Nonequilibrium electron transport through quantum dots in the Kondo regime
DEFF Research Database (Denmark)
Wölfle, Peter; Paaske, Jens; Rosch, Achim
2005-01-01
Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how...
Nonequilibrium Green function techniques applied to hot electron quantum transport
International Nuclear Information System (INIS)
Jauho, A.P.
1989-01-01
During the last few years considerable effort has been devoted to deriving quantum transport equations for semiconductors under extreme conditions (high electric fields, spatial quantization in one or two directions). Here we review the results obtained with nonequilibrium Green function techniques as formulated by Baym and Kadanoff, or by Keldysh. In particular, the following topics will be discussed: (i) Systematic approaches to reduce the transport equation governing the correlation function to a transport equation for the Wigner function; (ii) Approximations reducing the nonmarkovian quantum transport equation to a numerically tractable form, and results for model semiconductors; (iii) Recent progress in extending the formalism to inhomogeneous systems; and (iv) Nonequilibrium screening. In all sections we try to direct the reader's attention to points where the present understanding is (at best) incomplete, and indicate possible lines for future work. (orig.)
Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula
International Nuclear Information System (INIS)
Lue Rong; Zhang Guangming
2005-01-01
Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.
Majorana fermion modulated nonequilibrium transport through double quantum dots
International Nuclear Information System (INIS)
Deng, Ming-Xun; Wang, Rui-Qiang; Ai, Bao-Quan; Yang, Mou; Hu, Liang-Bin; Zhong, Qing-Hu; Wang, Guang-Hui
2014-01-01
Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports. - Highlights: • Majorana fermions are characterized in the signature of currents and noises. • Three types of tunneling mechanisms are realized separately. • The switching of crossed Andreev reflection and cotunneling is realized. • Concrete physical pictures are proposed to understand Majorana-assisted transports
Majorana fermion modulated nonequilibrium transport through double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Deng, Ming-Xun [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Wang, Rui-Qiang, E-mail: rqwanggz@163.com [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Ai, Bao-Quan; Yang, Mou; Hu, Liang-Bin; Zhong, Qing-Hu [Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China); Wang, Guang-Hui [Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006 (China)
2014-06-13
Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports. - Highlights: • Majorana fermions are characterized in the signature of currents and noises. • Three types of tunneling mechanisms are realized separately. • The switching of crossed Andreev reflection and cotunneling is realized. • Concrete physical pictures are proposed to understand Majorana-assisted transports.
Conserving GW scheme for nonequilibrium quantum transport in molecular contacts
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Rubio, Angel
2008-01-01
We give a detailed presentation of our recent scheme to include correlation effects in molecular transport calculations using the nonequilibrium Keldysh formalism. The scheme is general and can be used with any quasiparticle self-energy, but for practical reasons, we mainly specialize to the so......-called GW self-energy, widely used to describe the quasiparticle band structures and spectroscopic properties of extended and low-dimensional systems. We restrict the GW self-energy to a finite, central region containing the molecule, and we describe the leads by density functional theory (DFT). A minimal...
Nonequilibrium Transport through a Spinful Quantum Dot with Superconducting Leads
DEFF Research Database (Denmark)
Andersen, Brian Møller; Flensberg, Karsten; Koerting, Verena
2011-01-01
We study the nonlinear cotunneling current through a spinful quantum dot contacted by two superconducting leads. Applying a general nonequilibrium Green function formalism to an effective Kondo model, we study the rich variation in the IV characteristics with varying asymmetry in the tunnel...... coupling to source and drain electrodes. The current is found to be carried, respectively, by multiple Andreev reflections in the symmetric limit, and by spin-induced Yu-Shiba-Rusinov bound states in the strongly asymmetric limit. The interplay between these two mechanisms leads to qualitatively different...... IV characteristics in the crossover regime of intermediate symmetry, consistent with recent experimental observations of negative differential conductance and repositioned conductance peaks in subgap cotunneling spectroscopy....
Nonequilibrium transport through molecular junctions in the quantum regime
Czech Academy of Sciences Publication Activity Database
Koch, T.; Loos, Jan; Alvermann, A.; Fehske, H.
2011-01-01
Roč. 84, č. 12 (2011), 125131/1-125131/16 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : the ory of electron ic transport * scattering mechanisms * polarons and electron -phonon interactions * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011
Nonequilibrium Green's function method for quantum thermal transport
Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar
2014-12-01
This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.
Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state
Culver, Adrian; Andrei, Natan
We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.
Nonequilibrium quantum field theories
International Nuclear Information System (INIS)
Niemi, A.J.
1988-01-01
Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)
International Nuclear Information System (INIS)
Zhao, Peiji; Horing, Norman J.M.; Woolard, Dwight L.; Cui, H.L.
2003-01-01
We present a nonequilibrium Green's function formulation of many-body quantum transport theory for multi-band semiconductor systems with a phonon bath. The equations are expressed exactly in terms of single particle nonequilibrium Green's functions and self-energies, treating the open electron-hole system in weak interaction with the bath. A decoupling technique is employed to separate the individual band Green's function equations of motion from one another, with the band-band interaction effects embedded in ''cross-band'' self-energies. This nonequilibrium Green's function formulation of quantum transport theory is amenable to solution by parallel computing because of its formal decoupling with respect to inter-band interactions. Moreover, this formulation also permits coding the simulator of an n-band semiconductor in terms of that for an (n-1)-band system, in step with the current tendency and development of programming technology. Finally, the focus of these equations on individual bands provides a relatively direct route for the determination of carrier motion in energy bands, and to delineate the influence of intra- and inter-band interactions. A detailed description is provided for three-band semiconductor systems
International Nuclear Information System (INIS)
Ma, Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Gee
2013-01-01
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. - Highlights: ► The spin polarized transport through a diluted magnetic quantum dot is studied. ► The model is based on the Green’s function and the equation of motion method.► The charge and spin currents and tunnel magnetoresistance (TMR) are investigated. ► The system is suitable for current-induced spin-transfer torque application. ► A large tunneling current and a high TMR are possible for sensor application.
Nonequilibrium mesoscopic transport: a genealogy
International Nuclear Information System (INIS)
Das, Mukunda P; Green, Frederick
2012-01-01
Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems. (topical review)
DEFF Research Database (Denmark)
Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.
2012-01-01
We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport
Kershaw, Vincent F.; Kosov, Daniel S.
2017-12-01
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Nonequilibrium quantum fluctuations of work.
Allahverdyan, A E
2014-09-01
The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.
International Nuclear Information System (INIS)
Ness, H.; Dash, L. K.
2014-01-01
We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments
Quantum thermodynamics: a nonequilibrium Green's function approach.
Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael
2015-02-27
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.
Schwarz, F.; Goldstein, M.; Dorda, A.; Arrigoni, E.; Weichselbaum, A.; von Delft, J.
2016-10-01
The description of interacting quantum impurity models in steady-state nonequilibrium is an open challenge for computational many-particle methods: the numerical requirement of using a finite number of lead levels and the physical requirement of describing a truly open quantum system are seemingly incompatible. One possibility to bridge this gap is the use of Lindblad-driven discretized leads (LDDL): one couples auxiliary continuous reservoirs to the discretized lead levels and represents these additional reservoirs by Lindblad terms in the Liouville equation. For quadratic models governed by Lindbladian dynamics, we present an elementary approach for obtaining correlation functions analytically. In a second part, we use this approach to explicitly discuss the conditions under which the continuum limit of the LDDL approach recovers the correct representation of thermal reservoirs. As an analytically solvable example, the nonequilibrium resonant level model is studied in greater detail. Lastly, we present ideas towards a numerical evaluation of the suggested Lindblad equation for interacting impurities based on matrix product states. In particular, we present a reformulation of the Lindblad equation, which has the useful property that the leads can be mapped onto a chain where both the Hamiltonian dynamics and the Lindblad driving are local at the same time. Moreover, we discuss the possibility to combine the Lindblad approach with a logarithmic discretization needed for the exploration of exponentially small energy scales.
Introduction to nonequilibrium statistical mechanics with quantum field theory
International Nuclear Information System (INIS)
Kita, Takafumi
2010-01-01
In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (1) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (2) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (3) to derive an expression of nonequilibrium entropy that evolves with time. In stage (1), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keldysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Φ-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Φ-derivable approximation, i.e., an issue of how to handle the 'Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy'. Aim (2) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems can be handled microscopically with
Quantum distribution function of nonequilibrium system
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1990-03-01
A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)
Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations
Riotto, Antonio
1998-01-01
The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...
Nonequilibrium fermion production in quantum field theory
International Nuclear Information System (INIS)
Pruschke, Jens
2010-01-01
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Energy Technology Data Exchange (ETDEWEB)
Okumura, M; Onishi, H; Yamada, S; Machida, M, E-mail: okumura@riken.j
2010-11-01
We study non-equilibrium properties of one-dimensional Hubbard model by the density-matrix renormalization-group method. First, we demonstrate stability of 'doublon', which characterized by double occupation on a site due to the integrability of the model. Next, we present a kind of anomalous transport caused by the doublons created under strong non-equilibrium conditions in an optical lattice system regarded as an ideal testbed to investigate fundamental properties of the Hubbard model. Finally, we give a result on development of the pair correlation function in a strong non-equilibrium condition. This can be understood as a development of coherence among many excited doublons.
