A NEW SMOOTHING EQUATIONS APPROACH TO THE NONLINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
Chang-feng Ma; Pu-yan Nie; Guo-ping Liang
2003-01-01
The nonlinear complementarity problem can be reformulated as a nonsmooth equation. In this paper we propose a new smoothing Newton algorithm for the solution of the nonlinear complementarity problem by constructing a new smoothing approximation function. Global and local superlinear convergence results of the algorithm are obtained under suitable conditions. Numerical experiments confirm the good theoretical properties of the algorithm.
A Null Space Approach for Solving Nonlinear Complementarity Problems
Institute of Scientific and Technical Information of China (English)
Pu-yan Nie
2006-01-01
In this work, null space techniques are employed to tackle nonlinear complementarity problems(NCPs). NCP conditions are transform into a nonlinear programming problem, which is handled by null space algorithms. The NCP conditions are divided into two groups. Some equalities and inequalities in an NCP are treated as constraints. While other equalities and inequalities in an NCP are to be regarded as objective function.Two groups are all updated in every step. Null space approaches are extended to nonlinear complementarity problems. Two different solvers are employed for an NCP in an algorithm.
A Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem
Directory of Open Access Journals (Sweden)
Meixia Li
2012-01-01
Full Text Available Based on the smoothing function of penalized Fischer-Burmeister NCP-function, we propose a new smoothing inexact Newton algorithm with non-monotone line search for solving the generalized nonlinear complementarity problem. We view the smoothing parameter as an independent variable. Under suitable conditions, we show that any accumulation point of the generated sequence is a solution of the generalized nonlinear complementarity problem. We also establish the local superlinear (quadratic convergence of the proposed algorithm under the BD-regular assumption. Preliminary numerical experiments indicate the feasibility and efficiency of the proposed algorithm.
A POSITIVE INTERIOR-POINT ALGORITHM FOR NONLINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
马昌凤; 梁国平; 陈新美
2003-01-01
A new iterative method, which is called positive interior-point algorithm, is presented for solving the nonlinear complementarity problems. This method is of the desirable feature of robustness. And the convergence theorems of the algorithm is established. In addition, some numerical results are reported.
Directory of Open Access Journals (Sweden)
Xin-He Miao
2012-01-01
Full Text Available This paper investigates the Lipschitz continuity of the solution mapping of symmetric cone (linear or nonlinear complementarity problems (SCLCP or SCCP, resp. over Euclidean Jordan algebras. We show that if the transformation has uniform Cartesian P-property, then the solution mapping of the SCCP is Lipschitz continuous. Moreover, we establish that the monotonicity of mapping and the Lipschitz continuity of solutions of the SCLCP imply ultra P-property, which is a concept recently developed for linear transformations on Euclidean Jordan algebra. For a Lyapunov transformation, we prove that the strong monotonicity property, the ultra P-property, the Cartesian P-property, and the Lipschitz continuity of the solutions are all equivalent to each other.
Multisplitting Iteration Schemes for Solving a Class of Nonlinear Complementarity Problems
Institute of Scientific and Technical Information of China (English)
Chen-liang Li; Jin-ping Zeng
2007-01-01
We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.
Particle Swarm Optimization-Proximal Point Algorithm for Nonlinear Complementarity Problems
Chai Jun-Feng; Wang Shu-Yan
2013-01-01
A new algorithm is presented for solving the nonlinear complementarity problem by combining the particle swarm and proximal point algorithm, which is called the particle swarm optimization-proximal point algorithm. The algorithm mainly transforms nonlinear complementarity problems into unconstrained optimization problems of smooth functions using the maximum entropy function and then optimizes the problem using the proximal point algorithm as the outer algorithm and particle swarm algorithm a...
Institute of Scientific and Technical Information of China (English)
张建军; 王德人
2004-01-01
In this paper, based on the resuls presented in part I of this paper[18],we present a numerical crabeding algorithm for soling the nonlinear complementarity problem, and prove its convergence carefully. Numerical experiments show that the algorithm is successful.
A NUMERICAL EMBEDDING METHOD FOR SOLVING THE NONLINEAR COMPLEMENTARITY PROBLEM(Ⅰ)--THEORY
Institute of Scientific and Technical Information of China (English)
Jian-jun Zhang; De-ren Wang
2002-01-01
In this paper, we extend the numerical embedding method for solving the smooth equations to the nonlinear complementarity problem. By using the nonsmooth theory,we prove the existence and the continuation of the following path for the corresponding homotopy equations. Therefore the basic theory of the numerical embedding method for solving the nonlinear complementarity problem is established. In part Ⅱ of this paper, we will further study the implementation of the method and give some numerical exapmles.
Andreani, Roberto; Friedlander, Ana; Mello, Margarida P.; Santos, Sandra A.
2005-06-01
In this work we show that the mixed nonlinear complementarity problem may be formulated as an equivalent nonlinear bound-constrained optimization problem that preserves the smoothness of the original data. One may thus take advantage of existing codes for bound-constrained optimization. This approach is implemented and tested by means of an extensive set of numerical experiments, showing promising results. The mixed nonlinear complementarity problems considered in the tests arise from the discretization of a motion planning problem concerning a set of rigid 3D bodies in contact in the presence of friction. We solve the complementarity problem associated with a single time frame, thus calculating the contact forces and accelerations of the bodies involved.
Long step homogeneous interior point algorithm for the p* nonlinear complementarity problems
Directory of Open Access Journals (Sweden)
Lešaja Goran
2002-01-01
Full Text Available A P*-Nonlinear Complementarity Problem as a generalization of the P*-Linear Complementarity Problem is considered. We show that the long-step version of the homogeneous self-dual interior-point algorithm could be used to solve such a problem. The algorithm achieves linear global convergence and quadratic local convergence under the following assumptions: the function satisfies a modified scaled Lipschitz condition, the problem has a strictly complementary solution, and certain submatrix of the Jacobian is nonsingular on some compact set.
A GLOBALLY DERIVATIVE-FREE DESCENT METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
Hou-duo Qi; Yu-zhong Zhang
2000-01-01
Based on a class of functions. which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for short) as an equivalent unconstrained optimization problem, for which we propose a derivative-free descent method in monotone case. We show its global convergence under some mild conditions. If F, the function involved in NCP, is Ro－function, the optimization problem has bounded level sets. A local property of the merit function is discussed. Finally, we report some numerical results.
An NE/SQP method for the bounded nonlinear complementarity problem
Energy Technology Data Exchange (ETDEWEB)
Gabriel, S.A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.
1995-05-30
NE/SQP is a recent algorithm that has proven quite effective for solving the pure and mixed forms of the nonlinear complementarity problem (NCP). NE/SQP is robust in the sense that its direction-finding subproblems are always solvable; in addition, the convergence rate of this method is Q-quadratic. In this paper the author considers a generalized version of NE/SQP proposed by Pang and Qi, that is suitable for the bounded NCP. The author extends their work by demonstrating a stronger convergence result and then tests a proposed method on several numerical problems.
A LQP BASED INTERIOR PREDICTION-CORRECTION METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
Bing-sheng He; Li-zhi Liao; Xiao-ming Yuan
2006-01-01
To solve nonlinear complementarity problems (NCP), at each iteration, the classical proximal point algorithm solves a well-conditioned sub-NCP while the LogarithmicQuadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system). This paper presents a practical LQP method-based prediction-correction method for NCP.The predictor is obtained via solving the LQP system approximately under significantly relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit formula derived from the original LQP method. The implementations are very easy to be carried out. Global convergence of the method is proved under the same mild assumptions as the original LQP method. Finally, numerical results for traffic equilibrium problems are provided to verify that the method is effective for some practical problems.
Smoothing Newton Algorithm for Nonlinear Complementarity Problem with a P* Function
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By using a smoothing function, the P* nonlinear complementarity problem (P* NCP) can be reformulated as a parameterized smooth equation. A Newton method is proposed to solve this equation. The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P* NCP has a nonempty solution set. This assumption is weaker than the ones used in most existing smoothing algorithms. In particular, the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P* NCP without any additional assumption.
The non-interior continuation methods for solving the P0 function nonlinear complementarity problem
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving the P0 function nonlinear complementarity problem (NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving the P0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP.
Smoothing Newton Algorithm for Solving Generalized Complementarity Problem
Institute of Scientific and Technical Information of China (English)
刘晓红; 倪铁
2010-01-01
The generalized complementarity problem includes the well-known nonlinear complementarity problem and linear complementarity problem as special cases.In this paper, based on a class of smoothing functions, a smoothing Newton-type algorithm is proposed for solving the generalized complementarity problem.Under suitable assumptions, the proposed algorithm is well-defined and global convergent.
Levenberg-Marquardt method for the eigenvalue complementarity problem.
Chen, Yuan-yuan; Gao, Yan
2014-01-01
The eigenvalue complementarity problem (EiCP) is a kind of very useful model, which is widely used in the study of many problems in mechanics, engineering, and economics. The EiCP was shown to be equivalent to a special nonlinear complementarity problem or a mathematical programming problem with complementarity constraints. The existing methods for solving the EiCP are all nonsmooth methods, including nonsmooth or semismooth Newton type methods. In this paper, we reformulate the EiCP as a system of continuously differentiable equations and give the Levenberg-Marquardt method to solve them. Under mild assumptions, the method is proved globally convergent. Finally, some numerical results and the extensions of the method are also given. The numerical experiments highlight the efficiency of the method.
Institute of Scientific and Technical Information of China (English)
金中; 濮定国; 张宇; 蔡力
2008-01-01
A mechanism for proving global convergence in filter-SQP(sequence of quadratic programming)method with the nonlinear complementarity problem(NCP)function is described for constrained nonlinear optimization problem.We introduce an NCP function into the filter and construct a new SQP-filter algorithm.Such methods are characterized by their use of the dominance concept of multi-objective optimization,instead of a penalty parameter whose adjustment can be problematic.We prove that the algorithm has global convergence and superlinear convergence rates under some mild conditions.
A New Generalized FB Complementarity Function for Symmetric Cone Complementarity Problems
Institute of Scientific and Technical Information of China (English)
Zhang Yun-sheng; Gao Lei-fu∗
2016-01-01
We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an aﬃrmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475–485) for any positive integer.
Using vector divisions in solving linear complementarity problem
Elfoutayeni, Youssef
2010-01-01
The linear complementarity problem is to find vector $z$ in $\\mathrm{IR}^{n}$ satisfying $z^{T}(Mz+q)=0$, $Mz+q\\geqslant0,$ $z\\geqslant0$, where $M$ as a matrix and $q$ as a vector, are given data; this problem becomes in present the subject of much important research because it arises in many areas and it includes important fields, we cite for example the linear and nonlinear programming, the convex quadratic programming and the variational inequalities problems, ... It is known that the linear complementarity problem is completely equivalent to solving nonlinear equation $F(x)=0$ with $F$ is a function from $\\mathrm{IR}^{n}$ into itself defined by $F(x)=(M+I)x+(M-I)|x|+q$. In this paper we propose a globally convergent hybrid algorithm for solving this equation; this method is based on an algorithm given by Shi \\cite{Y. Shi}, he uses vector divisions with the secant method; but for using this method we must have a function continuous with partial derivatives on an open set of $\\mathrm{IR}^{n}$; so we built ...
RELAXED ASYNCHRONOUS ITERATIONS FOR THE LINEAR COMPLEMENTARITY PROBLEM
Institute of Scientific and Technical Information of China (English)
Zhong-zhi Bai; Yu-guang Huang
2002-01-01
We present a class of relaxed asynchronous parallel multisplitting iterative methods forsolving the linear complementarity problem on multiprocessor systems, and set up theirconvergence theories when the system matrix of the linear complementarity problem is anH-matrix with positive diagonal elements.
Gas phase appearance and disappearance as a problem with complementarity constraints
Gharbia, Ibtihel Ben
2011-01-01
The modeling of migration of hydrogen produced by the corrosion of the nuclear waste packages in an underground storage including the dissolution of hydrogen involves a set of nonlinear partial differential equations with nonlinear complementarity constraints. This article shows how to apply a modern and efficient solution strategy, the Newton-min method, to this geoscience problem and investigates its applicability and efficiency. In particular, numerical experiments show that the Newton-min method is quadratically convergent for this problem.
An SQP algorithm for mathematical programs with nonlinear complementarity constraints
Institute of Scientific and Technical Information of China (English)
Zhi-bin ZHU; Jin-bao JIAN; Cong ZHANG
2009-01-01
In this paper,we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of smooth programs to approximate the MPCC. Using an l1 penalty function,the line search assures global convergence,while the superlinear convergence rate is shown under the strictly complementary and second-order sufficient conditions. Moreover,we prove that the current iterated point is an exact stationary point of the mathematical programs with equilibrium constraints (MPEC) when the algorithm terminates finitely.
Institute of Scientific and Technical Information of China (English)
ISAC G.; LI Jin-lu
2005-01-01
The notion of"exceptional family of elements (EFE)" plays a very important role in solving complementarity problems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this paper, by using the generalized projection defined by Alber, we extend this notion from Hilbert spaces to uniformly smooth and uniformly convex Banach spaces,and apply this extension to the study of nonlinear complementarity problems in Banach spaces.
Institute of Scientific and Technical Information of China (English)
龙君; 曾三云
2014-01-01
先将非线性互补问题（NCP ）转化为与其等价且有可行解的辅助问题，再将引入了信赖域方法思想的SQP方法与Filter技术相结合，提出一种求解NCP问题的信赖域-SQP-filter算法，并讨论了解的存在性和算法的全局收敛性。数值结果表明我们的算法是有效并收敛的。%This paper constructs an auxiliary problem with feasible solution , which is equivalent to the nonlinear complementarity problem . Through combining the trust region -SQP method and filter technology , a trust region -SQP-filter algorithm for solving NCP is proposed . Finally , we discuss the global convergence of the algorithm and the existence of solution for NCP . The numerical results show that our algorithm is effective and convergent .
A REGULARIZATION NEWTON METHOD FOR MIXED COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
王宜举; 周厚春; 王长钰
2004-01-01
In this paper, a regularization Newton method for mixed complementarity problem(MCP) based on the reformulation of MCP in [1] is proposed. Its global convergence is proved under the assumption that F is a Po-function. The main feature of our algorithm is that a priori of the existence of an accumulation point for convergence need not to be assumed.
A Smoothing SAA Method for a Stochastic Linear Complementarity Problem
Institute of Scientific and Technical Information of China (English)
Zhang Jie; Zhang Hong-wei; Zhang Li-wei
2013-01-01
Utilizing the well-known aggregation technique, we propose a smoothing sample average approximation (SAA) method for a stochastic linear complementarity problem, where the underlying functions are represented by expectations of stochas-tic functions. The method is proved to be convergent and the preliminary numerical results are reported.
Institute of Scientific and Technical Information of China (English)
ZHANG Yun-sheng
2014-01-01
In this paper, we introduce a new class of two-parametric penalized function, which includes the penalized minimum function and the penalized Fischer-Burmeister func-tion over symmetric cone complementarity problems. We propose that this class of function is a class of complementarity functions(C-function). Moreover, its merit function has bounded level set under a weak condition.
Institute of Scientific and Technical Information of China (English)
HE; Shanglu
2001-01-01
［1］Andersen, E. D., Ye, Y., On homogeneous algorithm for the monotone complementarity problem, Mathematical Programming, 1999, 84(2): 375.［2］Wright, S., Ralph, D., A supperlinear infeasible-interior-point algorithm for monotone complementarity problems, Mathematics of Operations Research, 1996, 24(4): 815.［3］Kojima, M., Noma, T., Yoshise, A., Global convergence in infeasible-interior-point algorithms, Mathematical Programming, 1994, 65(1): 43.［4］Kojima, M., Megiddo, N., Noma, T., A new continuation method for complementarity problems with uniform p-functions, Mathematical Programming, 1989, 43(1): 107.［5］Kojima, M., Megiddo, N., Mizuno, S., A general framework of continuation method for complementarity problems, Mathematics of Operations Research, 1993, 18(4): 945.［6］More, J., Rheinboldt, W., On P- and S-functions and related classes of n-dimensional nonlinear mappings, Linear Algebra and Its Applications, 1973, 6(1): 45.
EXTENSION OF SMOOTHING FUNCTIONS TO SYMMETRIC CONE COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
Liu Yongjin; Zhang Liwei; Liu Meijiao
2007-01-01
The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity problems. Computable formulas for these functions and their Jacobians are derived. In addition, it is shown that these functions are Lipschitz continuous with respect to parameter μ and continuously differentiable on J × J for anyμ＞ 0.
A Preconditioned Multisplitting and Schwarz Method for Linear Complementarity Problem
Directory of Open Access Journals (Sweden)
Cuiyu Liu
2014-01-01
Full Text Available The preconditioner presented by Hadjidimos et al. (2003 can improve on the convergence rate of the classical iterative methods to solve linear systems. In this paper, we extend this preconditioner to solve linear complementarity problems whose coefficient matrix is M-matrix or H-matrix and present a multisplitting and Schwarz method. The convergence theorems are given. The numerical experiments show that the methods are efficient.
A NEW PRINCIPAL PIVOTING SCHEME FOR BOX LINEAR COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
WANGZHEMIN
1997-01-01
Judice and Pires developed in recent years principal pivoting methods for the solving ofthe so-called box linear complementarity problems (BLCPs) where the constraint matrices are restrictedly supposed to be of P-matrices. This paper aims at presenting a new principal pivoting scheme for BLCPs where the constraint matrices are loosely supposed to be row sufficient. This scheme can be applied to the solving of convex quadratic programs subject to linear constraints and arbitrary upper and lower bound constraints on variables.
A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials
Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.
2016-06-01
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.
Zhao, J.; Vollebregt, E.A.H.; Oosterlee, C.W.
2014-01-01
This paper presents a full multigrid (FMG) technique, which combines a multigrid method, an active set algorithm and a nested iteration technique, to solve a linear complementarity problem (LCP) modeling elastic normal contact problems. The governing system in this LCP is derived from a Fredholm int
The Levenberg-Marquardt-Type Methods for a Kind of Vertical Complementarity Problem
Shou-qiang Du; Yan Gao
2011-01-01
Two kinds of the Levenberg-Marquardt-type methods for the solution of vertical complementarity problem are introduced. The methods are based on a nonsmooth equation reformulation of the vertical complementarity problem for its solution. Local and global convergence results and some remarks about the two kinds of the Levenberg-Marquardt-type methods are also given. Finally, numerical experiments are reported.
The Solution Structure and Error Estimation for The Generalized Linear Complementarity Problem
Directory of Open Access Journals (Sweden)
Tingfa Yan
2014-07-01
Full Text Available In this paper, we consider the generalized linear complementarity problem (GLCP. Firstly, we develop some equivalent reformulations of the problem under milder conditions, and then characterize the solution of the GLCP. Secondly, we also establish the global error estimation for the GLCP by weakening the assumption. These results obtained in this paper can be taken as an extension for the classical linear complementarity problems.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents an infeasible-interior-point algorithm for aclass of nonmonotone complementarity problems, and analyses its convergence and computational complexity. The results indicate that the proposed algorithm is a polynomial-time one.
Institute of Scientific and Technical Information of China (English)
Zhong-zhi Bai; Yu-guang Huang
2003-01-01
Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties,are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.
Institute of Scientific and Technical Information of China (English)
房亮; 贺国平; 王永丽
2011-01-01
In this paper, nonlinear complementarity problem with Po0function is studied.Based on a new smoothing function, the problem is approximated by a family of parameterized smooth equations and a new non-interior-point continuation method is presented for solving it. At each iteration, the proposed algorithm only need to solve a system of linear equations and perform only one Armijo-type line search. The algorithm is proved to be globally as well as locally superlinearly convergent without strict complementarity. Moreover, the quadratic convergence rate can be achieved under mild conditions. Numerical experiments demonstrate the feasibility and efficiency of the new algorithm.%研究带有P0函数的非线性互补问题.基于一个新的光滑函数,把问题近似成参数化的光滑方程组,并且给出一个新的非内点连续算法.所给算法在每步迭代只需要求解一个线性方程组和执行一次Armijo类型的线搜索.在不需要严格互补条件的情况下,证明了算法是全局收敛和超线性收敛的.并且,在一个较弱的条件下该算法具有局部二阶收敛性.数值实验证实了算法的可行性和有效性.
A TRULY GLOBALLY CONVERGENT FEASIBLE NEWTON-TYPE METHOD FOR MIXED COMPLEMENTARITY PROBLEMS
Institute of Scientific and Technical Information of China (English)
Deren Han
2004-01-01
Typical solution methods for solving mixed complementarity problems either generate feasible iterates but have to solve relatively complicated subproblems such as quadratic programs or linear complementarity problems, or (those methods) have relatively simple subproblems such as system of linear equations but possibly generate infeasible iterates.In this paper, we propose a new Newton-type method for solving monotone mixed complementarity problems, which ensures to generate feasible iterates, and only has to solve a system of well-conditioned linear equations with reduced dimension per iteration. Without any regularity assumption, we prove that the whole sequence of iterates converges to a solution of the problem (truly globally convergent). Furthermore, under suitable conditions,the local superlinear rate of convergence is also established.
Lesaja, G.; Roos, C.
2011-01-01
We present an interior-point method for monotone linear complementarity problems over symmetric cones (SCLCP) that is based on barrier functions which are defined by a large class of univariate functions, called eligible kernel functions. This class is fairly general and includes the classical logar
Directory of Open Access Journals (Sweden)
Yasushi Narushima
2013-01-01
Full Text Available We deal with complementarity problems over second-order cones. The complementarity problem is an important class of problems in the real world and involves many optimization problems. The complementarity problem can be reformulated as a nonsmooth system of equations. Based on the smoothed Fischer-Burmeister function, we construct a smoothing Newton method for solving such a nonsmooth system. The proposed method controls a smoothing parameter appropriately. We show the global and quadratic convergence of the method. Finally, some numerical results are given.
A Non-smooth Nonlinear Conjugate Gradient Method for Interactive Contact Force Problems
DEFF Research Database (Denmark)
Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...
Institute of Scientific and Technical Information of China (English)
Zhong-zhi Bai
2002-01-01
We study the numerical behaviours of the relaxed asynchronous multisplitting methods for the linear complementarity problems by solving some typical problems from practical applications on a real multiprocessor system. Numerical results show that the parallel multisplitting relaxation methods always perform much better than the corresponding sequential alternatives, and that the asynchronous multisplitting relaxation methods often outperform their corresponding synchronous counterparts. Moreover, the two-sweep relaxed multisplitting methods have better convergence properties than their corresponding one-sweep relaxed ones in the sense that they have larger convergence domains and faster convergence speeds. Hence, the asynchronous multisplitting unsymmetric relaxation iterations should be the methods of choice for solving the large sparse linear complementarity problems in the parallel computing environments.
A class of singular Ro-matrices and extensions to semidefinite linear complementarity problems
Directory of Open Access Journals (Sweden)
Sivakumar K.C.
2013-01-01
Full Text Available For ARnxn and qRn, the linear complementarity problem LCP(A, q is to determine if there is xRn such that x ≥ 0; y = Ax + q ≥ 0 and xT y = 0. Such an x is called a solution of LCP(A,q. A is called an Ro-matrix if LCP(A,0 has zero as the only solution. In this article, the class of R0-matrices is extended to include typically singular matrices, by requiring in addition that the solution x above belongs to a subspace of Rn. This idea is then extended to semidefinite linear complementarity problems, where a characterization is presented for the multplicative transformation.
Júdice, Joaquim; Raydan, Marcos; Rosa, Silvério; Santos, Sandra
2008-04-01
This paper is devoted to the eigenvalue complementarity problem (EiCP) with symmetric real matrices. This problem is equivalent to finding a stationary point of a differentiable optimization program involving the Rayleigh quotient on a simplex (Queiroz et al., Math. Comput. 73, 1849-1863, 2004). We discuss a logarithmic function and a quadratic programming formulation to find a complementarity eigenvalue by computing a stationary point of an appropriate merit function on a special convex set. A variant of the spectral projected gradient algorithm with a specially designed line search is introduced to solve the EiCP. Computational experience shows that the application of this algorithm to the logarithmic function formulation is a quite efficient way to find a solution to the symmetric EiCP.
Institute of Scientific and Technical Information of China (English)
LIU Yong; BAI Yan-qin
2009-01-01
A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on:a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.
The Smoothing Newton Method for Solving the Extended Linear Complementarity Problem
Institute of Scientific and Technical Information of China (English)
TANG Jia; MA Chang-feng
2012-01-01
The extended linear complementarity problem(denoted by ELCP) can be reformulated as the solution of a nonsmooth system of equations.By the symmetrically perturbed CHKS smoothing function,the ELCP is approximated by a family of parameterized smooth equations.A one-step smoothing Newton method is designed for solving the ELCP.The proposed algorithm is proved to be globally convergent under suitable assumptions.
Institute of Scientific and Technical Information of China (English)
Zhong-zhi Bai
2001-01-01
A parallel chaotic multisplitting method for solving the large sparse linear complementarity problem is presented, and its convergence properties are discussed in detail when the system matrix is either symmetric or nonsymmetric. Moreover, some applicable relaxed variants of this parallel chaotic multisplitting method together with their convergence properties are investigated. Numerical results show that highly parallel efficiency can be achieved by these new parallel chaotic multisplitting methods.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper, we propose a smoothing algorithm for solving the monotone symmetric cone complementarity problems (SCCP for short) with a nonmonotone line search. We show that the nonmonotone algorithm is globally convergent under an assumption that the solution set of the problem concerned is nonempty. Such an assumption is weaker than those given in most existing algorithms for solving optimization problems over symmetric cones. We also prove that the solution obtained by the algorithm is a maximally complementary solution to the monotone SCCP under some assumptions.
Problems in nonlinear resistive MHD
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Sustainability assessment and complementarity
Directory of Open Access Journals (Sweden)
Hugo F. Alrøe
2016-03-01
Full Text Available Sustainability assessments bring together different perspectives that pertain to sustainability to produce overall assessments, and a wealth of approaches and tools have been developed in the past decades. However, two major problems remain. The problem of integration concerns the surplus of possibilities for integration; different tools produce different assessments. The problem of implementation concerns the barrier between assessment and transformation; assessments do not lead to the expected changes in practice. We aim to analyze issues of complementarity in sustainability assessment and transformation as a key to better handling the problems of integration and implementation. Based on a generalization of Niels Bohr's complementarity from quantum mechanics, we have identified two forms of complementarity in sustainability assessment, observer stance complementarity and value complementarity. Unlike many other problems of sustainability assessment, complementarity is of a fundamental character connected to the very conditions for observation. Therefore, complementarity cannot be overcome methodologically, only handled better or worse. Science is essential to the societal goal of sustainability, but these issues of complementarity impede the constructive role of science in the transition to more sustainable structures and practices in food systems. The agencies of sustainability assessment and transformation need to be acutely aware of the importance of different perspectives and values and the complementarities that may be connected to these differences. An improved understanding of complementarity can help to better recognize and handle issues of complementarity. These deliberations have relevance not only for sustainability assessment, but more generally for transdisciplinary research on wicked problems.
A New Superlinearly Convergent SQP Algorithm for Nonlinear Minimax Problems
Institute of Scientific and Technical Information of China (English)
Jin-bao Jian; Ran Quan; Qing-jie Hu
2007-01-01
In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed algorithm, a main search direction is obtained by solving a Quadratic Programming (QP) which always has a solution. In order to avoid the Maratos effect, a correction direction is obtained by updating the main direction with a simple explicit formula. Under mild conditions without the strict complementarity, the global and superlinear convergence of the algorithm can be obtained. Finally, some numerical experiments are reported.
Improved Full-Newton-Step Infeasible Interior-Point Method for Linear Complementarity Problems
Directory of Open Access Journals (Sweden)
Goran Lešaja
2016-04-01
Full Text Available We present an Infeasible Interior-Point Method for monotone Linear Complementarity Problem (LCP which is an improved version of the algorithm given in [13]. In the earlier version, each iteration consisted of one feasibility step and few centering steps. The improved version guarantees that after one feasibility step, the new iterate is feasible and close enough to the central path thanks to the much tighter proximity estimate which is based on the new lemma introduced in [18]. Thus, the centering steps are eliminated. Another advantage of this method is the use of full-Newton-steps, that is, no calculation of the step size is required. The preliminary implementation and numerical results demonstrate the advantage of the improved version of the method in comparison with the old one.
Unified Analysis of Kernel-Based Interior-Point Methods for P∗(κ)-Linear Complementarity Problems
Lesaja, G.; Roos, C.
2010-01-01
We present an interior-point method for the P∗(κ)-linear complementarity problem (LCP) that is based on barrier functions which are defined by a large class of univariate functions called eligible kernel functions. This class is fairly general and includes the classical logarithmic function and the
求解P0-NCP的-步光滑牛顿法%One-step Smoothing Newton Method for Solving Complementarity Problem with Po- NCP
Institute of Scientific and Technical Information of China (English)
张丽娜; 谢亚君; 马昌凤
2011-01-01
A nonlinear complementarity problem (denoted by ( NCP(F) ) ) can be reformulated as a nonsmooth equation.Based on a new smoothing function, the problem is approximated by a new smooth equation.The authors present a one-step smoothing Newton method for solving complementarity problem with P0- function.The algorithm is proved to be convergent globally.Some numerical resnlts show that this method is effective.%在将非线性互补问题转化为求解非光滑方程组的基础上,利用一个新的光滑NCP函数,构造新的价值函数,建立了求解P0函数的一步光滑牛顿法.在一定的条件下,证明了该算法的全局收敛性.数值实验表明该算法是有效的.
A NONLINEAR FEASIBILITY PROBLEM HEURISTIC
Directory of Open Access Journals (Sweden)
Sergio Drumond Ventura
2015-04-01
Full Text Available In this work we consider a region S ⊂ given by a finite number of nonlinear smooth convex inequalities and having nonempty interior. We assume a point x 0 is given, which is close in certain norm to the analytic center of S, and that a new nonlinear smooth convex inequality is added to those defining S (perturbed region. It is constructively shown how to obtain a shift of the right-hand side of this inequality such that the point x 0 is still close (in the same norm to the analytic center of this shifted region. Starting from this point and using the theoretical results shown, we develop a heuristic that allows us to obtain the approximate analytic center of the perturbed region. Then, we present a procedure to solve the problem of nonlinear feasibility. The procedure was implemented and we performed some numerical tests for the quadratic (random case.
Nonlinear Least Squares for Inverse Problems
Chavent, Guy
2009-01-01
Presents an introduction into the least squares resolution of nonlinear inverse problems. This title intends to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, that is, both wellposedness and optimizability
An interior-point method for the Cartesian P*(k-linear complementarity problem over symmetric cones
Directory of Open Access Journals (Sweden)
B Kheirfam
2014-06-01
Full Text Available A novel primal-dual path-following interior-point algorithm for the Cartesian P*(k-linear complementarity problem over symmetric cones is presented. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov-Todd step feasible interior-point algorithm based on the new search directions, the complexity bound of the algorithm with small-update approach is the best-available bound.
