inspiration from the constraint forces in the classical mechanics, we presented the nonlinear control method of multiple spacecraft formation flying to accurately keep the desired formation arrays. Considering nonlinearity and perturbation, we changed the question of the formation array control to the Lagrange equations with the holonomic constraints and the differential algebraic equations (DAE), and developed the nonlinear control for design of the follower spacecraft tracking control laws by solving the DAE. Because of using the idea of the constraint forces, this approach can adequately utilize the characteristic of the dynamic equations, i.e., the space natural forces, and accurately keep the arbitrary formation array. Simulation results of the circular formation keeping with the linear and nonlinear dynamical equations were included to illuminate the control performance.

  9. Nonlinear and cooperative control of multiple hovercraft with input constraints

    OpenAIRE

    Dunbar, William B.; Olfati-Saber, Reza; Richard M Murray

    2003-01-01

    In this paper, we introduce an approach for distributed nonlinear control of multiple hovercraft-type underactuated vehicles with bounded and unidirectional inputs. First, a bounded nonlinear controller is given for stabilization and tracking of a single vehicle, using a cascade backstepping method. Then, this controller is combined with a distributed gradient-based control for multi-vehicle formation stabilization using formation potential functions previously constructed. The vehicles are u...

  10. Nonlinear Peltier effect in semiconductors

    Science.gov (United States)

    Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali

    2007-09-01

    Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.

  11. Polymer constraint effect for electrothermal bimorph microactuators

    NARCIS (Netherlands)

    Chu Duc, T.; Lau, G.K.; Sarro, P.M.

    2007-01-01

    The authors report on the analysis of the polymer constraint effect and its use for a micromachined electrothermal bimorph actuator. The actuated displacement is enhanced due to the polymer constraint effect. Both the thermal expansion and apparent Young’s modulus of the constrained polymer blocks a

  12. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  13. Rotational Doppler effect in nonlinear optics

    Science.gov (United States)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  14. CONSTRAINT EFFECT IN FRACTURE WHAT IS IT

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P; Prof. Yuh J. Chao, P

    2008-10-29

    The meaning of the phrase 'constraint effect in fracture' has changed in the past two decades from 'contained plasticity' to a broader description of 'dependence of fracture toughness value on geometry of test specimen or structure'. This paper will first elucidate the fundamental mechanics reasons for the apparent 'constraint effects in fracture', followed by outlining a straightforward approach to overcoming this problem in both brittle (elastic) and ductile (elastic-plastic) fracture. It is concluded by discussing the major difference in constraint effect on fracture event in elastic and elastic-plastic materials.

  15. Numerical solution of continuous-time mean-variance portfolio selection with nonlinear constraints

    Science.gov (United States)

    Yan, Wei; Li, Shurong

    2010-03-01

    An investment problem is considered with dynamic mean-variance (M-V) portfolio criterion under discontinuous prices described by jump-diffusion processes. Some investment strategies are restricted in the study. This M-V portfolio with restrictions can lead to a stochastic optimal control model. The corresponding stochastic Hamilton-Jacobi-Bellman equation of the problem with linear and nonlinear constraints is derived. Numerical algorithms are presented for finding the optimal solution in this article. Finally, a computational experiment is to illustrate the proposed methods by comparing with M-V portfolio problem which does not have any constraints.

  16. Nonlinear effects in Thomson backscattering

    Science.gov (United States)

    Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.

    2013-03-01

    We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

  17. Designing a mixture experiment when the components are subject to a nonlinear multiple-component constraint

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Greg F.; Cooley, Scott K.; Vienna, John D.; Crum, Jarrod V.

    2015-12-14

    This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture (PQM) model expressed in the relative proportions of the 14 other components. The PQM model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study.

  18. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    Science.gov (United States)

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range.

  19. Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification

    OpenAIRE

    Mordukhovich, B. S.; Outrata, J. (Jiří)

    2013-01-01

    The paper concerns the study of tilt stability of local minimizers in standard problems of nonlinear programming. This notion plays an important role in both theoretical and numerical aspects of optimization and has drawn a lot of attention in optimization theory and its applications, especially in recent years. Under the classical Mangasarian–Fromovitz Constraint Qualification, we establish relationships between tilt stability and some other stability notions in constrained optimization. I...

  20. Application of Optimization Techniques to a Nonlinear Problem of Communication Network Design With Nonlinear Constraints

    Science.gov (United States)

    2002-06-01

    IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE

  1. Nonlinear tearing mode study using the almost ideal magnetohydrodynamics (MHD) constraint

    Energy Technology Data Exchange (ETDEWEB)

    Ren, C.; Callen, J.D. [Univ. of Wisconsin, Madison, WI (United States); Jensen, T.H. [General Atomics, San Diego, CA (United States)

    1998-12-31

    The tearing mode is an important resistive magnetohydrodynamics (MHD) mode. It perturbs the initial equilibrium magnetic flux surfaces through magnetic field line reconnection to form new flux surfaces with magnetic islands. In the study of the tearing mode, usually the initial equilibria are one dimensional with two ignorable coordinates and the perturbed equilibria are two dimensional with one ignorable coordinate. The tearing mode can be linearly unstable and its growth saturates at a fine amplitude. The neoclassical tearing mode theory shows that the mode can be nonlinearly driven by the bootstrap current even when it is linearly stable to the classical tearing mode. It is important to study the nonlinear behavior of the tearing mode. As an intrinsically nonlinear approach, the use of the almost ideal MHD constraint is suited to study the nonlinear properties of the tearing mode. In this paper, as a validation of the method, the authors study two characteristics of the tearing mode using the almost ideal MHD constraint: (1) the linear stability condition for the initial one dimensional equilibrium; and (2) the final saturation level for the unstable case. In this work, they only consider the simplest case where no gradient of pressure or current density exists at the mode resonant surface.

  2. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    Science.gov (United States)

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  3. Non-linear modal analysis of structural components subjected to unilateral constraints

    Science.gov (United States)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2017-02-01

    In this paper, we present a detailed numerical study of the non-linear dynamics in structural components under unilateral contact constraints. Here, the unilateral term characterises the constitutive law of the restoring force in the constraints as they only sustain elastic reactions in one direction, either compressive or tensile. Thus, the non-differentiability of the contact law at the discontinuity point is the only source of non-linearity. In our approach, the discrete lattice method (DLM) is used to treat the continuous system as a piecewise linear model. Thus, the trajectory of each node in the discrete model would be a sequence of smooth solutions with the switching times between them. The application of the one-step integration scheme allows us to detect the occurrence of contact (i.e. the instants that the lattice nodes cross the discontinuity boundary) and consequently update the active constraints. We also consider embedding the bisection algorithm into the time integration procedure to localise the instants at which the nodes cross the boundary and minimise the accumulative error. Subsequently, the resulting unconditionally stable integration scheme is utilised as the modelling tool in combination with the shooting technique to perform a novel non-smooth modal analysis. In analogy with the smooth non-linear systems, the evolution of non-smooth periodic motions is presented in the frequency-stiffness plots. We apply our method to obtain non-linear normal modes (NNMs) for a number of representative problems, including a bar-obstacle system, a beam-substrate system and a granular chain with tensionless interactions. These numerical examples demonstrate the efficiency of the solution procedure to trace the family of energy-independent non-linear modes across the range of contact stiffnesses. Moreover, the stability analysis of the modes on the plot backbone reveal that they may become unstable due to the interaction with the higher modes or bifurcation of

  4. Adaptive NN Control Using Integral Barrier Lyapunov Functionals for Uncertain Nonlinear Block-Triangular Constraint Systems.

    Science.gov (United States)

    Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2016-09-19

    A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.

  5. A high performance neural network for solving nonlinear programming problems with hybrid constraints

    Science.gov (United States)

    Tao, Qing; Cao, Jinde; Xue, Meisheng; Qiao, Hong

    2001-09-01

    A continuous neural network is proposed in this Letter for solving optimization problems. It not only can solve nonlinear programming problems with the constraints of equality and inequality, but also has a higher performance. The main advantage of the network is that it is an extension of Newton's gradient method for constrained problems, the dynamic behavior of the network under special constraints and the convergence rate can be investigated. Furthermore, the proposed network is simpler than the existing networks even for solving positive definite quadratic programming problems. The network considered is constrained by a projection operator on a convex set. The advanced performance of the proposed network is demonstrated by means of simulation of several numerical examples.

  6. Adaptive neural control of nonlinear MIMO systems with time-varying output constraints.

    Science.gov (United States)

    Meng, Wenchao; Yang, Qinmin; Sun, Youxian

    2015-05-01

    In this paper, adaptive neural control is investigated for a class of unknown multiple-input multiple-output nonlinear systems with time-varying asymmetric output constraints. To ensure constraint satisfaction, we employ a system transformation technique to transform the original constrained (in the sense of the output restrictions) system into an equivalent unconstrained one, whose stability is sufficient to solve the output constraint problem. It is shown that output tracking is achieved without violation of the output constraint. More specifically, we can shape the system performance arbitrarily on transient and steady-state stages with the output evolving in predefined time-varying boundaries all the time. A single neural network, whose weights are tuned online, is used in our design to approximate the unknown functions in the system dynamics, while the singularity problem of the control coefficient matrix is avoided without assumption on the prior knowledge of control input's bound. All the signals in the closed-loop system are proved to be semiglobally uniformly ultimately bounded via Lyapunov synthesis. Finally, the merits of the proposed controller are verified in the simulation environment.

  7. Controlled Synchronization of One Class of Nonlinear Systems under Information Constraints

    CERN Document Server

    Fradkov, Alexander L; Evans, Robin J

    2007-01-01

    Output feedback controlled synchronization problems for a class of nonlinear unstable systems under information constraints imposed by limited capacity of the communication channel are analyzed. A binary time-varying coder-decoder scheme is described and a theoretical analysis for multi-dimensional master-slave systems represented in Lurie form (linear part plus nonlinearity depending only on measurable outputs) is provided. An output feedback control law is proposed based on the Passification Theorem. It is shown that the synchronization error exponentially tends to zero for sufficiantly high transmission rate (channel capacity). The results obtained for synchronization problem can be extended to tracking problems in a straightforward manner, if the reference signal is described by an {external} ({exogenious}) state space model. The results are applied to controlled synchronization of two chaotic Chua systems via a communication channel with limited capacity.

  8. Electroweak constraints on flavorful effective theories

    CERN Document Server

    Efrati, Aielet; Soreq, Yotam

    2015-01-01

    We derive model-independent constraints arising from the Z and W boson observables on dimension six operators in the effective theory beyond the Standard Model. In particular, we discuss the generic flavor structure for these operators as well as several flavor patterns motivated by simple new physics scenarios.

  9. Electroweak constraints on flavorful effective theories

    Science.gov (United States)

    Efrati, Aielet; Falkowski, Adam; Soreq, Yotam

    2015-07-01

    We derive model-independent constraints arising from the Z and W boson observables on dimension six operators in the effective theory beyond the Standard Model. In particular, we discuss the generic flavor structure for these operators as well as several flavor patterns motivated by simple new physics scenarios.

  10. Nonlinear effects in asymmetric catalysis.

    Science.gov (United States)

    Satyanarayana, Tummanapalli; Abraham, Susan; Kagan, Henri B

    2009-01-01

    There is a need for the preparation of enantiomerically pure compounds for various applications. An efficient approach to achieve this goal is asymmetric catalysis. The chiral catalyst is usually prepared from a chiral auxiliary, which itself is derived from a natural product or by resolution of a racemic precursor. The use of non-enantiopure chiral auxiliaries in asymmetric catalysis seems unattractive to preparative chemists, since the anticipated enantiomeric excess (ee) of the reaction product should be proportional to the ee value of the chiral auxiliary (linearity). In fact, some deviation from linearity may arise. Such nonlinear effects can be rich in mechanistic information and can be synthetically useful (asymmetric amplification). This Review documents the advances made during the last decade in the use of nonlinear effects in the area of organometallic and organic catalysis.

  11. Consensus Control of Nonlinear Multiagent Systems With Time-Varying State Constraints.

    Science.gov (United States)

    Meng, Wenchao; Yang, Qinmin; Si, Jennie; Sun, Youxian

    2016-12-01

    In this paper, we present a novel adaptive consensus algorithm for a class of nonlinear multiagent systems with time-varying asymmetric state constraints. As such, our contribution is a step forward beyond the usual consensus stabilization result to show that the states of the agents remain within a user defined, time-varying bound. To prove our new results, the original multiagent system is transformed into a new one. Stabilization and consensus of transformed states are sufficient to ensure the consensus of the original networked agents without violating of the predefined asymmetric time-varying state constraints. A single neural network (NN), whose weights are tuned online, is used in our design to approximate the unknown functions in the agent's dynamics. To account for the NN approximation residual, reconstruction error, and external disturbances, a robust term is introduced into the approximating system equation. Additionally in our design, each agent only exchanges the information with its neighbor agents, and thus the proposed consensus algorithm is decentralized. The theoretical results are proved via Lyapunov synthesis. Finally, simulations are performed on a nonlinear multiagent system to illustrate the performance of our consensus design scheme.

  12. Understanding nonlinear effects and losses

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.

    1995-10-01

    With the planned construction of a large hadron collider (LHC) and a major upgrade of LEP (LEP-II) at CERN, a {Phi}-factory at Frascatti, and B-factories at SLAC (PEP-II) and KEK (KEK-B), we are now entering new energy and intensity regimes in both electron and proton circular colliders. Understanding and accurately estimating dynamic apertures and particle loss rates under both injection and colliding beam conditions is of primary importance. This paper summarizes discussions on Understanding Nonlinear Effects and Losses that took place in Working Group Three at the September 1994 Conference on Nonlinear Dynamics in Particle Accelerators at Arcidosso, Italy. Questions addressed were: {open_quotes}What do simulations indicate as the underlying causes of particle loss?{close_quotes} and {open_quotes}Do experiments agree with simulations-and if not, why not?{close_quotes} Special attention was given to a discrepancy between dynamic aperture measurements and theoretical predictions at HERA.

  13. A UNIVERSAL APPROACH FOR CONTINUOUS OR DISCRETE NONLINEAR PROGRAMMINGS WITH MULTIPLE VARIABLES AND CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with respect to design variables. This approach can be efficiently used to solve continuous and, in particular, discrete programmings with arbitrary design variables and constraints. As a search method, this approach requires only computations of the functions and their partial derivatives or differences with respect to design variables, rather than any solution of mathematic equations. The present approach has been applied on many numerical examples as well as on some classical operational problems such as one-dimensional and two-dimensional knap-sack problems, one-dimensional and two-dimensional resource-distribution problems, problems of working reliability of composite systems and loading problems of machine, and more efficient and reliable solutions are obtained than traditional methods. The present approach can be used without limitation of modeling scales of the problem. Optimum solutions can be guaranteed as long as the objective function,constraint functions and their first-order derivatives/differences exist in the feasible domain or feasible set. There are no failures of convergence and instability when this approach is adopted.

  14. Nonlinear Effects in the Cosmic Microwave Background

    CERN Document Server

    Maartens, R

    2000-01-01

    Major advances in the observation and theory of cosmic microwave background anisotropies have opened up a new era in cosmology. This has encouraged the hope that the fundamental parameters of cosmology will be determined to high accuracy in the near future. However, this optimism should not obscure the ongoing need for theoretical developments that go beyond the highly successful but simplified standard model. Such developments include improvements in observational modelling (e.g. foregrounds, non-Gaussian features), extensions and alternatives to the simplest inflationary paradigm (e.g. non-adiabatic effects, defects), and investigation of nonlinear effects. In addition to well known nonlinear effects such as the Rees-Sciama and Ostriker-Vishniac effects, further nonlinear effects have recently been identified. These include a Rees-Sciama-type tensor effect, time-delay effects of scalar and tensor lensing, nonlinear Thomson scattering effects and a nonlinear shear effect. Some of the nonlinear effects and th...

  15. Imposing nonlinear constraints when estimating genetic and cultural transmission under assortative mating: a simulation study using Mx and BUGS.

    Science.gov (United States)

    van den Berg, Stéphanie M

    2009-01-01

    Modeling both genetic and cultural transmission in parent-offspring data in the presence of phenotypic assortment requires the imposition of nonlinear constraints. This article reports a simulation study that determined how well the structural equation modeling software package Mx and the Bayesian-oriented BUGS software package can handle such nonlinear constraints under various conditions. Results generally showed good and comparable results for Mx and BUGS, although BUGS was much slower than Mx. However, since BUGS uses Markov-chain Monte Carlo estimation it could be used for parent-offspring models with non-normal data and/or item-response theory models.

  16. Eluding the Physical Constraints in a Nonlinear Interaction Sound Synthesis Model for Gesture Guidance

    Directory of Open Access Journals (Sweden)

    Etienne Thoret

    2016-06-01

    Full Text Available In this paper, a flexible control strategy for a synthesis model dedicated to nonlinear friction phenomena is proposed. This model enables to synthesize different types of sound sources, such as creaky doors, singing glasses, squeaking wet plates or bowed strings. Based on the perceptual stance that a sound is perceived as the result of an action on an object we propose a genuine source/filter synthesis approach that enables to elude physical constraints induced by the coupling between the interacting objects. This approach makes it possible to independently control and freely combine the action and the object. Different implementations and applications related to computer animation, gesture learning for rehabilitation and expert gestures are presented at the end of this paper.

  17. EXACT AUGMENTED LAGRANGIAN FUNCTION FOR NONLINEAR PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    DU Xue-wu; ZHANG Lian-sheng; SHANG You-lin; LI Ming-ming

    2005-01-01

    An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions,the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, from the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.

  18. Computation of Value Functions in Nonlinear Differential Games with State Constraints

    KAUST Repository

    Botkin, Nikolai

    2013-01-01

    Finite-difference schemes for the computation of value functions of nonlinear differential games with non-terminal payoff functional and state constraints are proposed. The solution method is based on the fact that the value function is a generalized viscosity solution of the corresponding Hamilton-Jacobi-Bellman-Isaacs equation. Such a viscosity solution is defined as a function satisfying differential inequalities introduced by M. G. Crandall and P. L. Lions. The difference with the classical case is that these inequalities hold on an unknown in advance subset of the state space. The convergence rate of the numerical schemes is given. Numerical solution to a non-trivial three-dimensional example is presented. © 2013 IFIP International Federation for Information Processing.

  19. Effective constraints of loop quantum gravity

    CERN Document Server

    Bojowald, M; Kagan, M; Skirzewski, A; Bojowald, Martin; Hernandez, Hector; Kagan, Mikhail; Skirzewski, Aureliano

    2006-01-01

    Within a perturbative cosmological regime of loop quantum gravity corrections to effective constraints are computed. This takes into account all inhomogeneous degrees of freedom relevant for scalar metric modes around flat space and results in explicit expressions for modified coefficients and of higher order terms. It also illustrates the role of different scales determining the relative magnitude of corrections. Our results demonstrate that loop quantum gravity has the correct classical limit, at least in its sector of cosmological perturbations around flat space, in the sense of perturbative effective theory.

  20. Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints

    Science.gov (United States)

    Cassidy, Ian L.

    control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.

  1. The Effective AC Response of Nonlinear Composites

    Institute of Scientific and Technical Information of China (English)

    WEI En-Bo; GU Guo-Qing

    2001-01-01

    A perturbative approach is used to study the AC response of nonlinear composite media, which obey a current-field relation of the form J = σ E + χ|E|2 E with components having nonlinear response at finite frequencies. For a sinusoidal applied field, we extend the local potential in terms of sinusoidal components at fundamental frequency and high-order harmonic frequencies to treat the nonlinear composites. For nonlinear composite media vith a low concentrations of spherical inclusions, we give the formulae of the nonlinear effective AC susceptibility χ*3ω at the third harmonic frequency.

  2. Imposing nonlinear constraints when estimating genetic and cultural transmission under assortative mating: a simulation study using Mx and BUGS

    NARCIS (Netherlands)

    van den Berg, Stéphanie Martine

    2009-01-01

    Modeling both genetic and cultural transmission in parent-offspring data in the presence of phenotypic assortment requires the imposition of nonlinear constraints. This article reports a simulation study that determined how well the structural equation modeling software package Mx and the

  3. Imposing Nonlinear Constraints When Estimating Genetic and Cultural Transmission Under Assortative Mating: A Simulation Study Using Mx and BUGS

    NARCIS (Netherlands)

    Berg, van den Stephanie M.

    2009-01-01

    Modeling both genetic and cultural transmission in parent-offspring data in the presence of phenotypic assortment requires the imposition of nonlinear constraints. This article reports a simulation study that determined how well the structural equation modeling software package Mx and the Bayesian-o

  4. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    Science.gov (United States)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  5. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    Science.gov (United States)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory

  6. Exploring soft constraints on effective actions

    CERN Document Server

    Bianchi, Massimo; Huang, Yu-tin; Lee, Chao-Jung; Wen, Congkao

    2016-01-01

    We study effective actions for simultaneous breaking of space-time and internal symmetries. Novel features arise due to the mixing of Goldstone modes under the broken symmetries which, in contrast to the usual Adler's zero, leads to non-vanishing soft limits. Such scenarios are common for spontaneously broken SCFT's. We explicitly test these soft theorems for $\\mathcal{N}=4$ sYM in the Coulomb branch both perturbatively and non-perturbatively. We explore the soft constraints systematically utilizing recursion relations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to order $s^{n} \\sim \\partial^{2n}$ are completely determined in terms of the $k$-point amplitudes at order $s^k$ with $k \\leq n$. Terms with at most one derivative acting on each dilaton insertion are completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in AdS. With maximal supersymmetry, the effective actions are further constrained, leading to new non-renormalization theorems. In particu...

  7. Cosmological effects of nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)

    2007-06-07

    It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.

  8. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  9. Effective ac response in weakly nonlinear composites

    Energy Technology Data Exchange (ETDEWEB)

    Wei Enbo [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Yang Zidong [College of Power Engineering, University of Shanghai Science and Technology, Shanghai 200093 (China); Gu Guoqing [Information College of Science and Technology, East China Normal University, Shanghai 200062 (China)

    2004-01-07

    The perturbation method is developed to deal with the problem of determining the effective nonlinear conductivity of Kerr-like nonlinear media under an external ac electric field. As an example, we have considered the cylindrical inclusion embedded in a host under the sinusoidal external field E{sub 1} sin (<{omega}t) + E{sub 3} sin (3<{omega}t) with frequencies{omega} and 3{omega}. The potentials of composites at higher harmonics are derived in both local inclusion particle and host regions. The effective responses of bulk nonlinear composites at basic frequency and harmonics are given for cylindrical composites in the dilute limit. Moreover, the relationships between the nonlinear effective responses at the basic frequency and the third harmonics are derived.

  10. Enhanced Nonlinear Effects in Metamaterials and Plasmonics

    Directory of Open Access Journals (Sweden)

    C. Argyropoulos

    2012-07-01

    Full Text Available In this paper we provide an overview of the anomalous and enhanced nonlinear effects available when optical nonlinear materials are combined inside plasmonic waveguide structures. Broad, bistable and all-optical switching responses are exhibited at the cut-off frequency of these waveguides, characterized by reduced Q-factor resonances. These phenomena are due to the large field enhancement obtained inside specific plasmonic gratings, which ensures a significant boosting of the nonlinear operation. Several exciting applications are proposed, which may potentially lead to new optical components and add to the optical nanocircuit paradigm.

  11. Recent Issues on Nonlinear Effects in Optical Fibers

    Institute of Scientific and Technical Information of China (English)

    Takashi; Inoue; Osamu; Aso; Shu; Namiki

    2003-01-01

    This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.

  12. Non-linear Global Optimization using Interval Arithmetic and Constraint Propagation

    DEFF Research Database (Denmark)

    Kjøller, Steffen; Kozine, Pavel; Madsen, Kaj;

    2006-01-01

    In this Chapter a new branch-and-bound method for global optimization is presented. The method combines the classical interval global optimization method with constraint propagation techniques. The latter is used for including solutions of the necessary condition f'(x)=0. The constraint propagation...

  13. Quantum Information Processing using Nonlinear Optical Effects

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling

    of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...

  14. Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters

    Science.gov (United States)

    Jang, Jinwoo; Smyth, Andrew W.

    2017-01-01

    The objective of structural model updating is to reduce inherent modeling errors in Finite Element (FE) models due to simplifications, idealized connections, and uncertainties of material properties. Updated FE models, which have less discrepancies with real structures, give more precise predictions of dynamic behaviors for future analyses. However, model updating becomes more difficult when applied to civil structures with a large number of structural components and complicated connections. In this paper, a full-scale FE model of a major long-span bridge has been updated for improved consistency with real measured data. Two methods are applied to improve the model updating process. The first method focuses on improving the agreement of the updated mode shapes with the measured data. A nonlinear inequality constraint equation is used to an optimization procedure, providing the capability to regulate updated mode shapes to remain within reasonable agreements with those observed. An interior point algorithm deals with nonlinearity in the objective function and constraints. The second method finds very efficient updating parameters in a more systematic way. The selection of updating parameters in FE models is essential to have a successful updating result because the parameters are directly related to the modal properties of dynamic systems. An in-depth sensitivity analysis is carried out in an effort to precisely understand the effects of physical parameters in the FE model on natural frequencies. Based on the sensitivity analysis, cluster analysis is conducted to find a very efficient set of updating parameters.

  15. Proficiency and sentence constraint effects on second language word learning.

    Science.gov (United States)

    Ma, Tengfei; Chen, Baoguo; Lu, Chunming; Dunlap, Susan

    2015-07-01

    This paper presents an experiment that investigated the effects of L2 proficiency and sentence constraint on semantic processing of unknown L2 words (pseudowords). All participants were Chinese native speakers who learned English as a second language. In the experiment, we used a whole sentence presentation paradigm with a delayed semantic relatedness judgment task. Both higher and lower-proficiency L2 learners could make use of the high-constraint sentence context to judge the meaning of novel pseudowords, and higher-proficiency L2 learners outperformed lower-proficiency L2 learners in all conditions. These results demonstrate that both L2 proficiency and sentence constraint affect subsequent word learning among second language learners. We extended L2 word learning into a sentence context, replicated the sentence constraint effects previously found among native speakers, and found proficiency effects in L2 word learning.

  16. Nonlinear Dispersion Effect on Wave Transformation

    Institute of Scientific and Technical Information of China (English)

    LI Ruijie; Dong-Young LEE

    2000-01-01

    A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986), and which has a better approximation to Hedges' empirical relation than the modilied relations by Hedges (1987). Kirby and Dahymple (1987) for shallow waters. The new dispersion relation is simple in form. thus it can be used easily in practice. Meanwhile. a general explicil approximalion to the new dispersion rela tion and olher nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking inlo account weakly nonlinear effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed vith the new dispersion relation predicts wave translornation over complicated topography quite well.

  17. Nonlinear peltier effect in quantum point contacts

    Science.gov (United States)

    Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi

    1998-11-01

    A theoretical analysis of the Peltier effect in two-dimensional quantum point contacts, in field-free conditions and under the influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation. Oscillations of the Peltier coefficient in a magnetic field are demonstrated.

  18. Numerical solution of the stationary multicomponent nonlinear Schrödinger equation with a constraint on the angular momentum.

    Science.gov (United States)

    Sandin, Patrik; Ögren, Magnus; Gulliksson, Mårten

    2016-03-01

    We formulate a damped oscillating particle method to solve the stationary nonlinear Schrödinger equation (NLSE). The ground-state solutions are found by a converging damped oscillating evolution equation that can be discretized with symplectic numerical techniques. The method is demonstrated for three different cases: for the single-component NLSE with an attractive self-interaction, for the single-component NLSE with a repulsive self-interaction and a constraint on the angular momentum, and for the two-component NLSE with a constraint on the total angular momentum. We reproduce the so-called yrast curve for the single-component case, described in [A. D. Jackson et al., Europhys. Lett. 95, 30002 (2011)], and produce for the first time an analogous curve for the two-component NLSE. The numerical results are compared with analytic solutions and competing numerical methods. Our method is well suited to handle a large class of equations and can easily be adapted to further constraints and components.

  19. Topological nature of nonlinear optical effects in solids

    OpenAIRE

    Morimoto, Takahiro; Nagaosa, Naoto

    2015-01-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by the strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by the nonlinear suscepti...

  20. New nonlinear polarization effects for frequency selection

    Science.gov (United States)

    Karagodova, Tamara Y.; Karagodov, Alexander I.

    1998-05-01

    The method of computer simulations on nonlinear resonant magnetooptical effects developed for real multi-level atoms in the two laser fields of arbitrary intensity and external magnetic field is applied for the polarization effects of different types calculations and investigations of the dependence of the characteristics of these effects on magnetic field strength, intensities, polarization and detunings of laser fields for alkaline atoms. The essence of the method consists in simulations and analysis of the plots of dependence of quasi energies on parameters, which are obtained with the help of sorting subprogram, and selection of suitable algorithms for calculations of characteristics of nonlinear resonant magnetooptical effects. One photon and two photon resonant effects are investigated for wide range of magnetic field strength from Zeeman to Paschen Back effects. Some new features in the spectra of rotation of plane of polarization and circular dichroism of different types are predicted. The results show the agreement with known experiments. Such calculations of nonlinear resonant magnetooptical effects in the intense laser fields resonant to adjacent transitions and magnetic field show the opportunity of investigation the modifications of electronic structure due to intense radiation fields and strong external magnetic field in atomic gases and also may be used for the treatment of new methods of phase-polarization selection of modes of tunable lasers.

  1. A Smooth Newton Method for Nonlinear Programming Problems with Inequality Constraints

    Directory of Open Access Journals (Sweden)

    Vasile Moraru

    2012-02-01

    Full Text Available The paper presents a reformulation of the Karush-Kuhn-Tucker (KKT system associated nonlinear programming problem into an equivalent system of smooth equations. Classical Newton method is applied to solve the system of equations. The superlinear convergence of the primal sequence, generated by proposed method, is proved. The preliminary numerical results with a problems test set are presented.

  2. Controllable spatiotemporal nonlinear effects in multimode fibres

    Science.gov (United States)

    Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.

    2015-05-01

    Multimode fibres are of interest for next-generation telecommunications systems and the construction of high-energy fibre lasers. However, relatively little work has explored nonlinear pulse propagation in multimode fibres. Here, we consider highly nonlinear ultrashort pulse propagation in the anomalous-dispersion regime of a graded-index multimode fibre. Low modal dispersion and strong nonlinear coupling between the fibre's many spatial modes result in interesting behaviour. We observe spatiotemporal effects reminiscent of nonlinear optics in bulk media—self-focusing and multiple filamentation—at a fraction of the usual power. By adjusting the spatial initial conditions, we generate on-demand, megawatt, ultrashort pulses tunable between 1,550 and 2,200 nm dispersive waves over one octave; intense combs of visible light; and a multi-octave-spanning supercontinuum. Our results indicate that multimode fibres present unique opportunities for observing new spatiotemporal dynamics and phenomena. They also enable the realization of a new type of tunable, broadband fibre source that could be useful for many applications.

  3. A NONMONOTONE TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION SUBJECT TO GENERAL CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    Hongchao Zhang

    2003-01-01

    In this paper we present a nonmonotone trust region algorithm for general nonlinear constrained optimization problems. The main idea of this paper is to combine Yuan's technique[1] with a nonmonotone method similar to Ke and Han [2]. This new algorithm may not only keep the robust properties of the algorithm given by Yuan, but also have some advantages led by the nonmonotone technique. Under very mild conditions, global convergence for the algorithm is given. Numerical experiments demonstrate the efficiency of the algorithm.

  4. Dynamical effects of overparametrization in nonlinear models

    Science.gov (United States)

    Aguirre, Luis Antonio; Billings, S. A.

    1995-01-01

    This paper is concemed with dynamical reconstruction for nonlinear systems. The effects of the driving function and of the complexity of a given representation on the bifurcation patter are investigated. It is shown that the use of different driving functions to excite the system may yield models with different bifurcation patterns. The complexity of the reconstructions considered is quantified by the embedding dimension and the number of estimated parameters. In this respect it appears that models which reproduce the original bifurcation behaviour are of limited complexity and that excessively complex models tend to induce ghost bifurcations and spurious dynamical regimes. Moreover, some results suggest that the effects of overparametrization on the global dynamical behaviour of a nonlinear model may be more deleterious than the presence of moderate noise levels. In order to precisely quantify the complexity of the reconstructions, global polynomials are used although the results are believed to apply to a much wider class of representations including neural networks.

  5. Study of Welding Distortion and Residual Stress Considering Nonlinear Yield Stress Curves and Multi-constraint Equations

    Science.gov (United States)

    Rong, Youmin; Zhang, Guojun; Huang, Yu

    2016-10-01

    Inherent strain analysis has been successfully applied to predict welding deformations of large-scale structural components, while thermal-elastic-plastic finite element method is rarely used for its disadvantages of long calculation period and large storage space. In this paper, a hybrid model considering nonlinear yield stress curves and multi-constraint equations to thermal-elastic-plastic analysis is further proposed to predict welding distortions and residual stresses of large-scale structures. For welding T-joint structural steel S355JR by metal active gas welding, the published experiment results of temperature and displacement fields are applied to illustrate the credibility of the proposed integration model. By comparing numerical results of four different cases with the experiment results, it is verified that prediction precision of welding deformations and residual stresses is apparently improved considering the power-law hardening model, and computational time is also obviously shortened about 30.14% using multi-constraint equations. On the whole, the proposed hybrid method can be further used to precisely and efficiently predict welding deformations and residual stresses of large-scale structures.

  6. The Nonlinear Talbot Effect of Rogue Waves

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-01-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schr\\"odinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a \\pi-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  7. Methodological Constraints for Detecting the Modality Effect

    Science.gov (United States)

    Schoor, Cornelia; Bannert, Maria; Jahn, Verena

    2011-01-01

    Introduction: The aim of our research was to investigate the modality effect in more detail by measuring it in a direct way. Two studies were conducted using the same subject and material. Method: Computer-based learning material was presented on several screens, each containing a short text and a picture. Modality was varied by presenting written…

  8. Effective theories and constraints on new phyhsics

    CERN Document Server

    Martínez, R; Rodríguez, José Alberto

    2003-01-01

    Anomalous moments of the top quark arises from one loop corrections to the vertices $\\bar t t g$ and $\\bar t t \\gamma$. We study these anomalous couplings in different frameworks: effective theories, Standard Model and 2HDM. We use available experimental results in order to get bounds on these anomalous couplings.

  9. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Irwin Yousept

    2010-07-01

    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  10. Gamma Ray Line Constraints on Effective Theories of Dark Matter

    CERN Document Server

    Goodman, Jessica; Rajaraman, Arvind; Shepherd, William; Tait, Tim M P; Yu, Hai-Bo

    2010-01-01

    A monochromatic gamma ray line results when dark matter particles in the galactic halo annihilate to produce a two body final state which includes a photon. Such a signal is very distinctive from astrophysical backgrounds, and thus represents an incisive probe of theories of dark matter. We compare the recent null results of searches for gamma ray lines in the galactic center and other regions of the sky with the predictions of effective theories describing the interactions of dark matter particles with the Standard Model. We find that the null results of these searches provide constraints on the nature of dark matter interactions with ordinary matter which are complementary to constraints from other observables, and stronger than collider constraints in some cases.

  11. The Geometric Nonlinear Generalized Brazier Effect

    DEFF Research Database (Denmark)

    Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Damkilde, Lars

    2016-01-01

    denoted the generalized Brazier effect. The original work of Brazier dealt with very large deformations that changed the cross section significantly and hereby also the bending moment of inertia and the bending moment capacity. In this paper the aim is to describe the Brazier effect for smaller...... that the generalized Brazier effect is a local effect not influencing the overall mechanical behavior of the structure significantly. The offset is a nonlinear geometric beam-type Finite Element calculation, which takes into account the large displacements and rotations. The beam-type model defines the stresses which...... deformation not taking into account the change in moment of inertia. However, the generalized Brazier effect gives additional stresses directed perpendicular to the beam axis. In composite structures these extra stresses may influence the fatigue life significantly. The paper demonstrates a linearized method...