Quantum Transport Through Tunable Molecular Diodes
Obodo, Tobechukwu Joshua; Murat, Altynbek; Schwingenschlö gl, Udo
2017-01-01
Employing self-interaction corrected density functional theory combined with the non-equilibrium Green's function method, we study the quantum transport through molecules with different numbers of phenyl (donor) and pyrimidinyl (acceptor) rings
International Nuclear Information System (INIS)
Deus, Fernanda; Continetino, Mucio
2011-01-01
Full text. In this work we study the time dependent transport in interacting quantum dot. This is a zero-dimensional nano structure system which has quantized electronic states. In our purpose, we are interested in studying such system in a Coulomb blockade regime where a mean-field treatment of the electronic correlations are appropriate. The quantum dot is described by an Anderson type of Hamiltonian where the hybridization term arises from the contact with the leads. We consider a time dependence of both the energy of the localized state in the quantum dot and of the hybridization-like term. These time dependent parameters, under certain conditions, induce a current in the quantum dot even in the absence of difference on the chemical potential of the leads. The approach to this non-equilibrium problem requires the use of a Keldysh formalism. We calculate the non- equilibrium Green's functions and obtain results for the average (equilibrium term) and the non-equilibrium values of the electronic occupation number in the dot. we consider the possibility of a magnetic solution, with different values for the average up and down spins in the quantum dot. Our results allow to obtain, for instance, the tunneling current through the dot. The magnetic nature of the dot, for a certain range of parameters should give rise also to an induced spin current through the dot
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Coherence enhanced quantum metrology in a nonequilibrium optical molecule
Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin
2018-03-01
We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.
Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools
Heidrich-Meisner, Fabian
Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.
Nanoscale hotspots due to nonequilibrium thermal transport
International Nuclear Information System (INIS)
Sinha, Sanjiv; Goodson, Kenneth E.
2004-01-01
Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal
Non-equilibrium spin and charge transport in superconducting heterojunctions
Energy Technology Data Exchange (ETDEWEB)
Thalmann, Marcel; Rudolf, Marcel; Braun, Julian; Pietsch, Torsten; Scheer, Elke [Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)
2015-07-01
Ferromagnet Superconductance (F/S) junctions are rich in exciting quantum-physical-phenomena, which are still poorly understood but may provide bright prospects for new applications. In contrast to conventional normal-metal proximity systems, Andreev reflection is suppressed for singlet cooper pairs in F/S heterostructures. However, long-range triplet pairing may be observed in S/F systems with non-collinear magnetization or spin-active interfaces. Herein, we investigate non-equilibrium transport properties of lateral S/F heterojunctions, defined via electron beam lithography. In particular we focus microwave- and magneto-transport spectroscopy on conventional type-I (Al, Pb, Zn) and type-II (Nb) superconductors in combination with strong transition metal ferromagnets (Ni, Co, Fe). A cryogenic HF readout platform and advanced electronic filtering is developed and results on Al-based heterojunctions are shown.
Quantum gases finite temperature and non-equilibrium dynamics
Szymanska, Marzena; Davis, Matthew; Gardiner, Simon
2013-01-01
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...
Electrolytes: transport properties and non-equilibrium thermodynamics
International Nuclear Information System (INIS)
Miller, D.G.
1980-12-01
This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions
Non-equilibrium quantum heat machines
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-11-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.
Non-equilibrium quantum heat machines
International Nuclear Information System (INIS)
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-01-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound. (paper)
Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations
Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro
2018-03-01
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.
Towards a nonequilibrium quantum field theory approach to electroweak baryogenesis
International Nuclear Information System (INIS)
Riotto, A.
1996-01-01
We propose a general method to compute CP violating observables from extensions of the standard model in the context of electroweak baryogenesis. It is an alternative to the one recently developed by Huet and Nelson and relies on a nonequilibrium quantum field theory approach. The method is valid for all shapes and sizes of the bubble wall expanding in the thermal bath during a first-order electroweak phase transition. The quantum physics of CP violation and its suppression coming from the incoherent nature of thermal processes are also made explicit. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Frank, T.D.
2002-01-01
We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions
Quantum Transport Through Tunable Molecular Diodes
Obodo, Tobechukwu Joshua
2017-07-31
Employing self-interaction corrected density functional theory combined with the non-equilibrium Green\\'s function method, we study the quantum transport through molecules with different numbers of phenyl (donor) and pyrimidinyl (acceptor) rings in order to evaluate the effects of the molecular composition on the transport properties. Excellent agreement with the results of recent experiments addressing the rectification behavior of molecular junctions is obtained, which demonstrates the potential of quantum transport simulations for designing high performance junctions by tuning the molecular specifications.
Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons
Scammell, H. D.; Sushkov, O. P.
2017-01-01
Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.
International Nuclear Information System (INIS)
Hyldgaard, P
2012-01-01
The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the
Non-equilibrium dynamics near a quantum multicritical point
International Nuclear Information System (INIS)
Patra, Ayoti; Mukherjee, Victor; Dutta, Amit
2011-01-01
We study the non-equilibrium dynamics of a quantum system close to a quantum multi-critical point (MCP) using the example of a one-dimensional spin-1/2 transverse XY spin chain. We summarize earlier results of defect generenation and fidelity susceptibility for quenching through MCP and close to the MCP, respectively. For a quenching scheme which enables the system to hit the MCP along different paths, we emphasize the role of path on exponents associated with quasicritical points which appear in the scaling relations. Finally, we explicitly derive the scaling of concurrence and negativity for two spin entanglement generated following a slow quenching across the MCP and enlist the results for different quenching schemes. We explicity show the dependence of the scaling on the quenching path and dicuss the limiting situations.
Quantum Coherent Dynamics Enhanced by Synchronization with Nonequilibrium Environments
Ishikawa, Akira; Okada, Ryo; Uchiyama, Kazuharu; Hori, Hirokazu; Kobayashi, Kiyoshi
2018-05-01
We report the discovery of the anomalous enhancement of quantum coherent dynamics (CD) due to a non-Markovian mechanism originating from not thermal-equilibrium phonon baths but nonequilibrium coherent phonons. CD is an elementary process for quantum phenomena in nanosystems, such as excitation transfer (ET) in semiconductor nanostructures and light-harvesting systems. CD occurs in homogeneous nanosystems because system inhomogeneity typically destroys coherence. In real systems, however, nanosystems behave as open systems surrounded by environments such as phonon systems. Typically, CD in inhomogeneous nanosystems is enhanced by the absorption and emission of thermal-equilibrium phonons, and the enhancement is described by the conventional master equation. On the other hand, CD is also enhanced by synchronization between population dynamics in nanosystems and coherent phonons; namely, coherent phonons, which are self-consistently induced by phase matching with Rabi oscillation, are fed back to enhance CD. This anomalous enhancement of CD essentially originates from the nonequilibrium and dynamical non-Markovian nature of coherent phonon environments, and the enhancement is firstly predicted by applying time-dependent projection operators to nonequilibrium and dynamical environments. Moreover, CD is discussed by considering ET from a donor to an acceptor. It is found that the enhancement of ET by synchronization with coherent phonons depends on the competition between the output time from a system to an acceptor and the formation time of coherent phonons. These findings in this study will stimulate the design and manipulation of CD via structured environments from the viewpoint of application to nano-photoelectronic devices.
Quantum Transport: The Link between Standard Approaches in Superlattices
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka
1998-01-01
Theories describing electrical transport in semiconductor superlattices can essentially be divided in three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; and (iii) sequential tunneling. We present a quantum transport model, based on nonequilibrium G...
Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics
Wang, Chen; Ren, Jie; Cao, Jianshu
2017-02-01
To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.
On nonequilibrium many-body systems III: nonlinear transport theory
International Nuclear Information System (INIS)
Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.
1986-01-01
A nonlinear transport theory for many-body systems arbitrarily away from equilibrium, based on the nonequilibrium statistical operator (NSO) method, is presented. Nonlinear transport equations for a basis set of dynamical quantities are derived using two equivalent treatments that may be considered far reaching generalizations of the Hilbert-Chapman-Enskog method and Mori's generalized Langevin equations method. The first case is considered in some detail and the general characteristics of the theory are discussed. (Author) [pt
Nonequilibrium forces between neutral atoms mediated by a quantum field
International Nuclear Information System (INIS)
Behunin, Ryan O.; Hu, Bei-Lok
2010-01-01
We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.
CHMTRNS, Non-Equilibrium Chemical Transport Code
International Nuclear Information System (INIS)
Noorishad, J.; Carnahan, C.L.; Benson, L.V.
1998-01-01
1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used
Hot electrons in superlattices: quantum transport versus Boltzmann equation
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.
1999-01-01
A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...
A calculational scheme for nonequilibrium quantum field system
International Nuclear Information System (INIS)
Yamanaka, Y.
1991-01-01
A new calculational scheme is presented for interacting nonequi-librium time dependent quantum field systems within the framework of thermo field dynamics (TFD), taking account of the fact that the thermal vacuum should go through many inequivalent state vector spaces. A para-meter parametrizing various state vector spaces has to be introduced and plays a role of new time-variable. Thus we have double-time TFD. The 2 requirements in this double-time TFD are imposed to establish a quasi-particle picture to get an attainable scheme of perturbative calculation : the existence of the spectral representation for the full propagator and the diagonalization of the quasi-particle Hamiltonian. The 1st condition turns out to amount to the existence of local-time tempera-ture. The 2nd condition leads to the master equation for the number density. This formalism is applied to high-energy heavy ion collision process. The very fundamental question is then how the thermodynamical properties such as heat and temperature appear in such an isolated system. This double-time TFD, suitable for isolated thermal systems of quantum fields, can handle the situation from the beginning of the process. (author). 24 refs.; 1 fig
Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation
International Nuclear Information System (INIS)
Bolivar, A.O.
2011-01-01
Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Efficient method for transport simulations in quantum cascade lasers
Directory of Open Access Journals (Sweden)
Maczka Mariusz
2017-01-01
Full Text Available An efficient method for simulating quantum transport in quantum cascade lasers is presented. The calculations are performed within a simple approximation inspired by Büttiker probes and based on a finite model for semiconductor superlattices. The formalism of non-equilibrium Green’s functions is applied to determine the selected transport parameters in a typical structure of a terahertz laser. Results were compared with those obtained for a infinite model as well as other methods described in literature.
Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state
International Nuclear Information System (INIS)
Hsiang, Jen-Tsung; Hu, B.L.
2015-01-01
This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T_1>T_2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T_c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T_1, T_2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T_c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.
Nonequilibrium quantum solvation with a time-dependent Onsager cavity
Kirchberg, H.; Nalbach, P.; Thorwart, M.
