WorldWideScience

Sample records for nonlinear choice models

  1. Nonlinear model-based control of the Czochralski process III: Proper choice of manipulated variables and controller parameter scheduling

    Science.gov (United States)

    Neubert, M.; Winkler, J.

    2012-12-01

    This contribution continues an article series [1,2] about the nonlinear model-based control of the Czochralski crystal growth process. The key idea of the presented approach is to use a sophisticated combination of nonlinear model-based and conventional (linear) PI controllers for tracking of both, crystal radius and growth rate. Using heater power and pulling speed as manipulated variables several controller structures are possible. The present part tries to systematize the properties of the materials to be grown in order to get unambiguous decision criteria for a most profitable choice of the controller structure. For this purpose a material specific constant M called interface mobility and a more process specific constant S called system response number are introduced. While the first one summarizes important material properties like thermal conductivity and latent heat the latter one characterizes the process by evaluating the average axial thermal gradients at the phase boundary and the actual growth rate at which the crystal is grown. Furthermore these characteristic numbers are useful for establishing a scheduling strategy for the PI controller parameters in order to improve the controller performance. Finally, both numbers give a better understanding of the general thermal system dynamics of the Czochralski technique.

  2. Generalized Nonlinear Yule Models

    OpenAIRE

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-01-01

    With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...

  3. ParaChoice Model.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon Walter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Levinson, Rebecca Sobel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); West, Todd H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-12-01

    Analysis with the ParaChoice model addresses three barriers from the VTO Multi-Year Program Plan: availability of alternative fuels and electric charging station infrastructure, availability of AFVs and electric drive vehicles, and consumer reluctance to purchase new technologies. In this fiscal year, we first examined the relationship between the availability of alternative fuels and station infrastructure. Specifically, we studied how electric vehicle charging infrastructure affects the ability of EVs to compete with vehicles that rely on mature, conventional petroleum-based fuels. Second, we studied how the availability of less costly AFVs promotes their representation in the LDV fleet. Third, we used ParaChoice trade space analyses to help inform which consumers are reluctant to purchase new technologies. Last, we began analysis of impacts of alternative energy technologies on Class 8 trucks to isolate those that may most efficaciously advance HDV efficiency and petroleum use reduction goals.

  4. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  5. A hybrid choice model with nonlinear utility functions and bounded distributions for latent variables : application to purchase intention decisions of electric cars

    NARCIS (Netherlands)

    Kim, J.; Rasouli, S.; Timmermans, H.J.P.

    2014-01-01

    The hybrid choice model (HCM) provides a powerful framework to account for heterogeneity across decision-makers in terms of different underlying latent attitudes. Typically, effects of the latent attitudes have been represented assuming linear utility functions. In contributing to the further

  6. A hybrid choice model with a nonlinear utility function and bounded distribution for latent variables : application to purchase intention decisions of electric cars

    NARCIS (Netherlands)

    Kim, J.; Rasouli, S.; Timmermans, H.J.P.

    2016-01-01

    The hybrid choice model (HCM) provides a powerful framework to account for heterogeneity across decision-makers in terms of different underlying latent attitudes. Typically, effects of the latent attitudes have been represented assuming linear utility functions. In contributing to the further

  7. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    Balderacchi, Matteo; Trevisan, Marco; Vischetti, Costantino

    2006-01-01

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested [it

  8. Identification of nonlinear anelastic models

    International Nuclear Information System (INIS)

    Draganescu, G E; Bereteu, L; Ercuta, A

    2008-01-01

    A useful nonlinear identification technique applied to the anelastic and rheologic models is presented in this paper. First introduced by Feldman, the method is based on the Hilbert transform, and is currently used for identification of the nonlinear vibrations

  9. Modeling the dynamics of choice.

    Science.gov (United States)

    Baum, William M; Davison, Michael

    2009-06-01

    A simple linear-operator model both describes and predicts the dynamics of choice that may underlie the matching relation. We measured inter-food choice within components of a schedule that presented seven different pairs of concurrent variable-interval schedules for 12 food deliveries each with no signals indicating which pair was in force. This measure of local choice was accurately described and predicted as obtained reinforcer sequences shifted it to favor one alternative or the other. The effect of a changeover delay was reflected in one parameter, the asymptote, whereas the effect of a difference in overall rate of food delivery was reflected in the other parameter, rate of approach to the asymptote. The model takes choice as a primary dependent variable, not derived by comparison between alternatives-an approach that agrees with the molar view of behaviour.

  10. New Route Choice Models

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker

    udgave af SUE, der rummer to typer stokastiske faktorer - den ene beskriver trafikanters 'oplevede' rejsemodstande på stræknings-niveauet (som i den traditionelle SUE), mens den anden beskriver forskelle i trafikanternes præferen-cer. Denne model har vist sig at give en mere realistisk beskrivelse af...

  11. LDRD report nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, D.; Heinstein, M.

    1997-09-01

    The very general problem of model reduction of nonlinear systems was made tractable by focusing on the very large subclass consisting of linear subsystems connected by nonlinear interfaces. Such problems constitute a large part of the nonlinear structural problems encountered in addressing the Sandia missions. A synthesis approach to this class of problems was developed consisting of: detailed modeling of the interface mechanics; collapsing the interface simulation results into simple nonlinear interface models; constructing system models by assembling model approximations of the linear subsystems and the nonlinear interface models. These system models, though nonlinear, would have very few degrees of freedom. A paradigm problem, that of machine tool vibration, was selected for application of the reduction approach outlined above. Research results achieved along the way as well as the overall modeling of a specific machine tool have been very encouraging. In order to confirm the interface models resulting from simulation, it was necessary to develop techniques to deduce interface mechanics from experimental data collected from the overall nonlinear structure. A program to develop such techniques was also pursued with good success.

  12. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  13. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  14. Modelling Choice of Information Sources

    Directory of Open Access Journals (Sweden)

    Agha Faisal Habib Pathan

    2013-04-01

    Full Text Available This paper addresses the significance of traveller information sources including mono-modal and multimodal websites for travel decisions. The research follows a decision paradigm developed earlier, involving an information acquisition process for travel choices, and identifies the abstract characteristics of new information sources that deserve further investigation (e.g. by incorporating these in models and studying their significance in model estimation. A Stated Preference experiment is developed and the utility functions are formulated by expanding the travellers' choice set to include different combinations of sources of information. In order to study the underlying choice mechanisms, the resulting variables are examined in models based on different behavioural strategies, including utility maximisation and minimising the regret associated with the foregone alternatives. This research confirmed that RRM (Random Regret Minimisation Theory can fruitfully be used and can provide important insights for behavioural studies. The study also analyses the properties of travel planning websites and establishes a link between travel choices and the content, provenance, design, presence of advertisements, and presentation of information. The results indicate that travellers give particular credence to governmentowned sources and put more importance on their own previous experiences than on any other single source of information. Information from multimodal websites is more influential than that on train-only websites. This in turn is more influential than information from friends, while information from coachonly websites is the least influential. A website with less search time, specific information on users' own criteria, and real time information is regarded as most attractive

  15. Chaos, creativity, and substance abuse: the nonlinear dynamics of choice.

    Science.gov (United States)

    Zausner, Tobi

    2011-04-01

    Artists create their work in conditions of disequilibrium, states of creative chaos that may appear turbulent but are capable of bringing forth new order. By absorbing information from the environment and discharging it negentropically as new work, artists can be modeled as dissipative systems. A characteristic of chaotic systems is a heightened sensitivity to stimuli, which can generate either positive experiences or negative ones that can lead some artists to substance abuse and misguided searches for a creative chaos. Alcohol and drug use along with inadequately addressed co-occurring emotional disorders interfere with artists' quest for the nonlinearity of creativity. Instead, metaphorically modeled by a limit cycle of addiction and then a spiral to disorder, the joys of a creative chaos become an elusive chimera for them rather than a fulfilling experience. Untreated mental illness and addiction to substances have shortened the lives of artists such as Vincent Van Gogh, Frida Kahlo, Henri de Toulouse-Lautrec, and Jackson Pollock, all of whom committed suicide. In contrast Edvard Munch and John Callahan, who chose to address their emotional problems and substance abuse, continued to live and remain creative. Choosing to access previously avoided moments of pain can activate the nonlinear power of self-transformation.

  16. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  17. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-31

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible. Projections by all models were in close agreement only in the first few years. Although the projections from LVCFlex, MA3T, LAVE-Trans, and ParaChoice were in qualitative agreement, there were significant differences in sales shares given by the different models for individual powertrain types, particularly in later years (2030 and later). For example, projected sales shares of conventional spark-ignition vehicles in 2030 for a given scenario ranged from 35% to 74%. Reasons for such differences are discussed, recognizing that these models were not developed to give quantitatively accurate predictions of future sales shares, but to represent vehicles markets realistically and capture the connections between sales and important influences. Model features were also compared at a high level, and suggestions for further comparison

  18. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-01

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible.

  19. A nested recursive logit model for route choice analysis

    DEFF Research Database (Denmark)

    Mai, Tien; Frejinger, Emma; Fosgerau, Mogens

    2015-01-01

    choices and the model does not require any sampling of choice sets. Furthermore, the model can be consistently estimated and efficiently used for prediction.A key challenge lies in the computation of the value functions, i.e. the expected maximum utility from any position in the network to a destination....... The value functions are the solution to a system of non-linear equations. We propose an iterative method with dynamic accuracy that allows to efficiently solve these systems.We report estimation results and a cross-validation study for a real network. The results show that the NRL model yields sensible......We propose a route choice model that relaxes the independence from irrelevant alternatives property of the logit model by allowing scale parameters to be link specific. Similar to the recursive logit (RL) model proposed by Fosgerau et al. (2013), the choice of path is modeled as a sequence of link...

  20. Nonlinear Modeling by Assembling Piecewise Linear Models

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  1. Nonlinear Control of Heartbeat Models

    Directory of Open Access Journals (Sweden)

    Witt Thanom

    2011-02-01

    Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.

  2. Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice

    Directory of Open Access Journals (Sweden)

    Federico Chella

    2017-05-01

    Full Text Available Bispectral analysis is a signal processing technique that makes it possible to capture the non-linear and non-Gaussian properties of the EEG signals. It has found various applications in EEG research and clinical practice, including the assessment of anesthetic depth, the identification of epileptic seizures, and more recently, the evaluation of non-linear cross-frequency brain functional connectivity. However, the validity and reliability of the indices drawn from bispectral analysis of EEG signals are potentially biased by the use of a non-neutral EEG reference. The present study aims at investigating the effects of the reference choice on the analysis of the non-linear features of EEG signals through bicoherence, as well as on the estimation of cross-frequency EEG connectivity through two different non-linear measures, i.e., the cross-bicoherence and the antisymmetric cross-bicoherence. To this end, four commonly used reference schemes were considered: the vertex electrode (Cz, the digitally linked mastoids, the average reference, and the Reference Electrode Standardization Technique (REST. The reference effects were assessed both in simulations and in a real EEG experiment. The simulations allowed to investigated: (i the effects of the electrode density on the performance of the above references in the estimation of bispectral measures; and (ii the effects of the head model accuracy in the performance of the REST. For real data, the EEG signals recorded from 10 subjects during eyes open resting state were examined, and the distortions induced by the reference choice in the patterns of alpha-beta bicoherence, cross-bicoherence, and antisymmetric cross-bicoherence were assessed. The results showed significant differences in the findings depending on the chosen reference, with the REST providing superior performance than all the other references in approximating the ideal neutral reference. In conclusion, this study highlights the importance of

  3. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  4. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  5. Nonlinear models for autoregressive conditional heteroskedasticity

    DEFF Research Database (Denmark)

    Teräsvirta, Timo

    This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation are discu...

  6. Non-linear Growth Models in Mplus and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  7. Relation between nonlinear models and gauge ambiguities

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Ramachandran, R.; Rupertsberger, H.; Skagerstam, B.S.

    1980-01-01

    We show that the solutions of a class of nonlinear models also generate gauge ambiguities in the vacuum sector of Yang-Mills theories. Our results extend known connections between gauge ambiguities and certain nonlinear sigma-models, and clarify the underlying group theory. For many nonlinear models, we also give a simple, intrinsic parametrization of physical fields (which have values in a homogeneous space of a group). (orig.)

  8. Superspace formulation of new nonlinear sigma models

    International Nuclear Information System (INIS)

    Gates, S.J. Jr.

    1983-07-01

    The superspace formulation of two classes of supersymmetric nonlinear σ-models are presented. Two alternative N=1 superspace formulations are given for the d=2 supersymmetric nonlinear σ-models with Killing vector potentials: (a) formulation uses an active central charge and, (b) formulation uses a spurion superfield without inducing a classical breakdown of supersymmetry. The N=2 vector multiplet is used to construct a new class of d=4 nonlinear σ-models which when reduced to d=2 possess N=4 supersymmetry. Implications of these two classes of nonlinear σ-models for N>=4 superfield supergravity are discussed. (author)

  9. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  10. Discrete choice modeling of season choice for Minnesota turkey hunters

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.; Cornicelli, Louis; Merchant, Steven S.

    2018-01-01

    Recreational turkey hunting exemplifies the interdisciplinary nature of modern wildlife management. Turkey populations in Minnesota have reached social or biological carrying capacities in many areas, and changes to turkey hunting regulations have been proposed by stakeholders and wildlife managers. This study employed discrete stated choice modeling to enhance understanding of turkey hunter preferences about regulatory alternatives. We distributed mail surveys to 2,500 resident turkey hunters. Results suggest that, compared to season structure and lotteries, additional permits and level of potential interference from other hunters most influenced hunter preferences for regulatory alternatives. Low hunter interference was preferred to moderate or high interference. A second permit issued only to unsuccessful hunters was preferred to no second permit or permits for all hunters. Results suggest that utility is not strictly defined by harvest or an individual's material gain but can involve preference for other outcomes that on the surface do not materially benefit an individual. Discrete stated choice modeling offers wildlife managers an effective way to assess constituent preferences related to new regulations before implementing them. 

  11. Process and Context in Choice Models

    DEFF Research Database (Denmark)

    Ben-Akiva, Moshe; Palma, André de; McFadden, Daniel

    2012-01-01

    . The extended choice framework includes more behavioral richness through the explicit representation of the planning process preceding an action and its dynamics and the effects of context (family, friends, and market) on the process leading to a choice, as well as the inclusion of new types of subjective data...... in choice models. We discuss the key issues involved in applying the extended framework, focusing on richer data requirements, theories, and models, and present three partial demonstrations of the proposed framework. Future research challenges include the development of more comprehensive empirical tests...

  12. Consumer choice of theme parks : a conjoint choice model of seasonality effects and variety seeking behavior

    NARCIS (Netherlands)

    Kemperman, A.D.A.M.; Borgers, A.W.J.; Oppewal, H.; Timmermans, H.J.P.

    2000-01-01

    Most existing mathematical models of tourist choice behavior assume that individuals' preferences for choice alternatives remain invariant over time. Although the assumption of invariant preference functions may be reasonable in some choice contexts, this study examines the hypothesis that

  13. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  14. Consumer Vehicle Choice Model Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changzheng [ORNL; Greene, David L [ORNL

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  15. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  16. Discrete choice models with multiplicative error terms

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bierlaire, Michel

    2009-01-01

    The conditional indirect utility of many random utility maximization (RUM) discrete choice models is specified as a sum of an index V depending on observables and an independent random term ε. In general, the universe of RUM consistent models is much larger, even fixing some specification of V due...

  17. Measurement Model Nonlinearity in Estimation of Dynamical Systems

    Science.gov (United States)

    Majji, Manoranjan; Junkins, J. L.; Turner, J. D.

    2012-06-01

    The role of nonlinearity of the measurement model and its interactions with the uncertainty of measurements and geometry of the problem is studied in this paper. An examination of the transformations of the probability density function in various coordinate systems is presented for several astrodynamics applications. Smooth and analytic nonlinear functions are considered for the studies on the exact transformation of uncertainty. Special emphasis is given to understanding the role of change of variables in the calculus of random variables. The transformation of probability density functions through mappings is shown to provide insight in to understanding the evolution of uncertainty in nonlinear systems. Examples are presented to highlight salient aspects of the discussion. A sequential orbit determination problem is analyzed, where the transformation formula provides useful insights for making the choice of coordinates for estimation of dynamic systems.

  18. Comparing coefficients of nested nonlinear probability models

    DEFF Research Database (Denmark)

    Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders

    2011-01-01

    In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...

  19. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  20. Parameter Estimation of Nonlinear Models in Forestry.

    OpenAIRE

    Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.

    1999-01-01

    Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...

  1. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...

  2. Modeling of nonlinear biological phenomena modeled by S-systems.

    Science.gov (United States)

    Mansouri, Majdi M; Nounou, Hazem N; Nounou, Mohamed N; Datta, Aniruddha A

    2014-03-01

    techniques is also assessed. The results of both comparative studies show that the UKF provides a higher accuracy than the EKF due to the limited ability of EKF to accurately estimate the mean and covariance matrix of the estimated states through lineralization of the nonlinear process model. The results also show that the VBF provides a relative improvement over PF. This is because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the VBF yields an optimum choice of the sampling distribution, which also utilizes the observed data. The results of the second comparative study show that, for all techniques, estimating more model parameters affects the estimation accuracy as well as the convergence of the estimated states and parameters. The VBF, however, still provides advantages over other methods with respect to estimation accuracy as well convergence. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  4. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  5. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  6. Nonlinear control of the Salnikov model reaction

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...

  7. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2009-01-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  8. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  9. Choice experiments versus revealed choice models : a before-after study of consumer spatial shopping behavior

    NARCIS (Netherlands)

    Timmermans, H.J.P.; Borgers, A.W.J.; Waerden, van der P.J.H.J.

    1992-01-01

    The purpose of this article is to compare a set of multinomial logit models derived from revealed choice data and a decompositional choice model derived from experimental data in terms of predictive success in the context of consumer spatial shopping behavior. Data on consumer shopping choice

  10. A Model of Boundedly Rational Consumer Choice

    OpenAIRE

    Thomas Riechmann

    2000-01-01

    The paper presents an extended version of the standard textbook problem of consumer choice. As usual, agents have to decide about their desired quatities of various consumption goods, at the same time taking into account their limited budget. Prices for the goods are not fixed but arise from a Walrasian interaction of total demand and a stilized supply function for each of the goods. After showing that this type of model cannot be solved analytically, three different types of evolutionary alg...

  11. Airport choice model in multiple airport regions

    Directory of Open Access Journals (Sweden)

    Claudia Muñoz

    2017-02-01

    Full Text Available Purpose: This study aims to analyze travel choices made by air transportation users in multi airport regions because it is a crucial component when planning passenger redistribution policies. The purpose of this study is to find a utility function which makes it possible to know the variables that influence users’ choice of the airports on routes to the main cities in the Colombian territory. Design/methodology/approach: This research generates a Multinomial Logit Model (MNL, which is based on the theory of maximizing utility, and it is based on the data obtained on revealed and stated preference surveys applied to users who reside in the metropolitan area of Aburrá Valley (Colombia. This zone is the only one in the Colombian territory which has two neighboring airports for domestic flights. The airports included in the modeling process were Enrique Olaya Herrera (EOH Airport and José María Córdova (JMC Airport. Several structure models were tested, and the MNL proved to be the most significant revealing the common variables that affect passenger airport choice include the airfare, the price to travel the airport, and the time to get to the airport. Findings and Originality/value: The airport choice model which was calibrated corresponds to a valid powerful tool used to calculate the probability of each analyzed airport of being chosen for domestic flights in the Colombian territory. This is done bearing in mind specific characteristic of each of the attributes contained in the utility function. In addition, these probabilities will be used to calculate future market shares of the two airports considered in this study, and this will be done generating a support tool for airport and airline marketing policies.

  12. Hybrid Compensatory-Noncompensatory Choice Sets in Semicompensatory Models

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Bekhor, Shlomo; Shiftan, Yoram

    2013-01-01

    Semicompensatory models represent a choice process consisting of an elimination-based choice set formation on satisfaction of criterion thresholds and a utility-based choice. Current semicompensatory models assume a purely noncompensatory choice set formation and therefore do not support multinom...

  13. A constraints-induced model of park choice

    NARCIS (Netherlands)

    Stemerding, M.P.; Oppewal, H.; Timmermans, H.J.P.

    1999-01-01

    Conjoint choice models have been used widely in the consumer-choice literature as an approach to measure and predict consumer-choice behavior. These models typically assume that consumer preferences and choice rules are independent from any constraints that might impact the behavior of interest.

  14. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.

    Science.gov (United States)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  15. Nonlinear Model Reduction for RTCVD

    National Research Council Canada - National Science Library

    Newman, Andrew J; Krishnaprasad, P. S

    1998-01-01

    ...) for semiconductor manufacturing. They focus on model reduction for the ordinary differential equation model describing heat transfer to, from, and within a semiconductor wafer in the RTCVD chamber...

  16. Nonlinear finite element modeling of corrugated board

    Science.gov (United States)

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  17. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...

  18. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...

  19. Modeling vector nonlinear time series using POLYMARS

    NARCIS (Netherlands)

    de Gooijer, J.G.; Ray, B.K.

    2003-01-01

    A modified multivariate adaptive regression splines method for modeling vector nonlinear time series is investigated. The method results in models that can capture certain types of vector self-exciting threshold autoregressive behavior, as well as provide good predictions for more general vector

  20. Nonlinear friction model for servo press simulation

    Science.gov (United States)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  1. Finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials

  2. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  3. Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ-Expansion Method Implementation

    Directory of Open Access Journals (Sweden)

    Nur Alam

    2016-02-01

    Full Text Available In this research article, we present exact solutions with parameters for two nonlinear model partial differential equations(PDEs describing microtubules, by implementing the exp(−Φ(ξ-Expansion Method. The considered models, describing highly nonlinear dynamics of microtubules, can be reduced to nonlinear ordinary differential equations. While the first PDE describes the longitudinal model of nonlinear dynamics of microtubules, the second one describes the nonlinear model of dynamics of radial dislocations in microtubules. The acquired solutions are then graphically presented, and their distinct properties are enumerated in respect to the corresponding dynamic behavior of the microtubules they model. Various patterns, including but not limited to regular, singular kink-like, as well as periodicity exhibiting ones, are detected. Being the method of choice herein, the exp(−Φ(ξ-Expansion Method not disappointing in the least, is found and declared highly efficient.

  4. Variable selection and model choice in geoadditive regression models.

    Science.gov (United States)

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  5. Model for understanding consumer textural food choice.

    Science.gov (United States)

    Jeltema, Melissa; Beckley, Jacqueline; Vahalik, Jennifer

    2015-05-01

    The current paradigm for developing products that will match the marketing messaging is flawed because the drivers of product choice and satisfaction based on texture are misunderstood. Qualitative research across 10 years has led to the thesis explored in this research that individuals have a preferred way to manipulate food in their mouths (i.e., mouth behavior) and that this behavior is a major driver of food choice, satisfaction, and the desire to repurchase. Texture, which is currently thought to be a major driver of product choice, is a secondary factor, and is important only in that it supports the primary driver-mouth behavior. A model for mouth behavior is proposed and the qualitative research supporting the identification of different mouth behaviors is presented. The development of a trademarked typing tool for characterizing mouth behavior is described along with quantitative substantiation of the tool's ability to group individuals by mouth behavior. The use of these four groups to understand textural preferences and the implications for a variety of areas including product design and weight management are explored.

  6. On nonlinear reduced order modeling

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.

    2011-01-01

    When applied to a model that receives n input parameters and predicts m output responses, a reduced order model estimates the variations in the m outputs of the original model resulting from variations in its n inputs. While direct execution of the forward model could provide these variations, reduced order modeling plays an indispensable role for most real-world complex models. This follows because the solutions of complex models are expensive in terms of required computational overhead, thus rendering their repeated execution computationally infeasible. To overcome this problem, reduced order modeling determines a relationship (often referred to as a surrogate model) between the input and output variations that is much cheaper to evaluate than the original model. While it is desirable to seek highly accurate surrogates, the computational overhead becomes quickly intractable especially for high dimensional model, n ≫ 10. In this manuscript, we demonstrate a novel reduced order modeling method for building a surrogate model that employs only 'local first-order' derivatives and a new tensor-free expansion to efficiently identify all the important features of the original model to reach a predetermined level of accuracy. This is achieved via a hybrid approach in which local first-order derivatives (i.e., gradient) of a pseudo response (a pseudo response represents a random linear combination of original model’s responses) are randomly sampled utilizing a tensor-free expansion around some reference point, with the resulting gradient information aggregated in a subspace (denoted by the active subspace) of dimension much less than the dimension of the input parameters space. The active subspace is then sampled employing the state-of-the-art techniques for global sampling methods. The proposed method hybridizes the use of global sampling methods for uncertainty quantification and local variational methods for sensitivity analysis. In a similar manner to

  7. Perturbation analysis of nonlinear matrix population models

    Directory of Open Access Journals (Sweden)

    Hal Caswell

    2008-03-01

    Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.

  8. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  9. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  10. Nonlinear GARCH model and 1 / f noise

    Science.gov (United States)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  11. Nonlinear Dynamic Models in Advanced Life Support

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  12. Neutron stars in non-linear coupling models

    International Nuclear Information System (INIS)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo

    2001-01-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  13. Neutron stars in non-linear coupling models

    Energy Technology Data Exchange (ETDEWEB)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    2001-07-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  14. Analysis of nonlinear systems using ARMA [autoregressive moving average] models

    International Nuclear Information System (INIS)

    Hunter, N.F. Jr.