  12. Enhanced Kerr electro-optic nonlinearity through cascaded Pockels effects

    CERN Document Server

    Li, Guang-Zhen; Jiang, Hao-Wei; Chen, Xian-Feng

    2015-01-01

    We demonstrated a large enhancement of Kerr electro-optic nonlinearity through cascaded Pockels effects in a domain inversion ferroelectric crystal. We designed a structure that can implement the cascaded Pockels effects and second-harmonic generation simultaneously. The energy coupling between the fundamental lights of different polarizations led to a large nonlinear phase shift, and thus an effective electro-optic nonlinear refractive index. The effective nonlinearity can be either positive or negative, causing the second-harmonic spectra to move towards the coupling center, which in turn, offered us a way to measure the effective electro-optic nonlinear refractive index. The corresponding enhanced Kerr electro-optic nonlinearity is more than three orders of magnitude higher than the intrinsic value. These results open a door to manipulate the nonlinear phase by applying external electric field instead of light intensity in noncentrosymmetric crystals.

  13. A transformation similarity constraint for groupwise nonlinear registration in longitudinal neuroimaging studies

    Science.gov (United States)

    Fleishman, Greg M.; Gutman, Boris A.; Fletcher, P. Thomas; Thompson, Paul

    2015-03-01

    Patients with Alzheimer's disease and other brain disorders often show a similar spatial distribution of volume change throughout the brain over time, but this information is not yet used in registration algorithms to refine the quantification of change. Here, we develop a mathematical basis to incorporate that prior information into a longitudinal structural neuroimaging study. We modify the canonical minimization problem for non-linear registration to include a term that couples a collection of registrations together to enforce group similarity. More specifically, throughout the computation we maintain a group-level representation of the transformations and constrain updates to individual transformations to be similar to this representation. The derivations necessary to produce the Euler-Lagrange equations for the coupling term are presented and a gradient descent algorithm based on the formulation was implemented. We demonstrate using 57 longitudinal image pairs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) that longitudinal registration with such a groupwise coupling prior is more robust to noise in estimating change, suggesting such change maps may have several important applications.

  14. Analysis on the effect of nonlinear polarization evolution in nonlinear amplifying loop mirror

    Institute of Scientific and Technical Information of China (English)

    Feng Qu; Xiaoming Liu; Pu Zhang; Xubiao Jiang; Hongming Zhang; Minyu Yao

    2005-01-01

    By considering the cross phase modulation (XPM) between the two orthogonal poparization components,the nonlinear birefringence and nonlinear polarization evolution (NPE) in highly-nonlinear fiber (HNLF),as well as the unequal evolutions of the state of polarization (SOP) between the clockwise (CW) and counter-clockwise (CCW) waves in a nonlinear amplifying loop mirror (NALM) are analyzed. It is pointed out that the traditional cosine expression is no longer valid for the power transmission of NALM due to uncompleted interference under the high power condition. The analytical expression considering NPE effect is derived, and the experimental result is presented.

  15. Ecology: Nonlinearity and the Moran effect

    Science.gov (United States)

    Blasius, Bernd; Stone, Lewi

    2000-08-01

    The study of synchronization phenomena in ecology is important because it helps to explain interactions between population dynamics and extrinsic environmental variation. Grenfell et al. have examined synchronized fluctuations in the sizes of two populations of feral sheep which, although situated on close but isolated islands, were nevertheless strongly correlated (observed value of the population correlation, rp, 0.685). Using a nonlinear threshold model, they argue that this level of population correlation could only be explained if environmental stochasticity was correlated between the islands, with the environmental correlation, re, higher than 0.9 ``on average'' (Fig. 1a). This unusually high environmental correlation is far greater than would be predicted by the Moran effect, which states that the population correlation will equal the environmental correlation in a linear system. Grenfell et al. imply that a simple nonlinearity in population growth can mask or even destroy the Moran effect. Here we show that these surprising results are an artefact of the techniques used to measure noise correlations and synchronization.

  16. Constraints on the effective fluid theory of stationary branes

    CERN Document Server

    Armas, Jay

    2014-01-01

    We develop further the effective fluid theory of stationary branes. This formalism applies to stationary blackfolds as well as to other equilibrium brane systems at finite temperature. The effective theory is described by a Lagrangian containing the information about the elastic dynamics of the brane embedding as well as the hydrodynamics of the effective fluid living on the brane. The Lagrangian is corrected order-by-order in a derivative expansion, where we take into account the dipole moment of the brane which encompasses finite-thickness corrections, including transverse spin. We describe how to extract the thermodynamics from the Lagrangian and we obtain constraints on the higher-derivative terms with one and two derivatives. These constraints follow by comparing the brane thermodynamics with the conserved currents associated with background Killing vector fields. In particular, we fix uniquely the one- and two-derivative terms describing the coupling of the transverse spin to the background space-time. ...

  17. Modal Identification Using OMA Techniques: Nonlinearity Effect

    Directory of Open Access Journals (Sweden)

    E. Zhang

    2015-01-01

    Full Text Available This paper is focused on an assessment of the state of the art of operational modal analysis (OMA methodologies in estimating modal parameters from output responses of nonlinear structures. By means of the Volterra series, the nonlinear structure excited by random excitation is modeled as best linear approximation plus a term representing nonlinear distortions. As the nonlinear distortions are of stochastic nature and thus indistinguishable from the measurement noise, a protocol based on the use of the random phase multisine is proposed to reveal the accuracy and robustness of the linear OMA technique in the presence of the system nonlinearity. Several frequency- and time-domain based OMA techniques are examined for the modal identification of simulated and real nonlinear mechanical systems. Theoretical analyses are also provided to understand how the system nonlinearity degrades the performance of the OMA algorithms.

  18. Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects

    Science.gov (United States)

    Shen, Jianxin; Cong, Junzhuang; Chai, Yisheng; Shang, Dashan; Shen, Shipeng; Zhai, Kun; Tian, Ying; Sun, Young

    2016-08-01

    The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We use an alternative concept of nonvolatile memory based, on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The principle is to utilize the states of the magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, to store binary information. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure clearly demonstrate that the sign of the magnetoelectric coefficient can be repeatedly switched between positive and negative by applying electric fields, confirming the feasibility of this principle. This kind of nonvolatile memory has outstanding practical virtues such as simple structure, easy operation in writing and reading, low power, fast speed, and diverse materials available.

  19. Effects of Completeness and Purity on Cluster Dark Energy Constraints

    CERN Document Server

    Aguena, Michel

    2016-01-01

    The statistical properties of galaxy clusters can only be used for cosmological purposes if observational effects related to cluster detection are accurately characterized. These effects include the selection function associated to cluster finder algorithms and survey strategy. The importance of the selection becomes apparent when different cluster finders are applied to the same galaxy catalog, producing different cluster samples. We consider parametrized functional forms for the observable-mass relation, its scatter as well as the completeness and purity of cluster samples, and study how prior knowledge on these function parameters affects dark energy constraints derived from cluster statistics. Under the assumption that completeness and purity reach 50 % at masses around 10^{13.5} Msun/h, we find that self-calibration of selection parameters in current and upcoming cluster surveys is possible, while still allowing for competitive dark energy constraints. We consider a fiducial survey with specifications si...

  20. Consistent constraints on the Standard Model Effective Field Theory

    CERN Document Server

    Berthier, Laure

    2015-01-01

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, $\\Lambda \\gtrsim \\, 3 \\, {\\rm TeV}$. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an $\\rm S,T$ analysis is modified by the theory errors we include as an illustrative example.

  1. Nonlinear Vibration of a Multirotor System Connected by a Flexible Coupling Subjected to the Holonomic Constraint of Dynamic Angular Misalignment

    Directory of Open Access Journals (Sweden)

    M. Li

    2012-01-01

    Full Text Available This paper proposes a mathematical model of the multirotor system with a flexible coupling on spring supports on Lagrange's approach, which has taken into account the effects of dynamic angular misalignment and mass unbalance. Then its nonlinear dynamic behaviors of the system are discussed based on the method of multiple scales and numerical technique, respectively. The results show that the responses of the system in lateral directions contain a similar component to that of the mass unbalanced system on both the vibrating frequency and amplitude and involve the typical nonlinear components such as the ones from some combined frequencies; the results also reveal that the numerical agreements on the above-mentioned methods are perfect for the transient responses.

  2. Effects of Social Constraints on Career Maturity: The Mediating Effect of the Time Perspective

    Science.gov (United States)

    Kim, Kyung-Nyun; Oh, Se-Hee

    2013-01-01

    Previous studies have provided mixed results for the effects of social constraints on career maturity. However, there has been growing interest in these effects from the time perspective. Few studies have examined the effects of social constraints on the time perspective which in turn influences career maturity. This study examines the mediating…

  3. Vibrational mechanics nonlinear dynamic effects, general approach, applications

    CERN Document Server

    Blekhman, Iliya I

    2000-01-01

    This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat

  4. Analytical evaluation of nonlinear distortion effects on multicarrier signals

    CERN Document Server

    Araújo, Theresa

    2015-01-01

    Due to their ability to support reliable high quality of service as well as spectral and power efficiency, multicarrier modulation systems have found increasing use in modern communications services. However, one of the main drawbacks of these systems is their vulnerability to nonlinear distortion effects. Analytical Evaluation of Nonlinear Distortion Effects on Multicarrier Signals details a unified approach to well-known analytical results on memoryless nonlinearities that takes advantage of the Gaussian behavior of multicarrier signals.Sharing new insights into the behavior of nonlinearly d

  5. A Novel Effective Approach for Solving Fractional Nonlinear PDEs.

    Science.gov (United States)

    Aminikhah, Hossein; Malekzadeh, Nasrin; Rezazadeh, Hadi

    2014-01-01

    The present work introduces an effective modification of homotopy perturbation method for the solution of nonlinear time-fractional biological population model and a system of three nonlinear time-fractional partial differential equations. In this approach, the solution is considered a series expansion that converges to the nonlinear problem. The new approximate analytical procedure depends only on two iteratives. The analytical approximations to the solution are reliable and confirm the ability of the new homotopy perturbation method as an easy device for computing the solution of nonlinear equations.

  6. Effects of Particle Shape and Microstructure on Effective Nonlinear Response

    Institute of Scientific and Technical Information of China (English)

    HUANG Ji-Ping; LI Zhen-Ya

    2001-01-01

    We consider a binary granular composite medium, in which two materials have high-order nonlinearities.The effect of particle shape on effective nonlinear response (ENR) is investigated by assuming all the particles to be shaped as uniaxial ellipsoid. We discuss two types of arrangements of particles: 1) parallel axes (Case I); 2) random axes (Case II). During the process of numerical calculation, one component material is assumed to be linear, and two kinds of conductors are assumed to be at high conducting contrast. We find that: 1) the shape effect on ENR is possibly strong; 2) the enhanced ENR can even be obtained by choosing particles of appropriate ellipsoidal shapes; 3) the ENR enhancement predicted by Case I is much stronger than that by Case II.``

  7. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  8. Effective constraint potential in lattice Weinberg - Salam model

    CERN Document Server

    Polikarpov, M I

    2011-01-01

    We investigate lattice Weinberg - Salam model without fermions for the value of the Weinberg angle $\\theta_W \\sim 30^o$, and bare fine structure constant around $\\alpha \\sim 1/150$. We consider the value of the scalar self coupling corresponding to bare Higgs mass around 150 GeV. The effective constraint potential for the zero momentum scalar field is used in order to investigate phenomena existing in the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase of the lattice model. This is the region of the phase diagram, where the continuum physics is to be approached. We compare the above mentioned effective potential (calculated in selected gauges) with the effective potential for the value of the scalar field at a fixed space - time point. We also calculate the renormalized fine structure constant using the correlator of Polyakov lines and compare it with the one - loop perturbative estimate.

  9. Effects of the Crack Tip Constraint on the Fracture Assessment of an Al 5083-O Weldment for Low Temperature Applications

    Directory of Open Access Journals (Sweden)

    Dong Hyun Moon

    2017-07-01

    Full Text Available The constraint effect is the key issue in structural integrity assessments based on two parameter fracture mechanics (TPFM to make a precise prediction of the load-bearing capacity of cracked structural components. In this study, a constraint-based failure assessment diagram (FAD was used to assess the fracture behavior of an Al 5083-O weldment with various flaws at cryogenic temperature. The results were compared with those of BS 7910 Option 1 FAD, in terms of the maximum allowable stress. A series of fracture toughness tests were conducted with compact tension (CT specimens at room and cryogenic temperatures. The Q parameter for the Al 5083-O weldment was evaluated to quantify the constraint level, which is the difference between the actual stress, and the Hutchinson-Rice-Rosengren (HRR stress field near the crack tip. Nonlinear 3D finite element analysis was carried out to calculate the Q parameter at cryogenic temperature. Based on the experimental and numerical results, the influence of the constraint level correction on the allowable applied stress was investigated using a FAD methodology. The results showed that the constraint-based FAD procedure is essential to avoid an overly conservative allowable stress prediction in an Al 5083-O weldment with flaws.

  10. Topological nature of nonlinear optical effects in solids.

    Science.gov (United States)

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-05-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.

  11. Higher-order nonlinear effects in a Josephson parametric amplifier

    Science.gov (United States)

    Kochetov, Bogdan A.; Fedorov, Arkady

    2015-12-01

    Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.

  12. Conservation Laws in Higher-Order Nonlinear Optical Effects

    CERN Document Server

    Kim, J; Shin, H J; Kim, Jongbae

    1999-01-01

    Conservation laws of the nonlinear Schrödinger equation are studied in the presence of higher-order nonlinear optical effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive a general expression for infinitely many conserved currents and charges of the coupled higher-order nonlinear Schrödinger equation. The first few currents and charges are also presented explicitly. Due to the higher-order effects, conservation laws of the nonlinear Schrödinger equation are violated in general. The differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply that the higher-order terms determine the inherent types of conserved quantities for each integrable cases of the higher-order nonlinear Schrödinger equation.

  13. Nonlinear Mixed-Effects Models for Repairable Systems Reliability

    Institute of Scientific and Technical Information of China (English)

    TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE

    2007-01-01

    Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.

  14. Effect of gain nonlinearity in semiconductor lasers

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Christiansen, Peter Leth; Skovgaard, Ove

    1988-01-01

    Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2......+1)-dimensional Fokker-Planck equation is derived and integrated on an Amdahl VP1100 vector processor. Above threshold the resulting probability density agrees with the rate-equation predictions. The case of high-speed modulation is also considered. The nonlinear gain is found to stabilize the laser....

  15. Grain Constraint and Size Effects in Shape Memory Alloy Microwires

    Science.gov (United States)

    Ueland, Stian Melhus

    Shape memory alloys exhibit interesting and useful properties, such as the shape memory effect and superelasticity. Among the many alloy families that have been shown to exhibit shape memory properties the ones based on copper are interesting because they are relatively inexpensive and show excellent properties when made as single crystals. However, the performance ofthese alloys is severely compromised by the introduction of grain boundaries, to the point where they are too poor for commercial applications. This thesis studies the mechanical properties of fine Cobased wires with a bamboo microstructure, i.e., where triple junctions are absent and grain boundaries run perpendicular to the wire axis. These microwires are not single crystals, but their microstructure is not as complex as that of polycrystals either: we call this new class of shape memory alloys oligocrystals. This thesis seeks to better understand the relationship between microstructure and properties in these alloys through a combination of mechanical testing, in situ experiments and modeling. First, in situ scanning electron microscopy, together with finite element modeling, is used to understand the role of grain constraint on the martensitic transformation. Grain constraints are observed to be much less severe in oligocrystalline wires as compared to polycrystals. Oligocrystalline microwires are then thermomechanically tested and shown to exhibit excellent properties that approach those of single crystals. Next, property evolution during cycling is investigated, revealing training effects as well as fatigue life and fracture. Finally, size effects in damping and transformation morphology are studied and it is shown that a transition from a many-domain to a single domain martensite morphology takes place when the wire diameter is decreased. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  16. Effective multicasting algorithm for dynamic membership with delay constraint

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; XU Zheng-quan

    2006-01-01

    This paper proposes an effective heuristic algorithm for dynamic multicast routing with delay-constrained DDMR.The tree constructed by DDMR has the following characteristics: (1) multicast tree changes with the dynamic memberships; (2)the cost of the tree is as small as possible at each node addition/removal event; (3) all of the path delay meet a fixed delay constraint;(4) minimal perturbation to an existing tree. The proposed algorithm is based on "damage" and "usefulness" concepts proposed in previous work, and has a new parameter bf(Balancing Factor) for judging whether or not to rearrange a tree region when membership changes. Mutation operation in Genetic Algorithm (GA) is also employed to find an attached node for a new adding node.Simulation showed that our algorithm performs well and is better than static heuristic algorithms, in term of cost especially.

  17. Intra-Channel Nonlinear Effect on Optical PPM Pulse Transmission

    Institute of Scientific and Technical Information of China (English)

    Sun; Linghao; Jarmo; Takala

    2003-01-01

    PPM encoded Gaussian pulse sequence shows more immunity than non-PPM schemes on optical fiber intra-channel nonlinearity and demonstrated by a numerical study of IXPM and IFWM effects deploying on 100Gb/s single channelsystem.

  18. Effects of Nonlinearities on Induced Voltages across Lumped Devices

    Directory of Open Access Journals (Sweden)

    Ziya Mazloom

    2011-01-01

    Full Text Available There have been many studies on induced currents and voltages along overhead conductors due to lightning flashes. In most of these studies lumped loads and components are connected only as line terminations [1]-[4]. In studies where series and shunt connected components are connected along the lines the effects of nonlinear components and effects are disregarded [5]-[8]. This is not always correct as nonlinear effects will introduce high frequencies in the system and affect the current and voltage wave distribution. In this paper the effects of series and shunt components and nonlinear phenomenon on a system representative of the Swedish electrified railway system will be investigated. It is seen how introduction of different linear and nonlinear components affect the propagating voltage wave forms.

  19. Effective nonlinear AC response to composite with spherical particles

    Institute of Scientific and Technical Information of China (English)

    Chen Xiao-Gang; Liang Fang-Chu; Wei En-Bo

    2005-01-01

    An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach.The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E1 sinωt + E3sin3ωt. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.

  20. Nonlinear pedagogy: an effective approach to cater for individual differences in learning a sports skill.

    Science.gov (United States)

    Lee, Miriam Chang Yi; Chow, Jia Yi; Komar, John; Tan, Clara Wee Keat; Button, Chris

    2014-01-01

    Learning a sports skill is a complex process in which practitioners are challenged to cater for individual differences. The main purpose of this study was to explore the effectiveness of a Nonlinear Pedagogy approach for learning a sports skill. Twenty-four 10-year-old females participated in a 4-week intervention involving either a Nonlinear Pedagogy (i.e.,manipulation of task constraints including equipment and rules) or a Linear Pedagogy (i.e., prescriptive, repetitive drills) approach to learn a tennis forehand stroke. Performance accuracy scores, movement criterion scores and kinematic data were measured during pre-intervention, post-intervention and retention tests. While both groups showed improvements in performance accuracy scores over time, the Nonlinear Pedagogy group displayed a greater number of movement clusters at post-test indicating the presence of degeneracy (i.e., many ways to achieve the same outcome). The results suggest that degeneracy is effective for learning a sports skill facilitated by a Nonlinear Pedagogy approach. These findings challenge the common misconception that there must be only one ideal movement solution for a task and thus have implications for coaches and educators when designing instructions for skill acquisition.

  1. Non-linear effects in bunch compressor of TARLA

    Science.gov (United States)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  2. Exploring cosmic strings: Observable effects and cosmological constraints

    Science.gov (United States)

    Sabancilar, Eray

    Observation of cosmic (super)strings can serve as a useful hint to understand the fundamental theories of physics, such as grand unified theories (GUTs) and/or superstring theory. In this regard, I present new mechanisms to produce particles from cosmic (super)strings, and discuss their cosmological and observational effects in this dissertation. The first chapter is devoted to a review of the standard cosmology, cosmic (super)strings and cosmic rays. The second chapter discusses the cosmological effects of moduli. Moduli are relatively light, weakly coupled scalar fields, predicted in supersymmetric particle theories including string theory. They can be emitted from cosmic (super)string loops in the early universe. Abundance of such moduli is constrained by diffuse gamma ray background, dark matter, and primordial element abundances. These constraints put an upper bound on the string tension as strong as Gmu ≲ 10-28 for a wide range of modulus mass m. If the modulus coupling constant is stronger than gravitational strength, modulus radiation can be the dominant energy loss mechanism for the loops. Furthermore, modulus lifetimes become shorter for stronger coupling. Hence, the constraints on string tension Gmu and modulus mass m are significantly relaxed for strongly coupled moduli predicted in superstring theory. Thermal production of these particles and their possible effects are also considered. In the third chapter, moduli emitted from cosmic string cusps are studied. Highly boosted modulus bursts emanating from cusps subsequently decay into gluons and generate hadronic cascades which in turn produce large number of neutrinos. For reasonable values of the modulus mass and coupling constant, observable ultra high energy neutrino fluxes can be produced for a wide range of string tension Gmu. The fourth chapter discusses cosmic rays produced by the charged particles ejected from cusps of superconducting cosmic strings. In many particle physics theories, cosmic

  3. Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities

    Science.gov (United States)

    ElNady, Khaled; Goda, Ibrahim; Ganghoffer, Jean-François

    2016-09-01

    The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537-2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.

  4. SUSY effects in Rb: Revisited under current experimental constraints

    Science.gov (United States)

    Su, Wei; Yang, Jin Min

    2016-06-01

    In this note we revisit the SUSY effects in Rb under current experimental constraints including the LHC Higgs data, the B-physics measurements, the dark matter relic density and direct detection limits, as well as the precision electroweak data. We first perform a scan to figure out the currently allowed parameter space and then display the SUSY effects in Rb. We find that although the SUSY parameter space has been severely restrained by current experimental data, both the general MSSM and the natural-SUSY scenario can still alter Rb with a magnitude sizable enough to be observed at future Z-factories (ILC, CEPC, FCC-ee, Super Z-factory) which produce 109-1012Z-bosons. To be specific, assuming a precise measurement δRb = 2.0 ×10-5 at FCC-ee, we can probe a right-handed stop up to 530 GeV through chargino-stop loops, probe a sbottom to 850 GeV through neutralino-sbottom loops and a charged Higgs to 770 GeV through the Higgs-top quark loops for a large tan ⁡ β. The full one-loop SUSY correction to Rb can reach 1 ×10-4 in natural SUSY and 2 ×10-4 in the general MSSM.

  5. Constraint Differentiation

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca

    2010-01-01

    , under the assumption that the original constraint-based approach has these properties. Practically, as a concrete case study, we have integrated this technique into OFMC, a state-of-the-art model-checker for security protocol analysis, and demonstrated its effectiveness by extensive experimentation. Our......We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...

  6. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  7. Particle Dark Matter constraints: the effect of Galactic uncertainties

    Science.gov (United States)

    Benito, Maria; Bernal, Nicolás; Bozorgnia, Nassim; Calore, Francesca; Iocco, Fabio

    2017-02-01

    Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present a systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.

  8. Nonlinear Peltier effect and thermoconductance in nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bogachek, E.N.; Scherbakov, A.G.; Landman, U. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (United States)

    1999-10-01

    A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager{close_quote}s relation between the Peltier and thermopower coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads to the possibility of magnetic blockade of thermal transport in wires with a small number of conducting channels. Possible control of thermal transport in nanowires through external parameters, that is applied through finite voltages and magnetic fields, is discussed. {copyright} {ital 1999} {ital The American Physical Society}

  9. Nonlinear Peltier effect and thermoconductance in nanowires

    Science.gov (United States)

    Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi

    1999-10-01

    A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation between the Peltier and thermopower coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads to the possibility of magnetic blockade of thermal transport in wires with a small number of conducting channels. Possible control of thermal transport in nanowires through external parameters, that is applied through finite voltages and magnetic fields, is discussed.

  10. Third Order Nonlinear Optical Effects in Conjugated Polymers

    Science.gov (United States)

    Halvorson, Craig Steven

    Third order nonlinear optical effects in conjugated materials were studied using two different spectroscopic methods, third harmonic generation and two photon absorption. The third harmonic generation spectra of cis-polyacetylene, trans-polyacetylene, oriented trans-polyacetylene, three isomers of polyaniline, cis and trans-polyacetylene in polyvinyl butyral, polyheptdadiester, polyheptadiketone, and MEH-PPV/polyethylene blends were measured. The nonlinear optical susceptibility increases with structural order, and is enhanced by the presence of a degenerate ground state. The magnitude of the susceptibility reaches as high as 10^{-7} esu, which is sufficient for the creation of all-optical nonlinear devices. The two photon absorption spectrum of oriented transpolyacetylene was measured using nonlinear photothermal deflection. The spectrum reveals directly the Ag state at 1.1 eV in trans-polyacetylene, and reveals another Ag state at higher energy. The magnitude of the two photon absorption is large enough to rule out using trans-polyacetylene in serial all-optical nonlinear devices; all-optical devices made from conjugated polymers must be parallel, not serial. A new figure of merit for nonlinear devices was proposed.

  11. Research of secondary effects in nonlinear radio-location

    Directory of Open Access Journals (Sweden)

    M. V. Zinchenko

    2012-12-01

    Full Text Available Introduction. The basic setting of nonlinear radio-locator (NR in the field of technical guarding is the searching, identification and localization of radio-electronic mortgage devices − semiconductor nonlinear scatterers (NS. Statement of the problem. The NR efficiency increasing is possible by minimization of such factors influence as: presence of obstacle structures "metal-oxide-metal" (МОМ-structures in the investigated medium and presence of parasitic directional pattern lobe of emitting antenna. The analysis of nonlinear scatterers secondary unmasking features is considered. All possible regularities of the course of the phenomena and processes in the investigated medium, that are the consequence of nonlinear areas of NS semiconductor structures characteristics change (distortion under sounding radiation, are considered. Principal part. Researches showed that theoretically discovered effective radius change effect of nonlinear products dispersion of nonlinear scatterer response signal at the varying of nonlinear radio-locator sounding signal (SS power-level  allows to investigate the phenomenon of semiconductor structures characteristics of NS distortion at the action of relatively powerful ultrahigh frequency field. The effective radius change of nonlinear products dispersion of NS response signal at varying of exposing signal power-level is experimentally confirmed, which proves the possibility and expediency of the secondary unmasked features practice use for the search, identification and localization of NS in the technical guarding field: −     the area of looping appearance effect on functional dependence of response signal multiple harmonic level  from the sounding signal power-level [3]; −     effect of processes inertiality of semiconductor structures volt-ampere characteristics distortion [4]; −     phenomena of cross-correlation dependence of response signal chaotic state degree from the sounding signal

  12. Controlling ultrafast currents by the non-linear photogalvanic effect

    CERN Document Server

    Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-01-01

    We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.

  13. Coriolis effects on nonlinear oscillations of rotating cylinders and rings

    Science.gov (United States)

    Padovan, J.

    1976-01-01

    The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration.

  14. Zeno effect and switching of solitons in nonlinear couplers

    DEFF Research Database (Denmark)

    Abdullaev, F Kh; Konotop, V V; Ögren, Magnus;

    2011-01-01

    The Zeno effect is investigated for soliton type pulses in a nonlinear directional coupler with dissipation. The effect consists in increase of the coupler transparency with increase of the dissipative losses in one of the arms. It is shown that localized dissipation can lead to switching...

  15. Nonlinear effects generation in non-adiabatically tapered fibres

    Science.gov (United States)

    Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier

    2015-12-01

    Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.

  16. Nonlinear Peltier effect and the nonequilibrium Jonson-Mahan theorem

    OpenAIRE

    Freericks, J. K.; Zlatic, V.

    2006-01-01

    We generalize the many-body formalism for the Peltier effect to the nonlinear/nonequilibrium regime corresponding to large amplitude (spatially uniform but time-dependent) electric fields. We find a relationship between the expectation values for the charge current and for the part of the heat current that reduces to the Jonson-Mahan theorem in the linear-response regime. The nonlinear-response Peltier effect has an extra term in the heat current that is related to Joule heating (we are unabl...

  17. Effect of scalar nonlinearity on zonal flow generation by Rossby waves

    NARCIS (Netherlands)

    Mikhailovskii, A. B.; Lominadze, J. G.; Erokhin, N. N.; Erokhin, N. S.; Smolyakov, A. I.; Tsypin, V. S.

    2007-01-01

    Effects of scalar nonlinearity on the generation of zonal flow by Rossby waves in shallow rotating fluid are considered. Zonal flows are generated via the action of Reynolds stress due to vector nonlinearity together with the effects of scalar nonlinearity. It is shown that the scalar nonlinearity r

  18. Defect assessments of pipelines based on the FAD approach incorporating constraint effects

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, Claudio; Cravero, Sebastian [Sao Paulo Univ., SP (Brazil)

    2005-07-01

    This work presents a framework for including constraint effects in the failure assessment diagram (FAD) approach. The procedure builds upon the constraint-based Q methodology to correct measured toughness values using low constraint fracture specimens which modifies the shape of the FAD curve. The approach is applied to predict the failure (burst pressure) of high pressure pipelines with planar defects having different geometries (i.e., crack depth and crack length). The FAD curves are corrected for effects of constraint based on the L{sub r}-Q trajectories for pin-loaded SE(T) specimens. The article shows that inclusion of constraint effects in the FAD approach provides better agreement between experimentally measured burst pressure and predicted values for high pressure pipelines with planar defects. (author)

  19. Geometry and Material Constraint Effects on Creep Crack Growth Behavior in Welded Joints

    Science.gov (United States)

    Li, Y.; Wang, G. Z.; Xuan, F. Z.; Tu, S. T.

    2017-02-01

    In this work, the geometry and material constraint effects on creep crack growth (CCG) and behavior in welded joints were investigated. The CCG paths and rates of two kinds of specimen geometry (C(T) and M(T)) with initial cracks located at soft HAZ (heat-affected zone with lower creep strength) and different material mismatches were simulated. The effect of constraint on creep crack initiation (CCI) time was discussed. The results show that there exists interaction between geometry and material constraints in terms of their effects on CCG rate and CCI time of welded joints. Under the condition of low geometry constraint, the effect of material constraint on CCG rate and CCI time becomes more obvious. Higher material constraint can promote CCG due to the formation of higher stress triaxiality around crack tip. Higher geometry constraint can increase CCG rate and reduce CCI time of welded joints. Both geometry and material constraints should be considered in creep life assessment and design for high-temperature welded components.

  20. High-precision 2MASS JHK{sub s} light curves and other data for RR Lyrae star SDSS J015450 + 001501: Strong constraints for nonlinear pulsation models

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, Róbert; Ivezić, Željko; Kiss, László L.; Kolláth, Zoltán [Konkoly Observatory, MTA CSFK, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Jones, Lynne; Becker, Andrew C.; Davenport, James R. A. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Cutri, Roc M., E-mail: rszabo@konkoly.hu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-01-01

    We present and discuss an extensive data set for the non-Blazhko ab-type RR Lyrae star SDSS J015450+001501, including optical Sloan Digital Sky Survey ugriz light curves and spectroscopic data, LINEAR and Catalina Sky Survey unfiltered optical light curves, and infrared Two Micron All Sky Survey (2MASS) JHK{sub s} and Wide-field Infrared Survey Explorer W1 and W2 light curves. Most notable is that light curves obtained by 2MASS include close to 9000 photometric measures collected over 3.3 yr and provide an exceedingly precise view of near-infrared variability. These data demonstrate that static atmosphere models are insufficient to explain multiband photometric light-curve behavior and present strong constraints for nonlinear pulsation models for RR Lyrae stars. It is a challenge to modelers to produce theoretical light curves that can explain data presented here, which we make publicly available.

  1. Effect of constraint on crack propagation behavior in BGA soldered joints

    Institute of Scientific and Technical Information of China (English)

    王莉; 王国忠; 方洪渊; 钱乙余

    2001-01-01

    The effects of stress triaxiality on crack propagation behavior in the BGA soldered joint were analyzed using FEM method. The computation results verified that stress triaxiality factor has an important effect on crack growth behavior. Crack growth rate increased with increasing stress triaxiality at the near-tip region, which is caused by increasing crack lengths or decreasing solder joint heights. Solder joint deformation is subjected to constraint effect provided by its surrounding rigid ceramic substrate, the constraint can be scaled by stress triaxiality near crack tip region. Therefore, it can be concluded that crack growth rate increased when the constraint effect increases.

  2. Hyperspectral Unmixing in Presence of Endmember Variability, Nonlinearity or Mismodelling Effects

    CERN Document Server

    Halimi, Abderrahim; Bioucas-Dias, Jose

    2015-01-01

    This paper presents three hyperspectral mixture models jointly with Bayesian algorithms for supervised hyperspectral unmixing. Based on the residual component analysis model, the proposed general formulation assumes the linear model to be corrupted by an additive term whose expression can be adapted to account for nonlinearities (NL), endmember variability (EV), or mismodelling effects (ME). The NL effect is introduced by considering a polynomial expression that is related to bilinear models. The proposed new formulation of EV accounts for shape and scale endmember changes while enforcing a smooth spectral/spatial variation. The ME formulation takes into account the effect of outliers and copes with some types of EV and NL. The known constraints on the parameter of each observation model are modeled via suitable priors. The posterior distribution associated with each Bayesian model is optimized using a coordinate descent algorithm which allows the computation of the maximum a posteriori estimator of the unkno...

  3. Nonlinear dispersion effects in elastic plates: numerical modelling and validation

    Science.gov (United States)

    Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.

  4. Nonlinear Effects in the Amplitude of Cosmological Density Fluctuations

    CERN Document Server

    Juszkiewicz, Roman; Fry, J N; Jaffe, Andrew H

    2009-01-01

    The amplitude of cosmological density fluctuations, $\\sigma_8$, has been studied and estimated by analysing many cosmological observations. The values of the estimates vary considerably between the various probes. However, different estimators probe the value of $\\sigma_8$ in different cosmological scales and do not take into account the nonlinear evolution of the parameter at late times. We show that estimates of the amplitude of cosmological density fluctuations derived from cosmic flows are systematically higher than those inferred at early epochs because of nonlinear evolution at later times. Here we derive corrections to the value of $\\sigma_8$ and compare amplitudes after accounting for this effect.

  5. Study On Nonlinear effect In 2D Plastic Media

    Science.gov (United States)

    Wenjie, D.; Chen, X.

    2011-12-01

    Unlike the perfect elastic, homogeneous and isotropic model, the properties of real earth media are heterogeneous, plastic and anisotropic to a certain extend. To accurately simulate the strong ground motion in a basin, nonlinear or plastic effect should be considered in simulation. In this study, we use DRP/opt MacCormack non-staggered finite difference method to simulate 2D seismic wave propagation in anisotropic and plastic media. Compared with the traditional staggered grid FDM, this scheme is more accurate and more efficient. We focus on the nonlinear character of the sedimentary basin model. The preliminary ground motion results indicate that the energy of seismic wave has obvious nonlinear dissipation and irreversible deformations which is danger to buildings in the sedimentary basin.

  6. The effect of nonlinearity on unstable zones of Mathieu equation

    Indian Academy of Sciences (India)

    M GH SARYAZDI

    2017-03-01

    Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. However, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude of response leads to an increase in the unstable zone.

  7. Effective Dielectric Response of Nonlinear Composites of Coated Metal Inclusions

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-Qing; WU Ya-Min

    2007-01-01

    The effective dielectric response of the composites in which nondilute coated metal particles are randomly embedded in a linear host is investigated. Two types of coated particles are considered, one is that the core is nonlinear, the other is that the shell is nonlinear. We derive general expressions for the effective linear dielectric function and the effective third-order nonlinear susceptibility, and take one step forward to perform numerical calculations on the coated metal/dielectric composites. Numerical results show that the effective linear and nonlinear dielectric responses can be greatly enhanced near the surface plasmon resonant frequency. Moreover, the resonant peaks are found within a range from 0.46ωp to 0.57ωp for spherical particles and from 0.59ωp to 0.7ωp for cylindrical inclusions. In the frequency region, the resonant peak can achieve the maximum, according to an optimal structural parameter and volume fraction. The resonant frequency exhibits a redshift with the increasing structural parameter k or volume fraction f or dimensionality factor D.