2018-04-01
We formulate a theory of nonequilibrium quantum solvation in which parameters of the solvent are explicitly depending on time. We assume in a simplest approach a spherical molecular Onsager cavity with a time-dependent radius. We analyze the relaxation properties of a test molecular point dipole in a dielectric solvent and consider two cases: (i) a shrinking Onsager sphere and (ii) a breathing Onsager sphere. Due to the time-dependent solvent, the frequency-dependent response function of the dipole becomes time-dependent. For a shrinking Onsager sphere, the dipole relaxation is in general enhanced. This is reflected in a temporally increasing linewidth of the absorptive part of the response. Furthermore, the effective frequency-dependent response function shows two peaks in the absorptive part which are symmetrically shifted around the eigenfrequency. By contrast, a breathing sphere reduces damping as compared to the static sphere. Interestingly, we find a non-monotonous dependence of the relaxation rate on the breathing rate and a resonant suppression of damping when both rates are comparable. Moreover, the linewidth of the absorptive part of the response function is strongly reduced for times when the breathing sphere reaches its maximal extension.
QUANTUM TRANSPORT-THEORY OF NUCLEAR-MATTER
BOTERMANS, W; MALFLIET, R
1990-01-01
Quantum kinetic equations are derived using the Keldysh Green's function formalism to describe non-equilibrium processes in nuclear matter and nucleus-nucleus collisions. A general transport equation is proposed which includes energy spreading effects. We discuss a number of specific kinetic
Non-equilibrium dilepton production in hadronic transport approaches
International Nuclear Information System (INIS)
Staudenmaier, Jan; Weil, Janus; Petersen, Hannah
2017-01-01
In this work the non-equilibrium dilepton production from a hadronic transport approach (SMASH) is presented. The dilepton emission from the hadronic stage is of interest for current HADES results measured at GSI in the beam energy range from 1.25 - 3.5 GeV. Also at high collision energies (RHIC/LHC) the later dilute stages of the reaction are dominated by hadronic dynamics. The newly developed hadronic transport approach called SMASH (=Simulating Many Accelerated Strongly-interacting Hadrons) is introduced first. After explaining the basic interaction mechanisms, a comparison of elementary cross sections for pion production to experimental data is shown. The dilepton production within SMASH is explained in detail. The main contribution to the dilepton spectra in the low energy regime of GSI/FAIR/RHIC-BES originates from resonance decays. Results of the dilepton production with SMASH such as invariant mass spectra are shown. (paper)
Nonequilibrium statistical operator in hot-electron transport theory
International Nuclear Information System (INIS)
Xing, D.Y.; Liu, M.
1991-09-01
The Nonequilibrium Statistical Operator method developed by Zubarev is generalized and applied to the study of hot-electron transport in semiconductors. The steady-state balance equations for momentum and energy are derived to the lowest order in the electron-lattice coupling. We show that the derived balance equations are exactly the same as those obtained by Lei and Ting. This equivalence stems from the fact that to the linear order in the electron-lattice coupling, two statistical density matrices have identical effect when they are used to calculate the average value of a dynamical operator. The application to the steady-state and transient hot-electron transport in multivalley semiconductors is also discussed. (author). 28 refs, 1 fig
Fluctuation and dissipation in nonequilibrium quantum field theory
International Nuclear Information System (INIS)
Ramos, Rudnei O.
1994-01-01
The nonequilibrium dynamics of a scalar field is studied using perturbation theory and a real time finite temperature formulation. The evolution equation for the scalar field is explicitly obtained, and terms responsible for noise (fluctuations) and dissipation are identified and studied in the high temperature limit. (author)
On nonequilibrium many-body systems V: ultrafast transport phenomena
International Nuclear Information System (INIS)
Freire, V.N.; Vasconcellos, A.R.; Luzzi, R.
1989-01-01
The monequilibrium statistical operator method and its accompanying nonlinear quantum transport theory, are used to perform an analytical study of the ultrafast mobility transient of central-valley photoinjected carriers in direct-gap polar semiconductors. Expressions for the time-resolved mobility of the hot carriers are derived. A brief discussion of the carriers' diffusion coefficient is done. (A.C.A.S.) [pt
De Luca, Andrea; Collura, Mario; De Nardis, Jacopo
2017-07-01
We construct exact steady states of unitary nonequilibrium time evolution in the gapless XXZ spin-1/2 chain where integrability preserves ballistic spin transport at long times. We characterize the quasilocal conserved quantities responsible for this feature and introduce a computationally effective way to evaluate their expectation values on generic matrix product initial states. We employ this approach to reproduce the long-time limit of local observables in all quantum quenches which explicitly break particle-hole or time-reversal symmetry. We focus on a class of initial states supporting persistent spin currents and our predictions remarkably agree with numerical simulations at long times. Furthermore, we propose a protocol for this model where interactions, even when antiferromagnetic, are responsible for the unbounded growth of a macroscopic magnetic domain.
Levy, Tal J; Rabani, Eran
2013-04-28
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
Density-functional method for nonequilibrium electron transport
DEFF Research Database (Denmark)
Brandbyge, Mads; Mozos, J.L.; Ordejon, P.
2002-01-01
the contact and the electrodes on the same footing. The effect of the finite bias (including self-consistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme...... wires connected to aluminum electrodes with extended or finite cross section, (ii) single atom gold wires, and finally (iii) large carbon nanotube systems with point defects....
Quantum transport in a ring of quantum dots
Energy Technology Data Exchange (ETDEWEB)
Sena Junior, Marcone I.; Macedo, Antonio M.C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Fisica
2012-07-01
Full text: Quantum dots play a central role in the recent technological efforts to build efficient devices to storage, process and transmit information in the quantum regime [1]. One of the reasons for this interest is the relative simplicity with which its control parameters can be changed by experimentalists. Systems with one, two and even arrays of quantum dots have been intensively studied with respect to their efficiency in processing information carried by charge, spin and heat [1]. A particularly useful realization of a quantum dot is a ballistic electron cavity formed by electrostatic potentials in a two-dimensional electron gas. In the chaotic regime, the shape of the dot is statistically irrelevant and the ability to change its form via external gates can be used to generate members of an ensemble of identical systems. From a theoretical point of view, such quantum dots are ideal electron systems in which to study theoretical models combining phase-coherence, chaotic dynamics and Coulomb interactions. In this work, we use the Keldysh non-linear sigma model [2] with a counting field to study electron transport through a ring of four chaotic quantum dots pierced by an Aharonov-Bohm flux. This system is particularly well suited for studying ways to use the weak-localization effect to process quantum information. We derive the quantum circuit equations for this system from the saddle-point condition of the Keldysh action. The results are used to build the action of the corresponding supersymmetric (SUSY) non-linear sigma model. The connection with the random scattering matrix approach is then made via the color-flavor transformation. In the perturbative regime, where weak-localization effects appear, the Keldysh, SUSY and random scattering matrix approaches can be compared by means of independent analytical calculations. We conclude by pointing out the many advantages of our unified approach. [1] For a review, see Yu. V. Nazarov, and Ya. M. Blanter, Quantum
Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Greck, Peter
2012-11-26
We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.
International Nuclear Information System (INIS)
Chen, Chun-Nan; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying
2016-01-01
Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.
Energy Technology Data Exchange (ETDEWEB)
Chen, Chun-Nan, E-mail: quantum@mail.tku.edu.tw, E-mail: ccn1114@kimo.com [Quantum Engineering Laboratory, Department of Physics, Tamkang University, Tamsui, New Taipei 25137, Taiwan (China); Shyu, Feng-Lin [Department of Physics, R.O.C. Military Academy, Kaohsiung 830, Taiwan (China); Chung, Hsien-Ching; Lin, Chiun-Yan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Jhao-Ying [Center of General Studies, National Kaohsiung Marine University, Kaohsiung 811, Taiwan (China)
2016-08-15
Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.
Memory Effects and Nonequilibrium Correlations in the Dynamics of Open Quantum Systems
Morozov, V. G.
2018-01-01
We propose a systematic approach to the dynamics of open quantum systems in the framework of Zubarev's nonequilibrium statistical operator method. The approach is based on the relation between ensemble means of the Hubbard operators and the matrix elements of the reduced statistical operator of an open quantum system. This key relation allows deriving master equations for open systems following a scheme conceptually identical to the scheme used to derive kinetic equations for distribution functions. The advantage of the proposed formalism is that some relevant dynamical correlations between an open system and its environment can be taken into account. To illustrate the method, we derive a non-Markovian master equation containing the contribution of nonequilibrium correlations associated with energy conservation.
Energy Technology Data Exchange (ETDEWEB)
Haertle, Rainer [Institut fuer Theoretische Physik, Georg-August-Universitaet Goettingen, Goettingen (Germany); Millis, Andrew J. [Department of Physics, Columbia University, New York (United States)
2016-07-01
We present a new impurity solver for real-time and nonequilibrium dynamical mean field theory applications, based on the recently developed hierarchical quantum master equation approach. Our method employs a hybridization expansion of the time evolution operator, including an advanced, systematic truncation scheme. Convergence to exact results for not too low temperatures has been demonstrated by a direct comparison to quantum Monte Carlo simulations. The approach is time-local, which gives us access to slow dynamics such as, e.g., in the presence of magnetic fields or exchange interactions and to nonequilibrium steady states. Here, we present first results of this new scheme for the description of strongly correlated materials in the framework of dynamical mean field theory, including benchmark and new results for the Hubbard and periodic Anderson model.