Debin Fang; Qian Yu
2011-01-01
This paper proposes an improved predictor-corrector interior-point algorithm for the linear complementarity problem (LCP) based on the Mizuno-Todd-Ye algorithm. The modified corrector steps in our algorithm cannot only draw the iteration point back to a narrower neighborhood of the center path but also reduce the duality gap. It implies that the improved algorithm can converge faster than the MTY algorithm. The iteration complexity of the improved algorithm is proved to obtain √ ( ) whi...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i)it is well defined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
On some nonlinear potential problems
Directory of Open Access Journals (Sweden)
M. A. Efendiev
1999-05-01
Full Text Available The degree theory of mappings is applied to a two-dimensional semilinear elliptic problem with the Laplacian as principal part subject to a nonlinear boundary condition of Robin type. Under some growth conditions we obtain existence. The analysis is based on an equivalent coupled system of domain--boundary variational equations whose principal parts are the Dirichlet bilinear form in the domain and the single layer potential bilinear form on the boundary, respectively. This system consists of a monotone and a compact part. Additional monotonicity implies convergence of an appropriate Richardson iteration.
The virial theorem for nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: paolo.amore@gmail.com, E-mail: fernande@quimica.unlp.edu.ar
2009-09-15
We show that the virial theorem provides a useful simple tool for approximating nonlinear problems. In particular, we consider conservative nonlinear oscillators and obtain the same main result derived earlier from the expansion in Chebyshev polynomials. (letters and comments)
Directory of Open Access Journals (Sweden)
Debin Fang
2011-01-01
Full Text Available This paper proposes an improved predictor-corrector interior-point algorithm for the linear complementarity problem (LCP based on the Mizuno-Todd-Ye algorithm. The modified corrector steps in our algorithm cannot only draw the iteration point back to a narrower neighborhood of the center path but also reduce the duality gap. It implies that the improved algorithm can converge faster than the MTY algorithm. The iteration complexity of the improved algorithm is proved to obtain √( which is similar to the classical Mizuno-Todd-Ye algorithm. Finally, the numerical experiments show that our algorithm improved the performance of the classical MTY algorithm.
Studies of Nonlinear Problems. I
Fermi, E.; Pasta, J.; Ulam, S.
1955-05-01
A one-dimensional dynamical system of 64 particles with forces between neighbors containing nonlinear terms has been studied on the Los Alamos computer MANIAC I. The nonlinear terms considered are quadratic, cubic, and broken linear types. The results are analyzed into Fourier components and plotted as a function of time. The results show very little, if any, tendency toward equipartition of energy among the degrees of freedom.
Directory of Open Access Journals (Sweden)
Goran Lešaja
2011-02-01
Full Text Available We present an interior point method for Cartesian P*(k-Linear Complementarity Problems over Symmetric Cones (SCLCPs. The Cartesian P*(k-SCLCPs have been recently introduced as the generalization of the more commonly known and more widely used monotone SCLCPs. The IPM is based on the barrier functions that are defined by a large class of univariate functions called eligible kernel function which have recently been successfully used to design new IPMs for various optimization problems. Eligible barrier (kernel functions are used in calculating the Nesterov-Todd search directions and the default step-size which leads to a very good complexity results for the method. For some specific eligilbe kernel functions we match the best known iteration bound for the long-step methods while for the short-step methods the best iteration bound is matched for all cases.
The nonlinear fixed gravimetric boundary value problem
Institute of Scientific and Technical Information of China (English)
于锦海; 朱灼文
1995-01-01
The properly-posedness of the nonlinear fixed gravimetric boundary value problem is shown with the help of nonlinear functional analysis and a new iterative method to solve the problem is also given, where each step of the iterative program is reduced to solving one and the same kind of oblique derivative boundary value problem with the same type. Furthermore, the convergence of the iterative program is proved with Schauder estimate of elliptic differential equation.
RESEARCH ON NONLINEAR PROBLEMS IN STRUCTURAL DYNAMICS.
Research on nonlinear problems structural dynamics is briefly summarized. Panel flutter was investigated to make a critical comparison between theory...panel flutter in aerospace vehicles, plausible simplifying assumptions are examined in the light of experimental results. Structural dynamics research
Institute of Scientific and Technical Information of China (English)
陈金雄; 刘宁
2015-01-01
本文研究了一个 P0非线性互补问题。利用信赖域技术获得了求解该问题的光滑Levenberg-Marquardt 算法，该算法在一定条件下具有全局性。利用局部误差界还获得了该算法的超线性和二次收敛。数值结果表明该算法是有效的。%In this paper, we study a P0 nonlinear complementarity problem. By using the techniques of trust-region, we acquire a smoothing Levenberg-Marquardt algorithm for nonlinear complementarity problem. Under suitable condition the gobal convergence properties of this algorithm are proved. With the local error condition, the local superlinear convergence of this algorithm is also obtained. This algorithm is eﬃcient by the numerical experiments.
The role of nonlinearity in inverse problems
Snieder, Roel
1998-06-01
In many practical inverse problems, one aims to retrieve a model that has infinitely many degrees of freedom from a finite amount of data. It follows from a simple variable count that this cannot be done in a unique way. Therefore, inversion entails more than estimating a model: any inversion is not complete without a description of the class of models that is consistent with the data; this is called the appraisal problem. Nonlinearity makes the appraisal problem particularly difficult. The first reason for this is that nonlinear error propagation is a difficult problem. The second reason is that for some nonlinear problems the model parameters affect the way in which the model is being interrogated by the data. Two examples are given of this, and it is shown how the nonlinearity may make the problem more ill-posed. Finally, three attempts are shown to carry out the model appraisal for nonlinear inverse problems that are based on an analytical approach, a numerical approach and a common sense approach.
A Cauchy problem in nonlinear heat conduction
Energy Technology Data Exchange (ETDEWEB)
De Lillo, S [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia (Italy); Sanchini, G [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy)
2006-06-09
A Cauchy problem on the semiline for a nonlinear diffusion equation is considered, with a boundary condition corresponding to a prescribed thermal conductivity at the origin. The problem is mapped into a moving boundary problem for the linear heat equation with a Robin-type boundary condition. Such a problem is then reduced to a linear integral Volterra equation of II type which admits a unique solution.
Compressed Sensing with Nonlinear Observations and Related Nonlinear Optimisation Problems
Blumensath, Thomas
2012-01-01
Non-convex constraints have recently proven a valuable tool in many optimisation problems. In particular sparsity constraints have had a significant impact on sampling theory, where they are used in Compressed Sensing and allow structured signals to be sampled far below the rate traditionally prescribed. Nearly all of the theory developed for Compressed Sensing signal recovery assumes that samples are taken using linear measurements. In this paper we instead address the Compressed Sensing recovery problem in a setting where the observations are non-linear. We show that, under conditions similar to those required in the linear setting, the Iterative Hard Thresholding algorithm can be used to accurately recover sparse or structured signals from few non-linear observations. Similar ideas can also be developed in a more general non-linear optimisation framework. In the second part of this paper we therefore present related result that show how this can be done under sparsity and union of subspaces constraints, wh...
Combined algorithms in nonlinear problems of magnetostatics
Energy Technology Data Exchange (ETDEWEB)
Gregus, M.; Khoromsky, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.
1988-05-09
To solve boundary problems of magnetostatics in unbounded two- or three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method in nonlinear magnetostatic problems without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in nonlinear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given, too. 14 refs., 2 figs.
Monotone method for nonlinear nonlocal hyperbolic problems
Directory of Open Access Journals (Sweden)
Azmy S. Ackleh
2003-02-01
Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.
Lobachevsky geometry and modern nonlinear problems
Popov, Andrey
2014-01-01
This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound “geometrical roots” and numerous applications to modern nonlinear problems, it is treated as a universal “object” of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry.
Institute of Scientific and Technical Information of China (English)
李建宇; 潘少华; 张洪武
2009-01-01
Frictional contact problems frequently arise in various engineering applications, but their solutions, especially the solutions of three dimensional (3D) frictional contact problems, are challenging since the conditions for contact and friction are highly nonlinear and non-smooth. The 3D frictional contact problem is nonlinear and non-differentiable at least in three aspects: (1) The unilateral contact law, combining a geometric condition of impenetrability, a static condition of no-tension and an energy condition of complementarity, is represented by a multi-valued force-displacement relation. (2) The friction law, governed by a relation between reaction force and local relative velocity, is also multi-valued. (3) The Coulomb friction law in 3D space is expressed as a nonlinear inequality that is non-differentiable in the ordinary sense. In this paper, we propose a new linear second-order cone complementarity formulation for the numerical finite element analysis of 3D frictional contact problem by using the parametric variational principle. Specifically, we develop a regularization technique to resolve the multi-valued difficulty involved in the unilateral contact law, and utilize a second-order cone complementarity condition to handle the regularized Coulomb friction law in contact analysis. We reformulate the governing equations of the 3D frictional contact problem as a linear second-order cone complementarity problem (SOCCP) via the parametric variational principle and the finite element method. Compared with the linear complementarity formulation of 3D frictional contact problems, the proposal SOCCP formulation avoids the polyhedral approximation to the Coulomb friction cone so that the problem to be solved has much smaller size and the solution has better accuracy. A semismooth Newton method is used to solve the obtained linear SOCCP. Numerical examples are computed and the results confirm the effectiveness and robustness of the SOCCP formulation developed.%
Nonlinear elliptic-parabolic problems
Kim, Inwon C
2012-01-01
We introduce a notion of viscosity solutions for a general class of elliptic-parabolic phase transition problems. These include the Richards equation, which is a classical model in filtration theory. Existence and uniqueness results are proved via the comparison principle. In particular, we show existence and stability properties of maximal and minimal viscosity solutions for a general class of initial data. These results are new even in the linear case, where we also show that viscosity solutions coincide with the regular weak solutions introduced in [Alt&Luckhaus 1983].
Advanced Research Workshop on Nonlinear Hyperbolic Problems
Serre, Denis; Raviart, Pierre-Arnaud
1987-01-01
The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
Institute of Scientific and Technical Information of China (English)
Xiang-li Li; Hong-wei Liu; Chang-he Liu
2011-01-01
In this paper, by analyzing the propositions of solution of the convex quadratic programming with nonnegative constraints, we propose a feasible decomposition method for constrained equations. Under mild conditions, the global convergence can be obtained. The method is applied to the complementary problems. Numerical results are also given to show the efficiency of the proposed method.
Topological invariants in nonlinear boundary value problems
Energy Technology Data Exchange (ETDEWEB)
Vinagre, Sandra [Departamento de Matematica, Universidade de Evora, Rua Roma-tilde o Ramalho 59, 7000-671 Evora (Portugal)]. E-mail: smv@uevora.pt; Severino, Ricardo [Departamento de Matematica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)]. E-mail: ricardo@math.uminho.pt; Ramos, J. Sousa [Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)]. E-mail: sramos@math.ist.utl.pt
2005-07-01
We consider a class of boundary value problems for partial differential equations, whose solutions are, basically, characterized by the iteration of a nonlinear function. We apply methods of symbolic dynamics of discrete bimodal maps in the interval in order to give a topological characterization of its solutions.
Nonlinear Preconditioning and its Application in Multicomponent Problems
Liu, Lulu
2015-12-07
The Multiplicative Schwarz Preconditioned Inexact Newton (MSPIN) algorithm is presented as a complement to Additive Schwarz Preconditioned Inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. The ASPIN framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this dissertation, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size. We consider the additive and multiplicative types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Moreover, we provide the convergence analysis of the MSPIN algorithm. Under suitable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be
Institute of Scientific and Technical Information of China (English)
张立卫; Robert Ebihart Msigwa
2014-01-01
Mathematical programs with complementarity constraints are an important class of optimi-zation problems ,which have important applications in science and engineering .For examples ,the road capacity expansion problem in transportation and the DICE model in economics are such kind of problems .Traditional nonlinear programming solvers can not be used to solve mathematical programs with complementarity constraints ,because conventional constraint qualifications do not hold for the constraint sets ,and smooth approximationmethods are proposed to overcome such a difficulty .This paper considers the perturbation approach based on the smoothed Fischer-Burmeister function for a class of optimization problems with complementarity constraints .We prove that the optimal value of the perturbed problem converges to that of the original problem and the outer limit of the solution set for the perturbed problem is contained in the solution set of the original problem w hen the smoothing parameter μ↘0 .We explain w hy the conventionally used constraint qualifications are easily satisfied and present the first-order necessary optimality conditions and the second-order sufficient optimality conditions for the perturbed problems .%互补约束优化问题是一类重要的最优化问题，在科学和工程中有着重要的应用。交通规划的道路扩容问题，经济学领域的DICE模型都是互补约束优化问题。这类问题因为约束集合不满足通常的约束规范而不能用传统的非线性规划方法处理，往往用光滑近似的方法来克服这一困难。考虑一类互补约束优化问题的基于光滑化Fischer-Burmeister 函数的扰动方法。证明了当光滑化参数μ↘0时扰动问题的值收敛到原问题的最优值，扰动问题的最优解集合的外极限包含在问题最优解集合中。说明扰动问题很容易满足通常的约束规范，并给出扰动问题的一阶必要性最优条件和二阶充分性最优条件。
Multigrid Methods for Nonlinear Problems: An Overview
Energy Technology Data Exchange (ETDEWEB)
Henson, V E
2002-12-23
Since their early application to elliptic partial differential equations, multigrid methods have been applied successfully to a large and growing class of problems, from elasticity and computational fluid dynamics to geodetics and molecular structures. Classical multigrid begins with a two-grid process. First, iterative relaxation is applied, whose effect is to smooth the error. Then a coarse-grid correction is applied, in which the smooth error is determined on a coarser grid. This error is interpolated to the fine grid and used to correct the fine-grid approximation. Applying this method recursively to solve the coarse-grid problem leads to multigrid. The coarse-grid correction works because the residual equation is linear. But this is not the case for nonlinear problems, and different strategies must be employed. In this presentation we describe how to apply multigrid to nonlinear problems. There are two basic approaches. The first is to apply a linearization scheme, such as the Newton's method, and to employ multigrid for the solution of the Jacobian system in each iteration. The second is to apply multigrid directly to the nonlinear problem by employing the so-called Full Approximation Scheme (FAS). In FAS a nonlinear iteration is applied to smooth the error. The full equation is solved on the coarse grid, after which the coarse-grid error is extracted from the solution. This correction is then interpolated and applied to the fine grid approximation. We describe these methods in detail, and present numerical experiments that indicate the efficacy of them.
Pattern selection as a nonlinear eigenvalue problem
Büchel, P
1996-01-01
A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.Ft
The non-interior continuation methods for solving the P0 function nonlinear complementarity problem
Institute of Scientific and Technical Information of China (English)
HUANG; Zhenghai
2001-01-01
［1］Kristian, J. , Sandage, A. R. , Westphal, J., The extension of the Hubble diagram: Ⅱ. New redshifts and photometry of very distant galaxy clusters, Astrophys. J., 1978, 221: 383.［2］Sandage, A., The redshift-distant relation V. Galaxy co lors as functions of galactic latitude and redshift, Astrophys, J.,1973, 183: 711.［3］Qu, Q. Y., Qin, Z. H., Han, C. S. et al., A relation between magnitudes and redshifts of QSOs with strong interplanetary scientillation, Chinese Astron., 1979, 4: 97.［4］Tinsley, B. M. , The Galaxy counts, color-redshift relation, and related quantities as probes of cosmology and galactic evolu-tion, Astrophys. J., 1977, 211: 621.［5］Spinrad, H., Djorgovski, S., The status of the Hubble diagram in 1986 (eds. Hewitt, A. Burbidge, G. Fang, L. Z. ),Proc. IAU Symp 124 on Observational Cosmology, New York: D. Reidel Publishing Company, 1986, 129.［6］Fang, L. Z., Zhou, Y. Y., Cheng F. Z. et al., Evolution of quasars with resolved components and determination of decel-eration parameter q0, Scientia Sinica, 1979, 22: 1292.［7］Cheng, K. S., Fan, J. H., Li, Y. et al., Do γ-ray burst associated with metal-rich quasars (ed. Cheng, K. S., Singh,H. P.), Proc. of The Pacific Rim Conference on Stellar Astrophysics, August 13-16, 1997, Houg Kong, 1997.［8］Davis, M., Geller, M. J., Huchra, J., The local mean mass density of the universe: new methods for studying galaxy clus-tering, Astrophys. J., 1978, 221: 1.［9］Gott, J. R., Turner, E. L., The mean luminosity and mass densities in the universe, Astrophys. J., 1976, 209: 1.［10］Shapiro, S. L., The density of matter in the form of galaxies, Astron. J., 1971, 76: 291.［11］Fang, L. Z., Hu, F. X., The large-scale inhomogeneities in the universe (eds. Yang, J., Zhu, C. S. ), Proceeding of A-cademia Sinica--Max-Plank Socity Workshop on High Energy Astrophyics Held in Nanjing, China, April 9-17, 1982,New York: Gordon and Breach Science Publishers S.A. 1982, 425［12］Baldwin, J. A., Wampler, E. J., Gaskell, C. M., Emission-line properties of optically and radio-selected complete quasars samples, Astrophys. J., 1989, 338: 630.［13］Yong, P., Sargent, W. L. W. A., High-resolution study of the absorption spectra of three QSOs: evidence for cosmological evolution in the lyman-alpha lines, Astrophys. J., 1982, 252: 10.［14］Lawrence, J., Zucker, J. R., Readhead, A. C. S. et al., Optical spectra of a complete sample of radio sources I. The spectra, Astrophys. J. Suppl., 1996, 107: 541.［15］Junkkarinen, V. T. , Burbidge E. M. , Smith, H. E. , Spectrophyotometry of six broad absoption line QSOs, Astrophys. J. ,1987, 317, 460.［16］Laor, A., Babcall, J. N., Jannuzi, B. T. et al., The ultraviolet emission properties of 13 quasars, Astrophys. J. Suppl.,1995, 99: 1.［17］Baldwin, J. A., Rees, M. J., Longair, M. S. et al., QSOs with narrow emission lines, Astrophys. J., 1988, 327: 103.［18］Shaver, P. A. , Boksenberg A. , Robertson, J. G. , Spectroscopy of the QSO pair Q0028 + 003/Q0029 + 003, Astrophys.J., 1982, 261: L7.［19］Baldwin, J. A., Netzer, H., The emission-line regions of high-redshift QSOs, Astrophys. J., 1978, 226: 1.［20］Wills, B. J., Thompson, K. L., Han, M. et al. , The Hubble space telescope sample of radio-loud quasars: Ultraviolet spectra of the first 31 quasars, Astrophys. J., 1995, 447: 139.［21］Osmer, P. S., Smith, M. G. , Discovery and spectroscopic observations of 27 optical selected quasars with 1.4 ＜ z ＜ 2.5,Astrophys. J., 1977, 213: 607.［22］Storrie-Lombardi, L. J., McMabon, R. G., Irwin, M. J. et al., APM Z ＞ = 4 QSO Survey: Spectra and Intervening Ab-sorption Systems, Astrophys. J., 1996, 468: 121.［23］Young, P. , Sargent, W. L. W. , Boksenberg, A. , Clv absorption in an unbiased sample of 33 QSOs: evidence for the inter-vening galaxy hypothesis, Astrophys. J. Suppl., 1982, 48: 455.［24］Zitelli, V., Mignoli, M., Zarano, B. et al., A spectroscopically complete sample of quasars with Bj ≤ 22.0, MNRAS,1992, 256: 349.［25］Hazard, C. , Morton, D. C., Terlevich, R. et al. , Nine new quasi-stellar objects with borad absorption lines, Astrophys.J. , 1984, 282: 33.［26］Osmer, P. S. , Q0353-383: The best case yet for abundance anomalies in quasars, Astrophys. J. , 1980, 237, 666.［27］Hamann, F. , Zuo, L., Tytler, D. , Broad Ne VIII λ774 emission from quasars in the HST-Fos snapshot survey (ABSNAP),Astrophys. J., 1995, 444: L69.［28］Laor, A. , Bahcall, J. N., Jannuzi, B. T. , The ultraviolet emission properties of five low-redshift active galactic unclei at high signal-to-noise ratio and spectral resolution, Astrophys. J., 1994, 420: 110.［29］Barthel, P. D., Tytler, D. R., Thomson, B., Optical spectra of distant radio loud quasars, A&AS, 1990, 82: 339.［30］Schmidt, M., Schneider, D. P., Gunn, J. E., Pc0910 + 5625: An optically selected quasar with a redshift of 4.04, Astro-phys. J., 1987, 321: L7.［31］Adams, M. T., Coleman, G. D., Stockman, H. S. et al., The spectrum of Markarian 132, Astrophys. J., 1978, 228:758.［32］Hammann, F. , Shields, J. C. , Ferland, G. J. et al. , Broad NE VIII lambda 744 emission from the Quasar PG 148 + 549,Astrophys. J., 1995, 454: 688.［33］Baldwin, J. A., McMahon, R., Hazard, C. et al., QSOs with narrow emission lines, Astrophys. J., 1988, 327: 103.［34］Baldwin, J. A. , Burbidge, E. M. , Hazard, C. et al. , A spectroscopic surrvey of 92 QSO candidates, Astrophys. J. ,1973, 185: 739.［35］Baldwin, J. A. , Ferland, G. J. , Korista, K. T., Very high density clumps and out flowing winds in QSO broad-line re-gions, Astrophys. J., 1996, 461: 664.［36］Ferland, G. J., Baldwin, J. A., Korista, K. T., High metal enrichments in luminous quasars, Astrophys. J., 461: 683.［37］Bceker, R. H., Helfand, D. J., White, R. L., The discovery of an X-ray selected radio-loud quasar at z = 3.9 AJ, 1992,104: 531.［38］Schneider, D. P., Lawrence, C. R., Schmide, M. et al., Deep optical and radio observations of the gravitational lens sys-tem 2016 + 112, Astrophys. J. , 1985, 294: 66.［39］Aldcroft, T. L. , Bechtold, J. , Elvis, M. , MglI absorption in a sample of 56 steep-spectrum quasars, Astrophys. J. Sup-pl., 1994, 93: 1.［40］Verib-Getty, M. P., Veron, P., A catalogue of quasars and active nuclei, ESO Scientific Report, 1996, 17: 1.［41］Hewitt, A., Burbidge, G., A revised and updated catalog of quas-stellar objects, Astrophys, J. Suppl., 1993, 87: 451.［42］Rudy, R. J., Cohan, R. D., Ake, T. B., Ultraviolet and optical spectrophyotometry of the seyfert 1.8 galaxy Markarian 609, Astrophys. J., 1988, 332: 172.［43］Bregrmamn, T. S. , Pastoriza, M. G. , On the metal abundance of low-activity galactic nuclei, Astrophys. J. , 1989, 347:195.［44］Malkan, M. A., Oke, J. B., IUE observations of Markarian 3 and 6: reddening and nonstellar continuum, Astrophys. J. ,1983, 265: 92.［45］Oke, J. B., Goodrich, R. W., IUE and VISUAl spectrophotometry of Markarian 9, Markarian 10, and 3C 390.3, Astro-phys. J., 1981, 243: 445.［46］Crenshaw, D. M. , Peterson, B. M. , Korista, K. , Ultraviolet and optical spectra of high-ionization Seyfert galaxies with nar-row lines, AJ, 1991, 101: 1202.［47］Voit, G. M. , Shull, J. M. , Begelman, M. C. , Broad, variable absorption lines in the Seyfert Galaxy NGC 3516-probing the structure of the emission-line regions, Astrophys. J., 1987, 316: 573.［48］Reichert, G. A., Rodriguez-Pascual, P. M. , Alloin, D. et al., Steps toward determination of the size and structure of the broad-line region in active galactic, Astrophys. J., 1994, 425: 582.［49］Setti, G., Woltjer, L., Hubble Diagram for Quasars, Astrophys. J., 1973, 181: L61.［50］Baldwin, J. A. , Burke, W. L. , Gaskell, M. G. et al. , Relative quasar luminosities determined from emission line strengths, Nature, 1978, 273: 431.［51］Bressan, A., Chiosi, C., Fagotto, F., Spectrophotometric evolution of elliptical galaxies, Astrophys. J. Suppl., 1994, 94:63.［52］Scappa, R. , Urry, C. M. , The Hubble space telescope survey fo BL Lacertea objects, Astrophys. J. , 2000, 532: 740.
A Note on Separable Nonlinear Least Squares Problem
Gharibi, Wajeb
2011-01-01
Separable nonlinear least squares (SNLS)problem is a special class of nonlinear least squares (NLS)problems, whose objective function is a mixture of linear and nonlinear functions. It has many applications in many different areas, especially in Operations Research and Computer Sciences. They are difficult to solve with the infinite-norm metric. In this paper, we give a short note on the separable nonlinear least squares problem, unseparated scheme for NLS, and propose an algorithm for solving mixed linear-nonlinear minimization problem, method of which results in solving a series of least squares separable problems.
OPEN PROBLEM: Some nonlinear challenges in biology
Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David
2008-08-01
Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher-Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'.
对称锥互补问题的一个惩罚NR函数%A Penalized NR Function for Symmetric Cone Complementarity Problems
Institute of Scientific and Technical Information of China (English)
孔令臣; 修乃华; 秦林霞
2011-01-01
本文建立了一个对称锥互补问题的惩罚自然剩余函数,并且证明了单调情形下其相应势函数的水平有界性.%In this paper,we establish a penalized natural residual function for symmetric cone complementarity problems,and show the level-boundedness of the merit function related to the natural residual function for the SCCP with monotonicity.
Some Duality Results for Fuzzy Nonlinear Programming Problem
Sangeeta Jaiswal; Geetanjali Panda
2012-01-01
The concept of duality plays an important role in optimization theory. This paper discusses some relations between primal and dual nonlinear programming problems in fuzzy environment. Here, fuzzy feasible region for a general fuzzy nonlinear programming is formed and the concept of fuzzy feasible solution is defined. First order dual relation for fuzzy nonlinear programming problem is studied.
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak
2012-07-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik\\'s ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
An Algorithm to Solve Separable Nonlinear Least Square Problem
Directory of Open Access Journals (Sweden)
Wajeb Gharibi
2013-07-01
Full Text Available Separable Nonlinear Least Squares (SNLS problem is a special class of Nonlinear Least Squares (NLS problems, whose objective function is a mixture of linear and nonlinear functions. SNLS has many applications in several areas, especially in the field of Operations Research and Computer Science. Problems related to the class of NLS are hard to resolve having infinite-norm metric. This paper gives a brief explanation about SNLS problem and offers a Lagrangian based algorithm for solving mixed linear-nonlinear minimization problem
The fully nonlinear stratified geostrophic adjustment problem
Coutino, Aaron; Stastna, Marek
2017-01-01
The study of the adjustment to equilibrium by a stratified fluid in a rotating reference frame is a classical problem in geophysical fluid dynamics. We consider the fully nonlinear, stratified adjustment problem from a numerical point of view. We present results of smoothed dam break simulations based on experiments in the published literature, with a focus on both the wave trains that propagate away from the nascent geostrophic state and the geostrophic state itself. We demonstrate that for Rossby numbers in excess of roughly 2 the wave train cannot be interpreted in terms of linear theory. This wave train consists of a leading solitary-like packet and a trailing tail of dispersive waves. However, it is found that the leading wave packet never completely separates from the trailing tail. Somewhat surprisingly, the inertial oscillations associated with the geostrophic state exhibit evidence of nonlinearity even when the Rossby number falls below 1. We vary the width of the initial disturbance and the rotation rate so as to keep the Rossby number fixed, and find that while the qualitative response remains consistent, the Froude number varies, and these variations are manifested in the form of the emanating wave train. For wider initial disturbances we find clear evidence of a wave train that initially propagates toward the near wall, reflects, and propagates away from the geostrophic state behind the leading wave train. We compare kinetic energy inside and outside of the geostrophic state, finding that for long times a Rossby number of around one-quarter yields an equal split between the two, with lower (higher) Rossby numbers yielding more energy in the geostrophic state (wave train). Finally we compare the energetics of the geostrophic state as the Rossby number varies, finding long-lived inertial oscillations in the majority of the cases and a general agreement with the past literature that employed either hydrostatic, shallow-water equation-based theory or
Modelling switching power converters as complementarity systems
Camlibel, Mehmet; Iannelli, Luigi; Vasca, Francesco
2004-01-01
Switched complementarity models of linear circuits with ideal diodes and/or ideal switches allow one to study well-posedness and stability issues for these circuits by employing the complementarity problems of the mathematical programming. In this paper, we demonstrate that other types of typical el
More with the Lemke complementarity algorithm
Evers, Joseph J.M.
1978-01-01
In the case that the matrix of a linear complementarity problem consists of the sum of a positive semi-definite matrix and a co-positive matrix a general condition is deduced implying that the Lemke algorithm will terminate with a complementarity solution. Applications are presented on bi-matrix gam
Lyapunov Stability of Complementarity and Extended Systems
Camlibel, M. Kanat; Pang, Jong-Shi; Shen, Jinglai
2006-01-01
A linear complementarity system (LCS) is a piecewise linear dynamical system consisting of a linear time-invariant ordinary differential equation (ODE) parameterized by an algebraic variable that is required to be a solution to a finite-dimensional linear complementarity problem (LCP), whose
Camlibel, M. K.; Iannelli, L.; Vasca, F.
2014-01-01
This paper studies the interaction between the notions of passivity of systems theory and complementarity of mathematical programming in the context of complementarity systems. These systems consist of a dynamical system (given in the form of state space representation) and complementarity relations
Studies in nonlinear problems of energy
Matkowsky, B. J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, termed fronts which must be found during the analysis, so that the problems are moving free boundary problems. The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion
Studies in nonlinear problems of energy
Energy Technology Data Exchange (ETDEWEB)
Matkowsky, B.J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.
Complementarity plus backreaction is enough
Hui, L.; Yang, I.S.
2014-01-01
We investigate a recent development of the black hole information problem, in which a practical paradox has been formulated to show that complementarity is insufficient. A crucial ingredient in this practical paradox is to distill information from the early Hawking radiation within the past light co
Nonlinear algebraic multigrid for constrained solid mechanics problems using Trilinos
Gee, M.W.; R. S. Tuminaro
2012-01-01
The application of the finite element method to nonlinear solid mechanics problems results in the neccessity to repeatedly solve a large nonlinear set of equations. In this paper we limit ourself to problems arising in constrained solid mechanics problems. It is common to apply some variant of Newton?s method or a Newton? Krylov method to such problems. Often, an analytic Jacobian matrix is formed and used in the above mentioned methods. However, if no analytic Jacobian is given, Newton metho...
Bifurcation of solutions of nonlinear Sturm–Liouville problems
Directory of Open Access Journals (Sweden)
Gulgowski Jacek
2001-01-01
Full Text Available A global bifurcation theorem for the following nonlinear Sturm–Liouville problem is given Moreover we give various versions of existence theorems for boundary value problems The main idea of these proofs is studying properties of an unbounded connected subset of the set of all nontrivial solutions of the nonlinear spectral problem , associated with the boundary value problem , in such a way that .
Multisplitting for linear, least squares and nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Renaut, R.
1996-12-31
In earlier work, presented at the 1994 Iterative Methods meeting, a multisplitting (MS) method of block relaxation type was utilized for the solution of the least squares problem, and nonlinear unconstrained problems. This talk will focus on recent developments of the general approach and represents joint work both with Andreas Frommer, University of Wupertal for the linear problems and with Hans Mittelmann, Arizona State University for the nonlinear problems.