    1990-01-01

    While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs

  15. A nonlinear model for AC induced corrosion

    Directory of Open Access Journals (Sweden)

    N. Ida

    2012-09-01

    Full Text Available The modeling of corrosion poses particular difficulties. The understanding of corrosion as an electrochemical process has led to simple capacitive-resistive models that take into account the resistance of the electrolytic cell and the capacitive effect of the surface potential at the interface between conductors and the electrolyte. In some models nonlinear conduction effects have been added to account for more complex observed behavior. While these models are sufficient to describe the behavior in systems with cathodic protection, the behavior in the presence of induced AC currents from power lines and from RF sources cannot be accounted for and are insufficient to describe the effects observed in the field. Field observations have shown that a rectifying effect exists that affects the cathodic protection potential and this effect is responsible for corrosion in the presence of AC currents. The rectifying effects of the metal-corrosion interface are totally missing from current models. This work proposes a nonlinear model based on finite element analysis that takes into account the nonlinear behavior of the metal-oxide interface and promises to improve modeling by including the rectification effects at the interface.

  16. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  17. Modelling the evolution and consequences of mate choice

    OpenAIRE

    Tazzyman, S. J.

    2010-01-01

    This thesis considers the evolution and the consequences of mate choice across a variety of taxa, using game theoretic, population genetic, and quantitative genetic modelling techniques. Part I is about the evolution of mate choice. In chapter 2, a population genetic model shows that mate choice is even beneficial in self-fertilising species such as Saccharomyces yeast. In chapter 3, a game theoretic model shows that female choice will be strongly dependent upon whether the benefi...

  18. Sequential and simultaneous choices: testing the diet selection and sequential choice models.

    Science.gov (United States)

    Freidin, Esteban; Aw, Justine; Kacelnik, Alex

    2009-03-01

    We investigate simultaneous and sequential choices in starlings, using Charnov's Diet Choice Model (DCM) and Shapiro, Siller and Kacelnik's Sequential Choice Model (SCM) to integrate function and mechanism. During a training phase, starlings encountered one food-related option per trial (A, B or R) in random sequence and with equal probability. A and B delivered food rewards after programmed delays (shorter for A), while R ('rejection') moved directly to the next trial without reward. In this phase we measured latencies to respond. In a later, choice, phase, birds encountered the pairs A-B, A-R and B-R, the first implementing a simultaneous choice and the second and third sequential choices. The DCM predicts when R should be chosen to maximize intake rate, and SCM uses latencies of the training phase to predict choices between any pair of options in the choice phase. The predictions of both models coincided, and both successfully predicted the birds' preferences. The DCM does not deal with partial preferences, while the SCM does, and experimental results were strongly correlated to this model's predictions. We believe that the SCM may expose a very general mechanism of animal choice, and that its wider domain of success reflects the greater ecological significance of sequential over simultaneous choices.

  19. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  20. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  1. Modelling life trajectories and mode choice using Bayesian belief networks

    NARCIS (Netherlands)

    Verhoeven, M.

    2010-01-01

    Traditionally, transport mode choice was primarily examined as a stand alone problem. Given a purpose and destination, the choice of transport mode was modelled as a function of the various attributes of the transport mode alternatives. Later, transport mode choice decisions were modelled as part of

  2. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  3. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  4. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-01-01

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  5. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    Science.gov (United States)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  6. Linear theory for filtering nonlinear multiscale systems with model error.

    Science.gov (United States)

    Berry, Tyrus; Harlim, John

    2014-07-08

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering

  7. Model reduction of systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2006-03-01

    An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.

  8. Nonlinear Inertia Classification Model and Application

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2014-01-01

    Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

  9. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    SILVA R. G.

    1999-01-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  10. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  11. Spatiotemporal drought forecasting using nonlinear models

    Science.gov (United States)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with

  12. Testing Process Predictions of Models of Risky Choice: A Quantitative Model Comparison Approach

    Directory of Open Access Journals (Sweden)

    Thorsten ePachur

    2013-09-01

    Full Text Available This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or nonlinear functions thereof and the separate evaluation of risky options (expectation models. Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models. We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter, Gigerenzer, & Hertwig, 2006, and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up and direction of search (i.e., gamble-wise vs. reason-wise. In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly; acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988 called similarity. In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies.

  13. Testing process predictions of models of risky choice: a quantitative model comparison approach

    Science.gov (United States)

    Pachur, Thorsten; Hertwig, Ralph; Gigerenzer, Gerd; Brandstätter, Eduard

    2013-01-01

    This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or non-linear functions thereof) and the separate evaluation of risky options (expectation models). Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models). We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter et al., 2006), and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up) and direction of search (i.e., gamble-wise vs. reason-wise). In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly); acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988) called “similarity.” In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies. PMID:24151472

  14. Meta-analysis of choice set generation effects on route choice model estimates and predictions

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo

    2012-01-01

    are applied for model estimation and results are compared to the ‘true model estimates’. Last, predictions from the simulation of models estimated with objective choice sets are compared to the ‘postulated predicted routes’. A meta-analytical approach allows synthesizing the effect of judgments......Large scale applications of behaviorally realistic transport models pose several challenges to transport modelers on both the demand and the supply sides. On the supply side, path-based solutions to the user assignment equilibrium problem help modelers in enhancing the route choice behavior...... modeling, but require them to generate choice sets by selecting a path generation technique and its parameters according to personal judgments. This paper proposes a methodology and an experimental setting to provide general indications about objective judgments for an effective route choice set generation...

  15. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  16. Nonclassical measurements errors in nonlinear models

    DEFF Research Database (Denmark)

    Madsen, Edith; Mulalic, Ismir

    Discrete choice models and in particular logit type models play an important role in understanding and quantifying individual or household behavior in relation to transport demand. An example is the choice of travel mode for a given trip under the budget and time restrictions that the individuals...... estimates of the income effect it is of interest to investigate the magnitude of the estimation bias and if possible use estimation techniques that take the measurement error problem into account. We use data from the Danish National Travel Survey (NTS) and merge it with administrative register data...... that contains very detailed information about incomes. This gives a unique opportunity to learn about the magnitude and nature of the measurement error in income reported by the respondents in the Danish NTS compared to income from the administrative register (correct measure). We find that the classical...

  17. An economic model of amniocentesis choice.

    Science.gov (United States)

    Fajnzylber, Eduardo; Hotz, V Joseph; Sanders, Seth G

    2010-03-01

    Medical practitioners typically utilize the following protocol when advising pregnant women about testing for the possibility of genetic disorders with their fetus: Pregnant women over the age of 35 should be tested for Down syndrome and other genetic disorders, while for younger women, such tests are discouraged (or not discussed) as the test can cause a pregnancy to miscarry. The logic appears compelling. The rate at which amniocentesis causes a pregnancy to miscarry is constant while the rate of genetic disorder rises substantially over a woman's reproductive years. Hence the potential benefit from testing - being able to terminate a fetus that is known to have a genetic disorder - rises with maternal age. This article argues that this logic is incomplete. While the benefits to testing do rise with age, the costs rise as well. Undergoing an amniocentesis always entails the risk of inducing a miscarriage of a healthy fetus. However, these costs are lower at early ages, because there is a higher probability of being able to replace a miscarried fetus with a healthy birth at a later age. We develop and calibrate a dynamic model of amniocentesis choice to explore this tradeoff. For parameters that characterize realistic age patterns of chromosomal abnormalities, fertility rates and miscarriages following amniocentesis, our model implies a falling, rather than rising, rate of amniocentesis as women approach menopause.

  18. Modeling Intercity Mode Choice and Airport Choice in the United States

    OpenAIRE

    Ashiabor, Senanu Y.

    2007-01-01

    The aim of this study was to develop a framework to model travel choice behavior in order to estimate intercity travel demand at nation-level in the United States. Nested and mixed logit models were developed to study national-level intercity transportation in the United States. A separate General Aviation airport choice model to estimates General Aviation person-trips and number of aircraft operations though more than 3000 airports was also developed. The combination of the General Aviati...

  19. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    Science.gov (United States)

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  20. Hybrid discrete choice models: Gained insights versus increasing effort

    International Nuclear Information System (INIS)

    Mariel, Petr; Meyerhoff, Jürgen

    2016-01-01

    Hybrid choice models expand the standard models in discrete choice modelling by incorporating psychological factors as latent variables. They could therefore provide further insights into choice processes and underlying taste heterogeneity but the costs of estimating these models often significantly increase. This paper aims at comparing the results from a hybrid choice model and a classical random parameter logit. Point of departure for this analysis is whether researchers and practitioners should add hybrid choice models to their suite of models routinely estimated. Our comparison reveals, in line with the few prior studies, that hybrid models gain in efficiency by the inclusion of additional information. The use of one of the two proposed approaches, however, depends on the objective of the analysis. If disentangling preference heterogeneity is most important, hybrid model seems to be preferable. If the focus is on predictive power, a standard random parameter logit model might be the better choice. Finally, we give recommendations for an adequate use of hybrid choice models based on known principles of elementary scientific inference. - Highlights: • The paper compares performance of a Hybrid Choice Model (HCM) and a classical Random Parameter Logit (RPL) model. • The HCM indeed provides insights regarding preference heterogeneity not gained from the RPL. • The RPL has similar predictive power as the HCM in our data. • The costs of estimating HCM seem to be justified when learning more on taste heterogeneity is a major study objective.

  1. Hybrid discrete choice models: Gained insights versus increasing effort

    Energy Technology Data Exchange (ETDEWEB)

    Mariel, Petr, E-mail: petr.mariel@ehu.es [UPV/EHU, Economía Aplicada III, Avda. Lehendakari Aguire, 83, 48015 Bilbao (Spain); Meyerhoff, Jürgen [Institute for Landscape Architecture and Environmental Planning, Technical University of Berlin, D-10623 Berlin, Germany and The Kiel Institute for the World Economy, Duesternbrooker Weg 120, 24105 Kiel (Germany)

    2016-10-15

    Hybrid choice models expand the standard models in discrete choice modelling by incorporating psychological factors as latent variables. They could therefore provide further insights into choice processes and underlying taste heterogeneity but the costs of estimating these models often significantly increase. This paper aims at comparing the results from a hybrid choice model and a classical random parameter logit. Point of departure for this analysis is whether researchers and practitioners should add hybrid choice models to their suite of models routinely estimated. Our comparison reveals, in line with the few prior studies, that hybrid models gain in efficiency by the inclusion of additional information. The use of one of the two proposed approaches, however, depends on the objective of the analysis. If disentangling preference heterogeneity is most important, hybrid model seems to be preferable. If the focus is on predictive power, a standard random parameter logit model might be the better choice. Finally, we give recommendations for an adequate use of hybrid choice models based on known principles of elementary scientific inference. - Highlights: • The paper compares performance of a Hybrid Choice Model (HCM) and a classical Random Parameter Logit (RPL) model. • The HCM indeed provides insights regarding preference heterogeneity not gained from the RPL. • The RPL has similar predictive power as the HCM in our data. • The costs of estimating HCM seem to be justified when learning more on taste heterogeneity is a major study objective.

  2. Harvest choice and timber supply models for forest forecasting

    Science.gov (United States)

    Maksym Polyakov; David N Wear

    2010-01-01

    Timber supply has traditionally been modeled using aggregate data, whereas individual harvest choices have been shown to be sensitive to the vintage and condition of forest capital stocks. In this article, we build aggregate supply models for four roundwood products in a seven-state region of the US South directly from stand-level harvest choice models applied to...

  3. Nonlinear interaction model of subsonic jet noise.

    Science.gov (United States)

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  4. Nonlinear price impact from linear models

    Science.gov (United States)

    Patzelt, Felix; Bouchaud, Jean-Philippe

    2017-12-01

    The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.

  5. A practical test for the choice of mixing distribution in discrete choice models

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bierlaire, Michel

    2007-01-01

    The choice of a specific distribution for random parameters of discrete choice models is a critical issue in transportation analysis. Indeed, various pieces of research have demonstrated that an inappropriate choice of the distribution may lead to serious bias in model forecast and in the estimated...... means of random parameters. In this paper, we propose a practical test, based on seminonparametric techniques. The test is analyzed both on synthetic and real data, and is shown to be simple and powerful. (c) 2007 Elsevier Ltd. All rights reserved....

  6. From spiking neuron models to linear-nonlinear models.

    Science.gov (United States)

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-20

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  7. A random regret minimization model of travel choice

    NARCIS (Netherlands)

    Chorus, C.G.; Arentze, T.A.; Timmermans, H.J.P.

    2008-01-01

    Abstract This paper presents an alternative to Random Utility-Maximization models of travel choice. Our Random Regret-Minimization model is rooted in Regret Theory and provides several useful features for travel demand analysis. Firstly, it allows for the possibility that choices between travel

  8. Nonlinear Model of Tape Wound Core Transformers

    Directory of Open Access Journals (Sweden)

    A. Vahedi

    2015-03-01

    Full Text Available Recently, tape wound cores due to their excellent magnetic properties, are widely used in different types of transformers. Performance prediction of these transformers needs an accurate model with ability to determine flux distribution within the core and magnetic loss. Spiral structure of tape wound cores affects the flux distribution and always cause complication of analysis. In this paper, a model based on reluctance networks method is presented for analysis of magnetic flux in wound cores. Using this model, distribution of longitudinal and transverse fluxes within the core can be determined. To consider the nonlinearity of the core, a dynamic hysteresis model is included in the presented model. Having flux density in different points of the core, magnetic losses can be calculated. To evaluate the validity of the model, results are compared with 2-D FEM simulations. In addition, a transformer designed for series-resonant converter and simulation results are compared with experimental measurements. Comparisons show accuracy of the model besides simplicity and fast convergence

  9. NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Roman L. Leibov

    2017-09-01

    Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented

  10. Incorporating Context Effects into a Choice Model

    NARCIS (Netherlands)

    Rooderkerk, Robert P.; Van Heerde, Harald J.; Bijmolt, Tammo H. A.

    The behavioral literature provides ample evidence that consumer preferences are partly driven by the context provided by the set of alternatives. Three important context effects are the compromise, attraction, and similarity effects. Because these context effects affect choices in a systematic and

  11. Incorporating context effects into a choice model

    NARCIS (Netherlands)

    Bijmolt, T.H.A.; van Heerde, H.J.; Rooderkerk, R.P.

    2011-01-01

    The behavioral literature provides ample evidence that consumer preferences are partly driven by the context provided by the set of alternatives. three important context effects are the compromise, attraction, and similarity effects. because these context effects affect choices in a systematic and

  12. Nonlinear Analysis and Modeling of Tires

    Science.gov (United States)

    Noor, Ahmed K.

    1996-01-01

    The objective of the study was to develop efficient modeling techniques and computational strategies for: (1) predicting the nonlinear response of tires subjected to inflation pressure, mechanical and thermal loads; (2) determining the footprint region, and analyzing the tire pavement contact problem, including the effect of friction; and (3) determining the sensitivity of the tire response (displacements, stresses, strain energy, contact pressures and contact area) to variations in the different material and geometric parameters. Two computational strategies were developed. In the first strategy the tire was modeled by using either a two-dimensional shear flexible mixed shell finite elements or a quasi-three-dimensional solid model. The contact conditions were incorporated into the formulation by using a perturbed Lagrangian approach. A number of model reduction techniques were applied to substantially reduce the number of degrees of freedom used in describing the response outside the contact region. The second strategy exploited the axial symmetry of the undeformed tire, and uses cylindrical coordinates in the development of three-dimensional elements for modeling each of the different parts of the tire cross section. Model reduction techniques are also used with this strategy.

  13. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  14. Nonlinear Convective Models of RR Lyrae Stars

    Science.gov (United States)

    Feuchtinger, M.; Dorfi, E. A.

    The nonlinear behavior of RR Lyrae pulsations is investigated using a state-of-the-art numerical technique solving the full time-dependent system of radiation hydrodynamics. Grey radiative transfer is included by a variable Eddington-factor method and we use the time-dependent turbulent convection model according to Kuhfuss (1986, A&A 160, 116) in the version of Wuchterl (1995, Comp. Phys. Comm. 89, 19). OPAL opacities extended by the Alexander molecule opacities at temperatures below 6000 K and an equation of state according to Wuchterl (1990, A&A 238, 83) close the system. The resulting nonlinear system is discretized on an adaptive mesh developed by Dorfi & Drury (1987, J. Comp. Phys. 69, 175), which is important to provide the necessary spatial resolution in critical regions like ionization zones and shock waves. Additionally, we employ a second order advection scheme, a time centered temporal discretizaton and an artificial tensor viscosity in order to treat discontinuities. We compute fundamental as well first overtone models of RR Lyrae stars for a grid of stellar parameters both with and without convective energy transport in order to give a detailed picture of the pulsation-convection interaction. In order to investigate the influence of the different features of the convection model calculations with and without overshooting, turbulent pressure and turbulent viscosity are performed and compared with each other. A standard Fourier decomposition is used to confront the resulting light and radial velocity variations with recent observations and we show that the well known RR Lyrae phase discrepancy problem (Simon 1985, ApJ 299, 723) can be resolved with these stellar pulsation computations.

  15. Route Choice Model Based on Game Theory for Commuters

    Directory of Open Access Journals (Sweden)

    Licai Yang

    2016-06-01

    Full Text Available The traffic behaviours of commuters may cause traffic congestion during peak hours. Advanced Traffic Information System can provide dynamic information to travellers. Due to the lack of timeliness and comprehensiveness, the provided information cannot satisfy the travellers’ needs. Since the assumptions of traditional route choice model based on Expected Utility Theory conflict with the actual situation, a route choice model based on Game Theory is proposed to provide reliable route choice to commuters in actual situation in this paper. The proposed model treats the alternative routes as game players and utilizes the precision of predicted information and familiarity of traffic condition to build a game. The optimal route can be generated considering Nash Equilibrium by solving the route choice game. Simulations and experimental analysis show that the proposed model can describe the commuters’ routine route choice decisionexactly and the provided route is reliable.

  16. Computational Models for Nonlinear Aeroelastic Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  17. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

    Science.gov (United States)

    Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

    2018-03-01

    Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

  18. Model Updating Nonlinear System Identification Toolbox, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  19. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  20. Nonlinear Rheology in a Model Biological Tissue

    Science.gov (United States)

    Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2017-04-01

    The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  1. Coherent nonlinear quantum model for composite fermions

    Energy Technology Data Exchange (ETDEWEB)

    Reinisch, Gilbert [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, Vidar, E-mail: vidar@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-04-01

    Originally proposed by Read [1] and Jain [2], the so-called “composite-fermion” is a phenomenological quasi-particle resulting from the attachment of two local flux quanta, seen as nonlocal vortices, to electrons situated on a two-dimensional (2D) surface embedded in a strong orthogonal magnetic field. In this Letter this phenomenon is described as a highly-nonlinear and coherent mean-field quantum process of the soliton type by use of a 2D stationary Schrödinger–Poisson differential model with only two Coulomb-interacting electrons. At filling factor ν=1/3 of the lowest Landau level the solution agrees with both the exact two-electron antisymmetric Schrödinger wavefunction and with Laughlin's Jastrow-type guess for the fractional quantum Hall effect, hence providing this latter with a tentative physical justification deduced from the experimental results and based on first principles.

  2. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... the potential of the unscented Kalman …filter to properly capture nonlinearities. To illustrate the advantages of the unscented Kalman …filter, we analyze the cross section of swap rates, which are relatively simple non-linear instruments, and cap prices, which are highly nonlinear in the states. An extensive...

  3. A simple numerical model of a geometrically nonlinear Timoshenko beam

    NARCIS (Netherlands)

    Keijdener, C.; Metrikine, A.

    2015-01-01

    In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and

  4. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  5. Complexity effects in choice experiments-based models

    NARCIS (Netherlands)

    Dellaert, B.G.C.; Donkers, B.; van Soest, A.H.O.

    2012-01-01

    Many firms rely on choice experiment–based models to evaluate future marketing actions under various market conditions. This research investigates choice complexity (i.e., number of alternatives, number of attributes, and utility similarity between the most attractive alternatives) and individual

  6. COMBINING LONG MEMORY AND NONLINEAR MODEL OUTPUTS FOR INFLATION FORECAST

    OpenAIRE

    Heri Kuswanto; Irhamah Alimuhajin; Laylia Afidah

    2014-01-01

    Long memory and nonlinearity have been proven as two models that are easily to be mistaken. In other words, nonlinearity is a strong candidate of spurious long memory by introducing a certain degree of fractional integration that lies in the region of long memory. Indeed, nonlinear process belongs to short memory with zero integration order. The idea of the forecast is to obtain the future condition with minimum error. Some researches argued that no matter what the model is, the important thi...

  7. A day in the city : using conjoint choice experiments to model urban tourists' choice of activity packages

    NARCIS (Netherlands)

    Dellaert, B.G.C.; Borgers, A.W.J.; Timmermans, H.J.P.

    1995-01-01

    This paper introduces and tests a conjoint choice experiment approach to modeling urban tourists' choice of activity packages. The joint logit model is introduced as a tool to model choices between combinations of activities and an experimental design approach is proposed that includes attributes

  8. Modeling decisions from experience: How models with a set of parameters for aggregate choices explain individual choices

    Directory of Open Access Journals (Sweden)

    Neha Sharma

    2017-10-01

    Full Text Available One of the paradigms (called “sampling paradigm” in judgment and decision-making involves decision-makers sample information before making a final consequential choice. In the sampling paradigm, certain computational models have been proposed where a set of single or distribution parameters is calibrated to the choice proportions of a group of participants (aggregate and hierarchical models. However, currently little is known on how aggregate and hierarchical models would account for choices made by individual participants in the sampling paradigm. In this paper, we test the ability of aggregate and hierarchical models to explain choices made by individual participants. Several models, Ensemble, Cumulative Prospect Theory (CPT, Best Estimation and Simulation Techniques (BEAST, Natural-Mean Heuristic (NMH, and Instance-Based Learning (IBL, had their parameters calibrated to individual choices in a large dataset involving the sampling paradigm. Later, these models were generalized to two large datasets in the sampling paradigm. Results revealed that the aggregate models (like CPT and IBL accounted for individual choices better than hierarchical models (like Ensemble and BEAST upon generalization to problems that were like those encountered during calibration. Furthermore, the CPT model, which relies on differential valuing of gains and losses, respectively, performed better than other models during calibration and generalization on datasets with similar set of problems. The IBL model, relying on recency and frequency of sampled information, and the NMH model, relying on frequency of sampled information, performed better than other models during generalization to a challenging dataset. Sequential analyses of results from different models showed how these models accounted for transitions from the last sample to final choice in human data. We highlight the implications of using aggregate and hierarchical models in explaining individual choices

  9. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  10. Brand Choice Modeling Modeling Toothpaste Brand Choice: An Empirical Comparison of Artificial Neural Networks and Multinomial Probit Model

    Directory of Open Access Journals (Sweden)

    Tolga Kaya

    2010-11-01

    Full Text Available The purpose of this study is to compare the performances of Artificial Neural Networks (ANN and Multinomial Probit (MNP approaches in modeling the choice decision within fast moving consumer goods sector. To do this, based on 2597 toothpaste purchases of a panel sample of 404 households, choice models are built and their performances are compared on the 861 purchases of a test sample of 135 households. Results show that ANN's predictions are better while MNP is useful in providing marketing insight.

  11. Nonlinear Growth Models in M"plus" and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2009-01-01

    Nonlinear growth curves or growth curves that follow a specified nonlinear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this article we describe how a variety of sigmoid curves can be fit using the M"plus" structural modeling program and the nonlinear…

  12. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  13. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan

    2007-01-01

    A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models

  14. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    model is presented in the form of partial differential equations (PDE). Galerkin's method is then applied to obtain a set of ordinary differential equations such that the cable model is approximated by a FEM model. Based on the FEM model, a nonlinear observer is designed to estimate the cable...

  15. A discrete choice approach to define individual parking choice behaviour for the Parkagent model

    NARCIS (Netherlands)

    Khaliq, A.; Van Der Waerden, P.J.H.J.; Janssens, D.

    2017-01-01

    PARKAGENT is an agent based model for simulating parking search in the city. In PARKAGENT, the agents choose a parking spot based on the expected number of free parking spaces, distance to destination and length of parking space. For a true representation of underlying parking choice behaviour of

  16. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  17. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  18. Modeling of Nonlinear Beat Signals of TAE's

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-03-01

    Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core

  19. Model reduction tools for nonlinear structural dynamics

    NARCIS (Netherlands)

    Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.

    1995-01-01

    Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their

  20. Models of Affective Decision Making: How Do Feelings Predict Choice?

    Science.gov (United States)

    Charpentier, Caroline J; De Neve, Jan-Emmanuel; Li, Xinyi; Roiser, Jonathan P; Sharot, Tali

    2016-06-01

    Intuitively, how you feel about potential outcomes will determine your decisions. Indeed, an implicit assumption in one of the most influential theories in psychology, prospect theory, is that feelings govern choice. Surprisingly, however, very little is known about the rules by which feelings are transformed into decisions. Here, we specified a computational model that used feelings to predict choices. We found that this model predicted choice better than existing value-based models, showing a unique contribution of feelings to decisions, over and above value. Similar to the value function in prospect theory, our feeling function showed diminished sensitivity to outcomes as value increased. However, loss aversion in choice was explained by an asymmetry in how feelings about losses and gains were weighted when making a decision, not by an asymmetry in the feelings themselves. The results provide new insights into how feelings are utilized to reach a decision. © The Author(s) 2016.

  1. Discrete choice models for commuting interactions

    DEFF Research Database (Denmark)

    Rouwendal, Jan; Mulalic, Ismir; Levkovich, Or

    An emerging quantitative spatial economics literature models commuting interactions by a gravity equation that is mathematically equivalent to a multinomial logit model. This model is widely viewed as restrictive because of the independence of irrelevant alternatives (IIA) property that links sub...