Quantum transport in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Kubis, Tillmann Christoph
2009-11-15
The main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function method (NEGF) is a very general and all-inclusive scheme for the description of exactly this kind of transport problem. Although the NEGF formalism has been derived in the 1960's, textbooks about this formalism are still rare to find. Therefore, we introduce the NEGF formalism, its fundamental equations and approximations in the first part of this thesis. Thereby, we extract ideas of several seminal contributions on NEGF in literature and augment this by some minor derivations that are hard to find. Although the NEGF method has often been numerically implemented on transport problems, all current work in literature is based on a significant number of approximations with often unknown influence on the results and unknown validity limits. Therefore, we avoid most of the common approximations and implement in the second part of this thesis the NEGF formalism as exact as numerically feasible. For this purpose, we derive several new scattering self-energies and introduce new self-adaptive discretizations for the Green's functions and self-energies. The most important improvements of our NEGF implementation, however, affect the momentum and energy conservation during incoherent scattering, the Pauli blocking, the current conservation within and beyond the device and the reflectionless propagation through open device boundaries. Our uncommonly accurate implementation of the NEGF method allows us to analyze and assess most of the common approximations and to unveil numerical artifacts that have plagued previous approximate implementations in literature. Furthermore, we apply our numerical implementation of the NEGF method on the stationary electron transport in THz quantum cascade lasers (QCLs) and answer
Quantum transport in complex system
International Nuclear Information System (INIS)
Kusnezov, D.; Bulgac, A.; DoDang, G.
1998-01-01
We derive the influence function and the effective dynamics of a quantum systems coupled to a chaotic environment, using very general parametric and banded random matrices to describe the quantum properties of a chaotic bath. We find that only in certain limits the thermalization can result from the environment. We study the general transport problems including escape, fusion and tunneling (fission). (author)
Depletion of superfluidity in a disordered non-equilibrium quantum condensate
Energy Technology Data Exchange (ETDEWEB)
Janot, Alexander; Rosenow, Bernd [Institut fuer Theoretische Physik, Universitaet Leipzig, 04009 Leipzig (Germany); Hyart, Timo [Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Eastham, Paul [School of Physics, Trinity College, Dublin 2 (Ireland)
2013-07-01
Observations of quantum coherence in driven systems, e.g. polariton condensates, have strongly stimulated experimental as well as theoretical efforts during the last decade. We analyze the superfluid stiffness of a non-equilibrium quantum-condensate in a disordered environment taking gain and loss of particles into account. To this end a modified effective Gross-Pitaevskii equation is employed. We find that the disorder-driven depletion of superfluidity is strongly enhanced due to the gain-loss mechanism. It turns out that the condensate remains stiff at finite length scales only.
Application of nonequilibrium quantum statistical mechanics to homogeneous nucleation
International Nuclear Information System (INIS)
Larson, A.R.; Cantrell, C.D.
1978-01-01
The master equation for cluster growth and evaporation is derived from many-body quantum mechanics and from a modified version of quantum damping theory used in laser physics. For application to nucleation theory, the quantum damping theory has been generalized to include system and reservoir states that are not separate entities. Formulae for rate constants are obtained. Solutions of the master equation yield equations of state and system-averaged quantities recognized as thermodynamic variables. Formulae for Helmholtz free energies of clusters in a Debye approximation are derived. Coexistence-line equations for pressure volume, and number of clusters are obtained from equations-of-state analysis. Coexistence-line and surface-tension data are used to obtain values of parameters for the Debye approximation. These data are employed in calculating both the nucleation current in diffusion cloud chamber experiments and the onset of condensation in expansion nozzle experiments. Theoretical and experimental results are similar for both cloud-chamber and nozzle experiments, which measure water
Homogeneous nucleation: a problem in nonequilibrium quantum statistical mechanics
International Nuclear Information System (INIS)
1978-08-01
The master equation for cluster growth and evaporation is derived for many-body quantum mechanics and from a modified version of quantum damping theory used in laser physics. For application to nucleation theory, the quantum damping theory is generalized to include system and reservoir states that are not separate entities. Formulas for rate constants are obtained. Solutions of the master equation yield equations of state and system-averaged quantities recognized as thermodynamic variables. Formulas for Helmholtz free energies of clusters in a Debye approximation are derived. Coexistence-line equations for pressure, volume, and number of clusters are obtained from equations-of-state analysis. Coexistence-line and surface-tension data are used to obtain values of parameters for the Debye approximation. These data are employed in calculating both the nucleation current in diffusion cloud chamber experiments and the onset of condensation in expansion nozzle experiments. Theoretical and experimental results are similar for both cloud chamber and nozzle experiments, which measure water. Comparison with other theories reveals that classical theory only accidently agrees with experiment and that the Helmholtz free-energy formula used in the Lothe--Pound theory is incomplete. 27 figures, 3 tables, 149 references
Hsiang, J-T; Chou, C H; Subaşı, Y; Hu, B L
2018-01-01
In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system + environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage between the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are
Nonequilibrium dynamic critical scaling of the quantum Ising chain.
Kolodrubetz, Michael; Clark, Bryan K; Huse, David A
2012-07-06
We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and we show that they should be robustly observable within present cold atom experiments.
Nonequilibrium forces between atoms and dielectrics mediated by a quantum field
International Nuclear Information System (INIS)
Behunin, Ryan O.; Hu, Bei-Lok
2011-01-01
In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.
Xu, Dazhi; Cao, Jianshu
2016-08-01
The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.
Theory of quantum transport at nanoscale an introduction
Ryndyk, Dmitry A
2016-01-01
This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the...
High-electric-field quantum transport theory for semiconductor superlattices
International Nuclear Information System (INIS)
Nguyen Hong Shon; Nazareno, H.N.
1995-12-01
Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs
What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics
Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj
Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.
International Nuclear Information System (INIS)
Hsiang, J.-T.; Hu, B.L.
2015-01-01
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the
Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation
International Nuclear Information System (INIS)
Piper, I M; Ediger, M; Wilson, A M; Wu, Y; Phillips, R T; Eastham, P R; Hugues, M; Hopkinson, M
2010-01-01
We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In 0.23 Ga 0.77 As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.
Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation
Energy Technology Data Exchange (ETDEWEB)
Piper, I M; Ediger, M; Wilson, A M; Wu, Y; Phillips, R T [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Eastham, P R [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Hugues, M; Hopkinson, M, E-mail: imp24@cam.ac.u [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)
2010-09-01
We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In{sub 0.23}Ga{sub 0.77}As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.
Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes
Nagnibeda, Ekaterina; Nagnibeda, Ekaterina
2009-01-01
This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems
Yukawa, Satoshi; Ogushi, Fumiko; Shimada, Takashi; Ito, Nobuyasu
2010-01-01
Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.
Effects of nonequilibrium adsorption on nuclide transport in a porous rock
International Nuclear Information System (INIS)
Shi-Ping Teng; Ching-Hor Lee
1994-01-01
An analytical solution covering the entire range of adsorption properties of rock has been derived for the migration of radionuclide in a porous rock matrix. The analysis takes into account the advective transport, hydrodynamic dispersion, adsorption between solid phase and liquid phase, and the radioactive decay. For adsorption of nuclide within the rock, the effects of no adsorption, linear nonequilibrium adsorption, and linear equilibrium adsorption are integrated into a generic transient analytical solution. The results indicate that the assumption of equilibrium adsorption can result in underestimation of the concentration profile in the early stages of migration. However, both the equilibrium and nonequilibrium profiles eventually approach the same value. It is also noted that for the case of nonequilibrium adsorption, plateaus appear in the concentration profile of the breakthrough curves. The effects of different adsorption rates are also analyzed
Nonequilibrium Quantum Phase Transition in a Hybrid Atom-Optomechanical System
Mann, Niklas; Bakhtiari, M. Reza; Pelster, Axel; Thorwart, Michael
2018-02-01
We consider a hybrid quantum many-body system formed by a vibrational mode of a nanomembrane, which interacts optomechanically with light in a cavity, and an ultracold atom gas in the optical lattice of the out-coupled light. The adiabatic elimination of the light field yields an effective Hamiltonian which reveals a competition between the force localizing the atoms and the membrane displacement. At a critical atom-membrane interaction, we find a nonequilibrium quantum phase transition from a localized symmetric state of the atom cloud to a shifted symmetry-broken state, the energy of the lowest collective excitation vanishes, and a strong atom-membrane entanglement arises. The effect occurs when the atoms and the membrane are nonresonantly coupled.
Nonequilibrium excitations and transport of Dirac electrons in electric-field-driven graphene
Li, Jiajun; Han, Jong E.
2018-05-01
We investigate nonequilibrium excitations and charge transport in charge-neutral graphene driven with dc electric field by using the nonequilibrium Green's-function technique. Due to the vanishing Fermi surface, electrons are subject to nontrivial nonequilibrium excitations such as highly anisotropic momentum distribution of electron-hole pairs, an analog of the Schwinger effect. We show that the electron-hole excitations, initiated by the Landau-Zener tunneling with a superlinear I V relation I ∝E3 /2 , reaches a steady state dominated by the dissipation due to optical phonons, resulting in a marginally sublinear I V with I ∝E , in agreement with recent experiments. The linear I V starts to show the sign of current saturation as the graphene is doped away from the Dirac point, and recovers the semiclassical relation for the saturated velocity. We give a detailed discussion on the nonequilibrium charge creation and the relation between the electron-phonon scattering rate and the electric field in the steady-state limit. We explain how the apparent Ohmic I V is recovered near the Dirac point. We propose a mechanism where the peculiar nonequilibrium electron-hole creation can be utilized in a infrared device.
International Nuclear Information System (INIS)
Trovato, M.; Reggiani, L.
2011-01-01
By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of (ℎ/2π) 2 . In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when (ℎ/2π)→0.
Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics
International Nuclear Information System (INIS)
Sarovar, Mohan; Young, Kevin C
2013-01-01
While adiabatic quantum computing (AQC) has some robustness to noise and decoherence, it is widely believed that encoding, error suppression and error correction will be required to scale AQC to large problem sizes. Previous works have established at least two different techniques for error suppression in AQC. In this paper we derive a model for describing the dynamics of encoded AQC and show that previous constructions for error suppression can be unified with this dynamical model. In addition, the model clarifies the mechanisms of error suppression and allows the identification of its weaknesses. In the second half of the paper, we utilize our description of non-equilibrium dynamics in encoded AQC to construct methods for error correction in AQC by cooling local degrees of freedom (qubits). While this is shown to be possible in principle, we also identify the key challenge to this approach: the requirement of high-weight Hamiltonians. Finally, we use our dynamical model to perform a simplified thermal stability analysis of concatenated-stabilizer-code encoded many-body systems for AQC or quantum memories. This work is a companion paper to ‘Error suppression and error correction in adiabatic quantum computation: techniques and challenges (2013 Phys. Rev. X 3 041013)’, which provides a quantum information perspective on the techniques and limitations of error suppression and correction in AQC. In this paper we couch the same results within a dynamical framework, which allows for a detailed analysis of the non-equilibrium dynamics of error suppression and correction in encoded AQC. (paper)
Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?