DBEM crack propagation for nonlinear fracture problems
Directory of Open Access Journals (Sweden)
R. Citarella
2015-10-01
Full Text Available A three-dimensional crack propagation simulation is performed by the Dual Boundary Element Method (DBEM. The Stress Intensity Factors (SIFs along the front of a semi elliptical crack, initiated from the external surface of a hollow axle, are calculated for bending and press fit loading separately and for a combination of them. In correspondence of the latter loading condition, a crack propagation is also simulated, with the crack growth rates calculated using the NASGRO3 formula, calibrated for the material under analysis (steel ASTM A469. The J-integral and COD approaches are selected for SIFs calculation in DBEM environment, where the crack path is assessed by the minimum strain energy density criterion (MSED. In correspondence of the initial crack scenario, SIFs along the crack front are also calculated by the Finite Element (FE code ZENCRACK, using COD, in order to provide, by a cross comparison with DBEM, an assessment on the level of accuracy obtained. Due to the symmetry of the bending problem a pure mode I crack propagation is realised with no kinking of the propagating crack whereas for press fit loading the crack propagation becomes mixed mode. The crack growth analysis is nonlinear because of normal gap elements used to model the press fit condition with added friction, and is developed in an iterative-incremental procedure. From the analysis of the SIFs results related to the initial cracked configuration, it is possible to assess the impact of the press fit condition when superimposed to the bending load case.
LINEARIZATION AND CORRECTION METHOD FOR NONLINEAR PROBLEMS
Institute of Scientific and Technical Information of China (English)
何吉欢
2002-01-01
A new perturbation-like technique called linearization and correction method is proposed. Contrary to the traditional perturbation techniques, the present theory does not assume that the solution is expressed in the form of a power series of small parameter. To obtain an asymptotic solution of nonlinear system, the technique first searched for a solution for the linearized system, then a correction was added to the linearized solution. So the obtained results are uniformly valid for both weakly and strongly nonlinear equations.
Bioethical pluralism and complementarity.
Grinnell, Frederick; Bishop, Jeffrey P; McCullough, Laurence B
2002-01-01
This essay presents complementarity as a novel feature of bioethical pluralism. First introduced by Neils Bohr in conjunction with quantum physics, complementarity in bioethics occurs when different perspectives account for equally important features of a situation but are mutually exclusive. Unlike conventional approaches to bioethical pluralism, which attempt in one fashion or another to isolate and choose between different perspectives, complementarity accepts all perspectives. As a result, complementarity results in a state of holistic, dynamic tension, rather than one that yields singular or final moral judgments.
Remarks on a benchmark nonlinear constrained optimization problem
Institute of Scientific and Technical Information of China (English)
Luo Yazhong; Lei Yongjun; Tang Guojin
2006-01-01
Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn-Tucker conditions.
Nonlinear Second-Order Multivalued Boundary Value Problems
Indian Academy of Sciences (India)
Leszek Gasiński; Nikolaos S Papageorgiou
2003-08-01
In this paper we study nonlinear second-order differential inclusions involving the ordinary vector -Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operatory theory and from multivalued analysis, we obtain solutions for both the `convex' and `nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results.
Minimax theory for a class of nonlinear statistical inverse problems
Ray, Kolyan; Schmidt-Hieber, Johannes
2016-06-01
We study a class of statistical inverse problems with nonlinear pointwise operators motivated by concrete statistical applications. A two-step procedure is proposed, where the first step smoothes the data and inverts the nonlinearity. This reduces the initial nonlinear problem to a linear inverse problem with deterministic noise, which is then solved in a second step. The noise reduction step is based on wavelet thresholding and is shown to be minimax optimal (up to logarithmic factors) in a pointwise function-dependent sense. Our analysis is based on a modified notion of Hölder smoothness scales that are natural in this setting.
A Numerical Embedding Method for Solving the Nonlinear Optimization Problem
Institute of Scientific and Technical Information of China (English)
田保锋; 戴云仙; 孟泽红; 张建军
2003-01-01
A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.
Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boglaev Igor
2009-01-01
Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.
Analytical Solutions to Non-linear Mechanical Oscillation Problems
DEFF Research Database (Denmark)
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...
A Unified Approach for Solving Nonlinear Regular Perturbation Problems
Khuri, S. A.
2008-01-01
This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
QUASILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS WITH DISCONTINUOUS NONLINEARITIES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper we shall consider a discontinuous nonlinear nonmonotone elliptic boundary value problem, i.e. a quasilinear elliptic hemivariational inequality. This kind of problems is strongly motivated by various problems in mechanics. By use of the notion of the generalized gradient of Clarke and the theory of pseudomonotone operators, we will prove the existence of solutions.
Institute of Scientific and Technical Information of China (English)
李建宇; 张洪武
2014-01-01
In this paper we present a new approach for solving Drucker-Prager elastoplastic problems as second order cone complementarity problems (SOCCPs ) .Firstly ,the classical Drucker-Prager elasto-plastic constitutive equations with associative or non-associative flow rules are equivalently reformulated as second order cone complementarity conditions .Secondly ,by employing parametric variational principle and the finite element method ,we obtain a standard SOCCP formulation for the Drucker-Prager plasticity analysis ,w hich can be solved efficiently by a class of semismooth New ton algorithm developed in the field of mathematical programming .Numerical results of a classical plasticity benchmark problem con-firm the effectiveness and robustness of the proposal approach .%基于经典弹塑性理论中多数屈服准则具有凸锥数学结构的事实，将在大规模计算中更具潜力的锥规划法引入弹塑性分析。考虑到弹塑性流动理论有关联与非关联之分，本文提出利用锥型互补法求解弹塑性问题。具体以Drucker-Prager弹塑性模型为例，首先利用最大塑性功耗散原理和圆锥对偶理论等工具，建立了弹塑性本构方程的等价二阶锥互补模型；然后，基于参变量变分原理和有限元技术，建立了弹塑性增量分析的二阶锥线性互补模型；最后，利用一类半光滑New ton算法求解。数值算例表明了本文方法的有效性。
Inverse Coefficient Problems for Nonlinear Elliptic Variational Inequalities
Institute of Scientific and Technical Information of China (English)
Run-sheng Yang; Yun-hua Ou
2011-01-01
This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic variational inequalities. The unknown coefficient of elliptic variational inequalities depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic variational inequalities is unique solvable for the given class of coefficients. The existence of quasisolutions of the inverse problems is obtained.
Modified Filled Function to Solve NonlinearProgramming Problem
Institute of Scientific and Technical Information of China (English)
2015-01-01
Filled function method is an approach to find the global minimum of nonlinear functions. Many Problems, such as computing,communication control, and management, in real applications naturally result in global optimization formulations in a form ofnonlinear global integer programming. This paper gives a modified filled function method to solve the nonlinear global integerprogramming problem. The properties of the proposed modified filled function are also discussed in this paper. The results ofpreliminary numerical experiments are also reported.
Iterative regularization methods for nonlinear ill-posed problems
Scherzer, Otmar; Kaltenbacher, Barbara
2008-01-01
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.
Nonlinear eigenvalue problems with semipositone structure
Directory of Open Access Journals (Sweden)
Alfonso Castro
2000-10-01
Full Text Available In this paper we summarize the developments of semipositone problems to date, including very recent results on semipositone systems. We also discuss applications and open problems.
Inverse Problems for Nonlinear Delay Systems
2011-03-15
Ba82]. For nonlinear delay systems such as those discussed here, approximation in the context of a linear semigroup framework as presented [BBu1, BBu2...linear part generates a linear semigroup as in [BBu1, BBu2, BKap]. One then uses the linear semigroup in a vari- ation of parameters implicit...BBu2, BKap] (for the linear semigroup ) plus a Gronwall inequality. An alternative (and more general) approach given in [Ba82] eschews use of the Trotter
Parabolic Perturbation of a Nonlinear Hyperbolic Problem Arising in Physiology
Colli, P.; Grasselli, M.
We study a transport-diffusion initial value problem where the diffusion codlicient is "small" and the transport coefficient is a time function depending on the solution in a nonlinear and nonlocal way. We show the existence and the uniqueness of a weak solution of this problem. Moreover we discuss its asymptotic behaviour as the diffusion coefficient goes to zero, obtaining a well-posed first-order nonlinear hyperbolic problem. These problems arise from mathematical models of muscle contraction in the framework of the sliding filament theory.
THIRD-ORDER NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM
Institute of Scientific and Technical Information of China (English)
王国灿; 金丽
2002-01-01
Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established.Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained.The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems
Vázquez, Luis
2013-01-01
Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems explores how Newton's equation for the motion of one particle in classical mechanics combined with finite difference methods allows creation of a mechanical scenario to solve basic problems in linear algebra and programming. The authors present a novel, unified numerical and mechanical approach and an important analysis method of optimization. This book also: Presents mechanical method for determining matrix singularity or non-independence of dimension and complexity Illustrates novel mathematical applications of classical Newton’s law Offers a new approach and insight to basic, standard problems Includes numerous examples and applications Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems is an ideal book for undergraduate and graduate students as well as researchers interested in linear problems and optimization, and nonlinear dynamics.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
With the aid of a nonlinear transformation, a class of nonlinear convectiondiffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given
Studies in nonlinear problems of energy
Energy Technology Data Exchange (ETDEWEB)
Matkowsky, B.J.
1990-11-01
We carry out a research program with primary emphasis on the applications of Bifurcation and Stability Theory to Problems of energy, with specific emphasis on Problems of Combustion and Flame Propagation. In particular we consider the problem of transition from laminar to turbulent flame propagation. A great deal of progress has been made in our investigations. More than one hundred and thirty papers citing this project have been prepared for publication in technical journals. A list of the papers, including abstracts for each paper, is appended to this report.
Nonlinear Preserver Problems on B(H)
Institute of Scientific and Technical Information of China (English)
Jian Lian CUI
2011-01-01
Let H be a complex Hilbert space of dimension greater than 2, and B(H) denote the Banach algebra of all bounded linear operators on H. For A, B ∈ B(H), define the binary relation A ≤* B by A*A = A*B and AA* = AB*. Then (B(H), "≤*") is a partially ordered set and the relation "≤*" is called the star order on B(H). Denote by Bs(H) the set of all self-adjoint operators in B(H). In this paper, we first characterize nonlinear continuous bijective maps on Bs (H) which preserve the star order in both directions. We characterize also additive maps (or linear maps) on B(H) (or nest algebras) which are multiplicative at some invertible operator.
An Adaptive Neural Network Model for Nonlinear Programming Problems
Institute of Scientific and Technical Information of China (English)
Xiang-sun Zhang; Xin-jian Zhuo; Zhu-jun Jing
2002-01-01
In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.
Variational approach to various nonlinear problems in geometry and physics
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this survey, we will summarize the existence results of nonlinear partial differential equations which arises from geometry or physics by using variational method. We use the method to study Kazdan-Warner problem, Chern-Simons-Higgs model, Toda systems, and the prescribed Q-curvature problem in 4-dimension.
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
A Hybrid Method for Nonlinear Least Squares Problems
Institute of Scientific and Technical Information of China (English)
Zhongyi Liu; Linping Sun
2007-01-01
A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method,a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual,small-residual and large-residual problems.
Multigrid Reduction in Time for Nonlinear Parabolic Problems
Energy Technology Data Exchange (ETDEWEB)
Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Univ. of Colorado, Boulder, CO (United States); O' Neill, B. [Univ. of Colorado, Boulder, CO (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-01-04
The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.
A reduced order model for nonlinear vibroacoustic problems
Directory of Open Access Journals (Sweden)
Ouisse Morvan
2012-07-01
Full Text Available This work is related to geometrical nonlinearities applied to thin plates coupled with fluid-filled domain. Model reduction is performed to reduce the computation time. Reduced order model (ROM is issued from the uncoupled linear problem and enriched with residues to describe the nonlinear behavior and coupling effects. To show the efficiency of the proposed method, numerical simulations in the case of an elastic plate closing an acoustic cavity are presented.
Frozen Landweber Iteration for Nonlinear Ill-Posed Problems
Institute of Scientific and Technical Information of China (English)
J.Xu; B.Han; L.Li
2007-01-01
In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems.A convergence analysis for this iteration is presented.The numerical performance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared with that of the Landweber iteration.We obtain a shorter running time of the frozen Landweber iteration based on the same convergence accuracy.
Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
Inverse Coefficient Problems for Nonlinear Parabolic Differential Equations
Institute of Scientific and Technical Information of China (English)
Yun Hua OU; Alemdar HASANOV; Zhen Hai LIU
2008-01-01
This paper is devoted to a class of inverse problems for a nonlinear parabolic differential equation.The unknown coefficient of the equation depends on the gradient of the solution and belongs to a set of admissible coefficients.It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence.Based on this result the existence of a quasisolution of the inverse problem is obtained in the appropriate class of admissible coefficients.
Interval Arithmetic for Nonlinear Problem Solving
2013-01-01
Implementation of interval arithmetic in complex problems has been hampered by the tedious programming exercise needed to develop a particular implementation. In order to improve productivity, the use of interval mathematics is demonstrated using the computing platform INTLAB that allows for the development of interval-arithmetic-based programs more efficiently than with previous interval-arithmetic libraries. An interval-Newton Generalized-Bisection (IN/GB) method is developed in this platfo...
Institute of Scientific and Technical Information of China (English)
凌莉芸; 凌晨
2016-01-01
For a class of eigenvalue complementarity problem with strictly semi-positive tensors,we study the symbolic features of Pareto-eigenvalue.On this based,we obtain the upper and lower bounds of Pareto-eigenvalue for eigenvalue complementarity problem with strictly semi-positive tensors by using the constant definition and operator definition of strictly semi-positive tensors.%针对一类严格半正张量特征值互补问题，研究了其 Pareto-特征值的符号特征。在此基础上，利用严格半正张量的常量定义和算子定义，得到了严格半正张量特征值互补问题的 Pareto-特征值的上下界估计。
Analysis of nonlinear channel friction inverse problem
Institute of Scientific and Technical Information of China (English)
CHENG Weiping; LIU Guohua
2007-01-01
Based on the Backus-Gilbert inverse theory, the singular value decomposition (SVD) for general inverse matrices and the optimization algorithm are used to solve the channel friction inverse problem. The resolution and covari- ance friction inverse model in matrix form is developed to examine the reliability of solutions. Theoretical analyses demonstrate that the convergence rate of the general Newton optimization algorithm is in the second-order. The Wiggins method is also incorporated into the algorithm. Using the method, noise can be suppressed effectively, and the results are close to accurate solutions with proper control parameters. Also, the numerical stability can be improved.
Bonus algorithm for large scale stochastic nonlinear programming problems
Diwekar, Urmila
2015-01-01
This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f|||h and
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Solution of Contact Problems for Nonlinear Gao Beam and Obstacle
Directory of Open Access Journals (Sweden)
J. Machalová
2015-01-01
Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.
INITIAL BOUNDARY VALUE PROBLEM FOR A DAMPED NONLINEAR HYPERBOLIC EQUATION
Institute of Scientific and Technical Information of China (English)
陈国旺
2003-01-01
In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equationare proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.
Major open problems in chaos theory and nonlinear dynamics
Li, Y Charles
2013-01-01
Nowadays, chaos theory and nonlinear dynamics lack research focuses. Here we mention a few major open problems: 1. an effective description of chaos and turbulence, 2. rough dependence on initial data, 3. arrow of time, 4. the paradox of enrichment, 5. the paradox of pesticides, 6. the paradox of plankton.
Linear iterative technique for solution of nonlinear thermal network problems
Energy Technology Data Exchange (ETDEWEB)
Seabourn, C.M.
1976-11-01
A method for rapid and accurate solution of linear and/or nonlinear thermal network problems is described. It is a matrix iterative process that converges for nodal temperatures and variations of thermal conductivity with temperature. The method is computer oriented and can be changed easily for design studies.
Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs
Directory of Open Access Journals (Sweden)
Marco Calahorrano
2004-04-01
Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$
Some problems on nonlinear hyperbolic equations and applications
Peng, YueJun
2010-01-01
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.
Adomian decomposition method for nonlinear Sturm-Liouville problems
Directory of Open Access Journals (Sweden)
Sennur Somali
2007-09-01
Full Text Available In this paper the Adomian decomposition method is applied to the nonlinear Sturm-Liouville problem-y" + y(tp=λy(t, y(t > 0, t ∈ I = (0, 1, y(0 = y(1 = 0, where p > 1 is a constant and λ > 0 is an eigenvalue parameter. Also, the eigenvalues and the behavior of eigenfuctions of the problem are demonstrated.
Modified constrained differential evolution for solving nonlinear global optimization problems
2013-01-01
Nonlinear optimization problems introduce the possibility of multiple local optima. The task of global optimization is to find a point where the objective function obtains its most extreme value while satisfying the constraints. Some methods try to make the solution feasible by using penalty function methods, but the performance is not always satisfactory since the selection of the penalty parameters for the problem at hand is not a straightforward issue. Differential evolut...
Iterative total variation schemes for nonlinear inverse problems
Bachmayr, Markus; Burger, Martin
2009-10-01
In this paper we discuss the construction, analysis and implementation of iterative schemes for the solution of inverse problems based on total variation regularization. Via different approximations of the nonlinearity we derive three different schemes resembling three well-known methods for nonlinear inverse problems in Hilbert spaces, namely iterated Tikhonov, Levenberg-Marquardt and Landweber. These methods can be set up such that all arising subproblems are convex optimization problems, analogous to those appearing in image denoising or deblurring. We provide a detailed convergence analysis and appropriate stopping rules in the presence of data noise. Moreover, we discuss the implementation of the schemes and the application to distributed parameter estimation in elliptic partial differential equations.
Microscopic structures from reduction of continuum nonlinear problems
Lovison, Alberto
2011-01-01
We present an application of the Amann-Zehnder exact finite reduction to a class of nonlinear perturbations of elliptic elasto-static problems. We propose the existence of minmax solutions by applying Ljusternik-Schnirelmann theory to a finite dimensional variational formulation of the problem, based on a suitable spectral cut-off. As a by-product, with a choice of fit variables, we establish a variational equivalence between the above spectral finite description and a discrete mechanical model. By doing so, we decrypt the abstract information encoded in the AZ reduction and give rise to a concrete and finite description of the continuous problem.
Numerical solution of control problems governed by nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Heinkenschloss, M. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)
1994-12-31
In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.
A monomial chaos approach for efficient uncertainty quantification on nonlinear problems
Witteveen, J.A.S.; Bijl, H.
2008-01-01
A monomial chaos approach is presented for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equation
A monomial chaos approach for efficient uncertainty quantification on nonlinear problems
Witteveen, J.A.S.; Bijl, H.
2008-01-01
A monomial chaos approach is presented for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear
Lu, Bao-Liang; Ito, Koji
2003-09-01
In this paper we present a method for converting general nonlinear programming (NLP) problems into separable programming (SP) problems by using feedforward neural networks (FNNs). The basic idea behind the method is to use two useful features of FNNs: their ability to approximate arbitrary continuous nonlinear functions with a desired degree of accuracy and their ability to express nonlinear functions in terms of parameterized compositions of functions of single variables. According to these two features, any nonseparable objective functions and/or constraints in NLP problems can be approximately expressed as separable functions with FNNs. Therefore, any NLP problems can be converted into SP problems. The proposed method has three prominent features. (a) It is more general than existing transformation techniques; (b) it can be used to formulate optimization problems as SP problems even when their precise analytic objective function and/or constraints are unknown; (c) the SP problems obtained by the proposed method may highly facilitate the selection of grid points for piecewise linear approximation of nonlinear functions. We analyze the computational complexity of the proposed method and compare it with an existing transformation approach. We also present several examples to demonstrate the method and the performance of the simplex method with the restricted basis entry rule for solving SP problems.
Institute of Scientific and Technical Information of China (English)
李玲; 凌晨
2014-01-01
研究含有限样本的随机非线性互补问题的数值求解方法。在将问题等价转化为非线性方程组的基础上，给出一个光滑化Levenberg-Marquardt算法。该算法具有全局收敛性，并在局部误差界条件下，还拥有局部的二次收敛性质。所做的数值例子结果表明，所给算法具有较好的实际计算效果。%A class of stochastic nonlinear complementary problems ( SNCP) with finite elements is studied in this paper .Based upon converting the original problem to nonlinear equations equally , a smoothing Levenberg-Marquardt algorithm for solving SNCP is presented , which is shown to be globally convergent .Moreover, this algorithm is shown to converge locally quadratically under an error bound condition .Some numerical results show that presented algorithm has good actual properties .
Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.
Lectures on nonlinear evolution equations initial value problems
Racke, Reinhard
2015-01-01
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...
Franck, I M
2014-01-01
This paper presents an efficient Bayesian framework for solving nonlinear, high-dimensional model calibration problems. It is based on Variational Bayesian formulation that aims at approximating the exact posterior by means of solving an optimization problem in an appropriately selected family of distributions. The goal is two-fold. Firstly, to find lower-dimensional representations of the unknown parameter vector that capture as much as possible of the associated posterior density, and secondly to enable the computation of the approximate posterior density with as few forward calls as possible. We discuss how these objectives can be achieved by using a fully Bayesian argumentation and employing the marginal likelihood or evidence as the ultimate model validation metric for any proposed dimensionality reduction. We demonstrate the performance of the proposed methodology to problems in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, ...
On a mixed problem for a coupled nonlinear system
Directory of Open Access Journals (Sweden)
Marcondes R. Clark
1997-03-01
Full Text Available In this article we prove the existence and uniqueness of solutions to the mixed problem associated with the nonlinear system $$ u_{tt}-M(int_Omega |abla u|^2dxDelta u+|u|^ ho u+heta =f $$ $$ heta _t -Delta heta +u_{t}=g $$ where $M$ is a positive real function, and $f$ and $g$ are known real functions.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the ...
Application of homotopy analysis method for solving nonlinear Cauchy problem
Directory of Open Access Journals (Sweden)
V.G. Gupta
2012-11-01
Full Text Available In this paper, by means of the homotopy analysis method (HAM, the solutions of some nonlinear Cauchy problem of parabolic-hyperbolic type are exactly obtained in the form of convergent Taylor series. The HAM contains the auxiliary parameter \\hbar that provides a convenient way of controlling the convergent region of series solutions. This analytical method is employed to solve linear examples to obtain the exact solutions. The results reveal that the proposed method is very effective and simple.
A convergence theory for a class of nonlinear programming problems.
Rauch, S. W.
1973-01-01
A recent convergence theory of Elkin concerning methods for unconstrained minimization is extended to a certain class of nonlinear programming problems. As in Elkin's original approach, the analysis of a variety of step-length algorithms is treated entirely separately from that of several direction algorithms. This allows for their combination into many different methods for solving the constrained problem. These include some of the methods of Rosen and Zoutendijk. We also extend the results of Topkis and Veinott to nonconvex sets and drop their requirement of the uniform feasibility of a subsequence of the search directions.
An Algorithm for Linearly Constrained Nonlinear Programming Programming Problems.
1980-01-01
ALGORITHM FOR LINEARLY CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS Mokhtar S. Bazaraa and Jamie J. Goode In this paper an algorithm for solving a linearly...distance pro- gramr.ing, as in the works of Bazaraa and Goode 12], and Wolfe [16 can be used for solving this problem. Special methods that take advantage of...34 Pacific Journal of Mathematics, Volume 16, pp. 1-3, 1966. 2. M. S. Bazaraa and J. j. Goode, "An Algorithm for Finding the Shortest Element of a
Properties of positive solutions to a nonlinear parabolic problem
Institute of Scientific and Technical Information of China (English)
2007-01-01
This paper deals with the properties of positive solutions to a quasilinear parabolic equation with the nonlinear absorption and the boundary flux. The necessary and sufficient conditions on the global existence of solutions are described in terms of different parameters appearing in this problem. Moreover, by a result of Chasseign and Vazquez and the comparison principle, we deduce that the blow-up occurs only on the boundary (?)Ω. In addition, for a bounded Lipschitz domainΩ, we establish the blow-up rate estimates for the positive solution to this problem with a= 0.
Conformal Complementarity Maps
Barbón, José L F
2013-01-01
We study quantum cosmological models for certain classes of bang/crunch singularities, using the duality between expanding bubbles in AdS with a FRW interior cosmology and perturbed CFTs on de Sitter space-time. It is pointed out that horizon complementarity in the AdS bulk geometries is realized as a conformal transformation in the dual deformed CFT. The quantum version of this map is described in full detail in a toy model involving conformal quantum mechanics. In this system the complementarity map acts as an exact duality between eternal and apocalyptic Hamiltonian evolutions. We calculate the commutation relation between the Hamiltonians corresponding to the different frames. It vanishes only on scale invariant states.
2013-01-01
Cada vez mais no âmbito da saúde e dos cuidados é necessário encontrar novas formas de estar, de cuidar e de conceber cuidados. As práticas complementares aos cuidados de que são exemplo a acupuntura, o shiatsu, a reflexologia, são cada vez mais estudadas e investigadas, sendo sem dúvida procuradas pelos cidadãos.
Inverse problem for multi-body interaction of nonlinear waves
Marruzzo, Alessia; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca
2016-01-01
The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable {\\em temperature}-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems.
Global Optimization of Nonlinear Blend-Scheduling Problems
Directory of Open Access Journals (Sweden)
Pedro A. Castillo Castillo
2017-04-01
Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.
2002-06-01
IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE
The relative degree enhancement problem for MIMO nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Schoenwald, D.A. [Oak Ridge National Lab., TN (United States); Oezguener, Ue. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering
1995-07-01
The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for a completely decentralized feedback linearization result for at least one input-output channel.
Lavrentiev regularization method for nonlinear ill-posed problems
Kinh, N V
2002-01-01
In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x sub 0 of non ill-posed problems F(x)=y sub o , where instead of y sub 0 noisy data y subdelta is an element of X with absolut(y subdelta-y sub 0) X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x subalpha supdelta are obtained by solving the singularly perturbed nonlinear operator equation F(x)+alpha(x-x*)=y subdelta with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x sub 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter alpha has been chosen properly.
Nonlinear programming for classification problems in machine learning
Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio
2016-10-01
We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.
Jacobi elliptic functions: A review of nonlinear oscillatory application problems
Kovacic, Ivana; Cveticanin, Livija; Zukovic, Miodrag; Rakaric, Zvonko
2016-10-01
This review paper is concerned with the applications of Jacobi elliptic functions to nonlinear oscillators whose restoring force has a monomial or binomial form that involves cubic and/or quadratic nonlinearity. First, geometric interpretations of three basic Jacobi elliptic functions are given and their characteristics are discussed. It is shown then how their different forms can be utilized to express exact solutions for the response of certain free conservative oscillators. These forms are subsequently used as a starting point for a presentation of different quantitative techniques for obtaining an approximate response for free perturbed nonlinear oscillators. An illustrative example is provided. Further, two types of externally forced nonlinear oscillators are reviewed: (i) those that are excited by elliptic-type excitations with different exact and approximate solutions; (ii) those that are damped and excited by harmonic excitations, but their approximate response is expressed in terms of Jacobi elliptic functions. Characteristics of the steady-state response are discussed and certain qualitative differences with respect to the classical Duffing oscillator excited harmonically are pointed out. Parametric oscillations of the oscillators excited by an elliptic-type forcing are considered as well, and the differences with respect to the stability chart of the classical Mathieu equation are emphasized. The adjustment of the Melnikov method to derive the general condition for the onset of homoclinic bifurcations in a system parametrically excited by an elliptic-type forcing is provided and compared with those corresponding to harmonic excitations. Advantages and disadvantages of the use of Jacobi elliptic functions in nonlinear oscillatory application problems are discussed and some suggestions for future work are given.
Existence theorems of solution to variational inequality problems
Institute of Scientific and Technical Information of China (English)
ZHANG; Liping
2001-01-01
［1］Harker, P. T., Pang, J. S., Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithm, and applications, Mathematical Programming, 1990, 48(2): 161.［2］Eaves, B. C., The linear complementarity problem, Management Science, 1971, 17(3): 612.［3］Eaves, B. C., On the basic theorem of complementarity problem, Math. Programming, 1971, 1(1): 68.［4］Karamardian, S., Generalized complementarity problem, J. Optim. Theory Appl., 1971, 8(1): 161.［5］Kojima, M., A unification of the existence theorems of the nonlinear complementarity problem, Math. Programming, 1975, 9(2): 257.［6］Moré, J. J., Classes of functions and feasibility conditions in nonlinear complementarity problems, Math. Programming, 1974, 6(2): 327.［7］Moré, J. J., Coercivity conditions in nonlinear complementarity problems, SIAM Rev., 1974, 16(1): 1.［8］Smith, T. E., A solution condition for complementarity problems, with an application to spatial price equilibrium, Appl. Math. Computation, 1984, 15(1): 61.［9］Isac, G., Bulavaski, V., Kalashnikov, V., Exceptional families, topological degree and complementarity problems, J. Global Optim., 1997, 10(2): 207.［10］Zhao, Y. B., Han, J. Y., Qi, H. D., Exceptional families and existence theorems for variational inequality problems, J. Optim. Theory Appl., 1999, 101(2): 475.［11］Zhao, Y. B., Han, J. Y., Exceptional family of elements for a variational inequality problem and its applications, Journal of Global Optimization, 1999, 14(2): 313.［12］Zhao, Y. B., Exceptional families and finite dimensional variational inequalities over polyhedral convex sets, Appl. Math. Computation, 1997, 87(1): 111.［13］Lloyd, N. Q., Degree Theory, Cambridge: Cambridge University Press, 1978, 6—54.［14］Ortega, J. M., Rheinholdt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, New York: Academic Press, 1970, 30—45.［15］Isac, G., Obuchowska, W. T., Functions
Solving semi-infinite optimization problems with interior point techniques
Stein, Oliver; Still, Georg
2003-01-01
We introduce a new numerical solution method for semi-infinite optimization problems with convex lower level problems. The method is based on a reformulation of the semi-infinite problem as a Stackelberg game and the use of regularized nonlinear complementarity problem functions. This approach leads
Solving semi-infinite optimization problems with interior point techniques
Stein, Oliver; Still, Georg J.
2003-01-01
We introduce a new numerical solution method for semi-infinite optimization problems with convex lower level problems. The method is based on a reformulation of the semi-infinite problem as a Stackelberg game and the use of regularized nonlinear complementarity problem functions. This approach leads
Application of genetic algorithms in nonlinear heat conduction problems.
Kadri, Muhammad Bilal; Khan, Waqar A
2014-01-01
Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Basis properties of eigenfunctions of nonlinear Sturm-Liouville problems
Peter E. Zhidkov
2000-01-01
We consider three nonlinear eigenvalue problems that consist of $$-y''+f(y^2)y=lambda y$$ with one of the following boundary conditions: $$displaylines{ y(0)=y(1)=0 quad y'(0)=p ,,cr y'(0)=y(1)=0 quad y(0)=p,, cr y'(0)=y'(1)=0 quad y(0)=p,, }$$ where $p$ is a positive constant. Under smoothness and monotonicity conditions on $f$, we show the existence and uniqueness of a sequence of eigenvalues ${lambda _n}$ and corresponding eigenfunctions ${y_n}$ such that $y_n(x)$ has precisely $n$ roots i...