  2. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  3. Nonlinear Modeling of the PEMFC Based On NNARX Approach

    OpenAIRE

    Shan-Jen Cheng; Te-Jen Chang; Kuang-Hsiung Tan; Shou-Ling Kuo

    2015-01-01

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accurac...

  4. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  5. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  6. Variational Boussinesq model for strongly nonlinear dispersive waves

    NARCIS (Netherlands)

    Lawrence, C.; Adytia, D.; van Groesen, E.

    2018-01-01

    For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be

  7. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order

  8. Building aggregate timber supply models from individual harvest choice

    Science.gov (United States)

    Maksym Polyakov; David N. Wear; Robert Huggett

    2009-01-01

    Timber supply has traditionally been modelled using aggregate data. In this paper, we build aggregate supply models for four roundwood products for the US state of North Carolina from a stand-level harvest choice model applied to detailed forest inventory. The simulated elasticities of pulpwood supply are much lower than reported by previous studies. Cross price...

  9. A discussion of mode choice models

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker

    Artiklen diskuterer matematiske modeller for transportmiddelvalg med særlig fokus på modeller, der bygger på nyttefunktioner. I kapitel 3 refereres til et begrænset eksperiment, der viste at den sædvanlige lineære nyttefunktion ikke er tilstrækkelig til at beskrive selv en meget simpel valgsituat...

  10. The Dependent Poisson Race Model and Modeling Dependence in Conjoint Choice Experiments

    Science.gov (United States)

    Ruan, Shiling; MacEachern, Steven N.; Otter, Thomas; Dean, Angela M.

    2008-01-01

    Conjoint choice experiments are used widely in marketing to study consumer preferences amongst alternative products. We develop a class of choice models, belonging to the class of Poisson race models, that describe a "random utility" which lends itself to a process-based description of choice. The models incorporate a dependence structure which…

  11. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.

    Science.gov (United States)

    Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang

    2016-10-31

    Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.

  12. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  13. Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter

    Science.gov (United States)

    Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç

    2017-01-01

    This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.

  14. Modeling route choice criteria from home to major streets: A discrete choice approach

    Directory of Open Access Journals (Sweden)

    Jose Osiris Vidana-Bencomo

    2018-03-01

    Full Text Available A discrete choice model that consists of three sub-models was developed to investigates the route choice criteria of drivers who travel from their homes in the morning to the access point along the major streets that bound the Traffic Analysis Zones (TAZs. The first sub-model is a Nested Logit Model (NLM that estimates the probability of a driver has or has no multiple routes, and if the driver has multiple routes, the route selection criteria are based on the access point’s intersection control type or other factors. The second sub-model is a Mixed Logit (MXL model. It estimates the probabilities of the type of intersection control preferred by a driver. The third sub-model is a NLM that estimates the probabilities of a driver selecting his/her route for its shortest travel time or to avoid pedestrian, and if the aim is to take the fastest route, the decision criteria is based on the shortest distance or minimum stops and turns. Data gathered in a questionnaire survey were used to estimate the sub-models. The attributes of the utility functions of the sub-models are the driver’s demographic and trip characteristics. The model provides a means for transportation planners to distribute the total number of home-based trips generated within a TAZ to the access points along the major streets that bound the TAZ.

  15. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  16. Street Choice Logit Model for Visitors in Shopping Districts

    Directory of Open Access Journals (Sweden)

    Ko Kawada

    2014-07-01

    Full Text Available In this study, we propose two models for predicting people’s activity. The first model is the pedestrian distribution prediction (or postdiction model by multiple regression analysis using space syntax indices of urban fabric and people distribution data obtained from a field survey. The second model is a street choice model for visitors using multinomial logit model. We performed a questionnaire survey on the field to investigate the strolling routes of 46 visitors and obtained a total of 1211 street choices in their routes. We proposed a utility function, sum of weighted space syntax indices, and other indices, and estimated the parameters for weights on the basis of maximum likelihood. These models consider both street networks, distance from destination, direction of the street choice and other spatial compositions (numbers of pedestrians, cars, shops, and elevation. The first model explains the characteristics of the street where many people tend to walk or stay. The second model explains the mechanism underlying the street choice of visitors and clarifies the differences in the weights of street choice parameters among the various attributes, such as gender, existence of destinations, number of people, etc. For all the attributes considered, the influences of DISTANCE and DIRECTION are strong. On the other hand, the influences of Int.V, SHOPS, CARS, ELEVATION, and WIDTH are different for each attribute. People with defined destinations tend to choose streets that “have more shops, and are wider and lower”. In contrast, people with undefined destinations tend to choose streets of high Int.V. The choice of males is affected by Int.V, SHOPS, WIDTH (positive and CARS (negative. Females prefer streets that have many shops, and couples tend to choose downhill streets. The behavior of individual persons is affected by all variables. The behavior of people visiting in groups is affected by SHOP and WIDTH (positive.

  17. Street Choice Logit Model for Visitors in Shopping Districts

    Science.gov (United States)

    Kawada, Ko; Yamada, Takashi; Kishimoto, Tatsuya

    2014-01-01

    In this study, we propose two models for predicting people’s activity. The first model is the pedestrian distribution prediction (or postdiction) model by multiple regression analysis using space syntax indices of urban fabric and people distribution data obtained from a field survey. The second model is a street choice model for visitors using multinomial logit model. We performed a questionnaire survey on the field to investigate the strolling routes of 46 visitors and obtained a total of 1211 street choices in their routes. We proposed a utility function, sum of weighted space syntax indices, and other indices, and estimated the parameters for weights on the basis of maximum likelihood. These models consider both street networks, distance from destination, direction of the street choice and other spatial compositions (numbers of pedestrians, cars, shops, and elevation). The first model explains the characteristics of the street where many people tend to walk or stay. The second model explains the mechanism underlying the street choice of visitors and clarifies the differences in the weights of street choice parameters among the various attributes, such as gender, existence of destinations, number of people, etc. For all the attributes considered, the influences of DISTANCE and DIRECTION are strong. On the other hand, the influences of Int.V, SHOPS, CARS, ELEVATION, and WIDTH are different for each attribute. People with defined destinations tend to choose streets that “have more shops, and are wider and lower”. In contrast, people with undefined destinations tend to choose streets of high Int.V. The choice of males is affected by Int.V, SHOPS, WIDTH (positive) and CARS (negative). Females prefer streets that have many shops, and couples tend to choose downhill streets. The behavior of individual persons is affected by all variables. The behavior of people visiting in groups is affected by SHOP and WIDTH (positive). PMID:25379274

  18. Modeling Dynamic Food Choice Processes to Understand Dietary Intervention Effects.

    Science.gov (United States)

    Marcum, Christopher Steven; Goldring, Megan R; McBride, Colleen M; Persky, Susan

    2018-02-17

    Meal construction is largely governed by nonconscious and habit-based processes that can be represented as a collection of in dividual, micro-level food choices that eventually give rise to a final plate. Despite this, dietary behavior intervention research rarely captures these micro-level food choice processes, instead measuring outcomes at aggregated levels. This is due in part to a dearth of analytic techniques to model these dynamic time-series events. The current article addresses this limitation by applying a generalization of the relational event framework to model micro-level food choice behavior following an educational intervention. Relational event modeling was used to model the food choices that 221 mothers made for their child following receipt of an information-based intervention. Participants were randomized to receive either (a) control information; (b) childhood obesity risk information; (c) childhood obesity risk information plus a personalized family history-based risk estimate for their child. Participants then made food choices for their child in a virtual reality-based food buffet simulation. Micro-level aspects of the built environment, such as the ordering of each food in the buffet, were influential. Other dynamic processes such as choice inertia also influenced food selection. Among participants receiving the strongest intervention condition, choice inertia decreased and the overall rate of food selection increased. Modeling food selection processes can elucidate the points at which interventions exert their influence. Researchers can leverage these findings to gain insight into nonconscious and uncontrollable aspects of food selection that influence dietary outcomes, which can ultimately improve the design of dietary interventions.

  19. A deep belief network with PLSR for nonlinear system modeling.

    Science.gov (United States)

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Li, Xiaoli

    2017-10-31

    Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Heterogeneity in Models of Electoral Choice

    OpenAIRE

    Rivers, Douglas

    1983-01-01

    Heterogeneity or the presence of a variety of decision rules in a population has usually been ignored in voting research. A method for handling heterogeneous preferences using rank order data is developed and applied to a simple issue-voting model. The estimated average effect of partisanship is substantially higher when the assumption of homogeneity is relaxed, though many self-identified partisans also use ideological criteria to evaluate candidates and many independents rely on partisan cr...

  1. A Conceptual Model of Leisure-Time Choice Behavior.

    Science.gov (United States)

    Bergier, Michel J.

    1981-01-01

    Methods of studying the gap between predisposition and actual behavior of consumers of spectator sports is discussed. A model is drawn from the areas of behavioral sciences, consumer behavior, and leisure research. The model is constructed around the premise that choice is primarily a function of personal, product, and environmental factors. (JN)

  2. Loss Aversion and Inhibition in Dynamical Models of Multialternative Choice

    Science.gov (United States)

    Usher, Marius; McClelland, James L.

    2004-01-01

    The roles of loss aversion and inhibition among alternatives are examined in models of the similarity, compromise, and attraction effects that arise in choices among 3 alternatives differing on 2 attributes. R. M. Roe, J. R. Busemeyer, and J. T. Townsend (2001) have proposed a linear model in which effects previously attributed to loss aversion…

  3. Model Updating Nonlinear System Identification Toolbox, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...

  4. Sphaleron in a non-linear sigma model

    International Nuclear Information System (INIS)

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1989-08-01

    We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)

  5. Computational Models for Nonlinear Aeroelastic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...

  6. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    Carlo method of forecasting using a special nonlinear time series model, called logistic smooth transition ... We illustrate this new method using some simulation ..... in MATLAB 7.5.0. ... process (DGP) using the logistic smooth transi-.

  7. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  8. Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems

    International Nuclear Information System (INIS)

    Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris

    2011-01-01

    Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)

  9. Modeling Stochastic Route Choice Behaviors with Equivalent Impedance

    Directory of Open Access Journals (Sweden)

    Jun Li

    2015-01-01

    Full Text Available A Logit-based route choice model is proposed to address the overlapping and scaling problems in the traditional multinomial Logit model. The nonoverlapping links are defined as a subnetwork, and its equivalent impedance is explicitly calculated in order to simply network analyzing. The overlapping links are repeatedly merged into subnetworks with Logit-based equivalent travel costs. The choice set at each intersection comprises only the virtual equivalent route without overlapping. In order to capture heterogeneity in perception errors of different sizes of networks, different scale parameters are assigned to subnetworks and they are linked to the topological relationships to avoid estimation burden. The proposed model provides an alternative method to model the stochastic route choice behaviors without the overlapping and scaling problems, and it still maintains the simple and closed-form expression from the MNL model. A link-based loading algorithm based on Dial’s algorithm is proposed to obviate route enumeration and it is suitable to be applied on large-scale networks. Finally a comparison between the proposed model and other route choice models is given by numerical examples.

  10. TAFV Alternative Fuels and Vehicles Choice Model Documentation; TOPICAL

    International Nuclear Information System (INIS)

    Greene, D.L.

    2001-01-01

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model

  11. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  12. Exclusive queueing model including the choice of service windows

    Science.gov (United States)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  13. Nonlinear dynamics new directions models and applications

    CERN Document Server

    Ugalde, Edgardo

    2015-01-01

    This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: ·         Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...

  14. Special class of nonlinear damping models in flexible space structures

    Science.gov (United States)

    Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.

    1991-01-01

    A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.

  15. A finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)

  16. Nonlinear mirror mode dynamics: Simulations and modeling

    Czech Academy of Sciences Publication Activity Database

    Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel

    2008-01-01

    Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008

  17. Food and energy choices for India: a programming model with partial endogenous energy requirements.

    Science.gov (United States)

    Parikh, K S; Srinivasan, T N

    1980-09-01

    This paper presents a mathematical model for all matter-energy processing subsystems at the level of the society, specifically India. It explores India's choices in the food and energy sectors over the coming decades. Alternative land intensive, irrigation energy intensive, and fertilizer intensive techniques of food production are identified using a nonlinear programming model. The land saved is devoted to growing firewood. The optimum combination of railway (steam, diesel, and electric traction) and road (automobiles, diesel trucks, and diesel and gasoline buses) transport is determined. For the oil sector, two alternative sources of supply of crude oil and petroleum products are included, namely, domestic production and imports. The optimum choice is determined through a linear programming model. While the model is basically a static one, designed to determine the optimal choice for the target year of 2000-2001, certain intertemporal detail is incorporated for electricity generation. The model minimizes the costs of meeting the needs for food, transport in terms of passenger kilometers and goods per ton per kilometer, energy needs for domestic cooking and lighting, and the energy needs of the rest of the economy.

  18. Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2016-01-01

    Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.

  19. A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.

  20. A framework for estimating health state utility values within a discrete choice experiment: modeling risky choices.

    Science.gov (United States)

    Robinson, Angela; Spencer, Anne; Moffatt, Peter

    2015-04-01

    There has been recent interest in using the discrete choice experiment (DCE) method to derive health state utilities for use in quality-adjusted life year (QALY) calculations, but challenges remain. We set out to develop a risk-based DCE approach to derive utility values for health states that allowed 1) utility values to be anchored directly to normal health and death and 2) worse than dead health states to be assessed in the same manner as better than dead states. Furthermore, we set out to estimate alternative models of risky choice within a DCE model. A survey was designed that incorporated a risk-based DCE and a "modified" standard gamble (SG). Health state utility values were elicited for 3 EQ-5D health states assuming "standard" expected utility (EU) preferences. The DCE model was then generalized to allow for rank-dependent expected utility (RDU) preferences, thereby allowing for probability weighting. A convenience sample of 60 students was recruited and data collected in small groups. Under the assumption of "standard" EU preferences, the utility values derived within the DCE corresponded fairly closely to the mean results from the modified SG. Under the assumption of RDU preferences, the utility values estimated are somewhat lower than under the assumption of standard EU, suggesting that the latter may be biased upward. Applying the correct model of risky choice is important whether a modified SG or a risk-based DCE is deployed. It is, however, possible to estimate a probability weighting function within a DCE and estimate "unbiased" utility values directly, which is not possible within a modified SG. We conclude by setting out the relative strengths and weaknesses of the 2 approaches in this context. © The Author(s) 2014.

  1. Convex models and probabilistic approach of nonlinear fatigue failure

    International Nuclear Information System (INIS)

    Qiu Zhiping; Lin Qiang; Wang Xiaojun

    2008-01-01

    This paper is concerned with the nonlinear fatigue failure problem with uncertainties in the structural systems. In the present study, in order to solve the nonlinear problem by convex models, the theory of ellipsoidal algebra with the help of the thought of interval analysis is applied. In terms of the inclusion monotonic property of ellipsoidal functions, the nonlinear fatigue failure problem with uncertainties can be solved. A numerical example of 25-bar truss structures is given to illustrate the efficiency of the presented method in comparison with the probabilistic approach

  2. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

    Science.gov (United States)

    2010-09-30

    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  3. A nonlinear complementarity approach for the national energy modeling system

    International Nuclear Information System (INIS)

    Gabriel, S.A.; Kydes, A.S.

    1995-01-01

    The National Energy Modeling System (NEMS) is a large-scale mathematical model that computes equilibrium fuel prices and quantities in the U.S. energy sector. At present, to generate these equilibrium values, NEMS sequentially solves a collection of linear programs and nonlinear equations. The NEMS solution procedure then incorporates the solutions of these linear programs and nonlinear equations in a nonlinear Gauss-Seidel approach. The authors describe how the current version of NEMS can be formulated as a particular nonlinear complementarity problem (NCP), thereby possibly avoiding current convergence problems. In addition, they show that the NCP format is equally valid for a more general form of NEMS. They also describe several promising approaches for solving the NCP form of NEMS based on recent Newton type methods for general NCPs. These approaches share the feature of needing to solve their direction-finding subproblems only approximately. Hence, they can effectively exploit the sparsity inherent in the NEMS NCP

  4. Patient choice modelling: how do patients choose their hospitals?

    Science.gov (United States)

    Smith, Honora; Currie, Christine; Chaiwuttisak, Pornpimol; Kyprianou, Andreas

    2018-06-01

    As an aid to predicting future hospital admissions, we compare use of the Multinomial Logit and the Utility Maximising Nested Logit models to describe how patients choose their hospitals. The models are fitted to real data from Derbyshire, United Kingdom, which lists the postcodes of more than 200,000 admissions to six different local hospitals. Both elective and emergency admissions are analysed for this mixed urban/rural area. For characteristics that may affect a patient's choice of hospital, we consider the distance of the patient from the hospital, the number of beds at the hospital and the number of car parking spaces available at the hospital, as well as several statistics publicly available on National Health Service (NHS) websites: an average waiting time, the patient survey score for ward cleanliness, the patient safety score and the inpatient survey score for overall care. The Multinomial Logit model is successfully fitted to the data. Results obtained with the Utility Maximising Nested Logit model show that nesting according to city or town may be invalid for these data; in other words, the choice of hospital does not appear to be preceded by choice of city. In all of the analysis carried out, distance appears to be one of the main influences on a patient's choice of hospital rather than statistics available on the Internet.

  5. Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction

    Science.gov (United States)

    Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.

    2005-03-01

    We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.

  6. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  7. Fuzzy model-based servo and model following control for nonlinear systems.

    Science.gov (United States)

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  8. Symmetries and discretizations of the O(3) nonlinear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Flore, Raphael [TPI, Universitaet Jena (Germany)

    2011-07-01

    Nonlinear sigma models possess many interesting properties like asymptotic freedom, confinement or dynamical mass generation, and hence serve as toy models for QCD and other theories. We derive a formulation of the N=2 supersymmetric extension of the O(3) nonlinear sigma model in terms of constrained field variables. Starting from this formulation, it is discussed how the model can be discretized in a way that maintains as many symmetries of the theory as possible. Finally, recent numerical results related to these discretizations are presented.

  9. Modeling and nonlinear heading control for sailing yachts

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2014-01-01

    This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen’s compact notation for marine vehicles, we first describe a nonlinear four-degree-of-freedom (DOF) dynamic model for a sailing yacht, including roll. Our model also...

  10. Modeling and nonlinear heading control for sailing yachts

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2011-01-01

    This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen's compact notation for marine vehicles, we first describe a nonlinear 4-DOF dynamic model for a sailing yacht, including roll. Starting from this model, we then design...

  11. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  12. A simplified model of choice behavior under uncertainty

    Directory of Open Access Journals (Sweden)

    Ching-Hung Lin

    2016-08-01

    Full Text Available The Iowa Gambling Task (IGT has been standardized as a clinical assessment tool (Bechara, 2007. Nonetheless, numerous research groups have attempted to modify IGT models to optimize parameters for predicting the choice behavior of normal controls and patients. A decade ago, most researchers considered the expected utility (EU model (Busemeyer and Stout, 2002 to be the optimal model for predicting choice behavior under uncertainty. However, in recent years, studies have demonstrated the prospect utility (PU models (Ahn et al., 2008 to be more effective than the EU models in the IGT. Nevertheless, after some preliminary tests, we propose that Ahn et al. (2008 PU model is not optimal due to some incompatible results between our behavioral and modeling data. This study aims to modify Ahn et al. (2008 PU model to a simplified model and collected 145 subjects’ IGT performance as the benchmark data for comparison. In our simplified PU model, the best goodness-of-fit was found mostly while α approaching zero. More specifically, we retested the key parameters α, λ , and A in the PU model. Notably, the power of influence of the parameters α, λ, and A has a hierarchical order in terms of manipulating the goodness-of-fit in the PU model. Additionally, we found that the parameters λ and A may be ineffective when the parameter α is close to zero in the PU model. The present simplified model demonstrated that decision makers mostly adopted the strategy of gain-stay-loss-shift rather than foreseeing the long-term outcome. However, there still have other behavioral variables that are not well revealed under these dynamic uncertainty situations. Therefore, the optimal behavioral models may not have been found. In short, the best model for predicting choice behavior under dynamic-uncertainty situations should be further evaluated.

  13. A Versatile Nonlinear Method for Predictive Modeling

    Science.gov (United States)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  14. An Improved Nonlinear Five-Point Model for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning Dongue

    2013-01-01

    Full Text Available This paper presents an improved nonlinear five-point model capable of analytically describing the electrical behaviors of a photovoltaic module for each generic operating condition of temperature and solar irradiance. The models used to replicate the electrical behaviors of operating PV modules are usually based on some simplified assumptions which provide convenient mathematical model which can be used in conventional simulation tools. Unfortunately, these assumptions cause some inaccuracies, and hence unrealistic economic returns are predicted. As an alternative, we used the advantages of a nonlinear analytical five-point model to take into account the nonideal diode effects and nonlinear effects generally ignored, which PV modules operation depends on. To verify the capability of our method to fit PV panel characteristics, the procedure was tested on three different panels. Results were compared with the data issued by manufacturers and with the results obtained using the five-parameter model proposed by other authors.

  15. Study of the nonlinear imperfect software debugging model

    International Nuclear Information System (INIS)

    Wang, Jinyong; Wu, Zhibo

    2016-01-01

    In recent years there has been a dramatic proliferation of research on imperfect software debugging phenomena. Software debugging is a complex process and is affected by a variety of factors, including the environment, resources, personnel skills, and personnel psychologies. Therefore, the simple assumption that debugging is perfect is inconsistent with the actual software debugging process, wherein a new fault can be introduced when removing a fault. Furthermore, the fault introduction process is nonlinear, and the cumulative number of nonlinearly introduced faults increases over time. Thus, this paper proposes a nonlinear, NHPP imperfect software debugging model in consideration of the fact that fault introduction is a nonlinear process. The fitting and predictive power of the NHPP-based proposed model are validated through related experiments. Experimental results show that this model displays better fitting and predicting performance than the traditional NHPP-based perfect and imperfect software debugging models. S-confidence bounds are set to analyze the performance of the proposed model. This study also examines and discusses optimal software release-time policy comprehensively. In addition, this research on the nonlinear process of fault introduction is significant given the recent surge of studies on software-intensive products, such as cloud computing and big data. - Highlights: • Fault introduction is a nonlinear changing process during the debugging phase. • The assumption that the process of fault introduction is nonlinear is credible. • Our proposed model can better fit and accurately predict software failure behavior. • Research on fault introduction case is significant to software-intensive products.

  16. Incorporating Responsiveness to Marketing Efforts in Brand Choice Modeling

    Directory of Open Access Journals (Sweden)

    Dennis Fok

    2014-02-01

    Full Text Available We put forward a brand choice model with unobserved heterogeneity that concerns responsiveness to marketing efforts. We introduce two latent segments of households. The first segment is assumed to respond to marketing efforts, while households in the second segment do not do so. Whether a specific household is a member of the first or the second segment at a specific purchase occasion is described by household-specific characteristics and characteristics concerning buying behavior. Households may switch between the two responsiveness states over time. When comparing the performance of our model with alternative choice models that account for various forms of heterogeneity for three different datasets, we find better face validity for our parameters. Our model also forecasts better.

  17. Modelling and control of a nonlinear magnetostrictive actuator system

    Science.gov (United States)

    Ramli, M. H. M.; Majeed, A. P. P. Abdul; Anuar, M. A. M.; Mohamed, Z.

    2018-04-01

    This paper explores the implementation of a feedforward control method to a nonlinear control system, in particular, Magnetostrictive Actuators (MA) that has excellent properties of energy conversion between the mechanical and magnetic form through magnetostriction effects which could be used in actuating and sensing application. MA is known to exhibit hysteresis behaviour and it is rate dependent (the level of hysteresis depends closely on the rate of input excitation frequency). This is, nonetheless, an undesirable behaviour and has to be eliminated in realising high precision application. The MA is modelled by a phenomenological modelling approach via Prandtl-Ishlinskii (P-I) operator to characterise the hysteresis nonlinearities. A feedforward control strategy is designed and implemented to linearize and eliminate the hysteresis by model inversion. The results show that the P-I operator has the capability to model the hysteretic nonlinearity of MA with an acceptable accuracy. Furthermore, the proposed control scheme has demonstrated to be effective in providing superior trajectory tracking.

  18. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Science.gov (United States)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  19. Modeling TAE Response To Nonlinear Drives

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  20. Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity

    Directory of Open Access Journals (Sweden)

    Isao Ishida

    2015-01-01

    Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.

  1. Dissipative quantum dynamics and nonlinear sigma-model

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1992-01-01

    Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs

  2. Sample selection and taste correlation in discrete choice transport modelling

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard

    2008-01-01

    explain counterintuitive results in value of travel time estimation. However, the results also point at the difficulty of finding suitable instruments for the selection mechanism. Taste heterogeneity is another important aspect of discrete choice modelling. Mixed logit models are designed to capture...... the question for a broader class of models. It is shown that the original result may be somewhat generalised. Another question investigated is whether mode choice operates as a self-selection mechanism in the estimation of the value of travel time. The results show that self-selection can at least partly...... of taste correlation in willingness-to-pay estimation are presented. The first contribution addresses how to incorporate taste correlation in the estimation of the value of travel time for public transport. Given a limited dataset the approach taken is to use theory on the value of travel time as guidance...

  3. Application of rrm as behavior mode choice on modelling transportation

    Science.gov (United States)

    Surbakti, M. S.; Sadullah, A. F.

    2018-03-01

    Transportation mode selection, the first step in transportation planning process, is probably one of the most important planning elements. The development of models that can explain the preference of passengers regarding their chosen mode of public transport option will contribute to the improvement and development of existing public transport. Logit models have been widely used to determine the mode choice models in which the alternative are different transport modes. Random Regret Minimization (RRM) theory is a theory developed from the behavior to choose (choice behavior) in a state of uncertainty. During its development, the theory was used in various disciplines, such as marketing, micro economy, psychology, management, and transportation. This article aims to show the use of RRM in various modes of selection, from the results of various studies that have been conducted both in north sumatera and western Java.