  8. Conditional linear-optical measurement schemes generate effective photon nonlinearities

    CERN Document Server

    Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.

    2003-01-01

    We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.

  9. Spontaneous emission and nonlinear effects in photonic bandgap materials

    Science.gov (United States)

    Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.

    1998-03-01

    We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.

  10. Measuring the Non-Linear Effects of Monetary Policy

    OpenAIRE

    Christian Matthes; Regis Barnichon

    2015-01-01

    This paper proposes a method to identify the non-linear effects of structural shocks by using Gaussian basis functions to parametrize impulse response functions. We apply our approach to monetary policy and find that the effect of a monetary intervention depends strongly on (i) the sign of the intervention, (ii) the size of the intervention, and (iii) the state of the business cycle at the time of the intervention. A contractionary policy has a strong adverse effect on output, much stronger t...

  11. Experimental observations of nonlinear effects of the Lamb waves

    Institute of Scientific and Technical Information of China (English)

    DENG Mingxi; D.C. Price; D.A.Scott

    2004-01-01

    The experimental observations of nonlinear effects of the primary Lamb waves have been reported. Firstly, the brief descriptions have been made for the nonlinear acoustic measurement system developed by Ritec. The detailed considerations for the acoustic experiment system established for observing of the nonlinear effects of the primary Lamb waves have been carried out. Especially, the analysis focuses on the time-domain responses of second harmonics of the primary Lame waves by employing a straightforward model. Based on the existence conditions of strong nonlinearity of the primary Lamb waves, the wedge transducers are designed to generate and detect the primary and secondary waves on the surface of an aluminum sheet. For the different distances between the transmitting and receiving wedge transducers,the amplitudes of the primary waves and the second harmonics on the sheet surface have been measured within a specified frequency range. In the immediate vicinity of the driving frequency,where the primary and the double frequency Lamb waves have the same phase velocities, the quantitative relations of second-harmonic amplitudes with the propagation distance have been analyzed. It is experimentally verified that the second harmonics of the primary Lamb waves do have a cumulative growth effect along with the propagation distance.

  12. Nonlinear dielectric effects in liquids: a guided tour

    Science.gov (United States)

    Richert, Ranko

    2017-09-01

    Dielectric relaxation measurements probe how the polarization of a material responds to the application of an external electric field, providing information on structure and dynamics of the sample. In the limit of small fields and thus linear response, such experiments reveal the properties of the material in the same thermodynamic state it would have in the absence of the external field. At sufficiently high fields, reversible changes in enthalpy and entropy of the system occur even at constant temperature, and these will in turn alter the polarization responses. The resulting nonlinear dielectric effects feature field induced suppressions (saturation) and enhancements (chemical effect) of the amplitudes, as well as time constant shifts towards faster (energy absorption) and slower (entropy reduction) dynamics. This review focuses on the effects of high electric fields that are reversible and observed at constant temperature for single component glass-forming liquids. The experimental challenges involved in nonlinear dielectric experiments, the approaches to separating and identifying the different sources of nonlinear behavior, and the current understanding of how high electric fields affect dielectric materials will be discussed. Covering studies from Debye’s initial approach to the present state-of-the-art, it will be emphasized what insight can be gained from the nonlinear responses that are not available from dielectric relaxation results obtained in the linear regime.

  13. Power optimization and effective stiffness for a vibration energy harvester with displacement constraints

    Science.gov (United States)

    Truong, Binh Duc; Phu Le, Cuong; Halvorsen, Einar

    2016-12-01

    This paper presents experiments on how to approach the physical limits on power from vibration energy harvesting under displacement-constrained operation. A MEMS electrostatic vibration energy harvester with voltage-control of the system stiffness is used for this purpose. The power saturation problem, when the proof-mass displacement reaches a maximum amplitude for sufficient acceleration amplitude, is shifted to higher accelerations by use of load optimization. In addition, we demonstrate the effect of varying the electromechanical coupling k 2. Measurement results show that harvested power can also be made to follow the optimal power of the velocity-damped generator for a range of accelerations, which implies displacement constraints. Compared to the saturated power, the power increases 1.5 times with the optimal load for electromechanical coupling at k 2  =  8.7%. This is improved 2.3 times for a higher coupling of {{k}2}=17.9 % . The obtained system effectiveness exceeds 60%. This work shows a first demonstration of reaching optimal power in the intermediate acceleration-range between the two extremes of maximum efficiency and maximum power transfer. The experimental results follow the theoretical results for a device with both load and stiffness tuning surprisingly well, despite only optimizing the load here. We compared a linearized lumped-model of the device with the same augmented by end-stop nonlinearities. The comparison shows that an effective stiffness due to end-stop impacts in the latter model closely matches the optimal stiffness for the former model, and therefore can explain why the experimental output power is close to optimal despite the lack of deliberate stiffness tuning.

  14. Silica holey fibres: fabrication and nonlinear effects

    OpenAIRE

    Belardi, W.; Monro, T.M.; Lee, J.H.; Yusoff, Z.; Price, J.H.V.; Malinowski, A.; Piper, A; Richardson, D J

    2002-01-01

    Holey fibres (HFs) [1] have emerged as a novel class of optical fibres which can provide completely new optical properties, such as endlessly single mode operation and novel dispersion properties as anomalous dispersion below 1.3µm, broadband flat dispersion and highly normal dispersion at 1.55µm. Moreover by changing the HF parameters (i.e. hole and core size), it is possible to fabricate HFs with an effective area so high as 800µm2 or so low as approximately 1µm2 [2]. A holey fibre perform ...

  15. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  16. Effect of Phonotactic Constraints on Second Language Speech Processing.

    Science.gov (United States)

    Katayama, Tamami

    2015-12-01

    In this study, we examined whether phonotactic constraints of the first language affect speech processing by Japanese learners of English and whether their proficiency of the second language influences it. Native English speakers and second language speakers with a high level of language proficiency and those with a low level took part in a monitoring task. They were given two kinds of sound stimuli as target syllables (i.e., consonant-vowel and consonant-vowel-consonant) and were asked to detect them in lists of words that have stress on the first or second syllable (e.g., biscuit and beside). The results showed that both stress and phonotactics facilitated segmentation strategies by the three groups. The Japanese groups did not rely on either phonotactics or morae to segment the target syllables. They rather used stress to detect the target syllables in the English words, which is a different segmentation strategy from their first language. This study showed that phonotactic constraints did not interfere with second language processing by native Japanese speakers and provided evidence that second language speakers use the segmentation strategy that is used by native speakers of the target language.

  17. Effect of Phonotactic Constraints on Second Language Speech Processing

    Directory of Open Access Journals (Sweden)

    Tamami Katayama

    2015-12-01

    Full Text Available In this study, we examined whether phonotactic constraints of the first language affect speech processing by Japanese learners of English and whether their proficiency of the second language influences it. Native English speakers and second language speakers with a high level of language proficiency and those with a low level took part in a monitoring task. They were given two kinds of sound stimuli as target syllables (i.e., consonant–vowel and consonant–vowel–consonant and were asked to detect them in lists of words that have stress on the first or second syllable (e.g., biscuit and beside. The results showed that both stress and phonotactics facilitated segmentation strategies by the three groups. The Japanese groups did not rely on either phonotactics or morae to segment the target syllables. They rather used stress to detect the target syllables in the English words, which is a different segmentation strategy from their first language. This study showed that phonotactic constraints did not interfere with second language processing by native Japanese speakers and provided evidence that second language speakers use the segmentation strategy that is used by native speakers of the target language.

  18. Effects of noise on the phase dynamics of nonlinear oscillators

    Science.gov (United States)

    Daffertshofer, A.

    1998-07-01

    Various properties of human rhythmic movements have been successfully modeled using nonlinear oscillators. However, despite some extensions towards stochastical differential equations, these models do not comprise different statistical features that can be explained by nondynamical statistics. For instance, one observes certain lag one serial correlation functions for consecutive periods during periodic motion. This work aims at an extension of dynamical descriptions in terms of stochastically forced nonlinear oscillators such as ξ¨+ω20ξ=n(ξ,ξ˙)+q(ξ,ξ˙)Ψ(t), where the nonlinear function n(ξ,ξ˙) generates a limit cycle and Ψ(t) denotes colored noise that is multiplied via q(ξ,ξ˙). Nonlinear self-excited systems have been frequently investigated, particularly emphasizing stability properties and amplitude evolution. Thus, one can focus on the effects of noise on the frequency or phase dynamics that can be analyzed by use of time-dependent Fokker-Planck equations. It can be shown that noise multiplied via polynoms of arbitrary finite order cannot generate the desired period correlation but predominantly results in phase diffusion. The system is extended in terms of forced oscillators in order to find a minimal model producing the required error correction.

  19. Nonlinear Resonance Islands and Modulational Effects in a Proton Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, Todd Jeffrey [Northwestern Univ., Evanston, IL (United States)

    1993-01-01

    We examine both one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. We also examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, we examine the effects of two types of modulational perturbations on the stability of these resonance islands: tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three paramders: the strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. These. models are compared to particle tracking with excellent agreement. The tune modulation model is also successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are also examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. We present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking; therefore in this circumstance such a model is inadequate. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and we make suggestions on methods for observing such signals in future experiment.

  20. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    Institute of Scientific and Technical Information of China (English)

    GAO Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC Ⅱ. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.

  1. Non-linear hydrodynamics of axion dark matter: relative velocity effects and "quantum forces"

    CERN Document Server

    Marsh, David J E

    2015-01-01

    The non-linear hydrodynamic equations for axion/scalar field dark matter (DM) in the non-relativistic Madelung-Shcr\\"{o}dinger form are derived in a simple manner, including the effects of universal expansion and Hubble drag. The hydrodynamic equations are used to investigate the relative velocity between axion DM and baryons, and the moving-background perturbation theory (MBPT) derived. Axions massive enough to be all of the DM do not affect the coherence length of the relative velocity, but the MBPT equations are modified by the inclusion of the axion effective sound speed. These MBPT equations are necessary for accurately modelling the effects of axion DM on the formation of the first cosmic structures, and suggest that the 21cm power spectrum could improve constraints on axion mass by up to four orders of magnitude with respect to the current best constraints. A further application of these results uses the "quantum force" analogy to model scalar field gradient energy in a smoothed-particle hydrodynamics ...

  2. Effects of Tangential Edge Constraints on the Postbuckling Behavior of Flat and Curved Panels Subjected to Thermal and Mechanical Loads

    Science.gov (United States)

    Lin, W.; Librescu, L.; Nemeth, M. P.; Starnes, J. H. , Jr.

    1994-01-01

    A parametric study of the effects of tangential edge constraints on the postbuckling response of flat and shallow curved panels subjected to thermal and mechanical loads is presented. The mechanical loads investigated are uniform compressive edge loads and transverse lateral pressure. The temperature fields considered are associated with spatially nonuniform heating over the panels, and a linear through-the-thickness temperature gradient. The structural model is based on a higher-order transverse-shear-deformation theory of shallow shells that incorporates the effects of geometric nonlinearities, initial geometric imperfections, and tangential edge motion constraints. Results are presented for three-layer sandwich panels made from transversely isotropic materials. Simply supported panels are considered in which the tangential motion of the unloaded edges is either unrestrained, partially restrained, or fully restrained. These results focus on the effects of the tangential edge restraint on the postbuckling response. The results of this study indicate that tangentially restraining the edges of a curved panel can make the panel insensitive to initial geometric imperfections in some cases.

  3. Variation of Out-of-Plane Constraint and Its Effects on Fracture

    Institute of Scientific and Technical Information of China (English)

    Fei Xu; Yulong Li; Wanlin Guo

    2004-01-01

    The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have been an important development in this field. But under the consideration of plane strain and three-dimensional problem, the effects of the out-of-plane stress can not be neglected In this paper, effects of the in-plane constraint as well as the out-of-plane constraint are studied by aid of the finite element method on the plane strain condition. It is obvious that both the in-plane constraint (Q factor) and the out-of-plane constraint (Tz = σzz/(σxx + σyy) ) affect the crack tip fields.Several important features of the out-of-plane constraint are described out based on the simulation results. At the end of this paper, a three-parameter formulation is proposed, in which both the in-plane constraint and the out-of-plane constraint are considered. Comparing with the results of the FEM numerical simulation, the three-parameter description can provide a better prediction near the crack tip.

  4. Higher order effects in non-linear evolution from a veto in rapidities

    Science.gov (United States)

    Chachamis, G.; Lublinsky, M.; Sabio Vera, A.

    2005-02-01

    Higher order corrections to the Balitsky-Kovchegov equation have been estimated by introducing a rapidity veto which forbids subsequent emissions to be very close in rapidity and is known to mimic higher order corrections to the linear BFKL equation. The rapidity veto constraint has been first introduced using analytical arguments obtaining a power growth with energy, Q(Y)˜e, of the saturation scale of λ˜0.45. Then a numerical analysis for the non-linear Balitsky-Kovchegov equation has been carried out for phenomenological rapidities: when a veto of about two units of rapidity is introduced for a fixed value of the coupling constant of α=0.2 the saturation scale λ decreases from ˜0.6 to ˜0.3, and when running coupling effects are taken into account it decreases from ˜0.4 to ˜0.3.

  5. Cosmology in nonlinear multidimensional gravity and the Casimir effect

    Science.gov (United States)

    Bolokhov, S. V.; Bronnikov, K. A.

    2017-01-01

    We study the possible cosmological models in Kaluza-Klein-type multidimensional gravity with a curvature-nonlinear Lagrangian and a spherical extra space, taking into account the Casimir energy. First, we find a minimum of the effective potential of extra dimensions, leading to a physically reasonable value of the effective cosmological constant in our 4D space-time. In this model, the huge Casimir energy density is compensated by a fine-tuned contribution of the curvature-nonlinear terms in the original action. Second, we present a viable model with slowly evolving extra dimensions and power-law inflation in our space-time. In both models, the results formulated in Einstein and Jordan frames are compared.

  6. New approximation for the effective energy of nonlinear conducting composites

    Science.gov (United States)

    Gibiansky, Leonid; Torquato, Salvatore

    1998-07-01

    Approximations for the effective energy and, thus, effective conductivity of nonlinear, isotropic conducting dispersions are developed. This is accomplished by using the Ponte Castaneda variational principles [Philos. Trans. R. Soc. London Ser. A 340, 1321 (1992)] and the Torquato approximation [J. Appl. Phys. 58, 3790 (1985)] of the effective conductivity of corresponding linear composites. The results are obtained for dispersions with superconducting or insulating inclusions, and, more generally, for phases with a power-law energy. It is shown that the new approximations lie within the best available rigorous upper and lower bounds on the effective energy.

  7. Nonlinear effect induced in thermally poled glass waveguides

    Institute of Scientific and Technical Information of China (English)

    REN Yi-tao

    2006-01-01

    Thermally poled germanium-doped channel waveguides are presented. Multilayer waveguides containing a silicon oxynitride layer were used as charge trapper in this investigation on the effect of the internal field inside the waveguide. Compared to waveguides without the trapping layer, experimental results showed that the induced linear electro-optic (EO) coefficient increases about 20% after poling, suggesting strongly that the internal field is relatively enhanced, and showed it is a promising means for improving nonlinearity by poling in waveguides.

  8. INFLUENCE ANALYSIS ON EXPONENTIAL NONLINEAR MODELS WITH RANDOM EFFECTS

    Institute of Scientific and Technical Information of China (English)

    宗序平; 赵俊; 王海斌; 韦博成

    2003-01-01

    This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991.The authors show that the case deletion model is equivalent to mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented.Numerical example illustrates that our method is available.

  9. INFLUENCE ANALYSIS IN NONLINEAR MODELS WITH RANDOM EFFECTS

    Institute of Scientific and Technical Information of China (English)

    WeiBocheng; ZhongXuping

    2001-01-01

    Abstract. In this paper,a unified diagnostic method for the nonlinear models with random ef-fects based upon the joint likelihood given by Robinson in 1991 is presented. It is shown that thecase deletion model is equivalent to the mean shift outlier model. From this point of view ,sever-al diagnostic measures, such as Cook distance, score statistics are derived. The local influencemeasure of Cook is also presented. A numerical example illustrates that the method is avail-able

  10. Controlling ultrafast currents by the nonlinear photogalvanic effect

    Science.gov (United States)

    Wachter, Georg; Sato, Shunsuke A.; Floss, Isabella; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-12-01

    We investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femtosecond optical laser pulses. Ab initio simulations based on time-dependent density functional theory predict ultrafast direct currents that can be viewed as a nonlinear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity of about {I}{{c}}˜ 3× {10}13 W cm-2. We trace this switching to the transition from nonlinear polarisation currents to the tunnelling excitation regime. The latter is found to be sensitive to the relative orientation between laser polarisation and chemical bonds. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. While two temporally separated laser pulses lead to currents along one direction their temporal overlap can reverse the current. We find the ultrafast current control by the nonlinear photogalvanic effect to be remarkably robust and insensitive to the laser-pulse shape and the carrier-envelope phase.

  11. A novel stress-accurate FE technology for highly non-linear analysis with incompressibility constraint. Application to the numerical simulation of the FSW process

    Science.gov (United States)

    Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C.; Dialami, N.

    2013-05-01

    In this work a novel finite element technology based on a three-field mixed formulation is presented. The Variational Multi Scale (VMS) method is used to circumvent the LBB stability condition allowing the use of linear piece-wise interpolations for displacement, stress and pressure fields, respectively. The result is an enhanced stress field approximation which enables for stress-accurate results in nonlinear computational mechanics. The use of an independent nodal variable for the pressure field allows for an adhoc treatment of the incompressibility constraint. This is a mandatory requirement due to the isochoric nature of the plastic strain in metal forming processes. The highly non-linear stress field typically encountered in the Friction Stir Welding (FSW) process is used as an example to show the performance of this new FE technology. The numerical simulation of the FSW process is tackled by means of an Arbitrary-Lagrangian-Eulerian (ALE) formulation. The computational domain is split into three different zones: the work.piece (defined by a rigid visco-plastic behaviour in the Eulerian framework), the pin (within the Lagrangian framework) and finally the stirzone (ALE formulation). A fully coupled thermo-mechanical analysis is introduced showing the heat fluxes generated by the plastic dissipation in the stir-zone (Sheppard rigid-viscoplastic constitutive model) as well as the frictional dissipation at the contact interface (Norton frictional contact model). Finally, tracers have been implemented to show the material flow around the pin allowing a better understanding of the welding mechanism. Numerical results are compared with experimental evidence.

  12. Effect of physical constraints on the mechanisms of membrane fusion: bolaform lipid vesicles as model systems.

    OpenAIRE

    1996-01-01

    Bolaform lipid vesicles were used to study the effect of physical constraints on membrane fusion. In these vesicles the membrane is organized in a single monolayer, because of the presence of covalent bonds in its middle plane. Therefore, the formation of fusion intermediates is subject to higher energy barriers and greater geometrical constraints than is usual in bilayer membranes. Bolaform lipids were extracted from the thermophilic archaeon Sulfolobus solfataricus. These lipids can be divi...

  13. 多约束非线性结构振动系统的鲁棒H∞容错控制%Robust H∞ fault-tolerant control for structural nonlinear vibration systems with multi-constraints

    Institute of Scientific and Technical Information of China (English)

    滕青芳; 孙金龙; 范多旺

    2012-01-01

    The problem of robust H∞ fault-tolerant control for structural nonlinear vibration systems with multi-constraints is investigated. According to structural dynamics theory, a state-space model containing multi-constraints such as input time-varying delay, actuator failure, parameter nonlinear, disturbance, etc is established. Based on state feedback and Lyapunov stability theory, a sufficient condition of the existence of robust H∞, fault-tolerant controller is derived and then transformed to the corresponding Linear Matrix Inequality (LMI). During inferential reasoning, the matrix inequality is only amplified twice and relied on system's delay-time, so that it is possible to sufficently reduce conservative of controller design. The resultant controller enables structural nonlinear vibration systems to retain robust stability and disturbance attenuation as well as to tolerate actuator failure. A building model with four degrees of freedom subjected to the El Centro earthquake wave is simulated and studied to examine the effectiveness of the algorithm provided above, and the results show that the proposed method is feasible.%研究了多约束条件下非线性结构振动系统的鲁棒H∞容错控制问题.根据建筑结构力学原理,建立了包含输入时变时滞、执行器故障、非线性参数摄动以及干扰等多约束条件的结构振动系统状态模型,基于状态反馈和Lyapunov稳定性理论,提出了一个可满足多约束条件的时滞相关鲁棒H∞容错控制算法,该结果以线性矩阵不等式形式给出.在推导过程中只对矩阵不等式进行了两次放大,结果与输入时滞有关,以尽可能降低控制器设计的保守性.该方法设计的控制器能够使得时滞非线性结构振动系统具有指定H∞范数的干扰抑制能力,对执行器故障具有容错性.通过对一个四自由度建筑结构模型在E1 Centro地震波作用下振动的控制仿真,验证了所提方法的可行性和有效性.

  14. Non-linear effects for cylindrical gravitational two-soliton

    CERN Document Server

    Tomizawa, Shinya

    2015-01-01

    Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.

  15. Nonlinear thermokinetic phenomena due to the Seebeck effect.

    Science.gov (United States)

    Sugioka, Hideyuki

    2014-07-22

    We propose a novel mechanism to produce nonlinear thermokinetic vortex flows around a circular cylinder with ideally high thermal conductivity in an electrolyte. That is, the nonlinear thermokinetic slip velocity, which is proportional to the square of the temperature gradient [∇(T)0(2)], is derived based on the electrolyte Seebeck effect, heat conduction equation, and Helmholtz–Smoluchowski formula. Different from conventional linear thermokinetic theory, our theory predicts that the inversion of the temperature gradient does not change the direction of the thermokinetic flows and thus a Janus particle using this phenomenon can move to the both hotter and colder regions in a temperature gradient field by changing the direction of its dielectric end. Our findings bridge the gap between the electro- and thermo-kinetic phenomena and provide an integrated physical viewpoint for the interface science.

  16. Anharmonic effects in simple physical models: introducing undergraduates to nonlinearity

    Science.gov (United States)

    Christian, J. M.

    2017-09-01

    Given the pervasive character of nonlinearity throughout the physical universe, a case is made for introducing undergraduate students to its consequences and signatures earlier rather than later. The dynamics of two well-known systems—a spring and a pendulum—are reviewed when the standard textbook linearising assumptions are relaxed. Some qualitative effects of nonlinearity can be anticipated from symmetry (e.g., inspection of potential energy functions), and further physical insight gained by applying a simple successive-approximation method that might be taught in parallel with courses on classical mechanics, ordinary differential equations, and computational physics. We conclude with a survey of how these ideas have been deployed on programmes at a UK university.

  17. Doppler effect of nonlinear waves and superspirals in oscillatory media.

    Science.gov (United States)

    Brusch, Lutz; Torcini, Alessandro; Bär, Markus

    2003-09-01

    Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example in which waves originate from a source exhibiting a back-and-forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves ("superspiral"). Using direct simulations as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent experimental observations concerning superspirals and their decay to spatiotemporal chaos.

  18. The effects of constraints and mastery on mental and physical health: Conceptual and methodological considerations.

    Science.gov (United States)

    Infurna, Frank J; Mayer, Axel

    2015-06-01

    Perceived control and health are closely interrelated in adulthood and old age. However, less is known regarding the differential implications of 2 facets of perceived control, constraints and mastery, for mental and physical health. Furthermore, a limitation of previous research testing the pathways linking perceived control to mental and physical health is that mediation was tested with cross-sectional designs and not in a longitudinal mediation design that accounts for temporal ordering and prior confounds. Using data from the Health and Retirement Study (HRS; n = 7,612, M age = 68, SD = 10.66; 59% women) we examined the effect of constraints and mastery on 4-year changes in mental and physical health and whether physical activity mediated such effects in a longitudinal mediation design. Using confirmatory factor analysis, we modeled the 2-factor structure of perceived control that consisted of constraints and mastery. In our longitudinal mediation model, where we accounted for possible confounders (e.g., age, gender, education, neuroticism, conscientiousness, memory, and health conditions), constraints showed a stronger total effect on mental and physical health, than mastery, such that more constraints were associated with 4-year declines in mental and physical health. Physical activity did not mediate the effect of constraints and mastery on mental and physical health (indirect effect). To demonstrate the importance of a longitudinal mediation model that accounts for confounders, we also estimated the mediated effect using 2 models commonly used in the literature: cross-sectional mediation model and longitudinal mediation model without accounting for confounders. These mediation models indicated a spurious indirect effect that cannot be causally interpreted. Our results showcase that constraints and mastery have differential implications for mental and physical health, as well as how a longitudinal mediation design can illustrate (or not) pathways in

  19. Constraints on axion and corrections to Newtonian gravity from the Casimir effect

    CERN Document Server

    Klimchitskaya, G L

    2015-01-01

    Axion is a light pseudoscalar particle of much interest for physics of elementary particles and for astrophysics. We review the recently obtained constraints on axion to nucleon coupling constants following from different experiments on measuring the Casimir interaction. These constraints are compared with those following from other laboratory experiments within the wide range of masses of axion-like particles from 10^{-10} to 20 eV. We also collect the most strong constraints on the Yukawa-type and power-type corrections to the Newton law of gravitation which follow from measurements of the Casimir interaction, Eotvos- and Cavendish-type experiments. The possibility to obtain stronger constraints on an axion from the Casimir effect is proposed.

  20. Negative and nonlinear magnetoresistance effect in silicon strip

    CERN Document Server

    Wang, Fangcong; Guo, Hui; Fan, Xiaolong; Li, Zhankui

    2016-01-01

    Both negative magnetoresistance and nonlinear magnetoresisitance were observed in silicon strip nuclear radiation detector in room temperature if we applied high magnetic field intensity in different direction. This result is different with former report. We believe this is the result of coaction of high electric field (Gunn effect) and high magnetic field, or because of the variation of number of carriers and the carriers mobility. The weak localization and Landau energy levels also affect the magnetoresistance. Different crystal orientations have different energy band structures. Complex band structures lead complex carriers mobility plus Landau energy levels. So the magnetoresisitance effect is anisotropy.

  1. Power-transfer effects in monomode optical nonlinear waveguiding structures.

    Science.gov (United States)

    Jakubczyk, Z; Jerominek, H; Patela, S; Tremblay, R; Delisle, C

    1987-09-01

    We describe power-transfer effects, over a certain threshold, among constituents of planar waveguiding structures consisting of an optical linear layer deposited onto a nonlinear substrate (CdS(x)Se(1-x)-doped glass). Proper selection of the thickness of the linear waveguiding film and the refractive index of the linear cladding allows one to obtain optical transistor action and to construct all-optical AND, OR, NOT, and XOR logic gates. The effects appear for the TE(0) guided mode.

  2. Modeling and study of nonlinear effects in electrodynamic shakers

    Science.gov (United States)

    Saraswat, Abhishek; Tiwari, Nachiketa

    2017-02-01

    An electrodynamic shaker is inherently a nonlinear electro-mechanical system. In this work, we have developed a lumped parameter model for the entire electromechanical system, developed an approach to non-destructively determine these parameters, and predict the nonlinear response of the shaker. This predicted response has been validated using experimental data. Through such an approach, we have been able to accurately predict the resulting distortions in the response of the shaker and other nonlinear effects like DC offset in the displacement response. Our approach offers a key advantage vis-à-vis other approaches which rely on techniques involving Volterra Series expansions or techniques based on blackbox models like neural networks, which is that in our approach, apart from predicting the response of the shaker, the model parameters obtained have a physical significance and changes in the parameters can be directly mapped to modification in key design parameters of the shaker. The proposed approach is also advantageous in one more way: it requires measurement of only four parameters, voltage, current, displacement and acceleration for estimating shaker model parameters non-destructively. The proposed model can be used for the design of linearization controllers, prototype testing and simulation of new shaker designs as well as for performance prediction of shakers under testing conditions.

  3. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  4. Wave-packet dynamics in one-dimensional nonlinear Schroedinger lattices: local vs. nonlocal nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)

    2014-02-15

    We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.

  5. Variation in the cranium shape of wall lizards (Podarcis spp.): effects of phylogenetic constraints, allometric constraints and ecology.

    Science.gov (United States)

    Urošević, Aleksandar; Ljubisavljević, Katarina; Jelić, Dušan; Ivanović, Ana

    2012-08-01

    We used geometric morphometrics to explore the influence of phylogenetic and allometric constraints as well as ecology on variation in cranium shape in five species of monophyletic, morphologically similar Podarcis lizards (Podarcis erhardii, Podarcis melisellensis, Podarcis muralis, Podarcis sicula and Podarcis taurica). These species belong to different clades, they differ in their habitat preferences and can be classified into two distinct morphotypes: saxicolous and terrestrial. We found (i) no phylogenetic signal in cranium shape, (ii) diverging allometric slopes among species, and (iii) a significant effect of habitat on cranium shape. The saxicolous species (P. erhardii and P. muralis) had crania with elongated parietals, elongated cranium bases, shortened anterior parts of the dorsal cranium, reduced chambers of the jaw adductor muscles and larger subocular foramina. These cranial features are adaptations that compensate for a flattened cranium, dwelling on vertical surfaces and seeking refuge in crevices. The crania of the terrestrial species (P. melisellensis, P. sicula and P. taurica) tended to be more elongate and robust, with enlarged chambers of the jaw adductor muscle, reduced skull bases and shortened parietals. Terrestrial species exhibited more variation in cranium shape than saxicolous species. Our study suggests that shape variation in Podarcis sp. lizards is largely influenced by ecology, which likely affects species-specific patterns of static allometry.

  6. Current-induced nonlinear magnetoelectric effects in strontium hexaferrite

    Science.gov (United States)

    Zavislyak, I. V.; Popov, M. A.; Srinivasan, G.

    2016-12-01

    We report on the observation of nonlinear magnetoelectric effects at room temperature due to a dc current in the ferrimagnetic M -type strontium hexaferrite platelets. Utilizing microwave measurement techniques and data on the shift in magnetic mode frequencies, it was found that a dc current along the hexagonal c axis resulted in a significant decrease in the saturation magnetization and an increase in the uniaxial magnetocrystalline anisotropy field. These changes in the magnetic order parameters were directly proportional to the square of applied electric field and were found to be much higher than variations due to Joule heating. A phenomenological theory that takes into account the current-induced magnetobielectric (MBE) effects is proposed. Expressions for coupling coefficients for MBE effects have been obtained and have been calculated from the variations in magnetic order parameters. The electric field E (or current) tuning of the magnetic modes in Sr M reported here is orders of magnitude stronger than strain mediated E tuning of magnetic resonance in hexaferrite-ferroelectric composites. The nonlinear magnetoelectric effects in hexaferrite, therefore, open up an avenue for the realization of E -tunable broadband microwave and millimeter wave ferrite signal processing devices such as resonators and filters.

  7. Nonlinear Magnetoimpedance Effect in FeCoNi Ferromagnetic Tubes

    Institute of Scientific and Technical Information of China (English)

    G. V. Kurlyandskaya; H. Yakabchuk; E. Kisker; N. G. Bebenin; H. García-Miquel; M. Vázquez; V. O. Vas′kovskiy

    2001-01-01

    The very high (up to 820% of the magnetoimpedance ratio) and sensitive nonlinear giant magnetoimpedance effect has been studied in the FeCo1Ni magnetic tubes electroplated onto Cu(3%)Be nonmagnetic wirefor frequencies from 1-10MHz. Special annealing was carried out in order to induce the magnetic anisotropy. The high harmonic generation was observed and the harmonics show larger variations with the external magnetic field than the fundamental frequency. The super high sensitivity of the harmonics is promising as regards the increase of the sensitivity of magnetoimpedance sensors.

  8. Constraints on Infants' Musical Rhythm Perception: Effects of Interval Ratio Complexity and Enculturation

    Science.gov (United States)

    Hannon, Erin E.; Soley, Gaye; Levine, Rachel S.

    2011-01-01

    Effects of culture-specific experience on musical rhythm perception are evident by 12 months of age, but the role of culture-general rhythm processing constraints during early infancy has not been explored. Using a habituation procedure with 5- and 7-month-old infants, we investigated effects of temporal interval ratio complexity on discrimination…

  9. Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dubbert, Dale F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tise, Bertice L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.

  10. Nonlinear cosmological consistency relations and effective matter stresses

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche ' ' Enrico Fermi' ' , Piazza del Viminale 1, I-00184 Rome (Italy); Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin, E-mail: guillermo.ballesteros@pd.infn.it, E-mail: lukas.hollenstein@unige.ch, E-mail: rajeev.jain@unige.ch, E-mail: martin.kunz@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, Quai E. Ansermet 24, CH-1211 Genève 4 (Switzerland)

    2012-05-01

    We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias.

  11. Shortened constraint-induced movement therapy in subacute stroke - no effect of using a restraint

    DEFF Research Database (Denmark)

    Brogårdh, Christina; Vestling, Monika; Sjölund, Bengt H

    2009-01-01

    OBJECTIVE: To examine the effect of using a mitt during shortened constraint-induced movement therapy for patients in the subacute phase after stroke. SUBJECTS: Twenty-four patients with stroke (mean age 57.6 (standard deviation (SD) 8.5) years; average 7 weeks post-stroke) with mild to moderate......, no statistically significant differences between the groups were found in any measures at any point in time. CONCLUSION: In this study, no effect of using a restraint in patients with subacute stroke was found. Thus, this component in the constraint-induced therapy concept seems to be of minor importance...

  12. The Effect of Number and Presentation Order of High-Constraint Sentences on Second Language Word Learning

    Science.gov (United States)

    Ma, Tengfei; Chen, Ran; Dunlap, Susan; Chen, Baoguo

    2016-01-01

    This paper presents the results of an experiment that investigated the effects of number and presentation order of high-constraint sentences on semantic processing of unknown second language (L2) words (pseudowords) through reading. All participants were Chinese native speakers who learned English as a foreign language. In the experiment, sentence constraint and order of different constraint sentences were manipulated in English sentences, as well as L2 proficiency level of participants. We found that the number of high-constraint sentences was supportive for L2 word learning except in the condition in which high-constraint exposure was presented first. Moreover, when the number of high-constraint sentences was the same, learning was significantly better when the first exposure was a high-constraint exposure. And no proficiency level effects were found. Our results provided direct evidence that L2 word learning benefited from high quality language input and first presentations of high quality language input. PMID:27695432

  13. The Effect of Number and Presentation Order of High-Constraint Sentences on Second Language Word Learning.

    Science.gov (United States)

    Ma, Tengfei; Chen, Ran; Dunlap, Susan; Chen, Baoguo

    2016-01-01

    This paper presents the results of an experiment that investigated the effects of number and presentation order of high-constraint sentences on semantic processing of unknown second language (L2) words (pseudowords) through reading. All participants were Chinese native speakers who learned English as a foreign language. In the experiment, sentence constraint and order of different constraint sentences were manipulated in English sentences, as well as L2 proficiency level of participants. We found that the number of high-constraint sentences was supportive for L2 word learning except in the condition in which high-constraint exposure was presented first. Moreover, when the number of high-constraint sentences was the same, learning was significantly better when the first exposure was a high-constraint exposure. And no proficiency level effects were found. Our results provided direct evidence that L2 word learning benefited from high quality language input and first presentations of high quality language input.

  14. Investigation and characterization of constraint effects on flaw growth during fatigue loading of composite materials

    Science.gov (United States)

    Stinchcomb, W. W.; Reifsnider, K. L.; Yeung, P.; Gibbins, M. N.

    1979-01-01

    An investigative program is presented in an attempt to add to the current understanding of constraint effects on the response of composite materials under cyclic loading. The objectives were: (1) to use existing data and to develop additional data in order to establish an understanding and quantitative description of flaw growth in unidirectional lamina under cyclic loading at different load direction to fiber direction angles; (2) to establish a similar understanding and description of flaw growth in lamina which are embedded in laminates between other unflawed lamina; (3) to determine the nature of the influence of constraint on flaw growth by quantitatively comparing the results of the tests; and (4) to develop a model and philosophy of constraints effects based on our investigative results.