International Nuclear Information System (INIS)
Matyas, A; Jirauschek, C; Kubis, T; Lugli, P
2009-01-01
We have applied two different simulation models for the stationary carrier transport and optical gain analysis in resonant phonon depopulation THz Quantum Cascade Lasers (QCLs), based on the semiclassical ensemble Monte Carlo (EMC) and fully quantum mechanical non-equilibrium Green's functions (NEGF) method, respectively. We find in the incoherent regime near and above the threshold current a qualitative and quantitative agreement of both methods. Therefore, we show that THz-QCLs can be successfully optimized utilizing the numerically efficient EMC method.
International Nuclear Information System (INIS)
Wu, C.-H.; Lee, D.-S.
2005-01-01
We employ the Schwinger-Keldysh formalism to study the nonequilibrium dynamics of the mirror with perfect reflection moving in a quantum field. In the case where the mirror undergoes the small displacement, the coarse-grained effective action is obtained by integrating out the quantum field with the method of influence functional. The semiclassical Langevin equation is derived, and is found to involve two levels of backreaction effects on the dynamics of mirrors: radiation reaction induced by the motion of the mirror and backreaction dissipation arising from fluctuations in quantum field via a fluctuation-dissipation relation. Although the corresponding theorem of fluctuation and dissipation for the case with the small mirror's displacement is of model independence, the study from the first principles derivation shows that the theorem is also independent of the regulators introduced to deal with short-distance divergences from the quantum field. Thus, when the method of regularization is introduced to compute the dissipation and fluctuation effects, this theorem must be fulfilled as the results are obtained by taking the short-distance limit in the end of calculations. The backreaction effects from vacuum fluctuations on moving mirrors are found to be hardly detected while those effects from thermal fluctuations may be detectable
Energy Technology Data Exchange (ETDEWEB)
Croy, Alexander
2010-06-30
In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.
Quantum transport and electroweak baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Konstandin, Thomas
2013-02-15
We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.
Quantum transport and electroweak baryogenesis
International Nuclear Information System (INIS)
Konstandin, Thomas
2013-02-01
We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.
Rydalevskaya, Maria A.; Voroshilova, Yulia N.
2018-05-01
Vibrationally non-equilibrium flows of chemically homogeneous diatomic gases are considered under the conditions that the distribution of the molecules over vibrational levels differs significantly from the Boltzmann distribution. In such flows, molecular collisions can be divided into two groups: the first group corresponds to "rapid" microscopic processes whereas the second one corresponds to "slow" microscopic processes (their rate is comparable to or larger than that of gasdynamic parameters variation). The collisions of the first group form quasi-stationary vibrationally non-equilibrium distribution functions. The model kinetic equations are used to study the transport processes under these conditions. In these equations, the BGK-type approximation is used to model only the collision operators of the first group. It allows us to simplify derivation of the transport fluxes and calculation of the kinetic coefficients. Special attention is given to the connection between the formulae for the bulk viscosity coefficient and the sound velocity square.
Nonlinear closure relations theory for transport processes in nonequilibrium systems
International Nuclear Information System (INIS)
Sonnino, Giorgio
2009-01-01
A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ('Onsager') transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.
Directory of Open Access Journals (Sweden)
Ramon F. Alvarez-Estrada
2012-02-01
Full Text Available We consider non-equilibrium open statistical systems, subject to potentials and to external “heat baths” (hb at thermal equilibrium at temperature T (either with ab initio dissipation or without it. Boltzmann’s classical equilibrium distributions generate, as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the position-independent Hermite polynomialsHn’s. The moments of non-equilibrium classical distributions, implied by the Hn’s, fulfill a hierarchy: for long times, the lowest moment dominates the evolution towards thermal equilibrium, either with dissipation or without it (but under certain approximation. We revisit that hierarchy, whose solution depends on operator continued fractions. We review our generalization of that moment method to classical closed many-particle interacting systems with neither a hb nor ab initio dissipation: with initial states describing thermal equilibrium at T at large distances but non-equilibrium at finite distances, the moment method yields, approximately, irreversible thermalization of the whole system at T, for long times. Generalizations to non-equilibrium quantum interacting systems meet additional difficulties. Three of them are: (i equilibrium distributions (represented through Wigner functions are neither Gaussian in momenta nor known in closed form; (ii they may depend on dissipation; and (iii the orthogonal polynomials in momenta generated by them depend also on positions. We generalize the moment method, dealing with (i, (ii and (iii, to some non-equilibrium one-particle quantum interacting systems. Open problems are discussed briefly.
Demirel, Yasar
2014-01-01
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte
Emergence of currents as a transient quantum effect in nonequilibrium systems
Energy Technology Data Exchange (ETDEWEB)
Granot, Er' el; Marchewka, Avi [Department of Electrical and Electronics Engineering, Ariel University Center of Samaria, Ariel (Israel)
2011-09-15
Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.
Emergence of currents as a transient quantum effect in nonequilibrium systems
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2011-01-01
Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.
Emergence of currents as a transient quantum effect in nonequilibrium systems
Granot, Er'El; Marchewka, Avi
2011-09-01
Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.
Non-equilibrium flow and sediment transport distribution over mobile river dunes
Hoitink, T.; Naqshband, S.; McElroy, B. J.
2017-12-01
Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.
Nonequilibrium Transport and the Bernoulli Effect of Electrons in a Two-Dimensional Electron Gas
Kaya, Ismet I.
2013-02-01
Nonequilibrium transport of charged carriers in a two-dimensional electron gas is summarized from an experimental point of view. The transport regime in which the electron-electron interactions are enhanced at high bias leads to a range of striking effects in a two-dimensional electron gas. This regime of transport is quite different than the ballistic transport in which particles propagate coherently with no intercarrier energy transfer and the diffusive transport in which the momentum of the electron system is lost with the involvement of the phonons. Quite a few hydrodynamic phenomena observed in classical gasses have the electrical analogs in the current flow. When intercarrier scattering events dominate the transport, the momentum sharing via narrow angle scattering among the hot and cold electrons lead to negative resistance and electron pumping which can be viewed as the analog of the Bernoulli-Venturi effect observed classical gasses. The recent experimental findings and the background work in the field are reviewed.
International Nuclear Information System (INIS)
Eslami, Leila; Esmaeilzadeh, Mahdi
2014-01-01
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted
An approximate framework for quantum transport calculation with model order reduction
Energy Technology Data Exchange (ETDEWEB)
Chen, Quan, E-mail: quanchen@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Li, Jun [Department of Chemistry, The University of Hong Kong (Hong Kong); Yam, Chiyung [Beijing Computational Science Research Center (China); Zhang, Yu [Department of Chemistry, The University of Hong Kong (Hong Kong); Wong, Ngai [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Chen, Guanhua [Department of Chemistry, The University of Hong Kong (Hong Kong)
2015-04-01
A new approximate computational framework is proposed for computing the non-equilibrium charge density in the context of the non-equilibrium Green's function (NEGF) method for quantum mechanical transport problems. The framework consists of a new formulation, called the X-formulation, for single-energy density calculation based on the solution of sparse linear systems, and a projection-based nonlinear model order reduction (MOR) approach to address the large number of energy points required for large applied biases. The advantages of the new methods are confirmed by numerical experiments.
Quantum Transport Simulations of Nanoscale Materials
Obodo, Tobechukwu Joshua
2016-01-07
Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of
Quantum transport in carbon nanotubes
DEFF Research Database (Denmark)
Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.
2015-01-01
Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two...
Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang
We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.
Electron transport in quantum dots
2003-01-01
When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...
Quantum transport in the FMO photosynthetic light-harvesting complex.
Karafyllidis, Ioannis G
2017-06-01
The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.
Directory of Open Access Journals (Sweden)
L. Fusco
2014-08-01
Full Text Available We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.
Quantum transport through organic molecules
International Nuclear Information System (INIS)
Maiti, Santanu K.
2007-01-01
We investigate the electronic transport for the model of benzene-1, 4-dithiolate (BDT) molecule and some other geometric models of benzene molecule attached with two semi-infinite metallic electrodes by the use of Green's function technique. An analytic approach for the electronic transport through the molecular bridges is presented, based on the tight-binding model. Transport of electrons in such molecular bridges is strongly affected by the geometry of the molecules and their coupling strength with the electrodes. Conductance (g) shows resonance peaks associated with the molecular energy eigenstates. In the weak molecule-to-electrodes coupling limit current (I) passing through the molecules shows staircase-like behavior with sharp steps, while, it varies quite continuously in the limit of strong molecular coupling with the applied bias voltage (V). In presence of the transverse magnetic field conductance gives oscillatory behavior with flux φ, threaded by the molecular ring, showing φ 0 ( = ch/e) flux-quantum periodicity. Though conductance changes with the application of transverse magnetic field, but the current-voltage characteristics remain same in presence of this magnetic field for these molecular bridge systems
International Nuclear Information System (INIS)
Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R
2014-01-01
This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H
Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.
2012-10-01
In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.
International Nuclear Information System (INIS)
Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki
2012-01-01
We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.
Long and short time quantum dynamics: I. Between Green's functions and transport equations
Czech Academy of Sciences Publication Activity Database
Špička, Václav; Velický, Bedřich; Kalvová, Anděla
2005-01-01
Roč. 29, - (2005), s. 154-174 ISSN 1386-9477 R&D Projects: GA ČR(CZ) GA202/04/0585; GA AV ČR(CZ) IAA1010404 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : non-equilibrium * Green functions * quantum transport * density functional the ory Subject RIV: BE - The oretical Physics Impact factor: 0.946, year: 2005
Thermoelectric transport through quantum dots
Energy Technology Data Exchange (ETDEWEB)
Merker, Lukas Heinrich
2016-06-30
In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum
International Nuclear Information System (INIS)
Harbola, U.; Mukamel, S.