  4. A Comparative Study Of Stock Price Forecasting Using Nonlinear Models

    Directory of Open Access Journals (Sweden)

    Diteboho Xaba

    2017-03-01

    Full Text Available This study compared the in-sample forecasting accuracy of three forecasting nonlinear models namely: the Smooth Transition Regression (STR model, the Threshold Autoregressive (TAR model and the Markov-switching Autoregressive (MS-AR model. Nonlinearity tests were used to confirm the validity of the assumptions of the study. The study used model selection criteria, SBC to select the optimal lag order and for the selection of appropriate models. The Mean Square Error (MSE, Mean Absolute Error (MAE and Root Mean Square Error (RMSE served as the error measures in evaluating the forecasting ability of the models. The MS-AR models proved to perform well with lower error measures as compared to LSTR and TAR models in most cases.

  5. Exploring alternatives to rational choice in models of Behaviour:An investigation using travel mode choice

    OpenAIRE

    Thomas, Gregory Owen

    2014-01-01

    The car is the most popular travel mode in the UK, but reliance on the car has numerous negative effects on health, the economy, and the environment. Encouraging sustainable travel mode choices (modal choice) can minimise these problems. To promote behaviour change, psychologists have an interest in understanding modal choice. Historically, modal choice has been understood as a reasoned and rational decision that requires a conscious assessment of thoughts and attitudes: but evidence suggests...

  6. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  7. Nonlinear Dynamics of a Helicopter Model in Ground Resonance

    Science.gov (United States)

    Tang, D. M.; Dowell, E. H.

    1985-01-01

    An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.

  8. Linear and Nonlinear Career Models: Metaphors, Paradigms, and Ideologies.

    Science.gov (United States)

    Buzzanell, Patrice M.; Goldzwig, Steven R.

    1991-01-01

    Examines the linear or bureaucratic career models (dominant in career research, metaphors, paradigms, and ideologies) which maintain career myths of flexibility and individualized routes to success in organizations incapable of offering such versatility. Describes nonlinear career models which offer suggestive metaphors for re-visioning careers…

  9. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...... intrinsically. The time-dependent Ginzburg-Landau theory is used in the parameter identification involving hysteresis effects. We use the Chebyshev collocation method in the numerical simulations. The elastic field is assumed to be coupled linearly with other fields, and the nonlinearity is in the E-D coupling...

  10. Understanding Predisposition in College Choice: Toward an Integrated Model of College Choice and Theory of Reasoned Action

    Science.gov (United States)

    Pitre, Paul E.; Johnson, Todd E.; Pitre, Charisse Cowan

    2006-01-01

    This article seeks to improve traditional models of college choice that draw from recruitment and enrollment management paradigms. In adopting a consumer approach to college choice, this article seeks to build upon consumer-related research, which centers on behavior and reasoning. More specifically, this article seeks to move inquiry beyond the…

  11. CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL

    KAUST Repository

    CARRILLO, JOSÉ ANTONIO

    2012-12-01

    A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.

  12. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  13. An analog model for quantum lightcone fluctuations in nonlinear optics

    International Nuclear Information System (INIS)

    Ford, L.H.; De Lorenci, V.A.; Menezes, G.; Svaiter, N.F.

    2013-01-01

    We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. - Highlights: ► Lightcone fluctuations, quantum fluctuations of the effective speed of light, are a feature of quantum gravity. ► Nonlinear dielectrics have a variable speed of light, analogous to the effects of gravity. ► Fluctuating electric fields create the effect of lightcone fluctuations in a nonlinear material. ► We propose to use squeezed light in a nonlinear material as an analog model of lightcone fluctuations. ► Variation in the speed of propagation of pulses is the observational signature of lightcone fluctuations.

  14. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Nicolás Peréz Alvarez

    2015-11-01

    Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.

  15. Robustness of public choice models of voting behavior

    Directory of Open Access Journals (Sweden)

    Mihai UNGUREANU

    2013-05-01

    Full Text Available Modern economics modeling practice involves highly unrealistic assumptions. Since testing such models is not always an easy enterprise, researchers face the problem of determining whether a result is dependent (or not on the unrealistic details of the model. A solution for this problem is conducting robustness analysis. In its classical form, robustness analysis is a non-empirical method of confirmation – it raises our trust in a given result by implying it with from several different models. In this paper I argue that robustness analysis could be thought as a method of post-empirical failure. This form of robustness analysis involves assigning guilt for the empirical failure to a certain part of the model. Starting from this notion of robustness, I analyze a case of empirical failure from public choice theory or the economic approach of politics. Using the fundamental methodological principles of neoclassical economics, the first model of voting behavior implied that almost no one would vote. This was clearly an empirical failure. Public choice scholars faced the problem of either restraining the domain of their discipline or giving up to some of their neoclassical methodological features. The second solution was chosen and several different models of voting behavior were built. I will treat these models as a case for performing robustness analysis and I will determine which assumption from the original model is guilty for the empirical failure.

  16. Note on off-shell relations in nonlinear sigma model

    International Nuclear Information System (INIS)

    Chen, Gang; Du, Yi-Jian; Li, Shuyi; Liu, Hanqing

    2015-01-01

    In this note, we investigate relations between tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, all odd-point currents vanish. We propose and prove a generalized U(1) identity for even-point currents. The off-shell U(1) identity given in http://dx.doi.org/10.1007/JHEP01(2014)061 is a special case of the generalized identity studied in this note. The on-shell limit of this identity is equivalent with the on-shell KK relation. Thus this relation provides the full off-shell correspondence of tree-level KK relation in nonlinear sigma model.

  17. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  18. Nonlinear thermal reduced model for Microwave Circuit Analysis

    OpenAIRE

    Chang, Christophe; Sommet, Raphael; Quéré, Raymond; Dueme, Ph.

    2004-01-01

    With the constant increase of transistor power density, electro thermal modeling is becoming a necessity for accurate prediction of device electrical performances. For this reason, this paper deals with a methodology to obtain a precise nonlinear thermal model based on Model Order Reduction of a three dimensional thermal Finite Element (FE) description. This reduced thermal model is based on the Ritz vector approach which ensure the steady state solution in every case. An equi...

  19. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction considered. A simulation study shows that the fi…nite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  20. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  1. Mathematical models for suspension bridges nonlinear structural instability

    CERN Document Server

    Gazzola, Filippo

    2015-01-01

    This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.

  2. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  3. Modelling of a bridge-shaped nonlinear piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Gafforelli, G; Corigliano, A; Xu, R; Kim, S G

    2013-01-01

    Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters

  4. Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2017-01-01

    The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable mod...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....... of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based...

  5. Global Nonlinear Model Identification with Multivariate Splines

    NARCIS (Netherlands)

    De Visser, C.C.

    2011-01-01

    At present, model based control systems play an essential role in many aspects of modern society. Application areas of model based control systems range from food processing to medical imaging, and from process control in oil refineries to the flight control systems of modern aircraft. Central to a

  6. Choices Matter, but How Do We Model Them?

    Science.gov (United States)

    Brelsford, C.; Dumas, M.

    2017-12-01

    Quantifying interactions between social systems and the physical environment we live within has long been a major scientific challenge. Humans have had such a large influence on our environment that it is no longer reasonable to consider the behavior of an ecological or hydrological system from a purely `physical' perspective: imagining a system that excludes the influence of human choices and behavior. Understanding the role that human social choices play in the energy water nexus is crucial for developing accurate models in that space. The relatively new field of socio-hydrology is making progress towards understanding the role humans play in hydrological systems. While this fact is now widely recognized across the many academic fields that study water systems, we have yet to develop a coherent set of theories for how to model the behavior of these complex and highly interdependent socio-hydrological systems. How should we conceptualize hydrological systems as socio-ecological systems (i.e. system with variables, states, parameters, actors who can control certain variables and a sense of the desirability of states) within which the rigorous study of feedbacks becomes possible? This talk reviews the state of knowledge of how social decisions around water consumption, allocation, and transport influence and are influenced by the physical hydrology that water also moves within. We cover recent papers in socio-hydrology, engineering, water law, and institutional analysis. There have been several calls within socio-hydrology to model human social behavior endogenously along with the hydrology. These improvements are needed across a range of spatial and temporal scales. We suggest two potential strategies for coupled models that allow endogenous water consumption behavior: a social first model which looks for empirical relationships between water consumption and allocation choices and the hydrological state, and a hydrology first model in which we look for regularities

  7. Current algebra of classical non-linear sigma models

    International Nuclear Information System (INIS)

    Forger, M.; Laartz, J.; Schaeper, U.

    1992-01-01

    The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)

  8. Dynamics of breathers in discrete nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge

    1998-01-01

    We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...

  9. Control mechanisms for a nonlinear model of international relations

    Energy Technology Data Exchange (ETDEWEB)

    Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.

    1997-07-15

    Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.

  10. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  11. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  12. Modelling the nonlinearity of piezoelectric actuators in active ...

    African Journals Online (AJOL)

    Piezoelectric actuators have great capabilities as elements of intelligent structures for active vibration cancellation. One problem with this type of actuator is its nonlinear behaviour. In active vibration control systems, it is important to have an accurate model of the control branch. This paper demonstrates the ability of neural ...

  13. Hybrid time/frequency domain modeling of nonlinear components

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth

    2007-01-01

    This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...

  14. A non-linear dissipative model of magnetism

    Czech Academy of Sciences Publication Activity Database

    Durand, P.; Paidarová, Ivana

    2010-01-01

    Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/

  15. Modeling and verifying non-linearities in heterodyne displacement interferometry

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.

    2002-01-01

    The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

  16. Multidimensional splines for modeling FET nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Barby, J A

    1986-01-01

    Circuit simulators like SPICE and timing simulators like MOTIS are used extensively for critical path verification of integrated circuits. MOSFET model evaluation dominates the run time of these simulators. Changes in technology results in costly updates, since modifications require reprogramming of the functions and their derivatives. The computational cost of MOSFET models can be reduced by using multidimensional polynomial splines. Since simulators based on the Newton Raphson algorithm require the function and first derivative, quadratic splines are sufficient for this purpose. The cost of updating the MOSFET model due to technology changes is greatly reduced since splines are derived from a set of points. Crucial for convergence speed of simulators is the fact that MOSFET characteristic equations are monotonic. This must be maintained by any simulation model. The splines the author designed do maintain monotonicity.

  17. Identification of stochastic interactions in nonlinear models of structural mechanics

    Science.gov (United States)

    Kala, Zdeněk

    2017-07-01

    In the paper, the polynomial approximation is presented by which the Sobol sensitivity analysis can be evaluated with all sensitivity indices. The nonlinear FEM model is approximated. The input area is mapped using simulations runs of Latin Hypercube Sampling method. The domain of the approximation polynomial is chosen so that it were possible to apply large number of simulation runs of Latin Hypercube Sampling method. The method presented also makes possible to evaluate higher-order sensitivity indices, which could not be identified in case of nonlinear FEM.

  18. Assessing robustness of designs for random effects parameters for nonlinear mixed-effects models.

    Science.gov (United States)

    Duffull, Stephen B; Hooker, Andrew C

    2017-12-01

    Optimal designs for nonlinear models are dependent on the choice of parameter values. Various methods have been proposed to provide designs that are robust to uncertainty in the prior choice of parameter values. These methods are generally based on estimating the expectation of the determinant (or a transformation of the determinant) of the information matrix over the prior distribution of the parameter values. For high dimensional models this can be computationally challenging. For nonlinear mixed-effects models the question arises as to the importance of accounting for uncertainty in the prior value of the variances of the random effects parameters. In this work we explore the influence of the variance of the random effects parameters on the optimal design. We find that the method for approximating the expectation and variance of the likelihood is of potential importance for considering the influence of random effects. The most common approximation to the likelihood, based on a first-order Taylor series approximation, yields designs that are relatively insensitive to the prior value of the variance of the random effects parameters and under these conditions it appears to be sufficient to consider uncertainty on the fixed-effects parameters only.

  19. Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-06-18

    In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.

  20. Simple model for multiple-choice collective decision making.

    Science.gov (United States)

    Lee, Ching Hua; Lucas, Andrew

    2014-11-01

    We describe a simple model of heterogeneous, interacting agents making decisions between n≥2 discrete choices. For a special class of interactions, our model is the mean field description of random field Potts-like models and is effectively solved by finding the extrema of the average energy E per agent. In these cases, by studying the propagation of decision changes via avalanches, we argue that macroscopic dynamics is well captured by a gradient flow along E. We focus on the permutation symmetric case, where all n choices are (on average) the same, and spontaneous symmetry breaking (SSB) arises purely from cooperative social interactions. As examples, we show that bimodal heterogeneity naturally provides a mechanism for the spontaneous formation of hierarchies between decisions and that SSB is a preferred instability to discontinuous phase transitions between two symmetric points. Beyond the mean field limit, exponentially many stable equilibria emerge when we place this model on a graph of finite mean degree. We conclude with speculation on decision making with persistent collective oscillations. Throughout the paper, we emphasize analogies between methods of solution to our model and common intuition from diverse areas of physics, including statistical physics and electromagnetism.

  1. Alterations in choice behavior by manipulations of world model.

    Science.gov (United States)

    Green, C S; Benson, C; Kersten, D; Schrater, P

    2010-09-14

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.

  2. Transport Choice Modeling for the Evaluation of New Transport Policies

    Directory of Open Access Journals (Sweden)

    Ander Pijoan

    2018-04-01

    Full Text Available Quantifying the impact of the application of sustainable transport policies is essential in order to mitigate effects of greenhouse gas emissions produced by the transport sector. One of the most common approaches used for this purpose is that of traffic modelling and simulation, which consists of emulating the operation of an entire road network. This article presents the results of fitting 8 well known data science methods for transport choice modelling, the area in which more research is needed. The models have been trained with information from Biscay province in Spain in order to match as many of its commuters as possible. Results show that the best models correctly forecast more than 51% of the trips recorded. Finally, the results have been validated with a second data set from the Silesian Voivodeship in Poland, showing that all models indeed maintain their forecasting ability.

  3. Modelization of highly nonlinear waves in coastal regions

    Science.gov (United States)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  4. Nonlinear dynamic phenomena in the beer model

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Laugesen, Jakob Lund

    2007-01-01

    The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...

  5. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann; Christensen, Knud Bank

    1996-01-01

    A central part of the Danish LoDist project has been the derivation of an extended equivalent circuit and a corresponding set of differential equations suitable for the simulation of high-fidelity woofers under large and very large (clipping) signal conditions. A model including suspension creep ...

  6. Exploring the Influence of Attitudes to Walking and Cycling on Commute Mode Choice Using a Hybrid Choice Model

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2017-01-01

    Full Text Available Transport-related problems, such as automobile dependence, traffic congestion, and greenhouse emissions, lead to a great burden on the environment. In developing countries like China, in order to improve the air quality, promoting sustainable travel modes to reduce the automobile usage is gradually recognized as an emerging national concern. Though there are many studies related to the physically active modes (e.g., walking and cycling, the research on the influence of attitudes to active modes on travel behavior is limited, especially in China. To fill up this gap, this paper focuses on examining the impact of attitudes to walking and cycling on commute mode choice. Using the survey data collected in China cities, an integrated discrete choice model and the structural equation model are proposed. By applying the hybrid choice model, not only the role of the latent attitude played in travel mode choice, but also the indirect effects of social factors on travel mode choice are obtained. The comparison indicates that the hybrid choice model outperforms the traditional model. This study is expected to provide a better understanding for urban planners on the influential factors of green travel modes.

  7. Closing the gap between behavior and models in route choice: The role of spatiotemporal constraints and latent traits in choice set formation

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    not account for individual-related spatiotemporal constraints. This paper reduces the gap by proposing a route choice model incorporating spatiotemporal constraints and latent traits. The proposed approach combines stochastic route generation with a latent variable semi-compensatory model representing......A considerable gap exists between the behavioral paradigm of choice set formation in route choice and its representation in route choice modeling. While travelers form their viable choice set by retaining routes that satisfy spatiotemporal constraints, existing route generation techniques do...

  8. Quark fragmentation function and the nonlinear chiral quark model

    International Nuclear Information System (INIS)

    Zhu, Z.K.

    1993-01-01

    The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results

  9. Nonlinear model of high-dose implantation

    International Nuclear Information System (INIS)

    Danilyuk, A.

    2001-01-01

    The models of high-dose implantation, using the distribution functions, are relatively simple. However, they must take into account the variation of the function of distribution of the implanted ions with increasing dose [1-4]. This variation takes place owing to the fact that the increase of the concentration of the implanted ions results in a change of the properties of the target. High-dose implantation is accompanied by sputtering, volume growth, diffusion, generation of defects, formation of new phases, etc. The variation of the distribution function is determined by many factors and is not known in advance. The variation within the framework of these models [1-4] is taken into account in advance by the introduction of intuitive assumptions on the basis of implicit considerations. Therefore, these attempts should be regarded as incorrect. The model prepared here makes it possible to take into account the sputtering of the target, volume growth and additional declaration on the implanted ions. Without any assumptions in relation to the variation of the distribution function with increasing dose. In our model it is assumed that the type of distribution function for small doses in a pure target substance is the same as in substances with implanted ions. A second assumption relates to the type of the distribution function valid for small doses in the given substances. These functions are determined as a result of a large number of theoretical and experimental investigations and are well-known at the present time. They include the symmetric and nonsymmetric Gauss distribution, the Pearson distribution, and others. We examine implantation with small doses of up to 10 14 - 10 15 cm -2 when the accurately known distribution is valid

  10. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  11. Soliton excitations in a class of nonlinear field theory models

    International Nuclear Information System (INIS)

    Makhan'kov, V.G.; Fedyanin, V.K.

    1985-01-01

    Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated

  12. The quantum nonlinear Schroedinger model with point-like defect

    International Nuclear Information System (INIS)

    Caudrelier, V; Mintchev, M; Ragoucy, E

    2004-01-01

    We establish a family of point-like impurities which preserve the quantum integrability of the nonlinear Schroedinger model in 1+1 spacetime dimensions. We briefly describe the construction of the exact second quantized solution of this model in terms of an appropriate reflection-transmission algebra. The basic physical properties of the solution, including the spacetime symmetry of the bulk scattering matrix, are also discussed. (letter to the editor)

  13. Eddy current modeling in linear and nonlinear multifilamentary composite materials

    Science.gov (United States)

    Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean

    2018-04-01

    In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.

  14. Classical solutions for the 4-dimensional σ-nonlinear model

    International Nuclear Information System (INIS)

    Tataru-Mihai, P.

    1979-01-01

    By interpreting the σ-nonlinear model as describing the Gauss map associated to a certain immersion, several classes of classical solutions for the 4-dimensional model are derived. As by-products one points out i) an intimate connection between the energy-momentum tensor of the solution and the second differential form of the immersion associated to it and ii) a connection between self- (antiself-)duality of the solution and the minimality of the associated immersion. (author)

  15. Development of an Integrated Nonlinear Aeroservoelastic Flight Dynamic Model of the NASA Generic Transport Model

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric

    2018-01-01

    This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..

  16. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  17. Reduced Complexity Volterra Models for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Hacıoğlu Rıfat

    2001-01-01

    Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.

  18. Think twice before you book? Modelling the choice of public vs private dentist in a choice experiment.

    Science.gov (United States)

    Kiiskinen, Urpo; Suominen-Taipale, Anna Liisa; Cairns, John

    2010-06-01

    This study concerns the choice of primary dental service provider by consumers. If the health service delivery system allows individuals to choose between public-care providers or if complementary private services are available, it is typically assumed that utilisation is a three-stage decision process. The patient first makes a decision to seek care, and then chooses the service provider. The final stage, involving decisions over the amount and form of treatment, is not considered here. The paper reports a discrete choice experiment (DCE) designed to evaluate attributes affecting individuals' choice of dental-care provider. The feasibility of the DCE approach in modelling consumers' choice in the context of non-acute need for dental care is assessed. The aim is to test whether a separate two-stage logit, a multinomial logit, or a nested logit best fits the choice process of consumers. A nested logit model of indirect utility functions is estimated and inclusive value (IV) constraints are tested for modelling implications. The results show that non-trading behaviour has an impact on the choice of appropriate modelling technique, but is to some extent dependent on the choice of scenarios offered. It is concluded that for traders multinomial logit is appropriate, whereas for non-traders and on average the nested logit is the method supported by the analyses. The consistent finding in all subgroup analyses is that the traditional two-stage decision process is found to be implausible in the context of consumer's choice of dental-care provider.

  19. Nonlinear dynamics of avian influenza epidemic models.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Multi-atom Jaynes-Cummings model with nonlinear effects

    International Nuclear Information System (INIS)

    Aleixo, Armando Nazareno Faria; Balantekin, Akif Baha; Ribeiro, Marco Antonio Candido

    2001-01-01

    The standard Jaynes-Cummings (JC) model and its extensions, normally used in quantum optics, idealizes the interaction of matter with electromagnetic radiation by a simple Hamiltonian of a two-level atom coupled to a single bosonic mode. This Hamiltonian has a fundamental importance to the field of quantum optics and it is a central ingredient in the quantized description of any optical system involving the interaction between light and atoms. The JC Hamiltonian defines a molecule, a composite system formed from the coupling of a two-state system and a quantized harmonic oscillator. For this Hamiltonian, mostly the single-particle situation has been studied. This model can also be extended for the situation where one has N two-level systems, which interact only with the electromagnetic radiation. In this case the effects of the spatial distribution of the particles it is not taken into account and the spin angular momentum S-circumflex i of each particle contributes to form a total angular momentum J-circumflex of the system. When one considers the effects due to the spatial variation in the field intensity in a nonlinear medium it is necessary to further add a Kerr term to the standard JC Hamiltonian. This kind of nonlinear JC Hamiltonian is used in the study of micro masers. Another nonlinear variant of the JC model takes the coupling between matter and the radiation to depend on the intensity of the electromagnetic field. This model is interesting since this kind of interaction means that effectively the coupling is proportional to the amplitude of the field representing a very simple case of a nonlinear interaction corresponding to a more realistic physical situation. In this work we solve exactly the problem of the interaction of a N two-level atoms with an electromagnetic radiation when nonlinear effects due to the spatial variation in the field intensity in a nonlinear Kerr medium and the dependence on the intensity of the electromagnetic field on the matter

  1. A data driven nonlinear stochastic model for blood glucose dynamics.

    Science.gov (United States)

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Modal model for the nonlinear multimode Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Ofer, D.; Alon, U.; Shvarts, D.; McCrory, R.L.; Verdon, C.P.

    1996-01-01

    A modal model for the Rayleigh endash Taylor (RT) instability, applicable at all stages of the flow, is introduced. The model includes a description of nonlinear low-order mode coupling, mode growth saturation, and post-saturation mode coupling. It is shown to significantly extend the range of applicability of a previous model proposed by Haan, to cases where nonlinear mode generation is important. Using the new modal model, we study the relative importance of mode coupling at late nonlinear stages and resolve the difference between cases in which mode generation assumes a dominant role, leading to the late time inverse cascade of modes and loss of memory of initial conditions, and cases where mode generation is not important and memory of initial conditions is retained. Effects of finite density ratios (Atwood number A<1) are also included in the model and the difference between various measures of the mixing zone penetration depth for A<1 is discussed. copyright 1996 American Institute of Physics

  3. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    Science.gov (United States)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy

    2013-11-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.

  4. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    International Nuclear Information System (INIS)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M; Browne, Alan L; Ulicny, John; Johnson, Nancy

    2013-01-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s −1 . Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R and D Center for nominal drop speeds of up to 6 m s −1 . (paper)

  5. Nonlinear unitary quantum collapse model with self-generated noise

    Science.gov (United States)

    Geszti, Tamás

    2018-04-01

    Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.

  6. Non-linear sigma model on the fuzzy supersphere

    International Nuclear Information System (INIS)

    Kurkcuoglu, Seckin

    2004-01-01

    In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)

  7. Cardiovascular oscillations: in search of a nonlinear parametric model

    Science.gov (United States)

    Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan

    2003-05-01

    We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.

  8. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  9. Estimation of Nonlinear DC-Motor Models Using a Sensitivity Approach

    DEFF Research Database (Denmark)

    Knudsen, Morten; Jensen, J.G.

    1995-01-01

    A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed.......A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed....

  10. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  11. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm ...... controller is shown very reliable keeping the comfort levels in the two considered seasons and shifting the load away from peak hours in order to achieve the desired flexible electricity consumption.......Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...

  12. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...

  13. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    Science.gov (United States)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient

  14. Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models

    Science.gov (United States)

    Low, Ian; Yin, Zhewei

    2018-02-01

    We present a Ward identity for nonlinear sigma models using generalized nonlinear shift symmetries, without introducing current algebra or coset space. The Ward identity constrains correlation functions of the sigma model such that the Adler's zero is guaranteed for S -matrix elements, and gives rise to a subleading single soft theorem that is valid at the quantum level and to all orders in the Goldstone decay constant. For tree amplitudes, the Ward identity leads to a novel Berends-Giele recursion relation as well as an explicit form of the subleading single soft factor. Furthermore, interactions of the cubic biadjoint scalar theory associated with the single soft limit, which was previously discovered using the Cachazo-He-Yuan representation of tree amplitudes, can be seen to emerge from matrix elements of conserved currents corresponding to the generalized shift symmetry.

  15. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  16. Nonlinear dynamics mathematical models for rigid bodies with a liquid

    CERN Document Server

    Lukovsky, Ivan A

    2015-01-01

    This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.

  17. Nonlinear Stochastic Models for Water Level Dynamics in Closed Lakes

    OpenAIRE

    Mishchenko, A.S.; Zelikin, M.I.; Zelikina, L.F.