  15. Effects of constraint-induced movement therapy on spasticity in patients with hemiparesis after stroke.

    Science.gov (United States)

    Kagawa, Shinji; Koyama, Tetsuo; Hosomi, Masashi; Takebayashi, Takashi; Hanada, Keisuke; Hashimoto, Fumiaki; Domen, Kazuhisa

    2013-05-01

    We sought to examine the effects of constraint-induced movement therapy on spasticity in patients with hemiparesis after stroke in 10 patients with chronic hemiparesis in their upper extremities. Patients underwent a modified version of constraint-induced movement therapy (5 hours daily for 10 weekdays over 2 consecutive weeks). Motor function was assessed by the Fugl-Meyer Assessment, Wolf Motor Function Test, and the Motor Activity Log. Spasticity was assessed by the modified Ashworth scale and electromyography (F frequency, mean F/M ratio). These assessments were obtained immediately before and after the 2-week intervention. Wilcoxon rank sum tests were performed on these data (P < .05). Constraint-induced movement therapy significantly improved hand and arm function as indicated by the Fugl-Meyer Assessment, Wolf Motor Function Test, and the Motor Activity Log scores. Constraint-induced movement therapy also reduced spasticity as assessed by the modified Ashworth scale, F frequency, and mean F/M ratio. Comparable to motor function, constraint-induced movement therapy effectively reduces spasticity as confirmed by electromyography. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Finite temperature Casimir effect in the presence of nonlinear dielectrics

    CERN Document Server

    Kheirandish, Fardin; Soltani, Morteza

    2010-01-01

    Starting from a Lagrangian, electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained and their relation to coupling functions are determined. Finally, the Casimir energy and force in the presence of a nonlinear medium at finite temperature is calculated.

  17. Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires

    Science.gov (United States)

    Patil, Sunil; Bahrami-Samani, M.; Melnik, R. V. N.; Toropova, M.; Zu, Jean

    2010-01-01

    We report thermopiezoelectric (TPE) and nonlinear electromechanical (NEM) effects in quantum dots (QD) and nanowires (NW) analyzed with a model based on coupled thermal, electric and mechanical balance equations. Several representative examples of low dimensional semiconductor structures (LDSNs) are studied. We focus mainly on GaN/AlN QDs and CdTe/ZnTe NWs which we analyze for different geometries. GaN/AlN nano systems are observed to be more sensitive to thermopiezoelectric effects than those of CdTe/ZnTe. Furthermore, noticeable qualitative and quantitative variations in electromechanical fields are observed as a consequence of taking into account NEM effects, in particular in GaN/AlN QDs.

  18. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  19. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  20. Research on testing the nonlinear optical performance of nonlinear optical materials based on the effect of second-harmonic generation.

    Science.gov (United States)

    Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong

    2014-01-01

    In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.

  1. Farmers and Extension Personnel View of Constraints to Effective ...

    African Journals Online (AJOL)

    E M IGBOKWE

    effectiveness of agricultural extension services in Oyo State, Nigeria. Simple random ... Results show a weak correlation between personal characteristics of farmers and their perception ... The roles of extension today go beyond technology transfer and training of farmers but ..... Oct. Fini Hotel, Limbe, Cameroon. Codjoe ...

  2. Robust Fault Diagnosis Algorithm for a Class of Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Hai-gang Xu

    2015-01-01

    Full Text Available A kind of robust fault diagnosis algorithm to Lipschitz nonlinear system is proposed. The novel disturbances constraint condition of the nonlinear system is derived by group algebra method, and the novel constraint condition can meet the system stability performance. Besides, the defined robust performance index of fault diagnosis observer guarantees the robust. Finally, the effectiveness of the algorithm proposed is proved in the simulations.

  3. Uncertainty Relations and Quantum Effects of Constraints in Chern-Simons Theory

    CERN Document Server

    Nakamura, M

    2013-01-01

    It is well known that Chern-Simons Theories are in the constrained systems and their total Hamiltonians become identically zero, because of their gauge invariance. While treating the constraints quantum mechanially, it will be expected taht there remain the quantum fluctuations due to the uncertainty principle. Using the projection operator method (POM) and the theory of dynamical constraints, such fluctuation terms are systematically derived in the case of Abelian Chern-Simons theory. It is shown that these terms produce the effective mass in the complex scalar fields coupled to the CS fields.

  4. The effect of plastic constraint on the initiation of ductile tears in shipbuilding structural steels

    Institute of Scientific and Technical Information of China (English)

    LI Qing-fen; WANG Peng; REN Zheng-yi; LONG Ping

    2003-01-01

    In this paper, the effect of plastic constraint on the initiation of ductile tears in four different shipbuilding structural steels has been experimentally studied by measuring the J-integral and crack opening displacement COD at initiation in three-point bend specimens with deep and shallow notches. Experimental results of seven groups of different strength alloy steels show that both δì and Jì values of ductile tear from the shallow crack specimens which have less constraint flow field are significantly higher than those of deeply notched specimens. Slip-line-field analysis shows that, for shallow crack, the hydrostatic stress is lower than that from standard deeply cracked bend specimen, which develops a high level of crack tip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservative approach when applied to structural defects, especially if initiation values of COD and J-integral are used.

  5. Imaging the anisotropic nonlinear Meissner effect in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravel, Alexander P. [B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov (Ukraine); Ghamsari, Behnood G.; Kurter, Cihan; Abrahams, John [CNAM, Physics Department, University of Maryland, College Park, MD (United States); Jung, Philipp; Lukashenko, Alexander; Ustinov, Alexey V. [Physikalisches Institut and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, Karlsruhe (Germany); Remillard, Stephen [Physics Department, Hope College, Holland, MI (United States); Anlage, Steven M. [CNAM, Physics Department, University of Maryland, College Park, MD (United States); Physikalisches Institut and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2013-07-01

    We present measurements on the anisotropic nonlinear Meissner effect (aNLME). Using a laser scanning microscope we have directly imaged this effect in a self-resonant spiral patterned from a thin film of the d{sub x{sup 2}-y{sup 2}} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-δ}. The spiral is excited at one of its resonant frequencies while a focused laser spot is scanned across its surface. The local illumination by the laser gives rise to a detectable change in the resonant properties. At low temperatures, the aNLME causes a direction dependent contribution to the critical current density. This makes it possible to image the directions of nodes and anti-nodes of the superconducting order parameter and the contribution of Andreev bound states associated with them. These two contributions to the photoresponse can be distinguished by their temperature dependence, which is consistent with theoretical predictions.

  6. New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves

    CERN Document Server

    Rezzolla, L

    2002-01-01

    In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.

  7. Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2014-01-01

    Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.

  8. The linear and nonlinear optical effects of white light

    Institute of Scientific and Technical Information of China (English)

    QI XinYuan; LIU SiMin; GUO Ru; LU Yi; GAO YuanMei; LIU ZhaoHong; HUANG ChunFu; ZHANG XiaoHua; ZHU Nan; XU JingJun

    2009-01-01

    An overview of our research group's experimental and theoretical developments is provided on the linear and nonlinear optical effects of white light since 2003. Their work includes the experimental researches on the white light one-dimensional photovoltaic dark spatial solitons and the waveguides and directional couplers induced by them, the circular and elliptic white-light dark spatial solitons and the white-light photorefractive phase masks, two-dimensional white-light photonic lattices and the applications of the white-light dark spatial solitons in the digital image transmission field, the interaction between the two-dimensional white-light dark spatial solitons to enhance or to improve the correlateddegree of the white light through the interaction between the white-light beam and coherent dark spatial solitons, the interaction between the one-or two-dimensional white-light dark spatial solitons and the two-dimensional white-light photonic lattices, respectively. We also numerically simulate the interaction between two or more partially incoherent bright spatial solitons and the white bright spatial soliton pairs in the saturated logarithmic nonlinear medium. We have observed experimentally for the first time,the modulation instability of the coherent light and white light, respectively, in self-defocusing medium and so on.

  9. The linear and nonlinear optical effects of white light

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An overview of our research group’s experimental and theoretical developments is provided on the linear and nonlinear optical effects of white light since 2003. Their work includes the experimental researches on the white light one-dimensional photovoltaic dark spatial solitons and the waveguides and directional couplers induced by them, the circular and elliptic white-light dark spatial solitons and the white-light photorefractive phase masks, two-dimensional white-light photonic lattices and the applications of the white-light dark spatial solitons in the digital image transmission field, the interaction between the two-dimensional white-light dark spatial solitons to enhance or to improve the correlated degree of the white light through the interaction between the white-light beam and coherent dark spatial solitons, the interaction between the one- or two-dimensional white-light dark spatial solitons and the two-dimensional white-light photonic lattices, respectively. We also numerically simulate the interaction between two or more partially incoherent bright spatial solitons and the white bright spatial soliton pairs in the saturated logarithmic nonlinear medium. We have observed experimentally for the first time, the modulation instability of the coherent light and white light, respectively, in self-defocusing medium and so on.

  10. The effects of demographic changes and supply constraints on Dutch housing prices

    NARCIS (Netherlands)

    Francke, M.; van de Minne, A.

    2013-01-01

    Even though supply constraints are an important factor in explaining housing prices, it has not yet been implemented in research on demographics in real estate literature. The aim of this paper is to analyze the effects of demographic changes on housing prices for housing markets (municipalities) wi

  11. Effect of Task Constraint on Reaching Performance in Children with Spastic Diplegic Cerebral Palsy

    Science.gov (United States)

    Ju, Yun-Huei; You, Jia-Yuan; Cherng, Rong-Ju

    2010-01-01

    The purposes of the study were to examine the effect of task constraint on the reaching performance in children with spastic cerebral palsy (CP) and to examine the correlations between the reaching performance and postural control. Eight children with CP and 16 typically developing (TD) children participated in the study. They performed a…

  12. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  13. Impact of nonlinear effective interactions on GFT quantum gravity condensates

    CERN Document Server

    Pithis, Andreas G A; Tomov, Petar

    2016-01-01

    We present the numerical analysis of effectively interacting Group Field Theory (GFT) models in the context of the GFT quantum gravity condensate analogue of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behaviour suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthe...

  14. The chaotic effects in a nonlinear QCD evolution equation

    Science.gov (United States)

    Zhu, Wei; Shen, Zhenqi; Ruan, Jianhong

    2016-10-01

    The corrections of gluon fusion to the DGLAP and BFKL equations are discussed in a united partonic framework. The resulting nonlinear evolution equations are the well-known GLR-MQ-ZRS equation and a new evolution equation. Using the available saturation models as input, we find that the new evolution equation has the chaos solution with positive Lyapunov exponents in the perturbative range. We predict a new kind of shadowing caused by chaos, which blocks the QCD evolution in a critical small x range. The blocking effect in the evolution equation may explain the Abelian gluon assumption and even influence our expectations to the projected Large Hadron Electron Collider (LHeC), Very Large Hadron Collider (VLHC) and the upgrade (CppC) in a circular e+e- collider (SppC).

  15. Effective action and vacuum expectations in nonlinear $\\sigma$ model

    CERN Document Server

    Fayzullaev, B A

    2015-01-01

    The equations for effective action for nonlinear $\\sigma$ model are derived using DeWitt method in two forms - for generator of vertex parts $\\Gamma$ and for generator of weakly connected parts $W$. Loop-expansion solutions to these equations are found. It is shown that vacuum expectation values for various quantities including divergence of a N\\"{o}ther current, trace of the energy-momentum tensor and so on, can be calculated by this method. Also it is shown that vacuum expectation to the sigma-field is determined by an explicit combination of tree Green function and classical solution. It is shown that the limit when coupling constant tends to zero is singular one.

  16. Crystal growth in fluid flow: Nonlinear response effects

    Science.gov (United States)

    Peng, H. L.; Herlach, D. M.; Voigtmann, Th.

    2017-08-01

    We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.

  17. Dispersion and nonlinear effects in OFDM-RoF system

    Science.gov (United States)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  18. Characterization of nonlinear ultrasonic effects using the dynamic wavelet fingerprint technique

    Science.gov (United States)

    Lv, Hongtao; Jiao, Jingpin; Meng, Xiangji; He, Cunfu; Wu, Bin

    2017-02-01

    An improved dynamic wavelet fingerprint (DWFP) technique was developed to characterize nonlinear ultrasonic effects. The white area in the fingerprint was used as the nonlinear feature to quantify the degree of damage. The performance of different wavelet functions, the effect of scale factor and white subslice ratio on the nonlinear feature extraction were investigated, and the optimal wavelet function, scale factor and white subslice ratio for maximum damage sensitivity were determined. The proposed DWFP method was applied to the analysis of experimental signals obtained from nonlinear ultrasonic harmonic and wave-mixing experiments. It was demonstrated that the proposed DWFP method can be used to effectively extract nonlinear features from the experimental signals. Moreover, the proposed nonlinear fingerprint coefficient was sensitive to micro cracks and correlated well with the degree of damage.

  19. Temperature effects in a nonlinear model of monolayer Scheibe aggregates

    DEFF Research Database (Denmark)

    Bang, Ole; Christiansen, Peter Leth; If, F.

    1994-01-01

    A nonlinear dynamical model of molecular monolayers arranged in Scheibe aggregates is derived from a proper Hamiltonian. Thermal fluctuations of the phonons are included. The resulting equation for the excitons is the two dimensional nonlinear Schrodinger equation with noise. Two limits...

  20. Verb-specific constraints in sentence processing: separating effects of lexical preference from garden-paths.

    Science.gov (United States)

    Trueswell, J C; Tanenhaus, M K; Kello, C

    1993-05-01

    Immediate effects of verb-specific syntactic (subcategorization) information were found in a cross-modal naming experiment, a self-paced reading experiment, and an experiment in which eye movements were monitored. In the reading studies, syntactic misanalysis effects in sentence complements (e.g., "The student forgot the solution was...") occurred at the verb in the complement (e.g., was) for matrix verbs typically used with noun phrase complements but not for verbs typically used with sentence complements. In addition, a complementizer effect for sentence-complement-biased verbs was not due to syntactic misanalysis but was correlated with how strongly a particular verb prefers to be followed by the complementizer that. The results support models that make immediate use of lexically specific constraints, especially constraint-based models, but are problematic for lexical filtering models.

  1. Nonlinear vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    Science.gov (United States)

    Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.

    1987-01-01

    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

  2. Nonlinear bending-torsional vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    Science.gov (United States)

    Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.

    1986-01-01

    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

  3. Reduction of nonlinear patterning effects in SOA-based All-optical Switches using Optical filtering

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Skaguchi, J.

    2005-01-01

    We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches.......We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches....

  4. Explanation of the inverse Doppler effect observed in nonlinear transmission lines.

    Science.gov (United States)

    Kozyrev, Alexander B; van der Weide, Daniel W

    2005-05-27

    The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator.

  5. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...

  6. An effective estimation of distribution algorithm for parallel litho machine scheduling with reticle constraints

    Institute of Scientific and Technical Information of China (English)

    周炳海

    2016-01-01

    In order to improve the scheduling efficiency of photolithography, bottleneck process of wafer fabrications in the semiconductor industry, an effective estimation of distribution algorithm is pro-posed for scheduling problems of parallel litho machines with reticle constraints, where multiple reti-cles are available for each reticle type.First, the scheduling problem domain of parallel litho ma-chines is described with reticle constraints and mathematical programming formulations are put for-ward with the objective of minimizing total weighted completion time.Second, estimation of distribu-tion algorithm is developed with a decoding scheme specially designed to deal with the reticle con-straints.Third, an insert-based local search with the first move strategy is introduced to enhance the local exploitation ability of the algorithm.Finally, simulation experiments and analysis demonstrate the effectiveness of the proposed algorithm.

  7. New Constraints on Dark Matter Effective Theories from Standard Model Loops

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2014-01-01

    We consider an effective field theory for a gauge singlet Dirac dark matter (DM) particle interacting with the Standard Model (SM) fields via effective operators suppressed by the scale $\\Lambda \\gtrsim 1$ TeV. We perform a systematic analysis of the leading loop contributions to spin-independent (SI) DM--nucleon scattering using renormalization group evolution between $\\Lambda$ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity-suppressed and spin-dependent can actually contribute to SI scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are comparable to LHC bounds, and will significantly improve in the near future. Interestingly, the loop contribution we find is maximally isospin violating even if the underlying theory is isospin conserving.

  8. Indirect detection constraints on the model space of dark matter effective theories

    Science.gov (United States)

    Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica

    2015-11-01

    Using limits on photon flux from dwarf spheroidal galaxies, we place bounds on the parameter space of models in which dark matter annihilates into multiple final state particle pair channels. We derive constraints on effective operator models with dark matter couplings to third generation fermions and to pairs of standard model vector bosons. We present limits in various slices of model parameter space along with estimations of the region of maximal validity of the effective operator approach for indirect detection. We visualize our bounds for models with multiple final state annihilations by projecting parameter space constraints onto triangles, a technique familiar from collider physics; and we compare our bounds to collider limits on equivalent models.

  9. Indirect Detection Constraints on the Model Space of Dark Matter Effective Theories

    CERN Document Server

    Carpenter, Linda M; Goodman, Jessica

    2015-01-01

    Using limits on photon flux from Dwarf Spheroidal galaxies, we place bounds on the parameter space of models in which Dark Matter annihilates into multiple final state particle pair channels. We derive constraints on effective operator models with Dark Matter couplings to third generation fermions and to pairs of Standard Model vector bosons. We present limits in various slices of model parameter space along with estimations of the region of maximal validity of the effective operator approach for indirect detection. We visualize our bounds for models with multiple final state annihilations by projecting parameter space constraints onto triangles, a technique familiar from collider physics; and we compare our bounds to collider limits on equivalent models.

  10. BRST charge for nonlinear algebras

    CERN Document Server

    Buchbinder, I L

    2007-01-01

    We study the construction of the classical nilpotent canonical BRST charge for the nonlinear gauge algebras where a commutator (in terms of Poisson brackets) of the constraints is a finite order polynomial of the constraints.

  11. Effects of High and Low Constraint Utterances on the Production of Immediate and Delayed Echolalia in Young Children with Autism.

    Science.gov (United States)

    Rydell, Patrick J.; Mirenda, Pat

    1994-01-01

    Examination of the effects of adult antecedent utterances on echolalia in seven male children with autism (ages five and six) during free play found that most immediate echoes followed high constraint utterances and were used as responsives, organizational devices, and cognitives. Most delayed echoes followed low constraint utterances and were…

  12. Nonlinear Quantum Hall effects in Rarita-Schwinger gas

    CERN Document Server

    Luo, Xi; Wan, Xiangang; Yu, Yue

    2016-01-01

    Emergence of higher spin relativistic fermionic materials becomes a new favorite in the study of condensed matter physics. Massive Rarita-Schwinger 3/2-spinor was known owning very exotic properties, such as the superluminal fermionic modes and even being unstable in an external magnetic field. Due to the superluminal modes and the non-trivial constraints on the Rarita-Schwinger gas, we exposit anomalous properties of the Hall effects in (2+1)-dimensions which subvert the well-known quantum Hall paradigms. First, the Hall conductance of a pure Rarita-Schwinger gas is step-like but not plateau-quantized, instead of the linear dependence on the filling factor for a pure spin-1/2 Dirac gas. In reality, the Hall conductance of the Dirac gas is of quantized integer plateaus with the unit $\\frac{e^2}h$ due to the localization away from the Landau level centers. If the general localization rule is applicable to the disordered Rarita-Schwinger gas, the Hall plateaus are also expected to appear but they are nonlinearl...

  13. RANDOM MICROSTRUCTURE FINITE ELEMENT METHOD FOR EFFECTIVE NONLINEAR PROPERTIES OF COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of nonlinear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest that the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an efficient tool to investigate the nonlinear problems.

  14. An effective analytic approach for solving nonlinear fractional partial differential equations

    Science.gov (United States)

    Ma, Junchi; Zhang, Xiaolong; Liang, Songxin

    2016-08-01

    Nonlinear fractional differential equations are widely used for modelling problems in applied mathematics. A new analytic approach with two parameters c1 and c2 is first proposed for solving nonlinear fractional partial differential equations. These parameters are used to improve the accuracy of the resulting series approximations. It turns out that much more accurate series approximations are obtained by choosing proper values of c1 and c2. To demonstrate the applicability and effectiveness of the new method, two typical fractional partial differential equations, the nonlinear gas dynamics equation and the nonlinear KdV-Burgers equation, are solved.

  15. Effect of the counter cation on the third order nonlinearity in anionic Au dithiolene complexes

    Science.gov (United States)

    Iliopoulos, K.; El-Ghayoury, A.; Derkowska, B.; Ranganathan, A.; Batail, P.; Gindre, D.; Sahraoui, B.

    2012-12-01

    In this work, we present the third order nonlinear optical investigation of two gold complexes, which differ by the nature of the counter cations. The impact of the different design in the architecture through a set of hydrogen bonds in the case of Au-Mel of the systems on the nonlinearity has been studied by means of the Z-scan setup under 532 nm, 30 ps laser excitation, allowing for the determination of the nonlinear absorption and refraction of the samples. Significant modification of the nonlinear optical response between the two metal complexes has been found suggesting a clear effect of the counter cation.

  16. Limiting effects of geometrical and optical nonlinearities on the squeezing in optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Djorwé, P. [Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaoundé I (Cameroon); Nana Engo, S.G., E-mail: nanaengo@gmail.com [Laboratory of Photonics, Faculty of Science, University of Ngaoundéré (Cameroon); Talla Mbé, J.H.; Woafo, P. [Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaoundé I (Cameroon)

    2013-08-01

    In recent experiments, the re-thermalization time of the mechanical resonator is stated as the limiting factor for quantum applications of optomechanical systems. To explain the origin of this limitation, an analytical nonlinear investigation supported by the recent successful experimental laser cooling parameters is carried out in this work. To this end, the effects of geometrical and the optical nonlinearities on the squeezing are studied and are in a good agreement with the experimental results. It appears that highly squeezed state are generated where these nonlinearities are minimized and that high nonlinearities are limiting factors to reach the quantum ground state.

  17. Effect of Measurement Errors on Predicted Cosmological Constraints from Shear Peak Statistics with LSST

    CERN Document Server

    Bard, D; Chang, C; May, M; Kahn, S M; AlSayyad, Y; Ahmad, Z; Bankert, J; Connolly, A; Gibson, R R; Gilmore, K; Grace, E; Haiman, Z; Hannel, M; Huffenberger, K M; Jernigan, J G; Jones, L; Krughoff, S; Lorenz, S; Marshall, S; Meert, A; Nagarajan, S; Peng, E; Peterson, J; Rasmussen, A P; Shmakova, M; Sylvestre, N; Todd, N; Young, M

    2013-01-01

    The statistics of peak counts in reconstructed shear maps contain information beyond the power spectrum, and can improve cosmological constraints from measurements of the power spectrum alone if systematic errors can be controlled. We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST image simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.

  18. The effect of service level constraint on EPQ model with random defective rate

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We study the effect of service level constraint on the economic production quantity (EPQ model with random defective rate. We first prove that the expected overall cost for imperfect quality EPQ model with backlogging permitted is less than or equal to that of the same model without backlogging. Secondly, the relationship between “imputed backorder cost” and maximal shortage level is derived for decision-making on whether the required service level is achievable. Then an equation is proposed for calculating the intangible backorder cost for the situation when the required service level is not attainable. By including this intangible backorder cost in the mathematical analysis, one can derive a new optimal lot-size policy that minimizes expected total costs as well as satisfies the service level constraint. Numerical example is provided to demonstrate its practical usage.

  19. Nonlinear dynamics of wind waves: multifractal phase/time effects

    Directory of Open Access Journals (Sweden)

    R. H. Mellen

    1994-01-01

    Full Text Available In addition to the bispectral coherence method, phase/time analysis of analytic signals is another promising avenue for the investigation of phase effects in wind waves. Frequency spectra of phase fluctuations obtained from both sea and laboratory experiments follow an F-β power law over several decades, suggesting that a fractal description is appropriate. However, many similar natural phenomena have been shown to be multifractal. Universal multifractals are quantified by two additional parameters: the Lévy index 0 α 2 for the type of multifractal and the co-dimension 0 C1 1 for intermittence. The three parameters are a full statistical measure the nonlinear dynamics. Analysis of laboratory flume data is reported here and the results indicate that the phase fluctuations are 'hard multifractal' (α > 1. The actual estimate is close to the limiting value α = 2,  which is consistent with Kolmogorov's lognormal model for turbulent fluctuations. Implications for radar and sonar backscattering from the sea surface are briefly considered.

  20. Nonlinear turbulence models for predicting strong curvature effects

    Institute of Scientific and Technical Information of China (English)

    XU Jing-lei; MA Hui-yang; HUANG Yu-ning

    2008-01-01

    Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applicatious and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent U- duct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these inodels may be employed to simulate the turbulent curved flows in engineering applications.

  1. Stochastic nonlinear mixed effects: a metformin case study.

    Science.gov (United States)

    Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien

    2016-02-01

    In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution.

  2. Nonlinear effects in a conceptual multilayer cloud model

    Directory of Open Access Journals (Sweden)

    U. Wacker

    2006-01-01

    Full Text Available As conceptual model for a cloud a system is considered which is open for condensate mass transport and subject to internal processes such as cloud microphysical transformation and vertical condensate transport. The effects of microphysical processes are represented in parameterized form and the system is divided into two layers to account for the vertical structure. The evolution is mathematically described in terms of four coupled nonlinear ODEs; the prognostic variables are the mass concentrations of cloud water as well as precipitation condensate in each of the layers. In the absence of vertical velocity the evolution in the lower layer is triggered by the evolution in the upper layer. In the presence of an upwind, the dynamics in both layers is mutually coupled. Depending on the chosen parameter values up to four steady states are found. When varying the parameter upwind velocity, three regimes are distinguished: For week upwind the long-term evolution is steered by the external sources; for stronger upwind the cloud condensate is blown out of the cloud in the final state and does not contribute to formation of precipitation; for intermediate upwind multiple steady state solution branches arise which characterize the transition between those two regimes.

  3. Weak nonlinear surface-charging effects in electrolytic films.

    Science.gov (United States)

    Dean, D S; Horgan, R R

    2003-11-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer model for a thin film with Stern layer of thickness h. For this model we give expressions for the surface charge sigma(L) and the disjoining pressure P(d)(L) and show their dependence on the parameters. The influence of image charges naturally arises in the formalism, and we show that predictions depend strongly on h because of their effects. In particular, we show that the surface charge vanishes as the film thickness L-->0. The fluctuation terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is well known to be negligible compared with the mean-field component for model electrolytic films with no surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field component even for large film thickness.

  4. Effects of introducing nonlinear components for a random excited hybrid energy harvester

    Science.gov (United States)

    Zhou, Xiaoya; Gao, Shiqiao; Liu, Haipeng; Guan, Yanwei

    2017-01-01

    This work is mainly devoted to discussing the effects of introducing nonlinear components for a hybrid energy harvester under random excitation. For two different types of nonlinear hybrid energy harvesters subjected to random excitation, the analytical solutions of the mean output power, voltage and current are derived from Fokker-Planck (FP) equations. Monte Carlo simulation exhibits qualitative agreement with FP theory, showing that load values and excitation’s spectral density have an effect on the total mean output power, piezoelectric (PE) power and electromagnetic power. Nonlinear components affect output characteristics only when the PE capacitance of the hybrid energy harvester is non-negligible. Besides, it is also demonstrated that for this type of nonlinear hybrid energy harvesters under random excitation, introducing nonlinear components can improve output performances effectively.

  5. Effective Response of Nonlinear Composite under External AC and DC Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang

    2005-01-01

    A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.

  6. A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data

    DEFF Research Database (Denmark)

    Raket, Lars Lau; Sommer, Stefan Horst; Markussen, Bo

    2014-01-01

    We consider misaligned functional data, where data registration is necessary for proper statistical analysis. This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous likelihood inference for horizontal and vertical effects possible. By simultaneously fitting...

  7. Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable

    Science.gov (United States)

    du Toit, Stephen H. C.; Cudeck, Robert

    2009-01-01

    A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…

  8. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu

    2016-01-01

    thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrodinger equation is solved. The dispersion length is much larger than the waveguides length...

  9. Effective nonlinearities and multi-wavelength second-harmonic generation in modulated quasi-phase-matching gratings

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev

    2000-01-01

    Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation....

  10. A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing

    Science.gov (United States)

    Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo

    2009-01-01

    The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.

  11. Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Yvind, Kresten

    2014-01-01

    Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....

  12. Effects of Unstable Dark Matter on Large-Scale Structure and Constraints from Future Surveys

    CERN Document Server

    Wang, Mei-Yu

    2012-01-01

    In this paper we explore the effect of decaying dark matter (DDM) on large-scale structure and possible constraints from galaxy imaging surveys. DDM models have been studied, in part, as a way to address apparent discrepancies between the predictions of standard cold dark matter models and observations of galactic structure. Our study is aimed at developing independent constraints on these models. In such models, DDM decays into a less massive, stable dark matter (SDM) particle and a significantly lighter particle. The small mass splitting between the parent DDM and the daughter SDM provides the SDM with a recoil or "kick" velocity vk, inducing a free-streaming suppression of matter fluctuations. This suppression may be probed via weak lensing power spectra measured by a number of forthcoming imaging surveys that aim primarily to constrain dark energy. Using scales on which linear perturbation theory alone is valid (multipoles 90 km/s for lifetimes ~ 1-5 Gyr. To estimate more aggressive constraints, we model...

  13. Nonlinear effects in acoustic metamaterial based on a cylindrical pipe with ordered Helmholtz resonators

    Science.gov (United States)

    Lan, Jun; Li, Yifeng; Yu, Huiyang; Li, Baoshun; Liu, Xiaozhou

    2017-04-01

    We theoretically investigate the nonlinear effects of acoustic wave propagation and dispersion in a cylindrical pipe with periodically arranged Helmholtz resonators. By using the classical perturbation method in nonlinear acoustics and considering a nonlinear response up to the third-order at the fundamental frequency, the expressions of the nonlinear impedance ZNHR of the Helmholtz resonator and effective nonlinear bulk modulus Bneff of the composite structure are derived. In order to confirm the nonlinear properties of the acoustic metamaterial, the transmission spectra have been studied by means of the acoustic transmission line method. Moreover, we calculate the effective acoustic impedance and dispersion relation of the system using the acoustic impedance theory and Bloch theory, respectively. It is found that with the increment of the incident acoustic pressure level, owing to the nonlinearity of the Helmholtz resonators, the resonant frequency ω0 shifts toward the lower frequency side and the forbidden bandgap of the transmission spectrum is shown to be broadened. The perturbation method employed in this paper extends the general analytical framework for a nonlinear acoustic metamaterial.

  14. Extended Elliptic Mild Slope Equation Incorporating the Nonlinear Shoaling Effect

    Directory of Open Access Journals (Sweden)

    Xiao Qian-lu

    2016-10-01

    Full Text Available The transformation during wave propagation is significantly important for the calculations of hydraulic and coastal engineering, as well as the sediment transport. The exact wave height deformation calculation on the coasts is essential to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the expression of the corresponding nonlinear wave shoaling coefficient. Based on the extended elliptic mild slope equation, an efficient wave numerical model is presented in this paper for predicting wave deformation across the complex topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling coefficient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking could be shown by the present model. The classical Berkhoff single elliptic topography wave tests, the sinusoidal varying topography experiment, and complex composite slopes wave flume experiments are applied to verify the accuracy of the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical topography and one-dimensional beach profiles, including uniform slope and step-type profiles. The results indicate that the newly-developed nonlinear wave shoaling coefficient improves the calculated accuracy of wave transformation in the surf zone efficiently, and the wave breaking is the key factor affecting the wave characteristics and need to be considered in the nearshore wave simulations.

  15. Reduced Noise Effect in Nonlinear Model Estimation Using Multiscale Representation

    Directory of Open Access Journals (Sweden)

    Mohamed N. Nounou

    2010-01-01

    Full Text Available Nonlinear process models are widely used in various applications. In the absence of fundamental models, it is usually relied on empirical models, which are estimated from measurements of the process variables. Unfortunately, measured data are usually corrupted with measurement noise that degrades the accuracy of the estimated models. Multiscale wavelet-based representation of data has been shown to be a powerful data analysis and feature extraction tool. In this paper, these characteristics of multiscale representation are utilized to improve the estimation accuracy of the linear-in-the-parameters nonlinear model by developing a multiscale nonlinear (MSNL modeling algorithm. The main idea in this MSNL modeling algorithm is to decompose the data at multiple scales, construct multiple nonlinear models at multiple scales, and then select among all scales the model which best describes the process. The main advantage of the developed algorithm is that it integrates modeling and feature extraction to improve the robustness of the estimated model to the presence of measurement noise in the data. This advantage of MSNL modeling is demonstrated using a nonlinear reactor model.

  16. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    Science.gov (United States)

    Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.

    2017-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.

  17. Discriminating thermal effect in nonlinear-ellipse-rotation-modified Z-scan measurements.

    Science.gov (United States)

    Liu, Zhi-Bo; Shi, Shuo; Yan, Xiao-Qing; Zhou, Wen-Yuan; Tian, Jian-Guo

    2011-06-01

    We report that a modified Z-scan method by nonlinear ellipse rotation (NER) can be used to discriminate true nonlinear refraction from thermal effect in the transient regime and steady state. The combination of Z-scan and NER allows us to measure the third-order nonlinear susceptibility component without the influence of thermal-optical nonlinearity. The experimental results of pure CS(2) and CS(2) solutions of nigrosine verify that the transient thermal effect can be successfully eliminated from the NER-modified Z-scan measurements. This method is also extended to the case in which thermal-optical nonlinearities depend on a high repetition rate of femtosecond laser pulses for the N,N-dimethylmethanamide solutions of graphene oxide. © 2011 Optical Society of America

  18. Soliton Properties of Light Pulses on the Surface of Ionic Crystals Generated by Strong Nonlinear Effects

    Institute of Scientific and Technical Information of China (English)

    NIU Jia-Sheng; MA Ben-Kun

    2003-01-01

    In this paper, we theoretically discuss the soliton properties of light pulse transportation on the surface of an ionic crystal having strong nonlinear interactions between ions of unit cells. We analyze in detail the dark solitons when the nonlinear coefficient g is positive and negative, respectively. It is found that whether the nonlinear coefficient g is positive or negative, the dark solitons can be formed over the whole dispersion relation area of surface polaritons considering nonlinear effects. Attention should be paid to the fact that around ωTO, the light pulse can form advanced dark solitons, and there is a switching area from advanced dark soliton to retarded dark soliton near ωTO. We also discuss the effects of higher nonlinear dispersion on the solitons.

  19. Nonlinear optical and magneto-optical effects in non-spherical magnetic granular composite

    Institute of Scientific and Technical Information of China (English)

    Ping Xu(须萍); Zhenya Li(李振亚)

    2004-01-01

    The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylcr-expansion method. There is a weakly nonlinear relation between electric displacement D and elcctric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.

  20. Nonlinear effects of the finite amplitude ultrasound wave in biological tissues

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nonlinear effects will occur during the transmission of the finite amplitude wave in biological tissues.The theoretical prediction and experimental demonstration of the nonlinear effects on the propagation of the finite amplitude wave at the range of biomedical ultrasound frequency and intensity are studied.Results show that the efficiency factor and effective propagation distance will decrease while the attenuation coefficient increases due to the existence of nonlinear effects.The experimental results coincided quite well with the theory.This shows that the effective propagation distance and efficiency factor can be used to describe quantitatively the influence of nonlinear effects on the propagation of the finite amplitude sound wave in biological tissues.

  1. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....

  2. Design evaluation and optimisation in crossover pharmacokinetic studies analysed by nonlinear mixed effects models

    OpenAIRE

    Nguyen, Thu Thuy; Bazzoli, Caroline; Mentré, France

    2012-01-01

    International audience; Bioequivalence or interaction trials are commonly studied in crossover design and can be analysed by nonlinear mixed effects models as an alternative to noncompartmental approach. We propose an extension of the population Fisher information matrix in nonlinear mixed effects models to design crossover pharmacokinetic trials, using a linearisation of the model around the random effect expectation, including within-subject variability and discrete covariates fixed or chan...

  3. Nonlinear Control of Magnetic Bearings

    Institute of Scientific and Technical Information of China (English)

    Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen

    2010-01-01

    In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.