Computer-aided analysis of nonlinear problems in transport phenomena
Brown, R. A.; Scriven, L. E.; Silliman, W. J.
1980-01-01
The paper describes algorithms for equilibrium and steady-state problems with coefficients in the expansions derived by the Galerkin weighted residual method and calculated from the resulting sets of nonlinear algebraic equations by the Newton-Raphson method. Initial approximations are obtained from nearby solutions by continuation techniques as parameters are varied. The Newton-Raphson technique is preferred because the Jacobian of the solution is useful for continuation, for analyzing the stability of solutions, for detecting bifurcation of solution families, and for computing asymptotic estimates of the effects on any solution of small changes in parameters, boundary conditions, and boundary shape.
Approximation on computing partial sum of nonlinear differential eigenvalue problems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In computing the electronic structure and energy band in a system of multi-particles, quite a large number of problems are referred to the acquisition of obtaining the partial sum of densities and energies using the “first principle”. In the conventional method, the so-called self-consistency approach is limited to a small scale because of high computing complexity. In this paper, the problem of computing the partial sum for a class of nonlinear differential eigenvalue equations is changed into the constrained functional minimization. By space decomposition and perturbation method, a secondary approximating formula for the minimal is provided. It is shown that this formula is more precise and its quantity of computation can be reduced significantly
On the linear properties of the nonlinear radiative transfer problem
Pikichyan, H. V.
2016-11-01
In this report, we further expose the assertions made in nonlinear problem of reflection/transmission of radiation from a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness, when both of its boundaries are illuminated by intense monochromatic radiative beams. The new conceptual element of well-defined, so-called, linear images is noteworthy. They admit a probabilistic interpretation. In the framework of nonlinear problem of reflection/transmission of radiation, we derive solution which is similar to linear case. That is, the solution is reduced to the linear combination of linear images. By virtue of the physical meaning, these functions describe the reflectivity and transmittance of the medium for a single photon or their beam of unit intensity, incident on one of the boundaries of the layer. Thereby the medium in real regime is still under the bilateral illumination by external exciting radiation of arbitrary intensity. To determine the linear images, we exploit three well known methods of (i) adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance".
Boundary-Value Problems for Weakly Nonlinear Delay Differential Systems
Directory of Open Access Journals (Sweden)
A. Boichuk
2011-01-01
Full Text Available Conditions are derived of the existence of solutions of nonlinear boundary-value problems for systems of n ordinary differential equations with constant coefficients and single delay (in the linear part and with a finite number of measurable delays of argument in nonlinearity: ż(t=Az(t-τ+g(t+εZ(z(hi(t,t,ε, t∈[a,b], assuming that these solutions satisfy the initial and boundary conditions z(s:=ψ(s if s∉[a,b], lz(⋅=α∈Rm. The use of a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of sufficient conditions for the existence of solutions in a given space and, moreover, to the construction of an iterative process for finding the solutions of such problems in a general case when the number of boundary conditions (defined by a linear vector functional l does not coincide with the number of unknowns in the differential system with a single delay.
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.;
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...... and convenient for solving these problems....
An inverse problem of determining a nonlinear term in an ordinary differential equation
Kamimura, Yutaka
1998-01-01
An inverse problem for a nonlinear ordinary differential equation is discussed. We prove an existence theorem of a nonlinear term with which a boundary value problem admits a solution. This is an improvement of earlier work by A. Lorenzi. We also prove a uniqueness theorem of the nonlinear term.
Modified Lagrangian and Least Root Approaches for General Nonlinear Optimization Problems
Institute of Scientific and Technical Information of China (English)
W. Oettli; X.Q. Yang
2002-01-01
In this paper we study nonlinear Lagrangian methods for optimization problems with side constraints.Nonlinear Lagrangian dual problems are introduced and their relations with the original problem are established.Moreover, a least root approach is investigated for these optimization problems.
Inverse problem for multi-body interaction of nonlinear waves.
Marruzzo, Alessia; Tyagi, Payal; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca
2017-06-14
The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable temperature-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems. The high versatility of the exposed techniques also concerns the number of expected interactions: results are presented for different graph topologies, ranging from sparse to dense graphs.
Fault detection for nonlinear systems - A standard problem approach
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, Hans Henrik
1998-01-01
The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The authors consider the existence of singular limit solutions for a family of nonlinear elliptic problems with exponentially dominated nonlinearity and Dirichlet boundary condition and generalize the results of [3].
A Hierarchy of New Nonlinear Evolution Equations Associated with a 3 × 3 Matrix Spectral Problem
Institute of Scientific and Technical Information of China (English)
GENG Xian-Guo; LI Fang
2009-01-01
A 3 × 3 matrix spectral problem with three potentials and the corresponding hierarchy of new nonlinear evolution equations are proposed. Generalized Hamiltonian structures for the hierarchy of nonlinear evolution equations are derived with the aid of trace identity.
Minimization and error estimates for a class of the nonlinear Schrodinger eigenvalue problems
Institute of Scientific and Technical Information of China (English)
MurongJIANG; JiachangSUN
2000-01-01
It is shown that the nonlinear eigenvaiue problem can be transformed into a constrained functional problem. The corresponding minimal function is a weak solution of this nonlinear problem. In this paper, one type of the energy functional for a class of the nonlinear SchrSdinger eigenvalue problems is proposed, the existence of the minimizing solution is proved and the error estimate is given out.
A new smoothing scheme for mathematical programs with complementarity constraints
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we consider a mathematical program with complementarity constraints (MPCC). We present a new smoothing scheme for this problem, which makes the primal structure of the complementarity part unchanged mostly. For the new smoothing problem, we show that the linear independence constraint qualification (LICQ) holds under some conditions. We also analyze the convergence behavior of the smoothing problem, and get some sufficient conditions such that an accumulation point of stationary points of the smoothing problems is C (M, B)-stationarity respectively. Based on the smoothing problem, we establish an algorithm to solve the primal MPCC problem. Some numerical experiments are given in the paper.
Energy Technology Data Exchange (ETDEWEB)
Zhang, H. [Univ. of Texas, Austin, TX (United States). Dept. of Mathematics
1994-10-01
In this paper the author considers a nonlinear evolution problem denoted in the paper as P. Problem (P) arises in the study of thermal evaporation of atoms and molecules from locally heated surface regions (spikes) invoked as one of several mechanisms of ion-bombardment-induced particle emission (sputtering). Then in the case of particle-induced evaporation, the Stefan-Boltzman law of heat loss by radiation is replaced by some activation law describing the loss of heat by evaporation. The equation in P is the so-called degenerate diffusion problem, which has been extensively studied in recent years. However, when dealing with the nonlinear flux boundary condition, {beta}({center_dot}) is usually assumed to be monotene. The purpose of this paper is to provide a general theory for problem P under a different assumption on {beta}({center_dot}), i.e., Lipschitz continuity instead of monotonicity. The main idea of the proof used here is to choose an appropriate test function from the corresponding linearized dual space of the solution. The similar idea has been used by many authors, e.g., Aronson, Crandall and Peletier, Bertsch and Hilhorst and Friedman. The author follows the proof of Bertsch and Hilhorst. The paper is organized as follows. They begin by stating the precise assumptions on the functions involved in P and by defining a weak solution. Then, in Section 2 they prove the existence of the solution by the method of parabolic regularization. The uniqueness is proved in Section 3. Finally, they study the large time behavior of the solution in Section 4.
Modified Semi-Classical Methods for Nonlinear Quantum Oscillations Problems
Moncrief, Vincent; Maitra, Rachel
2012-01-01
We develop a modified semi-classical approach to the approximate solution of Schrodinger's equation for certain nonlinear quantum oscillations problems. At lowest order, the Hamilton-Jacobi equation of the conventional semi-classical formalism is replaced by an inverted-potential-vanishing-energy variant thereof. Under smoothness, convexity and coercivity hypotheses on its potential energy function, we prove, using the calculus of variations together with the Banach space implicit function theorem, the existence of a global, smooth `fundamental solution'. Higher order quantum corrections, for ground and excited states, are computed through the integration of associated systems of linear transport equations, and formal expansions for the corresponding energy eigenvalues obtained by imposing smoothness on the quantum corrections to the eigenfunctions. For linear oscillators our expansions naturally truncate, reproducing the well-known solutions for the energy eigenfunctions and eigenvalues. As an application, w...
Stability analysis for nonlinear multi－variable delay perturbation problems
Institute of Scientific and Technical Information of China (English)
WangHongshan; ZhangChengjian
2003-01-01
This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems(MVDPP) of the form x′(t) = f(x(t),x(t - τ1(t)),…,x(t -τm(t)),y(t),y(t - τ1(t)),…,y(t - τm(t))), and gy′(t) = g(x(t),x(t- τ1(t)),…,x(t- τm(t)),y(t),y(t- τ1(t)),…,y(t- τm(t))), where 0 < ε <<1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.
THREE POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Mujeeb ur Rehman; Rahmat Ali Khan; Naseer Ahmad Asif
2011-01-01
In this paper,we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type cDδ0+u(t) =f(t,u(t),cDσ0+u(t)),t ∈[0,T],u(0) =αu(η),u(T) =βu(η),where1 ＜δ＜2,0＜σ＜ 1,α,β∈R,η∈(0,T),αη(1-β)+(1-α)(T-βη) ≠0 and cDoδ+,cDσ0+ are the Caputo fractional derivatives.We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results.Examples are also included to show the applicability of our results.
On a shock problem involving a nonlinear viscoelastic bar
Directory of Open Access Journals (Sweden)
Tran Ngoc Diem
2005-11-01
Full Text Available We treat an initial boundary value problem for a nonlinear wave equation uttÃ¢ÂˆÂ’uxx+K|u|ÃŽÂ±u+ÃŽÂ»|ut|ÃŽÂ²ut=f(x,t in the domain 0
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we consider nonlinear infinity-norm minimization problems. We device a reliable Lagrangian dual approach for solving this kind of problems and based on this method we propose an algorithm for the mixed linear and nonlinear infinitynorm minimization problems. Numerical results are presented.
Institute of Scientific and Technical Information of China (English)
曹丽霞
2012-01-01
In this paper, using the Fischer function , the generalized horizontal linear complementarity problem （HLCP）is reformulated as a system of nonsmooth equations. With the Levenberg - Marquardt algorithm, a new approach is employed for obtaining its solution. At the same time, the L- M algorithm is both globally and quadratically convergent without nondegenerate solution.%借助Fischer函数将广义水平线性互补问题（HLCP）等价转化为一个方程系统，并利用Levenberg-Marquardt方法，给出一种求解船的新方法，同时在不要求存在非退化解的条件下证明了这种方法的全局和二次收敛。
Scaling properties of weakly nonlinear coefficients in the Faraday problem.
Skeldon, A C; Porter, J
2011-07-01
Interesting and exotic surface wave patterns have regularly been observed in the Faraday experiment. Although symmetry arguments provide a qualitative explanation for the selection of some of these patterns (e.g., superlattices), quantitative analysis is hindered by mathematical difficulties inherent in a time-dependent, free-boundary Navier-Stokes problem. More tractable low viscosity approximations are available, but these do not necessarily capture the moderate viscosity regime of the most interesting experiments. Here we focus on weakly nonlinear behavior and compare the scaling results derived from symmetry arguments in the low viscosity limit with the computed coefficients of appropriate amplitude equations using both the full Navier-Stokes equations and a reduced set of partial differential equations due to Zhang and Vinãls. We find the range of viscosities over which one can expect "low viscosity" theories to hold. We also find that there is an optimal viscosity range for locating superlattice patterns experimentally-large enough that the region of parameters giving stable patterns is not impracticably small, yet not so large that crucial resonance effects are washed out. These results help explain some of the discrepancies between theory and experiment.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, P J; Ganon, G; Dekel, A; Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the mean error in the approximated relative density perturbation, $\\delta$, is smaller than 0.06, and the dispersion is 0.1. The \\rms\\ error in the estimated velocity is smaller than 60\\kms, and the dispersion is 40\\kms. For smoothing of 500\\kms\\ these numbers increase by about a factor $\\sim 2$ for $\\delta < 4-5$, but deteriorate at higher densities. The other approximations are comparable to those of Nusser \\etal for smoothing of 1000\\kms, but are much less successful for the smaller smoothing of 500\\kms.
Basis properties of eigenfunctions of nonlinear Sturm-Liouville problems
Directory of Open Access Journals (Sweden)
Peter E. Zhidkov
2000-04-01
Full Text Available We consider three nonlinear eigenvalue problems that consist of $$-y''+f(y^2y=lambda y$$ with one of the following boundary conditions: $$displaylines{ y(0=y(1=0 quad y'(0=p ,,cr y'(0=y(1=0 quad y(0=p,, cr y'(0=y'(1=0 quad y(0=p,, }$$ where $p$ is a positive constant. Under smoothness and monotonicity conditions on $f$, we show the existence and uniqueness of a sequence of eigenvalues ${lambda _n}$ and corresponding eigenfunctions ${y_n}$ such that $y_n(x$ has precisely $n$ roots in the interval $(0,1$, where $n=0,1,2,dots$. For the first boundary condition, we show that ${y_n}$ is a basis and that ${y_n/|y_n|}$ is a Riesz basis in the space $L_2(0,1$. For the second and third boundary conditions, we show that ${y_n}$ is a Riesz basis.
Direct approach for solving nonlinear evolution and two-point boundary value problems
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-12-01
Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples including time-delayed nonlinear Burgers equation to illustrate the validity and the great potential of the differential transform method. Numerical experiments demonstrate the use and computational efﬁciency of the method. This method can easily be applied to many nonlinear problems and is capable of reducing the size of computational work.
A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS
Institute of Scientific and Technical Information of China (English)
Xiong Yuanbo; Long Shuyao; Hu De'an; Li Guangyao
2005-01-01
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation are imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
Variational Problem with Complex Coefficient of a Nonlinear Schrödinger Equation
Indian Academy of Sciences (India)
Nigar Yildirim Aksoy; Bunyamin Yildiz; Hakan Yetiskin
2012-08-01
An optimal control problem governed by a nonlinear Schrödinger equation with complex coefficient is investigated. The paper studies existence, uniqueness and optimality conditions for the control problem.
Nonlinear predator-prey singularly perturbed Robin Problems for reaction diffusion systems
Institute of Scientific and Technical Information of China (English)
莫嘉琪; 韩祥临
2003-01-01
The nonlinear predator-prey reaction diffusion systems for singularly perturbed Robin Problems are considered. Under suitable conditions, the theory of differential inequalities can be used to study the asymptotic behavior of the solution for initial boundary value problems.
Institute of Scientific and Technical Information of China (English)
莫嘉琪
2003-01-01
The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.
THE CAUCHY PROBLEM FOR A CLASS OF DOUBLY DEGENERATE NONLINEAR PARABOLIC EQUATION
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This article studies the Cauchy problem for a class of doubly nonlinear deauthor considers its regularized problem and establishes some estimates. On the basis of the estimates, the existence and uniqueness of the generalized solutions in BV space are proved.
Institute of Scientific and Technical Information of China (English)
LiHongyu; SunJingxian
2005-01-01
By using topological method, we study a class of boundary value problem for a system of nonlinear ordinary differential equations. Under suitable conditions,we prove the existence of positive solution of the problem.
Institute of Scientific and Technical Information of China (English)
SU XIN-WEI
2011-01-01
This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects. The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in [B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, 3(2009), 251258].
Gharibi, Wajeb
2011-01-01
In this paper, we focus on nonlinear infinite-norm minimization problems that have many applications, especially in computer science and operations research. We set a reliable Lagrangian dual aproach for solving this kind of problems in general, and based on this method, we propose an algorithm for the mixed linear and nonlinear infinite-norm minimization cases with numerical results.
Institute of Scientific and Technical Information of China (English)
Zi-you Gao; Tian-de Guo; Guo-ping He; Fang Wu
2002-01-01
In this paper, a new superlinearly convergent algorithm of sequential systems of linear equations (SSLE) for nonlinear optimization problems with inequality constraints is proposed. Since the new algorithm only needs to solve several systems of linear equations having a same coefficient matrix per iteration, the computation amount of the algorithm is much less than that of the existing SQP algorithms per iteration. Moreover, for the SQPtype algorithms, there exist so-called inconsistent problems, i.e., quadratic programming subproblems of the SQP algorithms may not have a solution at some iterations, but this phenomenon will not occur with the SSLE algorithms because the related systems of linear equations always have solutions. Some numerical results are reported.
Crestel, Benjamin; Alexanderian, Alen; Stadler, Georg; Ghattas, Omar
2017-07-01
The computational cost of solving an inverse problem governed by PDEs, using multiple experiments, increases linearly with the number of experiments. A recently proposed method to decrease this cost uses only a small number of random linear combinations of all experiments for solving the inverse problem. This approach applies to inverse problems where the PDE solution depends linearly on the right-hand side function that models the experiment. As this method is stochastic in essence, the quality of the obtained reconstructions can vary, in particular when only a small number of combinations are used. We develop a Bayesian formulation for the definition and computation of encoding weights that lead to a parameter reconstruction with the least uncertainty. We call these weights A-optimal encoding weights. Our framework applies to inverse problems where the governing PDE is nonlinear with respect to the inversion parameter field. We formulate the problem in infinite dimensions and follow the optimize-then-discretize approach, devoting special attention to the discretization and the choice of numerical methods in order to achieve a computational cost that is independent of the parameter discretization. We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-based expressions for the gradient of the objective function of the optimization problem for finding the A-optimal encoding weights. The proposed method is potentially attractive for real-time monitoring applications, where one can invest the effort to compute optimal weights offline, to later solve an inverse problem repeatedly, over time, at a fraction of the initial cost.
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems
Blackmore, Lars; Acikmese, Behcet; Carson, John M.,III
2012-01-01
In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field.
Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation.
Wu, Rengmao; Xu, Liang; Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu
2013-01-15
We propose an approach to deal with the problem of freeform surface illumination design without assuming any symmetry based on the concept that this problem is similar to the problem of optimal mass transport. With this approach, the freeform design is converted into a nonlinear boundary problem for the elliptic Monge-Ampére equation. The theory and numerical method are given for solving this boundary problem. Experimental results show the feasibility of this approach in tackling this freeform design problem.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Peng, Haijun; Wang, Xinwei; Zhang, Sheng; Chen, Biaosong
2017-07-01
Nonlinear state-delayed optimal control problems have complex nonlinear characters. To solve this complex nonlinear problem, an iterative symplectic pseudospectral method based on quasilinearization techniques, the dual variational principle and pseudospectral methods is proposed in this paper. First, the proposed method transforms the original nonlinear optimal control problem into a series of linear quadratic optimal control problems. Then, a symplectic pseudospectral method is developed to solve these converted linear quadratic state-delayed optimal control problems. Coefficient matrices in the proposed method are sparse and symmetric since the dual variational principle is used, which makes the proposed method highly efficient. Converged numerical solutions with high precision can be obtained after a few iterations due to the benefit of the local pseudospectral method and quasilinearization techniques. In the numerical simulations, other numerical methods were used for comparisons. The numerical simulation results show that the proposed method is highly accurate, efficient and robust.
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Zou, Li; Liang, Songxin; Li, Yawei; Jeffrey, David J.
2017-03-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Control design for the nonlinear benchmark problem via the output regulation method
Institute of Scientific and Technical Information of China (English)
Jie HUANG; Guoqiang HU
2004-01-01
The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, which has been an intensive research subject since 1995. In this paper, we will further investigate the solvability of the robust disturbance rejection problem of the RTAC system by the measurement output feedback control based on the robust output regulation method. We have obtained a design by overcoming two major obstacles: find a closed-form solution of the regulator equations; and devise a nonlinear internal model to account for non-polynomial nonlinearities.
Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design
Energy Technology Data Exchange (ETDEWEB)
Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC
2006-09-28
A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.
Initial-boundary value problems for a class of nonlinear thermoelastic plate equations
Institute of Scientific and Technical Information of China (English)
Zhang Jian-Wen; Rong Xiao-Liang; Wu Run-Heng
2009-01-01
This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions,it obtains an existence and uniqueness theorem of global weak solutions of the nonlinear thermoelstic plate equations,by means of the Galerkin method. Moreover,it also proves the existence of strong and classical solutions.
Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.
2011-01-01
In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...
NONLOCAL INITIAL PROBLEM FOR NONLINEAR NONAUTONOMOUS DIFFERENTIAL EQUATIONS IN A BANACH SPACE
Institute of Scientific and Technical Information of China (English)
M.I.Gil＇
2004-01-01
The nonlocal initial problem for nonlinear nonautonomous evolution equations in a Banach space is considered. It is assumed that the nonlinearities have the local Lipschitz properties. The existence and uniqueness of mild solutions are proved. Applications to integro-differential equations are discussed. The main tool in the paper is the normalizing mapping (the generalized norm).
Cognitive Variables in Problem Solving: A Nonlinear Approach
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2005-01-01
We employ tools of complexity theory to examine the effect of cognitive variables, such as working-memory capacity, degree of field dependence-independence, developmental level and the mobility-fixity dimension. The nonlinear method correlates the subjects' rank-order achievement scores with each cognitive variable. From the achievement scores in…
CLASSIFICATION OF BIFURCATIONS FOR NONLINEAR DYNAMICAL PROBLEMS WITH CONSTRAINTS
Institute of Scientific and Technical Information of China (English)
吴志强; 陈予恕
2002-01-01
Bifurcation of periodic solutions widely existed in nonlinear dynamical systems isa kind of constrained one in intrinsic quality because its amplitude is always non-negative.Classification of the bifurcations with the type of constraint was discussed. All its six typesof transition sets are derived, in which three types are newly found and a method isproposed for analyzing the constrained bifurcation.
Nonlocal Cauchy problem for nonlinear mixed integrodifferential equations
Directory of Open Access Journals (Sweden)
H.L. Tidke
2010-12-01
Full Text Available The present paper investigates the existence and uniqueness of mild and strong solutions of a nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition. The results obtained by using Schauder fixed point theorem and the theory of semigroups.
Novel Reduced Order in Time Models for Problems in Nonlinear Aeroelasticity Project
National Aeronautics and Space Administration — Research is proposed for the development and implementation of state of the art, reduced order models for problems in nonlinear aeroelasticity. Highly efficient and...
The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems
Institute of Scientific and Technical Information of China (English)
ZANG Zhen-chun
2001-01-01
In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.
LEAST-SQUARES MIXED FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS
Institute of Scientific and Technical Information of China (English)
Dan-ping Yang
2002-01-01
Two least-squares mixed finite element schemes are formulated to solve the initialboundary value problem of a nonlinear parabolic partial differential equation and the convergence of these schemes are analyzed.
SIMILARITY REDUCTIONS FOR THE NONLINEAR EVOLUTION EQUATION ARISING IN THE FERMI-PASTA-ULAM PROBLEM
Institute of Scientific and Technical Information of China (English)
谢福鼎; 闫振亚; 张鸿庆
2002-01-01
Four families of similarity reductions are obtained for the nonlinear evolution equation arising in the Fermi-Pasta-Ulam problem via using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou.
Existence Theorems for Nonlinear Boundary Value Problems for Second Order Differential Inclusions
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S.
1996-11-01
In this paper we consider a nonlinear two-point boundary value problem for second order differential inclusions. Using the Leray-Schauder principle and its multivalued analog due to Dugundji-Granas, we prove existence theorems for convex and nonconvex problems. Our results are quite general and incorporate as special cases several classes of problems which are of interest in the literature.
Discussion of Some Problems About Nonlinear Time Series Prediction Using v-Support Vector Machine
Institute of Scientific and Technical Information of China (English)
GAO Cheng-Feng; CHEN Tian-Lun; NAN Tian-Shi
2007-01-01
Some problems in using v-support vector machine (v-SVM) for the prediction of nonlinear time series are discussed. The problems include selection of various net parameters, which affect the performance of prediction, mixture of kernels, and decomposition cooperation linear programming v-SVM regression, which result in improvements of the algorithm. Computer simulations in the prediction of nonlinear time series produced by Mackey-Glass equation and Lorenz equation provide some improved results.
Optimality Condition and Wolfe Duality for Invex Interval-Valued Nonlinear Programming Problems
Directory of Open Access Journals (Sweden)
Jianke Zhang
2013-01-01
Full Text Available The concepts of preinvex and invex are extended to the interval-valued functions. Under the assumption of invexity, the Karush-Kuhn-Tucker optimality sufficient and necessary conditions for interval-valued nonlinear programming problems are derived. Based on the concepts of having no duality gap in weak and strong sense, the Wolfe duality theorems for the invex interval-valued nonlinear programming problems are proposed in this paper.
Efficient Realization of the Mixed Finite Element Discretization for nonlinear Problems
Knabner, Peter; Summ, Gerhard
2016-01-01
We consider implementational aspects of the mixed finite element method for a special class of nonlinear problems. We establish the equivalence of the hybridized formulation of the mixed finite element method to a nonconforming finite element method with augmented Crouzeix-Raviart ansatz space. We discuss the reduction of unknowns by static condensation and propose Newton's method for the solution of local and global systems. Finally, we show, how such a nonlinear problem arises from the mixe...
Zhang, Songchuan; Xia, Youshen
2016-12-28
Much research has been devoted to complex-variable optimization problems due to their engineering applications. However, the complex-valued optimization method for solving complex-variable optimization problems is still an active research area. This paper proposes two efficient complex-valued optimization methods for solving constrained nonlinear optimization problems of real functions in complex variables, respectively. One solves the complex-valued nonlinear programming problem with linear equality constraints. Another solves the complex-valued nonlinear programming problem with both linear equality constraints and an ℓ₁-norm constraint. Theoretically, we prove the global convergence of the proposed two complex-valued optimization algorithms under mild conditions. The proposed two algorithms can solve the complex-valued optimization problem completely in the complex domain and significantly extend existing complex-valued optimization algorithms. Numerical results further show that the proposed two algorithms have a faster speed than several conventional real-valued optimization algorithms.
Nonlinear problems of complex natural systems: Sun and climate dynamics.
Bershadskii, A
2013-01-13
The universal role of the nonlinear one-third subharmonic resonance mechanism in generation of strong fluctuations in complex natural dynamical systems related to global climate is discussed using wavelet regression detrended data. The role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Niño phenomenon have been discussed in detail. The large fluctuations in the reconstructed temperature on millennial time scales (Antarctic ice core data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to the Earth's precession effect on the energy that the intertropical regions receive from the Sun. The effects of galactic turbulence on the temperature fluctuations are also discussed.
Some Problems in Nonlinear Dynamic Instability and Bifurcation Theory for Engineering Structures
Institute of Scientific and Technical Information of China (English)
彭妙娟; 程玉民
2005-01-01
In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on.
Lie and Conditional Symmetries of a Class of Nonlinear (1 + 2-Dimensional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Roman Cherniha
2015-08-01
Full Text Available A new definition of conditional invariance for boundary value problems involving a wide range of boundary conditions (including initial value problems as a special case is proposed. It is shown that other definitions worked out in order to find Lie symmetries of boundary value problems with standard boundary conditions, followed as particular cases from our definition. Simple examples of direct applicability to the nonlinear problems arising in applications are demonstrated. Moreover, the successful application of the definition for the Lie and conditional symmetry classification of a class of (1 + 2-dimensional nonlinear boundary value problems governed by the nonlinear diffusion equation in a semi-infinite domain is realised. In particular, it is proven that there is a special exponent, k ≠ —2, for the power diffusivity uk when the problem in question with non-vanishing flux on the boundary admits additional Lie symmetry operators compared to the case k ≠ —2. In order to demonstrate the applicability of the symmetries derived, they are used for reducing the nonlinear problems with power diffusivity uk and a constant non-zero flux on the boundary (such problems are common in applications and describing a wide range of phenomena to (1 + 1-dimensional problems. The structure and properties of the problems obtained are briefly analysed. Finally, some results demonstrating how Lie invariance of the boundary value problem in question depends on the geometry of the domain are presented.
A NUMERICAL CALCULATION METHOD FOR EIGENVALUE PROBLEMS OF NONLINEAR INTERNAL WAVES
Institute of Scientific and Technical Information of China (English)
SHI Xin-gang; FAN Zhi-song; LIU Hai-long
2009-01-01
Generally speaking, the background shear current U(z)must be taken into account in eigenvalue problems of nonlinear internal waves in ocean, as is different from those of linear internal waves. A numerical calculation method for eigenvalue problems of nonlinear internal waves is presented in this paper on the basis of the Thompson-Haskell's calculation method. As an application of this method, at a station (21°N, 117°15′E) in the South China Sea, a modal structure and parameters of nonlinear internal waves are calculated, and the results closely agree with the calculated results based on observation by Yang et al..
Wang, Qing; Yao, Jing-Zheng
2010-12-01
Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.
Institute of Scientific and Technical Information of China (English)
Igor Boglaev; Matthew Hardy
2008-01-01
This paper presents and analyzes a monotone domain decomposition algorithm for solving nonlinear singularly perturbed reaction-diffusion problems of parabolic type.To solve the nonlinear weighted average finite difference scheme for the partial differential equation,we construct a monotone domain decomposition algorithm based on a Schwarz alternating method and a box-domain decomposition.This algorithm needs only to solve linear discrete systems at each iterative step and converges monotonically to the exact solution of the nonlinear discrete problem. The rate of convergence of the monotone domain decomposition algorithm is estimated.Numerical experiments are presented.
DEFF Research Database (Denmark)
Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari
2010-01-01
Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...... and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However...
Institute of Scientific and Technical Information of China (English)
高永馨
2002-01-01
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equation y(4n)= f( t,y,y' ,y",… ,y(4n－1) ) (a) with the boundary conditions g2i(y(2i) (a) ,y(2i+1) (a)) = 0,h2i(y(2i) (c) ,y(2i+1) (c)) = 0, (I= 0,1,…,2n － 1 ) (b) where the functions f, gi and hi are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equation y(n) = f(t,y,y',y",… ,y(n－1)) many results have been given at the present time. But the existence of solutions of boundary value problem (a), (b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, I.e. Existence of solutions of the boundary value problem. Y(4n) = f(t,y,y',y",… ,y(4n－1) ) a2iy(2i) (at) + a2i+1y(2i+1) (a) = b2i ,c2iy(2O ( c ) + c2i+1y(2i+1) ( c ) = d2i, ( I = 0,1 ,…2n － 1) has not been dealt with in previous works.
2016-01-01
A review of studies performed using the R-functions theory to solve problems of nonlinear dynamics of plates and shallow shells is presented. The systematization of results and studies for the problems of free and parametric vibrations and for problems of static and dynamic stability is fulfilled. Expansion of the developed original method of discretization for nonlinear movement equations on new classes of nonlinear problems is shown. These problems include researches of vibratio...