    1995-01-01

    This paper presents the results of investigation of nonlinear mathematical models of the behavior of closed lakes using the example of the Caspian Sea. Forecasting the level of the Caspian Sea is crucial both for the economy of the region and for the region's environment. The Caspian Sea is a closed reservoir; it is well known that its level changes considerably due to a variety of factors including global climate change. A series of forecasts exists based on different methods and taking...

  18. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  19. Nonlinear evolution inclusions arising from phase change models

    Czech Academy of Sciences Publication Activity Database

    Colli, P.; Krejčí, Pavel; Rocca, E.; Sprekels, J.

    2007-01-01

    Roč. 57, č. 4 (2007), s. 1067-1098 ISSN 0011-4642 R&D Projects: GA ČR GA201/02/1058 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlinear and nonlocal evolution equations * Cahn-Hilliard type dynamics * phase transitions models Subject RIV: BA - General Mathematics Impact factor: 0.155, year: 2007 http://www.dml.cz/bitstream/handle/10338.dmlcz/128228/CzechMathJ_57-2007-4_2.pdf

  20. Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes

    2016-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...

  1. Nonlinear Model Predictive Control for Cooperative Control and Estimation

    Science.gov (United States)

    Ru, Pengkai

    Recent advances in computational power have made it possible to do expensive online computations for control systems. It is becoming more realistic to perform computationally intensive optimization schemes online on systems that are not intrinsically stable and/or have very small time constants. Being one of the most important optimization based control approaches, model predictive control (MPC) has attracted a lot of interest from the research community due to its natural ability to incorporate constraints into its control formulation. Linear MPC has been well researched and its stability can be guaranteed in the majority of its application scenarios. However, one issue that still remains with linear MPC is that it completely ignores the system's inherent nonlinearities thus giving a sub-optimal solution. On the other hand, if achievable, nonlinear MPC, would naturally yield a globally optimal solution and take into account all the innate nonlinear characteristics. While an exact solution to a nonlinear MPC problem remains extremely computationally intensive, if not impossible, one might wonder if there is a middle ground between the two. We tried to strike a balance in this dissertation by employing a state representation technique, namely, the state dependent coefficient (SDC) representation. This new technique would render an improved performance in terms of optimality compared to linear MPC while still keeping the problem tractable. In fact, the computational power required is bounded only by a constant factor of the completely linearized MPC. The purpose of this research is to provide a theoretical framework for the design of a specific kind of nonlinear MPC controller and its extension into a general cooperative scheme. The controller is designed and implemented on quadcopter systems.

  2. Parameter Estimation and Prediction of a Nonlinear Storage Model: an algebraic approach

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    Generally, parameters that are nonlinear in system models are estimated by nonlinear least-squares optimization algorithms. In this paper, if a nonlinear discrete-time model with a polynomial quotient structure in input, output, and parameters, a method is proposed to re-parameterize the model such

  3. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  4. Human Nonindependent Mate Choice: Is Model Female Attractiveness Everything?

    Directory of Open Access Journals (Sweden)

    Antonios Vakirtzis

    2012-04-01

    Full Text Available Following two decades of research on non-human animals, there has recently been increased interest in human nonindependent mate choice, namely the ways in which choosing women incorporate information about a man's past or present romantic partners (‘model females’ into their own assessment of the male. Experimental studies using static facial images have generally found that men receive higher desirability ratings from female raters when presented with attractive (compared to unattractive model females. This phenomenon has a straightforward evolutionary explanation: the fact that female mate value is more dependent on physical attractiveness compared to male mate value. Furthermore, due to assortative mating for attractiveness, men who are paired with attractive women are more likely to be of high mate value themselves. Here, we also examine the possible relevance of model female cues other than attractiveness (personality and behavioral traits by presenting video recordings of model females to a set of female raters. The results confirm that the model female's attractiveness is the primary cue. Contrary to some earlier findings in the human and nonhuman literature, we found no evidence that female raters prefer partners of slightly older model females. We conclude by suggesting some promising variations on the present experimental design.

  5. Use of nonlinear dose-effect models to predict consequences

    International Nuclear Information System (INIS)

    Seiler, F.A.; Alvarez, J.L.

    1996-01-01

    The linear dose-effect relationship was introduced as a model for the induction of cancer from exposure to nuclear radiation. Subsequently, it has been used by analogy to assess the risk of chemical carcinogens also. Recently, however, the model for radiation carcinogenesis has come increasingly under attack because its calculations contradict the epidemiological data, such as cancer in atomic bomb survivors. Even so, its proponents vigorously defend it, often using arguments that are not so much scientific as a mix of scientific, societal, and often political arguments. At least in part, the resilience of the linear model is due to two convenient properties that are exclusive to linearity: First, the risk of an event is determined solely by the event dose; second, the total risk of a population group depends only on the total population dose. In reality, the linear model has been conclusively falsified; i.e., it has been shown to make wrong predictions, and once this fact is generally realized, the scientific method calls for a new paradigm model. As all alternative models are by necessity nonlinear, all the convenient properties of the linear model are invalid, and calculational procedures have to be used that are appropriate for nonlinear models

  6. Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2005-01-01

    In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)

  7. The inherent complexity in nonlinear business cycle model in resonance

    International Nuclear Information System (INIS)

    Ma Junhai; Sun Tao; Liu Lixia

    2008-01-01

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future

  8. Testing and inference in nonlinear cointegrating vector error correction models

    DEFF Research Database (Denmark)

    Kristensen, D.; Rahbek, A.

    2013-01-01

    We analyze estimators and tests for a general class of vector error correction models that allows for asymmetric and nonlinear error correction. For a given number of cointegration relationships, general hypothesis testing is considered, where testing for linearity is of particular interest. Under...... the null of linearity, parameters of nonlinear components vanish, leading to a nonstandard testing problem. We apply so-called sup-tests to resolve this issue, which requires development of new(uniform) functional central limit theory and results for convergence of stochastic integrals. We provide a full...... asymptotic theory for estimators and test statistics. The derived asymptotic results prove to be nonstandard compared to results found elsewhere in the literature due to the impact of the estimated cointegration relations. This complicates implementation of tests motivating the introduction of bootstrap...

  9. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2000-10-01

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  10. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  11. Quantitative genetic models of sexual selection by male choice.

    Science.gov (United States)

    Nakahashi, Wataru

    2008-09-01

    There are many examples of male mate choice for female traits that tend to be associated with high fertility. I develop quantitative genetic models of a female trait and a male preference to show when such a male preference can evolve. I find that a disagreement between the fertility maximum and the viability maximum of the female trait is necessary for directional male preference (preference for extreme female trait values) to evolve. Moreover, when there is a shortage of available male partners or variance in male nongenetic quality, strong male preference can evolve. Furthermore, I also show that males evolve to exhibit a stronger preference for females that are more feminine (less resemblance to males) than the average female when there is a sexual dimorphism caused by fertility selection which acts only on females.

  12. Nonlinear dynamical modeling and prediction of the terrestrial magnetospheric activity

    International Nuclear Information System (INIS)

    Vassiliadis, D.

    1992-01-01

    The irregular activity of the magnetosphere results from its complex internal dynamics as well as the external influence of the solar wind. The dominating self-organization of the magnetospheric plasma gives rise to repetitive, large-scale coherent behavior manifested in phenomena such as the magnetic substorm. Based on the nonlinearity of the global dynamics this dissertation examines the magnetosphere as a nonlinear dynamical system using time series analysis techniques. Initially the magnetospheric activity is modeled in terms of an autonomous system. A dimension study shows that its observed time series is self-similar, but the correlation dimension is high. The implication of a large number of degrees of freedom is confirmed by other state space techniques such as Poincare sections and search for unstable periodic orbits. At the same time a stability study of the time series in terms of Lyapunov exponents suggests that the series is not chaotic. The absence of deterministic chaos is supported by the low predictive capability of the autonomous model. Rather than chaos, it is an external input which is largely responsible for the irregularity of the magnetospheric activity. In fact, the external driving is so strong that the above state space techniques give results for magnetospheric and solar wind time series that are at least qualitatively similar. Therefore the solar wind input has to be included in a low-dimensional nonautonomous model. Indeed it is shown that such a model can reproduce the observed magnetospheric behavior up to 80-90 percent. The characteristic coefficients of the model show little variation depending on the external disturbance. The impulse response is consistent with earlier results of linear prediction filters. The model can be easily extended to contain nonlinear features of the magnetospheric activity and in particular the loading-unloading behavior of substorms

  13. Comparison of a nonlinear dynamic model of a piping system to test data

    International Nuclear Information System (INIS)

    Blakely, K.D.; Howard, G.E.; Walton, W.B.; Johnson, B.A.; Chitty, D.E.

    1983-01-01

    Response of a nonlinear finite element model of the Heissdampfreaktor recirculation piping loop (URL) was compared to measured data, representing the physical benchmarking of a nonlinear model. Analysis-test comparisons of piping response are presented for snapback tests that induced extreme nonlinear behavior of the URL system. Nonlinearities in the system are due to twelve swaybraces (pipe supports) that possessed nonlinear force-deflection characteristics. These nonlinearities distorted system damping estimates made by using the half-power bandwidth method on Fourier transforms of measured accelerations, with the severity of distortion increasing with increasing degree of nonlinearity. Time domain methods, which are not so severely affected by the presence of nonlinearities, were used to compute system damping ratios. Nonlinear dynamic analyses were accurately and efficiently performed using the pseudo-force technique and the finite element program MSC/NASTRAN. Measured damping was incorporated into the model for snapback simulations. Acceleration time histories, acceleration Fourier transforms, and swaybrace force time histories of the nonlinear model, plus several linear models, were compared to test measurements. The nonlinear model predicted three-fourths of the measured peak accelerations to within 50%, half of the accelerations to within 25%, and one-fifth of the accelerations to within 10%. This nonlinear model predicted accelerations (in the time and frequency domains) and swaybrace forces much better than did any of the linear models, demonstrating the increased accuracy resulting from properly simulating nonlinear support behavior. In addition, earthquake response comparisons were made between the experimentally validated nonlinear model and a linear model. Significantly lower element stresses were predicted for the nonlinear model, indicating the potential usefulness of nonlinear simulations in piping design assessments. (orig.)

  14. Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model

    OpenAIRE

    T. H. Lee; J. H. Park; S. M. Lee; S. C. Lee

    2010-01-01

    In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of ...

  15. An SIRS model with a nonlinear incidence rate

    International Nuclear Information System (INIS)

    Jin Yu; Wang, Wendi; Xiao Shiwu

    2007-01-01

    The global dynamics of an SIRS model with a nonlinear incidence rate is investigated. We establish a threshold for a disease to be extinct or endemic, analyze the existence and asymptotic stability of equilibria, and verify the existence of bistable states, i.e., a stable disease free equilibrium and a stable endemic equilibrium or a stable limit cycle. In particular, we find that the model admits stability switches as a parameter changes. We also investigate the backward bifurcation, the Hopf bifurcation and Bogdanov-Takens bifurcation and obtain the Hopf bifurcation criteria and Bogdanov-Takens bifurcation curves, which are important for making strategies for controlling a disease

  16. Stability Analysis of Some Nonlinear Anaerobic Digestion Models

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2010-04-01

    Full Text Available Abstract: The paper deals with local asymptotic stability analysis of some mass balance dynamic models (based on one and on two-stage reaction schemes of the anaerobic digestion (AD in CSTR. The equilibrium states for models based on one (with Monod, Contois and Haldane shapes for the specific growth rate and on two-stage (only with Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial populations reaction schemes have been determined solving sets of nonlinear algebraic equations using Maples. Their stability has been analyzed systematically, which provides insight and guidance for AD bioreactors design, operation and control.

  17. The Precession Index and a Nonlinear Energy Balance Climate Model

    Science.gov (United States)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  18. A nonlinear model for ionic polymer metal composites as actuators

    Science.gov (United States)

    Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.

    2007-02-01

    This paper introduces a comprehensive nonlinear dynamic model of motion actuators based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the acting properties of IPMC-based actuators are taken into account. The model is organized as follows. As a first step, the dependence of the IPMC absorbed current on the voltage applied across its thickness is taken into account; a nonlinear circuit model is proposed to describe this relationship. In a second step the transduction of the absorbed current into the IPMC mechanical reaction is modelled. The model resulting from the cascade of both the electrical and the electromechanical stages represents a novel contribution in the field of IPMCs, capable of describing the electromechanical behaviour of these materials and predicting relevant quantities in a large range of applied signals. The effect of actuator scaling is also investigated, giving interesting support to the activities involved in the design of actuating devices based on these novel materials. Evidence of the excellent agreement between the estimations obtained by using the proposed model and experimental signals is given.

  19. Nonlinear adaptive synchronization rule for identification of a large amount of parameters in dynamical models

    International Nuclear Information System (INIS)

    Ma Huanfei; Lin Wei

    2009-01-01

    The existing adaptive synchronization technique based on the stability theory and invariance principle of dynamical systems, though theoretically proved to be valid for parameters identification in specific models, is always showing slow convergence rate and even failed in practice when the number of parameters becomes large. Here, for parameters update, a novel nonlinear adaptive rule is proposed to accelerate the rate. Its feasibility is validated by analytical arguments as well as by specific parameters identification in the Lotka-Volterra model with multiple species. Two adjustable factors in this rule influence the identification accuracy, which means that a proper choice of these factors leads to an optimal performance of this rule. In addition, a feasible method for avoiding the occurrence of the approximate linear dependence among terms with parameters on the synchronized manifold is also proposed.

  20. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  1. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    Science.gov (United States)

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  2. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  3. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  4. A nonlinear inversion for the velocity background and perturbation models

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.

  5. A penalized framework for distributed lag non-linear models.

    Science.gov (United States)

    Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

    2017-09-01

    Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  6. Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2012-01-01

    This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.

  7. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  8. Nonlinear spectral mixing theory to model multispectral signatures

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C. [Los Alamos National Lab., NM (United States). Astrophysics and Radiation Measurements Group

    1996-02-01

    Nonlinear spectral mixing occurs due to multiple reflections and transmissions between discrete surfaces, e.g. leaves or facets of a rough surface. The radiosity method is an energy conserving computational method used in thermal engineering and it models nonlinear spectral mixing realistically and accurately. In contrast to the radiative transfer method the radiosity method takes into account the discreteness of the scattering surfaces (e.g. exact location, orientation and shape) such as leaves and includes mutual shading between them. An analytic radiosity-based scattering model for vegetation was developed and used to compute vegetation indices for various configurations. The leaf reflectance and transmittance was modeled using the PROSPECT model for various amounts of water, chlorophyll and variable leaf structure. The soil background was modeled using SOILSPEC with a linear mixture of reflectances of sand, clay and peat. A neural network and a geometry based retrieval scheme were used to retrieve leaf area index and chlorophyll concentration for dense canopies. Only simulated canopy reflectances in the 6 visible through short wave IR Landsat TM channels were used. The authors used an empirical function to compute the signal-to-noise ratio of a retrieved quantity.

  9. Nonlinear ECRH and ECCD modeling in toroidal devices

    International Nuclear Information System (INIS)

    Kamendje, R.; Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.; Poli, E.

    2003-01-01

    A Monte Carlo method of evaluation of the electron distribution function which takes into account realistic orbits of electrons during their nonlinear cyclotron interaction with the wave beam has been proposed. The focus there was on a proper description of particle interaction with a wave beam while the geometry of the main magnetic field outside the beam was the simplest possible (slab model). In the actual work, a more realistic tokamak geometry has been implemented in the model. In addition, an expression for the parallel current density through Green's function has been used. This allows to reduce statistical errors which result from the fact that the current generated by particles with positive v parallel >0 is almost compensated by the current resulting from particles with v parallel <0 if the complete distribution function is taken into account in the expression for the current. The code ECNL which is a Monte Carlo kinetic equation solver based on this model, has been coupled with the beam tracing code TORBEAM. The results of nonlinear modeling of ECCD in a tokamak with ASDEX Upgrade parameters with help of this combination of codes are compared below to the results of linear modeling performed with TORBEAM alone. In addition, implications for stellarators are discussed. (orig.)

  10. Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation

    Science.gov (United States)

    Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet

    2015-01-01

    When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating

  11. A nonlinear model of gold production in Malaysia

    Science.gov (United States)

    Ramli, Norashikin; Muda, Nora; Umor, Mohd Rozi

    2014-06-01

    Malaysia is a country which is rich in natural resources and one of it is a gold. Gold has already become an important national commodity. This study is conducted to determine a model that can be well fitted with the gold production in Malaysia from the year 1995-2010. Five nonlinear models are presented in this study which are Logistic model, Gompertz, Richard, Weibull and Chapman-Richard model. These model are used to fit the cumulative gold production in Malaysia. The best model is then selected based on the model performance. The performance of the fitted model is measured by sum squares error, root mean squares error, coefficient of determination, mean relative error, mean absolute error and mean absolute percentage error. This study has found that a Weibull model is shown to have significantly outperform compare to the other models. To confirm that Weibull is the best model, the latest data are fitted to the model. Once again, Weibull model gives the lowest readings at all types of measurement error. We can concluded that the future gold production in Malaysia can be predicted according to the Weibull model and this could be important findings for Malaysia to plan their economic activities.

  12. Development of discrete choice model considering internal reference points and their effects in travel mode choice context

    Science.gov (United States)

    Sarif; Kurauchi, Shinya; Yoshii, Toshio

    2017-06-01

    In the conventional travel behavior models such as logit and probit, decision makers are assumed to conduct the absolute evaluations on the attributes of the choice alternatives. On the other hand, many researchers in cognitive psychology and marketing science have been suggesting that the perceptions of attributes are characterized by the benchmark called “reference points” and the relative evaluations based on them are often employed in various choice situations. Therefore, this study developed a travel behavior model based on the mental accounting theory in which the internal reference points are explicitly considered. A questionnaire survey about the shopping trip to the CBD in Matsuyama city was conducted, and then the roles of reference points in travel mode choice contexts were investigated. The result showed that the goodness-of-fit of the developed model was higher than that of the conventional model, indicating that the internal reference points might play the major roles in the choice of travel mode. Also shown was that the respondents seem to utilize various reference points: some tend to adopt the lowest fuel price they have experienced, others employ fare price they feel in perceptions of the travel cost.

  13. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...

  14. Electricity demand and spot price forecasting using evolutionary computation combined with chaotic nonlinear dynamic model

    International Nuclear Information System (INIS)

    Unsihuay-Vila, C.; Zambroni de Souza, A.C.; Marangon-Lima, J.W.; Balestrassi, P.P.

    2010-01-01

    This paper proposes a new hybrid approach based on nonlinear chaotic dynamics and evolutionary strategy to forecast electricity loads and prices. The main idea is to develop a new training or identification stage in a nonlinear chaotic dynamic based predictor. In the training stage five optimal parameters for a chaotic based predictor are searched through an optimization model based on evolutionary strategy. The objective function of the optimization model is the mismatch minimization between the multi-step-ahead forecasting of predictor and observed data such as it is done in identification problems. The first contribution of this paper is that the proposed approach is capable of capturing the complex dynamic of demand and price time series considered resulting in a more accuracy forecasting. The second contribution is that the proposed approach run on-line manner, i.e. the optimal set of parameters and prediction is executed automatically which can be used to prediction in real-time, it is an advantage in comparison with other models, where the choice of their input parameters are carried out off-line, following qualitative/experience-based recipes. A case study of load and price forecasting is presented using data from New England, Alberta, and Spain. A comparison with other methods such as autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) is shown. The results show that the proposed approach provides a more accurate and effective forecasting than ARIMA and ANN methods. (author)

  15. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.

  16. Models of the delayed nonlinear Raman response in diatomic gases

    International Nuclear Information System (INIS)

    Palastro, J. P.; Antonsen, T. M. Jr.; Pearson, A.

    2011-01-01

    We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O 2 and N 2 , and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas' orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.

  17. Nonlinear spherical perturbations in quintessence models of dark energy

    Science.gov (United States)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  18. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  19. Nonlinear flight dynamics and stability of hovering model insects

    Science.gov (United States)

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  20. Agent-based modelling of consumer energy choices

    Science.gov (United States)

    Rai, Varun; Henry, Adam Douglas

    2016-06-01

    Strategies to mitigate global climate change should be grounded in a rigorous understanding of energy systems, particularly the factors that drive energy demand. Agent-based modelling (ABM) is a powerful tool for representing the complexities of energy demand, such as social interactions and spatial constraints. Unlike other approaches for modelling energy demand, ABM is not limited to studying perfectly rational agents or to abstracting micro details into system-level equations. Instead, ABM provides the ability to represent behaviours of energy consumers -- such as individual households -- using a range of theories, and to examine how the interaction of heterogeneous agents at the micro-level produces macro outcomes of importance to the global climate, such as the adoption of low-carbon behaviours and technologies over space and time. We provide an overview of ABM work in the area of consumer energy choices, with a focus on identifying specific ways in which ABM can improve understanding of both fundamental scientific and applied aspects of the demand side of energy to aid the design of better policies and programmes. Future research needs for improving the practice of ABM to better understand energy demand are also discussed.

  1. Dynamics in a nonlinear Keynesian good market model

    International Nuclear Information System (INIS)

    Naimzada, Ahmad; Pireddu, Marina

    2014-01-01

    In this paper, we show how a rich variety of dynamical behaviors can emerge in the standard Keynesian income-expenditure model when a nonlinearity is introduced, both in the cases with and without endogenous government spending. A specific sigmoidal functional form is used for the adjustment mechanism of income with respect to the excess demand, in order to bound the income variation. With the aid of analytical and numerical tools, we investigate the stability conditions, bifurcations, as well as periodic and chaotic dynamics. Globally, we study multistability phenomena, i.e., the coexistence of different kinds of attractors

  2. A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Kamronn, Simon Due; Paquet, Ulrich

    2017-01-01

    This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework...... for unsupervised learning of sequential data that disentangles two latent representations: an object’s representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate...

  3. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...

  4. Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator

    Directory of Open Access Journals (Sweden)

    CONSTANTINESCU, F.

    2011-02-01

    Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.

  5. The Answering Process for Multiple-Choice Questions in Collaborative Learning: A Mathematical Learning Model Analysis

    Science.gov (United States)

    Nakamura, Yasuyuki; Nishi, Shinnosuke; Muramatsu, Yuta; Yasutake, Koichi; Yamakawa, Osamu; Tagawa, Takahiro

    2014-01-01

    In this paper, we introduce a mathematical model for collaborative learning and the answering process for multiple-choice questions. The collaborative learning model is inspired by the Ising spin model and the model for answering multiple-choice questions is based on their difficulty level. An intensive simulation study predicts the possibility of…

  6. A Conditional Curie-Weiss Model for Stylized Multi-group Binary Choice with Social Interaction

    Science.gov (United States)

    Opoku, Alex Akwasi; Edusei, Kwame Owusu; Ansah, Richard Kwame

    2018-04-01

    This paper proposes a conditional Curie-Weiss model as a model for decision making in a stylized society made up of binary decision makers that face a particular dichotomous choice between two options. Following Brock and Durlauf (Discrete choice with social interaction I: theory, 1955), we set-up both socio-economic and statistical mechanical models for the choice problem. We point out when both the socio-economic and statistical mechanical models give rise to the same self-consistent equilibrium mean choice level(s). Phase diagram of the associated statistical mechanical model and its socio-economic implications are discussed.

  7. Empirical analyses of a choice model that captures ordering among attribute values

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard

    2017-01-01

    an alternative additionally because it has the highest price. In this paper, we specify a discrete choice model that takes into account the ordering of attribute values across alternatives. This model is used to investigate the effect of attribute value ordering in three case studies related to alternative-fuel...... vehicles, mode choice, and route choice. In our application to choices among alternative-fuel vehicles, we see that especially the price coefficient is sensitive to changes in ordering. The ordering effect is also found in the applications to mode and route choice data where both travel time and cost...

  8. Nonlinear model of epidemic spreading in a complex social network.

    Science.gov (United States)

    Kosiński, Robert A; Grabowski, A

    2007-10-01

    The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.

  9. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  10. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    Science.gov (United States)

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  11. Joint Residence-Workplace Location Choice Model Based on Household Decision Behavior

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2015-01-01

    Full Text Available Residence location and workplace are the two most important urban land-use types, and there exist strong interdependences between them. Existing researches often assume that one choice dimension is correlated to the other. Using the mixed logit framework, three groups of choice models are developed to illustrate such choice dependencies. First, for all households, this paper presents a basic methodology of the residence location and workplace choice without decision sequence based on the assumption that the two choice behaviors are independent of each other. Second, the paper clusters all households into two groups, choosing residence or workplace first, and formulates the residence location and workplace choice models under the constraint of decision sequence. Third, this paper combines the residence location and workplace together as the choice alternative and puts forward the joint choice model. A questionnaire survey is implemented in Beijing city to collect the data of 1994 households. Estimation results indicate that the joint choice model fits the data significantly better, and the elasticity effects analyses show that the joint choice model reflects the influences of relevant factors to the choice probability well and leads to the job-housing balance.

  12. Numerical studies on the electromagnetic properties of the nonlinear Lorentz Computational model for the dielectric media

    International Nuclear Information System (INIS)

    Abe, H.; Okuda, H.