  4. A Conceptual Framework for More Effectively Integrating Combat Support Capabilities and Constraints into Contingency Planning and Execution

    Science.gov (United States)

    2015-01-01

    SUMMARY ■ C O R P O R A T I O N A Conceptual Framework for More Effectively Integrating Combat Support Capabilities and Constraints into...impact of these capabilities or constraints on operational plans. This report describes a conceptual framework for better integrating CS capabilities...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE A Conceptual Framework for More Effectively Integrating Combat Support Capabilities and

  5. Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams

    NARCIS (Netherlands)

    Koissin, Vitaly; Shipsha, Andrey; Skvortsov, Vitaly

    2010-01-01

    This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou

  6. Nonlinear effective-medium theory of disordered spring networks.

    Science.gov (United States)

    Sheinman, M; Broedersz, C P; MacKintosh, F C

    2012-02-01

    Disordered soft materials, such as fibrous networks in biological contexts, exhibit a nonlinear elastic response. We study such nonlinear behavior with a minimal model for networks on lattice geometries with simple Hookian elements with disordered spring constant. By developing a mean-field approach to calculate the differential elastic bulk modulus for the macroscopic network response of such networks under large isotropic deformations, we provide insight into the origins of the strain stiffening and softening behavior of these systems. We find that the nonlinear mechanics depends only weakly on the lattice geometry and is governed by the average network connectivity. In particular, the nonlinear response is controlled by the isostatic connectivity, which depends strongly on the applied strain. Our predictions for the strain dependence of the isostatic point as well as the strain-dependent differential bulk modulus agree well with numerical results in both two and three dimensions. In addition, by using a mapping between the disordered network and a regular network with random forces, we calculate the nonaffine fluctuations of the deformation field and compare them to the numerical results. Finally, we discuss the limitations and implications of the developed theory.

  7. Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams

    NARCIS (Netherlands)

    Koysin, V.; Shipsha, Andrey; Skvortsov, Vitaly

    2010-01-01

    This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou

  8. Effective Third-Order Nonlinearities in Metallic Refractory Titanium Nitride Thin Films

    CERN Document Server

    Kinsey, Nathaniel; Courtwright, Devon; DeVault, Clayton; Bonner, Carl E; Gavrilenko, Vladimir I; Shalaev, Vladimir M; Hagan, David J; Van Stryland, Eric W; Boltasseva, Alexandra

    2015-01-01

    Nanophotonic devices offer an unprecedented ability to concentrate light into small volumes which can greatly increase nonlinear effects. However, traditional plasmonic materials suffer from low damage thresholds and are not compatible with standard semiconductor technology. Here we study the nonlinear optical properties in the novel refractory plasmonic material titanium nitride using the Z scan method at 1550 nm and 780 nm. We compare the extracted nonlinear parameters for TiN with previous works on noble metals and note a similarly large nonlinear optical response. However, TiN films have been shown to exhibit a damage threshold up to an order of magnitude higher than gold films of a similar thickness, while also being robust, cost-efficient, bio- and CMOS compatible. Together, these properties make TiN a promising material for metal-based nonlinear optics.

  9. Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    Gun LiNa; TANG ZhiLie; XING Da

    2008-01-01

    The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than twophoton confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.

  10. Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.

  11. Weakly nonlinear dispersion and stop-band effects for periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    Continua and structures composed of periodically repeated elements (cells) are used in many fields of science and technology. Examples of continua are composite materials, consisting of alternating volumes of substances with different properties, mechanical filters and wave guides. Examples of en...... suggested. The work is carried out with financial support from the Danish Council for Independent Research and COFUND: DFF – 1337-00026...... of these methods for studying nonlinear problems isimpossible or cumbersome, since Floquet theory is applicable only for linear systems. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applications may demand effects of nonlinearity on structural response...

  12. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    , and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  13. Nonlinear optical properties and optical power limiting effect of Giemsa dye

    Science.gov (United States)

    Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen

    2016-08-01

    The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.

  14. Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.

  15. Systematic treatment of non-linear effects in Baryon Acoustic Oscillations

    CERN Document Server

    Ivanov, Mikhail M

    2016-01-01

    In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.

  16. Diffraction corrections for second harmonic beam fields and effects on the nonlinearity parameter evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.

  17. Preconditioning of Nonlinear Mixed Effects Models for Stabilisation of Variance-Covariance Matrix Computations

    National Research Council Canada - National Science Library

    Aoki, Yasunori; Nordgren, Rikard; Hooker, Andrew C

    2016-01-01

    ... a bottleneck in the analysis. We propose a preconditioning method for non-linear mixed effects models used in pharmacometric analyses to stabilise the computation of the variance-covariance matrix...

  18. EFFECT OF DAMAGE ON NONLINEAR DYNAMIC PROPERTIES OF VISCOELASTIC RECTANGULAR PLATES

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu-fang; FU Yi-ming

    2005-01-01

    The nonlinear dynamic behaviors of viscoelastic rectangular plates including the damage effects under the action of a transverse periodic load were studied. Using the von Karman equations, Boltzmann superposition principle and continuum damage mechanics, the nonlinear dynamic equations in terms of the mid-plane displacements for the viscoelastic thin plates with damage effect were derived. By adopting the finite difference method and Newmark method, these equations were solved. The results were compared with the available data. In the numerical calculations, the effects of the external loading parameters and geometric dimensions of the plate on the nonlinear dynamic responses of the plate were discussed. Research results show that the nonlinear dynamic response of the structure will change remarkably when the damage effect is considered.

  19. Examining the Error of Mis-Specifying Nonlinear Confounding Effect with Application on Accelerometer-Measured Physical Activity

    Science.gov (United States)

    Lee, Paul H.

    2017-01-01

    Purpose: Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. Methods: We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the…

  20. Enabling inclusive sport participation: Effects of disability and support needs on constraints to sport participation

    OpenAIRE

    Darcy, S.; Lock, Daniel; Taylor, T.

    2016-01-01

    Framed by a social approach to disability and leisure constraints theory, this paper presents the results of a national study examining the constraints to sport participation for people with disability. Responses were obtained from a multi-platform questionnaire survey capturing data on constraints to participation, dimensions of disability, and level of support needs. The Exploratory Factor Analysis identified five structural together with intrapersonal and interpersonal constraint factors. ...

  1. Asymmetrically pumped Bragg scattering with the effects of nonlinear phase modulation

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Friis, Søren Michael Mørk; Reddy, Dileep V.

    2014-01-01

    We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM.......We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM....

  2. Nonlinear Effects in Quantum Dynamics of Atom Laser: Mean-Field Approach

    Institute of Scientific and Technical Information of China (English)

    JING Hui

    2002-01-01

    Quantum dynamics and statistics of an atom laser with nonlinear binary interactions are investigated inthe framework of mean-field approximation. The linearized effective Hamiltonian of the system is accurately solvable.It is shown that, although the input radio frequency field is in an ordinary Glauber coherent state, the output matterwave will periodically exhibit quadrature squeezing effects purely originated from the nonlinear atom-atom collisions.

  3. Teaching People to Manage Constraints: Effects on Creative Problem-Solving

    Science.gov (United States)

    Peterson, David R.; Barrett, Jamie D.; Hester, Kimberly S.; Robledo, Issac C.; Hougen, Dean F.; Day, Eric A.; Mumford, Michael D.

    2013-01-01

    Constraints often inhibit creative problem-solving. This study examined the impact of training strategies for managing constraints on creative problem-solving. Undergraduates, 218 in all, were asked to work through 1 to 4 self-paced instructional programs focused on constraint management strategies. The quality, originality, and elegance of…

  4. Teaching People to Manage Constraints: Effects on Creative Problem-Solving

    Science.gov (United States)

    Peterson, David R.; Barrett, Jamie D.; Hester, Kimberly S.; Robledo, Issac C.; Hougen, Dean F.; Day, Eric A.; Mumford, Michael D.

    2013-01-01

    Constraints often inhibit creative problem-solving. This study examined the impact of training strategies for managing constraints on creative problem-solving. Undergraduates, 218 in all, were asked to work through 1 to 4 self-paced instructional programs focused on constraint management strategies. The quality, originality, and elegance of…

  5. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    Science.gov (United States)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei

    2016-04-01

    This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.

  6. Nonlinear effects at the Fermilab Recycler e-cloud instability

    CERN Document Server

    Balbekov, V

    2016-01-01

    Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from the batch to its bunch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.

  7. Collisional Effects on Nonlinear Ion Drag Force for Small Grains

    CERN Document Server

    Hutchinson, I H

    2013-01-01

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  8. Chromatic and Dispersive Effects in Nonlinear Integrable Optics

    CERN Document Server

    Webb, Stephen D; Valishev, Alexander; Nagaitsev, Sergei N; Danilov, Viatcheslav V

    2015-01-01

    Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker ...

  9. Nonlinear Effects at the Fermilab Recycler e-Cloud Instability

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-10

    Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.

  10. Nonlinear effects of energetic particle driven instabilities in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bruedgam, Michael

    2010-03-25

    In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated {delta}/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction

  11. Nonlinear optical effects in pure and N-doped semiconductors

    CERN Document Server

    Donlagic, N S

    2000-01-01

    the optical response of a one-dimensional n-doped two-band semiconductor whose conduction band has been linearized with respect to the two Fermi points. Due to the linearization it is possible to calculate the linear and nonlinear response functions of the interacting electron system exactly. These response functions are then used in order to determine the linear absorption spectrum and the time-integrated signal of a degenerated four-wave-mixing experiment. It is shown that the well-known features of the linear response can directly be related to features of the nonlinear experiments. For example, the exponent which describes the algebraic decay of the time-integrated four-wave-mixing signal is functionally dependent on the exponent of the algebraic singularity in the linear absorption spectrum reflecting the common origin of the different phenomena. Over the last decades, the nonlinear optical properties of condensed matter systems have been an attractive and fruitful field of research. While the linear res...

  12. Nonlinear acoustic landmine detection: comparison of off-target soil background and on-target soil-mine nonlinear effects

    Science.gov (United States)

    Korman, Murray S.; Sabatier, James M.; Pauls, Kathleen E.; Genis, Sean A.

    2006-05-01

    When airborne sound at two primary tones, f I, f II (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the "target." Profiles at the primaries f I, f II, and nonlinearly generated combination frequencies f I-(f II-f I) and f II+(f II-f I) , 2f I-(f II-f I), f I+f II and 2f II+(f II-f I) (among others) have been measured for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil and in a gravel road bed. [M.S. Korman and J.M. Sabatier, J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. It is observed that the "on target" to "off target" contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments are performed both on and off the mine in an effort to understand the nonlinearities in each case.

  13. Electrically actuated MEMS resonators: Effects of fringing field and nonlinear viscoelasticity

    Science.gov (United States)

    Farokhi, Hamed; Ghayesh, Mergen H.

    2017-10-01

    This paper studies the nonlinear electromechanical response of a MEMS resonator numerically. A nonlinear continuous multi-physics model of the MEMS resonator is developed taking into account the effects of fringing field, size, residual axial load, and viscoelasticity. Moreover, both longitudinal and transverse motions are accounted for in the system modelling and simulations. The equations of motion of the MEMS resonator are obtained employing Hamilton's principle together with the modified version of the couple stress based theory (to account for size effects) and the Kelvin-Voigt model (to account for nonlinear energy dissipation). The Meijs-Fokkema electrostatic load formula is used to reliably model the fringing field effects. The continuous multi-physics model, consisting of geometrical, electrical, and viscos nonlinearities is discretised via a weighted-residual method, yielding a set of nonlinearly coupled ordinary differential equations (ODEs). The resultant set of ODEs is solved numerically when the microresonator is actuated by a biased DC voltage and an AC voltage. The results of the numerical simulations are presented in the form of DC voltage-deflection, DC voltage-natural frequency, and AC frequency-displacement diagrams. The effects of fringing field, residual axial load, small-scale, and nonlinear energy dissipation are highlighted. It is shown that fringing field effects are significant on both static and dynamic electromechanical responses of the MEMS resonator.

  14. Nonlinear flap-lag-extensional vibrations of rotating, pretwisted, preconed beams including Coriolis effects

    Science.gov (United States)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.

  15. A multilevel nonlinear mixed-effects approach to model growth in pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Sørensen, H

    2009-01-01

    Growth functions have been used to predict market weight of pigs and maximize return over feed costs. This study was undertaken to compare 4 growth functions and methods of analyzing data, particularly one that considers nonlinear repeated measures. Data were collected from an experiment with 40...... pigs maintained from birth to maturity and their BW measured weekly or every 2 wk up to 1,007 d. Gompertz, logistic, Bridges, and Lopez functions were fitted to the data and compared using information criteria. For each function, a multilevel nonlinear mixed effects model was employed because....... Furthermore, studies should consider adding continuous autoregressive process when analyzing nonlinear mixed models with repeated measures....

  16. Nonlinear Absolute Nodal Coordinate Formulation of a Flexible Beam Considering Shear Effect

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-yang; SHEN Ling-jie; HONG Jia-zhen

    2005-01-01

    Nonlinear modeling of a flexible beam with large deformation was investigated. Absolute nodal cooridnate formulation is employed to describe the motion, and Lagrange equations of motion of a flexible beam are derived based on the geometric nonlinear theory. Different from the previous nonlinear formulation with EulerBernoulli assumption, the shear strain and transverse normal strain are taken into account. Computational example of a flexible pendulum with a tip mass is given to show the effects of the shear strain and transverse normal strain. The constant total energy verifies the correctness of the present formulation.

  17. Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law

    Science.gov (United States)

    López, Rosa; Sánchez, David

    2013-07-01

    We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.

  18. Noise-induced transitions and resonant effects in nonlinear systems

    Science.gov (United States)

    Zaikin, Alexei

    2003-02-01

    Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich

  19. Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John

    2016-01-01

    When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a

  20. Engineering chromatic dispersion and effective nonlinearity in a dual-slot waveguide.

    Science.gov (United States)

    Liu, Yan; Yan, Jing; Han, Genquan

    2014-09-20

    In this paper, we propose a new dual slot based on rib-like structure, which exhibits a flat and near-zero dispersion over a 198 nm wide wavelength range. Chromatic dispersion of dual-slot silicon (Si) waveguide is mainly determined by waveguide dispersion due to the manipulating mode effective area rather than by the material dispersion. Moreover, the nonlinear coefficient and effective mode area of the waveguide are also explored in detail. A nonlinear coefficient of 1460/m/W at 1550 nm is achieved, which is 10 times larger than that of the Si rib waveguide. By changing different waveguide variables, both the dispersion and nonlinear coefficient can be tailored, thus enabling the potential for a highly nonlinear waveguide with uniform dispersion over a wide wavelength range, which could benefit the performance of broadband optical signal systems.

  1. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.

    Science.gov (United States)

    Chen, Tao; Sun, Junqiang; Li, Linsen

    2012-08-27

    In this paper, we derive the couple-mode equations for third-order nonlinear effects in photonic crystal waveguides by employing the modal theory. These nonlinear interactions include self-phase modulation, cross-phase modulation and degenerate four-wave mixing. The equations similar to that in nonlinear fiber optics could be expanded and applied for third-order nonlinear processes in other periodic waveguides. Based on the equations, we systematically analyze the group-velocity dispersion, optical propagation loss, effective interaction area, slow light enhanced factor and phase mismatch for a slow light engineered silicon photonic crystal waveguide. Considering the two-photon and free-carrier absorptions, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slow light enhanced multiple four-wave-mixing process on the conversion efficiency.

  2. On the effects of nonlinearities in room impulse response measurements with exponential sweeps

    DEFF Research Database (Denmark)

    Ciric, Dejan; Markovic, Milos; Mijic, Miomir

    2013-01-01

    In room impulse response measurements, there are some common disturbances that affect the measured results. These disturbances include nonlinearity, noise and time variance. In this paper, the effects of nonlinearities in the measurements with exponential sweep-sine signals are analyzed from...... different perspectives. The analysis combines theoretical approach, simulations and measurements. The focus is on distortion artifacts in the causal part of the impulse response and their effects on room acoustical parameters. The results show that the sweep-sine method is vulnerable to a certain extent...... to nonlinearities from a theoretical standpoint, but the consequences of this vulnerability are reduced in the responses measured in practice. However, due to irretrievable contamination of the impulse responses, the nonlinearities (especially strong ones) should be avoided....

  3. A novel stress-accurate FE technology for highly non-linear analysis with incompressibility constraint: application to the numerical simulation of the FSW process

    OpenAIRE

    Chiumenti, Michèle; Cervera Ruiz, Miguel; Agelet de Saracibar Bosch, Carlos; Dialami, Narges

    2013-01-01

    In this work a novel finite element technology based on a three-field mixed formulation is presented. The Variational Multi Scale (VMS) method is used to circumvent the LBB stability condition allowing the use of linear piece-wise interpolations for displacement, stress and pressure fields, respectively. The result is an enhanced stress field approximation which enables for stress-accurate results in nonlinear computational mechanics. The use of an independent nodal variable for the pressure ...

  4. THE EFFECT OF AN ACUTE BOUT OF RUBBER TUBE RUNNING CONSTRAINT ON KINEMATICS AND MUSCLE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Anita Haudum

    2012-09-01

    Full Text Available We examined the effect of an acute bout of treadmill running with rubber tube (RT and without rubber tube (NT elastic constraints on electromyographic (EMG, 3D kinematics variability, and blood lactate concentration (LA. In the RT test, the constraints were attached to the hips and ankles. The selected variables were compared between 30 min of NT running and 30 minutes of RT running in 13 healthy recreationally trained male runners who had no prior exposure to RT. Statistical analysis revealed significantly higher EMG variability (p < 0.01 and muscle activity (p < 0.05 during RT compared to NT that decreased over time approaching NT, indicating movement pattern adaptation. 3D-kinematics and their variability remained generally unaltered. Changes occurred predominantly in the sagittal plane, specifically to the knee and the swing. A significant increase in LA was measured at the end of RT (p < 0.05. These findings suggest that RT running influences muscle recruitment and variability, but has only a minor influence on kinematics. Changes in LA were significant, although relatively small. The observed adaptations in EMG and kinematics suggest that the RTs provide a possibility to create within movement variability in various sports, and thus, variable training conditions may foster strategies to increase the ability to flexibly adapt to different and new situations

  5. Effects of microstructural constraints on the transport of fission products in uranium dioxide at low burnups

    Science.gov (United States)

    Lim, Harn Chyi; Rudman, Karin; Krishnan, Kapil; McDonald, Robert; Dickerson, Patricia; Gong, Bowen; Peralta, Pedro

    2016-08-01

    Diffusion of fission gases in UO2 is studied at low burnups, before bubble growth and coalescence along grain boundaries (GBs) become dominant, using a 3-D finite element model that incorporates actual UO2 microstructures. Grain boundary diffusivities are assigned based on crystallography with lattice and GB diffusion coupled with temperature to account for temperature gradients. Heterogeneity of GB properties and connectivity can induce regions where concentration is locally higher than without GB diffusion. These regions are produced by "bottlenecks" in the GB network because of lack of connectivity among high diffusivity GBs due to crystallographic constraints, and they can lead to localized swelling. Effective diffusivities were calculated assuming a uniform distribution of high diffusivity among GBs. Results indicate an increase over the bulk diffusivity with a clear grain size effect and that connectivity and properties of different GBs become important factors on the variability of fission product concentration at the microscale.

  6. SUSY effects in $R_b$: revisited under current experimental constraints

    CERN Document Server

    Su, Wei

    2016-01-01

    In this note we revisit the effects of natural SUSY in $R_b$ under current experimental constraints including the LHC Higgs data, the $B$-physics measurements, the dark matter relic density and direct detection limits, as well as the precision electroweak data. We first perform a scan to figure out the currently allowed parameter space of natural SUSY and then display the SUSY effects in $R_b$. We find that although the SUSY parameter space has been severely restrained by current experimental data, natural SUSY can still alter $R_b$ with a magnitude sizable enough to be observed at future $Z$-factories (ILC, CEPC, FCC-ee, Super $Z$-factory) which produce $10^9-10^{12}$ $Z$-bosons.

  7. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  8. Analysis of nonlinearities and effects in direct drive electro-hydraulic position servo system

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-jie; JI Tian-jing; MAO Xin-tao; LIU Quan-zhong

    2005-01-01

    The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce the popular nonlinearities in the electro-hydraulic system and analyse the effect of nonlinearities in direct drive electro-hydraulic position servo system by means of simulation research. Some valuable conclusions are given.

  9. Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.

    Science.gov (United States)

    Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E

    2011-05-12

    We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.

  10. Nonlinear Seebeck and Peltier effects in quantum point contacts

    Energy Technology Data Exchange (ETDEWEB)

    Cipiloglu, M.A.; Turgut, S.; Tomak, M. [Department of Physics, Middle East Technical University, Ankara (Turkey)

    2004-09-01

    The charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. With a suitable choice of the average temperature and chemical potential, the lowest order nonlinear term in both cases appear to be of third order. The behavior of the third-order coefficients in both cases are then investigated for different contact parameters. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-Bo; FAN Ting-Bo; GUO Xia-Sheng; ZHANG Dong

    2010-01-01

    @@ We study the influence of tissue inhomogeneity on the focused ultrasound based on the phase screen model and the acoustic nonlinear equation.The inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen.Six polyethylene(PE)plates with various correlation lengths and standard deviations are made to mimic the inhomogeneity induced by the human body abdominal.Results indicate that the correlation length affects the side lobe structure of the beam pattern; while the standard deviation is associated with the focusing capability.This study provides a theoretical and experimental basis for the development of a precise treatment plan for high intensity focused ultrasound.

  12. Nonlinear Seebeck and Peltier effects in quantum point contacts

    Science.gov (United States)

    Çipilolu, M. A.; Turgut, S.; Tomak, M.

    2004-09-01

    The charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. With a suitable choice of the average temperature and chemical potential, the lowest order nonlinear term in both cases appear to be of third order. The behavior of the third-order coefficients in both cases are then investigated for different contact parameters.

  13. Weak non-linear surface charging effects in electrolytic films

    OpenAIRE

    Dean, D. S.; Horgan, R. R.

    2002-01-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...

  14. Effect of geometric anisotropy on optical nonlinearity enhancement for periodic composites

    Science.gov (United States)

    Yang, Baifeng; Zhang, Chengxiang; Tian, Decheng

    2003-01-01

    The effect of geometric anisotropy on the optical nonlinearity enhancement for the composites with metal or semiconductor spheriodal-shaped particles periodically in an insulating host is investigated. The frequency dependences of effective nonlinear susceptibility are calculated with the Stroud-Hui relation and a series expression of space-dependent electric field in periodic composites. The results show that for both metal-insulator (MI) and semiconductor-insulator (SI) composites, nonlinearity enhancement increases almost to its maximum when the percolation networks of the inclusion phase form. The nonlinearity enhancement increases to its maximum when the composites are transformed into the Boyd-Sipe layered composites. The behavior of the nonlinearity enhancement near the percolation threshold is also investigated. A local minimum appears in the nonlinear optical responses at the percolation threshold for the MI composites. For the SI composites the local minimum appears when the ratio of the bound-electron number density to the effective mass of the electron is large.

  15. Research on Nonlinear Absorption Effect in KDP and 70%-DKDP Crystals

    Directory of Open Access Journals (Sweden)

    Duanliang Wang

    2017-07-01

    Full Text Available Nonlinear optical absorption effect in KDP and 70%-DKDP crystals, which were grown by the conventional temperature cooling method, was systematically studied using picosecond pulse laser excitation. Using open aperture Z-scan measurements, the dependence of nonlinear absorption effect on sample orientations (I, II, and z as well as laser intensity was systematically measured at λ = 1064 and 532 nm. According to the experimental results, the nonlinear absorption effect at λ = 532 nm was confirmed, while at λ = 1064 nm no nonlinear absorption was observed for KDP and 70%-DKDP crystals. In addition, the optical absorption along I- and II-type affected by laser intensity was larger than that along the z-direction. The important nonlinear absorption coefficients β and χ I ( 3 (esu measured along different orientations were exhibited in detail at wavelengths of 1064 nm and 532 nm. The results indicate that nonlinear absorption coefficients increase first and then decrease with the increment of laser intensity for KDP and 70%-DKDP crystals.

  16. 基于导数约束的称重传感器非线性误差补偿方法%Method for Compensation of Load Cell's Nonlinear Error Based on Derivatives Constraints

    Institute of Scientific and Technical Information of China (English)

    林海军; 王震宇; 林亚平; 汪鲁才

    2013-01-01

    电阻应变式称重传感器存在严重的非线性误差,直接影响称重结果的准确度。本文首先阐述了称重传感器的非线性误差机理与误差补偿原理,提出了一种基于导数约束的称重传感器非线性误差补偿方法。该方法根据称重传感器输入-输出特性曲线的单调递增性,构造神经网络补偿模型训练的约束条件,完成神经网络优化设计,弥补了因训练样本不足导致的网络泛化误差大的缺陷,同时讨论了惩罚因子对网络性能的影响。实验表明,采用这种基于导数约束神经网络补偿方法( DCNN方法)的称重传感器的非线性误差远小于补偿前的误差;同时当训练样本不足时,DCNN方法比传统训练方法(仅利用数据样本训练神经网络,DINN)具有更好的泛化能力,称重准确度更高。%The nonlinear error of the resistance strain gauge load cell has heavy nonlinear error,which will lead to the low accuracy of weighing results. In this paper,the mechanism of the load cell's nonlinear error is introduced and a method for compensation on the load cell's nonlinear error based on derivatives constraints neural network ( DCNN) is proposed. In this method,the monotonically increasing characteristic of load cell's input-output function is used to construct the constraint conditions of training and optimizing the error compensation model with neural network,which can decrease the model's generalization error because of the lack of its training samples. On the other hand,the model's performance affected by the punishing factor is discussed. The experimental results show that the nonlinear error of load cell with this proposed method is far less than that without compensation,and the DCNN's generalization ability is more advantageous than the DINN( i. e. training neural network by only using data samples and not any constraint condition) ,and the weighing results of load cell with DCNN are more accurate.

  17. Primarily nonlinear effects observed in a driven asymmetrical vibrating wire

    Science.gov (United States)

    Hanson, Roger J.; Macomber, H. Kent; Morrison, Andrew C.; Boucher, Matthew A.

    2005-01-01

    The purpose of the work reported here is to further experimentally explore the wide variety of behaviors exhibited by driven vibrating wires, primarily in the nonlinear regime. When the wire is driven near a resonant frequency, it is found that most such behaviors are significantly affected by the splitting of the resonant frequency and by the existence of a ``characteristic'' axis associated with each split frequency. It is shown that frequency splitting decreases with increasing wire tension and can be altered by twisting. Two methods are described for determining the orientation of characteristic axes. Evidence is provided, with a possible explanation, that each axis has the same orientation everywhere along the wire. Frequency response data exhibiting nonlinear generation of transverse motion perpendicular to the driving direction, hysteresis, linear generation of perpendicular motion (sometimes tubular), and generation of motion at harmonics of the driving frequency are exhibited and discussed. Also reported under seemingly unchanging conditions are abrupt large changes in the harmonic content of the motion that sometimes involve large subharmonics and harmonics thereof. Slow transitions from one stable state of vibration to another and quasiperiodic motions are also exhibited. Possible musical significance is discussed. .

  18. Nonlinear diffraction effects around a surface-piercing structure

    Energy Technology Data Exchange (ETDEWEB)

    Lalli, F.; Mascio, A. Di; Landrini, M. [Istituto Nazionale per Studi ed Esperienze di Architettura Navale, Rome (Italy)

    1995-12-31

    In the present paper the interaction of a wave system with a submerged or surface piercing body is studied. The wave diffraction caused by a cylinder in finite depth water and by a shoal is been computed and the results are compared with analytical solutions and experimental data. The problem is analyzed numerically in the frame of irrotational incompressible flow hypothesis. Both the linearized and the fully nonlinear mathematical models are studied. The numerical solution is gained by means of a mixed panel-desingularized formulation. An explicit time-marching algorithm updates the wave elevation and the potential at the free surface. In all cases, the numerical simulation mirrors the experimental data. In the case of the diffraction around a cylinder, the simulation confirms and extends the theoretical results of the second order analysis (Kriebel 1990, 1992): the linear model yields a very good estimation of the force amplitude acting on the body, while the wave profiles are poorly predicted when compared with the fully nonlinear simulation and the experimental data.

  19. Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface

    Directory of Open Access Journals (Sweden)

    anjali devi

    2015-01-01

    Full Text Available The effects of nonlinear radiation on hydromagnetic boundary layer flow and heat transfer over a shrinking surface is investigated in the present work. Using suitable similarity transformations, the governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations. The resultant equations which are highly nonlinear are solved numerically using Nachtsheim Swigert shooting iteration scheme together with Fourth Order Runge Kutta method. Numerical solutions for velocity, skin friction coefficient and temperature are obtained for various values of physical parameters involved in the study namely Suction parameter, Magnetic parameter, Prandtl number, Radiation parameter and Temperature ratio parameter. Numerical values for dimensionless rate of heat transfer are also obtained for various physical parameters and are shown through tables. The analytical solution of the energy equation when the radiation term is taken in linear form is obtained using Confluent hypergeometric function.

  20. NONLINEAR VIBRATION FOR MODERATE THICKNESS RECTANGULAR CRACKED PLATES INCLUDING COUPLED EFFECT OF ELASTIC FOUNDATION

    Institute of Scientific and Technical Information of China (English)

    XIAO Yong-gang; FU Yi-ming; ZHA Xu-dong

    2005-01-01

    Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed.

  1. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet.

    Science.gov (United States)

    Hady, Fekry M; Ibrahim, Fouad S; Abdel-Gaied, Sahar M; Eid, Mohamed R

    2012-04-22

    In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles.

  2. Nonlinear continuous-wave optical propagation in nematic liquid crystals: Interplay between reorientational and thermal effects

    Science.gov (United States)

    Alberucci, Alessandro; Laudyn, Urszula A.; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A.; Assanto, Gaetano

    2017-07-01

    We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.

  3. Theory of plasmonic effects in nonlinear optics: the case of graphene

    CERN Document Server

    Rostami, Habib; Polini, Marco

    2016-01-01

    We develop a microscopic large-$N$ theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory, which reduces to the well-known random phase approximation in the linear-response limit, is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional (2D) gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved by virtue of the finiteness of the quasi-homogeneous second-order nonlinear response of this inversion-symmetric 2D material.

  4. Effects of Credit Constraint on Productivity and Rural Household Income in China

    OpenAIRE

    Dong, Fengxia; Lu, Jing; Featherstone, Allen M.

    2010-01-01

    Chinese rural household has been always facing credit constraints. Few institutions lend loans to farmers because of financial risks. Farmers have to use usury or other informal sources to meet the financial needs for production. This credit constraint has been forcing farmers to deviate from optimal resource allocation and production arrangement. Consequently, it affects farmers’ income growth. Therefore, the objective of this study is to examine how credit constraint affects agricultural pr...

  5. Light-induced nonlinear effects on dispersion relation of ultracold Bose gas

    Institute of Scientific and Technical Information of China (English)

    胡正峰; 杜春光; 李师群

    2003-01-01

    We have investigated the optical properties of A-configuration ultracold dense Bose gas interacting with two laser pulses, which usually result in electromagnetically induced transparency. With the nonrelativistic quantum electrodynamics and taking into account the atomic dipole-dipole interaction and local field effect, we have derived the Maxwell-Bloch equations of the system. The dispersion relation of an ultracold Bose gas has been obtained and the light-induced nonlinear effects have been analysed. The light-induced nonlinear effects are different from the effects induced by two-body collision of Bose-Einstein condensation atoms which have a frequency shift of transparent window.

  6. Light—induced nonlinear effects of dispersion relation of ultracold Bose gas

    Institute of Scientific and Technical Information of China (English)

    HuZheng-Feng; DuChunGuang; LiShi-Qun

    2003-01-01

    We have investigated the optical properties of A-configuration ultracold dense Bose gas interacting with two laser pulses, which usually result in electromagnetically induced transparency. With the nonrelativistic quantum electrodynamics and taking into account the atomic dipole-dipole interaction and local field effect, we have derived the Maxwell-Bloch equations of the system. The dispersion relation of an ultracold Bose gas has been obtained and the light-induced nonlinear effects have been analysed. The light-induced nonlinear effects are different from the effects induced by two-body collision of Bose-Einstein condensation atoms which have a frequency shift of transparent window.

  7. Non-linear effects of soda taxes on consumption and weight outcomes.

    Science.gov (United States)

    Fletcher, Jason M; Frisvold, David E; Tefft, Nathan

    2015-05-01

    The potential health impacts of imposing large taxes on soda to improve population health have been of interest for over a decade. As estimates of the effects of existing soda taxes with low rates suggest little health improvements, recent proposals suggest that large taxes may be effective in reducing weight because of non-linear consumption responses or threshold effects. This paper tests this hypothesis in two ways. First, we estimate non-linear effects of taxes using the range of current rates. Second, we leverage the sudden, relatively large soda tax increase in two states during the early 1990s combined with new synthetic control methods useful for comparative case studies. Our findings suggest virtually no evidence of non-linear or threshold effects.

  8. Effects of constraints on lattice re-orientation and strain in polycrystal plasticity simulations

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; McGinty, R.D.; McDowell, D.L.

    2009-01-01

    Employing a rate-dependent crystal plasticity model implemented in a novel and fast algorithm, two instantiations of an OFHC copper microstructure have been simulated by FE modelling to 11% tensile engineering strain with two different sets of boundary conditions. Analysis of lattice rotations......, strain distributions and global stress–strain response show the effect of changing from free to periodic boundary conditions to be a perturbation of a response dictated by the microstructure. Average lattice rotation for each crystallographic grain has been found to be in fair agreement with Taylor......-constraint simulations while fine scale element-resolved analysis shows large deviations from this prediction. Locally resolved analysis shows the existence of large domains dominated by slip on only a few slip systems. The modelling results are discussed in the light of recent experimental advances with respect to 2...

  9. Constraints on $s-\\bar s$ asymmetry in the proton in chiral effective theory

    CERN Document Server

    Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P

    2016-01-01

    We compute the $s-\\bar s$ asymmetry in the proton in chiral effective theory, using available phenomenological constraints from existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states, our formalism includes off-shell and contact interactions, which impact the shape of the $s-\\bar s$ difference. Using a finite-range regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the first moment of the asymmetry to the range $-0.07 \\times 10^{-3} \\leq \\langle x(s-\\bar s) \\rangle \\leq 1.12 \\times 10^{-3}$ at a scale of $Q^2=1\\ $GeV$^2$. In contrast to some suggestions in the literature, the magnitude of this correction is too small to account for the NuTeV anomaly.

  10. The influence of nonlinear effects on the spectral efficiency of multiinput antenna systems

    Directory of Open Access Journals (Sweden)

    Vishniakova J. V.

    2015-08-01

    Full Text Available The analysis technique and design algorithm are proposed for multiinput antenna systems, based on the mathematical model developed. The technique and algorithm described allow the analysis of a wide class of multiinput systems, in particular, MIMO systems, reconfigurable multiantenna systems, multiinput systems with nonlinear components and devices. The paper presents numerical analysis results of the intermodulation interference effect on the spectral efficiency of a multiinput system with nonlinear elements in receiving antennas, obtained using the methods, algorithms and software products developed. It is shown that in the nonlinear system intermodulation interferences appear, and the spectral efficiency of the data transmission system decays near the operating frequency due to the appearance of additional combinational components in the frequency response of the system. This effect depends on the degree of nonlinearity, radiated power, the level of interfering signals. Based on the results obtained, it was concluded that the presence of nonlinear elements and devices must be taken into account in the design and analysis processes of multiinput multiantenna systems, considering the specific types of those nonlinearities.

  11. Notes on constraints for the observation of Polar Kerr Effect in complex materials

    Energy Technology Data Exchange (ETDEWEB)

    Kapitulnik, Aharon, E-mail: aharonk@stanford.edu [Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-03-01

    While Kerr effect has been used extensively for the study of magnetic materials, it is only recently that its has shown to be a powerful tool for the study of more complex quantum matter. Since such materials tend to exhibit a wealth of new phases and broken symmetries, it is important to understand the general constraints on the possibility of observing a finite Kerr effect. In this paper we reviewed the consequences of reciprocity on the scattering of electromagnetic waves. In particular we concentrate on the possible detection of Kerr effect from chiral media with and without time-reversal symmetry breaking. We show that a finite Kerr effect is possible only if reciprocity is broken. Introducing the utilization of the Sagnac interferometer as a detector for breakdown of reciprocity via the detection of a finite Kerr effect, we argue that in the linear regime, a finite detection is possible only if reciprocity is broken. We then discuss possible Kerr effect detection for materials with natural optical activity, magnetism, and chiral superconductivity.