Enokida, Ryuta; Takewaki, Izuru; Stoten, David
2014-12-01
The problem of control system design can be conceptualised as identifying an input signal to a plant (the system to be controlled) so that the corresponding output matches that of a pre-defined reference signal. Primarily, this problem is solved via well-known techniques based upon the principle of feedback design, an essential component for ensuring stability and robustness of the controlled system. However, feedforward design techniques also have a large part to play, whereby (in the absence of feedback control and assuming that the plant is stable) a model of the plant dynamics can be used to modify the reference signal so that the resultant feedforward input signal generates a plant output signal that is sufficiently close to the original reference signal. The principal objective of this paper is to introduce a new nonlinear control method, called nonlinear signal-based control (NSBC) that can be executed as an on-line technique of feedforward compensation (used synonymously here with the phrase 'input identification') and an off-line technique of feedback compensation. NSBC determines the feedforward input signal to the plant by using an error signal, determined from the difference between the output signals from a linear model of the plant and from the nonlinear plant, under the same input signal. The efficacy of NSBC is examined via numerical examples using Matlab/Simulink and compared with alternative well-known methods based upon inverse transfer function compensation and also the method of high gain feedback control. NSBC was found to provide the most accurate input identification in all the examined cases of linear or nonlinear single-input, single-output and single-input, multi-output (SIMO) systems. Furthermore, in problems of structural and earthquake engineering, NSBC was also found to be particularly effective in estimating the original ground motion from a nonlinear SIMO system and its response.
Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.
2016-09-01
This lecture offers an updated review on the Generalized Integral Transform Technique (GITT), with focus on handling complex geometries, coupled problems, and nonlinear convection-diffusion, so as to illustrate some new application paradigms. Special emphasis is given to demonstrating novel developments, such as a single domain reformulation strategy that simplifies the treatment of complex geometries, an integral balance scheme in handling multiscale problems, the adoption of convective eigenvalue problems in dealing with strongly convective formulations, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Representative application examples are then provided that employ recent extensions on the Generalized Integral Transform Technique (GITT), and a few numerical results are reported to illustrate the convergence characteristics of the proposed eigenfunction expansions.
DOUBLE TRIALS METHOD FOR NONLINEAR PROBLEMS ARISING IN HEAT TRANSFER
Directory of Open Access Journals (Sweden)
Chun-Hui He
2011-01-01
Full Text Available According to an ancient Chinese algorithm, the Ying Buzu Shu, in about second century BC, known as the rule of double false position in West after 1202 AD, two trial roots are assumed to solve algebraic equations. The solution procedure can be extended to solve nonlinear differential equations by constructing an approximate solution with an unknown parameter, and the unknown parameter can be easily determined using the Ying Buzu Shu. An example in heat transfer is given to elucidate the solution procedure.
Characterization of the shape stability for nonlinear elliptic problems
Bucur, Dorin
We characterize all geometric perturbations of an open set, for which the solution of a nonlinear elliptic PDE of p-Laplacian type with Dirichlet boundary condition is stable in the L-norm. The necessary and sufficient conditions are jointly expressed by a geometric property associated to the γ-convergence. If the dimension N of the space satisfies N-1
Method of guiding functions in problems of nonlinear analysis
Obukhovskii, Valeri; Van Loi, Nguyen; Kornev, Sergei
2013-01-01
This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.
Dynamics of parabolic problems with memory. Subcritical and critical nonlinearities
Li, Xiaojun
2016-08-01
In this paper, we study the long-time behavior of the solutions of non-autonomous parabolic equations with memory in cases when the nonlinear term satisfies subcritical and critical growth conditions. In order to do this, we show that the family of processes associated to original systems with heat source f(x, t) being translation bounded in Lloc 2 ( R ; L 2 ( Ω ) ) is dissipative in higher energy space M α , 0 < α ≤ 1, and possesses a compact uniform attractor in M 0 .
Li, Dongfang; Zhang, Jiwei
2016-10-01
Anomalous diffusion behavior in many practical problems can be described by the nonlinear time-fractional parabolic problems on unbounded domain. The numerical simulation is a challenging problem due to the dependence of global information from time fractional operators, the nonlinearity of the problem and the unboundedness of the spacial domain. To overcome the unboundedness, conventional computational methods lead to extremely expensive costs, especially in high dimensions with a simple treatment of boundary conditions by making the computational domain large enough. In this paper, based on unified approach proposed in [25], we derive the efficient nonlinear absorbing boundary conditions (ABCs), which reformulates the problem on unbounded domain to an initial boundary value problem on bounded domain. To overcome nonlinearity, we construct a linearized finite difference scheme to solve the reduced nonlinear problem such that iterative methods become dispensable. And the stability and convergence of our linearized scheme are proved. Most important, we prove that the numerical solutions are bounded by the initial values with a constant coefficient, i.e., the constant coefficient is independent of the time. Overall, the computational cost can be significantly reduced comparing with the usual implicit schemes and a simple treatment of boundary conditions. Finally, numerical examples are given to demonstrate the efficiency of the artificial boundary conditions and theoretical results of the schemes.
Aspects of complementarity and uncertainty
Vathsan, Radhika; Qureshi, Tabish
2016-08-01
The two-slit experiment with quantum particles provides many insights into the behavior of quantum mechanics, including Bohr’s complementarity principle. Here, we analyze Einstein’s recoiling slit version of the experiment and show how the inevitable entanglement between the particle and the recoiling slit as a which-way detector is responsible for complementarity. We derive the Englert-Greenberger-Yasin duality from this entanglement, which can also be thought of as a consequence of sum-uncertainty relations between certain complementary observables of the recoiling slit. Thus, entanglement is an integral part of the which-way detection process, and so is uncertainty, though in a completely different way from that envisaged by Bohr and Einstein.
Rescuing Complementarity With Little Drama
Bao, Ning; Chatwin-Davies, Aidan; Pollack, Jason; Yuen, Henry
2016-01-01
The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it "little drama") which is the "complementarity dual" of scrambling of information on the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the informat...
Nonlinear boundary value problem for biregular functions in Clifford analysis
Institute of Scientific and Technical Information of China (English)
黄沙
1996-01-01
The biregular function in Clifford analysis is discussed. Plemelj’s formula is obtained andnonlinear boundary value problem: is considered. Applying the methodof integral equations and Schauder fixed-point theorem, the existence of solution for the above problem is proved.
A Class of Dynamic Nonlinear Resource Allocation Problems
1989-10-01
algorithm and presents some numerical results in [5]. Matlin [6] provides a review of the literature on weapon-target allocation problems. Several...weapon, multi-target assignment problem," Working Paper 26957, MITRE, Feb. 1986. [6] S. M. Matlin , "A review of the literature on the missile
Nonlinear problems of complex natural systems: Sun and climate dynamics
Bershadskii, A
2012-01-01
Universal role of the nonlinear one-third subharmonic resonance mechanism in generation of the strong fluctuations in such complex natural dynamical systems as global climate and global solar activity is discussed using wavelet regression detrended data. Role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Nino phenomenon have been discussed in detail. The large fluctuations of the reconstructed temperature on the millennial time-scales (Antarctic ice cores data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to Earth precession effect on the energy that the intertropical regions receive from the Sun. Effects of Galactic turbulence on the temperature fluctuations are discussed in this content. It is also shown that the one-third subharmonic resonance can be considered as a background for the 11-years solar cycle, and again the global (solar) rotation and chaoti...
Multiple optimal solutions to a sort of nonlinear optimization problem
Institute of Scientific and Technical Information of China (English)
Xue Shengjia
2007-01-01
The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions ( ifthe uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0153 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mittelmann, Hans D 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...problems. The size 16 three-dimensional quadratic assignment problem Q3AP from wireless communications was solved using a sophisticated approach...placement of the sensors. However, available MINLP solvers are not sufficiently effective, even in the convex case, and a hybrid Benders
Directory of Open Access Journals (Sweden)
Mahdi Sohrabi-Haghighat
2014-06-01
Full Text Available In this paper, a new algorithm based on SQP method is presented to solve the nonlinear inequality constrained optimization problem. As compared with the other existing SQP methods, per single iteration, the basic feasible descent direction is computed by solving at most two equality constrained quadratic programming. Furthermore, there is no need for any auxiliary problem to obtain the coefficients and update the parameters. Under some suitable conditions, the global and superlinear convergence are shown. Keywords: Global convergence, Inequality constrained optimization, Nonlinear programming problem, SQP method, Superlinear convergence rate.
CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
Institute of Scientific and Technical Information of China (English)
Xinlong FENG; Yinnian HE
2016-01-01
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second-order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nicolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank-Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the effcient performance of the proposed scheme.
Asymptotic solution for a class of weakly nonlinear singularly perturbed reaction diffusion problem
Institute of Scientific and Technical Information of China (English)
TANG Rong-rong
2009-01-01
Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter e and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of O(ε2).
Institute of Scientific and Technical Information of China (English)
鲁世平
2003-01-01
By employing the theory of differential inequality and some analysis methods, a nonlinear boundary value problem subject to a general kind of second-order Volterra functional differential equation was considered first. Then, by constructing the right-side layer function and the outer solution, a nonlinear boundary value problem subject to a kind of second- order Volterra functional differential equation with a small parameter was studied further. By using the differential mean value theorem and the technique of upper and lower solution, a new result on the existence of the solutions to the boundary value problem is obtained, and a uniformly valid asymptotic expansions of the solution is given as well.
A Symmetric Characteristic Finite Volume Element Scheme for Nonlinear Convection-Diffusion Problems
Institute of Scientific and Technical Information of China (English)
Min Yang; Yi-rang Yuan
2008-01-01
In this paper, we implement alternating direction strategy and construct a symmetric FVE scheme for nonlinear convection-diffusion problems. Comparing to general FVE methods, our method has two advantages. First, the coefficient matrices of the discrete schemes will be symmetric even for nonlinear problems.Second, since the solution of the algebraic equations at each time step can be inverted into the solution of several one-dimensional problems, the amount of computation work is smaller. We prove the optimal H1-norm error estimates of order O(△t2 + h) and present some numerical examples at the end of the paper.
Directory of Open Access Journals (Sweden)
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
Regularization method with two parameters for nonlinear ill-posed problems
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper is devoted to the regularization of a class of nonlinear ill-posed problems in Banach spaces. The operators involved are multi-valued and the data are assumed to be known approximately. Under the assumption that the original problem is solvable, a strongly convergent approximation procedure is designed by means of the Tikhonov regularization method with two pa- rameters.
A Smooth Newton Method for Nonlinear Programming Problems with Inequality Constraints
Directory of Open Access Journals (Sweden)
Vasile Moraru
2012-02-01
Full Text Available The paper presents a reformulation of the Karush-Kuhn-Tucker (KKT system associated nonlinear programming problem into an equivalent system of smooth equations. Classical Newton method is applied to solve the system of equations. The superlinear convergence of the primal sequence, generated by proposed method, is proved. The preliminary numerical results with a problems test set are presented.
Multipoint Singular Boundary-Value Problem for Systems of Nonlinear Differential Equations
Directory of Open Access Journals (Sweden)
Zdeněk Šmarda
2009-01-01
Full Text Available A singular Cauchy-Nicoletti problem for a system of nonlinear ordinary differential equations is considered. With the aid of combination of Ważewski's topological method and Schauder's principle, the theorem concerning the existence of a solution of this problem (having the graph in a prescribed domain is proved.
COYOTE: a finite-element computer program for nonlinear heat-conduction problems
Energy Technology Data Exchange (ETDEWEB)
Gartling, D.K.
1982-10-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.
Existence of Solutions for Nonlinear Four-Point -Laplacian Boundary Value Problems on Time Scales
Directory of Open Access Journals (Sweden)
Topal SGulsan
2009-01-01
Full Text Available We are concerned with proving the existence of positive solutions of a nonlinear second-order four-point boundary value problem with a -Laplacian operator on time scales. The proofs are based on the fixed point theorems concerning cones in a Banach space. Existence result for -Laplacian boundary value problem is also given by the monotone method.
The Cauchy problem for non-autonomous nonlinear Schr(o)dinger equations
Institute of Scientific and Technical Information of China (English)
Peter Y. H. Pang; TANG Hongyan; WANG Youde
2005-01-01
In this paper we study the Cauchy problem for cubic nonlinear Schr(o)dinger equation with space-and time-dependent coefficients on Rm and Tm. By an approximation argument we prove that for suitable initial values, the Cauchy problem admits unique local solutions. Global existence is discussed in the cases of m=1,2.
On high-continuity transfinite element formulations for linear-nonlinear transient thermal problems
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
This paper describes recent developments in the applicability of a hybrid transfinite element methodology with emphasis on high-continuity formulations for linear/nonlinear transient thermal problems. The proposed concepts furnish accurate temperature distributions and temperature gradients making use of a relatively smaller number of degrees of freedom; and the methodology is applicable to linear/nonlinear thermal problems. Characteristic features of the formulations are described in technical detail as the proposed hybrid approach combines the major advantages and modeling features of high-continuity thermal finite elements in conjunction with transform methods and classical Galerkin schemes. Several numerical test problems are evaluated and the results obtained validate the proposed concepts for linear/nonlinear thermal problems.
SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-08-01
This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. The notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.
Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow
Zhijian, Yang
2006-01-01
The paper studies the existence, both locally and globally in time, stability, decay estimates and blowup of solutions to the Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow. Under the assumption that the nonlinear term of the equations is of polynomial growth order, say [alpha], it proves that when [alpha]>1, the Cauchy problem admits a unique local solution, which is stable and can be continued to a global solution under rather mild conditions; when [alpha][greater-or-equal, slanted]5 and the initial data is small enough, the Cauchy problem admits a unique global solution and its norm in L1,p(R) decays at the rate for 2
nonlinear term, the local solutions of the Cauchy problem blow up in finite time.
Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential
Directory of Open Access Journals (Sweden)
Runzhang Xu
2012-11-01
Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].
A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS
Institute of Scientific and Technical Information of China (English)
XingJ.T; PriceW.G; ChenY.G
2005-01-01
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.
A Weak Solution of a Stochastic Nonlinear Problem
Directory of Open Access Journals (Sweden)
M. L. Hadji
2015-01-01
Full Text Available We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.
Institute of Scientific and Technical Information of China (English)
Jeong Ja Bae
2012-01-01
In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary,while the other is a Kirchhoff type wave equation with nonlinear memory.
An Efficient Pseudospectral Method for Solving a Class of Nonlinear Optimal Control Problems
Emran Tohidi; Atena Pasban; Kilicman, A.; S. Lotfi Noghabi
2013-01-01
This paper gives a robust pseudospectral scheme for solving a class of nonlinear optimal control problems (OCPs) governed by differential inclusions. The basic idea includes two major stages. At the first stage, we linearize the nonlinear dynamical system by an interesting technique which is called linear combination property of intervals. After this stage, the linearized dynamical system is transformed into a multi domain dynamical system via computational interval partitioning. Moreover,...
Institute of Scientific and Technical Information of China (English)
TAO Hua-xue; GUO Jin-yun
2005-01-01
The unknown parameter's variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now,which didn't appear in the internal and external referencing documents. The unknown parameter's variance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source,multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...... analytically by He's Parameter Expanding Methods. It is shown that one term in series expansions is sufficient to obtain a highly accurate solution which is valid for the whole domain. Comparison of the obtained solutions with those obtained using numerical method shows that this method is effective...
SOME BOUNDARY VALUE PROBLEMS FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS OF SECOND ORDER
Institute of Scientific and Technical Information of China (English)
Wen Guochun
2007-01-01
The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.
OBLIQUE DERIVATIVE PROBLEMS FOR SECOND ORDER NONLINEAR MIXED EQUATIONS WITH DEGENERATE LINE
Institute of Scientific and Technical Information of China (English)
Wen Guochun
2008-01-01
The present article deals with oblique derivative problems for some nonlin-ear mixed equations with parabolic degeneracy, which include the Tricomi problem as a special case. First, the formulation of the problems for the equations is given; next, the representation and estimates of solutions for the above problems are obtained; finally, the existence of solutions for the problems is proved by the successive iteration and the com-pactness principle of solutions of the problems. In this article, the author uses the complex method, namely, the complex functions in the elliptic domain and the hyperbolic complex functions in hyperbolic domain are used.
A monotonic method for solving nonlinear optimal control problems
Salomon, Julien
2009-01-01
Initially introduced in the framework of quantum control, the so-called monotonic algorithms have shown excellent numerical results when dealing with various bilinear optimal control problems. This paper aims at presenting a unified formulation of such procedures and the intrinsic assumptions they require. In this framework, we prove the feasibility of the general algorithm. Finally, we explain how these assumptions can be relaxed.
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
A-monotonicity and applications to nonlinear variational inclusion problems
Directory of Open Access Journals (Sweden)
Ram U. Verma
2004-01-01
Full Text Available A new notion of the A-monotonicity is introduced, which generalizes the H-monotonicity. Since the A-monotonicity originates from hemivariational inequalities, and hemivariational inequalities are connected with nonconvex energy functions, it turns out to be a useful tool proving the existence of solutions of nonconvex constrained problems as well.
Some comparison of restarted GMRES and QMR for linear and nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Morgan, R. [Baylor Univ., Waco, TX (United States); Joubert, W. [Los Alamos National Lab., NM (United States)
1994-12-31
Comparisons are made between the following methods: QMR including its transpose-free version, restarted GMRES, and a modified restarted GMRES that uses approximate eigenvectors to improve convergence, For some problems, the modified GMRES is competitive with or better than QMR in terms of the number of matrix-vector products. Also, the GMRES methods can be much better when several similar systems of linear equations must be solved, as in the case of nonlinear problems and ODE problems.
A NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATIONS
Institute of Scientific and Technical Information of China (English)
YANJINHAI
1996-01-01
The existenoe and limit hehaviour of the solution for a kind of nonloeal noulinear boundary value condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the function of the total flux. When this part of boundary shrinks to a point in a certain way, this condition either results in a Dirac measure or simply disappears in the corresponding problem.
Nodal Solutions for a Nonlinear Fourth-Order Eigenvalue Problem
Institute of Scientific and Technical Information of China (English)
Ru Yun MA; Bevan THOMPSON
2008-01-01
We are concerned with determining the values of λ, for which there exist nodal solutions of the fourth-order boundary value problem y =λa(x)f(y),00 for all u ≠0. We give conditions on the ratio f (s)/s,at infinity and zero, that guarantee the existence of nodal solutions.The proof of our main results is based upon bifurcation techniques.
Fast Inverse Nonlinear Fourier Transforms for Fiber Bragg Grating Design and Related Problems
Wahls, Sander
2016-01-01
The problem of constructing a fiber Bragg grating profile numerically such that the reflection coefficient of the grating matches a given specification is considered. The well-known analytic solution to this problem is given by a suitable inverse nonlinear Fourier transform (also known as inverse scattering transform) of the specificed reflection coefficient. Many different algorithms have been proposed to compute this inverse nonlinear Fourier transform numerically. The most efficient ones require $\\mathcal{O}(D^{2})$ floating point operations (flops) to generate $D$ samples of the grating profile. In this paper, two new fast inverse nonlinear Fourier transform algorithms that require only $\\mathcal{O}(D\\log^{2}D)$ flops are proposed. The merits of our algorithms are demonstrated in numerical examples, in which they are compared to a conventional layer peeling method, the Toeplitz inner bordering method and integral layer peeling. One of our two algorithms also extends to the design problem for fiber-assiste...
Application of a new method of nonlinear dynamical system identification to biochemical problems.
Karnaukhov, A V; Karnaukhova, E V
2003-03-01
The system identification method for a variety of nonlinear dynamic models is elaborated. The problem of identification of an original nonlinear model presented as a system of ordinary differential equations in the Cauchy explicit form with a polynomial right part reduces to the solution of the system of linear equations for the constants of the dynamical model. In other words, to construct an integral model of the complex system (phenomenon), it is enough to collect some data array characterizing the time-course of dynamical parameters of the system. Collection of such a data array has always been a problem. However difficulties emerging are, as a rule, not principal and may be overcome almost without exception. The potentialities of the method under discussion are demonstrated by the example of the test problem of multiparametric nonlinear oscillator identification. The identification method proposed may be applied to the study of different biological systems and in particular the enzyme kinetics of complex biochemical reactions.
Directory of Open Access Journals (Sweden)
Paras Bhatnagar
2012-10-01
Full Text Available Kaul and Kaur [7] obtained necessary optimality conditions for a non-linear programming problem by taking the objective and constraint functions to be semilocally convex and their right differentials at a point to be lower semi-continuous. Suneja and Gupta [12] established the necessary optimality conditions without assuming the semilocal convexity of the objective and constraint functions but their right differentials at the optimal point to be convex. Suneja and Gupta [13] established necessary optimality conditions for an efficient solution of a multiobjective non-linear programming problem by taking the right differentials of the objective functions and constraintfunctions at the efficient point to be convex. In this paper we obtain some results for a properly efficient solution of a multiobjective non-linear fractional programming problem involving semilocally convex and related functions by assuming generalized Slater type constraint qualification.
A Level-value Estimation Method for Nonlinear Complementarity Problem%非线性互补问题的水平值估计算法
Institute of Scientific and Technical Information of China (English)
嵇萍; 吴军荣; 施翔; 王乐; 黎建辉
2008-01-01
本文研究非线性互补问题(NCP)的求解算法,先将NCP转化为约束全局优化问题(CGOP),然后直接移植求解问题(CGOP)的水平值估计算法[4,5]来求解问题(NCP).文章证明了算法对于NCP是收敛的,数值实验说明了算法的有效性.
The derivative-free method for nonlinear complementarity problems%非线性互补问题的无导数方法
Institute of Scientific and Technical Information of China (English)
蒋利华; 许峰; 马昌凤
2010-01-01
基于非线性互补问题(NCP(F))的约束极小化变形,构造了一种新的merit函数,将原始的非线性互补问题NCP(F)转化为约束极小化问题,并在此基础上构造了相应的无导数算法,在merit函数严格单调的条件下证明了此方法的合理性以及整体收敛性.
Institute of Scientific and Technical Information of China (English)
蒋利华; 徐安农
2007-01-01
基于NCP(F)的约束极小化变形,构造了一种新的merit函数,将原始的NCP(F)问题转化为约束极小化问题,并构造了相应的derivative-free下降算法,并在merit函数严格单调的条件下证明了derivative-free算法的合理性以及整体收敛性.
Directory of Open Access Journals (Sweden)
Suxiang He
2014-01-01
Full Text Available An implementable nonlinear Lagrange algorithm for stochastic minimax problems is presented based on sample average approximation method in this paper, in which the second step minimizes a nonlinear Lagrange function with sample average approximation functions of original functions and the sample average approximation of the Lagrange multiplier is adopted. Under a set of mild assumptions, it is proven that the sequences of solution and multiplier obtained by the proposed algorithm converge to the Kuhn-Tucker pair of the original problem with probability one as the sample size increases. At last, the numerical experiments for five test examples are performed and the numerical results indicate that the algorithm is promising.
On a nonlinear elliptic problem with critical potential in R2
Institute of Scientific and Technical Information of China (English)
SHEN; Yaotian; YAO; Yangxin; HEN; Zhihui
2004-01-01
Consider the existence of nontrivial solutions of homogeneous Dirichlet problem for a nonlinear elliptic equation with the critical potential in R2. By establishing a weighted inequality with the best constant, determine the critical potential in R2, and study the eigenvalues of Laplace equation with the critical potential. By the Pohozaev identity of a solution with a singular point and the Cauchy-Kovalevskaya theorem, obtain the nonexistence result of solutions with singular points to the nonlinear elliptic equation. Moreover, for the same problem, the existence results of multiple solutions are proved by the mountain pass theorem.
The Modified Adomian Decomposition Method for Nonlinear Fractional Boundary Value Problems
Institute of Scientific and Technical Information of China (English)
WANG Jie
2012-01-01
We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem Dα0+u(x)=f(x,u(x)), 0＜x＜1, 3＜α≤4u(0) =α0, u″(0) =α2 (1)u(1) =β0, u″(1) =β2where Dα0+u is Caputo fractional derivative and α0,α2,β0,β2 is not zero at all,and f:[0,1] x R → R is continuous.The calculated numerical results show reliability and efficiency of the algorithm given.The numerical procedure is tested on linear and nonlinear problems.
ASYMPTOTIC THEORY OF INITIAL VALUE PROBLEMS FOR NONLINEAR PERTURBED KLEIN-GORDON EQUATIONS
Institute of Scientific and Technical Information of China (English)
GAN Zai-hui; ZHANG Jian
2005-01-01
The asymptotic theory of initial value problems for a class of nonlinear perturbed Klein-Gordon equations in two space dimensions is considered. Firstly, using the contraction mapping principle, combining some priori estimates and the convergence of Bessel function, the well-posedness of solutions of the initial value problem in twice continuous differentiable space was obtained according to the equivalent integral equation of initial value problem for the Klein-Gordon equations. Next, formal approximations of initial value problem was constructed by perturbation method and the asymptotic validity of the formal approximation is got. Finally, an application of the asymptotic theory was given, the asymptotic approximation degree of solutions for the initial value problem of a specific nonlinear Klein-Gordon equation was analyzed by using the asymptotic approximation theorem.
Rescuing complementarity with little drama
Energy Technology Data Exchange (ETDEWEB)
Bao, Ning [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 East California Boulevard, Pasadena (United States); Bouland, Adam [Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge (United States); Chatwin-Davies, Aidan; Pollack, Jason [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 East California Boulevard, Pasadena (United States); Yuen, Henry [Computer Science Division, University of California, Berkeley,Berkeley (United States)
2016-12-07
The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it “little-drama”) which is the “complementarity dual” of scrambling of information on the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Therefore, an infalling observer cannot observe monogamy violation before encountering the singularity.
A UV-decomposed method for solving an MPEC problem
Institute of Scientific and Technical Information of China (English)
SHAN Feng; PANG Li-ping; ZHU Li-mei; XIA Zun-quan
2008-01-01
A UV-decomposition method for solving a mathematical program with equilibrium constraints(MPEC)problem with linear complementarity constraints is presented.The problem is first converted into a nonlinear programming one.The structure of subdifierential a corresponding penalty function and refults of its UV-decomposition are given.A conceptual algorithm for solving this problem with a superlinear convergence rate is then constructed in terms of the obtained results.
Existence theorems of solution to variational inequality problems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper introduces a new concept of exceptional family forvariational inequality problems with a general convex constrained set. By using this new concept, the authors establish a general sufficient condition for the existence of a solution to the problem. This condition is weaker than many known solution conditions and it is also necessary for pseudomonotone variational inequalities. Sufficient solution conditions for a class of nonlinear complementarity problems with P0 mappings are also obtained.
A boundary control problem with a nonlinear reaction term
Directory of Open Access Journals (Sweden)
John R. Cannon
2009-04-01
Full Text Available The authors study the problem $u_t=u_{xx}-au$, $0
Kounadis, A. N.
1992-05-01
An efficient and easily applicable, approximate analytic technique for the solution of nonlinear initial and boundary-value problems associated with nonlinear ordinary differential equations (O.D.E.) of any order and variable coefficients, is presented. Convergence, uniqueness and upper bound error estimates of solutions, obtained by the successive approximations scheme of the proposed technique, are thoroughly established. Important conclusions regarding the improvement of convergence for large time and large displacement solutions in case of nonlinear initial-value problems are also assessed. The proposed technique is much more efficient than the perturbations schemes for establishing the large postbuckling response of structural systems. The efficiency, simplicity and reliability of the proposed technique is demonstrated by two illustrative examples for which available numerical results exist.
Directory of Open Access Journals (Sweden)
Bonić Zoran
2010-01-01
Full Text Available The paper presents application of nonlinear material models in the software package Ansys. The development of the model theory is presented in the paper of the mathematical modeling of material nonlinear problems in structural analysis (part I - theoretical foundations, and here is described incremental-iterative procedure for solving problems of nonlinear material used by this package and an example of modeling of spread footing by using Bilinear-kinematics and Drucker-Prager mode was given. A comparative analysis of the results obtained by these modeling and experimental research of the author was made. Occurrence of the load level that corresponds to plastic deformation was noted, development of deformations with increasing load, as well as the distribution of dilatation in the footing was observed. Comparison of calculated and measured values of reinforcement dilatation shows their very good agreement.
Analysis of search-extension method for finding multiple solutions of nonlinear problem
Institute of Scientific and Technical Information of China (English)
2008-01-01
For numerical computations of multiple solutions of the nonlinear elliptic problemΔu+ f（u）=0 inΩ, u=0 onΓ, a search-extension method （SEM） was proposed and systematically studied by the authors. This paper shall complete its theoretical analysis. It is assumed that the nonlinearity is non-convex and its solution is isolated, under some conditions the corresponding linearized problem has a unique solution. By use of the compactness of the solution family and the contradiction argument, in general conditions, the high order regularity of the solution u∈H1+α,α>0 is proved. Assume that some initial value searched by suitably many eigenbases is already fallen into the neighborhood of the isolated solution, then the optimal error estimates of its nonlinear finite element approximation are shown by the duality argument and continuation method.
Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Cho Yeol
2011-01-01
Full Text Available Abstract In this paper, the existing theorems and methods for finding solutions of systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces are studied. To overcome the difficulties, due to the presence of a proper convex lower semi-continuous function, φ and a mapping g, which appeared in the considered problem, we have used some applications of the resolvent operator technique. We would like to point out that although many authors have proved results for finding solutions of the systems of nonlinear set-valued (mixed variational inequalities problems, it is clear that it cannot be directly applied to the problems that we have considered in this paper because of φ and g. 2000 AMS Subject Classification: 47H05; 47H09; 47J25; 65J15.
Roul, Pradip
2016-06-01
This paper presents a new iterative technique for solving nonlinear singular two-point boundary value problems with Neumann and Robin boundary conditions. The method is based on the homotopy perturbation method and the integral equation formalism in which a recursive scheme is established for the components of the approximate series solution. This method does not involve solution of a sequence of nonlinear algebraic or transcendental equations for the unknown coefficients as in some other iterative techniques developed for singular boundary value problems. The convergence result for the proposed method is established in the paper. The method is illustrated by four numerical examples, two of which have physical significance: The first problem is an application of the reaction-diffusion process in a porous spherical catalyst and the second problem arises in the study of steady-state oxygen-diffusion in a spherical cell with Michaelis-Menten uptake kinetics.
A high-performance feedback neural network for solving convex nonlinear programming problems.
Leung, Yee; Chen, Kai-Zhou; Gao, Xing-Bao
2003-01-01
Based on a new idea of successive approximation, this paper proposes a high-performance feedback neural network model for solving convex nonlinear programming problems. Differing from existing neural network optimization models, no dual variables, penalty parameters, or Lagrange multipliers are involved in the proposed network. It has the least number of state variables and is very simple in structure. In particular, the proposed network has better asymptotic stability. For an arbitrarily given initial point, the trajectory of the network converges to an optimal solution of the convex nonlinear programming problem under no more than the standard assumptions. In addition, the network can also solve linear programming and convex quadratic programming problems, and the new idea of a feedback network may be used to solve other optimization problems. Feasibility and efficiency are also substantiated by simulation examples.
The solution of singular optimal control problems using direct collocation and nonlinear programming
Downey, James R.; Conway, Bruce A.
1992-08-01
This paper describes work on the determination of optimal rocket trajectories which may include singular arcs. In recent years direct collocation and nonlinear programming has proven to be a powerful method for solving optimal control problems. Difficulties in the application of this method can occur if the problem is singular. Techniques exist for solving singular problems indirectly using the associated adjoint formulation. Unfortunately, the adjoints are not a part of the direct formulation. It is shown how adjoint information can be obtained from the direct method to allow the solution of singular problems.
Institute of Scientific and Technical Information of China (English)
Jingsun Yao; Jiaqi Mo
2005-01-01
The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.