    1994-06-01

    We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media

  13. Nonlinear system modeling based on bilinear Laguerre orthonormal bases.

    Science.gov (United States)

    Garna, Tarek; Bouzrara, Kais; Ragot, José; Messaoud, Hassani

    2013-05-01

    This paper proposes a new representation of discrete bilinear model by developing its coefficients associated to the input, to the output and to the crossed product on three independent Laguerre orthonormal bases. Compared to classical bilinear model, the resulting model entitled bilinear-Laguerre model ensures a significant parameter number reduction as well as simple recursive representation. However, such reduction still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al.. The bilinear-Laguerre model as well as the proposed pole optimization algorithm are illustrated and tested on a numerical simulations and validated on the Continuous Stirred Tank Reactor (CSTR) System. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  15. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  16. Nonlinear realizations and effective Lagrangian densities for nonlinear σ-models

    International Nuclear Information System (INIS)

    Hamilton-Charlton, Jason Dominic

    2003-01-01

    Nonlinear realizations of the groups SU(N), SO(m) and SO(t,s) are analysed, described by the coset spaces SU(N) / SU(N-1) x U(1), SO(m) / SO(m-1), SO(1,m-1) / SO(1,m-2) and SO(m) / SO(m-2 x SO(2). The analysis consists of determining the transformation properties of the Goldstone Bosons, constructing the most general possible Lagrangian for the realizations, and as a result identifying the coset space metric. We view the λ matrices of SU(N) as being the basis of an (N 2 - 1) dimensional real vector space, and from this we learn how to construct the basis of a Cartan Subspace associated with a vector. This results in a mathematical structure which allows us to find expressions for coset representative elements used in the analysis. This structure is not only relevant to SU(N) breaking models, but may also be used to find results in SO(m) and SO(1,m - 1) breaking models. (author)

  17. Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments

    International Nuclear Information System (INIS)

    Kara, Tolgay; Eker, Ilyas

    2004-01-01

    Modeling and identification of mechanical systems constitute an essential stage in practical control design and applications. Controllers commanding systems that operate at varying conditions or require high precision operation raise the need for a nonlinear approach in modeling and identification. Most mechanical systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behavior in certain regions of operation. For a multi-mass rotational system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the system operation when the rotation changes direction. The paper presents nonlinear modeling and identification of a DC motor rotating in two directions together with real time experiments. Linear and nonlinear models for the system are obtained for identification purposes, and the major nonlinearities in the system, such as Coulomb friction and dead zone, are investigated and integrated in the nonlinear model. The Hammerstein nonlinear system approach is used for identification of the nonlinear system model. Online identification of the linear and nonlinear system models is performed using the recursive least squares method. Results of the real time experiments are graphically and numerically presented, and the advantages of the nonlinear identification approach are revealed

  18. Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices

    OpenAIRE

    Hiroyuki Kasahara; Katsumi Shimotsu

    2006-01-01

    In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...

  19. A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    NARESHA RAM

    2009-04-01

    Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.

  20. Fluid mechanics and heat transfer advances in nonlinear dynamics modeling

    CERN Document Server

    Asli, Kaveh Hariri

    2015-01-01

    This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.

  1. Lectures on nonlinear sigma-models in projective superspace

    International Nuclear Information System (INIS)

    Kuzenko, Sergei M

    2010-01-01

    N= 2 supersymmetry in four spacetime dimensions is intimately related to hyperkaehler and quaternionic Kaehler geometries. On one hand, the target spaces for rigid supersymmetric sigma-models are necessarily hyperkaehler manifolds. On the other hand, when coupled to N= 2 supergravity, the sigma-model target spaces must be quaternionic Kaehler. It is known that such manifolds of restricted holonomy are difficult to generate explicitly. Projective superspace is a field-theoretic approach to construct general N= 2 supersymmetric nonlinear sigma-models, and hence to generate new hyperkaehler and quaternionic Kaehler metrics. Intended for a mixed audience consisting of both physicists and mathematicians, these lectures provide a pedagogical introduction to the projective-superspace approach. (topical review)

  2. Lectures on nonlinear sigma-models in projective superspace

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M, E-mail: kuzenko@cyllene.uwa.edu.a [School of Physics M013, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)

    2010-11-05

    N= 2 supersymmetry in four spacetime dimensions is intimately related to hyperkaehler and quaternionic Kaehler geometries. On one hand, the target spaces for rigid supersymmetric sigma-models are necessarily hyperkaehler manifolds. On the other hand, when coupled to N= 2 supergravity, the sigma-model target spaces must be quaternionic Kaehler. It is known that such manifolds of restricted holonomy are difficult to generate explicitly. Projective superspace is a field-theoretic approach to construct general N= 2 supersymmetric nonlinear sigma-models, and hence to generate new hyperkaehler and quaternionic Kaehler metrics. Intended for a mixed audience consisting of both physicists and mathematicians, these lectures provide a pedagogical introduction to the projective-superspace approach. (topical review)

  3. Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2014-01-01

    Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.

  4. Magnetically nonlinear dynamic model of synchronous motor with permanent magnets

    International Nuclear Information System (INIS)

    Hadziselimovic, Miralem; Stumberger, Gorazd; Stumberger, Bojan; Zagradisnik, Ivan

    2007-01-01

    This paper deals with a magnetically nonlinear two-axis dynamic model of a permanent magnet synchronous motor (PMSM). The geometrical and material properties of iron core and permanent magnets, the effects of winding distribution, saturation, cross-saturation and slotting effects are, for the first time, simultaneously accounted for in a single two-axis dynamic model of a three-phase PMSM. They are accounted for by current- and position-dependent characteristics of flux linkages. These characteristics can be determined either experimentally or by the finite element (FE) computations. The results obtained by the proposed dynamic model show a very good agreement with the measured ones and those obtained by the FE computation

  5. Modeling Fuel Choice among Households in Northern Cameroon

    Directory of Open Access Journals (Sweden)

    Jean Hugues Nlom

    2015-07-01

    Full Text Available The present study aims to explore economic and socio-demographic factors that influence a household’s probability to switch from firewood to cleaner fuels (kerosene and LPG in northern Cameroon. The paper employs an ordered probit model to construct cooking patterns and fuel choices. Three main cooking sources are considered: firewood, kerosene, and liquefied petroleum gas. Utilized data are derived from a national survey conducted in 2004 by the Cameroonian National Institute of Statistics. The study analyzes the data related to the Sudano-Sahelian agro-ecological zone, which is one of the most affected by land degradation and decertification. While results indicate that there is a potential for a transition from traditional to cleaner fuels in the studied region, this transition is still in its earlier stage. The research demonstrates that firewood and kerosene prices, age of household heads, educational level of household heads and willingness to have a gas cylinder, as well as type of dwelling have a statistically significant impact on fuel-switching decisions.

  6. Preventing relapse after incentivized choice treatment: A laboratory model.

    Science.gov (United States)

    Bouton, Mark E; Thrailkill, Eric A; Bergeria, Cecilia L; Davis, Danielle R

    2017-08-01

    Two experiments with rats examined relapse of an operant behavior that occurred after the behavior was suppressed by reinforcing (incentivizing) an alternative behavior. In the first phase, a target response (R1) was reinforced. In a treatment phase, R1 was still reinforced, but a new response (R2) was introduced and associated with a larger reinforcer. As in human contingency management treatments, incentivizing R2 this way was effective at suppressing R1. However, when R2's reinforcement was discontinued, there was a robust and immediate relapse to R1. Experiment 1 found that the strength of R1 during relapse testing was not different from that seen in a no treatment control. Experiment 2 found that relapse could nevertheless be reduced by presenting reinforcers not contingent on responding during the test. Either the reinforcer for R1 or the reinforcer for R2 (which were qualitatively different types of food pellets) were effective. The experiments introduce a laboratory method for studying relapse and how to prevent it after contingency management treatments, and suggest at least one treatment that discourages relapse. The incentivized choice paradigm differs from other models of relapse of operant behavior (e.g., resurgence, renewal, reinstatement) in that it does not focus on the return of behaviors that are inhibited by extinction. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hyperbolicity of the Nonlinear Models of Maxwell's Equations

    Science.gov (United States)

    Serre, Denis

    . We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.

  8. Identification of a Class of Non-linear State Space Models using RPE Techniques

    DEFF Research Database (Denmark)

    Zhou, Wei-Wu; Blanke, Mogens

    1989-01-01

    The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...

  9. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  10. Non-perturbative aspects of nonlinear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Flore, Raphael

    2012-12-07

    The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3){approx_equal}CP{sup 1} model. By the generalization of the topological

  11. Non-perturbative aspects of nonlinear sigma models

    International Nuclear Information System (INIS)

    Flore, Raphael

    2012-01-01

    The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3)≅CP 1 model. By the generalization of the topological operator and the

  12. New exact travelling wave solutions of nonlinear physical models

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Cevikel, Adem C.

    2009-01-01

    In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The ((G ' )/G )-expansion method presents a wider applicability for handling nonlinear wave equations.

  13. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  14. Parameter identification in a nonlinear nuclear reactor model using quasilinearization

    International Nuclear Information System (INIS)

    Barreto, J.M.; Martins Neto, A.F.; Tanomaru, N.

    1980-09-01

    Parameter identification in a nonlinear, lumped parameter, nuclear reactor model is carried out using discrete output power measurements during the transient caused by an external reactivity change. In order to minimize the difference between the model and the reactor power responses, the parameter promt neutron generation time and a parameter in fuel temperature reactivity coefficient equation are adjusted using quasilinearization. The influences of the external reactivity disturbance, the number and frequency of measurements and the measurement noise level on the method accuracy and rate of convergence are analysed through simulation. Procedures for the design of the identification experiments are suggested. The method proved to be very effective for low level noise measurements. (Author) [pt

  15. Locally supersymmetric D=3 non-linear sigma models

    International Nuclear Information System (INIS)

    Wit, B. de; Tollsten, A.K.; Nicolai, H.

    1993-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)

  16. Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation

    CERN Document Server

    Petráš, Ivo

    2011-01-01

    "Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...

  17. The Effects of Land Use Patterns on Tour Type Choice. The Application of a Hybrid Choice Model

    DEFF Research Database (Denmark)

    de Abreu e Silva, João; Sottile, Eleonora; Cherchi, Elisabetta

    2014-01-01

    to travel. Workers who reside in more central, mixed and traditional urban spaces tend to have a higher propensity to travel. Workers who live in more diverse areas have a higher probability of engaging in more complex work related tours. Working in more suburban areas reduces the probability of engaging......The relations between travel behavior and land use patterns have been the object of intensive research in the last two decades. Due to their immediate policy implications, mode choice and vehicle miles of travel (VMT) have been the main focus of attention. Other relevant dimensions, like trip...... of the latent propensity to travel in the discrete choice among types of tours. This model is applied to a travel diary of workers collected in the Lisbon Metropolitan Area in 2009. Different model specifications were built, testing the inclusion of purportedly built land use factors, which have the advantage...

  18. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...

  19. A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation.

    Science.gov (United States)

    2015-12-01

    This study adopts a dwelling unit level of analysis and considers a probabilistic choice set generation approach for residential choice modeling. In doing so, we accommodate the fact that housing choices involve both characteristics of the dwelling u...

  20. Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations

    Science.gov (United States)

    Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.

    2017-10-01

    Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.

  1. Electrodynamic soil plate oscillator: Modeling nonlinear mesoscopic elastic behavior and hysteresis in nonlinear acoustic landmine detection

    Science.gov (United States)

    Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.

    2015-10-01

    An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit

  2. Human X-chromosome inactivation pattern distributions fit a model of genetically influenced choice better than models of completely random choice

    Science.gov (United States)

    Renault, Nisa K E; Pritchett, Sonja M; Howell, Robin E; Greer, Wenda L; Sapienza, Carmen; Ørstavik, Karen Helene; Hamilton, David C

    2013-01-01

    In eutherian mammals, one X-chromosome in every XX somatic cell is transcriptionally silenced through the process of X-chromosome inactivation (XCI). Females are thus functional mosaics, where some cells express genes from the paternal X, and the others from the maternal X. The relative abundance of the two cell populations (X-inactivation pattern, XIP) can have significant medical implications for some females. In mice, the ‘choice' of which X to inactivate, maternal or paternal, in each cell of the early embryo is genetically influenced. In humans, the timing of XCI choice and whether choice occurs completely randomly or under a genetic influence is debated. Here, we explore these questions by analysing the distribution of XIPs in large populations of normal females. Models were generated to predict XIP distributions resulting from completely random or genetically influenced choice. Each model describes the discrete primary distribution at the onset of XCI, and the continuous secondary distribution accounting for changes to the XIP as a result of development and ageing. Statistical methods are used to compare models with empirical data from Danish and Utah populations. A rigorous data treatment strategy maximises information content and allows for unbiased use of unphased XIP data. The Anderson–Darling goodness-of-fit statistics and likelihood ratio tests indicate that a model of genetically influenced XCI choice better fits the empirical data than models of completely random choice. PMID:23652377

  3. Robust nonlinear control of nuclear reactors under model uncertainty

    International Nuclear Information System (INIS)

    Park, Moon Ghu

    1993-02-01

    A nonlinear model-based control method is developed for the robust control of a nuclear reactor. The nonlinear plant model is used to design a unique control law which covers a wide operating range. The robustness is a crucial factor for the fully automatic control of reactor power due to time-varying, uncertain parameters, and state estimation error, or unmodeled dynamics. A variable structure control (VSC) method is introduced which consists of an adaptive performance specification (fime control) after the tracking error reaches the narrow boundary-layer by a time-optimal control (coarse control). Variable structure control is a powerful method for nonlinear system controller design which has inherent robustness to parameter variations or external disturbances using the known uncertainty bounds, and it requires very low computational efforts. In spite of its desirable properties, conventional VSC presents several important drawbacks that limit its practical applicability. One of the most undesirable phenomena is chattering, which implies extremely high control activity and may excite high-frequency unmodeled dynamics. This problem is due to the neglected actuator time-delay or sampling effects. The problem was partially remedied by replacing chattering control by a smooth control inter-polation in a boundary layer neighnboring a time-varying sliding surface. But, for the nuclear reactor systems which has very fast dynamic response, the sampling effect may destroy the narrow boundary layer when a large uncertainty bound is used. Due to the very short neutron life time, large uncertainty bound leads to the high gain in feedback control. To resolve this problem, a derivative feedback is introduced that gives excellent performance by reducing the uncertainty bound. The stability of tracking error dynamics is guaranteed by the second method of Lyapunov using the two-level uncertainty bounds that are obtained from the knowledge of uncertainty bound and the estimated

  4. Background field method for nonlinear σ-model in stochastic quantization

    International Nuclear Information System (INIS)

    Nakazawa, Naohito; Ennyu, Daiji

    1988-01-01

    We formulate the background field method for the nonlinear σ-model in stochastic quantization. We demonstrate a one-loop calculation for a two-dimensional non-linear σ-model on a general riemannian manifold based on our formulation. The formulation is consistent with the known results in ordinary quantization. As a simple application, we also analyse the multiplicative renormalization of the O(N) nonlinear σ-model. (orig.)

  5. Preisach hysteresis model for non-linear 2D heat diffusion

    International Nuclear Information System (INIS)

    Jancskar, Ildiko; Ivanyi, Amalia

    2006-01-01

    This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

  6. Qualitative analysis of nonlinear incidence rate upon the behaviour of an epidemiological model

    International Nuclear Information System (INIS)

    Li Xiaogui.

    1988-12-01

    Two theorems concerning the solutions of the system of differential equations describing an epidemiological model with nonlinear incidence rate per infective individual are demonstrated. 2 refs, 1 fig

  7. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models

    DEFF Research Database (Denmark)

    Fournier, David A.; Skaug, Hans J.; Ancheta, Johnoel

    2011-01-01

    Many criteria for statistical parameter estimation, such as maximum likelihood, are formulated as a nonlinear optimization problem.Automatic Differentiation Model Builder (ADMB) is a programming framework based on automatic differentiation, aimed at highly nonlinear models with a large number...... of such a feature is the generic implementation of Laplace approximation of high-dimensional integrals for use in latent variable models. We also review the literature in which ADMB has been used, and discuss future development of ADMB as an open source project. Overall, the main advantages ofADMB are flexibility...

  8. The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.

    Science.gov (United States)

    Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin

    2016-07-01

    Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data.

  9. Parameter estimation in nonlinear models for pesticide degradation

    International Nuclear Information System (INIS)

    Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.

    1991-01-01

    A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)

  10. Predicting Madura cattle growth curve using non-linear model

    Science.gov (United States)

    Widyas, N.; Prastowo, S.; Widi, T. S. M.; Baliarti, E.

    2018-03-01

    Madura cattle is Indonesian native. It is a composite breed that has undergone hundreds of years of selection and domestication to reach nowadays remarkable uniformity. Crossbreeding has reached the isle of Madura and the Madrasin, a cross between Madura cows and Limousine semen emerged. This paper aimed to compare the growth curve between Madrasin and one type of pure Madura cows, the common Madura cattle (Madura) using non-linear models. Madura cattles are kept traditionally thus reliable records are hardly available. Data were collected from small holder farmers in Madura. Cows from different age classes (5years) were observed, and body measurements (chest girth, body length and wither height) were taken. In total 63 Madura and 120 Madrasin records obtained. Linear model was built with cattle sub-populations and age as explanatory variables. Body weights were estimated based on the chest girth. Growth curves were built using logistic regression. Results showed that within the same age, Madrasin has significantly larger body compared to Madura (plogistic models fit better for Madura and Madrasin cattle data; with the estimated MSE for these models were 39.09 and 759.28 with prediction accuracy of 99 and 92% for Madura and Madrasin, respectively. Prediction of growth curve using logistic regression model performed well in both types of Madura cattle. However, attempts to administer accurate data on Madura cattle are necessary to better characterize and study these cattle.

  11. Assessing the value of museums with a combined discrete choice/ count data model

    NARCIS (Netherlands)

    Rouwendal, J.; Boter, J.

    2009-01-01

    This article assesses the value of Dutch museums using information about destination choice as well as about the number of trips undertaken by an actor. Destination choice is analysed by means of a mixed logit model, and a count data model is used to explain trip generation. We use a

  12. Emerging Australian Education Markets: A Discrete Choice Model of Taiwanese and Indonesian Student Intended Study Destination.

    Science.gov (United States)

    Kemp, Steven; Madden, Gary; Simpson, Michael

    1998-01-01

    Isolates factors influencing choice of Australia as a preferred destination for international students in emerging regional markets. Uses data obtained from a survey of students in Indonesia and Taiwan to estimate a U.S./Australia and rest-of-world/Australia discrete destination-choice model. This model identifies key factors determining country…

  13. MODELLING CONSUMER CHOICE IN THE MARKET SWITCHBOARD EQUIPMENT USING IBM SPSS STATISTICS

    Directory of Open Access Journals (Sweden)

    Sergey V. Mkhitaryan

    2014-01-01

    Full Text Available Modelling consumer choice in the marketswitch equipment will allow manufacturing enterprises to improve the efficiencyof design and marketing activities byreducing the financial and human losses associated with pre-treatment orders. Todevelop a model of consumer choice canbe used logistic regression.

  14. Analytical model for nonlinear piezoelectric energy harvesting devices

    International Nuclear Information System (INIS)

    Neiss, S; Goldschmidtboeing, F; M Kroener; Woias, P

    2014-01-01

    In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor. (paper)

  15. Onset of the nonlinear regime in unified dark matter models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Beca, L.M.G.; Carvalho, J.P.M. de; Martins, C.J.A.P.; Copeland, E.J.

    2004-01-01

    We discuss the onset of the nonlinear regime in the context of unified dark matter models involving a generalized Chaplygin gas. We show that the transition from dark-matter-like to dark-energy-like behavior will never be smooth. In some regions of space the transition will never take place while in others it may happen sooner or later than naively expected. As a result the linear theory used in previous studies may break down late in the matter dominated era even on large cosmological scales. We study the importance of this effect showing that its magnitude depends on the exact form of the equation of state in the low density regime. We expect that our results will be relevant for other unified dark matter scenarios, particularly those where the quartessence candidate is a perfect fluid

  16. Nonlinear model predictive control for chemical looping process

    Science.gov (United States)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  17. Non-Linear Slosh Damping Model Development and Validation

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  18. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  19. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  20. Complexity of Choice: Teachers' and Students' Experiences Implementing a Choice-Based Comprehensive School Health Model

    Science.gov (United States)

    Sulz, Lauren; Gibbons, Sandra; Naylor, Patti-Jean; Wharf Higgins, Joan

    2016-01-01

    Background: Comprehensive School Health models offer a promising strategy to elicit changes in student health behaviours. To maximise the effect of such models, the active involvement of teachers and students in the change process is recommended. Objective: The goal of this project was to gain insight into the experiences and motivations of…

  1. Nonlinear Growth Models as Measurement Models: A Second-Order Growth Curve Model for Measuring Potential.

    Science.gov (United States)

    McNeish, Daniel; Dumas, Denis

    2017-01-01

    Recent methodological work has highlighted the promise of nonlinear growth models for addressing substantive questions in the behavioral sciences. In this article, we outline a second-order nonlinear growth model in order to measure a critical notion in development and education: potential. Here, potential is conceptualized as having three components-ability, capacity, and availability-where ability is the amount of skill a student is estimated to have at a given timepoint, capacity is the maximum amount of ability a student is predicted to be able to develop asymptotically, and availability is the difference between capacity and ability at any particular timepoint. We argue that single timepoint measures are typically insufficient for discerning information about potential, and we therefore describe a general framework that incorporates a growth model into the measurement model to capture these three components. Then, we provide an illustrative example using the public-use Early Childhood Longitudinal Study-Kindergarten data set using a Michaelis-Menten growth function (reparameterized from its common application in biochemistry) to demonstrate our proposed model as applied to measuring potential within an educational context. The advantage of this approach compared to currently utilized methods is discussed as are future directions and limitations.

  2. Modelling female fertility traits in beef cattle using linear and non-linear models.

    Science.gov (United States)

    Naya, H; Peñagaricano, F; Urioste, J I

    2017-06-01

    Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2  linear models; h 2  > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

  3. Fund choice behavior and estimation of switching models: an experiment*

    NARCIS (Netherlands)

    Anufriev, M.; Bao, T.; Tuinstra, J.

    2013-01-01

    We run a laboratory experiment that contributes to the finance literature on "return chasing behavior" studying how investors switch between mutual funds driven by past performance of the funds. The subjects in this experiment make discrete choices between several (2, 3 or 4) experimental funds in

  4. Modeling issues & choices in the data mining optimization ontology

    CSIR Research Space (South Africa)

    Keet, CM

    2013-05-01

    Full Text Available We describe the Data Mining Optimization Ontology (DMOP), which was developed to support informed decision-making at various choice points of the knowledge discovery (KD) process. It can be used as a reference by data miners, but its primary purpose...

  5. Neural network modeling of nonlinear systems based on Volterra series extension of a linear model

    Science.gov (United States)

    Soloway, Donald I.; Bialasiewicz, Jan T.

    1992-01-01

    A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.

  6. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  7. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    Science.gov (United States)

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  8. Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    CERN Document Server

    Baianu, I C

    2004-01-01

    A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.

  9. Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence

    Science.gov (United States)

    Liu, Zijian; Chen, Jing; Pang, Jianhua; Bi, Ping; Ruan, Shigui

    2018-05-01

    We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

  10. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS

    Science.gov (United States)

    Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise

    2013-01-01

    1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.

  11. Neural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control

    Directory of Open Access Journals (Sweden)

    YanBin Liu

    2017-01-01

    Full Text Available The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.

  12. Behavioural Models for Route Choice of Passengers in Multimodal Public Transport Networks

    DEFF Research Database (Denmark)

    Anderson, Marie Karen

    in the estimation of route choice models of public transport users based upon observed choices. Public transport route choice models have not benefitted from the same technological enhancements as car models because of the necessity (i) to collect additional information concerning lines and transfers, and (ii...... modes, public transport modes, lines, transfers, egress modes) is large. This thesis proposes a doubly stochastic approach for generating alternative routes that are relevant to travellers, since the method allows accounting for both perceived costs of the network elements and heterogeneity......The subject of this thesis is behavioural models for route choice of passengers in multimodal public transport networks. While research in sustainable transport has dedicated much attention toward the determinants of choice between car and sustainable travel options, it has devoted less attention...

  13. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    Science.gov (United States)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  14. Transition to large scale use of hydrogen and sustainable energy services. Choices of technology and infrastructure under path dependence, feedback and nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Gether, Kaare

    2004-07-01

    We live in a world of becoming. The future is not given, but forms continuously in dynamic processes where path dependence plays a major role. There are many different possible futures. What we actually end up with is determined in part by chance and in part by the decisions we make. To make sound decisions we require models that are flexible enough to identify opportunities and to help us choose options that lead to advantageous alternatives. This way of thinking differs from traditional cost-benefit analysis that employs net present value calculations to choose on purely economic grounds, without regard to future consequences. Time and dynamic behaviour introduce a separate perspective. There is a focus on change, and decisions acquire windows of opportunity: the right decision at the right time may lead to substantial change, while it will have little effect if too early or too late. Modelling needs to reflect this dynamic behaviour. It is the perspective of time and dynamics that leads to a focus on sustainability, and thereby the role hydrogen might play in a future energy system. The present work develops a particular understanding relevant to energy infrastructures. Central elements of this understanding are: competition, market preference and choice beyond costs, bounded rationality, uncertainty and risk, irreversibility, increasing returns, path dependence, feedback, delay, nonlinear behaviour. Change towards a ''hydrogen economy'' will involve far-reaching change away from our existing energy infrastructure. This infrastructure is viewed as a dynamic set of interacting technologies (value sequences) that provide services to end-users and uphold the required supply of energy for this, all the way from primary energy sources. The individual technologies also develop with time. Building on this understanding and analysis, an analytical tool has emerged: the Energy Infrastructure Competition (EICOMP) model. In the model each technology is

  15. Sphalerons of O(3) nonlinear sigma model on a circle

    International Nuclear Information System (INIS)

    Funakubo, Koichi; Otsuki, Shoichiro; Toyoda, Fumihiko.