  12. A New Constraint on Effective Field Theories of the QCD Flux Tube

    CERN Document Server

    Baker, M

    2015-01-01

    Effective magnetic $SU(N)$ gauge theory with classical $Z_N$ flux tubes of intrinsic width $\\frac{1}{M}$ is an effective field theory of the long distance quark-antiquark interaction in $SU(N)$ Yang-Mills theory. Long wavelength fluctuations of the $Z_N$ vortices of this theory lead to an effective string theory. In this paper we clarify the connection between effective field theory and effective string theory and we propose a new constraint on these vortices. We first examine the impact of string fluctuations on the classical dual superconductor description of confinement. At inter-quark distances $R\\sim \\frac{1}{M}$ the classical action for a straight flux tube determines the heavy quark potentials. At distances $R \\gg \\frac{1}{M}$ fluctuations of the flux tube axis $\\tilde{x}$ give rise to an effective string theory with an action $S_{eff} (\\tilde{x})$, the classical action for a curved flux tube, evaluated %on the fluctuating vortex sheet $\\tilde{x}$ in the limit $\\frac{1}{M} \\rightarrow 0~$. This action ...

  13. Edge effects and geometric constraints: a landscape-level empirical test.

    Science.gov (United States)

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this

  14. Effect of four-dimensional variational data assimilation in case of nonlinear instability

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of four-dimensional variational data assimilation on the reduction of the forecast errors is investigated for both stable and unstable flows. Numerical results show that the effect is generally positive. Particularly,its effect is much more significant in the presence of nonlinear instability

  15. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam.

    Science.gov (United States)

    Sorokin, Vladislav S; Thomsen, Jon Juel

    2016-02-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation.

  16. Nonlinear effects of dark energy clustering beyond the acoustic scales

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Stefano [Department of Physics/CERCA/ISO, Case Western Reserve University, Cleveland, OH 44106-7079 (United States); Nacir, Diana López [The Abdus Salam International Center for Theoretical Physics, Strada costiera 11, I-34151 Trieste (Italy); Sefusatti, Emiliano, E-mail: stefano.anselmi@case.edu, E-mail: dlopez_n@ictp.it, E-mail: emiliano.sefusatti@brera.inaf.it [INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy)

    2014-07-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.

  17. The effect of nonlinearity in relativistic nucleon–nucleon potential

    Indian Academy of Sciences (India)

    B B Sahu; S K Singh; M Bhuyan; S K Patra

    2014-04-01

    A simple form for nucleon–nucleon (NN) potential is introduced as an alternative to the popular M3Y form using the relativistic mean field theory (RMFT) with the non-linear terms in -meson for the first time. In contrast to theM3Y form, the new interaction becomes exactly zero at a finite distance and the expressions are analogous with the M3Y terms. Further, its applicability is examined by the study of proton and cluster radioactivity by folding it with the RMFT-densities of the cluster and daughter nuclei to obtain the optical potential in the region of proton-rich nuclides just above the double magic core 100Sn. The results obtained were found comparable with the widely used M3Y interactions.

  18. A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    NARESHA RAM

    2009-04-01

    Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.

  19. Nonlinear Zel'dovich effect: Parametric amplification from medium rotation

    CERN Document Server

    Faccio, Daniele

    2016-01-01

    The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than 40 years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-PT symmetry induced by the medium rotation.

  20. Connected cruise control: modelling, delay effects, and nonlinear behaviour

    Science.gov (United States)

    Orosz, Gábor

    2016-08-01

    Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.

  1. Nonlinear Zel'dovich Effect: Parametric Amplification from Medium Rotation

    Science.gov (United States)

    Faccio, Daniele; Wright, Ewan M.

    2017-03-01

    The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than forty years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-P T symmetry induced by the medium rotation.

  2. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, Jorge [EC Engineering Consultants, LLC 130, Forest Hill Drive, Los Gatos, CA (United States); Deasy, Joseph O [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (United States); Bortfeld, Thomas R [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 30 Fruit Street, Boston, MA (United States); Solberg, Timothy D [Department of Radiation Oncology, University of California, Los Angeles, CA (United States); Promberger, Claus [BrainLAB AG, Ammerthalstrasse 8, 85551 Heimstetten (Germany)

    2003-01-21

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  3. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    Science.gov (United States)

    Llacer, Jorge; Deasy, Joseph O.; Bortfeld, Thomas R.; Solberg, Timothy D.; Promberger, Claus

    2003-01-01

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  4. Effect of Constraints on Tiebout Competition: Evidence from the Michigan School Finance Reform. Staff Report No. 471

    Science.gov (United States)

    Chakrabarti, Rajashri; Roy, Joydeep

    2010-01-01

    This paper examines the effects of constraints in a Tiebout framework applied to school finance reforms. We use data from Michigan, which enacted a comprehensive school finance reform in 1994 that, in effect, ended local discretion over school spending. This scenario affords us a unique opportunity to study the implications of imposing limits on…

  5. Effect of Residual Stress on Divergence Instability of Rectangular Microplate Subjected to Nonlinear Electrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Ghader Rezazadeh

    2007-07-01

    Full Text Available In this paper, the effect of residual stress on divergence instability of a rectangular microplate subjected to a nonlinear electrostatic pressure for different geometrical properties has been presented. After deriving the governing equation and using of Step-by-Step Linearization Method (SSLM, the governing nonlinear equation has been linearized. By applying the finite difference method (FDM to a rectangular mesh, the linearized equation has been discretized. The results show, residual stresses have considerable effects on Pull-in phenomena. Tensile residual stresses increase pull-in voltage and compressive decrease it. The effect of different geometrical properties on divergence instability has also been studied.

  6. The Simulation Analysis of Nonlinear for a Power Amplifier with Memory Effects

    Directory of Open Access Journals (Sweden)

    Lv. Jinqiu

    2014-09-01

    Full Text Available For the nonlinear distortion problem of current power amplifiers (PAs with memory effects, we use goal programming to present a memoryless predistorter matrix model based on limiting baseband predistortion technique, and the normalized mean squared error (NMSE is limited in a satisfactory range while the output power is maximum. Then we propose a nonlinear power amplifier with memory effects based on back propagation neural network (BPNN with three tapped delay nodes and six single hidden layer nodes, which is single input - dual output. Simulation results show that the method proposed in this paper makes the experimental precision higher. Further, the linearization effect of power amplifiers becomes better.

  7. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects

    Science.gov (United States)

    Cheng, J. L.; Vermeulen, N.; Sipe, J. E.

    2017-01-01

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response. PMID:28262762

  8. Effect of reduction time on third order optical nonlinearity of reduced graphene oxide

    Science.gov (United States)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-04-01

    We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.

  9. A TRUST-REGION ALGORITHM FOR NONLINEAR INEQUALITY CONSTRAINED OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    Xiaojiao Tong; Shuzi Zhou

    2003-01-01

    This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived,which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.

  10. Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.

    Science.gov (United States)

    Deng, Qian; Liu, Liping; Sharma, Pradeep

    2014-07-01

    Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.

  11. Imprint of non-linear effects on HI intensity mapping on large scales

    Science.gov (United States)

    Umeh, Obinna

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  12. Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization

    Science.gov (United States)

    Sato, Rodrigo; Ohnuma, Masato; Oyoshi, Keiji; Takeda, Yoshihiko

    2014-09-01

    The effects of size quantization on the nonlinear optical response of Ag nanoparticles are experimentally studied by spectroscopic ellipsometry and femtosecond spectroscopic pump-and-probe techniques. In the vicinity of a localized surface-plasmon resonance (2.0-3.5 eV), we have investigated the optical nonlinearity of Ag particles embedded in silica glass for particle diameters ranging from 3.0 to 16 nm. The intrinsic third-order optical susceptibility χm(3) of Ag particles exhibited significant spectral and size dependences. These results are explained as quantum and dielectric confinements and are compared to the results of theoretical quantum finite-size effects calculation for metallic particles. In light of these results, we discuss the contribution of interband transitions to the size dependence of χm(3). Quantum size effects lead to an increase in nonlinearity in small Ag particles.

  13. Correction of non-linearity effects in detectors for electron spectroscopy

    CERN Document Server

    Mannella, N; Kay, A W; Nambu, A; Gresch, T; Yang, S H; Mun, B S; Bussat, J M; Rosenhahn, A; Fadley, C S

    2004-01-01

    Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at di...

  14. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    Science.gov (United States)

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.

  15. Non-linear effects in transition edge sensors for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]. E-mail: sbandler@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Murphy, K.D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2006-04-15

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter.

  16. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    Science.gov (United States)

    Nosik, V. L.

    2016-05-01

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.

  17. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  18. Cross-polarized wave generation by effective cubic nonlinear optical interaction.

    Science.gov (United States)

    Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M

    2001-03-15

    A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.

  19. The effective wavenumber of a pre-stressed nonlinear microvoided composite

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, W J; Abrahams, I D, E-mail: William.Parnell@manchester.ac.uk [School of Mathematics, Alan Turing Building, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2011-01-01

    By using nonlinear elasticity and a modified version of classical multiple scattering theory we derive an explicit form for the effective wavenumber for horizontally polarized shear (SH) elastic waves propagating through a pre-stressed inhomogeneous material consisting of well-separated cylindrical voids embedded in a neo-Hookean rubber host phase. The resulting effective (incremental) antiplane shear modulus is thus also derived.

  20. Temperature dependent nonlinear Hall effect in macroscopic Si-MOS antidot array

    OpenAIRE

    Kuntsevich, A. Yu.; Shupltetsov, A. V.; Nunuparov, M. S.

    2015-01-01

    By measuring magnetoresistance and Hall effect in classically moderate perpendicular magnetic field in Si-MOSFET-type macroscopic antidot array we found a novel effect: nonlinear with field, temperature- and density-dependent Hall resistivity. We discuss qualitative explanation of the phenomenon and suggest that it might originate from strong temperature dependence of the resistivity and mobility in the shells of the antidots.

  1. Nonlinear topographic effects in two-layer flows

    Directory of Open Access Journals (Sweden)

    Peter George Baines

    2016-02-01

    Full Text Available We consider the nature of non-linear flow of a two-layer fluid with a rigid lid over a long obstacle, such that the flow may be assumed to be hydrostatic. Such flows can generate hydraulic jumps upstream, and the model uses a new model of internal hydraulic jumps, which results in corrections to flows that have been computed using earlier models of jumps that are now known to be incorrect. The model covers the whole range of ratios of the densities of the two fluids, and is not restricted to the Boussinesq limit. The results are presented in terms of flow types in various regions of a Froude number-obstacle height (F0 – Hm diagram, in which the Froude number F0 is based on the initial flow conditions. When compared with single-layer flow, and some previous results with two layers, some surprising and novel patterns emerge on these diagrams. Specifically, in parts of the diagram where the flow may be supercritical (F0 > 1, there are regions where hysteresis may occur, implying that the flow may have two and sometimes three multiple flow states for the same conditions (i.e. values of F0 and Hm.

  2. Isotopic effects on non-linearity, molecular radius and intermolecular free length

    Indian Academy of Sciences (India)

    Ranjan Dey; Arvind K Singh; N K Soni; B S Bisht; J D Pandey

    2006-08-01

    Computation of non-linearity parameter (/), molecular radius (rm) and intermolecular free length (f) for H2O, C6H6, C6H12, CH3OH, C2H5OH and their deuterium-substituted compounds have been carried out at four different temperatures, viz., 293.15, 303.15, 313.15 and 323.15 K. The aim of the investigation is an attempt to study the isotopic effects on the non-linearity parameter and the physicochemical properties of the liquids, which in turn has been used to study their effect on the intermolecular interactions produced thereof.

  3. Nonlinear Random Effects Mixture Models: Maximum Likelihood Estimation via the EM Algorithm.

    Science.gov (United States)

    Wang, Xiaoning; Schumitzky, Alan; D'Argenio, David Z

    2007-08-15

    Nonlinear random effects models with finite mixture structures are used to identify polymorphism in pharmacokinetic/pharmacodynamic phenotypes. An EM algorithm for maximum likelihood estimation approach is developed and uses sampling-based methods to implement the expectation step, that results in an analytically tractable maximization step. A benefit of the approach is that no model linearization is performed and the estimation precision can be arbitrarily controlled by the sampling process. A detailed simulation study illustrates the feasibility of the estimation approach and evaluates its performance. Applications of the proposed nonlinear random effects mixture model approach to other population pharmacokinetic/pharmacodynamic problems will be of interest for future investigation.

  4. The effects of oppositely sloping boundaries with Ekman dissipation in a nonlinear baroclinic system

    Science.gov (United States)

    Weng, H.-Y.

    1990-01-01

    The present analytical and numerical examination of the effect of the slope Delta with dissipation delta on baroclinic flows in linear and nonlinear systems uses a modified Eady channel model with oppositely sloping top and bottom Ekman layers, and truncates the spectral wave solution up to six components. Comparisons are made wherever possible with results from beta-plane dissipative systems. In the linear system, the combined effect of Delta and delta strongly stabilizes long waves. In a nonlinear system without wave-wave interaction, Delta stabilizes the flow even for small delta and reduces the domain of vacillation while enlarging the domain of single-wave steady state.

  5. Study of dispersive and nonlinear effects of coastal wave dynamics with a fully nonlinear potential flow model

    Science.gov (United States)

    Benoit, Michel; Yates, Marissa L.; Raoult, Cécile

    2017-04-01

    Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the

  6. Nonlinear effects in the propagation of optically generated magnetostatic volume mode spin waves

    Science.gov (United States)

    van Tilburg, L. J. A.; Buijnsters, F. J.; Fasolino, A.; Rasing, T.; Katsnelson, M. I.

    2017-08-01

    Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse [Satoh et al., Nat. Photon. 6, 662 (2012), 10.1038/nphoton.2012.218]. We reproduce these results and extend the scope of the control by investigating nonlinear effects for large amplitude excitations. We observe an accumulation of spin wave power at the center of the initial excitation combined with short-wavelength spin waves. These kinds of nonlinear effects have not been observed in earlier work on nonlinearities of spin waves. Our observations pave the way for the manipulation of magnetic structures at a smaller scale than the beam focus, for instance in devices with all-optical control of magnetism.

  7. Nonlinear frequency conversion effect in a one-dimensional graphene-based photonic crystal

    Science.gov (United States)

    Wicharn, S.; Buranasiri, P.

    2015-07-01

    In this research, the nonlinear frequency conversion effect based on four-wave mixing (FWM) principle in a onedimensional graphene-based photonics crystal (1D-GPC) has been investigated numerically. The 1D-GPC structure is composed of two periodically alternating material layers, which are graphene-silicon dioxide bilayer system and silicon membrane. Since, the third-order nonlinear susceptibility χ(3) of bilayer system is hundred time higher than pure silicon dioxide layer, so the enhancement of FWM response can be achieved inside the structure with optimizing photon energy being much higher than a chemical potential level (μ) of graphene sheet. In addition, the conversion efficiencies of 1DGPC structure are compared with chalcogenide based photonic structure for showing that 1D-GPC structure can enhance nonlinear effect by a factor of 100 above the chalcogenide based structure with the same structure length.

  8. Beyond the effective mass approximation: predictive theory of the nonlinear optical response of conduction electrons

    CERN Document Server

    Yu, Shukai; Talbayev, Diyar

    2016-01-01

    We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.

  9. Effects of ADC Nonlinearity on the Spurious Dynamic Range Performance of Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Rongzong Kang

    2014-01-01

    Full Text Available Analog-to-information converter (AIC plays an important role in the compressed sensing system; it has the potential to significantly extend the capabilities of conventional analog-to-digital converter. This paper evaluates the impact of AIC nonlinearity on the dynamic performance in practical compressed sensing system, which included the nonlinearity introduced by quantization as well as the circuit non-ideality. It presents intuitive yet quantitative insights into the harmonics of quantization output of AIC, and the effect of other AIC nonlinearity on the spurious dynamic range (SFDR performance is also analyzed. The analysis and simulation results demonstrated that, compared with conventional ADC-based system, the measurement process decorrelates the input signal and the quantization error and alleviate the effect of other decorrelates of AIC, which results in a dramatic increase in spurious free dynamic range (SFDR.

  10. Effective supercontinuum generation by using highly nonlinear dispersion-shifted fiber incorporated with Si nanocrystals.

    Science.gov (United States)

    Jeong, Seongmook; Ju, Seongmin; Kim, Youngwoong; Watekar, Pramod R; Jeong, Hyejeong; Lee, Ho-Jae; Boo, Seongjae; Kim, Dug Young; Han, Won-Taek

    2012-01-01

    The dispersion-shifted fiber (DSF) incorporated with Si nanocrystals (Si-NCs) having highly nonlinear optical property was fabricated to investigate the effective supercontinuum generation characteristics by using the MCVD process and the drawing process. Optical nonlinearity was enhanced by incorporating Si nanocrystals in the core of the fiber and the refractive index profile of a dispersion-shifted fiber was employed to match its zero-dispersion wavelength to that of the commercially available pumping source for generating effective supercontinuum. The non-resonant nonlinear refractive index, n2, of the Si-NCs doped DSF measured by the cw-SPM method was measured to be 7.03 x 10(-20) [m2/W] and the coefficient of non-resonant nonlinearity, gamma, was 7.14 [W(-1) km(-1)]. To examine supercontinuum generation of the Si-NCs doped DSF, the femtosecond fiber laser with the pulse width of 150 fs (at 1560 nm) was launched into the fiber core. The output spectrum of the Si-NCs doped DSF was found to broaden from 1300 nm to wavelength well beyond 1700 nm, which can be attributed to the enhanced optical nonlinearity by Si-NCs embedded in the fiber core. The short wavelength of the supercontinuum spectrum in the Si-NCs doped DSF showed shift from 1352 nm to 1220 nm for the fiber length of 2.5 m and 200 m, respectively.

  11. THEORETICAL EVALUATION OF NONLINEAR EFFECTS ON OPTICAL WDM NETWORKS WITH VARIOUS FIBER TYPES

    Directory of Open Access Journals (Sweden)

    YASIN M. KARFAA

    2010-09-01

    Full Text Available A theoretical study is carried out to evaluate the performance of an opticalwavelength division multiplexing (WDM network transmission system in the presenceof crosstalk due to optical fiber nonlinearities. The most significant nonlinear effects inthe optical fiber which are Cross-Phase Modulation (XPM, Four-Wave Mixing (FWM,and Stimulated Raman Scattering (SRS are investigated. Four types of optical fiber areincluded in the analysis; these are: single-mode fiber (SMF, dispersion compensationfiber (DCF, non-zero dispersion fiber (NZDF, and non-zero dispersion shifted fiber(NZDSF. The results represent the standard deviation of nonlinearity induced crosstalknoise power due to FWM and SRS, XPM power penalty for SMF, DCF, NZDF, andNZDSF types of fiber, besides the Bit Error Rate (BER for the three nonlinear effectsusing standard fiber type (SMF. It is concluded that three significant fiber nonlinearitiesare making huge limitations against increasing the launched power which is desired,otherwise, lower values of launched power limit network expansion including length,distance, covered areas, and number of users accessing the WDM network, unlesssuitable precautions are taken to neutralize the nonlinear effects. Besides, various fibertypes are not behaving similarly towards network parameters.

  12. Physiological constraints on the global distribution of Trichodesmium – effect of temperature on diazotrophy

    Directory of Open Access Journals (Sweden)

    A. Oschlies

    2006-06-01

    Full Text Available The cyanobacterium Trichodesmium is an important link in the global nitrogen cycle due to its significant input of atmospheric nitrogen into the ocean. Incorporating Trichodesmium in ocean biogeochemical circulation models relies on field-based correlations between temperature and Trichodesmium abundance. The observed correlation of Trichodesmium abundance with temperature in the ocean may result in part from a direct effect on Trichodesmium growth rates through the control of cellular biochemical processes, or indirectly through its influence on mixed layer depth, light and nutrient regimes. Here we present results indicating that the observed correlation of Trichodesmium with temperature in the field reflects primarily the direct physiological effects of temperature on diazotrophic growth of Trichodesmium. Trichodesmium IMS-101 (an isolate of T. erythraeum could acclimate and grow at temperatures ranging from 20 to 34°C. Maximum growth rates (μmax=0.25 day−1 and maximum nitrogen fixation rates (0.13 mmol N mol POC−1 h−1 were measured within 24 to 30°C. This empirical relationship and global warming scenarios derived from state-of-the-art climate models set a physiological constraint on the future distribution of Trichodesmium that could significantly affect nitrogen input into oligotrophic waters by this diazotroph.

  13. Warm inflation dissipative effects: Predictions and constraints from the Planck data

    Science.gov (United States)

    Benetti, Micol; Ramos, Rudnei O.

    2017-01-01

    We explore the warm inflation scenario theoretical predictions looking at two different dissipative regimes for several representative primordial potentials. As it is well known, warm inflation is able to decrease the tensor-to-scalar ratio value, rehabilitating several primordial potentials ruled out in the cold inflation context by the recent cosmic microwave background data. Here we show that warm inflation is also able to produce a running of the running βs positive and within the Planck data limits. This is very remarkable since the standard cold inflation model is unable to justify the current indication of a positive constraint on βs. We achieve a parametrization for the primordial power spectrum able to take into account higher order effects as the running of the spectral index and the running of the running, and we perform statistical analysis using the most up-to-date Planck data to constrain the dissipative effects. We find that the warm inflation can explain the current observables with a good statistical significance, even for those potentials ruled out in the simplest cold inflation scenario.

  14. Warm inflation dissipative effects: predictions and constraints from the Planck data

    CERN Document Server

    Benetti, Micol

    2016-01-01

    We explore the warm inflation scenario theoretical predictions looking at two different dissipative regimes for several representative primordial potentials. As it is well known, the warm inflation is able to decrease the tensor-to-scalar ratio value, rehabilitating several primordial potential ruled out in the cold inflation context by the recent cosmic microwave background data. Here we show that it is also able to produce a running of the running $n_s"$ positive and within the Planck data limits. This is very remarkable since the standard cold inflation model is unable to justify the current indication of a positive constraint on $n_s"$. We achieve a parameterization for the primordial power spectrum able to take into account higher order effects as the running of the spectral index and the running of the running, and we perform statistical analysis using the most up-to-date Planck data to constrain the dissipative effects. We find that the warm inflation can explain the current observables with a good sta...

  15. Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers.

    Science.gov (United States)

    Hensley, Christopher J; Ouzounov, Dimitre G; Gaeta, Alexander L; Venkataraman, Natesan; Gallagher, Michael T; Koch, Karl W

    2007-03-19

    We measure the effective nonlinearity of various hollow-core photonic band-gap fibers. Our findings indicate that differences of tens of nanometers in the fiber structure result in significant changes to the power propagating in the silica glass and thus in the effective nonlinearity of the fiber. These results show that it is possible to engineer the nonlinear response of these fibers via small changes to the glass structure.

  16. Nonlinear effects in the torsional adjustment of interacting DNA.

    Science.gov (United States)

    Kornyshev, A A; Wynveen, A

    2004-04-01

    DNA molecules in solution, having negatively charged phosphates and countercations readsorbed on its surface, possess a distinct charge separation motif to interact electrostatically. If their double-helical structure were ideal, duplexes in parallel juxtaposition could choose azimuthal alignment providing attraction, or at least a reduction of repulsion, between them. But duplexes are not perfect staircases and the distortions of their helical structure correlate with their base pair texts. If the patterns of distortions on the opposing molecules are uncorrelated, the mismatch will accumulate as a random walk and attraction vanishes. Based on this idea, a model of recognition of homologous sequences has been proposed [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 3666 (2001)]. But DNA has torsional elasticity. How will this help to relax a mismatch between the charge distributions on two nonhomologous DNA's? In the same work, the solution of this problem has been mapped onto a frustrated sine Gordon equation in a nonlocal random field (where the latter represents a pattern of twist angle distortions on the opposing molecules), but the results had been obtained in the limit of torsionally rigid molecules. In the present paper, by solving this equation numerically, we find a strongly nonlinear relaxation mechanism which utilizes static kink-soliton modes triggered by the "random field." In the range of parameters where the solitons do not emerge, we find good agreement with the results of a variational study [A. G. Cherstvy, A. A. Kornyshev, and S. Leikin, J. Phys. Chem. B (to be published)]. We reproduce the first-order transitions in the interaxial separation dependence, but detect also second-order or weak first-order transitions for shorter duplexes. The recognition energy between two nonhomologous DNA sequences is calculated as a function of interaxial separation and the length of juxtaposition. The soliton-caused kinky length dependence is discussed in

  17. Nonlinear effects in the torsional adjustment of interacting DNA

    Science.gov (United States)

    Kornyshev, A. A.; Wynveen, A.

    2004-04-01

    DNA molecules in solution, having negatively charged phosphates and countercations readsorbed on its surface, possess a distinct charge separation motif to interact electrostatically. If their double-helical structure were ideal, duplexes in parallel juxtaposition could choose azimuthal alignment providing attraction, or at least a reduction of repulsion, between them. But duplexes are not perfect staircases and the distortions of their helical structure correlate with their base pair texts. If the patterns of distortions on the opposing molecules are uncorrelated, the mismatch will accumulate as a random walk and attraction vanishes. Based on this idea, a model of recognition of homologous sequences has been proposed [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 3666 (2001)]. But DNA has torsional elasticity. How will this help to relax a mismatch between the charge distributions on two nonhomologous DNA’s? In the same work, the solution of this problem has been mapped onto a frustrated sine Gordon equation in a nonlocal random field (where the latter represents a pattern of twist angle distortions on the opposing molecules), but the results had been obtained in the limit of torsionally rigid molecules. In the present paper, by solving this equation numerically, we find a strongly nonlinear relaxation mechanism which utilizes static kink-soliton modes triggered by the “random field.” In the range of parameters where the solitons do not emerge, we find good agreement with the results of a variational study [A. G. Cherstvy, A. A. Kornyshev, and S. Leikin, J. Phys. Chem. B (to be published)]. We reproduce the first-order transitions in the interaxial separation dependence, but detect also second-order or weak first-order transitions for shorter duplexes. The recognition energy between two nonhomologous DNA sequences is calculated as a function of interaxial separation and the length of juxtaposition. The soliton-caused kinky length dependence is

  18. Effectiveness of modified constraint-induced movement therapy in children with unilateral spastic cerebral palsy: a randomized controlled trial.

    NARCIS (Netherlands)

    Aarts, P.B.M.; Jongerius, P.H.; Geerdink, Y.A.; Limbeek, J. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: In children with unilateral spastic cerebral palsy (CP), there is only limited evidence for the effectiveness of modified constraint-induced movement therapy (mCIMT). OBJECTIVE: To investigate whether 6 weeks of mCIMT followed by 2 weeks of bimanual task-specific training (mCIMT-BiT) in

  19. Increasing the Supply of Effective Teachers in High-Poverty Schools in a Heterogeneous School District: Facilitators and Constraints

    Science.gov (United States)

    Kennedy, Leigh K.

    2014-01-01

    The purpose of this study was to clarify the ways that a district used its teacher staffing and professional development policies to increase the supply of effective teachers in high-poverty schools, to determine the efficacy of these policies in the view of district administrators and teachers, and to identify the facilitators and constraints to…

  20. Predicting mechanisms across scales: amplified effects of abiotic constraints on the recruitment of yew Taxus baccata

    DEFF Research Database (Denmark)

    Sanz, Rubén; Pulido, Fernando; Nogues, David Bravo

    2009-01-01

    Efforts to disentangle the mechanisms underlying large-scale spatial patterns need to rely on multi-scale approaches. We illustrate this key issue by analyzing the spatial consistency across scales of the effects of abiotic constraints on the regeneration of English yew Taxus baccata in Europe. W...

  1. Collisional effects in weakly collisional plasmas: nonlinear electrostatic waves and recurrence phenomena

    Science.gov (United States)

    Camporeale, E.; Pezzi, O.; Valentini, F.

    2015-12-01

    The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric

  2. The Effects of Life Domains, Constraints, and Motivations on Academic Dishonesty: A Partial Test and Extension of Agnew's General Theory.

    Science.gov (United States)

    Cochran, John K

    2017-08-01

    Recently, Robert Agnew introduced a new general theory of crime and delinquency in which he attempted to corral the vast array of theoretical "causes" of criminal conduct into a more parsimonious statement organized into one of five life domains: self, family, peers, school, and work as well as constraints against crime and motivation for it. These domains are depicted as the source of constraints and motivations and whose effects are, in part, mediated by these constraints and motivations. Based on self-report data on academic dishonesty from a sample of college students, the present study attempts to test this general theory. While several of the life domain variables had significant effects of cheating in the baseline model, all of these effects were fully mediated by constraints and motivations. In the final model, academic dishonesty was observed to be most significantly affected by the perceived severity of formal sanction threats, the number of credit hours enrolled, the frequency of skipping classes, and pressure from friends.

  3. Effects of nonlinear strength parameters on stability of 3D soil slopes

    Institute of Scientific and Technical Information of China (English)

    高玉峰; 吴迪; 张飞; 秦红玉; 朱德胜

    2016-01-01

    Actual slope stability problems have three-dimensional (3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.

  4. Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Resor, B.; Platt, A.; Guo, Y.; Ning, A.; King, R.; Parsons, T.; Petch, D.; Veers, P.

    2014-10-01

    This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraint on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.

  5. Nonlinear effects manifested in infrasonic signals in the region of a geometric shadow

    Science.gov (United States)

    Kulichkov, S. N.; Golikova, E. V.

    2013-01-01

    Nonlinear effects manifested in infrasonic signals passing through different atmospheric heights and recorded in the region of a geometric shadow have been studied. The source of infrasound was a surface explosion equivalent to 20-70 t of TNT. The frequencies of the spectral maxima of infrasonic signals, which correspond to the reflections of acoustic pulses from atmospheric inhomogeneities at different heights within the stratosphere-mesosphere-lower thermosphere layer, were calculated using the nonlinear-theory method. A satisfactory agreement between experimental and calculated data was obtained.

  6. Solution of Excited Non-Linear Oscillators under Damping Effects Using the Modified Differential Transform Method

    Directory of Open Access Journals (Sweden)

    H. M. Abdelhafez

    2016-03-01

    Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.

  7. Effect of loss on photon-pair generation in nonlinear waveguides arrays

    CERN Document Server

    Antonosyan, Diana A; Sukhorukov, Andrey A

    2014-01-01

    We describe theoretically the process of spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays in the presence of linear loss. We derive a set of discrete Schrodinger-type equations for the biphoton wave function, and the wave function of one photon when the other photon in a pair is lost. We demonstrate effects arising from loss-affected interference between the generated photon pairs and show that nonlinear waveguide arrays can serve as a robust loss-tolerant integrated platform for the generation of entangled photon states with non-classical spatial correlations.

  8. Nonlinear Effect on Focusing Gain of a Focusing Transducer with a Wide Aperture Angle

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-He; ZHANG Dong; GONG Xiu-Fen

    2007-01-01

    @@ Nonlinear effect on focusing gain of acoustic field radiated from a 1-MHz focusing transmitter with a wide aperture angle of 35° is theoretically and experimentally investigated. With the enhancement of nonlinearity, the focusing gains of both intensity and peak positive pressure show non-monotonic behaviour. There exist the same saturated levels at which the maximum outputs are reached and their spatial distributions are more localized. In contrast,the peak negative pressure always decreases monotonically and its spatial distribution is less localized.

  9. Understanding the Effects of Compression and Constraints on Water Uptake of Fuel-Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusoglu, Ahmet; Kienitz, Brian L.; Weber, Adam Z.

    2011-01-01

    Accurate characterization of polymer-electrolyte fuel cells (PEFCs) requires understanding the impact of mechanical and electrochemical loads on cell components. An essential aspect of this relationship is the effect of compression on the polymer membrane?s water-uptake behavior and transport properties. However, there is limited information on the impact of physical constraints on membrane properties. In this paper, we investigate both theoretically and experimentally how the water uptake of Nafion membrane changes under external compression loads. The swelling of a compressed membrane is modeled by modifying the swelling pressure in the polymer backbone which relies on the changes in the microscopic volume of the polymer. The model successfully predicts the water content of the compressed membrane measured through in-situ swelling-compression tests and neutron imaging. The results show that external mechanical loads could reduce the water content and conductivity of the membrane, especially at lower temperatures, higher humidities, and in liquid water. The modeling framework and experimental data provide valuable insight for the swelling and conductivity of constrained and compressed membranes, which are of interest in electrochemical devices such as batteries and fuel cells.

  10. Asteroseismic constraints on asymmetric dark matter: Light particles with an effective spin-dependent coupling

    Science.gov (United States)

    Martins, André; Lopes, Ilídio; Casanellas, Jordi

    2017-01-01

    So far, direct detection searches have come up empty handed in their quest for dark matter (DM). Meanwhile, asteroseismology arises as a complementary tool to study DM, as its accumulation in a star can enhance energy transport by providing a conduction mechanism, producing significant changes in the stellar structure during the course of the star's evolution. The stellar core, particularly affected by the presence of DM, can be investigated through precise asteroseismic diagnostics. We modeled three stars including DM energy transport: the Sun; a slightly less massive and much older star, KIC 7871531 (0.85 M⊙ , 9.41 Gyr); and a more massive and younger one, KIC 8379927 (1.12 M⊙ , 1.82 Gyr). We considered both the case of weakly interactive massive particles, albeit with a low annihilation, and the case of asymmetric DM for which the number of trapped particles in the star can be much greater. By analyzing these models with asteroseismic separation ratios weighted towards the core, we found indications limiting the effective spin-dependent DM-proton coupling for masses of a few GeV. This independent result is very close to the most recent and most stringent direct detection DM constraints.

  11. Constraints on the s - s bar asymmetry of the proton in chiral effective theory

    Science.gov (United States)

    Wang, X. G.; Ji, Chueng-Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.

    2016-11-01

    We compute the s - s bar asymmetry in the proton in chiral effective theory, using phenomenological constraints based upon existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states alone, this work includes off-shell terms and contact interactions, which impact the shape of the s - s bar difference. We identify a valence-like component of s (x) which is balanced by a δ-function contribution to s bar (x) at x = 0, so that the integrals of s and s bar over the experimentally accessible region x > 0 are not equal. Using a regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the second moment of the asymmetry to the range - 0.07 ×10-3 ≤ s - s bar) > ≤ 1.12 ×10-3 at a scale of Q2 = 1 GeV2. This is too small to account for the NuTeV anomaly and of the wrong sign to enhance it.

  12. Effect of constraint-induced movement therapy and mirror therapy for patients with subacute stroke.

    Science.gov (United States)

    Yoon, Jin A; Koo, Bon Il; Shin, Myung Jun; Shin, Yong Beom; Ko, Hyun-Yoon; Shin, Yong-Il

    2014-08-01

    To evaluate the effectiveness of constraint-induced movement therapy (CIMT) and combined mirror therapy for inpatient rehabilitation of the patients with subacute stroke. Twenty-six patients with subacute stroke were enrolled and randomly divided into three groups: CIMT combined with mirror therapy group, CIMT only group, and control group. Two weeks of CIMT for 6 hours a day with or without mirror therapy for 30 minutes a day were performed under supervision. All groups received conventional occupational therapy for 40 minutes a day for the same period. The CIMT only group and control group also received additional self-exercise to substitute for mirror therapy. The box and block test, 9-hole Pegboard test, grip strength, Brunnstrom stage, Wolf motor function test, Fugl-Meyer assessment, and the Korean version of Modified Barthel Index were performed prior to and two weeks after the treatment. After two weeks of treatment, the CIMT groups with and without mirror therapy showed higher improvement (pmirror therapy group showed higher improvement than CIMT only group in box and block test, 9-hole Pegboard test, and grip strength, which represent fine motor functions of the upper extremity. The short-term CIMT combined with mirror therapy group showed more improvement compared to CIMT only group and control group, in the fine motor functions of hemiplegic upper extremity for the patients with subacute stroke.