A smart nonstandard finite difference scheme for second order nonlinear boundary value problems
Erdogan, Utku; Ozis, Turgut
2011-01-01
A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed. Numer
ON THE NONLINEAR RIEMANN PROBLEMS FOR GENERAL FIRST ELLIPTIC SYSTEMS IN THE PLANE
Institute of Scientific and Technical Information of China (English)
李明忠; 宋洁
2005-01-01
The nonlinear Riemann problem for general systems of the first-order linear and quasi-linear equations in the plane are considered. It translates them to singular integral equations and proves the existence of the solution by means of contract principle or. general contract principle. The known results are generalized.
On the solvability of initial-value problems for nonlinear implicit difference equations
Directory of Open Access Journals (Sweden)
Yen Ha Thi Ngoc
2004-01-01
Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.
THE CAUCHY PROBLEM OF NONLINEAR SCHR(O)DINGER-BOUSSINESQ EQUATIONS IN Hs(Rd)
Institute of Scientific and Technical Information of China (English)
Han Yongqian
2005-01-01
In this paper, the local well posedness and global well posedness of solutions for the initial value problem (IVP) of nonlinear Schrodinger-Boussinesq equations is considered in Hs(Rd) by resorting Besov spaces, where real number s ≥ 0.
On the solvability of initial-value problems for nonlinear implicit difference equations
Directory of Open Access Journals (Sweden)
Ha Thi Ngoc Yen
2004-07-01
Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.
A smart nonstandard finite difference scheme for second order nonlinear boundary value problems
Erdogan, Utku; Ozis, Turgut
2011-01-01
A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed.
Solutions of Multi Objective Fuzzy Transportation Problems with Non-Linear Membership Functions
Directory of Open Access Journals (Sweden)
Dr. M. S. Annie Christi
2016-11-01
Full Text Available Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is compared with the solution got by using a linear membership function. Some numerical examples are presented to illustrate this.
Nonlinear quarter-plane problem for the Korteweg-de Vries equation
Directory of Open Access Journals (Sweden)
Nikolai A. Larkin
2011-08-01
Full Text Available This article concerns an initial-boundary value problem in a quarter-plane for the Korteweg-de Vries (KdV equation. For general nonlinear boundary conditions we prove the existence and uniqueness of a global regular solution.
Institute of Scientific and Technical Information of China (English)
Yepeng Xing; Qiong Wang; Valery G. Romanovski
2009-01-01
We prove several new comparison results and develop the monotone iterative tech-nique to show the existence of extremal solutions to a kind of periodic boundary value problem (PBVP) for nonlinear integro-differential equation of mixed type on time scales.
Positive Solutions of a Nonlinear Fourth-order Integral Boundary Value Problem
Directory of Open Access Journals (Sweden)
Benaicha Slimane
2016-07-01
Full Text Available In this paper, the existence of positive solutions for a nonlinear fourth-order two-point boundary value problem with integral condition is investigated. By using Krasnoselskii’s fixed point theorem on cones, sufficient conditions for the existence of at least one positive solutions are obtained.
THE NONLINEAR BOUNDARY VALUE PROBLEM FOR A CLASS OF INTEGRO-DIFFERENTIAL SYSTEM
Institute of Scientific and Technical Information of China (English)
Rongrong Tang
2006-01-01
In this paper, using the theory of differential inequalities, we study the nonlinear boundary value problem for a class of integro-differential system. Under appropriate assumptions, the existence of solution is proved and the uniformly valid asymptotic expansions for arbitrary n-th order approximation and the estimation of remainder term are obtained simply and conveniently.
Scenarios for solving a non-linear transportation problem in multi-agent systems
DEFF Research Database (Denmark)
Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan
2017-01-01
We introduce and provide an evaluation on two scenarios and related algorithms for implementation of a multi-agent system to solve a type of non-linear transportation problem using distributed optimization algorithms based on dual decomposition and consensus. The underlying fundamental optimization...
EXISTENCE AND UNIQUENESS RESULTS FOR NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEM
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,we investigate a nonlinear third-order three-point boundary value problem. By several well-known fixed point theorems,the existence of positive solutions is discussed. Besides,the uniqueness results are obtained by imposing growth restrictions on f.
Institute of Scientific and Technical Information of China (English)
Yaohong LI; Xiaoyan ZHANG
2013-01-01
In this paper,we consider boundary value problems for systems of nonlinear thirdorder differential equations.By applying the fixed point theorems of cone expansion and compression of norm type and Leggett-Williams fixed point theorem,the existence of multiple positive solutions is obtained.As application,we give some examples to demonstrate our results.
Existence of three solutions for impulsive nonlinear fractional boundary value problems
Directory of Open Access Journals (Sweden)
Shapour Heidarkhani
2017-01-01
Full Text Available In this work we present new criteria on the existence of three solutions for a class of impulsive nonlinear fractional boundary-value problems depending on two parameters. We use variational methods for smooth functionals defined on reflexive Banach spaces in order to achieve our results.
Existence of Two Solutions of Nonlinear m-Point Boundary Value Problems
Institute of Scientific and Technical Information of China (English)
任景莉; 葛渭高
2003-01-01
Sufficient conditions for the existence of at least two positive solutions of a nonlinear m-points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.
Institute of Scientific and Technical Information of China (English)
CHENGYan
2003-01-01
In this paper,the fixed-point theorem is used to estimated an asymptotic solution of intial val-ue problems for a class of third nonlinear differential equations which has double initial-layer properties.We obtain the uniformly valid asymptotic expansion of any orders including boundary layers.
A two-phase free boundary problem for a nonlinear diffusion-convection equation
Energy Technology Data Exchange (ETDEWEB)
De Lillo, S; Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia (Italy)], E-mail: silvana.delillo@pg.infn.it
2008-04-11
A two-phase free boundary problem associated with a diffusion-convection equation is considered. The problem is reduced to a system of nonlinear integral equations, which admits a unique solution for small times. The system admits an explicit two-component solution corresponding to a two-component shock wave of the Burgers equation. The stability of such a solution is also discussed.
Directory of Open Access Journals (Sweden)
M. G. Crandall
1999-07-01
Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.
Nonlinear boundary value problems for first order impulsive integro-differential equations
Directory of Open Access Journals (Sweden)
Xinzhi Liu
1989-01-01
Full Text Available In this paper, we investigate a class of first order impulsive integro-differential equations subject to certain nonlinear boundary conditions and prove, with the help of upper and lower solutions, that the problem has a solution lying between the upper and lower solutions. We also develop monotone iterative technique and show the existence of multiple solutions of a class of periodic boundary value problems.
On the System of Nonlinear Mixed Implicit Equilibrium Problems in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Yeol Je Cho
2010-01-01
Full Text Available We use the Wiener-Hopf equations and the Yosida approximation notions to prove the existence theorem of a system of nonlinear mixed implicit equilibrium problems (SMIE in Hilbert spaces. The algorithm for finding a solution of the problem (SMIE is suggested; the convergence criteria and stability of the iterative algorithm are discussed. The results presented in this paper are more general and are viewed as an extension, refinement, and improvement of the previously known results in the literature.
Directory of Open Access Journals (Sweden)
Xiaofei Cao
2016-11-01
Full Text Available In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theory of Lagrange multipliers.
Error estimations of mixed finite element methods for nonlinear problems of shallow shell theory
Karchevsky, M.
2016-11-01
The variational formulations of problems of equilibrium of a shallow shell in the framework of the geometrically and physically nonlinear theory by boundary conditions of different main types, including non-classical, are considered. Necessary and sufficient conditions for their solvability are derived. Mixed finite element methods for the approximate solutions to these problems based on the use of second derivatives of the bending as auxiliary variables are proposed. Estimations of accuracy of approximate solutions are established.
Initial value problem for a class of fourth-order nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
Guo-wang CHEN; Chang-shun HOU
2009-01-01
In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Said Mesloub
2008-03-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Mesloub Said
2008-01-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
Quark-lepton complementarity revisited
Zhang, Xinyi; Ma, Bo-Qiang
2012-01-01
We reexamine the quark-lepton complementarity (QLC) in nine angle-phase parametrizations with the latest result for a large lepton mixing angle $\\vartheta_{13}$ from the T2K, MINOS and Double Chooz experiments. We find that the original form of the QLC two relations only hold in the standard parametrization (P1) and only one of the relations holds in P2, P3, P4, P5, P6 and P9 parametrizations separately. We also work out the corresponding reparametrization-invariant form of the relations and examine the resulting expressions with the data. The results can be used as check of the validity of the QLC relations, as well as new perspective into the issue of seeking the connection between quarks and leptons.
A URI 4-NODE QUADRILATERAL ELEMENT BY ASSUMED STRAIN METHOD FOR NONLINEAR PROBLEMS
Institute of Scientific and Technical Information of China (English)
WANG Jinyan; CHEN Jun; LI Minghui
2004-01-01
In this paper one-point quadrature "assumed strain" mixed element formulation based on the Hu-Washizu variational principle is presented. Special care is taken to avoid hourglass modes and volumetric locking as well as shear locking. The assumed strain fields are constructed so that those portions of the fields which lead to volumetric and shear locking phenomena are eliminated by projection, while the implementation of the proposed URI scheme is straightforward to suppress hourglass modes. In order to treat geometric nonlinearities simply and efficiently, a corotational coordinate system is used. Several numerical examples are given to demonstrate the performance of the suggested formulation, including nonlinear static/dynamic mechanical problems.
Local-instantaneous filtering in the integral transform solution of nonlinear diffusion problems
Macêdo, E. N.; Cotta, R. M.; Orlande, H. R. B.
A novel filtering strategy is proposed to be utilized in conjunction with the Generalized Integral Transform Technique (GITT), in the solution of nonlinear diffusion problems. The aim is to optimize convergence enhancement, yielding computationally efficient eigenfunction expansions. The proposed filters include space and time dependence, extracted from linearized versions of the original partial differential system. The scheme automatically updates the filter along the time integration march, as the required truncation orders for the user requested accuracy begin to exceed a prescribed maximum system size. A fully nonlinear heat conduction example is selected to illustrate the computational performance of the filtering strategy, against the classical single-filter solution behavior.
Solution of transient optimization problems by using an algorithm based on nonlinear programming
Teren, F.
1977-01-01
A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.
Nonlinear evolution equations associated with the chiral-field spectral problem
Energy Technology Data Exchange (ETDEWEB)
Bruschi, M.; Ragnisco, O. (Istituto Nazionale di Fisica Nucleare, Roma (Italy); Dipt. di Fisica, Univ. Rome (Italy))
1985-08-11
In this paper we derive and investigate the class of nonlinear evolution equations (NEEs) associated with the linear problem psisub(x) = lambdaApsi. It turns out that many physically interesting NEEs pertain to this class: for instance, the chiral-field equation, the nonlinear Klein-Gordon equations, the Heisenberg and Papanicolau spin chain models, the modified Boussinesq equation, the Wadati-Konno-Ichikawa equations, etc. We display also the Baecklund transformations for such a class and exploit them to derive in a special case the one-soliton solution.
An iterative regularization method for nonlinear problems based on Bregman projections
Maaß, Peter; Strehlow, Robin
2016-11-01
In this paper, we present an iterative method for the regularization of ill-posed, nonlinear problems. The approach is based on the Bregman projection onto stripes the width of which is controlled by both the noise level and the structure of the operator. In our investigations, we follow (Lorenz et al 2014 SIAM J. Imaging Sci. 7 1237-62) and extend the respective method to the setting of nonlinear operators. Furthermore, we present a proof for the regularizing properties of the method.
On the Cauchy problem for nonlinear Schrödinger equations with rotation
Antonelli, Paolo
2011-10-01
We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.
The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation
Directory of Open Access Journals (Sweden)
Bergfinnur Durhuus
2010-06-01
Full Text Available We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger equation in an even number of space dimensions. With rather weak conditions on the degree of nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution, and also has solitary wave solutions if the interaction potential is suitably chosen. We demonstrate how to set up a scattering framework for equations of this type, including appropriate decay estimates of the free time evolution and the construction of wave operators defined for small scattering data in the general case and for arbitrary scattering data in the rotationally symmetric case.
Solution of transient optimization problems by using an algorithm based on nonlinear programming
Teren, F.
1977-01-01
A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Energy Technology Data Exchange (ETDEWEB)
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
Energy Technology Data Exchange (ETDEWEB)
Kim, D.; Ghanem, R. [State Univ. of New York, Buffalo, NY (United States)
1994-12-31
Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.
Institute of Scientific and Technical Information of China (English)
Shuang Ping TAO; Shang Bin CUI
2005-01-01
This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation ()u/()t+ a u2()u/()m + β()3u/()x3 + γ()5u-()x5 = 0, (x, t) ∈ We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.
Murphy, Patrick Charles
1985-01-01
An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.
Institute of Scientific and Technical Information of China (English)
De-tong Zhu
2009-01-01
In this paper we extend and improve the classical affine scaling interior-point Newton method for solving nonlinear optimization subject to linear inequality constraints in the absence of the strict complementar-ity assumption. Introducing a computationally efficient technique and employing an identification function for the definition of the new affine scaling matrix, we propose and analyze a new affine scaling interior-point Newton method which improves the Coleman and Li affine scaling matrix in [2] for solving the linear inequality con-strained optimization. Local superlinear and quadratical convergence of the proposed algorithm is established under the strong second order sufficiency condition without assuming strict complementarity of the solution.
Institute of Scientific and Technical Information of China (English)
Qin Ni
2001-01-01
An NGTN method was proposed for solving large-scale sparse nonlinear programming (NLP) problems. This is a hybrid method of a truncated Newton direction and a modified negative gradient direction, which is suitable for handling sparse data structure and possesses Q-quadratic convergence rate. The global convergence of this new method is proved,the convergence rate is further analysed, and the detailed implementation is discussed in this paper. Some numerical tests for solving truss optimization and large sparse problems are reported. The theoretical and numerical results show that the new method is efficient for solving large-scale sparse NLP problems.
Rezaee, Hamed; Abdollahi, Farzaneh
2016-12-06
The leaderless consensus problem over a class of high-order nonlinear multiagent systems (MASs) is studied. A robust protocol is proposed which guarantees achieving consensus in the network in the presences of uncertainties in agents models. Achieving consensus in the case of stochastic links failure is studied as well. Based on the concept super-martingales, it is shown that if the probability of the network connectivity is not zero, under some conditions, achieving almost sure consensus in the network can be guaranteed. Despite existing consensus protocols for high-order stochastic networks, the proposed consensus protocol in this paper is robust to uncertain nonlinearities in the agents models, and it can be designed independent of knowledge on the set of feasible topologies (topologies with nonzero probabilities). Numerical examples for a team of single-link flexible joint manipulators with fourth-order models verify the accuracy of the proposed strategy for consensus control of high-order MASs with uncertain nonlinearities.
An iterative HAM approach for nonlinear boundary value problems in a semi-infinite domain
Zhao, Yinlong; Lin, Zhiliang; Liao, Shijun
2013-09-01
In this paper, we propose an iterative approach to increase the computation efficiency of the homotopy analysis method (HAM), a analytic technique for highly nonlinear problems. By means of the Schmidt-Gram process (Arfken et al., 1985) [15], we approximate the right-hand side terms of high-order linear sub-equations by a finite set of orthonormal bases. Based on this truncation technique, we introduce the Mth-order iterative HAM by using each Mth-order approximation as a new initial guess. It is found that the iterative HAM is much more efficient than the standard HAM without truncation, as illustrated by three nonlinear differential equations defined in an infinite domain as examples. This work might greatly improve the computational efficiency of the HAM and also the Mathematica package BVPh for nonlinear BVPs.
Directory of Open Access Journals (Sweden)
Sie Long Kek
2015-01-01
Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.
EXACT AUGMENTED LAGRANGIAN FUNCTION FOR NONLINEAR PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS
Institute of Scientific and Technical Information of China (English)
DU Xue-wu; ZHANG Lian-sheng; SHANG You-lin; LI Ming-ming
2005-01-01
An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions,the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, from the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.
Variational ansatz for the nonlinear Landau-Zener problem for cold atom association
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, A [Institute for Physical Research NAS of Armenia, 0203 Ashtarak-2 (Armenia); Joulakian, B [LPMC, Universite Paul Verlaine-Metz, 1 Bld Arago, 57078 Metz Cedex 3 (France); Suominen, K-A [Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto (Finland)
2009-11-28
We present a rigorous analysis of the Landau-Zener linear-in-time term crossing problem for quadratic-nonlinear systems relevant to the coherent association of ultracold atoms in degenerate quantum gases. Our treatment is based on an exact third-order nonlinear differential equation for the molecular state probability. Applying a variational two-term ansatz, we construct a simple approximation that accurately describes the whole-time dynamics of the coupled atom-molecular system for any set of involved parameters. Ensuring an absolute error of less than 10{sup -5} for the final transition probability, the resultant solution improves by several orders of magnitude the accuracy of the previous approximations by A Ishkhanyan et al developed separately for the weak coupling (2005 J. Phys. A: Math. Gen. 38 3505) and strong interaction (2006 J. Phys. A: Math. Gen. 39 14887) limits. In addition, the constructed approximation covers the whole moderate-coupling regime, providing this intermediate regime with the same accuracy as the two mentioned limits. The obtained results reveal the remarkable observation, that for the strong-coupling limit the resonance crossing is mostly governed by the nonlinearity, while the coherent atom-molecular oscillations arising soon after the resonance has been crossed are basically of a linear nature. This observation is supposed to be of a general character, due to the basic attributes of the resonance-crossing processes in the nonlinear quantum systems of the discussed type of involved quadratic nonlinearity. (fast track communication)
Nonlinear quantum mechanics, the superposition principle, and the quantum measurement problem
Indian Academy of Sciences (India)
Kinjalk Lochan; T P Singh
2011-01-01
There are four reasons why our present knowledge and understanding of quantum mechanics can be regarded as incomplete. (1) The principle of linear superposition has not been experimentally tested for position eigenstates of objects having more than about a thousand atoms. (2) There is no universally agreed upon explanation for the process of quantum measurement. (3) There is no universally agreed upon explanation for the observed fact that macroscopic objects are not found in superposition of position eigenstates. (4) Most importantly, the concept of time is classical and hence external to quantum mechanics: there should exist an equivalent reformulation of the theory which does not refer to an external classical time. In this paper we argue that such a reformulation is the limiting case of a nonlinear quantum theory, with the nonlinearity becoming important at the Planck mass scale. Such a nonlinearity can provide insights into the aforesaid problems. We use a physically motivated model for a nonlinear Schr ¨odinger equation to show that nonlinearity can help in understanding quantum measurement. We also show that while the principle of linear superposition holds to a very high accuracy for atomic systems, the lifetime of a quantum superposition becomes progressively smaller, as one goes from microscopic to macroscopic objects. This can explain the observed absence of position superpositions in macroscopic objects (lifetime is too small). It also suggests that ongoing laboratory experiments may be able to detect the ﬁnite superposition lifetime for mesoscopic objects in the near future.
Niels Bohr and Complementarity An Introduction
Plotnitsky, Arkady
2012-01-01
This book offers a discussion of Niels Bohr’s conception of “complementarity,” arguably his greatest contribution to physics and philosophy. By tracing Bohr’s work from his 1913 atomic theory to the introduction and then refinement of the idea of complementarity, and by explicating different meanings of “complementarity” in Bohr and the relationships between it and Bohr’s other concepts, the book aims to offer a contained and accessible, and yet sufficiently comprehensive account of Bohr’s work on complementarity and its significance.
Reintroducing the Concept of Complementarity into Psychology
Directory of Open Access Journals (Sweden)
Zheng eWang
2015-11-01
Full Text Available Central to quantum theory is the concept of complementarity. In this essay, we argue that complementarity is also central to the emerging field of quantum cognition. We review the concept, its historical roots in psychology, and its development in quantum physics and offer examples of how it can be used to understand human cognition. The concept of complementarity provides a valuable and fresh perspective for organizing human cognitive phenomena and for understanding the nature of measurements in psychology. In turn, psychology can provide valuable new evidence and theoretical ideas to enrich this important scientific concept.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
A complementarity model for the European natural gas market
Energy Technology Data Exchange (ETDEWEB)
Egging, Ruud [Department of Civil and Environmental Engineering, University of Maryland College Park, MD 20742 (United States); Gabriel, Steven A. [Department of Civil and Environmental Engineering, Applied Mathematics and Scientific Computation Program, University of Maryland College Park, MD 20742 (United States); Holz, Franziska [DIW Berlin, Mohrenstrasse 58, D-10117 Berlin (Germany); Zhuang, Jifang [Chevron USA, Houston, TX 77401 (United States)
2008-07-15
In this paper, we present a detailed and comprehensive complementarity model for computing market equilibrium values in the European natural gas system. Market players include producers and their marketing arms which we call ''traders'', pipeline and storage operators, marketers, LNG liquefiers, regasifiers, tankers, and three end-use consumption sectors. The economic behavior of producers, traders, pipeline and storage operators, liquefiers and regasifiers is modeled via optimization problems whose Karush-Kuhn-Tucker (KKT) optimality conditions in combination with market-clearing conditions form the complementarity system. The LNG tankers, marketers and consumption sectors are modeled implicitly via appropriate cost functions, aggregate demand curves, and ex post calculations, respectively. The model is run on several case studies that highlight its capabilities, including a simulation of a disruption of Russian supplies via Ukraine. (author)
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R. K.
-numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...... of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.
Energy Technology Data Exchange (ETDEWEB)
Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering
1997-09-01
A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.
Homotopy deform method for reproducing kernel space for nonlinear boundary value problems
Indian Academy of Sciences (India)
MIN-QIANG XU; YING-ZHEN LIN
2016-10-01
In this paper, the combination of homotopy deform method (HDM) and simplified reproducing kernel method (SRKM) is introduced for solving the boundary value problems (BVPs) of nonlinear differential equations. The solution methodology is based on Adomian decomposition and reproducing kernel method (RKM). By the HDM, the nonlinear equations can be converted into a series of linear BVPs. After that, the simplified reproducing kernel method, which not only facilitates the reproducing kernel but also avoids the time-consuming Schmidt orthogonalization process, is proposed to solve linear equations. Some numerical test problems including ordinary differential equations and partial differential equations are analysed to illustrate the procedure and confirm the performance of the proposed method. The results faithfully reveal that our algorithm is considerably accurate and effective as expected.
Numerical solution of a nonlinear least squares problem in digital breast tomosynthesis
Landi, G.; Loli Piccolomini, E.; Nagy, J. G.
2015-11-01
In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation (i.e., a set of 2D slices) of the object. In this paper we describe some mathematical models for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. A polyenergetic model helps to reduce beam hardening artifacts, but the disadvantage is that it requires solving a large-scale nonlinear ill-posed inverse problem. We formulate the image reconstruction process (i.e., the method to solve the ill-posed inverse problem) in a nonlinear least squares framework, and use a Levenberg-Marquardt scheme to solve it. Some implementation details are discussed, and numerical experiments are provided to illustrate the performance of the methods.
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Directory of Open Access Journals (Sweden)
Morteza Ebrahimi
2012-01-01
Full Text Available The purpose of the present study is to provide a fast and accurate algorithm for identifying the medium temperature and the unknown radiation term from an overspecified condition on the boundary in an inverse problem of linear heat equation with nonlinear boundary condition. The design of the paper is to employ Taylor’s series expansion for linearize nonlinear term and then finite-difference approximation to discretize the problem domain. Owing to the application of the finite difference scheme, a large sparse system of linear algebraic equations is obtained. An approach of Monte Carlo method is employed to solve the linear system and estimate unknown radiation term. The Monte Carlo optimization is adopted to modify the estimated values. Results show that a good estimation on the radiation term can be obtained within a couple of minutes CPU time at pentium IV-2.4 GHz PC.
Murio, Diego A.
1991-01-01
An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.
Directory of Open Access Journals (Sweden)
MOHAMED KEZZAR
2015-08-01
Full Text Available In this research, an efficient technique of computation considered as a modified decomposition method was proposed and then successfully applied for solving the nonlinear problem of the two dimensional flow of an incompressible viscous fluid between nonparallel plane walls. In fact this method gives the nonlinear term Nu and the solution of the studied problem as a power series. The proposed iterative procedure gives on the one hand a computationally efficient formulation with an acceleration of convergence rate and on the other hand finds the solution without any discretization, linearization or restrictive assumptions. The comparison of our results with those of numerical treatment and other earlier works shows clearly the higher accuracy and efficiency of the used Modified Decomposition Method.
Solution of the nonlinear inverse scattering problem by T -matrix completion. II. Simulations
Levinson, Howard W.; Markel, Vadim A.
2016-10-01
This is Part II of the paper series on data-compatible T -matrix completion (DCTMC), which is a method for solving nonlinear inverse problems. Part I of the series [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043317 (2016), 10.1103/PhysRevE.94.043317] contains theory and here we present simulations for inverse scattering of scalar waves. The underlying mathematical model is the scalar wave equation and the object function that is reconstructed is the medium susceptibility. The simulations are relevant to ultrasound tomographic imaging and seismic tomography. It is shown that DCTMC is a viable method for solving strongly nonlinear inverse problems with large data sets. It provides not only the overall shape of the object, but the quantitative contrast, which can correspond, for instance, to the variable speed of sound in the imaged medium.
ON TRANSMISSION PROBLEM FOR VISCOELASTIC WAVE EQUATION WITH A LOCALIZED A NONLINEAR DISSIPATION
Institute of Scientific and Technical Information of China (English)
Jeong Ja BAE; Seong Sik KIM
2013-01-01
In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component being a Kirchhoff type wave equation with time dependent localized dissipation which is effective only on a neighborhood of certain part of boundary,while the other being a Kirchhoff type viscoelastic wave equation with nonlinear memory.
EXISTENCE OF SOLUTIONS OF A FAMILY OF NONLINEAR BOUNDARY VALUE PROBLEMS IN L2-SPACES
Institute of Scientific and Technical Information of China (English)
WeiLi; ZhouHaiyun
2005-01-01
By using the perturbation results of sums of ranges of accretive mappings of Calvert and Gupta (1978),the abstract results on the existence of solutions of a family of nonlinear boundary value problems in L2 (Ω) are studied. The equation discussed in this paper and the methods used here are extension and complement to the corresponding results of Wei Li and He Zhen's previous papers. Especially,some new techniques are used in this paper.
Analytical Approximation Method for the Center Manifold in the Nonlinear Output Regulation Problem
Suzuki, Hidetoshi; Sakamoto, Noboru; Celikovský, Sergej
In nonlinear output regulation problems, it is necessary to solve the so-called regulator equations consisting of a partial differential equation and an algebraic equation. It is known that, for the hyperbolic zero dynamics case, solving the regulator equations is equivalent to calculating a center manifold for zero dynamics of the system. The present paper proposes a successive approximation method for obtaining center manifolds and shows its effectiveness by applying it for an inverted pendulum example.
C-L METHOD AND ITS APPLICATION TO ENGINEERING NONLINEAR DYNAMICAL PROBLEMS
Institute of Scientific and Technical Information of China (English)
陈予恕; 丁千
2001-01-01
The C-L method was generalized from Liapunov-Schmidt reduction method,combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used , as an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing tech niques of control to subharmonic instability of large rotating machinery.
Numerical method for nonlinear two-phase displacement problem and its application
Institute of Scientific and Technical Information of China (English)
YUAN Yi-rang; LIANG Dong; RUI Hong-xing; DU Ning; WANG Wen-qia
2008-01-01
For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schemes were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.
Solvability of a three-point nonlinear boundary-value problem
Directory of Open Access Journals (Sweden)
Assia Guezane-Lakoud
2010-09-01
Full Text Available Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u= 0,quad 0
Positive solutions for a nonlinear periodic boundary-value problem with a parameter
Directory of Open Access Journals (Sweden)
Jingliang Qiu
2012-08-01
Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$
A New Subspace Correction Method for Nonlinear Unconstrained Convex Optimization Problems
Institute of Scientific and Technical Information of China (English)
Rong-liang CHEN; Jin-ping ZENG
2012-01-01
This paper gives a new subspace correction algorithm for nonlinear unconstrained convex optimization problems based on the multigrid approach proposed by S.Nash in 2000 and the subspace correction algorithm proposed by X.Tai and J.Xu in 2001.Under some reasonable assumptions,we obtain the convergence as well as a convergence rate estimate for the algorithm.Numerical results show that the algorithm is effective.
Validation of Finite Element Solutions of Nonlinear, Periodic Eddy Current Problems
Directory of Open Access Journals (Sweden)
Plasser René
2014-12-01
Full Text Available An industrial application is presented to validate a finite element analysis of 3-dimensional, nonlinear eddy-current problems with periodic excitation. The harmonic- balance method and the fixed-point technique are applied to get the steady state solution using the finite element method. The losses occurring in steel reinforcements underneath a reactor due to induced eddy-currents are computed and compared to measurements.
Science and Religion: Controverse or Complementarity
Zeps, Dainis
2009-01-01
Science and Religion: controverse or complementarity Relations between science and religion since times of Galileo, Newton and Leibniz discussed . Omega point approach considered and interpreted: using Omega point and Tipler's Singularities model, time versus creative order discussed.
Complementarity of information sent via different bases
DEFF Research Database (Denmark)
Wu, Shengjun; Yu, Sixia; Mølmer, Klaus
2009-01-01
We discuss quantitatively the complementarity of information transmitted by a quantum system prepared in a basis state in one out of several different mutually unbiased bases (MUBs). We obtain upper bounds on the information available to a receiver who has no knowledge of which MUB was chosen...... by the sender. These upper bounds imply a complementarity of information encoded via different MUBs and ultimately ensure the security in quantum key distribution protocols....
Morozov-type discrepancy principle for nonlinear ill-posed problems under -condition
Indian Academy of Sciences (India)
M Thamban Nair
2015-05-01
For proving the existence of a regularization parameter under a Morozov-type discrepancy principle for Tikhonov regularization of nonlinear ill-posed problems, it is required to impose additional nonlinearity assumptions on the forward operator. Lipschitz continuity of the Freéchet derivative and requirement of the Lipschitz constant to depend on a source condition is one such restriction (Ramlau P, Numer. Funct. Anal. Optim. 23(1&22) (2003) 147–172). Another nonlinearity condition considered by Scherzer (Computing, 51 (1993) 45–60) was by requiring the forward operator to be close to a linear operator in a restricted sense. A seemingly natural nonlinear assumption which appears in many applications which attracted attention in various contexts of the study of nonlinear problems is the so-called -condition. However, a Morozov-type discrepancy principle together with -condition does not seem to have been studied, except in a recent paper by the author (Bull. Aust. Math. Soc. 79 (2009) 337–342), where error estimates under a general source condition is derived, by assuming the existence of the parameter. In this paper, the existence of the parameter satisfying a Morozov-type discrepancy principle is proved under the -condition on the forward operator, by assuming the source condition as in the papers of Scherzer (Computing, 51 (1993) 45–60) and Ramlau (Numer. Funct. Anal. Optim. 23(1&22) (2003) 147–172). This source condition is, in fact, a special case of the source condition in the author’s paper (Bull. Aust. Math. Soc. 79 (2009) 337–342).