2008-01-01
Nonequilibrium Green's functions provide a powerful tool for computing the dynamical response and particle exchange statistics of coupled quantum systems. We formulate the theory in terms of the density matrix in Liouville space and introduce superoperator algebra that greatly simplifies the derivation and the physical interpretation of all quantities. Expressions for various observables are derived directly in real time in terms of superoperator nonequilibrium Green's functions (SNGF), rather than the artificial time-loop required in Schwinger's Hilbert-space formulation. Applications for computing interaction energies, charge densities, average currents, current induced fluorescence, electroluminescence and current fluctuation (electron counting) statistics are discussed
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.
Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing
2017-05-30
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport
International Nuclear Information System (INIS)
Lynch, J.E.
1985-01-01
Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs
Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?
Energy Technology Data Exchange (ETDEWEB)
Matyas, A; Jirauschek, C [Emmy Noether Research Group ' Modeling of Quantum Cascade Devices' , TU Muenchen, D-80333 Muenchen (Germany); Kubis, T [Walter Schottky Institute, TU Muenchen, D-85748 Garching (Germany); Lugli, P, E-mail: alparmat@mytum.d [Institute of Nanoelectronics, TU Muenchen, D-80333 Muenchen (Germany)
2009-11-15
We have applied two different simulation models for the stationary carrier transport and optical gain analysis in resonant phonon depopulation THz Quantum Cascade Lasers (QCLs), based on the semiclassical ensemble Monte Carlo (EMC) and fully quantum mechanical non-equilibrium Green's functions (NEGF) method, respectively. We find in the incoherent regime near and above the threshold current a qualitative and quantitative agreement of both methods. Therefore, we show that THz-QCLs can be successfully optimized utilizing the numerically efficient EMC method.
Energy Technology Data Exchange (ETDEWEB)
Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)
2016-05-04
Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to
Energy Technology Data Exchange (ETDEWEB)
Pokhabov, D. A., E-mail: pokhabov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Bakarov, A. K. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2016-08-15
The nonequilibrium state of a two-dimensional electron gas in the quantum-Hall-effect regime is studied in Hall bars equipped with additional inner contacts situated within the bar. The magnetic-field dependence of the voltage drop between different contact pairs are studied at various temperatures. It was found that the voltage between the inner and outer contacts exhibits peaks of significant amplitude in narrow magnetic-field intervals near integer filling factors. Furthermore, the magnetic-field dependence of the voltage in these intervals exhibits a hysteresis, whereas the voltage between the outer contacts remains zero in the entire magnetic-field range. The appearance of the observed voltage peaks and their hysteretic behavior can be explained by an imbalance between the chemical potentials of edge and bulk states, resulting from nonequilibrium charge redistribution between the edge and bulk states when the magnetic field sweeps under conditions of the quantum Hall effect. The results of the study significantly complement the conventional picture of the quantum Hall effect, explicitly indicating the existence of a significant imbalance at the edge of the two-dimensional electron gas: the experimentally observed difference between the electrochemical potentials of the edge and bulk exceeds the distance between Landau levels by tens of times.
Zhang, Zu-Quan; Lü, Jing-Tao
2017-09-01
Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.
Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.
2012-04-01
We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.
Quantum Transport in Mesoscopic Systems
Indian Academy of Sciences (India)
voltage bias, the tunneling of the electron from the lead to the dot and vice versa will happen very rarely. Then two successive ..... A typical mesoscopic quantum dot system (a small drop- .... dynamical behavior of the distribution function of the.
Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro
2018-03-01
We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.
A numerical model of non-equilibrium thermal plasmas. I. Transport properties
Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong
2013-03-01
A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.
A numerical model of non-equilibrium thermal plasmas. I. Transport properties
Energy Technology Data Exchange (ETDEWEB)
Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)
2013-03-15
A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.
International Nuclear Information System (INIS)
Li Rui; Zhang Jiaxing; Hou Shimin; Qian Zekan; Shen Ziyong; Zhao Xingyu; Xue Zengquan
2007-01-01
We discuss two problems in the conventional approach for studying charge transport in molecular electronic devices that is based on the non-equilibrium Green's function formalism and density functional theory, i.e., the bound states and the numerical integration of the non-equilibrium density matrix. A scheme of filling the bound states in the bias window and a method of patching the non-equilibrium integration are proposed, both of which are referred to as the non-equilibrium correction. The discussion is illustrated by means of calculations on a model system consisting of a 4,4 bipyridine molecule connected to two semi-infinite gold monatomic chains
Shin, Seungha
All energy conversion inefficiencies begin with emission of resonant atomic motions, e.g., vibrations, and are declared as waste heat once these motions thermalize to equilibrium. The nonequilibrium energy occupancy of the vibrational modes can be targeted as a harvestable, low entropy energy source for direct conversion to electric energy. Since the lifetime of these resonant vibrations is short, special nanostructures are required with the appropriate tuning of the kinetics. These in turn require multiscale, multiphysics treatments. Atomic vibration is described with quasiparticle phonon in solid, and the optical phonon emission is dominant relaxation channel in semiconductors. These optical modes become over-occupied when their emission rate becomes larger than their decay rate, thus hindering energy relaxation and transport in devices. Effective removal of these phonons by drifting electrons is investigated by manipulating the electron distribution to have higher population in the low-energy states, thus allowing favorable phonon absorption. This is done through introduction, design and analysis of a heterobarrier conducting current, where the band gap is controlled by alloying, thus creating a spatial variation which is abrupt followed by a linear gradient (to ensure directed current). Self-consistent ensemble Monte Carlo simulations based on interaction kinetics between electron and phonon show that up to 19% of the phonon energy is converted to electric potential with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, and this system is also verified through statistical entropy analysis. This direct energy conversion improves the device performance with lower operation temperature and enhances overall energy conversion efficiency. Through this study, the paradigm for harvesting the resonant atomic vibration is proposed, reversing the general role of phonon as only causing electric potential drop. Fundamentals
Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam
2018-02-07
We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Vorberger, J.; Chapman, D. A.
2018-01-01
We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.
Vorberger, J; Chapman, D A
2018-01-01
We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.
Papior, Nick; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads
2017-03-01
We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne ≥ 1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallelization. Additionally, a generic NEGF "post-processing" code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne ≥ 1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 106 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.
Understanding Non-Equilibrium Charge Transport and Rectification at Chromophore/Metal Interfaces
Darancet, Pierre
Understanding non-equilibrium charge and energy transport across nanoscale interfaces is central to developing an intuitive picture of fundamental processes in solar energy conversion applications. In this talk, I will discuss our theoretical studies of finite-bias transport at organic/metal interfaces. First, I will show how the finite-bias electronic structure of such systems can be quantitatively described using density functional theory in conjunction with simple models of non-local correlations and bias-induced Stark effects.. Using these methods, I will discuss the conditions of emergence of highly non-linear current-voltage characteristics in bilayers made of prototypical organic materials, and their implications in the context of hole- and electron-blocking layers in organic photovoltaic. In particular, I will show how the use of strongly-hybridized, fullerene-coated metallic surfaces as electrodes is a viable route to maximizing the diodic behavior and electrical functionality of molecular components. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
Current & Heat Transport in Graphene Nanoribbons: Role of Non-Equilibrium Phonons
Pennington, Gary; Finkenstadt, Daniel
2010-03-01
The conducting channel of a graphitic nanoscale device is expected to experience a larger degree of thermal isolation when compared to traditional inversion channels of electronic devices. This leads to enhanced non-equilibrium phonon populations which are likely to adversely affect the mobility of graphene-based nanoribbons due to enhanced phonon scattering. Recent reports indicating the importance of carrier scattering with substrate surface polar optical phonons in carbon nanotubes^1 and graphene^2,3 show that this mechanism may allow enhanced heat removal from the nanoribbon channel. To investigate the effects of hot phonon populations on current and heat conduction, we solve the graphene nanoribbon multiband Boltzmann transport equation. Monte Carlo transport techniques are used since phonon populations may be tracked and updated temporally.^4 The electronic structure is solved using the NRL Tight-Binding method,^5 where carriers are scattered by confined acoustic, optical, edge and substrate polar optical phonons. [1] S. V. Rotkin et al., Nano Lett. 9, 1850 (2009). [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008). [3] V. Perebeinos and P. Avouris, arXiv:0910.4665v1 [cond-mat.mes-hall] (2009). [4] P. Lugli et al., Appl. Phys. Lett. 50, 1251 (1987). [5] D. Finkenstadt, G. Pennington & M.J. Mehl, Phys. Rev. B 76, 121405(R) (2007).
Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.
2007-12-01
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due
International Nuclear Information System (INIS)
Dong, B; Ding, G H; Lei, X L
2015-01-01
A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime. (paper)
Kawaguchi, Kyogo; Sasa, Shin-Ichi; Sagawa, Takahiro
2014-06-03
F1-ATPase (or F1), the highly efficient and reversible biochemical engine, has motivated physicists as well as biologists to imagine the design principles governing machines in the fluctuating world. Recent experiments have clarified yet another interesting property of F1; the dissipative heat inside the motor is very small, irrespective of the velocity of rotation and energy transport. Conceptual interest is devoted to the fact that the amount of internal dissipation is not simply determined by the sequence of equilibrium pictures, but also relies on the rotational-angular dependence of nucleotide affinity, which is a truly nonequilibrium aspect. We propose that the totally asymmetric allosteric model (TASAM), where adenosine triphosphate (ATP) binding to F1 is assumed to have low dependence on the angle of the rotating shaft, produces results that are most consistent with the experiments. Theoretical analysis proves the crucial role of two time scales in the model, which explains the universal mechanism to produce the internal dissipation-free feature. The model reproduces the characteristic torque dependence of the rotational velocity of F1 and predicts that the internal dissipation upon the ATP synthesis direction rotation becomes large at the low nucleotide condition. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
der, R.