  13. Methods for Estimating Environmental Effects and Constraints on NexGen: High Density Case Study

    Science.gov (United States)

    Augustine, S.; Ermatinger, C.; Graham, M.; Thompson, T.

    2010-01-01

    This document provides a summary of the current methods developed by Metron Aviation for the estimate of environmental effects and constraints on the Next Generation Air Transportation System (NextGen). This body of work incorporates many of the key elements necessary to achieve such an estimate. Each section contains the background and motivation for the technical elements of the work, a description of the methods used, and possible next steps. The current methods described in this document were selected in an attempt to provide a good balance between accuracy and fairly rapid turn around times to best advance Joint Planning and Development Office (JPDO) System Modeling and Analysis Division (SMAD) objectives while also supporting the needs of the JPDO Environmental Working Group (EWG). In particular this document describes methods applied to support the High Density (HD) Case Study performed during the spring of 2008. A reference day (in 2006) is modeled to describe current system capabilities while the future demand is applied to multiple alternatives to analyze system performance. The major variables in the alternatives are operational/procedural capabilities for airport, terminal, and en route airspace along with projected improvements to airframe, engine and navigational equipment.

  14. Effects of homeostatic constraints on associative memory storage and synaptic connectivity of cortical circuits

    Directory of Open Access Journals (Sweden)

    Julio eChapeton

    2015-06-01

    Full Text Available The impact of learning and long-term memory storage on synaptic connectivity is not completely understood. In this study, we examine the effects of associative learning on synaptic connectivity in adult cortical circuits by hypothesizing that these circuits function in a steady-state, in which the memory capacity of a circuit is maximal and learning must be accompanied by forgetting. Steady-state circuits should be characterized by unique connectivity features. To uncover such features we developed a biologically constrained, exactly solvable model of associative memory storage. The model is applicable to networks of multiple excitatory and inhibitory neuron classes and can account for homeostatic constraints on the number and the overall weight of functional connections received by each neuron. The results show that in spite of a large number of neuron classes, functional connections between potentially connected cells are realized with less than 50% probability if the presynaptic cell is excitatory and generally a much greater probability if it is inhibitory. We also find that constraining the overall weight of presynaptic connections leads to Gaussian connection weight distributions that are truncated at zero. In contrast, constraining the total number of functional presynaptic connections leads to non-Gaussian distributions, in which weak connections are absent. These theoretical predictions are compared with a large dataset of published experimental studies reporting amplitudes of unitary postsynaptic potentials and probabilities of connections between various classes of excitatory and inhibitory neurons in the cerebellum, neocortex, and hippocampus.

  15. Non-linear simulations of ELMs in ASDEX Upgrade including diamagnetic drift effects

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Krebs, Isabel; Franck, Emmanuel; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Orain, Francois; Morales, Jorge; Becoulet, Marina [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Huysmans, Guido [ITER Organization, 13067 Saint-Paul-Lez-Durance (France)

    2015-05-01

    Large edge localized modes (ELMs) are a severe concern for ITER due to high transient heat loads on divertor targets and wall structures. Using the non-linear MHD code JOREK, we have performed ELM simulations for ASDEX Upgrade (AUG) including diamagnetic drift effects. The influence of diamagnetic terms onto the evolution of the toroidal mode spectrum for different AUG equilibria and the non-linear interaction of the toroidal harmonics are investigated. In particular, we confirm the diamagnetic stabilization of high mode numbers and present new features of a previously introduced quadratic mode coupling model for the early non-linear evolution of the mode structure. Preliminary comparisons of full ELM crashes with experimental observations are shown aiming at code validation and the understanding of different ELM types. Work is ongoing to include toroidal and neoclassical poloidal rotation in our simulations.

  16. Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Javad Alinejad

    2012-01-01

    Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.

  17. Imprint of non-linear effects on HI intensity mapping on large scales

    CERN Document Server

    Umeh, Obinna

    2016-01-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We consider how non-linear effects associated with the HI bias and redshift space distortions contribute to the clustering of cosmic neutral Hydrogen on large scales. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result to show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortions leads to about 10\\% modulation of the HI power spectrum on large scales.

  18. Nonlinear effects of inertial Alfvén wave in low beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rinawa, M. L., E-mail: motilal.rinawa@gmail.com; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2015-02-15

    This paper is devoted to the study of the nonlinear interaction and propagation of high frequency pump inertial Alfvén wave (IAW) with comparatively low frequency IAW with emphasis on nonlinear effects and applications within space plasma and astrophysics for low β-plasma (β≪m{sub e}/m{sub i}). We have developed a set of dimensionless equations in the presence of ponderomotive nonlinearity due to high frequency pump IAW in the dynamics of comparatively low frequency IAW. Stability analysis and numerical simulation have been carried out for the coupled system comprising of pump IAW and low frequency IAW to study the localization and turbulent spectra, applicable to auroral region. The result reveals that localized structures become more complex and intense in nature at the quasi steady state. From the obtained result, we found that the present model may be useful to study the turbulent fluctuations in accordance with the observations of FAST/THEMIS spacecraft.

  19. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    Science.gov (United States)

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  20. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...

  1. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.

    Science.gov (United States)

    Gubaidullin, Amir A; Yakovenko, Anna V

    2015-06-01

    Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.

  2. Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...

  3. NONLINEAR OPTICAL-PROPERTIES OF LANGMUIR-BLODGETT MONOLAYERS - LOCAL-FIELD EFFECTS

    NARCIS (Netherlands)

    CNOSSEN, G; DRABE, KE; WIERSMA, DA

    1992-01-01

    Detailed measurements of the macroscopic second-order optical nonlinearity chi(2) (2-omega,omega,omega) of Langmuir-Blodgett dye-doped monolayers are reported. The observed deviations from a linear behavior of chi-(2) with increasing surface density are shown to be due to local-field effects. In ord

  4. Nonlinear optical properties of Langmuir-Blodgett monolayers : Local-field effects

    NARCIS (Netherlands)

    Cnossen, Gerard; Drabe, Karel E.; Wiersma, Douwe A.

    1992-01-01

    Detailed measurements of the macroscopic second-order optical nonlinearity chi(2) (2-omega,omega,omega) of Langmuir-Blodgett dye-doped monolayers are reported. The observed deviations from a linear behavior of chi-(2) with increasing surface density are shown to be due to local-field effects. In ord

  5. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    Science.gov (United States)

    Nafari, F.; Ghoranneviss, M.

    2016-08-01

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.

  6. THE EFFECT OF NUMERICAL INTEGRATION IN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    N'guimbi; Germain

    2001-01-01

    Abstract. The effect of numerical integration in finite element methods applied to a class of nonlinear parabolic equations is considered and some sufficient conditions on the quadrature scheme to ensure that the order of convergence is unaltered in the presence of numerical integration are given. Optimal Lz and H1 estimates for the error and its time derivative are established.

  7. Nonlinear magneto-optical effects in cold atoms of 87Rb

    Institute of Scientific and Technical Information of China (English)

    He Ling-Xiang; Wang Yu-Zhu

    2004-01-01

    With laser-cooled cold 87Rb atoms as a magneto-optical medium, a weak right circularly polarized probe field and frequency modulation technique are used to detect the magnetic distribution of the quadrupole field. A two-peak dispersion-like signal other than that of the usual nonlinear magneto-optical effect mentioned in other papers is obtained.

  8. The spin Hall effect as a probe of nonlinear spin fluctuations.

    Science.gov (United States)

    Wei, D H; Niimi, Y; Gu, B; Ziman, T; Maekawa, S; Otani, Y

    2012-01-01

    The spin Hall effect and its inverse have key roles in spintronic devices as they allow conversion of charge currents to and from spin currents. The conversion efficiency strongly depends on material details, such as the electronic band structure and the nature of impurities. Here we show an anomaly in the inverse spin Hall effect in weak ferromagnetic NiPd alloys near their Curie temperatures with a shape independent of material details, such as Ni concentrations. By extending Kondo's model for the anomalous Hall effect, we explain the observed anomaly as originating from the second-order nonlinear spin fluctuation of Ni moments. This brings to light an essential symmetry difference between the spin Hall effect and the anomalous Hall effect, which reflects the first-order nonlinear fluctuations of local moments. Our finding opens up a new application of the spin Hall effect, by which a minuscule magnetic moment can be detected.

  9. Hořava Gravity in the Effective Field Theory formalism: From cosmology to observational constraints

    Science.gov (United States)

    Frusciante, Noemi; Raveri, Marco; Vernieri, Daniele; Hu, Bin; Silvestri, Alessandra

    2016-09-01

    We consider Hořava gravity within the framework of the effective field theory (EFT) of dark energy and modified gravity. We work out a complete mapping of the theory into the EFT language for an action including all the operators which are relevant for linear perturbations with up to sixth order spatial derivatives. We then employ an updated version of the EFTCAMB/EFTCosmoMC package to study the cosmology of the low-energy limit of Hořava gravity and place constraints on its parameters using several cosmological data sets. In particular we use cosmic microwave background (CMB) temperature-temperature and lensing power spectra by Planck 2013, WMAP low- ℓ polarization spectra, WiggleZ galaxy power spectrum, local Hubble measurements, Supernovae data from SNLS, SDSS and HST and the baryon acoustic oscillations measurements from BOSS, SDSS and 6dFGS. We get improved upper bounds, with respect to those from Big Bang Nucleosynthesis, on the deviation of the cosmological gravitational constant from the local Newtonian one. At the level of the background phenomenology, we find a relevant rescaling of the Hubble rate at all epoch, which has a strong impact on the cosmological observables; at the level of perturbations, we discuss in details all the relevant effects on the observables and find that in general the quasi-static approximation is not safe to describe the evolution of perturbations. Overall we find that the effects of the modifications induced by the low-energy Hořava gravity action are quite dramatic and current data place tight bounds on the theory parameters.

  10. The Effects of Modified Constraint-Induced Movement Therapy in Acute Subcortical Cerebral Infarction

    Directory of Open Access Journals (Sweden)

    Changshen Yu

    2017-05-01

    Full Text Available Background: Constraint-induced movement therapy (CIMT promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT be used to treat individuals with acute subcortical infarction.Objective: To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect.Methods: The role of mCIMT was investigated in 26 individuals experiencing subcortical infarction in the preceding 14 days. Patients were randomly assigned to either mCIMT or standard therapy. mCIMT group was treated daily for 3 h over 10 consecutive working days, using a mitt on the unaffected arm for up to 30% of waking hours. The control group was treated with an equal dose of occupational therapy and physical therapy. During the 3-month follow-up, the motor functions of the affected limb were assessed by the Wolf Motor Function Test (WMFT and Motor Activity Log (MAL. Altered cortical excitability was assessed via transcranial magnetic stimulation (TMS.Results: Treatment significantly improved the movement in the mCIMT group compared with the control group. The mean WMF score was significantly higher in the mCIMT group compared with the control group. Further, the appearance of motor-evoked potentials (MEPs were significantly higher in the mCIMT group compared with the baseline data. A significant change in ipsilesional silent period (SP occurred in the mCIMT group compared with the control group. However, we found no difference between two groups in motor function or electrophysiological parameters after 3 months of follow-up.Conclusions: mCIMT resulted in significant functional changes in timed movement immediately following treatment in patients with acute subcortical infarction. Further, early mCIMT improved ipsilesional cortical excitability. However, no long

  11. Contributions to the nonlinear integrated Sachs-Wolfe effect: Birkinshaw-Gull effect and gravitational self-energy density

    CERN Document Server

    Merkel, Philipp

    2012-01-01

    In this paper, we recompute contributions to the spectrum of the nonlinear integrated Sachs-Wolfe (iSW)/Rees-Sciama effect in a dark energy cosmology. Focusing on the moderate nonlinear regime, all dynamical fields involved are derived from the density contrast in Eulerian perturbation theory. Shape and amplitude of the resulting angular power spectrum are similar to that derived in previous work. With our purely analytical approach we identify two distinct contributions to the signal of the nonlinear iSW-effect: the change of the gravitational self-energy density of the large scale structure with (conformal) time and gravitational lenses moving with the large scale matter stream. In the latter we recover the Birkinshaw-Gull effect. As the nonlinear iSW-effect itself is inherently hard to detect, observational discrimination between its individual contributions is almost excluded. Our analysis, however, yields valuable insights into the theory of the nonlinear iSW-effect as a post-Newtonian relativistic effec...

  12. Positivity constraints for pseudolinear massive spin-2 and vector Galileons

    Science.gov (United States)

    Bonifacio, James; Hinterbichler, Kurt; Rosen, Rachel A.

    2016-11-01

    We derive analyticity constraints on a nonlinear ghost-free effective theory of a massive spin-2 particle known as pseudolinear massive gravity, and on a generalized theory of a massive spin-1 particle, both of which provide simple IR completions of Galileon theories. For pseudolinear massive gravity we find that, unlike de Rham, Gabadadze, and Tolley massive gravity, there is no window of parameter space which satisfies the analyticity constraints. For massive vectors which reduce to Galileons in the decoupling limit, we find that no two-derivative actions are compatible with positivity but that higher derivative actions can be made compatible.

  13. Automatic power control for KMRR using reactivity constraint method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung I.; Kim, Myung H. [Kyunghee University, Yongin (Korea, Republic of)

    1990-07-01

    The use of reactivity constraint approach for the non-linear, digital controller is described. The design of controller was done for Korea Multipurpose Research Reactor(KMRR) which is now under construction. The performance test showed that reactivity constraint approach is a fast and reliable means for reactor power change control. A new formulation of the dynamic period equation for 2-point kinetics model is presented. The instantaneous dynamic period is calculated by new equation and used for time optimal control. A new controller keeping up the allowed minimum reactor period shows effective and reliable performance for power change.

  14. The effect of crack orientation on the nonlinear interaction of a P wave with an S wave

    Science.gov (United States)

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.

    2016-06-01

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.

  15. Using high-frequency vibrations and non-linear inclusions to create metamaterials with adjustable effective properties

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel

    2009-01-01

    We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical syste...

  16. Minimum Time Trajectory Optimization of CNC Machining with Tracking Error Constraints

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-01-01

    Full Text Available An off-line optimization approach of high precision minimum time feedrate for CNC machining is proposed. Besides the ordinary considered velocity, acceleration, and jerk constraints, dynamic performance constraint of each servo drive is also considered in this optimization problem to improve the tracking precision along the optimized feedrate trajectory. Tracking error is applied to indicate the servo dynamic performance of each axis. By using variable substitution, the tracking error constrained minimum time trajectory planning problem is formulated as a nonlinear path constrained optimal control problem. Bang-bang constraints structure of the optimal trajectory is proved in this paper; then a novel constraint handling method is proposed to realize a convex optimization based solution of the nonlinear constrained optimal control problem. A simple ellipse feedrate planning test is presented to demonstrate the effectiveness of the approach. Then the practicability and robustness of the trajectory generated by the proposed approach are demonstrated by a butterfly contour machining example.

  17. Nonlinear Statistical Process Monitoring Based on Control Charts with Memory Effect and Kernel Independent Component Analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel nonlinear combination process monitoring method was proposed based on techniques with memory effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently developed statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of measurements and it is a two-phase algorithm: whitened kernel principal component analysis (KPCA) plus independent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process indicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear relationship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for long-term performance deterioration.

  18. Effect of Microstructure Constraints on the Homogenized Elastic Constants of Elastomeric Sylgard/GMB Syntactic Foam.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steck, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Previous numerical studies of Sylgard filled with glass microballoons (GMB) have relied on various microstructure idealizations to achieve a large range of volume fractions with high mesh quality. This study investigates how different microstructure idealizations and constraints affect the apparent homogenized elastic constants in the virgin state of the material, in which all GMBs are intact and perfectly bonded to the Sylgard matrix, and in the fully damaged state of the material in which all GMBs are destroyed. In the latter state, the material behaves as an elastomeric foam. Four microstructure idealizations are considered relating to how GMBs are packed into a representative volume element (RVE): (1) no boundary penetration nor GMB-GMB overlap, (2) GMB-GMB overlap, (3) boundary penetration, and (4) boundary penetration and GMB-GMB overlap. First order computational homogenization with kinematically uniform displacement boundary conditions (KUBCs) was employed to determine the homogenized (apparent) bulk and shear moduli for the four microstructure idealizations in the intact and fully broken GMB material states. It was found that boundary penetration has a significant effect on the shear modulus for microstructures with intact GMBs, but that neither boundary penetration nor GMB overlap have a significant effect on homogenized properties for microstructures with fully broken GMBs. The primary conclusion of the study is that future investigations into Sylgard/GMB micromechanics should either force GMBs to stay within the RVE fully and/or use periodic BCs (PBCs) to eliminate the boundary penetration issues. The implementation of PBCs requires the improvement of existing tools in Sandia’s Sierra/SM code.

  19. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  20. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.

    Science.gov (United States)

    Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim

    2017-09-12

    Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of alpha and Gaussian refractive index profiles on the design of highly nonlinear optical fibre for efficient nonlinear optical signal processing

    Science.gov (United States)

    Selvendran, S.; Sivanantharaja, A.; Arivazhagan, S.; Kannan, M.

    2016-09-01

    We propose an index profiled, highly nonlinear ultraflattened dispersion fibre (HN-UFF) with appreciable values of fibre parameters such as dispersion, dispersion slope, effective area, nonlinearity, bending loss and splice loss. The designed fibre has normal zero flattened dispersion over S, C, L, U bands and extends up to 1.9857 μm. The maximum dispersion variation observed for this fibre is as low as 1.61 ps km-1 nm-1 over the 500-nm optical fibre transmission spectrum. This fibre also has two zero dispersion wavelengths at 1.487 and 1.9857 μm and the respective dispersion slopes are 0.02476 and 0.0068 ps nm-2 km-1. The fibre has a very low ITU-T cutoff wavelength of 1.2613 μm and a virtuous nonlinear coefficient of 9.43 W-1 km-1. The wide spectrum of zero flattened dispersion and a good nonlinear coefficient make the designed fibre very promising for different nonlinear optical signal processing applications.

  2. Effects of Constraints and Consequences on Plan Complexity in Conversations About End-of-Life Care.

    Science.gov (United States)

    Russell, Jessica

    2015-01-01

    The current study assessed the role of health care provider constraints and perceived consequences on plan complexity for conversations with patients about end-of-life care. Meta-goal constraints, perceived consequences associated with conversational engagement and planning theory provides the basis for research questions and hypotheses posed. Findings suggested that while the meta-goals of efficiency and politeness were each recognized as important, providers indicated greater concern for politeness during patient interactions concerning treatment options. Reported constraints had no impact on plan complexity. Perceived consequences of conversational engagement were predominantly positive and concerned the patient. Findings may enhance the understanding of social workers in their educational role regarding the potential training needs of health care team members in palliative care contexts.

  3. Dynamics of a qubit coupled to a dissipative nonlinear quantum oscillator: an effective bath approach

    CERN Document Server

    Vierheilig, Carmen; Grifoni, Milena

    2010-01-01

    We consider a qubit coupled to a nonlinear quantum oscillator, the latter coupled to an Ohmic bath, and investigate the qubit dynamics. This composed system can be mapped onto that of a qubit coupled to an effective bath. An approximate mapping procedure to determine the spectral density of the effective bath is given. Specifically, within a linear response approximation the effective spectral density is given by the knowledge of the linear susceptibility of the nonlinear quantum oscillator. To determine the actual form of the susceptibility, we consider its periodically driven counterpart, the problem of the quantum Duffing oscillator within linear response theory in the driving amplitude. Knowing the effective spectral density, the qubit dynamics is investigated. In particular, an analytic formula for the qubit's population difference is derived. Within the regime of validity of our theory, a very good agreement is found with predictions obtained from a Bloch-Redfield master equation approach applied to the...

  4. Design evaluation and optimisation in crossover pharmacokinetic studies analysed by nonlinear mixed effects models.

    Science.gov (United States)

    Nguyen, Thu Thuy; Bazzoli, Caroline; Mentré, France

    2012-05-20

    Bioequivalence or interaction trials are commonly studied in crossover design and can be analysed by nonlinear mixed effects models as an alternative to noncompartmental approach. We propose an extension of the population Fisher information matrix in nonlinear mixed effects models to design crossover pharmacokinetic trials, using a linearisation of the model around the random effect expectation, including within-subject variability and discrete covariates fixed or changing between periods. We use the expected standard errors of treatment effect to compute the power for the Wald test of comparison or equivalence and the number of subjects needed for a given power. We perform various simulations mimicking crossover two-period trials to show the relevance of these developments. We then apply these developments to design a crossover pharmacokinetic study of amoxicillin in piglets and implement them in the new version 3.2 of the r function PFIM.

  5. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  6. The effect and design of time delay in feedback control for a nonlinear isolation system

    Science.gov (United States)

    Sun, Xiuting; Xu, Jian; Fu, Jiangsong

    2017-03-01

    The optimum value of time delay of active control used in a nonlinear isolation system for different types of external excitation is studied in this paper. Based on the mathematical model of the nonlinear isolator with time-delayed active control, the stability, response and displacement transmissibility of the system are analyzed to obtain the standards for appropriate values of time delay and control strengths. The effects of nonlinearity and time delay on the stability and vibration response are discussed in details. For impact excitation and random excitation, the optimal value of time delay is obtained based on the vibration dissipation time via eigenvalues analysis, while for harmonic excitation, the optimal values are determined based on multiple vibration properties including natural frequency, amplitude death region and effective isolation region by the Averaging Method. This paper establishes the relationship between the parameters and vibration properties of a nonlinear isolation system which provides the guidance for optimizing time-delayed active control for different types of excitation in engineering practices.

  7. Effects on the Floor Response Spectra by the Nonlinear Behavior of a Seismic Base Isolation System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyungkui; Kim, Jung Han; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    An evaluation of safety being carried out for various risk factors of prevents for nuclear power plant accident. In general, an evaluation of the structural integrity was performed about seismic risk. In recent years, an assessment of integrity of internal equipment being carried out for earthquake loads owing to the possibility of severe accidents caused by the destruction of internal equipment or a blackout. Floor response spectra of the structure should be sought for evaluating of the integrity of internal equipment. The floor response spectra depends on the characteristics of seismic base isolation system such as the natural frequency, damping ratio, and height of the floor of the structure. An evaluation of the structural integrity using the equivalent stiffness of the seismic base isolation system was satisfactory. In this study, the effect of the non-linearity of isolated system in the floor response spectrum of the structure is analyzed. In this study, the floor response spectrum of the seismic base isolation system by the non-linear effect of the rubber isolator was analyzed. As a result, the influence of the non-linear isolated system was increased in hi-frequency domain. In addition, each floor exhibited a more different of responses compared with the equivalent linear model of the isolated structure. The non-linearity of the isolation system of the structure was considered, because of a more reliable assessment of integrity of equipment at each floor of seismic base the isolation system.

  8. Gravitational-wave tail effects to quartic non-linear order

    CERN Document Server

    Marchand, Tanguy; Faye, Guillaume

    2016-01-01

    Gravitational-wave tails are due to the backscattering of linear waves onto the space-time curvature generated by the total mass of the matter source. The dominant tails correspond to quadratic non-linear interactions and arise at the one-and-a-half post-Newtonian (1.5PN) order in the gravitational waveform. Also known are the "tails-of-tails", which are cubically non-linear effects appearing at the 3PN order in the waveform. Here we derive still higher non-linear tail effects, namely those associated with quartic non-linear interactions or "tails-of-tails-of-tails", which are shown to arise at the 4.5PN order. As an application we obtain at that order the complete coefficient in the total gravitational-wave energy flux of compact binary systems moving on circular orbits. Our result perfectly agrees with black-hole perturbation calculations in the limit of extreme mass ratio of the two compact objects.

  9. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects

    Directory of Open Access Journals (Sweden)

    Jie-Yu Chen

    2009-05-01

    Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.

  10. Nonlinear Effects of Laser Surface Modification of Ore Minerals

    Directory of Open Access Journals (Sweden)

    N.A. Leonenko

    2015-12-01

    Full Text Available The effect of continuous laser radiation on complex ore minerals objects containing gold, not extracted by monerd methods was investigated. It was established the formation of different structural surfaces of gold, revealed general patterns of sintering and concentration of sub-micron gold.

  11. A model selection method for nonlinear system identification based FMRI effective connectivity analysis.

    Science.gov (United States)

    Li, Xingfeng; Coyle, Damien; Maguire, Liam; McGinnity, Thomas M; Benali, Habib

    2011-07-01

    In this paper a model selection algorithm for a nonlinear system identification method is proposed to study functional magnetic resonance imaging (fMRI) effective connectivity. Unlike most other methods, this method does not need a pre-defined structure/model for effective connectivity analysis. Instead, it relies on selecting significant nonlinear or linear covariates for the differential equations to describe the mapping relationship between brain output (fMRI response) and input (experiment design). These covariates, as well as their coefficients, are estimated based on a least angle regression (LARS) method. In the implementation of the LARS method, Akaike's information criterion corrected (AICc) algorithm and the leave-one-out (LOO) cross-validation method were employed and compared for model selection. Simulation comparison between the dynamic causal model (DCM), nonlinear identification method, and model selection method for modelling the single-input-single-output (SISO) and multiple-input multiple-output (MIMO) systems were conducted. Results show that the LARS model selection method is faster than DCM and achieves a compact and economic nonlinear model simultaneously. To verify the efficacy of the proposed approach, an analysis of the dorsal and ventral visual pathway networks was carried out based on three real datasets. The results show that LARS can be used for model selection in an fMRI effective connectivity study with phase-encoded, standard block, and random block designs. It is also shown that the LOO cross-validation method for nonlinear model selection has less residual sum squares than the AICc algorithm for the study.

  12. A Theoretical Method for Characterizing Nonlinear Effects in Paul Traps with Added Octopole Field.

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Chen, Suming; Nie, Zongxiu

    2015-08-01

    In comparison with numerical methods, theoretical characterizations of ion motion in the nonlinear Paul traps always suffer from low accuracy and little applicability. To overcome the difficulties, the theoretical harmonic balance (HB) method was developed, and was validated by the numerical fourth-order Runge-Kutta (4th RK) method. Using the HB method, analytical ion trajectory and ion motion frequency in the superimposed octopole field, ε, were obtained by solving the nonlinear Mathieu equation (NME). The obtained accuracy of the HB method was comparable with that of the 4th RK method at the Mathieu parameter, q = 0.6, and the applicable q values could be extended to the entire first stability region with satisfactory accuracy. Two sorts of nonlinear effects of ion motion were studied, including ion frequency shift, Δβ, and ion amplitude variation, Δ(C(2n)/C0) (n ≠ 0). New phenomena regarding Δβ were observed, although extensive studies have been performed based on the pseudo-potential well (PW) model. For instance, the |Δβ| at ε = 0.1 and ε = -0.1 were found to be different, but they were the same in the PW model. This is the first time the nonlinear effects regarding Δ(C(2n)/C0) (n ≠ 0) are studied, and the associated study has been a challenge for both theoretical and numerical methods. The nonlinear effects of Δ(C(2n)/C0) (n ≠ 0) and Δβ were found to share some similarities at q < 0.6: both of them were proportional to ε, and the square of the initial ion displacement, z(0)(2).

  13. A qualitative analytical investigation of geometrically nonlinear effects in wind turbine blade cross sections

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert

    2015-01-01

    section, that was inspired by a wind turbine blade, it is demonstrated that geometric nonlinear effects can induce an in-plane opening deformation in re-entrant corners that may decrease the fatigue life. The opening effect induces Mode-I stress intensity factors which exceed the threshold for fatigue...... for computationally efficient numerical analysis approaches of structures that comprise complex geometry and anisotropic material behaviour – such as wind turbine rotor blades....

  14. A nonlinear model for magnetocapacitance effect in PZT-ring/Terfenol-D-strip magnetoelectric composites

    Science.gov (United States)

    Zhang, Juanjuan; Wen, Jianbiao; Gao, Yuanwen

    2016-06-01

    In previous works, most of them employ a linear constitutive model to describe magnetocapacitance (MC) effect in magnetoelectric (ME) composites, which lead to deficiency in their theoretical results. In view of this, based on a nonlinear magnetostrictive constitutive relation and a linear piezoelectric constitutive relation, we establish a nonlinear model for MC effect in PZT-ring/Terfenol-D-strip ME composites. The numerical results in this paper coincide better with experimental data than that of a linear model, thus, it's essential to utilize a nonlinear constitutive model for predicting MC effect in ME composites. Then the influences of external magnetic fields, pre-stresses, frequencies, and geometric sizes on the MC effect are discussed, respectively. The results show that the external magnetic field is responsible for the resonance frequency shift. And the resonance frequency is sensitive to the ratio of outer and inner radius of the PZT ring. Moreover, some other piezoelectric materials are employed in this model and the corresponding MC effects are calculated, and we find that different type of piezoelectric materials affect the MC effect obviously. The proposed model is more accurate for multifunction devices designing.

  15. Multivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing values.

    Science.gov (United States)

    Wang, Wan-Lun; Lin, Tsung-I

    2014-07-30

    The multivariate nonlinear mixed-effects model (MNLMM) has emerged as an effective tool for modeling multi-outcome longitudinal data following nonlinear growth patterns. In the framework of MNLMM, the random effects and within-subject errors are assumed to be normally distributed for mathematical tractability and computational simplicity. However, a serious departure from normality may cause lack of robustness and subsequently make invalid inference. This paper presents a robust extension of the MNLMM by considering a joint multivariate t distribution for the random effects and within-subject errors, called the multivariate t nonlinear mixed-effects model. Moreover, a damped exponential correlation structure is employed to capture the extra serial correlation among irregularly observed multiple repeated measures. An efficient expectation conditional maximization algorithm coupled with the first-order Taylor approximation is developed for maximizing the complete pseudo-data likelihood function. The techniques for the estimation of random effects, imputation of missing responses and identification of potential outliers are also investigated. The methodology is motivated by a real data example on 161 pregnant women coming from a study in a private fertilization obstetrics clinic in Santiago, Chile and used to analyze these data.

  16. Polarization effects in the non-linear Compton scattering

    CERN Document Server

    Ivanov, D Y; Serbo, V G

    2005-01-01

    We consider emission of a photon by an electron in the field of a strong laser wave. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and electron-photon colliders.

  17. Diffraction Interference Induced Superfocusing in Nonlinear Talbot Effect

    Science.gov (United States)

    Liu, Dongmei; Zhang, Yong; Wen, Jianming; Chen, Zhenhua; Wei, Dunzhao; Hu, Xiaopeng; Zhao, Gang; Zhu, S. N.; Xiao, Min

    2014-08-01

    We report a simple, novel subdiffraction method, i.e. diffraction interference induced superfocusing in second-harmonic (SH) Talbot effect, to achieve focusing size of less than λSH/4 (or λpump/8) without involving evanescent waves or subwavelength apertures. By tailoring point spread functions with Fresnel diffraction interference, we observe periodic SH subdiffracted spots over a hundred of micrometers away from the sample. Our demonstration is the first experimental realization of the Toraldo di Francia's proposal pioneered 62 years ago for superresolution imaging.

  18. Nonlinear simulations of particle source effects on edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  19. Intersection crossing considered as intercepting a moving traffic gap: effects of task and environmental constraints.

    Science.gov (United States)

    Louveton, Nicolas; Bootsma, Reinoud J; Guerin, Perrine; Berthelon, Catherine; Montagne, Gilles

    2012-11-01

    Safely crossing an intersection requires that drivers actively control their approach to the intersection with respect to characteristics of the flow of incoming traffic. To further our understanding of the perceptual-motor processes involved in this demanding manoeuvre, we designed a driving simulator experiment in which 13 participants actively negotiated intersections by passing through a gap in the train of incoming traffic. Task constraints were manipulated by varying the size of the traffic gap and the initial conditions with respect to the time of arrival of the traffic gap at the intersection. Environment constraints were manipulated by varying the intersection geometry through changes in the angle formed by the crossroads. The results revealed that the task constraints systematically gave rise to continuous and gradual adjustments in approach velocity, initiated well before arriving at the intersection. These functionally appropriate adjustments allowed the drivers to safely cross the intersection, generally just slightly ahead of the center of the traffic gap. Notwithstanding the fact that the geometry of the intersection did not affect the spatiotemporal constraints of the crossing task, approach behavior varied systematically over geometries, suggesting that drivers rely on the traffic gap's bearing angle. Overall, the pattern of results is indicative of a continuous coupling between perception and action, analogous to that observed in locomotor interception tasks.

  20. Constraints on Symmetry Energy and Nucleon Effective Mass Splitting With Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Ying-xun; M.B.Tsang; LI; Zhu-xia; LIU; Hang

    2013-01-01

    The symmetry energy is of fundamental importance in our understanding of nature’s asymmetric objects including neutron stars as well as heavy nuclei with very different number of neutrons and protons.Theoretical predictions on the symmetry energy have large uncertainties.This stimulates a lot of efforts in the nuclear physics communities to provide experimental constraints on the density dependence of

  1. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam

    DEFF Research Database (Denmark)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2016-01-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli– Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature...

  2. Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells

    Science.gov (United States)

    Yuan, Jian-Hui; Chen, Ni; Zhang, Yan; Mo, Hua; Zhang, Zhi-Hai

    2016-03-01

    Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.

  3. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    Directory of Open Access Journals (Sweden)

    Feng-Tao He

    2013-01-01

    Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.

  4. Nonlinear model of a distribution transformer appropriate for evaluating the effects of unbalanced loads

    Science.gov (United States)

    Toman, Matej; Štumberger, Gorazd; Štumberger, Bojan; Dolinar, Drago

    Power packages for calculation of power system transients are often used when studying and designing electromagnetic power systems. An accurate model of a distribution transformer is needed in order to obtain realistic values from these calculations. This transformer model must be derived in such a way that it is applicable when calculating those operating conditions appearing in practice. Operation conditions where transformers are loaded with nonlinear and unbalanced loads are especially challenging. The purpose of this work is to derive a three-phase transformer model that is appropriate for evaluating the effects of nonlinear and unbalanced loads. A lumped parameter model instead of a finite element (FE) model is considered in order to ensure that the model can be used in power packages for the calculation of power system transients. The transformer model is obtained by coupling electric and magnetic equivalent circuits. The magnetic equivalent circuit contains only three nonlinear reluctances, which represent nonlinear behaviour of the transformer. They are calculated by the inverse Jiles-Atherton (J-A) hysteresis model, while parameters of hysteresis are identified using differential evolution (DE). This considerably improves the accuracy of the derived transformer model. Although the obtained transformer model is simple, the simulation results show good agreement between measured and calculated results.

  5. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  6. High-frequency effects in 1D spring-mass systems with strongly non-linear inclusions

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Snaeland, S.O.; Thomsen, Jon Juel

    2010-01-01

    -like systems with embedded non-linear parts, where the masses interact with a limited set of neighbour masses. The presented analytical and numerical results show that the effective properties for LF wave propagation can be altered by establishing HF standing waves in the non-linear regions of the chain......This work generalises the possibilities to change the effective material or structural properties for low frequency (LF) wave propagation, by using high-frequency (HF) external excitation combined with strong non-linear and non-local material behaviour. The effects are demonstrated on 1D chain....... The changes affect the effective stiffness and damping of the system....

  7. The Effects of Unilateral Adaptation of Hearing Aids on Symptoms of Depression and Social Activity Constraints of Elderly

    OpenAIRE

    Santos, Fernanda Dutra dos; Teixeira, Adriane Ribeiro

    2014-01-01

    Introduction Hearing loss is one of the most common problems in the elderly population. Besides compromising oral communication, it directly affects social relations and prevents elderly patients from living actively in society, possibly leading to the onset of depression or other conditions. Objective To analyze the effects of unilateral adaptation of hearing aids on symptoms of depression and the social activity constraints of elderly subjects with hearing impairment. Methods The samp...