The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability
Wang, Yanjin
2011-01-01
We consider the free boundary problem for two layers of immiscible, viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom in a three-dimensional horizontally periodic setting. The effect of surface tension is either taken into account at both free boundaries or neglected at both. We are concerned with the Rayleigh-Taylor instability, so we assume that the upper fluid is heavier than the lower fluid. When the surface tension at the free internal interface is below a critical value, which we identify, we establish that the problem under consideration is nonlinearly unstable.
Directory of Open Access Journals (Sweden)
Ying Wang
2015-03-01
Full Text Available In this article, we study the existence of multiple positive solutions for singular semipositone boundary-value problem (BVP with integral boundary conditions on infinite intervals. By using the properties of the Green's function and the Guo-Krasnosel'skii fixed point theorem, we obtain the existence of multiple positive solutions under conditions concerning the nonlinear functions. The method in this article can be used for a large number of problems. We illustrate the validity of our results with an example in the last section.
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
Verified solutions of two-point boundary value problems for nonlinear oscillators
Bünger, Florian
Using techniques introduced by Nakao [4], Oishi [5, 6] and applied by Takayasu, Oishi, Kubo [11, 12] to certain nonlinear two-point boundary value problems (see also Rump [7], Chapter 15), we provide a numerical method for verifying the existence of weak solutions of two-point boundary value problems of the form -u″ = a(x, u) + b(x, u)u‧, 0 b are functions that fulfill some regularity properties. The numerical approximation is done by cubic spline interpolation. Finally, the method is applied to the Duffing, the van der Pol and the Toda oscillator. The rigorous numerical computations were done with INTLAB [8].
Nonlinear systems of differential inequalities and solvability of certain boundary value problems
Directory of Open Access Journals (Sweden)
Tvrdý Milan
2001-01-01
Full Text Available In the paper we present some new existence results for nonlinear second order generalized periodic boundary value problems of the form These results are based on the method of lower and upper functions defined as solutions of the system of differential inequalities associated with the problem and their relation to the Leray–Schauder topological degree of the corresponding operator. Our main goal consists in a fairly general definition of these functions as couples from . Some conditions ensuring their existence are indicated, as well.
A mixed Newton-Tikhonov method for nonlinear ill-posed problems
Institute of Scientific and Technical Information of China (English)
Chuan-gang KANG; Guo-qiang HE
2009-01-01
Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems,which have attracted extensive attention.However,computational cost of Newton type methods is high because practical problems are complicated.We propose a mixed Newton-Tikhonov method,i.e.,one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method.Convergence and stability of this method are proved under some conditions.Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.
Sakhnovich, Lev A; Roitberg, Inna Ya
2013-01-01
This monograph fits theclearlyneed for books with a rigorous treatment of theinverse problems for non-classical systems and that of initial-boundary-value problems for integrable nonlinear equations. The authorsdevelop a unified treatment of explicit and global solutions via the transfer matrix function in a form due to Lev A. Sakhnovich. The book primarily addresses specialists in the field. However, it is self-contained andstarts with preliminaries and examples, and hencealso serves as an introduction for advanced graduate students in the field.
Improved simple optimization (SOPT algorithm for unconstrained non-linear optimization problems
Directory of Open Access Journals (Sweden)
J. Thomas
2016-09-01
Full Text Available In the recent years, population based meta-heuristic are developed to solve non-linear optimization problems. These problems are difficult to solve using traditional methods. Simple optimization (SOPT algorithm is one of the simple and efficient meta-heuristic techniques to solve the non-linear optimization problems. In this paper, SOPT is compared with some of the well-known meta-heuristic techniques viz. Artificial Bee Colony algorithm (ABC, Particle Swarm Optimization (PSO, Genetic Algorithm (GA and Differential Evolutions (DE. For comparison, SOPT algorithm is coded in MATLAB and 25 standard test functions for unconstrained optimization having different characteristics are run for 30 times each. The results of experiments are compared with previously reported results of other algorithms. Promising and comparable results are obtained for most of the test problems. To improve the performance of SOPT, an improvement in the algorithm is proposed which helps it to come out of local optima when algorithm gets trapped in it. In almost all the test problems, improved SOPT is able to get the actual solution at least once in 30 runs.
A high performance neural network for solving nonlinear programming problems with hybrid constraints
Tao, Qing; Cao, Jinde; Xue, Meisheng; Qiao, Hong
2001-09-01
A continuous neural network is proposed in this Letter for solving optimization problems. It not only can solve nonlinear programming problems with the constraints of equality and inequality, but also has a higher performance. The main advantage of the network is that it is an extension of Newton's gradient method for constrained problems, the dynamic behavior of the network under special constraints and the convergence rate can be investigated. Furthermore, the proposed network is simpler than the existing networks even for solving positive definite quadratic programming problems. The network considered is constrained by a projection operator on a convex set. The advanced performance of the proposed network is demonstrated by means of simulation of several numerical examples.
A Semismooth Newton Method for Nonlinear Parameter Identification Problems with Impulsive Noise
Clason, Christian
2012-01-01
This work is concerned with nonlinear parameter identification in partial differential equations subject to impulsive noise. To cope with the non-Gaussian nature of the noise, we consider a model with L 1 fitting. However, the nonsmoothness of the problem makes its efficient numerical solution challenging. By approximating this problem using a family of smoothed functionals, a semismooth Newton method becomes applicable. In particular, its superlinear convergence is proved under a second-order condition. The convergence of the solution to the approximating problem as the smoothing parameter goes to zero is shown. A strategy for adaptively selecting the regularization parameter based on a balancing principle is suggested. The efficiency of the method is illustrated on several benchmark inverse problems of recovering coefficients in elliptic differential equations, for which one- and two-dimensional numerical examples are presented. © by SIAM.
Luo, Xiaodong
2014-10-01
The ensemble Kalman filter (EnKF) is an efficient algorithm for many data assimilation problems. In certain circumstances, however, divergence of the EnKF might be spotted. In previous studies, the authors proposed an observation-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations and the simulated ones of the state estimates, in the hope that by doing so one may be able to obtain better estimation accuracy. In the present study, residual nudging is extended and modified in order to handle nonlinear observation operators. Such extension and modification result in an iterative filtering framework that, under suitable conditions, is able to achieve the objective of residual nudging for data assimilation problems with nonlinear observation operators. The 40-dimensional Lorenz-96 model is used to illustrate the performance of the iterative filter. Numerical results show that, while a normal EnKF may diverge with nonlinear observation operators, the proposed iterative filter remains stable and leads to reasonable estimation accuracy under various experimental settings.
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
The iterative technique of sign-changing solution is studied for a nonlinear third-order two-point boundary value problem, where the nonlinear term has the time sin-gularity. By applying the monotonically iterative technique, an existence theorem is established and two useful iterative schemes are obtained.
On large-scale nonlinear programming techniques for solving optimal control problems
Energy Technology Data Exchange (ETDEWEB)
Faco, J.L.D.
1994-12-31
The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.
Institute of Scientific and Technical Information of China (English)
WANG Rouhuai
2006-01-01
The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.
Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems
Energy Technology Data Exchange (ETDEWEB)
Massoudi, M.C.; Tran, P.X.
2006-01-01
We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.
Analytical approximate technique for strongly nonlinear oscillators problem arising in engineering
Directory of Open Access Journals (Sweden)
Y. Khan
2012-12-01
Full Text Available In this paper, a novel method called generalized of the variational iteration method is presented to obtain an approximate analytical solution for strong nonlinear oscillators problem associated in engineering phenomena. This approach resulted in the frequency of the motion as a function of the amplitude of oscillation. It is determined that the method works very well for the whole range of parameters and an excellent agreement is demonstrated and discussed between the approximate frequencies and the exact one. The most significant features of this method are its simplicity and excellent accuracy for the whole range of oscillation amplitude values. Also, the results reveal that this technique is very effective and convenient for solving conservative oscillatory systems with complex nonlinearities. Results obtained by the proposed method are compared with Energy Balance Method (EBM and exact solution showed that, contrary to EBM, simply one or two iterations are enough for obtaining highly accurate results.
Initial-value problem for the Gardner equation applied to nonlinear internal waves
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
Mawhin, Jean; Ure??a, Antonio J.
2002-01-01
A generalization of the well-known Hartman-Nagumo inequality to the case of the vector ordinary p-Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
Directory of Open Access Journals (Sweden)
Ureña Antonio J
2002-01-01
Full Text Available A generalization of the well-known Hartman–Nagumo inequality to the case of the vector ordinary -Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
Renormalization-group symmetries for solutions of nonlinear boundary value problems
Kovalev, V F
2008-01-01
Approximately 10 years ago, the method of renormalization-group symmetries entered the field of boundary value problems of classical mathematical physics, stemming from the concepts of functional self-similarity and of the Bogoliubov renormalization group treated as a Lie group of continuous transformations. Overwhelmingly dominating practical quantum field theory calculations, the renormalization-group method formed the basis for the discovery of the asymptotic freedom of strong nuclear interactions and underlies the Grand Unification scenario. This paper describes the logical framework of a new algorithm based on the modern theory of transformation groups and presents the most interesting results of application of the method to differential and/or integral equation problems and to problems that involve linear functionals of solutions. Examples from nonlinear optics, kinetic theory, and plasma dynamics are given, where new analytical solutions obtained with this algorithm have allowed describing the singular...
Nonlinear Inverse Problem for an Ion-Exchange Filter Model: Numerical Recovery of Parameters
Directory of Open Access Journals (Sweden)
Balgaisha Mukanova
2015-01-01
Full Text Available This paper considers the problem of identifying unknown parameters for a mathematical model of an ion-exchange filter via measurement at the outlet of the filter. The proposed mathematical model consists of a material balance equation, an equation describing the kinetics of ion-exchange for the nonequilibrium case, and an equation for the ion-exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion-exchange and several parameters. First, a numerical solution of the direct problem, the calculation of the impurities concentration at the outlet of the filter, is provided. Then, the inverse problem, finding the parameters of the ion-exchange process in nonequilibrium conditions, is formulated. A method for determining the approximate values of these parameters from the impurities concentration measured at the outlet of the filter is proposed.
Institute of Scientific and Technical Information of China (English)
高自友; 贺国平; 吴方
1997-01-01
For current sequential quadratic programming (SQP) type algorithms, there exist two problems; (i) in order to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the computation amount of this algorithm is very large. So they are not suitable for the large-scale problems; (ii) the SQP algorithms require that the related quadratic programming subproblems be solvable per iteration, but it is difficult to be satisfied. By using e-active set procedure with a special penalty function as the merit function, a new algorithm of sequential systems of linear equations for general nonlinear optimization problems with arbitrary initial point is presented This new algorithm only needs to solve three systems of linear equations having the same coefficient matrix per iteration, and has global convergence and local superlinear convergence. To some extent, the new algorithm can overcome the shortcomings of the SQP algorithms mentioned above.
Institute of Scientific and Technical Information of China (English)
胡云卿; 刘兴高; 薛安克
2014-01-01
This paper considers dealing with path constraints in the framework of the improved control vector it-eration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be di-rectly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the l1 penalty function and a novel smoothing technique are in-troduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algo-rithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reactor operation problem are in agreement with the literature reports, and the computational efficiency is also high.
Nonlinear gauge interactions: a possible solution to the "measurement problem" in quantum mechanics
Hansson, Johan
2010-01-01
Two fundamental, and unsolved problems in physics are: i) the resolution of the "measurement problem" in quantum mechanics ii) the quantization of strongly nonlinear (nonabelian) gauge theories. The aim of this paper is to suggest that these two problems might be linked, and that a mutual, simultaneous solution to both might exist. We propose that the mechanism responsible for the "collapse of the wave function" in quantum mechanics is the nonlinearities already present in the theory via nonabelian gauge interactions. Unlike all other models of spontaneous collapse, our proposal is, to the best of our knowledge, the only one which does not introduce any new elements into the theory. A possible experimental test of the model would be to compare the coherence lengths - here defined as the distance over which quantum mechanical superposition is still valid - for, \\textit{e.g}, electrons and photons in a double-slit experiment. The electrons should have a finite coherence length, while photons should have a much ...
Park, Y. C.; Chang, M. H.; Lee, T.-Y.
2007-06-01
A deterministic global optimization method that is applicable to general nonlinear programming problems composed of twice-differentiable objective and constraint functions is proposed. The method hybridizes the branch-and-bound algorithm and a convex cut function (CCF). For a given subregion, the difference of a convex underestimator that does not need an iterative local optimizer to determine the lower bound of the objective function is generated. If the obtained lower bound is located in an infeasible region, then the CCF is generated for constraints to cut this region. The cutting region generated by the CCF forms a hyperellipsoid and serves as the basis of a discarding rule for the selected subregion. However, the convergence rate decreases as the number of cutting regions increases. To accelerate the convergence rate, an inclusion relation between two hyperellipsoids should be applied in order to reduce the number of cutting regions. It is shown that the two-hyperellipsoid inclusion relation is determined by maximizing a quadratic function over a sphere, which is a special case of a trust region subproblem. The proposed method is applied to twelve nonlinear programming test problems and five engineering design problems. Numerical results show that the proposed method converges in a finite calculation time and produces accurate solutions.
Institute of Scientific and Technical Information of China (English)
Shuang Ping TAO; Shang Bin CUI
2005-01-01
This paper is devoted to studying the initial value problems of the nonlinear KaupKupershmidt equations (e)u/(e)t + α1u(e)2u/(e)x2+β(e)3u/(e)x3+γ(e)5u/( )x5= 0, (x, t) ∈ R2, and (e)u/(e)t+α2 (e)u/(e)x (e)2u/(e)x2+β(e)3u/(e)x3+γ(e)5u/(e)x5 = 0, (x, t) ∈R2. Several important Strichartz type estimates for the fundamental solution of the corresponding linear problem are established. Then we apply such estimates to prove the local and global existence of solutions for the initial value problems of the nonlinear Kaup-Kupershmidt equations. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R), and s ≥ 5/4 for the first equation and s ≥ 301/108 for the second equation.
Kong, Chao; Hai, Kuo; Tan, Jintao; Chen, Hao; Hai, Wenhua
2016-03-01
Nonlinear Kronig-Penney model has been frequently employed to study transmission problem of electron wave in a doped semiconductor superlattice or in a nonlinear electrified chain. Here from an integral equation we derive a novel exact solution of the problem, which contains a simple nonlinear map connecting transmission coefficient with system parameters. Consequently, we propose a scheme to manipulate electronic distribution and transmission by adjusting the system parameters. A new quantum coherence effect is evidenced by the strict expression of transmission coefficient, which results in the aperiodic electronic distributions and different transmission coefficients including the approximate zero transmission and total transmission, and the multiple transmissions. The method based on the concise exact solution can be applied directly to some nonlinear cold atomic systems and a lot of linear Kronig-Penney systems, and also can be extended to investigate electronic transport in different discrete nonlinear systems.
Global well-posedness for nonlinear nonlocal Cauchy problems arising in elasticity
Directory of Open Access Journals (Sweden)
Hantaek Bae
2017-02-01
Full Text Available In this article, we prove global well-posedness for a family of one dimensional nonlinear nonlocal Cauchy problems arising in elasticity. We consider the equation $$ u_{tt}-\\delta Lu_{xx}=\\big(\\beta \\ast [(1-\\deltau+u^{2n+1}]\\big_{xx}\\,, $$ where $L$ is a differential operator, $\\beta$ is an integral operator, and $\\delta =0$ or 1. (Here, the case $\\delta=1$ represents the additional doubly dispersive effect. We prove the global well-posedness of the equation in energy spaces.
The exact solutions of nonlinear problems by Homotopy Analysis Method (HAM
Directory of Open Access Journals (Sweden)
Hafiz Abdul Wahab
2016-06-01
Full Text Available The present paper presents the comparison of analytical techniques. We establish the existence of the phenomena of the noise terms in the perturbation series solution and find the exact solution of the nonlinear problems. If the noise terms exist, the Homotopy Analysis method gives the same series solution as in Adomian Decomposition Method as well as homotopy Perturbation Method (Wahab et al, 2015 and we get the exact solution using the initial guess in Homotopy Analysis Method using the results obtained by Adomian Decomposition Method.
THE DEMAND DISRUPTION MANAGEMENT PROBLEM FOR A SUPPLY CHAIN SYSTEM WITH NONLINEAR DEMAND FUNCTIONS
Institute of Scientific and Technical Information of China (English)
Minghui XU; Xiangtong QI; Gang YU; Hanqin ZHANG; Chengxiu GAO
2003-01-01
This paper addresses the problem of handling the uncertainty of demand in aone-supplier-one-retailer supply chain system. Demand variation often makes the real productiondifferent from what is originally planned, causing a deviation cost from the production plan. Assumethe market demand is sensitive to the retail price in a nonlinear form, we show how to effectivelyhandle the demand uncertainty in a supply chain, both for the case of centralized-decision-makingsystem and the case of decentralized-decision-making system with perfect coordination.
ALE Fractional Step Finite Element Method for Fluid-Structure Nonlinear Interaction Problem
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.
New implicit method for analysis of problems in nonlinear structural dynamics
Directory of Open Access Journals (Sweden)
Gholampour A. A.
2011-06-01
Full Text Available In this paper a new method is proposed for direct time integration of nonlinear structural dynamics problems. In the proposed method the order of time integration scheme is higher than the conventional Newmark’s family of methods. This method assumes second order variation of the acceleration at each time step. Two variable parameters are used to increase the stability and accuracy of the method. The result obtained from this new higher order method is compared with two implicit methods; namely the Wilson-θ and the Newmark’s average acceleration methods.
A NEW SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Duoquan Li
2006-01-01
In [4],Fletcher and Leyffer present a new method that solves nonlinear programming problems without a penalty function by SQP-Filter algorithm. It has attracted much attention due to its good numerical results. In this paper we propose a new SQP-Filter method which can overcome Maratos effect more effectively. We give stricter acceptant criteria when the iterative points are far from the optimal points and looser ones vice-versa. About this new method,the proof of global convergence is also presented under standard assumptions. Numerical results show that our method is efficient.
SOLUTION OF NONLINEAR PROBLEMS IN WATER RESOURCES SYSTEMS BY GENETIC ALGORITHM
Directory of Open Access Journals (Sweden)
Ahmet BAYLAR
1998-03-01
Full Text Available Genetic Algorithm methodology is a genetic process treated on computer which is considering evolution process in the nature. The genetic operations takes place within the chromosomes stored in computer memory. By means of various operators, the genetic knowledge in chromosomes change continuously and success of the community progressively increases as a result of these operations. The primary purpose of this study is calculation of nonlinear programming problems in water resources systems by Genetic Algorithm. For this purpose a Genetic Algoritm based optimization program were developed. It can be concluded that the results obtained from the genetic search based method give the precise results.
Tang, Yao-Zong; Li, Xiao-Lin
2017-03-01
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis. Project supported by the National Natural Science Foundation of China (Grant No. 11471063), the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2015jcyjBX0083), and the Educational Commission Foundation of Chongqing City, China (Grant No. KJ1600330).
Directory of Open Access Journals (Sweden)
Slavica M. Perovich
2011-06-01
Full Text Available The subject of the theoretical analysis presented in this paper is an analytical approach to the temperature estimation, as an inverse problem, for different thermistors – linear resistances structures: series and parallel ones, by the STFT - Special Trans Functions Theory (S.M. Perovich. The mathematical formulae genesis of both cases is given. Some numerical and graphical simulations in MATHEMATICA program have been realized. The estimated temperature intervals for strongly determined values of the equivalent resistances of the nonlinear structures are given, as well.
A Reduced Basis Framework: Application to large scale non-linear multi-physics problems
Directory of Open Access Journals (Sweden)
Daversin C.
2013-12-01
Full Text Available In this paper we present applications of the reduced basis method (RBM to large-scale non-linear multi-physics problems. We first describe the mathematical framework in place and in particular the Empirical Interpolation Method (EIM to recover an affine decomposition and then we propose an implementation using the open-source library Feel++ which provides both the reduced basis and finite element layers. Large scale numerical examples are shown and are connected to real industrial applications arising from the High Field Resistive Magnets development at the Laboratoire National des Champs Magnétiques Intenses.
Institute of Scientific and Technical Information of China (English)
SONG Li-mei; WENG Pei-xuan
2012-01-01
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α ∈ (3,4],where the fractional derivative D0α+ is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
A (k, n-k) Conjugate Boundary Value Problem with Semip ositone Nonlinearity
Institute of Scientific and Technical Information of China (English)
Yao Qing-liu; Shi Shao-yun
2015-01-01
The existence of positive solution is proved for a (k, n−k) conjugate boundary value problem in which the nonlinearity may make negative values and may be singular with respect to the time variable. The main results of Agarwal et al. (Agarwal R P, Grace S R, O’Regan D. Semipositive higher-order differential equa-tions. Appl. Math. Letters, 2004, 14: 201–207) are extended. The basic tools are the Hammerstein integral equation and the Krasnosel’skii’s cone expansion-compression technique.
Institute of Scientific and Technical Information of China (English)
Chongwen Wang; Xing Chu; Weiyao Lan
2014-01-01
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback (CNF) control tech-nique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscil ations. The non-linear feedback part with wel-tuned parameters is introduced to improve the transient performance by smoothing the oscil atory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is il ustrated by a numeric example.
Energy Technology Data Exchange (ETDEWEB)
Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of); Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of); Cattani, C., E-mail: ccattani@unisa.it [Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (Italy); Maalek Ghaini, F.M., E-mail: maalek@yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)
2015-02-15
Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.
Numerical approximation on computing partial sum of nonlinear Schroedinger eigenvalue problems
Institute of Scientific and Technical Information of China (English)
JiachangSUN; DingshengWANG; 等
2001-01-01
In computing electronic structure and energy band in the system of multiparticles,quite a large number of problems are to obtain the partial sum of the densities and energies by using “First principle”。In the ordinary method,the so-called self-consistency approach,the procedure is limited to a small scale because of its high computing complexity.In this paper,the problem of computing the partial sum for a class of nonlinear Schroedinger eigenvalue equations is changed into the constrained functional minimization.By space decompostion and Rayleigh-Schroedinger method,one approximating formula for the minimal is provided.The numerical experiments show that this formula is more precise and its quantity of computation is smaller.
Pollicott, M
2002-01-01
In this paper we analyze a variant of the famous Schelling segregation model in economics as a dynamical system. This model exhibits, what appears to be, a new clustering mechanism. In particular, we explain why the limiting behavior of the non-locally determined lattice system exhibits a number of pronounced geometric characteristics. Part of our analysis uses a geometrically defined Lyapunov function which we show is essentially the total Laplacian for the associated graph Laplacian. The limit states are minimizers of a natural non-linear, non-homogeneous variational problem for the Laplacian, which can also be interpreted as ground state configurations for the lattice gas whose Hamiltonian essentially coincides with our Lyapunov function. Thus we use dynamics to explicitly solve this problem for which there is no known analytic solution. We prove an isoperimetric characterization of the global minimizers on the torus which enables us to explicitly obtain the global minimizers for the graph variational prob...
Directory of Open Access Journals (Sweden)
Samir Dey
2015-07-01
Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.
Large time behavior for solutions of nonlinear parabolic problems with sign-changing measure data
Directory of Open Access Journals (Sweden)
Francesco Petitta
2008-09-01
Full Text Available Let $Omegasubseteq mathbb{R}^N$ a bounded open set, $Ngeq 2$, and let $p>1$; in this paper we study the asymptotic behavior with respect to the time variable $t$ of the entropy solution of nonlinear parabolic problems whose model is $$displaylines{ u_{t}(x,t-Delta_{p} u(x,t=mu quad hbox{in } Omegaimes(0,infty,cr u(x,0=u_{0}(x quad hbox{in } Omega, }$$ where $u_0 in L^{1}(Omega$, and $muin mathcal{M}_{0}(Q$ is a measure with bounded variation over $Q=Omegaimes(0,infty$ which does not charge the sets of zero $p$-capacity; moreover we consider $mu$ that does not depend on time. In particular, we prove that solutions of such problems converge to stationary solutions.
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-02-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2014-01-01
Full Text Available To solve an unconstrained nonlinear minimization problem, we propose an optimal algorithm (OA as well as a globally optimal algorithm (GOA, by deflecting the gradient direction to the best descent direction at each iteration step, and with an optimal parameter being derived explicitly. An invariant manifold defined for the model problem in terms of a locally quadratic function is used to derive a purely iterative algorithm and the convergence is proven. Then, the rank-two updating techniques of BFGS are employed, which result in several novel algorithms as being faster than the steepest descent method (SDM and the variable metric method (DFP. Six numerical examples are examined and compared with exact solutions, revealing that the new algorithms of OA, GOA, and the updated ones have superior computational efficiency and accuracy.
Rahman, Md. Saifur; Lee, Yiu-Yin
2017-10-01
In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.
Yang, Haijian
2016-07-26
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem
Terekhov, Kirill M.; Mallison, Bradley T.; Tchelepi, Hamdi A.
2017-02-01
We present two new cell-centered nonlinear finite-volume methods for the heterogeneous, anisotropic diffusion problem. The schemes split the interfacial flux into harmonic and transversal components. Specifically, linear combinations of the transversal vector and the co-normal are used that lead to significant improvements in terms of the mesh-locking effects. The harmonic component of the flux is represented using a conventional monotone two-point flux approximation; the component along the parameterized direction is treated nonlinearly to satisfy either positivity of the solution as in [29], or the discrete maximum principle as in [9]. In order to make the method purely cell-centered, we derive a homogenization function that allows for seamless interpolation in the presence of heterogeneity following a strategy similar to [46]. The performance of the new schemes is compared with existing multi-point flux approximation methods [3,5]. The robustness of the scheme with respect to the mesh-locking problem is demonstrated using several challenging test cases.
UNSYMMETRICAL NONLINEAR BENDING PROBLEM OF CIRCULAR THIN PLATE WITH VARIABLE THICKNESS
Institute of Scientific and Technical Information of China (English)
WANG Xin-zhi; ZHAO Yong-gang; JU Xu; ZHAO Yan-ying; YEH Kai-yuan
2005-01-01
Firstly, the cross large deflection equation of circular thin plate with variable thickness in rectangular coordinates system was transformed into unsymmetrical large deflection equation of circular thin plate with variable thickness in polar coordinates system.This cross equation in polar coordinates system is united with radical and tangential equations in polar coordinates system, and then three equilibrium equations were obtained. Physical equations and nonlinear deformation equations of strain at central plane are substituted into superior three equilibrium equations, and then three unsymmetrical nonlinear equations with three deformation displacements were obtained. Solution with expression of Fourier series is substituted into fundamental equations; correspondingly fundamental equations with expression of Fourier series were obtained. The problem was solved by modified iteration method under the boundary conditions of clamped edges. As an example, the problem of circular thin plate with variable thickness subjected to loads with cosin form was studied.Characteristic curves of the load varying with the deflection were plotted. The curves vary with the variation of the parameter of variable thickness. Its solution is accordant with physical conception.
A limited memory BFGS method for a nonlinear inverse problem in digital breast tomosynthesis
Landi, G.; Loli Piccolomini, E.; Nagy, J. G.
2017-09-01
Digital breast tomosynthesis (DBT) is an imaging technique that allows the reconstruction of a pseudo three-dimensional image of the breast from a finite number of low-dose two-dimensional projections obtained by different x-ray tube angles. An issue that is often ignored in DBT is the fact that an x-ray beam is polyenergetic, i.e. it is composed of photons with different levels of energy. The polyenergetic model requires solving a large-scale, nonlinear inverse problem, which is more expensive than the typically used simplified, linear monoenergetic model. However, the polyenergetic model is much less susceptible to beam hardening artifacts, which show up as dark streaks and cupping (i.e. background nonuniformities) in the reconstructed image. In addition, it has been shown that the polyenergetic model can be exploited to obtain additional quantitative information about the material of the object being imaged. In this paper we consider the multimaterial polyenergetic DBT model, and solve the nonlinear inverse problem with a limited memory BFGS quasi-Newton method. Regularization is enforced at each iteration using a diagonally modified approximation of the Hessian matrix, and by truncating the iterations.
Black hole complementarity: the inside view
Lowe, David A
2014-01-01
Within the framework of black hole complementarity, a proposal is made for an approximate interior effective field theory description. For generic correlators of local operators on generic black hole states, it agrees with the exact exterior description in a region of overlapping validity, up to corrections that are too small to be measured by typical infalling observers.
Equilibrium Selection in Games with Macroeconomic Complementarities
Kaarboe, Oddvar M.; Tieman, Alexander F.
1999-01-01
We apply the stochastic evolutionary approach of equilibrium selection tomacroeconomic models in which a complementarity at the macro level ispresent. These models often exhibit multiple Pareto-ranked Nash equilibria,and the best response-correspondence of an individual increases with ameasure of th
Compton scattering and the complementarity principle
Sastry, G P
1993-01-01
We explain briefly why Compton scattering from a crystal gives a featureless continuous x-ray background while Bragg scattering from the same crystal produces sharp diffraction peaks. It is shown that the answer lies at the heart of quantum mechanics, namely the uncertainty and the complementarity principles. (author)
Single Photon Experiments and Quantum Complementarity
Directory of Open Access Journals (Sweden)
Georgiev D. D.
2007-04-01
Full Text Available Single photon experiments have been used as one of the most striking illustrations of the apparently nonclassical nature of the quantum world. In this review we examine the mathematical basis of the principle of complementarity and explain why the Englert-Greenberger duality relation is not violated in the configurations of Unruh and of Afshar.
The Elasticities of Complementarity and Substitution
D.P. Broer (Peter)
2004-01-01
textabstractThis paper argues that the conventional definition of the elasticity of complementarity is not well suited to deal with the case of increasing returns. It proposes a slightly different formula, that uses a distance function formulation instead of a production function. The proposed defin
Directory of Open Access Journals (Sweden)
Listrovoy Sergey Vladimirovich
2015-10-01
Full Text Available In this paper the probabilistic method is presented for solving the minimum vertex cover problem using systems of non-linear equations that are formed on the basis of a neighborhood relationship of a particular vertex of a given graph. The minimum vertex cover problem is one of the classic mathematical optimization problems that have been shown to be NP-hard. It has a lot of real-world applications in different fields of science and technology. This study finds solutions to this problem by means of the two basic procedures. In the first procedure three probabilistic pairs of variables according to the maximum vertex degree are formed and processed accordingly. The second procedure checks a given graph for the presence of the leaf vertices. Special software package to check the validity of these procedures was written. The experiment results show that our method has significantly better time complexity and much smaller frequency of the approximation errors in comparison with one of the most currently efficient algorithms.
Pikichyan, H. V.
2016-06-01
It is shown that for the nonlinear boundary value problem of determining the radiation field inside a one-dimensional anisotropic medium illuminated from outside at its boundaries on both sides, the formulas for adding layers in semilinear systems of differential equations for radiative transfer, invariant embedding, and total Ambartsumyan invariance can be used to reduce the equations for the problem to separable equations with initial conditions. The fields travelling to the left and right are thereby found independently of one another. In addition, when one of them has been determined, the other can be found directly using an explicit expression. A general equivalence property of operators with respect to a certain mathematical form, expression, or functional is formulated mathematically. New equations, referred to as kinetic equations of equivalency, are derived from the mutual equivalence of the differential operators of the Boltzmann kinetic equation (the equations of radiative transfer) and the functional equation of the Ambartsumian's complete invariance. Besides separability, these new equations also have the property of linearity. Formulas are also introduced for special problems of single sided illumination of a medium that in this case serve as supplementary information in the initial conditions for formulating Cauchy problems.