    1989-09-01

    A series of saddle point solutions of O(3) nonlinear sigma model with symmetry breaking term in 1 + 1 dimensions are obtained by imposing boundary condition either periodic or partially antiperiodic (O(3) sphalerons on a circle). Under the periodic boundary condition, classical features of the O(3) sphalerons are similar to scalar sphalerons of φ 4 model on a circle by Manton and Samols. Under the partially antiperiodic boundary condition, the lowest of the O(3) sphalerons coincides in the limit of infinite spatial domain with the O(3) sphaleron by Mottola and Wipf. In particular, zero and negative modes of them are examined in detail. An estimate of transition rate over the lowest O(3) sphaleron at finite temperature is made, and some remarks on simulating the transition on a lattice are given. One to one correspondence between these O(3) sphalerons on a circle and a series of (possible) classical solutions of SU(2) gauge-Higgs model, to which the electroweak sphaleron S and new sphaleron S* belong, is discussed. (author)

  16. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  17. Importance measures in global sensitivity analysis of nonlinear models

    International Nuclear Information System (INIS)

    Homma, Toshimitsu; Saltelli, Andrea

    1996-01-01

    The present paper deals with a new method of global sensitivity analysis of nonlinear models. This is based on a measure of importance to calculate the fractional contribution of the input parameters to the variance of the model prediction. Measures of importance in sensitivity analysis have been suggested by several authors, whose work is reviewed in this article. More emphasis is given to the developments of sensitivity indices by the Russian mathematician I.M. Sobol'. Given that Sobol' treatment of the measure of importance is the most general, his formalism is employed throughout this paper where conceptual and computational improvements of the method are presented. The computational novelty of this study is the introduction of the 'total effect' parameter index. This index provides a measure of the total effect of a given parameter, including all the possible synergetic terms between that parameter and all the others. Rank transformation of the data is also introduced in order to increase the reproducibility of the method. These methods are tested on a few analytical and computer models. The main conclusion of this work is the identification of a sensitivity analysis methodology which is both flexible, accurate and informative, and which can be achieved at reasonable computational cost

  18. Cnoidal waves as solutions of the nonlinear liquid drop model

    International Nuclear Information System (INIS)

    Ludu, Andrei; Sandulescu, Aureliu; Greiner Walter

    1997-01-01

    By introducing in the hydrodynamic model, i.e. in the hydrodynamic equation and the corresponding boundary conditions, the higher order terms in the deviation of the shape, we obtain in the second order the Korteweg de Vries equations (KdV). The same equation is obtained by introducing in the liquid drop model (LDM), i.e. in the kinetic, surface and Coulomb terms, the higher terms in the second order. The KdV equation has the cnoidal waves as steady-state solutions. These waves could describe the small anharmonic vibrations of spherical nuclei up to the solitary waves. The solitons could describe the preformation of clusters on the nuclear surface. We apply this nonlinear liquid drop model to the alpha formation in heavy nuclei. We find an additional minimum in the total energy of such systems, corresponding to the solitons as clusters on the nuclear surface. By introducing the shell effects we choose this minimum to be degenerated with the ground state. The spectroscopic factor is given by ratio of the square amplitudes in the two minima. (authors)

  19. Nonlinear sigma models with compact hyperbolic target spaces

    International Nuclear Information System (INIS)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James

    2016-01-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  20. Nonlinear sigma models with compact hyperbolic target spaces

    Energy Technology Data Exchange (ETDEWEB)

    Gubser, Steven [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Saleem, Zain H. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); National Center for Physics, Quaid-e-Azam University Campus,Islamabad 4400 (Pakistan); Schoenholz, Samuel S. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Stokes, James [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States)

    2016-06-23

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  1. Robust and fast nonlinear optimization of diffusion MRI microstructure models.

    Science.gov (United States)

    Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A

    2017-07-15

    Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of

  2. Departure time choice: Modelling individual preferences, intention and constraints

    DEFF Research Database (Denmark)

    Thorhauge, Mikkel

    by nearly all studies within departure time. More importantly it shows that the underlying psychological processes are more complex than simply accounting for attitudes and perceptions which are typically used in other areas. The work in this PhD thesis accounts for the full Theory of Planned Behaviour......, but can also be perceived by the individuals as barriers towards participating in activities. Perceived constraints affect the departure time choice through the individual intention of being on time. This PhD thesis also contributes to the departure time literature by discussing the problem of collecting...... whether they are constrained. The thesis also provides empirical evidences of the policy implication of not accounting for other activities and their constraints. Thirdly, the thesis shows that the departure time choice can be partly explained by psychological factors, which have previously been neglected...

  3. A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes

    Directory of Open Access Journals (Sweden)

    Qi-Zhi Zhang

    2005-01-01

    Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.

  4. Nonlinear time-domain modeling of balanced-armature receivers

    DEFF Research Database (Denmark)

    Jensen, Joe; Agerkvist, Finn T.; Harte, James

    2011-01-01

    Nonlinear distortion added by the loudspeaker in a hearing aid lowers the signal-to-noise ratio and may degrade the hearing aid user's ability to understand speech. The balancedarmature- type loudspeakers, predominantly used in hearing aids, are inherently nonlinear devices, as any displacement...

  5. Sinusoidal velaroidal shell – numerical modelling of the nonlinear ...

    African Journals Online (AJOL)

    The nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0, the outer variables radii from 10m to 20m and the number of waves n=8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a high-performant concrete. The investigation emphasizes more on the ...

  6. Neurobiologically Inspired Approaches to Nonlinear Process Control and Modeling

    Science.gov (United States)

    1999-12-31

    incorporates second messenger reaction kinetics and calcium dynamics to represent the nonlinear dynamics and the crucial role of neuromodulation in local...reflex). The dynamic neuromodulation as a mechanism for the nonlinear attenuation is the novel result of this study. Ear- lier simulations have shown

  7. Curvature-induced symmetry breaking in nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth

    2000-01-01

    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states...

  8. Choices and Changes: Eccles' Expectancy-Value Model and Upper-Secondary School Students' Longitudinal Reflections about Their Choice of a STEM Education

    Science.gov (United States)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    During the past 30 years, Eccles' comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students in their last year in upper-secondary school…

  9. Fuzzy social choice models explaining the government formation process

    CERN Document Server

    C Casey, Peter; A Goodman, Carly; Pook, Kelly Nelson; N Mordeson, John; J Wierman, Mark; D Clark, Terry

    2014-01-01

    This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made.  The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems.  Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties’ fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the pre...

  10. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    Science.gov (United States)

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  11. System Identification for Nonlinear FOPDT Model with Input-Dependent Dead-Time

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    An on-line iterative method of system identification for a kind of nonlinear FOPDT system is proposed in the paper. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its dead time depends on the input signal and the other parameters are time dependent....

  12. Application of homotopy-perturbation method to nonlinear population dynamics models

    International Nuclear Information System (INIS)

    Chowdhury, M.S.H.; Hashim, I.; Abdulaziz, O.

    2007-01-01

    In this Letter, the homotopy-perturbation method (HPM) is employed to derive approximate series solutions of nonlinear population dynamics models. The nonlinear models considered are the multispecies Lotka-Volterra equations. The accuracy of this method is examined by comparison with the available exact and the fourth-order Runge-Kutta method (RK4)

  13. CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL

    KAUST Repository

    CARRILLO, JOSÉ ANTONIO; HITTMEIR, SABINE; JÜ NGEL, ANSGAR

    2012-01-01

    A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy

  14. Testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form

    DEFF Research Database (Denmark)

    Péguin-Feissolle, Anne; Strikholm, Birgit; Teräsvirta, Timo

    In this paper we propose a general method for testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form. These tests are based on a Taylor expansion of the nonlinear model around a given point in the sample space. We study the performance of our tests b...

  15. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  16. Cutoff effects in O(N) nonlinear sigma models

    International Nuclear Information System (INIS)

    Knechtli, Francesco; Leder, Bjoern; Wolff, Ulli

    2005-01-01

    In the nonlinear O(N) sigma model at N=3 unexpected cutoff effects have been found before with standard discretizations and lattice spacings. Here the situation is analyzed further employing additional data for the step scaling function of the finite volume mass gap at N=3,4,8 and a large N-study of the leading as well as next-to-leading terms in 1/N. The latter exact results are demonstrated to follow Symanzik's form of the asymptotic cutoff dependence. At the same time, when fuzzed with artificial statistical errors and then fitted like the Monte Carlo results, a picture similar to N=3 emerges. We hence cannot conclude a truly anomalous cutoff dependence but only relatively large cutoff effects, where the logarithmic component is important. Their size shrinks at larger N, but the structure remains similar. The large N results are particularly interesting as we here have exact nonperturbative control over an asymptotically free model both in the continuum limit and on the lattice

  17. Cutoff effects in O(N) nonlinear sigma models

    International Nuclear Information System (INIS)

    Knechtli, F.; Wolff, U.; Leder, B.

    2005-06-01

    In the nonlinear O(N) sigma model at N=3 unexpected cutoff effects have been found before with standard discretizations and lattice spacings. Here the situation is analyzed further employing additional data for the step scaling function of the finite volume mass gap at N=3,4,8 and a large N-study of the leading as well as next-to-leading terms in 1/N. The latter exact results are demonstrated to follow Symanzik's form of the asymptotic cutoff dependence. At the same time, when fuzzed with artificial statistical errors and then fitted like the Monte Carlo results, a picture similar to N=3 emerges. We hence cannot conclude a truly anomalous cutoff dependence but only relatively large cutoff effects, where the logarithmic component is important. Their size shrinks at larger N, but the structure remains similar. The large N results are particularly interesting as we here have exact nonperturbative control over an asymptotically free model both in the continuum limit and on the lattice. (orig.)

  18. A comparative study of machine learning classifiers for modeling travel mode choice

    NARCIS (Netherlands)

    Hagenauer, J; Helbich, M

    2017-01-01

    The analysis of travel mode choice is an important task in transportation planning and policy making in order to understand and predict travel demands. While advances in machine learning have led to numerous powerful classifiers, their usefulness for modeling travel mode choice remains largely

  19. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  20. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.

    Science.gov (United States)

    Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre

    2017-10-01

    We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

  1. A model of nonlinear strain and damage accumulation in polymer composites

    Directory of Open Access Journals (Sweden)

    A. N. Ruslantsev

    2014-01-01

    Full Text Available This paper presents a model to predict a nonlinear strain of the carbon laminate; the model is based on the relations between the theory of laminated plates and the non-linear approximation of deformation curve of unidirectional layer at the shear in the layer plane. The explicit expressions of stiffness and compliance matrices were obtained via multiplying the matrices that correspond to the elastic characteristics by the matrices, considering the non-linear properties of the laminate. The paper suggests an approximation option for the non-linear properties of the layer at the shear using an exponential function. Some considerations on damage accumulation in carbon laminates were made.

  2. Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System

    Directory of Open Access Journals (Sweden)

    Zhenhua Hu

    2013-01-01

    Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.

  3. Modeling a Multinomial Logit Model of Intercity Travel Mode Choice Behavior for All Trips in Libya

    OpenAIRE

    Manssour A. Abdulsalam Bin Miskeen; Ahmed Mohamed Alhodairi; Riza Atiq Abdullah Bin O. K. Rahmat

    2013-01-01

    In the planning point of view, it is essential to have mode choice, due to the massive amount of incurred in transportation systems. The intercity travellers in Libya have distinct features, as against travellers from other countries, which includes cultural and socioeconomic factors. Consequently, the goal of this study is to recognize the behavior of intercity travel using disaggregate models, for projecting the demand of nation-level intercity travel in Libya. Multinom...

  4. Nonlinear modeling, strength-based design, and testing of flexible piezoelectric energy harvesters under large dynamic loads for rotorcraft applications

    Science.gov (United States)

    Leadenham, Stephen; Erturk, Alper

    2014-04-01

    There has been growing interest in enabling wireless health and usage monitoring for rotorcraft applications, such as helicopter rotor systems. Large dynamic loads and acceleration fluctuations available in these environments make the implementation of vibration-based piezoelectric energy harvesters a very promising choice. However, such extreme loads transmitted to the harvester can also be detrimental to piezoelectric laminates and overall system reliability. Particularly flexible resonant cantilever configurations tuned to match the dominant excitation frequency can be subject to very large deformations and failure of brittle piezoelectric laminates due to excessive bending stresses at the root of the harvester. Design of resonant piezoelectric energy harvesters for use in these environments require nonlinear electroelastic dynamic modeling and strength-based analysis to maximize the power output while ensuring that the harvester is still functional. This paper presents a mathematical framework to design and analyze the dynamics of nonlinear flexible piezoelectric energy harvesters under large base acceleration levels. A strength-based limit is imposed to design the piezoelectric energy harvester with a proof mass while accounting for material, geometric, and dissipative nonlinearities, with a focus on two demonstrative case studies having the same linear fundamental resonance frequency but different overhang length and proof mass values. Experiments are conducted at different excitation levels for validation of the nonlinear design approach proposed in this work. The case studies in this work reveal that harvesters exhibiting similar behavior and power generation performance at low excitation levels (e.g. less than 0.1g) can have totally different strength-imposed performance limitations under high excitations (e.g. above 1g). Nonlinear modeling and strength-based design is necessary for such excitation levels especially when using resonant cantilevers with no

  5. Reinforcement learning models of risky choice and the promotion of risk-taking by losses disguised as wins in rats.

    Science.gov (United States)

    Marshall, Andrew T; Kirkpatrick, Kimberly

    2017-07-01

    Risky decisions are inherently characterized by the potential to receive gains or incur losses, and these outcomes have distinct effects on subsequent decision-making. One important factor is that individuals engage in loss-chasing, in which the reception of a loss is followed by relatively increased risk-taking. Unfortunately, the mechanisms of loss-chasing are poorly understood, despite the potential importance for understanding pathological choice behavior. The goal of the present experiment was to illuminate the mechanisms governing individual differences in loss-chasing and risky-choice behaviors. Rats chose between a low-uncertainty outcome that always delivered a variable amount of reward and a high-uncertainty outcome that probabilistically delivered reward. Loss-processing and loss-chasing were assessed in the context of losses disguised as wins (LDWs), which are loss outcomes that are presented along with gain-related stimuli. LDWs have been suggested to interfere with adaptive decision-making in humans and thus potentially increase loss-making. Here, the rats presented with LDWs were riskier, in that they made more choices for the high-uncertainty outcome. A series of nonlinear models were fit to individual rats' data to elucidate the possible psychological mechanisms that best account for individual differences in high-uncertainty choices and loss-chasing behaviors. The models suggested that the rats presented with LDWs were more prone to showing a stay bias following high-uncertainty outcomes compared to rats not presented with LDWs. These results collectively suggest that LDWs acquire conditioned reinforcement properties that encourage continued risk-taking and increase loss-chasing following previous high-risk decisions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. A Weakly Nonlinear Model for Kelvin–Helmholtz Instability in Incompressible Fluids

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Wen-Hua, Ye; Zheng-Feng, Fan; Chuang, Xue; Ying-Jun, Li

    2009-01-01

    A weakly nonlinear model is proposed for the Kelvin–Helmholtz instability in two-dimensional incompressible fluids by expanding the perturbation velocity potential to third order. The third-order harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The weakly nonlinear results are supported by numerical simulations. Density and resonance effects exist in the development of mode coupling. (fundamental areas of phenomenology (including applications))

  7. Incorporating Latent Variables into Discrete Choice Models - A Simultaneous Estimation Approach Using SEM Software

    Directory of Open Access Journals (Sweden)

    Dirk Temme

    2008-12-01

    Full Text Available Integrated choice and latent variable (ICLV models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.

  8. Null Controllability of a Nonlinear Dissipative System and Application to the Detection of the Incomplete Parameter for a Nonlinear Population Dynamics Model

    Directory of Open Access Journals (Sweden)

    Yacouba Simporé

    2016-01-01

    Full Text Available We first prove a null controllability result for a nonlinear system derived from a nonlinear population dynamics model. In order to tackle the controllability problem we use an adapted Carleman inequality. Next we consider the nonlinear population dynamics model with a source term called the pollution term. In order to obtain information on the pollution term we use the method of sentinel.

  9. A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors

    Science.gov (United States)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.

  10. Modeling of memristor-based chaotic systems using nonlinear Wiener adaptive filters based on backslash operator

    International Nuclear Information System (INIS)

    Zhao, Yibo; Jiang, Yi; Feng, Jiuchao; Wu, Lifu

    2016-01-01

    Highlights: • A novel nonlinear Wiener adaptive filters based on the backslash operator are proposed. • The identification approach to the memristor-based chaotic systems using the proposed adaptive filters. • The weight update algorithm and convergence characteristics for the proposed adaptive filters are derived. - Abstract: Memristor-based chaotic systems have complex dynamical behaviors, which are characterized as nonlinear and hysteresis characteristics. Modeling and identification of their nonlinear model is an important premise for analyzing the dynamical behavior of the memristor-based chaotic systems. This paper presents a novel nonlinear Wiener adaptive filtering identification approach to the memristor-based chaotic systems. The linear part of Wiener model consists of the linear transversal adaptive filters, the nonlinear part consists of nonlinear adaptive filters based on the backslash operator for the hysteresis characteristics of the memristor. The weight update algorithms for the linear and nonlinear adaptive filters are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics. Comparing with the adaptive nonlinear polynomial filters, the proposed nonlinear adaptive filters have less identification error.

  11. Sampled-data models for linear and nonlinear systems

    CERN Document Server

    Yuz, Juan I

    2014-01-01

    Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: ·      the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; ·      although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and ·      the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...

  12. Nonlinear model predictive control of a wave energy converter based on differential flatness parameterisation

    Science.gov (United States)

    Li, Guang

    2017-01-01

    This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.

  13. Modeling the SAR Signature of Nonlinear Internal Waves

    National Research Council Canada - National Science Library

    Lettvin, Ellen E

    2008-01-01

    Nonlinear Internal Waves are pervasive globally, particularly in coastal waters. The currents and displacements associated with internal waves influence acoustic propagation and underwater navigation, as well as ocean transport and mixing...

  14. A nonlinear inversion for the velocity background and perturbation models

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2015-01-01

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect

  15. Stabilization and Control Models of Systems With Hysteresis Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mihail E. Semenov

    2012-05-01

    Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.

  16. The spectral cell method in nonlinear earthquake modeling

    Science.gov (United States)

    Giraldo, Daniel; Restrepo, Doriam

    2017-12-01

    This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.

  17. Understanding the formation and influence of attitudes in patients' treatment choices for lower back pain: Testing the benefits of a hybrid choice model approach

    DEFF Research Database (Denmark)

    Kløjgaard, Mirja Elisabeth; Hess, S.

    2014-01-01

    A growing number of studies across different fields are making use of a new class of choice models, labelled variably as hybrid model structures or integrated choice and latent variable models, and incorporating the role of attitudes in decision making. To date, this technique has not been used...... in spring/summer 2012. We show how the hybrid model structure is able to make a link between attitudinal questions and treatment choices, and also explains variation of these attitudes across key socio-demographic groups. However, we also show how, in this case, only a small share of the overall...

  18. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS

    DEFF Research Database (Denmark)

    Bolker, B.M.; Gardner, B.; Maunder, M.

    2013-01-01

    Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. R is convenient and (relatively) easy...... to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield...

  19. NSLS-II: Nonlinear Model Calibration for Synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, J.

    2010-10-08

    This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics from Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was {approx} 1 x 10{sup -5} for 1024 turns (to calibrate the linear optics) and {approx} 1 x 10{sup -4} for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is {approx}0.1. Since the transverse damping time is {approx}20 msec, i.e., {approx}4,000 turns. There is no fundamental difference for: antiprotons, protons, and electrons in this case. Because the estimated accuracy for these methods in the field of particle accelerators has been naive, i.e., ignoring the impact of noise, we have also derived explicit formula, from first principles, for a quantitative statement. For e.g. N = 256 and 5% noise we obtain {delta}{nu} {approx} 1 x 10{sup -5}. A comparison with the state-of-the-arts in e.g. telecomm and electrical engineering since the 60s is quite revealing. For example, Kalman filter (1960), crucial for the: Ranger, Mariner, and Apollo (including the Lunar Module) missions during the 60s. Or Claude Shannon et al

  20. NSLS-II: Nonlinear Model Calibration for Synchrotrons

    International Nuclear Information System (INIS)

    Bengtsson, J.

    2010-01-01

    This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics from Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was ∼ 1 x 10 -5 for 1024 turns (to calibrate the linear optics) and ∼ 1 x 10 -4 for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is ∼0.1. Since the transverse damping time is ∼20 msec, i.e., ∼4,000 turns. There is no fundamental difference for: antiprotons, protons, and electrons in this case. Because the estimated accuracy for these methods in the field of particle accelerators has been naive, i.e., ignoring the impact of noise, we have also derived explicit formula, from first principles, for a quantitative statement. For e.g. N = 256 and 5% noise we obtain (delta)ν ∼ 1 x 10 -5 . A comparison with the state-of-the-arts in e.g. telecomm and electrical engineering since the 60s is quite revealing. For example, Kalman filter (1960), crucial for the: Ranger, Mariner, and Apollo (including the Lunar Module) missions during the 60s. Or Claude Shannon et al since the 40s for that matter. Conclusion: what

  1. Nonlinear economic dynamics and financial modelling: essays in honour of Carl Chiarella

    NARCIS (Netherlands)

    Dieci, R.; He, X.Z.; Hommes, C.

    2014-01-01

    This book reflects the state of the art on nonlinear economic dynamics, financial market modelling and quantitative finance. It contains eighteen papers with topics ranging from disequilibrium macroeconomics, monetary dynamics, monopoly, financial market and limit order market models with boundedly

  2. Study of the critical behavior of the O(N) linear and nonlinear sigma models

    International Nuclear Information System (INIS)

    Graziani, F.R.

    1983-01-01

    A study of the large N behavior of both the O(N) linear and nonlinear sigma models is presented. The purpose is to investigate the relationship between the disordered (ordered) phase of the linear and nonlinear sigma models. Utilizing operator product expansions and stability analyses, it is shown that for 2 - (lambda/sub R/(M) is the dimensionless renormalized quartic coupling and lambda* is the IR fixed point) limit of the linear sigma model which yields the nonlinear sigma model. It is also shown that stable large N linear sigma models with lambda 0) and nonlinear models are trivial. This result (i.e., triviality) is well known but only for one and two component models. Interestingly enough, the lambda< d = 4 linear sigma model remains nontrivial and tachyonic free

  3. A novel concurrent pictorial choice model of mood-induced relapse in hazardous drinkers.

    Science.gov (United States)

    Hardy, Lorna; Hogarth, Lee

    2017-12-01

    This study tested whether a novel concurrent pictorial choice procedure, inspired by animal self-administration models, is sensitive to the motivational effect of negative mood induction on alcohol-seeking in hazardous drinkers. Forty-eight hazardous drinkers (scoring ≥7 on the Alcohol Use Disorders Inventory) recruited from the community completed measures of alcohol dependence, depression, and drinking coping motives. Baseline alcohol-seeking was measured by percent choice to enlarge alcohol- versus food-related thumbnail images in two alternative forced-choice trials. Negative and positive mood was then induced in succession by means of self-referential affective statements and music, and percent alcohol choice was measured after each induction in the same way as baseline. Baseline alcohol choice correlated with alcohol dependence severity, r = .42, p = .003, drinking coping motives (in two questionnaires, r = .33, p = .02 and r = .46, p = .001), and depression symptoms, r = .31, p = .03. Alcohol choice was increased by negative mood over baseline (p choice was not related to gender, alcohol dependence, drinking to cope, or depression symptoms (ps ≥ .37). The concurrent pictorial choice measure is a sensitive index of the relative value of alcohol, and provides an accessible experimental model to study negative mood-induced relapse mechanisms in hazardous drinkers. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. A conceptual model for determining career choice of CHROME alumna based on farmer's conceptual models

    Science.gov (United States)

    Moore, Lisa Simmons

    This qualitative program evaluation examines the career decision-making processes and career choices of nine, African American women who participated in the Cooperating Hampton Roads Organization for Minorities in Engineering (CHROME) and who graduated from urban, rural or suburban high schools in the year 2000. The CHROME program is a nonprofit, pre-college intervention program that encourages underrepresented minority and female students to enter science, technically related, engineering, and math (STEM) career fields. The study describes career choices and decisions made by each participant over a five-year period since high school graduation. Data was collected through an Annual Report, Post High School Questionnaires, Environmental Support Questionnaires, Career Choice Questionnaires, Senior Reports, and standardized open-ended interviews. Data was analyzed using a model based on Helen C. Farmer's Conceptual Models, John Ogbu's Caste Theory and Feminist Theory. The CHROME program, based on its stated goals and tenets, was also analyzed against study findings. Findings indicated that participants received very low levels of support from counselors and teachers to pursue STEM careers and high levels of support from parents and family, the CHROME program and financial backing. Findings of this study also indicated that the majority of CHROME alumna persisted in STEM careers. The most successful participants, in terms of undergraduate degree completion and occupational prestige, were the African American women who remained single, experienced no critical incidents, came from a middle class to upper middle class socioeconomic background, and did not have children.

  5. Joint modeling of constrained path enumeration and path choice behavior: a semi-compensatory approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2010-01-01

    A behavioural and a modelling framework are proposed for representing route choice from a path set that satisfies travellers’ spatiotemporal constraints. Within the proposed framework, travellers’ master sets are constructed by path generation, consideration sets are delimited according to spatio...

  6. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers ...

  7. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers ...

  8. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  9. An efficient flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole

    2009-01-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal......, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental...