  8. Dispersive and nonlinear effects in high-speed reconfigurable WDM optical fiber communication systems

    Science.gov (United States)

    Yu, Changyuan

    Chromatic dispersion, polarization mode dispersion (PMD) and nonlinear effects are important issues on the physical layer of high-speed reconfigurable WDM optical fiber communication systems. For beyond 10 Gbit/s optical fiber transmission system, it is essential that chromatic dispersion and PMD be well managed by dispersion monitoring and compensation. One the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and has applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersive and nonlinear effects in high-speed optical communication systems. We have demonstrated: (i) A novel technique for optically compensating the PMD-induced RF power fading that occurs in single-sideband (SSB) subcarrier-multiplexed systems. By aligning the polarization states of the optical carrier and the SSB, RF power fading due to all orders of PMD can be completely compensated. (ii) Chromatic-dispersion-insensitive PMD monitoring by using a narrowband FBG notch filter to recover the RF clock power for 10Gb/s NRZ data, and apply it as a control signal for PMD compensation. (iii) Chirp-free high-speed optical pulse generation with a repetition rate of 160 GHz (which is four times of the frequency of the electrical clock) using a phase modulator and polarization maintaining (PM) fiber. (iv) Polarization-insensitive all-optical wavelength conversion based on four-wave mixing in dispersion-shifted fiber (DSF) with a fiber Bragg grating and a Faraday rotator mirror. (v) Width-tunable optical RZ pulse train generation based on four-wave mixing in highly-nonlinear fiber. By electrically tuning the delay between two pump pulse trains, the pulse-width of a generated pulse train is continuously tuned. (vi) A high-speed all

  9. Colloidal Plasmas : Effect of nonthermal ion distribution and dust temperature on nonlinear dust acoustic solitary waves

    Indian Academy of Sciences (India)

    Tarsem Singh Gill; Harvinder Kaur

    2000-11-01

    The effects of nonthermal ion distribution and finite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the fixed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.

  10. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    Science.gov (United States)

    Salavati-fard, T.; Vazifehshenas, T.

    2014-12-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field.

  11. The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator

    Science.gov (United States)

    Yao, Chenggui; Ma, Jun; Li, Chuan; He, Zhiwei

    2016-10-01

    The delayed feedback loops play a crucial role in the stability of dynamical systems. The effect of process delay in feedback is studied numerically and theoretically in the delayed feedback nonlinear systems including the neural model, periodic system and chaotic oscillator. The process delay is of key importance in determining the evolution of systems, and the rich dynamical phenomena are observed. By introducing a process delay, we find that it can induce bursting electric activities in the neural model. We demonstrate that this novel regime of amplitude death also exists in the parameter space of feedback strength and process delay for the periodic system and chaotic oscillator. Our results extend the effect of process delay in the paper of Zou et al.(2013) where the process delay can eliminate the amplitude death of the coupled nonlinear systems.

  12. Investigation of nonlinear effects in the instabilities and noise radiation of supersonic jets

    Science.gov (United States)

    Janjua, S. I.; McLaughlin, D. K.

    1985-01-01

    The nonlinear interactions of fluctuating components which produce noise in supersonic jet flows were studied experimentally. Attention was given to spectral components interactions and the spectral effects of increasing Re. A jet exhausted in perfectly expanded conditions was monitored by microphones in the maximum noise emission direction. Trials were run at Mach 1.4 and 2.1 and the Re was varied from 5000-20,000 and 9000-25,000, respectively. Hot-wire data were gathered to examine the mode-mode interactions and a point glow discharge was used to excite the jets. The noise was found to exhibit discrete frequency components and a single tone instability at Re below 10,000. Mode interactions were found to weaken after the instabilities reached a crescendo and then decayed, leading to a nonlinear spectral broadening effect.

  13. Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation.

    Science.gov (United States)

    Jackson, E J; Coussios, C-C; Cleveland, R O

    2014-06-21

    Thermal ablation by high intensity focused ultrasound (HIFU) has a great potential for the non-invasive treatment of solid tumours. Due to the high pressure amplitudes involved, nonlinear acoustic effects must be understood and the relevant medium property is the parameter of nonlinearity B/A. Here, B/A was measured in ex vivo bovine liver, over a heating/cooling cycle replicating temperatures reached during HIFU ablation, adapting a finite amplitude insertion technique, which also allowed for measurement of sound-speed and attenuation. The method measures the nonlinear progression of a plane wave through liver and B/A was chosen so that numerical simulations matched the measured waveforms. To create plane-wave conditions, sinusoidal bursts were transmitted by a 100 mm diameter 1.125 MHz unfocused transducer and measured using a 15 mm diameter 2.25 MHz broadband transducer in the near field. Attenuation and sound-speed were calculated using a reflected pulse from the smaller transducer using the larger transducer as the reflecting interface. Results showed that attenuation initially decreased with heating then increased after denaturation, the sound-speed initially increased with temperature and then decreased, and B/A showed an increase with temperature but no significant post-heating change. The B/A data disagree with other reports that show a significant change and we suggest that any nonlinear enhancement in the received ultrasound signal post-treatment is likely due to acoustic cavitation rather than changes in tissue nonlinearity.

  14. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    Science.gov (United States)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  15. Effects of Nonlinear Absorption in BK7 and Color Glasses at 355 nm

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J J; McCarville, T; Bruere, J; McElroy, J; Peterson, J

    2003-11-12

    We have demonstrated a simple experimental technique that can be used to measure the nonlinear absorption coefficients in glasses. We determine BK7, UG1, and UG11 glasses to have linear absorption coefficients of 0.0217 {+-} 10% cm{sup -1}, 1.7 {+-} 10% cm{sup -1}, and 0.82 {+-} 10% cm{sup -1}, respectively, two-photon absorption cross-sections of 0.025 {+-} 20% cm/GW, 0.035 {+-} 20% cm/GW, and 0.047 {+-} 20% cm/GW, respectively, excited-state absorption cross-sections of 8.0 x 10{sup -18} {+-} 20% cm{sup 2}, 2.8 x 10{sup -16} {+-} 20% cm{sup 2}, and 5 x 10{sup -17} {+-} 20% cm{sup 2}, respectively, and solarization coefficients of 8.5 x 10{sup -20} {+-} 20% cm{sup 2}, 2.5 x 10{sup -18} {+-} 20% cm{sup 2}, and 1.3 x 10{sup -19} {+-} 20% cm{sup 2}, respectively. For our application, nonlinear effects in 10-cm of BK7 are small ({le} 2%) for 355-nm fluences < 0.2 J/cm{sup 2} for flat-top pulses. However, nonlinear effects are noticeable for 355-nm fluences at 0.8 J/cm{sup 2}. In particular, we determine a 20% increase in the instantaneous absorption from linear, a solarization rate of 4% per 100 shots, and a 10% temporal droop introduced in the pulse, for 355-nm flat-top pulses at a fluence of 0.8 J/cm{sup 2}. For 0.5-cm of UG1 absorbing glass the non-linear absorption has a similar effect as that from 10-cm of BK7 on the pulse shape; however, the effects in UG11 are much smaller.

  16. The effects of nonlinear wave propagation on the stability of inertial cavitation

    OpenAIRE

    2009-01-01

    In the context of forecasting temperature and pressure fields in high-intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and efficacy of treatment. In such fields inertial cavitation is often observed. Classically, estimations of cavitation thresholds have been based on the assumption that the incident wave at the surface of a bubble was the same as in the far-field, neglecting the effect of nonlinear wave propagation. By modelling the incident wave as...

  17. Polarization effects and nonlinear switching in fiber figure-eight lasers.

    Science.gov (United States)

    Stentz, A J; Boyd, R W

    1994-09-15

    We have developed a novel experimental procedure that allows us to quantify how polarization effects determine the passive mode locking of an optical fiber figure-eight laser. Based on our measurements, we have performed numerical simulations demonstrating that the nonlinear switching within this laser operates in a manner contrary to that described by the conventional theory of passive mode locking with a fast saturable absorber.

  18. Testing nonlinear electrodynamics in waveguides: the effect of magnetostatic fields on the transmitted power

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2010-05-14

    In Born-Infeld theory and other nonlinear electrodynamics, the presence of a magnetostatic field modifies the dispersion relation and the energy velocity of waves propagating in a hollow waveguide. As a consequence, the transmitted power along a waveguide suffers slight changes when a magnetostatic field is switched on and off. This tiny effect could be better tested by operating the waveguide at a frequency close to the cutoff frequency.

  19. Effect of modified constraint induced movement therapy on weight bearing and protective extension in children with hemiplegic cerebral palsy

    Directory of Open Access Journals (Sweden)

    Masoud Gharib

    2012-01-01

    Full Text Available Background: Constraint induced movement therapy is one of the new therapeutic interventions that limits the performance of intact upper limb with increased use of the affected limb. Aim of this study was to investigate the effects of modified constraint induced movement therapy on weight bearing & protective extension in children with hemiplegic cerebral palsy.Methods: 21 hemiplegic children were selected and randomly divided into experimental and control groups. Common Practices of Occupational Therapy applied for 6 weeks in both groups equally and test group received constrain induced movement therapy for three hours every day. Weight-bearing and protective extension was measured based on quality of test skills of upper limbs (QUEST. Data analyzed using appropriated statistical methods. Results: 11 children in the experimental group (7 girls, 4 boys with mean age 47.2 ± 55.5 months and 10 children in the control group (5 girls, 5 boys with mean age 19.2 ± 10.5 months were studied. No significant difference observed before and after six weeks intervention between two groups (P>0.05. There was a significant change before and after six weeks intervention in both subscales (P<0.05.Conclusion: This study showed that modified constraint induced movement therapy may affect weight bearing, but has no effect on the protective extension.

  20. Non-linear effects on solute transfer between flowing water and a sediment bed.

    Science.gov (United States)

    Higashino, Makoto; Stefan, Heinz G

    2011-11-15

    A previously developed model of periodic pore water flow in space and time, and associated solute transport in a stream bed of fine sand is extended to coarse sand and fine gravel. The pore water flow immediately below the sediment/water interface becomes intermittently a non-Darcy flow. The periodic pressure and velocity fluctuations considered are induced by near-bed coherent turbulent motions in the stream flow; they penetrate from the sediment/water interface into the sediment pore system and are described by a wave number (χ) and a period (T) that are given as functions of the shear velocity (U(∗)) between the flowing water and the sediment bed. The stream bed has a flat surface without bed forms. The flow field in the sediment pore system is described by the continuity equation and a resistance law that includes both viscous (Darcy) and non-linear (inertial) effects. Simulation results show that non-linear (inertial) effects near the sediment/water interface increase flow resistance and reduce mean flow velocities. Compared to pure Darcy flow, non-linear (inertial) effects reduce solute exchange rates between overlying water and the sediment bed but only by a moderate amount (less than 50%). Turbulent coherent flow structures in the stream flow enhance solute transfer in the pore system of a stream bed compared to pure molecular diffusion, but by much less than standing surface waves or bed forms.

  1. Stationary variational estimates for the effective response and field fluctuations in nonlinear composites

    Science.gov (United States)

    Ponte Castañeda, Pedro

    2016-11-01

    This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.

  2. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    Science.gov (United States)

    Denisov, V. I.; Sokolov, V. A.; Svertilov, S. I.

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  3. Dichromatic nonlinear eigenmodes in slab waveguide with chi(2) nonlinearity.

    Science.gov (United States)

    Darmanyan, S A; Nevière, M

    2001-03-01

    The existence of purely nonlinear eigenmodes in a waveguiding structure composed of a slab with quadratic nonlinearity surrounded by (non)linear claddings is reported. Modes having bright and dark solitonlike shapes and consisting of two mutually locked harmonics are identified. Asymmetrical modes are shown to exist in symmetrical environments. Constraints for the existence of the modes are derived in terms of parameters of guiding structure materials.

  4. The Effects of Two Levels of Linguistic Constraint on Echolalia and Generative Language Production in Children with Autism.

    Science.gov (United States)

    Rydell, Patrick J.; Mirenda, Pat

    1991-01-01

    This study of 3 boys (ages 5-6) with autism found that adult high-constraint antecedent utterances elicited more verbal utterances in general, including subjects' echolalia; adult low-constraint utterances elicited more subject high-constraint utterances; and the degree of adult-utterance constraint did not influence the mean lengths of subjects'…

  5. Time-ordering effects in the generation of entangled photons using nonlinear optical processes.

    Science.gov (United States)

    Quesada, Nicolás; Sipe, J E

    2015-03-06

    We study the effects of time ordering in photon generation processes such as spontaneous parametric down-conversion (SPDC) and four wave mixing (SFWM). The results presented here are used to construct an intuitive picture that allows us to predict when time-ordering effects significantly modify the joint spectral amplitude (JSA) of the photons generated in SPDC and SFWM. These effects become important only when the photons being generated lie with the pump beam that travels through the nonlinear material for a significant amount of time. Thus sources of spectrally separable photons are ideal candidates for the observation of modifications of the JSA due to time ordering.

  6. Effects of nonlinear phase modulation on quantum frequency conversion using four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    2013-01-01

    Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...

  7. Nonlinear magnetoelectric effect and magnetostriction in piezoelectric CsCuCl{sub 3} in paramagnetic and antiferromagnetic states

    Energy Technology Data Exchange (ETDEWEB)

    Kharkovskiy, A. I., E-mail: akharkovskiy@inbox.ru [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); L.F. Vereshchagin Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow (Russian Federation); Shaldin, Yu. V. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); Institute for Crystallography RAS, Lenin' s Avenue 59, 119333 Moscow (Russian Federation); Nizhankovskii, V. I. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland)

    2016-01-07

    The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-like peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.

  8. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind P. Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..

  9. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind; P.; Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..

  10. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Nevalainen, M. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland); Dodds, R.H. Jr. [Illinois Univ., Urbana, IL (United States). Dept. of Civil Engineering

    1996-07-01

    This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised {eta}-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front.

  11. Measuring the nonlinear refractive index of graphene using the optical Kerr effect method.

    Science.gov (United States)

    Dremetsika, Evdokia; Dlubak, Bruno; Gorza, Simon-Pierre; Ciret, Charles; Martin, Marie-Blandine; Hofmann, Stephan; Seneor, Pierre; Dolfi, Daniel; Massar, Serge; Emplit, Philippe; Kockaert, Pascal

    2016-07-15

    By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third-order nonlinear response of graphene and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, n2=-1.1×10-13  m2/W. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature and to discuss the discrepancies, taking into account parameters such as doping.

  12. Non-equilibrium many-body effects in driven nonlinear resonator arrays

    CERN Document Server

    Grujic, T; Angelakis, D G; Jaksch, D

    2012-01-01

    We study the non-equilibrium behavior of optically driven dissipative coupled resonator arrays. Assuming each resonator is coupled with a two-level system via a Jaynes-Cummings interaction, we calculate the many-body steady state behavior of the system under coherent pumping and dissipation. We propose and analyze the many-body phases using experimentally accessible quantities such as the total excitation number, the emitted photon spectra and photon coherence functions for different parameter regimes. In parallel, we also compare and contrast the expected behavior of this system assuming the local nonlinearity in the cavities is generated by a generic Kerr effect rather than a Jaynes-Cummings interaction. We find that the behavior of the experimentally accessible observables produced by the two models differs for realistic regimes of interactions even when the corresponding nonlinearities are of similar strength. We analyze in detail the extra features available in the Jaynes-Cummings-Hubbard (JCH) model ori...

  13. EVALUATION OF NONLINEARITY EFFECTS ON PERFORMANCE OF DVB-H TRANSMISSION LINK

    Directory of Open Access Journals (Sweden)

    MD. SARWAR MORSHED

    2010-08-01

    Full Text Available Handheld devices of all kind have gained remarkable popularity in recent years. Choosing receiving end components for these handheld devices are critical. For example, if poorly suited and inexpensive amplifiers are chosen, then they tend to deteriorate signals. On the other hand, cheaper components are feasible for consumer product. This paper evaluates nonlinearity effects on transmission link serving Digital Video Broadcasting for Handhelds (DVB-H based on the results of software simulator. The system is tested in various receiving scenarios with presence of noise and received signal power varying from sensitivity level up to saturated nonlinear region. Neighboring DVB-H channel and close-by GSM-uplink are considered as distortion sources. The simulation results also analyze the behavior of the system in the presence of interfering signals with variouspower levels.

  14. Theory of plasmonic effects in nonlinear optics: The case of graphene

    Science.gov (United States)

    Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco

    2017-01-01

    We develop a microscopic large-N theory of electron-electron interaction corrections to multilegged Feynman diagrams describing second- and third-order non-linear-response functions. Our theory, which reduces to the well-known random-phase approximation in the linear-response limit, is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order non-linear-response functions of an interacting two-dimensional (2D) gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved by virtue of the finiteness of the quasihomogeneous second-order nonlinear response of this inversion-symmetric 2D material.

  15. Measuring the Nonlinear Refractive Index of Graphene using the Optical Kerr Effect Method

    CERN Document Server

    Dremetsika, Evdokia; Gorza, Simon-Pierre; Ciret, Charles; Martin, Marie-Blandine; Hofmann, Stephan; Seneor, Pierre; Dolfi, Daniel; Massar, Serge; Emplit, Philippe; Kockaert, Pascal

    2016-01-01

    By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third order nonlinear response of graphene at telecom wavelength, and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, $n_2 = - 1.1\\times 10^{-13} m^2/W$. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature, and to discuss the discrepancies, taking into account parameters such as doping.

  16. Mitigation of nonlinear transmission effects for OFDM 16-QAM optical signal using adaptive modulation.

    Science.gov (United States)

    Skidin, Anton S; Sidelnikov, Oleg S; Fedoruk, Mikhail P; Turitsyn, Sergei K

    2016-12-26

    The impact of the fiber Kerr effect on error statistics in the nonlinear (high power) transmission of the OFDM 16-QAM signal over a 2000 km EDFA-based link is examined. We observed and quantified the difference in the error statistics for constellation points located at three power-defined rings. Theoretical analysis of a trade-off between redundancy and error rate reduction using probabilistic coding of three constellation power rings decreasing the symbol-error rate of OFDM 16-QAM signal is presented. Based on this analysis, we propose to mitigate the nonlinear impairments using the adaptive modulation technique applied to the OFDM 16-QAM signal. We demonstrate through numerical modelling the system performance improvement by the adaptive modulation for the large number of OFDM subcarriers (more than 100). We also show that a similar technique can be applied to single carrier transmission.

  17. The effect of large deformation and material nonlinearity on gel indentation

    Institute of Scientific and Technical Information of China (English)

    Zheng Duan; Yonghao An; Jiaping Zhang; Hanqing Jiang

    2012-01-01

    A gel,an aggregate of polymers with solvents,has dual attributes of solid and liquid as solvent migrates in and out of the polymer network.Indentation has recently been used to characterize the mechanical properties of gels.This paper evaluates the effects of large deformation and material nonlinearity on gel indentation through theoretical modeling and finite element analysis.It is found that large deformation significantly affects the interpretation of the experimental observations and the classical relation between indentation force and depth has limitations for large deformation.The material nonlinearity does not play a very important role on indentation experiment so that the poroelasticity is a good approximation.Based on these observations,this paper proposes an alternative approach to measure the mechanical properties of gels,namely,uniaxial compression experiment.

  18. Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets three-dimensional effects

    CERN Document Server

    Keppens, R

    1999-01-01

    A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important ...

  19. Effect of joint damping and joint nonlinearity on the dynamics of space structures

    Science.gov (United States)

    Bowden, Mary; Dugundji, John

    1988-01-01

    Analyses of the effect of linear joint characteristics on the vibrations of a free-free, three-joint beam model show that increasing joint damping increases resonant frequencies and increases modal damping but only to the point where the joint gets 'locked up' by damping. This behavior is different from that predicted by modeling joint damping as proportional damping. Nonlinear analyses of the three-joint model with cubic springs at the joints show all the classical single DOF nonlinear response behavior at each resonance of the multiple DOF system: nondoubling of response for a doubling of forcing amplitude, multiple solutions, jump behavior, and resonant frequency shifts. These properties can be concisely quantified by characteristic backbone curves, which show the locus of resonant peaks for increasing forcing amplitude.

  20. Ought-approach versus ought-avoidance: nonlinear effects on arousal under achievement situations.

    Science.gov (United States)

    Stamovlasis, Dimitrios; Sideridis, Georgios D

    2014-01-01

    The present study examines the dimensions of oughts under a nonlinear perspective. Ought-approach and ought-avoidance have been proposed as two different dimensions of oughts, which have an opposite effect on subjects' arousal level under achievement situation. The change in arousal level measured by heart rates per minute (HRPM) was modeled as cusp catastrophe by implementing the two dimensions of oughts as the control parameters: the ought-approach as the asymmetry and the ought-avoidance as the bifurcation factor. The cusp model was proved by far superior from the three alternative linear models and provided the empirical evidence that the two dimensions of oughts are distinct and are associated with different processes. The ought-avoidance dimension being the bifurcation factor acts in a destructive manner by introducing nonlinearity and uncertainty in the self-regulation process (with regard to HRPM). The interpretation of the model is provided and implications are discussed.

  1. The Non-Linear Effect of Corporate Taxes on Economic Growth

    Directory of Open Access Journals (Sweden)

    Huňady Ján

    2015-03-01

    Full Text Available The paper deals with the problem of taxation and its potential impact on economic growth and presents some new empirical insights into this topic. The main aim of the paper is to verify an assumed nonlinear impact of corporate tax rates on economic growth. Based on the theory of public finance and taxation, we hypothesize that at relatively low tax rates it is possible that the impact of taxation on economic growth become slightly positive. On the other hand when the tax rates are higher a negative impact of taxation on economic growth could be expected. Despite the fact that the most of the existing studies find a negative linear relationship between these variables, we can also find strong support for a non-linear relationship from several theoretical models as well as some empirical studies. Based on panel data fixed-effects econometric models, we, as well, find empirical evidence for a non-linear relationship between nominal and effective corporate tax rates and economic growth. Our data consists of annual observations for the period 1999 to 2011 for EU Member States. Based on the results, we also estimated the optimal level of the corporate tax rate in terms of maximizing economic growth in the average of the EU countries.

  2. Competitive coexistence and competitive exclusion for a nonlinear community with delay effect and impulsive birth

    Science.gov (United States)

    Liu, Yanping; Zhang, Feng; Wei, Jianzhou

    2016-12-01

    By constructing a population model of multi-species competition, a community with nonlinear interaction relationship is investigated, in which the species' response delay and environmental fluctuation effects (i.e., seasonal fluctuation of resource supplies and species' reproductive activities) on population are considered. Firstly, the conditions about competitive coexistence (i.e., persistence of all species) and competitive exclusion (i.e., only partial of species, but not all, keep persistence) of the community are established, and the underlying ecological mechanism of these results are analyzed. Secondly, by some illustrative examples, the interactive effects of nonlinear competition, species' response delay and environmental fluctuation on the structure of community are explored. It is demonstrated that small response delay and slight deviation of nonlinear competition indexes from 1 have little impact on the coexistence of community, but acute changes have distinct negative influence on community coexistence. This reveals to us that parameter perturbations of natural communities should keep in an appropriate range, which is of great significance in conservation and restoration biology.

  3. Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium

    Science.gov (United States)

    Bhattacharyya, S.; De, Simanta

    2016-09-01

    The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.

  4. Analysis on nonlinear wind-induced dynamic response of membrane roofs with aerodynamic effects

    Institute of Scientific and Technical Information of China (English)

    LI Qing-xiang; SUN Bing-nan

    2008-01-01

    Based on the characteristics of membrane structures and the air influence factors, this paper presen-ted a method to simulate the air aerodynamic force effects including the added air mass, the acoustic radiation damping and the pneumatic stiffness. The infinite air was modeled using the acoustic fluid element of commer-cial FE software and the finite element membrane roof models were coupled with fluid models. A comparison be-tween the results obtained by IrE computation and those obtained by the vibration experiment for a cable-mem-brane verified the validity of the method. Furthermore, applying the method to a flat membrane roof structure and using its wind tunnel test results, the analysis of nonlinear wind-induced dynamic responses for such geo-metrically nonlinear roofs, including the roof-air coupled model was performed. The result shows that the air has large influence on vibrating membrane roofs according to results of comparing the nodal time-history displace-ments, accelerations and stress of the two different cases. Meantime, numerical studies show that the method developed can successfully solve the nonlinear wind-induced dynamic response of the membrane roof with aero-dynamic effects.

  5. Experimental study of strong nonlinear-optics effects in liquid crystals

    Science.gov (United States)

    Darbin, S. D.; Arakelyan, S. M.; Cheung, M. M.; Shen, Y. R.

    1984-07-01

    Nonlinear optical effects that arise in nematic liquid crystals as a result of a change in the index of refraction induced by a laser field are considered. Since the resultant nonlinearity is extremely high, the approximation of perturbation theory cannot be used in calculations. However, the change in refractive index results mainly in phase advance as waves propagate through a thin film of liquid crystal, while the change of intensity is significant. Moreover, if there is no change in polarization of the pumping field, calculations are relatively simple. An investigation is made of the propagation of a cross sectionally bounded laser beam through a homeotropically oriented liquid crystal, giving rise to spatial phase modulation of emission. When the intensity of the laser beam exceeds a certain value, a system of aberation rings is observed in the output radiation. Effects of dynamic self-diffraction accompanying degenerate four-wave mixing when a change in refractive index is induced in a homeotropic liquid crystal film, and optical bistability in a nonlinear Fabry-Perot optical cavity, as well as generation of a self-oscillatory state in such a resonator are discussed.

  6. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    Science.gov (United States)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  7. Switching Tracking Control for Planar Systems with Transient Performance Constraints

    Institute of Scientific and Technical Information of China (English)

    SU Qing-Yu; SUN Xi-Ming; ZHAO Jun

    2013-01-01

    This paper studies the output tracking problem for a class of planar systems with some given transient performance constraints which are determined by the overshoot and the settling time.The problem of switched static output feedback tracking with output constraints (SSOFTOC) is proposed and solved for the first time.The static output feedback controllers and a so-called conic switching law are designed under which the output of the closed-loop switched system can track the step signal asymptotically without violating the transient performance constraints.Furthermore,an optimal weighted transient performance is obtained by.solving a nonlinear programming problem.Finally,a numerical example and an application to aircraft turbofan engine are given to illustrate the effectiveness and the applicability of the proposed method.

  8. The Effects of Unilateral Adaptation of Hearing Aids on Symptoms of Depression and Social Activity Constraints of Elderly

    Directory of Open Access Journals (Sweden)

    Santos, Fernanda Dutra dos

    2015-01-01

    Full Text Available Introduction Hearing loss is one of the most common problems in the elderly population. Besides compromising oral communication, it directly affects social relations and prevents elderly patients from living actively in society, possibly leading to the onset of depression or other conditions. Objective To analyze the effects of unilateral adaptation of hearing aids on symptoms of depression and the social activity constraints of elderly subjects with hearing impairment. Methods The sample consisted of elderly subjects with hearing loss who did not use hearing aids. Data were collected in two phases. Initially, all participants underwent an audiological assessment and answered the Hearing Handicap Inventory for Elderly (summarized version and the Geriatric Depression Scale. All subjects participated in the selection and hearing aid adaptation processes and became monaural hearing aid users. After 30 days of hearing aid use, they were assessed with the same instruments. The results of the questionnaires before and after hearing aid adaptation were compared. Results The sample consisted of 13 individuals, between 60 and 90 years old (mean 72.85 ± 11.05 years. Data analysis showed that there was significant improvement in social activity constraints (p < 0.001 and in symptoms of depression (p = 0.031. Conclusion Results show that, in the sample studied, unilateral hearing aid adaptation reduced social activity constraints and depression symptoms.

  9. The Effects of Unilateral Adaptation of Hearing Aids on Symptoms of Depression and Social Activity Constraints of Elderly.

    Science.gov (United States)

    Santos, Fernanda Dutra Dos; Teixeira, Adriane Ribeiro

    2015-07-01

    Introduction Hearing loss is one of the most common problems in the elderly population. Besides compromising oral communication, it directly affects social relations and prevents elderly patients from living actively in society, possibly leading to the onset of depression or other conditions. Objective To analyze the effects of unilateral adaptation of hearing aids on symptoms of depression and the social activity constraints of elderly subjects with hearing impairment. Methods The sample consisted of elderly subjects with hearing loss who did not use hearing aids. Data were collected in two phases. Initially, all participants underwent an audiological assessment and answered the Hearing Handicap Inventory for Elderly (summarized version) and the Geriatric Depression Scale. All subjects participated in the selection and hearing aid adaptation processes and became monaural hearing aid users. After 30 days of hearing aid use, they were assessed with the same instruments. The results of the questionnaires before and after hearing aid adaptation were compared. Results The sample consisted of 13 individuals, between 60 and 90 years old (mean 72.85 ± 11.05 years). Data analysis showed that there was significant improvement in social activity constraints (p depression (p = 0.031). Conclusion Results show that, in the sample studied, unilateral hearing aid adaptation reduced social activity constraints and depression symptoms.

  10. Effects of Slotted Structures on Nonlinear Characteristics of Natural Convection in a Cylinder with an Internal Concentric Slotted Annulus

    CERN Document Server

    Shen, Chunyun; Zhang, Yuwen; Li, Zheng

    2016-01-01

    Natural convection in a cylinder with an internally slotted annulus was solved by SIMPLE algorithm, and the effects of different slotted structures on nonlinear characteristics of natural convection were investigated. The results show that the equivalent thermal conductivity Keq increases with Rayleigh number, and reaches the maximum in the vertical orientation. Nonlinear results were obtained by simulating the fluid flow at different conditions. With increasing Rayleigh number, heat transfer is intensified and the state of heat transfer changes from the steady to unsteady. We investigated different slotted structures effects on natural convection, and analyze the corresponding nonlinear characteristics.

  11. Scleronomic Holonomic Constraints and Conservative Nonlinear Oscillators

    Science.gov (United States)

    Munoz, R.; Gonzalez-Garcia, G.; Izquierdo-De La Cruz, E.; Fernandez-Anaya, G.

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present…

  12. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect - a case study on loamy haplic Luvisol

    Directory of Open Access Journals (Sweden)

    Bahar S. eRazavi

    2015-10-01

    Full Text Available The temperature sensitivity of enzymes responsible for organic matter decomposition in soil is crucial for predicting the effects of global warming on the carbon cycle and sequestration. We tested the hypothesis that differences in temperature sensitivity of enzyme kinetic parameters Vmax and Km will lead to a canceling effect: strong reduction of temperature response of catalytic reactions. Short-term temperature response of Vmax and Km of three hydrolytic enzymes responsible for decomposition of cellulose (β-glucosidase, cellobiohydrolase and hemicelluloses (xylanase were analyzed in situ from 0 to 40 °C. The apparent activation energy varied between enzymes from 20.7 to 35.2 kJ mol-1 corresponding to the Q10 values of the enzyme activities of 1.4–1.9 (with Vmax-Q10 1.0–2.5 and Km-Q10 0.94–2.3. Temperature response of all tested enzymes fitted well to the Arrhenius equation. Despite that, the fitting of Arrhenius model revealed the non-linear increase of two cellulolytic enzymes activities with two distinct thresholds at 10–15 °C and 25–30 °C, which were less pronounced for xylanase. The nonlinearity between 10 and 15 °C was explained by 30–80% increase in Vmax. At 25–30 °C, however, the abrupt decrease of enzyme-substrate affinity was responsible for non-linear increase of enzyme activities. Our study is the first demonstrating nonlinear response of Vmax and Km to temperature causing canceling effect, which was most strongly pronounced at low substrate concentrations and at temperatures above 15 °C. Under cold climate, however, the regulation of hydrolytic activity by canceling in response to warming is negligible because canceling was never observed below 10 °C. The canceling, therefore, can be considered as natural mechanism reducing the effects of global warming on decomposition of soil organics at moderate temperatures. The non-linearity of enzyme responses to warming and the respective thresholds should therefore be

  13. Nonhydrostatic effects of nonlinear internal wave propagation in the South China Sea

    Science.gov (United States)

    Zhang, Z.; Fringer, O. B.

    2007-05-01

    It is well known that internal tides are generated over steep topography at the Luzon Strait on the eastern boundary of the South China Sea. These internal tides propagate westward and steepen into trains of weakly nonlinear internal waves that propagate relatively free of dissipation until they interact with the continental shelf on the western side of the South China Sea, some 350 km from their generation point. The rate at which the internal tide transforms into trains of nonlinear waves depends on the Froude number at the generation site, which is defined as the ratio of the barotropic current speed to the local internal wave speed. Large Froude numbers lead to rapid evolution of wave trains while low Froude numbers generate internal tides that may not evolve into wave trains before reaching the continental shelf. Although the evolution into trains of weakly nonlinear waves results from the delicate interplay between nonlinear steepening and nonhydrostatic dispersion, the steepening process is represented quite well, at least from a qualitative standpoint, by hydrostatic models, which contain no explicit nonhydrostatic dispersion. Furthermore, hydrostatic models predict the propagation speed of the leading wave in wave trains extremely well, indicating that its propagation speed depends very weakly on nonlinear or dispersive effects. In order to examine how hydrostatic models introduce dispersion that leads to the formation of wave trains, we simulate the generation and evolution of nonlinear waves in the South China Sea with and without the hydrostatic approximation using the nonhydrostatic model SUNTANS, which can be run in either hydrostatic or nonhydrostatic mode. We show that the dispersion leading to the formation of wave trains in the hydrostatic model results from numerically-induced dispersion that is implicit in the numerical formulation of the advection terms. While the speed of the leading wave in the wave trains is correct, the amplitude and number

  14. Brillouin/Raman compensation of the Kerr-effect-induced bias in a nonlinear ring laser gyroscope.

    Science.gov (United States)

    Luo, Zhang; Yuan, Xiaodong; Zhu, Zhihong; Liu, Ken; Ye, Weimin; Zeng, Chun; Ji, Jiarong

    2013-04-01

    In this Letter, the beat frequency at rest of a ring laser gyroscope with nonlinear effects is discussed in detail. Even without an additional intensity-stabilizing system, the random nullshift bias induced by the Kerr effect is compensated by the phase shift associated with the stimulated Brillouin/Raman scattering. And the nonlinear stimulated scattering also serves as the gain mechanism of the gyroscope. And thus the influence of the fluctuation of the injected pump intensity on the beat frequency is eliminated.

  15. Effects of energy constraints on transportation systems. [Twenty-six papers

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, R. K. [ed.

    1977-12-01

    Twenty-six papers are presented on a variety of topics including: energy and transportaton facts and figures; long-range planning under energy constraints; technology assessment of alternative fuels; energy efficiency of intercity passenger and freight movement; energy efficiency of intracity passenger movement; federal role; electrification of railroads; energy impact of the electric car in an urban enviroment; research needs and projects in progress--federal viewpoint; research needs in transportation energy conservation--data needs; and energy intensity of various transportation modes--an overview. A separate abstract was prepared for each of the papers for inclusion in Energy Research Abstracts (ERA) and in Energy Abstracts for Policy Analysis (EAPA).

  16. Neural Modeling and Control of Diesel Engine with Pollution Constraints

    CERN Document Server

    Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

    2009-01-01

    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

  17. Effects of Interaction Between Gravitation and Nonlinear Electrodynamics On Scalar Field Evolution

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju-Hua; WANG Yong-Jiu

    2011-01-01

    In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation.We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly.On the other words, this coupling term takes effect on the scalar field evolution as a damping factor.At the same time these effects become more obvious for the scalar field with higher angle quantum number.

  18. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, A.

    2006-01-01

    Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast pumping (velocities similar to mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We...... therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects...... indeed affect the pump performance in a way that we can rationalize by physical arguments....

  19. Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....

  20. A nonlinear mixed-effects model for degradation data obtained from in-service inspections

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, X.-X. [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Pandey, M.D. [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)], E-mail: mdpandey@uwaterloo.ca

    2009-02-15

    Monitoring of degradation and predicting its progression using periodic inspection data are important to ensure safety and reliability of engineering systems. Traditional regression models are inadequate in modeling the periodic inspection data, as it ignores units specific random effects and potential correlation among repeated measurements. This paper presents an advanced nonlinear mixed-effects (NLME) model, generally adopted in bio-statistical literature, for modeling and predicting degradation in nuclear piping system. The proposed model offers considerable improvement by reducing the variance associated with degradation of a specific unit, which leads to more realistic estimates of risk.