Solving nonlinear nonstationary problem of heat-conductivity by finite element method
Directory of Open Access Journals (Sweden)
Антон Янович Карвацький
2016-11-01
Full Text Available Methodology and effective solving algorithm of non-linear dynamic problems of thermal and electric conductivity with significant temperature dependence of thermal and physical properties are given on the basis of finite element method (FEM and Newton linearization method. Discrete equations system FEM was obtained with the use of Galerkin method, where the main function is the finite element form function. The methodology based on successive solving problems of thermal and electrical conductivity has been examined in the work in order to minimize the requirements for calculating resources (RAM. in particular. Having used Mathcad software original programming code was developed to solve the given problem. After investigation of the received results, comparative analyses of accurate solution data and results of numerical solutions, obtained with the use of Matlab programming products, was held. The geometry of one fourth part of the finite sized cylinder was used to test the given numerical model. The discretization of the calculation part was fulfilled using the open programming software for automated Gmsh nets with tetrahedral units, while ParaView, which is an open programming code as well, was used to visualize the calculation results. It was found out that the maximum value violation of potential and temperature determination doesn`t exceed 0,2-0,83% in the given work according to the problem conditions
Analysis of steady-state and dynamical radially-symmetric problems of nonlinear viscoelasticity
Stepanov, Alexey B.
This thesis treats radially symmetric steady states and radially symmetric motions of nonlinearly elastic and viscoelastic plates and shells subject to dead-load and hydrostatic pressures on their boundaries and with the plate subject to centrifugal force. The plates and shells are described by specializations of the exact (nonlinear) equations of three-dimensional continuum mechanics. The treatment in every case is very general and encompasses large classes of constitutive functions (characterizing the material response). We first treat the radially symmetric steady states of plates and shells and the radially symmetric steady rotations of plates. We show that the existence, multiplicity, and qualitative behavior of solutions for problems accounting for the live loads due to hydrostatic pressure and centrifugal force depend critically on the material properties of the bodies, physically reasonable refined descriptions of which are given and examined here with great care, and on the nature of boundary conditions. he treatment here, giving new and sharp results, employs several different mathematical tools, ranging from phase-plane analysis to the mathematically more sophisticated direct methods of the Calculus of Variations, fixed-point theorems, and global continuation methods, each of which has different strengths and weaknesses for handling intrinsic difficulties in the mechanics. We then treat the initial-boundary-value problems for the radially symmetric motions of annular plates and spherical shells that consist of a nonlinearly viscoelastic material of strain-rate type. We discuss a range of physically natural constitutive equations. We first show that when the material is strong in a suitable sense relative to externally applied loads, solutions exist for all time, depend continuously on the data, and consequently are unique. We study the role of the constitutive restrictions and that of the regularity of the data in ensuring the preclusion of a total
hp-Pseudospectral method for solving continuous-time nonlinear optimal control problems
Darby, Christopher L.
2011-12-01
In this dissertation, a direct hp-pseudospectral method for approximating the solution to nonlinear optimal control problems is proposed. The hp-pseudospectral method utilizes a variable number of approximating intervals and variable-degree polynomial approximations of the state within each interval. Using the hp-discretization, the continuous-time optimal control problem is transcribed to a finite-dimensional nonlinear programming problem (NLP). The differential-algebraic constraints of the optimal control problem are enforced at a finite set of collocation points, where the collocation points are either the Legendre-Gauss or Legendre-Gauss-Radau quadrature points. These sets of points are chosen because they correspond to high-accuracy Gaussian quadrature rules for approximating the integral of a function. Moreover, Runge phenomenon for high-degree Lagrange polynomial approximations to the state is avoided by using these points. The key features of the hp-method include computational sparsity associated with low-order polynomial approximations and rapid convergence rates associated with higher-degree polynomials approximations. Consequently, the hp-method is both highly accurate and computationally efficient. Two hp-adaptive algorithms are developed that demonstrate the utility of the hp-approach. The algorithms are shown to accurately approximate the solution to general continuous-time optimal control problems in a computationally efficient manner without a priori knowledge of the solution structure. The hp-algorithms are compared empirically against local (h) and global (p) collocation methods over a wide range of problems and are found to be more efficient and more accurate. The hp-pseudospectral approach developed in this research not only provides a high-accuracy approximation to the state and control of an optimal control problem, but also provides high-accuracy approximations to the costate of the optimal control problem. The costate is approximated by
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
Liu, Tianyu; Jiao, Licheng; Ma, Wenping; Shang, Ronghua
2017-03-01
In this paper, an improved quantum-behaved particle swarm optimization (CL-QPSO), which adopts a new collaborative learning strategy to generate local attractors for particles, is proposed to solve nonlinear numerical problems. Local attractors, which directly determine the convergence behavior of particles, play an important role in quantum-behaved particle swarm optimization (QPSO). In order to get a promising and efficient local attractor for each particle, a collaborative learning strategy is introduced to generate local attractors in the proposed algorithm. Collaborative learning strategy consists of two operators, namely orthogonal operator and comparison operator. For each particle, orthogonal operator is used to discover the useful information that lies in its personal and global best positions, while comparison operator is used to enhance the particle's ability of jumping out of local optima. By using a probability parameter, the two operators cooperate with each other to generate local attractors for particles. A comprehensive comparison of CL-QPSO with some state-of-the-art evolutionary algorithms on nonlinear numeric optimization functions demonstrates the effectiveness of the proposed algorithm.
Recent results and open problems on parabolic equations with gradient nonlinearities
Directory of Open Access Journals (Sweden)
Philippe Souplet
2001-03-01
Full Text Available We survey recent results and present a number of open problems concerning the large-time behavior of solutions of semilinear parabolic equations with gradient nonlinearities. We focus on the model equation with a dissipative gradient term $$u_t-Delta u=u^p-b|abla u|^q,$$ where $p$, $q>1$, $b>0$, with homogeneous Dirichlet boundary conditions. Numerous papers were devoted to this equation in the last ten years, and we compare the results with those known for the case of the pure power reaction-diffusion equation ($b=0$. In presence of the dissipative gradient term a number of new phenomena appear which do not occur when $b=0$. The questions treated concern: sufficient conditions for blowup, behavior of blowing up solutions, global existence and stability, unbounded global solutions, critical exponents, and stationary states.
An efficient numerical technique for the solution of nonlinear singular boundary value problems
Singh, Randhir; Kumar, Jitendra
2014-04-01
In this work, a new technique based on Green's function and the Adomian decomposition method (ADM) for solving nonlinear singular boundary value problems (SBVPs) is proposed. The technique relies on constructing Green's function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on the ADM, the proposed technique avoids solving a sequence of transcendental equations for the undetermined coefficients. It approximates the solution in the form of a series with easily computable components. Additionally, the convergence analysis and the error estimate of the proposed method are supplemented. The reliability and efficiency of the proposed method are demonstrated by several numerical examples. The numerical results reveal that the proposed method is very efficient and accurate.
A new analytic method with a convergence-control parameter for solving nonlinear problems
Zhang, Xiaolong
2016-01-01
In this paper, a new analytic method with a convergence-control parameter $c$ is first proposed. The parameter $c$ is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of $c$. Furthermore, a numerical approach for finding the optimal value of the convergence-control parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves. Moreover, the ideas proposed in this paper may offer us possibilities to greatly improve current analytic and numerical techniques.
Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems
Energy Technology Data Exchange (ETDEWEB)
Lee, Se Jung; Park, Gyung Jin [Hanyang University, Seoul (Korea, Republic of)
2014-05-15
In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.
Institute of Scientific and Technical Information of China (English)
李仁贵; 刘立山
2001-01-01
New existence results are presented for the singular second-order nonlinear boundary value problems u" + g(t)f(u) = 0, 0 ＜ t ＜ 1, au(0) - βu′(0) = 0,γu(1) +δu'(l) = 0 under the conditions 0 ≤ fn+ ＜ M1, m1 ＜ f∞-≤∞ or 0 ≤ f∞+＜M1, m1 ＜ f 0-≤ ∞, where f +0＝ limu→of(u)/u, f∞-＝ limu-→∞(u)/u, f0-＝limu-→of(u)/u, f+∞＝ limu→=f(u)/u, g may be singular att ＝ 0 and/ort ＝ 1 . Theproof uses a fixed point theorem in cone theory.
Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem
Kostikova, E. K.; Zaika, Yu V.
2016-11-01
One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).
Energy Technology Data Exchange (ETDEWEB)
Blanford, M. [Sandia National Labs., Albuquerque, NM (United States)
1997-12-31
Most commercially-available quasistatic finite element programs assemble element stiffnesses into a global stiffness matrix, then use a direct linear equation solver to obtain nodal displacements. However, for large problems (greater than a few hundred thousand degrees of freedom), the memory size and computation time required for this approach becomes prohibitive. Moreover, direct solution does not lend itself to the parallel processing needed for today`s multiprocessor systems. This talk gives an overview of the iterative solution strategy of JAS3D, the nonlinear large-deformation quasistatic finite element program. Because its architecture is derived from an explicit transient-dynamics code, it does not ever assemble a global stiffness matrix. The author describes the approach he used to implement the solver on multiprocessor computers, and shows examples of problems run on hundreds of processors and more than a million degrees of freedom. Finally, he describes some of the work he is presently doing to address the challenges of iterative convergence for ill-conditioned problems.
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Directory of Open Access Journals (Sweden)
U. Filobello-Nino
2015-01-01
Full Text Available We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM. Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we consider a singular nth order three-point boundary value problem with sign changing nonlinearity. By the method of lower solution and topology degree theorem, we investigate the existence of positive solutions to the above problem. Moreover, the associated Green’s function for the above problem is also given. The results of this paper are new and extend the previous known results.
Badriev, I. B.; Banderov, V. V.; Makarov, M. V.
2017-06-01
In this paper we consider the geometrically nonlinear problem of determining the equilibrium position of a sandwich plate consisting of two external carrier layers and located between transversely soft core, connected with carrier layer by means of adhesive joint. We investigate the generalized statement of the problem. For its numerical implementation we offer a two-layer iterative process and investigate the convergence of the method. Numerical experiments are carried out for the model problem.
Llibre, Jaume; Ramírez, Rafael; Ramírez, Valentín
2017-09-01
We consider polynomial vector fields X with a linear type and with homogenous nonlinearities. It is well-known that X has a center at the origin if and only if X has an analytic first integral of the form H =1/2 (x2 +y2) + ∑ j = 3 ∞Hj, where Hj =Hj (x , y) is a homogenous polynomial of degree j. The classical center-focus problem already studied by H. Poincaré consists in distinguishing when the origin of X is either a center or a focus. In this paper we study the inverse center-focus problem. In particular for a given analytic function H defined in a neighborhood of the origin we want to determine the homogenous polynomials in such a way that H is a first integral of X and consequently the origin of X will be a center. We study the particular case of centers which have a local analytic first integral of the form H =1/2 (x2 +y2) (1 + ∑ j = 1 ∞ϒj) , in a neighborhood of the origin, where ϒj is a convenient homogenous polynomial of degree j, for j ≥ 1. These centers are called weak centers, they contain the class of center studied by Alwash and Lloyd, the uniform isochronous centers and the isochronous holomorphic centers, but they do not coincide with the class of isochronous centers. We give a classification of the weak centers for quadratic and cubic vector fields with homogenous nonlinearities.
Energy Technology Data Exchange (ETDEWEB)
Mihalache, D.; Panoiu, N.-C.; Moldoveanu, F.; Baboiu, D.-M. [Dept. of Theor. Phys., Inst. of Atomic Phys., Bucharest (Romania)
1994-09-21
We used the Riemann problem method with a 3*3 matrix system to find the femtosecond single soliton solution for a perturbed nonlinear Schroedinger equation which describes bright ultrashort pulse propagation in properly tailored monomode optical fibres. Compared with the Gel'fand-Levitan-Marchenko approach, the major advantage of the Riemann problem method is that it provides the general single soliton solution in a simple and compact form. Unlike the standard nonlinear Schroedinger equation, here the single soliton solution exhibits periodic evolution patterns. (author)
The traffic equilibrium problem with nonadditive path costs
Energy Technology Data Exchange (ETDEWEB)
Gabriel, S.A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Bernstein, D. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research
1995-08-21
In this paper the authors present a version of the (static) traffic equilibrium problem in which the cost incurred on a path is not simply the sum of the costs on the arcs that constitute that path. The authors motivate this nonadditive version of the problem by describing several situations in which the classical additivity assumption fails. They also present an algorithm for solving nonadditive problems that is based on the recent NE/SQP algorithm, a fast and robust method for the nonlinear complementarity problem. Finally, they present a small example that illustrates both the importance of using nonadditive costs and the effectiveness of the NE/SQP method.
Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review
Directory of Open Access Journals (Sweden)
M. K. Sakharov
2015-01-01
Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of
Skill complementarity enhances heterophily in collaboration networks
Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Tan, Qun-Zhao; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene
2016-01-01
Much empirical evidence shows that individuals usually exhibit significant homophily in social networks. We demonstrate, however, skill complementarity enhances heterophily in the formation of collaboration networks, where people prefer to forge social ties with people who have professions different from their own. We construct a model to quantify the heterophily by assuming that individuals choose collaborators to maximize utility. Using a huge database of online societies, we find evidence of heterophily in collaboration networks. The results of model calibration confirm the presence of heterophily. Both empirical analysis and model calibration show that the heterophilous feature is persistent along the evolution of online societies. Furthermore, the degree of skill complementarity is positively correlated with their production output. Our work sheds new light on the scientific research utility of virtual worlds for studying human behaviors in complex socioeconomic systems.
Strong gravitational lensing and dark energy complementarity
Energy Technology Data Exchange (ETDEWEB)
Linder, Eric V.
2004-01-21
In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w{sub 0} and time variation w{sub a}. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1 percent accuracy can improve equation of state characterization by 15-50 percent. Next generation surveys should provide data on roughly 105 lens systems, though systematic errors will remain challenging.
Institute of Scientific and Technical Information of China (English)
WEN Guochun; HUANG Sha; QIAO Yuying
2001-01-01
In 1988, Yu. A. Alkhutov and I. T. Mamedov discussed the solvability of the Dirichlet problem for linear uniformly parabolic equations with measurable coefficients where the coefficients satisfy the condition In this paper, we try to generalize the results of Alkhutov and Mamedov to nonlinear uni-formly parabolic systems of second order equations with measurable coefficients; moreover,we also discuss the solvability of the Neumann problem for the above systems.
Directory of Open Access Journals (Sweden)
Liaqat Ali
2016-09-01
Full Text Available In this research work a new version of Optimal Homotopy Asymptotic Method is applied to solve nonlinear boundary value problems (BVPs in finite and infinite intervals. It comprises of initial guess, auxiliary functions (containing unknown convergence controlling parameters and a homotopy. The said method is applied to solve nonlinear Riccati equations and nonlinear BVP of order two for thin film flow of a third grade fluid on a moving belt. It is also used to solve nonlinear BVP of order three achieved by Mostafa et al. for Hydro-magnetic boundary layer and micro-polar fluid flow over a stretching surface embedded in a non-Darcian porous medium with radiation. The obtained results are compared with the existing results of Runge-Kutta (RK-4 and Optimal Homotopy Asymptotic Method (OHAM-1. The outcomes achieved by this method are in excellent concurrence with the exact solution and hence it is proved that this method is easy and effective.
Herd behaviour, strategic complementarities and technology adoption
2004-01-01
In technology adoption, herd behaviour can lead to a suboptimal outcome. An example is given by Choi (1997): it is a model of technology choice under uncertainty where herding arises because of strategic complementarities and risk aversion. It causes a positive experimenting bias against the adoption of a more efficient (in terms of expected value) technology. We introduce in his model an additional element upon which firms base their technology decision: the economic environment. We investig...
Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations
Kanoglu, U.; Aydin, B.
2014-12-01
The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV
Optimal experimental design for nonlinear ill-posed problems applied to gravity dams
Lahmer, Tom
2011-12-01
The safe operation of gravity dams requires continuous monitoring in order to detect any changes concerning the stability of these constructions. Damage which may result from cyclic loading, variation in temperature, aging, chemical reactions, etc needs to be identified as fast and as reliable as possible. Generally, existing dams are well monitored by several types of measurement devices which log different physical quantities. The monitoring practice is according to official guidelines and the engineer’s experience. The aim of this paper is to perform a simulation-based optimal design for the monitoring of existing dams. Therefore, a design criterion which is based on average mean-squared reconstruction errors is derived. The reconstructions are obtained as regularized solutions of the nonlinear, inverse and ill-posed problem of damage identification. The basis for these investigations is a hydro-mechanically coupled model applied to gravity dams. Damaged zones in the dams are described by a smeared crack model, i.e. by spatially varying material properties. The inherent correlation of changes in the dominating parameters is explicitly considered during the inverse analysis. For the solution and regularization of the inverse problem, the iteratively regularized Gauss-Newton method is applied. Numerical results of the inverse analysis and the design process allow assessments of the applicability of the strategies proposed here.
Blow up and quenching for a problem with nonlinear boundary conditions
Directory of Open Access Journals (Sweden)
Nuri Ozalp
2015-07-01
Full Text Available In this article, we study the blow up behavior of the heat equation $ u_t=u_{xx}$ with $u_x(0,t=u^{p}(0,t$, $u_x(a,t=u^q(a,t$. We also study the quenching behavior of the nonlinear parabolic equation $v_t=v_{xx}+2v_x^{2}/(1-v$ with $v_x(0,t=(1-v(0,t^{-p+2}$, $ v_x(a,t=(1-v(a,t^{-q+2}$. In the blow up problem, if $u_0$ is a lower solution then we get the blow up occurs in a finite time at the boundary $x=a$ and using positive steady state we give criteria for blow up and non-blow up. In the quenching problem, we show that the only quenching point is $x=a$ and $v_t$ blows up at the quenching time, under certain conditions and using positive steady state we give criteria for quenching and non-quenching. These analysis is based on the equivalence between the blow up and the quenching for these two equations.
Stamovlasis, Dimitrios
2006-01-01
The current study tests the nonlinear dynamical hypothesis in science education problem solving by applying catastrophe theory. Within the neo-Piagetian framework a cusp catastrophe model is proposed, which accounts for discontinuities in students' performance as a function of two controls: the functional M-capacity as asymmetry and the degree of field dependence/independence as bifurcation. The two controls have functional relation with two opponent processes, the processing of relevant information and the inhibitory process of dis-embedding irrelevant information respectively. Data from achievement scores of freshmen at a technological college were measured at two points in time, and were analyzed using dynamic difference equations and statistical regression techniques. The cusp catastrophe model proved superior (R(2)=0.77) comparing to the pre-post linear counterpart (R(2)=0.46). Besides the empirical evidence, theoretical analyses are provided, which attempt to build bridges between NDS-theory concepts and science education problem solving and to neo-Piagetian theories as well. This study sets a framework for the application of catastrophe theory in education.
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Energy Technology Data Exchange (ETDEWEB)
Glass, Micheal W.; Hogan, Roy E., Jr.; Gartling, David K.
2010-03-01
The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction
Institute of Scientific and Technical Information of China (English)
GUO Qintao; ZHANG Lingmi; TAO Zheng
2008-01-01
Thin wall component is utilized to absorb impact energy of a structure. However, the dynamic behavior of such thin-walled structure is highly non-linear with material, geometry and boundary non-linearity. A model updating and validation procedure is proposed to build accurate finite element model of a frame structure with a non-linear thin-walled component for dynamic analysis. Design of experiments (DOE) and principal component decomposition (PCD) approach are applied to extract dynamic feature from nonlinear impact response for correlation of impact test result and FE model of the non-linear structure. A strain-rate-dependent non-linear model updating method is then developed to build accurate FE model of the structure. Computer simulation and a real frame structure with a highly non-linear thin-walled component are employed to demonstrate the feasibility and effectiveness of the proposed approach.
Indian Academy of Sciences (India)
EMRULLAH YA¸SAR; YAKUP YILDIRIM; ILKER BURAK GIRESUNLU
2016-08-01
Fin materials can be observed in a variety of engineering applications. They are used to ease the dissipation of heat from a heated wall to the surrounding environment. In this work, we consider a nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. The equation(s) under study are highly nonlinear. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. Firstly, we consider the Lie group analysis for different cases of thermal conductivity and the heat transfer coefficients. These classifications are obtained from the Lie group analysis. Then, the first integrals of the nonlinear straight fin problem are constructed by three methods, namely, Noether’s classical method, partial Noether approach and Ibragimov’s nonlocal conservation method. Some exact analytical solutions are also constructed. The obtained result is also compared with the result obtained by other methods.
Studies in nonlinear problems of energy. Progress report, January 1, 1992--December 31, 1992
Energy Technology Data Exchange (ETDEWEB)
Matkowsky, B.J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.
Horizons of description: Black holes and complementarity
Bokulich, Peter Joshua Martin
Niels Bohr famously argued that a consistent understanding of quantum mechanics requires a new epistemic framework, which he named complementarity . This position asserts that even in the context of quantum theory, classical concepts must be used to understand and communicate measurement results. The apparent conflict between certain classical descriptions is avoided by recognizing that their application now crucially depends on the measurement context. Recently it has been argued that a new form of complementarity can provide a solution to the so-called information loss paradox. Stephen Hawking argues that the evolution of black holes cannot be described by standard unitary quantum evolution, because such evolution always preserves information, while the evaporation of a black hole will imply that any information that fell into it is irrevocably lost---hence a "paradox." Some researchers in quantum gravity have argued that this paradox can be resolved if one interprets certain seemingly incompatible descriptions of events around black holes as instead being complementary. In this dissertation I assess the extent to which this black hole complementarity can be undergirded by Bohr's account of the limitations of classical concepts. I begin by offering an interpretation of Bohr's complementarity and the role that it plays in his philosophy of quantum theory. After clarifying the nature of classical concepts, I offer an account of the limitations these concepts face, and argue that Bohr's appeal to disturbance is best understood as referring to these conceptual limits. Following preparatory chapters on issues in quantum field theory and black hole mechanics, I offer an analysis of the information loss paradox and various responses to it. I consider the three most prominent accounts of black hole complementarity and argue that they fail to offer sufficient justification for the proposed incompatibility between descriptions. The lesson that emerges from this
Institute of Scientific and Technical Information of China (English)
Wan Zhongping; Wang Guangrain; Lv Yibing
2011-01-01
The penalty function method, presented many years ago, is an important nu- merical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty func- tion approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.
Energy Technology Data Exchange (ETDEWEB)
Crama, Y.; Mazzola, J.
1994-12-31
This paper defines the dense subhypergraph problem (DSP), which provides a generalized modelling framework for the nonlinear knapsack problem and other well-known problems arising in areas such as capital budgeting, flexible manufacturing system production planning, repair-kit selection, and compiler construction. We define several families of valid inequalities and state conditions under which these inequalities are facet-defining for DSP. We also explore the polyhedral structure of the cardinality-constrained DSP. Finally, we examine a special case of this problem that arises, for example, within the context of Lagrangian decomposition. For this case, we present a complete description of the convex hull of the feasible region.
奇摄动非线性边值问题%THE SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEMS
Institute of Scientific and Technical Information of China (English)
莫嘉琪
2000-01-01
The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the uniform validity of solution is proved by using the differential inequalities.
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...
Directory of Open Access Journals (Sweden)
Peiguo Zhang
2013-01-01
Full Text Available By using the cone theory and the Banach contraction mapping principle, the existence and uniqueness results are established for nonlinear higher-order differential equation boundary value problems with sign-changing Green’s function. The theorems obtained are very general and complement previous known results.
Peter E. Zhidkov
2001-01-01
We find sufficient conditions for systems of functions to be Riesz bases in $L_2(0,1)$. Then we improve a theorem presented in [13] by showing that a ``standard'' system of solutions of a nonlinear boundary-value problem, normalized to 1, is a Riesz basis in $L_2(0,1)$. The proofs in this article use Bari's theorem.
Directory of Open Access Journals (Sweden)
Pratibha Joshi
2014-12-01
Full Text Available In this paper, we have achieved high order solution of a three dimensional nonlinear diffusive-convective problem using modified variational iteration method. The efficiency of this approach has been shown by solving two examples. All computational work has been performed in MATHEMATICA.
Institute of Scientific and Technical Information of China (English)
Zhiguang Xiong; Chuanmiao Chen
2007-01-01
In this paper,n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u - uh = O(hn+2),n ≥ 2,at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.
Institute of Scientific and Technical Information of China (English)
AKDIM Y; BENNOUNA J; MEKKOUR M; REDWANE H
2013-01-01
We study the existence of renormalized solutions for a class of nonlinear degenerated parabolic problem.The Carathéodory function satisfying the coercivity condition,the growth condition and only the large monotonicity.The data belongs to L1(Q).
SOLUTION WITH SHOCK-BOUNDARY LAYER AND SHOCK-INTERIOR LAYER TO A CLASS OF NONLINEAR PROBLEMS
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
In this paper,the shock behaviors of solution to a class of nonlinear singularly perturbed problems are considered.Under some appropriate conditions,the outer and interior solutions to the original problem are constructed.Using the special limit and matching theory,the expressions of solutions with the shock behavior near the boundary and some interior points are given and the domain for boundary values is obtained.
CSIR Research Space (South Africa)
Mhlongo, MD
2014-05-01
Full Text Available Solutions of Nonlinear Fin Problem for Steady Heat Transfer in Longitudinal Fin with Different Profiles M. D. Mhlongo1 and R. J. Moitsheki2 1 Defence, Peace, Safety and Security, Landward Sciences, Council for Scientific and Industrial Research, P.O. Box 395... efficiency are studied. 1. Introduction Heat transfer through extended surfaces has been studied quite extensively [1], perhaps because of its frequent applica- tions in engineering. Through the process of mathematical modeling, heat transfer problems...
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2016-01-01
in its plane, and in the circular cylinder unlimited in length.An approximate numerical solution of the differential equation that is included in a nonlinear mathematical model of the thermal explosion enables us to obtain quantitative estimates of combination of determining parameters at which the limit state occurs in areas of not only canonical form. A capability to study of the thermal explosion state can be extended in the context of development of mathematical modeling methods, including methods of model analysis to describe the thermal state of solids.To analyse a mathematical model of the thermal explosion in a homogeneous solid the paper uses a variational approach based on the dual variational formulation of the appropriate nonlinear stationary problem of heat conduction in such a body. This formulation contains two alternative functional reaching the matching values in their stationary points corresponding to the true temperature distribution. This functional feature allows you to not only get an approximate quantitative estimate of the combination of parameters that determine the thermal explosion state, but also to find the greatest possible error in such estimation.
Non-linear time series extreme events and integer value problems
Turkman, Kamil Feridun; Zea Bermudez, Patrícia
2014-01-01
This book offers a useful combination of probabilistic and statistical tools for analyzing nonlinear time series. Key features of the book include a study of the extremal behavior of nonlinear time series and a comprehensive list of nonlinear models that address different aspects of nonlinearity. Several inferential methods, including quasi likelihood methods, sequential Markov Chain Monte Carlo Methods and particle filters, are also included so as to provide an overall view of the available tools for parameter estimation for nonlinear models. A chapter on integer time series models based on several thinning operations, which brings together all recent advances made in this area, is also included. Readers should have attended a prior course on linear time series, and a good grasp of simulation-based inferential methods is recommended. This book offers a valuable resource for second-year graduate students and researchers in statistics and other scientific areas who need a basic understanding of nonlinear time ...
Band selection for nonlinear unmixing of hyperspectral images as a maximal clique problem.
Imbiriba, Tales; Bermudez, Jose Carlos; Richard, Cedric
2017-03-01
Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. Such methods, however, usually require the inversion of matrices of sizes equal to the number of spectral bands. Reducing the computational load of these methods remains a challenge in large scale applications. This paper proposes a centralized band selection (BS) method for supervised unmixing in the reproducing kernel Hilbert space (RKHS). It is based upon the coherence criterion, which sets the largest value allowed for correlations between the basis kernel functions characterizing the selected bands in the unmixing model. We show that the proposed BS approach is equivalent to solving a maximum clique problem (MCP), i.e., searching for the biggest complete subgraph in a graph. Furthermore, we devise a strategy for selecting the coherence threshold and the Gaussian kernel bandwidth using coherence bounds for linearly independent bases. Simulation results illustrate the efficiency of the proposed method.
Jarlebring, Elias; Michiels, Wim
2012-01-01
The partial Schur factorization can be used to represent several eigenpairs of a matrix in a numerically robust way. Different adaptions of the Arnoldi method are often used to compute partial Schur factorizations. We propose here a technique to compute a partial Schur factorization of a nonlinear eigenvalue problem (NEP). The technique is inspired by the algorithm in [8], now called the infinite Arnoldi method. The infinite Arnoldi method is a method designed for NEPs, and can be interpreted as Arnoldi's method applied to a linear infinite-dimensional operator, whose reciprocal eigenvalues are the solutions to the NEP. As a first result we show that the invariant pairs of the operator are equivalent to invariant pairs of the NEP. We characterize the structure of the invariant pairs of the operator and show how one can carry out a modification of the infinite Arnoldi method by respecting the structure. This also allows us to naturally add the feature known as locking. We nest this algorithm with an outer iter...
CHAOS-REGULARIZATION HYBRID ALGORITHM FOR NONLINEAR TWO-DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEM
Institute of Scientific and Technical Information of China (English)
王登刚; 刘迎曦; 李守巨
2002-01-01
A numerical model of nonlinear two-dimensional steady inverse heat conduction problem was established considering the thermal conductivity changing with temperature.Combining the chaos optimization algorithm with the gradient regularization method, a chaos-regularization hybrid algorithm was proposed to solve the established numerical model.The hybrid algorithm can give attention to both the advantages of chaotic optimization algorithm and those of gradient regularization method. The chaos optimization algorithm was used to help the gradient regalarization method to escape from local optima in the hybrid algorithm. Under the assumption of temperature-dependent thermal conductivity changing with temperature in linear rule, the thermal conductivity and the linear rule were estimated by using the present method with the aid of boundary temperature measurements. Numerical simulation results show that good estimation on the thermal conductivity and the linear function can be obtained with arbitrary initial guess values, and that the present hybrid algorithm is much more efficient than conventional genetic algorithm and chaos optimization algorithm.
A Regularization SAA Scheme for a Stochastic Mathematical Program with Complementarity Constraints
Directory of Open Access Journals (Sweden)
Yu-xin Li
2014-01-01
Full Text Available To reflect uncertain data in practical problems, stochastic versions of the mathematical program with complementarity constraints (MPCC have drawn much attention in the recent literature. Our concern is the detailed analysis of convergence properties of a regularization sample average approximation (SAA method for solving a stochastic mathematical program with complementarity constraints (SMPCC. The analysis of this regularization method is carried out in three steps: First, the almost sure convergence of optimal solutions of the regularized SAA problem to that of the true problem is established by the notion of epiconvergence in variational analysis. Second, under MPCC-MFCQ, which is weaker than MPCC-LICQ, we show that any accumulation point of Karash-Kuhn-Tucker points of the regularized SAA problem is almost surely a kind of stationary point of SMPCC as the sample size tends to infinity. Finally, some numerical results are reported to show the efficiency of the method proposed.