  10. Modelling Stochastic Route Choice Behaviours with a Closed-Form Mixed Logit Model

    Directory of Open Access Journals (Sweden)

    Xinjun Lai

    2015-01-01

    Full Text Available A closed-form mixed Logit approach is proposed to model the stochastic route choice behaviours. It combines both the advantages of Probit and Logit to provide a flexible form in alternatives correlation and a tractable form in expression; besides, the heterogeneity in alternative variance can also be addressed. Paths are compared by pairs where the superiority of the binary Probit can be fully used. The Probit-based aggregation is also used for a nested Logit structure. Case studies on both numerical and empirical examples demonstrate that the new method is valid and practical. This paper thus provides an operational solution to incorporate the normal distribution in route choice with an analytical expression.

  11. A Monte Carlo Investigation of the Box-Cox Model and a Nonlinear Least Squares Alternative.

    OpenAIRE

    Showalter, Mark H

    1994-01-01

    This paper reports a Monte Carlo study of the Box-Cox model and a nonlinear least squares alternative. Key results include the following: the transformation parameter in the Box-Cox model appears to be inconsistently estimated in the presence of conditional heteroskedasticity; the constant term in both the Box-Cox and the nonlinear least squares models is poorly estimated in small samples; conditional mean forecasts tend to underestimate their true value in the Box-Cox model when the transfor...

  12. Generalized outcome-based strategy classification: comparing deterministic and probabilistic choice models.

    Science.gov (United States)

    Hilbig, Benjamin E; Moshagen, Morten

    2014-12-01

    Model comparisons are a vital tool for disentangling which of several strategies a decision maker may have used--that is, which cognitive processes may have governed observable choice behavior. However, previous methodological approaches have been limited to models (i.e., decision strategies) with deterministic choice rules. As such, psychologically plausible choice models--such as evidence-accumulation and connectionist models--that entail probabilistic choice predictions could not be considered appropriately. To overcome this limitation, we propose a generalization of Bröder and Schiffer's (Journal of Behavioral Decision Making, 19, 361-380, 2003) choice-based classification method, relying on (1) parametric order constraints in the multinomial processing tree framework to implement probabilistic models and (2) minimum description length for model comparison. The advantages of the generalized approach are demonstrated through recovery simulations and an experiment. In explaining previous methods and our generalization, we maintain a nontechnical focus--so as to provide a practical guide for comparing both deterministic and probabilistic choice models.

  13. Modeling hurricane evacuation traffic : testing the gravity and intervening opportunity models as models of destination choice in hurricane evacuation.

    Science.gov (United States)

    2006-09-01

    The test was conducted by estimating the models on a portion of evacuation data from South Carolina following Hurricane Floyd, and then observing how well the models reproduced destination choice at the county level on the remaining data. The tests s...

  14. A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H.

    2014-01-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830

  15. Non-linear characterisation of the physical model of an ancient masonry bridge

    International Nuclear Information System (INIS)

    Fragonara, L Zanotti; Ceravolo, R; Matta, E; Quattrone, A; De Stefano, A; Pecorelli, M

    2012-01-01

    This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

  16. Applicability of linear and non-linear potential flow models on a Wavestar float

    DEFF Research Database (Denmark)

    Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

    2017-01-01

    as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

  17. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...

  18. Nonlinear dynamics and modelling of various wooden toys with impact and friction

    NARCIS (Netherlands)

    Leine, R.I.; Campen, van D.H.; Glocker, C.

    2003-01-01

    In this paper, we study bifurcations in systems with impact and friction, modeled with a rigid multibody approach. Knowledge from the field of nonlinear dynamics is therefore combined with theory from the field of non-smooth mechanics. We study the nonlinear dynamics of three commercial wooden toys.

  19. Nonlinear modeling of a rotational MR damper via an enhanced Bouc–Wen model

    International Nuclear Information System (INIS)

    Miah, Mohammad S; Chatzi, Eleni N; Dertimanis, Vasilis K; Weber, Felix

    2015-01-01

    The coupling of magnetorheological (MR) dampers with semi-active control schemes has proven to be an effective and failsafe approach for vibration mitigation of low-damped structures. However, due to the nonlinearities inherently relating to such damping devices, the characterization of the associated nonlinear phenomena is still a challenging task. Herein, an enhanced phenomenological modeling approach is proposed for the description of a rotational-type MR damper, which comprises a modified Bouc–Wen model coupled with an appropriately selected sigmoid function. In a first step, parameter optimization is performed on the basis of individual models in an effort to approximate the experimentally observed response for varying current levels and actuator force characteristics. In a second step, based on the previously identified parameters, a generalized best-fit model is proposed by performing a regression analysis. Finally, model validation is carried out via implementation on different sets of experimental data. The proposed model indeed renders an improved representation of the actually observed nonlinear behavior of the tested rotational MR damper. (paper)

  20. Choices and changes: Eccles' Expectancy-Value model and upper-secondary school students' longitudinal reflections about their choice of a STEM education

    Science.gov (United States)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-03-01

    During the past 30 years, Eccles' comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students in their last year in upper-secondary school concerning their choice of tertiary education were examined using quantitative EV-MBC surveys and repeated qualitative interviews. This article presents the analyses of three cases in detail. The analytical focus was whether the factors indicated in the EV-MBC model could be used to detect significant changes in the students' educational choice processes. An important finding was that the quantitative EV-MBC surveys and the qualitative interviews gave quite different results concerning the students' considerations about the choice of tertiary education, and that significant changes in the students' reflections were not captured by the factors of the EV-MBC model. This questions the validity of the EV-MBC surveys. Moreover, the quantitative factors from the EV-MBC model did not sufficiently explain students' dynamical educational choice processes where students in parallel considered several different potential educational trajectories. We therefore call for further studies of the EV-MBC model's use in describing longitudinal choice processes and especially in investigating significant changes.

  1. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    Science.gov (United States)

    Kenneth J. Bagstad; Erika Cohen; Zachary H. Ancona; Steven. G. McNulty; Ge   Sun

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address...

  2. PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

    Science.gov (United States)

    Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai

    2017-09-01

    In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.

  3. A two-layered diffusion model traces the dynamics of information processing in the valuation-and-choice circuit of decision making.

    Science.gov (United States)

    Piu, Pietro; Fargnoli, Francesco; Innocenti, Alessandro; Rufa, Alessandra

    2014-01-01

    A circuit of evaluation and selection of the alternatives is considered a reliable model in neurobiology. The prominent contributions of the literature to this topic are reported. In this study, valuation and choice of a decisional process during Two-Alternative Forced-Choice (TAFC) task are represented as a two-layered network of computational cells, where information accrual and processing progress in nonlinear diffusion dynamics. The evolution of the response-to-stimulus map is thus modeled by two linked diffusive modules (2LDM) representing the neuronal populations involved in the valuation-and-decision circuit of decision making. Diffusion models are naturally appropriate for describing accumulation of evidence over the time. This allows the computation of the response times (RTs) in valuation and choice, under the hypothesis of ex-Wald distribution. A nonlinear transfer function integrates the activities of the two layers. The input-output map based on the infomax principle makes the 2LDM consistent with the reinforcement learning approach. Results from simulated likelihood time series indicate that 2LDM may account for the activity-dependent modulatory component of effective connectivity between the neuronal populations. Rhythmic fluctuations of the estimate gain functions in the delta-beta bands also support the compatibility of 2LDM with the neurobiology of DM.

  4. The selection of a mode of urban transportation: Integrating psychological variables to discrete choice models

    International Nuclear Information System (INIS)

    Cordoba Maquilon, Jorge E; Gonzalez Calderon, Carlos A; Posada Henao, John J

    2011-01-01

    A study using revealed preference surveys and psychological tests was conducted. Key psychological variables of behavior involved in the choice of transportation mode in a population sample of the Metropolitan Area of the Valle de Aburra were detected. The experiment used the random utility theory for discrete choice models and reasoned action in order to assess beliefs. This was used as a tool for analysis of the psychological variables using the sixteen personality factor questionnaire (16PF test). In addition to the revealed preference surveys, two other surveys were carried out: one with socio-economic characteristics and the other with latent indicators. This methodology allows for an integration of discrete choice models and latent variables. The integration makes the model operational and quantifies the unobservable psychological variables. The most relevant result obtained was that anxiety affects the choice of urban transportation mode and shows that physiological alterations, as well as problems in perception and beliefs, can affect the decision-making process.

  5. On the Nonlinear Structural Analysis of Wind Turbine Blades using Reduced Degree-of-Freedom Models

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Larsen, Jesper Winther; Nielsen, Søren R.K.

    2008-01-01

    , modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based...... on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response...... of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model...

  6. Choices and Changes: Eccles’ Expectancy-Value Model and Upper-Secondary School Students’ Longitudinal Reflections about their Choice of a STEM Education

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    During the past 30 years, Eccles’ comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students...... in their last year in upper-secondary school concerning their choice of tertiary education were examined using quantitative EV-MBC surveys and repeated qualitative interviews. This article presents the analyses of three cases in detail. The analytical focus was whether the factors indicated in the EV-MBC model......, and that significant changes in the students’ reflections were not captured by the factors of the EV-MBC model. This questions the validity of the EVMBC surveys. Moreover, the quantitative factors from the EV-MBC model did not sufficiently explain students’ dynamical educational choice processes where students...

  7. Institutional influences on business model choice by new ventures in the microgenerated energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Provance, Mike, E-mail: mprovanc@odu.edu [Old Dominion University, Norfolk, VA 23529 (United States); Donnelly, Richard G.; Carayannis, Elias G. [George Washington University, Washington, DC 20052 (United States)

    2011-09-15

    Business model choice plays an important source of competitive advantage for new ventures in the microgeneration sector. Yet, existing literature focuses on strategic management of internal resources as the constraints in this choice process. In the energy sector, external factors may be at least as influential in shaping these business models. This paper examines the roles of politico-institutional and socio-institutional dynamics in the choice of business models for microgeneration ventures. Business models have traditionally been viewed as constructions of the internal values, strategies, and resources of organizations. But, this perspective overlooks the role that external forces have on these models, particularly in more highly institutionalized contexts like microgeneration. When these factors are introduced into the existing framework for business model choice, the business model based less on firm decision-making and more about variables that exist within national innovation systems and political structure, local socio-technological conditions, and cognitive abilities of the entrepreneur and corresponding stakeholders. - Highlights: > This work provides theoretical foundation for variation in microgeneration business models. > Explores institutional influences on strategic view of business model choice. > Compares the nature of microgeneration across geo-political contexts.

  8. Institutional influences on business model choice by new ventures in the microgenerated energy industry

    International Nuclear Information System (INIS)

    Provance, Mike; Donnelly, Richard G.; Carayannis, Elias G.

    2011-01-01

    Business model choice plays an important source of competitive advantage for new ventures in the microgeneration sector. Yet, existing literature focuses on strategic management of internal resources as the constraints in this choice process. In the energy sector, external factors may be at least as influential in shaping these business models. This paper examines the roles of politico-institutional and socio-institutional dynamics in the choice of business models for microgeneration ventures. Business models have traditionally been viewed as constructions of the internal values, strategies, and resources of organizations. But, this perspective overlooks the role that external forces have on these models, particularly in more highly institutionalized contexts like microgeneration. When these factors are introduced into the existing framework for business model choice, the business model based less on firm decision-making and more about variables that exist within national innovation systems and political structure, local socio-technological conditions, and cognitive abilities of the entrepreneur and corresponding stakeholders. - Highlights: → This work provides theoretical foundation for variation in microgeneration business models. → Explores institutional influences on strategic view of business model choice. → Compares the nature of microgeneration across geo-political contexts.

  9. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    Science.gov (United States)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  10. Conceptual Models, Choices, and Benchmarks for Building Quality Work Cultures.

    Science.gov (United States)

    Acker-Hocevar, Michele

    1996-01-01

    The two models in Florida's Educational Quality Benchmark System represent a new way of thinking about developing schools' work culture. The Quality Performance System Model identifies nine dimensions of work within a quality system. The Change Process Model provides a theoretical framework for changing existing beliefs, attitudes, and behaviors…

  11. Calibration of the Nonlinear Accelerator Model at the Diamond Storage Ring

    CERN Document Server

    Bartolini, Riccardo; Rowland, James; Martin, Ian; Schmidt, Frank

    2010-01-01

    The correct implementation of the nonlinear ring model is crucial to achieve the top performance of a synchrotron light source. Several dynamics quantities can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these methods are based on the analysis of turn-by-turn data of excited betatron oscillations. We present the experimental results of the campaign of measurements carried out at the Diamond. A combination of Frequency Map Analysis (FMA) and detuning with momentum measurements has allowed a precise calibration of the nonlinear model capable of reproducing the nonlinear beam dynamics in the storage ring

  12. Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed

    DEFF Research Database (Denmark)

    Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo

    2002-01-01

    The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...... conducted at National Aerospace Laboratory in Japan for a high aspect ratio wing. It explains the nonlinear features of the transonic flutter such as the subcritical Hopf bifurcation of a limit cycle oscillation (LCO), a saddle-node bifurcation, and an unstable limit cycle as well as a normal (linear...

  13. A Comparison Between Mıcrosoft Excel Solver and Ncss, Spss Routines for Nonlinear Regression Models

    Directory of Open Access Journals (Sweden)

    Didem Tetik Küçükelçi

    2018-02-01

    Full Text Available In this study we have tried to compare the results obtained by Microsoft Excel Solver program with those of NCSS and SPSS in some nonlinear regression models. We fit some nonlinear models to data present in http//itl.nist.gov/div898/strd/nls/nls_main.shtml by the three packages. Although EXCEL did not succeed as well as the other packages, we conclude that Microsoft Excel Solver provides us a cheaper and a more interactive way of studying nonlinear models.

  14. Nonlinear Kalman filtering in affine term structure models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    2014-01-01

    The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....

  15. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  16. The influence of noise on nonlinear time series detection based on Volterra-Wiener-Korenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Lei Min [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: leimin@sjtu.edu.cn; Meng Guang [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-04-15

    This paper studies the influence of noises on Volterra-Wiener-Korenberg (VWK) nonlinear test model. Our numerical results reveal that different types of noises lead to different behavior of VWK model detection. For dynamic noise, it is difficult to distinguish chaos from nonchaotic but nonlinear determinism. For time series, measure noise has no impact on chaos determinism detection. This paper also discusses various behavior of VWK model detection with surrogate data for different noises.

  17. Improved Polynomial Fuzzy Modeling and Controller with Stability Analysis for Nonlinear Dynamical Systems

    OpenAIRE

    Hamed Kharrati; Sohrab Khanmohammadi; Witold Pedrycz; Ghasem Alizadeh

    2012-01-01

    This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB) systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA) is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy m...

  18. A Nonlinear Ship Manoeuvering Model: Identification and adaptive control with experiments for a model ship

    Directory of Open Access Journals (Sweden)

    Roger Skjetne

    2004-01-01

    Full Text Available Complete nonlinear dynamic manoeuvering models of ships, with numerical values, are hard to find in the literature. This paper presents a modeling, identification, and control design where the objective is to manoeuver a ship along desired paths at different velocities. Material from a variety of references have been used to describe the ship model, its difficulties, limitations, and possible simplifications for the purpose of automatic control design. The numerical values of the parameters in the model is identified in towing tests and adaptive manoeuvering experiments for a small ship in a marine control laboratory.

  19. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    Science.gov (United States)

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  20. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  1. A likelihood-based biostatistical model for analyzing consumer movement in simultaneous choice experiments.

    Science.gov (United States)

    Zeilinger, Adam R; Olson, Dawn M; Andow, David A

    2014-08-01

    Consumer feeding preference among resource choices has critical implications for basic ecological and evolutionary processes, and can be highly relevant to applied problems such as ecological risk assessment and invasion biology. Within consumer choice experiments, also known as feeding preference or cafeteria experiments, measures of relative consumption and measures of consumer movement can provide distinct and complementary insights into the strength, causes, and consequences of preference. Despite the distinct value of inferring preference from measures of consumer movement, rigorous and biologically relevant analytical methods are lacking. We describe a simple, likelihood-based, biostatistical model for analyzing the transient dynamics of consumer movement in a paired-choice experiment. With experimental data consisting of repeated discrete measures of consumer location, the model can be used to estimate constant consumer attraction and leaving rates for two food choices, and differences in choice-specific attraction and leaving rates can be tested using model selection. The model enables calculation of transient and equilibrial probabilities of consumer-resource association, which could be incorporated into larger scale movement models. We explore the effect of experimental design on parameter estimation through stochastic simulation and describe methods to check that data meet model assumptions. Using a dataset of modest sample size, we illustrate the use of the model to draw inferences on consumer preference as well as underlying behavioral mechanisms. Finally, we include a user's guide and computer code scripts in R to facilitate use of the model by other researchers.

  2. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction

    International Nuclear Information System (INIS)

    Upadrashta, Deepesh; Yang, Yaowen

    2015-01-01

    Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction. (paper)

  3. Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2005-01-01

    A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms

  4. Robust model predictive control for constrained continuous-time nonlinear systems

    Science.gov (United States)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  5. Value-based choice: An integrative, neuroscience-informed model of health goals.

    Science.gov (United States)

    Berkman, Elliot T

    2018-01-01

    Traditional models of health behaviour focus on the roles of cognitive, personality and social-cognitive constructs (e.g. executive function, grit, self-efficacy), and give less attention to the process by which these constructs interact in the moment that a health-relevant choice is made. Health psychology needs a process-focused account of how various factors are integrated to produce the decisions that determine health behaviour. I present an integrative value-based choice model of health behaviour, which characterises the mechanism by which a variety of factors come together to determine behaviour. This model imports knowledge from research on behavioural economics and neuroscience about how choices are made to the study of health behaviour, and uses that knowledge to generate novel predictions about how to change health behaviour. I describe anomalies in value-based choice that can be exploited for health promotion, and review neuroimaging evidence about the involvement of midline dopamine structures in tracking and integrating value-related information during choice. I highlight how this knowledge can bring insights to health psychology using illustrative case of healthy eating. Value-based choice is a viable model for health behaviour and opens new avenues for mechanism-focused intervention.

  6. Discrete Choice Experiments: A Guide to Model Specification, Estimation and Software.

    Science.gov (United States)

    Lancsar, Emily; Fiebig, Denzil G; Hole, Arne Risa

    2017-07-01

    We provide a user guide on the analysis of data (including best-worst and best-best data) generated from discrete-choice experiments (DCEs), comprising a theoretical review of the main choice models followed by practical advice on estimation and post-estimation. We also provide a review of standard software. In providing this guide, we endeavour to not only provide guidance on choice modelling but to do so in a way that provides a 'way in' for researchers to the practicalities of data analysis. We argue that choice of modelling approach depends on the research questions, study design and constraints in terms of quality/quantity of data and that decisions made in relation to analysis of choice data are often interdependent rather than sequential. Given the core theory and estimation of choice models is common across settings, we expect the theoretical and practical content of this paper to be useful to researchers not only within but also beyond health economics.

  7. How urban environment affects travel behavior? Integrated Choice and Latent Variable Model for Travel Schedules

    DEFF Research Database (Denmark)

    La Paix, Lissy; Bierlaire, Michel; Cherchi, Elisabetta

    2013-01-01

    The relationship between urban environment and travel behaviour is not a new problem. Neighbourhood characteristics may affect mobility of dwellers in different ways, such as frequency of trips, mode used, structure of the tours, and so on. At the same time, qualitative issues related...... to the individual attitude towards specific behaviour have recently become important in transport modelling contributing to a better understanding of travel demand. Following this research line, in this paper we study the effect of neighbourhood characteristics in the choice of the type of tours performed, but we...... assume that neighbourhood characteristics can also affect the individual propensity to travel and hence the choice of the tours throughout the propensity to travel. Since the propensity to travel is not observed, we employ hybrid choice models to estimate jointly the discrete choice of tours...

  8. Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice

    NARCIS (Netherlands)

    Callot, Laurent A.F.; Kock, Anders B.; Medeiros, Marcelo C.

    2017-01-01

    We consider modeling and forecasting large realized covariance matrices by penalized vector autoregressive models. We consider Lasso-type estimators to reduce the dimensionality and provide strong theoretical guarantees on the forecast capability of our procedure. We show that we can forecast

  9. Modelling travel time perception in transport mode choices

    NARCIS (Netherlands)

    Varotto, S.F.; Glerum, A.; Stathopoulos, A.; Bierlaire, M.; Longo, G.

    2015-01-01

    Travel behaviour models typically rely on data afflicted by errors, in perception (e.g., over/under-estimation by traveller) and measurement (e.g., software or researcher imputation error). Such errors are shown to have a relevant impact on model outputs. So far a comprehensive framework to deal

  10. New analytical solutions for nonlinear physical models of the ...

    Indian Academy of Sciences (India)

    In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of ...

  11. Travelling wave solutions to nonlinear physical models by means

    Indian Academy of Sciences (India)

    This paper presents the first integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established first integrals, exact solutions are successfully ...

  12. Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth

    1999-01-01

    Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...

  13. Travelling wave solutions to nonlinear physical models by means of ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents the first integral method to carry out the integration of nonlinear ... NPDEs is an important and attractive research area. Not all ... cial types of analytic solutions to understand biological, physical and chemical phenomena ... Thus, based on the qualitative theory of ordinary differential equations.

  14. Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    ..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics

  15. Symmetry properties of some nonlinear field theory models

    International Nuclear Information System (INIS)

    Shvachka, A.B.

    1984-01-01

    Various approaches towards the study of symmetry properties of some nonlinear evolution equations as well as possible ways of their computer implementation using the computer algebra systems langage are discussed. Special attention is paid to the method of pseudopotential investigation of formal integrability and isovector method for the equations of balance

  16. PD/PID controller tuning based on model approximations: Model reduction of some unstable and higher order nonlinear models

    Directory of Open Access Journals (Sweden)

    Christer Dalen

    2017-10-01

    Full Text Available A model reduction technique based on optimization theory is presented, where a possible higher order system/model is approximated with an unstable DIPTD model by using only step response data. The DIPTD model is used to tune PD/PID controllers for the underlying possible higher order system. Numerous examples are used to illustrate the theory, i.e. both linear and nonlinear models. The Pareto Optimal controller is used as a reference controller.

  17. How the twain can meet: Prospect theory and models of heuristics in risky choice.

    Science.gov (United States)

    Pachur, Thorsten; Suter, Renata S; Hertwig, Ralph

    2017-03-01

    Two influential approaches to modeling choice between risky options are algebraic models (which focus on predicting the overt decisions) and models of heuristics (which are also concerned with capturing the underlying cognitive process). Because they rest on fundamentally different assumptions and algorithms, the two approaches are usually treated as antithetical, or even incommensurable. Drawing on cumulative prospect theory (CPT; Tversky & Kahneman, 1992) as the currently most influential instance of a descriptive algebraic model, we demonstrate how the two modeling traditions can be linked. CPT's algebraic functions characterize choices in terms of psychophysical (diminishing sensitivity to probabilities and outcomes) as well as psychological (risk aversion and loss aversion) constructs. Models of heuristics characterize choices as rooted in simple information-processing principles such as lexicographic and limited search. In computer simulations, we estimated CPT's parameters for choices produced by various heuristics. The resulting CPT parameter profiles portray each of the choice-generating heuristics in psychologically meaningful ways-capturing, for instance, differences in how the heuristics process probability information. Furthermore, CPT parameters can reflect a key property of many heuristics, lexicographic search, and track the environment-dependent behavior of heuristics. Finally, we show, both in an empirical and a model recovery study, how CPT parameter profiles can be used to detect the operation of heuristics. We also address the limits of CPT's ability to capture choices produced by heuristics. Our results highlight an untapped potential of CPT as a measurement tool to characterize the information processing underlying risky choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Airport Choice in Sao Paulo Metropolitan Area: An Application of the Conditional Logit Model

    Science.gov (United States)

    Moreno, Marcelo Baena; Muller, Carlos

    2003-01-01

    Using the conditional LOGIT model, this paper addresses the airport choice in the Sao Paulo Metropolitan Area. In this region, Guarulhos International Airport (GRU) and Congonhas Airport (CGH) compete for passengers flying to several domestic destinations. The airport choice is believed to be a result of the tradeoff passengers perform considering airport access characteristics, airline level of service characteristics and passenger experience with the analyzed airports. It was found that access time to the airports better explain the airport choice than access distance, whereas direct flight frequencies gives better explanation to the airport choice than the indirect (connections and stops) and total (direct plus indirect) flight frequencies. Out of 15 tested variables, passenger experience with the analyzed airports was the variable that best explained the airport choice in the region. Model specifications considering 1, 2 or 3 variables were tested. The model specification most adjusted to the observed data considered access time, direct flight frequencies in the travel period (morning or afternoon peak) and passenger experience with the analyzed airports. The influence of these variables was therefore analyzed across market segments according to departure airport and flight duration criteria. The choice of GRU (located neighboring Sao Paulo city) is not well explained by the rationality of access time economy and the increase of the supply of direct flight frequencies, while the choice of CGH (located inside Sao Paulo city) is. Access time was found to be more important to passengers flying shorter distances while direct flight frequencies in the travel period were more significant to those flying longer distances. Keywords: Airport choice, Multiple airport region, Conditional LOGIT model, Access time, Flight frequencies, Passenger experience with the analyzed airports, Transportation planning

  19. A note on identification in discrete choice models with partial observability

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Ranjan, Abhishek

    2017-01-01

    This note establishes a new identification result for additive random utility discrete choice models. A decision-maker associates a random utility Uj+ mj to each alternative in a finite set j∈ {1 , … , J} , where U= {U1, … , UJ} is unobserved by the researcher and random with an unknown joint dis...... for applications where choices are observed aggregated into groups while prices and attributes vary at the level of individual alternatives....

  20. The drift diffusion model as the choice rule in reinforcement learning.

    Science.gov (United States)

    Pedersen, Mads Lund; Frank, Michael J; Biele, Guido

    2017-08-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.