1987-01-01
The various approaches to nonequilibrium statistical mechanics may be subdivided into convolution and convolutionless (time-local) ones. While the former, put forward by Zwanzig, Mori, and others, are used most commonly, the latter are less well developed, but have proven very useful in recent applications. The aim of the present series of papers is to develop the time-local picture (TLP) of nonequilibrium statistical mechanics on a new footing and to consider its physical implications for topics such as the formulation of irreversible thermodynamics. The most natural approach to TLP is seen to derive from the Fourier-Laplace transformwidetilde{C}(z)) of pertinent time correlation functions, which on the physical sheet typically displays an essential singularity at z=∞ and a number of macroscopic and microscopic poles in the lower half-plane corresponding to long- and short-lived modes, respectively, the former giving rise to the autonomous macrodynamics, whereas the latter are interpreted as doorway modes mediating the transfer of information from relevant to irrelevant channels. Possible implications of this doorway mode concept for socalled extended irreversible thermodynamics are briefly discussed. The pole structure is used for deriving new kinds of generalized Green-Kubo relations expressing macroscopic quantities, transport coefficients, e.g., by contour integrals over current-current correlation functions obeying Hamiltonian dynamics, the contour integration replacing projection. The conventional Green-Kubo relations valid for conserved quantities only are rederived for illustration. Moreover,widetilde{C}(z) may be expressed by a Laurent series expansion in positive and negative powers of z, from which a rigorous, general, and straightforward method is developed for extracting all macroscopic quantities from so-called secularly divergent expansions ofwidetilde{C}(z) as obtained from the application of conventional many-body techniques to the calculation
Simulations of quantum transport in nanoscale systems: application to atomic gold and silver wires
DEFF Research Database (Denmark)
Mozos, J.L.; Ordejon, P.; Brandbyge, Mads
2002-01-01
. The potential drop profile and induced electronic current (and therefore the conductance) are obtained from first principles. The method takes into account the atomic structure of both the nanoscale structure and the semi-infinite electrodes through which the potential is applied. Non-equilibrium Green......'s function techniques are used to calculate the quantum conductance. Here we apply the method to the study of the electronic transport in wires of gold and silver with atomic thickness. We show the results of our calculations, and compare with some of the abundant experimental data on these systems....
Quantum transport in carbon nanotubes
Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.
2015-01-01
Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This
Quantum transport in semiconductor nanowires
Van Dam, J.
2006-01-01
This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS)
Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan
2015-12-03
Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches.
Nonequilibrium carrier dynamics in self-assembled InGaAs quantum dots
International Nuclear Information System (INIS)
Wesseli, M.; Ruppert, C.; Trumm, S.; Betz, M.; Krenner, H.J.; Finley, J.J.
2006-01-01
Carrier dynamics in InGaAs/GaAs quantum dots is analyzed with highly sensitive femtosecond transmission spectroscopy. In a first step, measurements on a large ensemble of nanoislands reveal the dynamical electronic filling of quantum dots from the surrounding wetting layer. Most interestingly, we find a spin-preserving phonon mediated scattering into fully localized states within a few picoseconds. Then, individual artificial atoms are isolated with metallic shadow masks. For the first time, a single self-assembled quantum dot is addressed in an ultrafast transmission experiment. We find bleaching signals in the order of 10 -5 that arise from individual interband transitions of one quantum dot. As a result, we have developed an ultrafast optical tool for both manipulation and read-out of a single self-assembled quantum dot. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Coherent transport through interacting quantum dots
International Nuclear Information System (INIS)
Hiltscher, Bastian
2012-01-01
The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in
Coherent transport through interacting quantum dots
Energy Technology Data Exchange (ETDEWEB)
Hiltscher, Bastian
2012-10-05
The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in
Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard
2012-03-01
The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.
Yang, Quan; Achenie, Luke E K
2018-04-18
Ionic liquids (ILs) show brilliant performance in separating gas impurities, but few researchers have performed an in-depth exploration of the bulk and interface behavior of penetrants and ILs thoroughly. In this research, we have performed a study on both molecular dynamics (MD) simulation and quantum chemical (QC) calculation to explore the transport of acetylene and ethylene in the bulk and interface regions of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]). The diffusivity, solubility and permeability of gas molecules in the bulk were researched with MD simulation first. The subdiffusion behavior of gas molecules is induced by coupling between the motion of gas molecules and the ions, and the relaxation processes of the ions after the disturbance caused by gas molecules. Then, QC calculation was performed to explore the optical geometry of ions, ion pairs and complexes of ions and penetrants, and interaction potential for pairs and complexes. Finally, nonequilibrium MD simulation was performed to explore the interface structure and properties of the IL-gas system and gas molecule behavior in the interface region. The research results may be used in the design of IL separation media.
Electron systems out of equilibrium: nonequilibrium Green's function approach
Czech Academy of Sciences Publication Activity Database
Špička, Václav; Velický, Bedřich; Kalvová, Anděla
2014-01-01
Roč. 28, č. 23 (2014), "1430013-1"-"1430013-103" ISSN 0217-9792 R&D Projects: GA ČR GAP204/12/0897 Institutional support: RVO:68378271 Keywords : nonequilibrium statistical physics * transients * quantum transport the ory Subject RIV: BE - The oretical Physics Impact factor: 0.937, year: 2014
Quantum spin transport in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Schindler, Christoph
2012-05-15
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Quantum spin transport in semiconductor nanostructures
International Nuclear Information System (INIS)
Schindler, Christoph
2012-01-01
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Strongly correlated quantum transport out-of-equilibrium
Dutt, Prasenjit
The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally
Influences of a Side-Coupled Triple Quantum Dot on Kondo Transport Through a Quantum Dot
International Nuclear Information System (INIS)
Jiang Zhaotan; Yang Yannan; Qin Zhijie
2010-01-01
Kondo transport properties through a Kondo-type quantum dot (QD) with a side-coupled triple-QD structure are systematically investigated by using the non-equilibrium Green's function method. We firstly derive the formulae of the current, the linear conductance, the transmission coefficient, and the local density of states. Then we carry out the analytical and numerical studies and some universal conductance properties are obtained. It is shown that the number of the conductance valleys is intrinsically determined by the side-coupled QDs and at most equal to the number of the QDs included in the side-coupled structure in the asymmetric limit. In the process of forming the conductance valleys, the side-coupled QD system plays the dominant role while the couplings between the Kondo-type QD and the side-coupled structure play the subsidiary and indispensable roles. To testify the validity of the universal conductance properties, another different kinds of side-coupled triple-QD structures are considered. It should be emphasized that these universal properties are applicable in understanding this kind of systems with arbitrary many-QD side structures.
Electronic transport through a quantum dot chain with strong dot-lead coupling
International Nuclear Information System (INIS)
Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan
2007-01-01
By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling
International Nuclear Information System (INIS)
Deppe, D G; Freisem, S; Huang, H; Lipson, S
2005-01-01
Data are first presented on spontaneous and laser emission of p-doped and undoped quantum dot (QD) heterostructures to characterize the increase in optical gain in p-type modulation doped QD lasers. Because the increase in gain due to p-doping should also increase the differential gain, but does not greatly increase the modulation speed in present p-doped QD lasers, we further examine nonequilibrium electron transport effects in p-doped active material that may still limit the modulation speed. Electron transport through the dot wetting layer caused by the nonlasing QDs of the active ensemble is shown to be capable of substantially reducing the modulation speed, independent of the differential gain. This nonequilibrium limitation can be eliminated by reducing the inhomogeneous broadening in the QD ensemble
Particle transport in breathing quantum graph
International Nuclear Information System (INIS)
Matrasulov, D.U.; Yusupov, J.R.; Sabirov, K.K.; Sobirov, Z.A.
2012-01-01
Full text: Particle transport in nanoscale networks and discrete structures is of fundamental and practical importance. Usually such systems are modeled by so-called quantum graphs, the systems attracting much attention in physics and mathematics during past two decades [1-5]. During last two decades quantum graphs found numerous applications in modeling different discrete structures and networks in nanoscale and mesoscopic physics (e.g., see reviews [1-3]). Despite considerable progress made in the study of particle dynamics most of the problems deal with unperturbed case and the case of time-dependent perturbation has not yet be explored. In this work we treat particle dynamics for quantum star graph with time-dependent bonds. In particular, we consider harmonically breathing quantum star graphs, the cases of monotonically contracting and expanding graphs. The latter can be solved exactly analytically. Edge boundaries are considered to be time-dependent, while branching point is assumed to be fixed. Quantum dynamics of a particle in such graphs is studied by solving Schrodinger equation with time-dependent boundary conditions given on a star graph. Time-dependence of the average kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is treated for harmonically breathing star graph. It is found that for certain frequencies energy is a periodic function of time, while for others it can be non-monotonically growing function of time. Such a feature can be caused by possible synchronization of the particles motion and the motions of the moving edges of graph bonds. (authors) References: [1] Tsampikos Kottos and Uzy Smilansky, Ann. Phys., 76, 274 (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv. Phys. 55, 527 (2006). [3] S. GnutzmannJ.P. Keating, F. Piotet, Ann. Phys., 325, 2595 (2010). [4] P.Exner, P.Seba, P.Stovicek, J. Phys. A: Math. Gen. 21, 4009 (1988). [5] J. Boman, P. Kurasov, Adv. Appl. Math., 35, 58 (2005)
Dissipative time-dependent quantum transport theory.
Zhang, Yu; Yam, Chi Yung; Chen, GuanHua
2013-04-28
A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.
Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics
Energy Technology Data Exchange (ETDEWEB)
Montoya-Castillo, Andrés, E-mail: am3720@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, New York, New York 10027 (United States)
2016-05-14
We present a formalism that explicitly unifies the commonly used Nakajima-Zwanzig approach for reduced density matrix dynamics with the more versatile Mori theory in the context of nonequilibrium dynamics. Employing a Dyson-type expansion to circumvent the difficulty of projected dynamics, we obtain a self-consistent equation for the memory kernel which requires only knowledge of normally evolved auxiliary kernels. To illustrate the properties of the current approach, we focus on the spin-boson model and limit our attention to the use of a simple and inexpensive quasi-classical dynamics, given by the Ehrenfest method, for the calculation of the auxiliary kernels. For the first time, we provide a detailed analysis of the dependence of the properties of the memory kernels obtained via different projection operators, namely, the thermal (Redfield-type) and population based (NIBA-type) projection operators. We further elucidate the conditions that lead to short-lived memory kernels and the regions of parameter space to which this program is best suited. Via a thorough analysis of the different closures available for the auxiliary kernels and the convergence properties of the self-consistently extracted memory kernel, we identify the mechanisms whereby the current approach leads to a significant improvement over the direct usage of standard semi- and quasi-classical dynamics.
Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics
International Nuclear Information System (INIS)
Montoya-Castillo, Andrés; Reichman, David R.
2016-01-01
We present a formalism that explicitly unifies the commonly used Nakajima-Zwanzig approach for reduced density matrix dynamics with the more versatile Mori theory in the context of nonequilibrium dynamics. Employing a Dyson-type expansion to circumvent the difficulty of projected dynamics, we obtain a self-consistent equation for the memory kernel which requires only knowledge of normally evolved auxiliary kernels. To illustrate the properties of the current approach, we focus on the spin-boson model and limit our attention to the use of a simple and inexpensive quasi-classical dynamics, given by the Ehrenfest method, for the calculation of the auxiliary kernels. For the first time, we provide a detailed analysis of the dependence of the properties of the memory kernels obtained via different projection operators, namely, the thermal (Redfield-type) and population based (NIBA-type) projection operators. We further elucidate the conditions that lead to short-lived memory kernels and the regions of parameter space to which this program is best suited. Via a thorough analysis of the different closures available for the auxiliary kernels and the convergence properties of the self-consistently extracted memory kernel, we identify the mechanisms whereby the current approach leads to a significant improvement over the direct usage of standard semi- and quasi-classical dynamics.
Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R
2015-12-09
Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.
Papior, Nick Rübner; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads
2017-01-01
We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT–NEGF code handles devices with one or multiple electrodes (Ne≥1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable m...
Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems.
Vasseur, Romain; Trinh, Kien; Haas, Stephan; Saleur, Hubert
2013-06-14
A general framework is proposed to tackle analytically local quantum quenches in integrable impurity systems, combining a mapping onto a boundary problem with the form factor approach to boundary-condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and the distribution of the work done during the quantum quench. Our results display an interesting crossover physics characterized by the energy scale T(b) of the impurity corresponding to the Kondo temperature. We discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable impurity models and check our results using numerical methods.
Thermodynamic description of non-Markovian information flux of nonequilibrium open quantum systems
Chen, Hong-Bin; Chen, Guang-Yin; Chen, Yueh-Nan
2017-12-01
One of the fundamental issues in the field of open quantum systems is the classification and quantification of non-Markovianity. In the contest of quantity-based measures of non-Markovianity, the intuition of non-Markovianity in terms of information backflow is widely discussed. However, it is not easy to characterize the information flux for a given system state and show its connection to non-Markovianity. Here, by using the concepts from thermodynamics and information theory, we discuss a potential definition of information flux of an open quantum system, valid for static environments. We present a simple protocol to show how a system attempts to share information with its environment and how it builds up system-environment correlations. We also show that the information returned from the correlations characterizes the non-Markovianity and a hierarchy of indivisibility of the system dynamics.
The thermodynamic meaning of local temperature of nonequilibrium open quantum systems
Ye, LvZhou; Zheng, Xiao; Yan, YiJing; Di Ventra, Massimiliano
2016-01-01
Measuring the local temperature of nanoscale systems out of equilibrium has emerged as a new tool to study local heating effects and other local thermal properties of systems driven by external fields. Although various experimental protocols and theoretical definitions have been proposed to determine the local temperature, the thermodynamic meaning of the measured or defined quantities remains unclear. By performing analytical and numerical analysis of bias-driven quantum dot systems both in ...
Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi
2017-08-15
Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.
Directory of Open Access Journals (Sweden)
Hirokazu Takaki
2014-01-01
Full Text Available We present an efficient computation technique for ab-initio electron transport calculations based on density functional theory and the nonequilibrium Green’s function formalism for application to heterostructures with two-dimensional (2D interfaces. The computational load for constructing the Green’s functions, which depends not only on the energy but also on the 2D Bloch wave vector along the interfaces and is thus catastrophically heavy, is circumvented by parallel computational techniques with the message passing interface, which divides the calculations of the Green’s functions with respect to energy and wave vectors. To demonstrate the computational efficiency of the present code, we perform ab-initio electron transport calculations of Al(100-Si(100-Al(100 heterostructures, one of the most typical metal-semiconductor-metal systems, and show their transmission spectra, density of states (DOSs, and dependence on the thickness of the Si layers.
Spin transport in quantum dot embedded in Aharonov-Bohm ring
International Nuclear Information System (INIS)
Wei, J.S.; Wang, R.Z.; Yuan, R.Y.; You, J.Q.; Yan, H.
2005-01-01
Spin polarized transport was studied by employing non-equilibrium Green function method, for a model of quantum dot (QD) embedded in a mesoscopic Aharonov-Bohm (AB) ring with magnetic field applied on QD. In comparison with the situation without magnetic field on QD, the average spin occupations separate with the increase in applied magnetic field on QD; in addition, magnetic field on QD has profound effect on the density of states for different spins in QD; on the other hand, the amplitude and phase of transmission for up spin and down spin were found to present novel effects, such as, the additional peak in the phase of transmission. To understand the spin transport in the system of QD coupled to AB ring, the effects of the two magnetic fields imposed on the QD and penetrating the AB ring should be considered
Mongiovì, Maria Stella; Jou, David; Sciacca, Michele
2018-01-01
This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to
Open problems in non-equilibrium physics
International Nuclear Information System (INIS)
Kusnezov, D.
1997-01-01
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions
Open problems in non-equilibrium physics
Energy Technology Data Exchange (ETDEWEB)
Kusnezov, D.
1997-09-22
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.
DEFF Research Database (Denmark)
Jørgensen, Jacob Lykkebo
Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-conjugated molecules. We nd that the vibrational modes that would be expected to dominate, following the propensity, rules are very weak. Instead, other modes are found to be the dominant ones. We study this phenomenon for a number of cross-conjugated molecules, and link these ndings to the anti...
International Nuclear Information System (INIS)
Ojima, Izumi
1989-01-01
With aid of the so-called dilation method, a concise formula is obtained for the entropy production in the algebraic formulation of quantum dynamical systems. In this framework, the initial ergodic state of an external force system plays a pivotal role in generating dissipativity as a conditional expectation. The physical meaning of van Hove limit is clarified through the scale-changing transformation to control transitions between microscopic and macroscopic levels. It plays a crucial role in realizing the macroscopic stationary in the presence of microscopic fluctuations as well as in the transition from non-Markovian (groupoid) dynamics to Markovian dissipative processes of state changes. The extension of the formalism to cases with spatial and internal inhomogeneity is indicated in the light of the groupoid dynamical systems and noncommutative integration theory
Harnessing quantum transport by transient chaos.
Yang, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso; Pecora, Louis M
2013-03-01
Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.
Ghaderzadeh, A.; Rahbari, S. H. Ebrahimnazhad; Phirouznia, A.
2018-03-01
In this study, Rashba coupling induced Aharonov-Casher effect in a graphene based nano ring is investigated theoretically. The graphene based nano ring is considered as a central device connected to semi-infinite graphene nano ribbons. In the presence of the Rashba spin-orbit interaction, two armchair shaped edge nano ribbons are considered as semi-infinite leads. The non-equilibrium Green's function approach is utilized to obtain the quantum transport characteristics of the system. The relaxation and dephasing mechanisms within the self-consistent Born approximation is scrutinized. The Lopez-Sancho method is also applied to obtain the self-energy of the leads. We unveil that the non-equilibrium current of the system possesses measurable Aharonov-Casher oscillations with respect to the Rashba coupling strength. In addition, we have observed the same oscillations in dilute impurity regimes in which amplitude of the oscillations is shown to be suppressed as a result of the relaxations.
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
Quantum field kinetics of QCD: Quark-gluon transport theory for light-cone-dominated processes
International Nuclear Information System (INIS)
Geiger, K.
1996-01-01
A quantum-kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of nonequilibrium multiparton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the open-quote open-quote closed-time-path close-quote close-quote Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the two-point functions of the gluon and quark fields. By exploiting the open-quote open-quote two-scale nature close-quote close-quote of light-cone-dominated QCD processes, i.e., the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary interactions, the quantum field equations of motion are converted into a corresponding set of open-quote open-quote renormalization equations close-quote close-quote and open-quote open-quote transport equations.close-quote close-quote The former describe renormalization and dissipation effects through the evolution of the spectral density of individual, dressed partons, whereas the latter determine the statistical occurrence of scattering processes among these dressed partons. The renormalization equations and the transport equations are coupled, and, hence, must be solved self-consistently. This amounts to evolving the multiparton system, from a specified initial configuration, in time and full seven-dimensional phase space, constrained by the Heisenberg uncertainty principle. (Abstract Truncated)
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Miao, K., E-mail: kmiao@purdue.edu; Charles, J.; Klimeck, G. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States); Sadasivam, S.; Fisher, T. S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, T. [Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States)
2016-03-14
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
International Nuclear Information System (INIS)
Miao, K.; Charles, J.; Klimeck, G.; Sadasivam, S.; Fisher, T. S.; Kubis, T.
2016-01-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.
2016-03-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
I-V characteristic of electronic transport through a quantum dot chain: The role of antiresonance
International Nuclear Information System (INIS)
Liu Yu; Zheng Yisong; Gong Weijiang; Lue Tianquan
2006-01-01
The I-V spectrum of electronic transport through a quantum dot chain is calculated by means of the nonequilibrium Green function technique. In such a system, two arbitrary quantum dots are connected with two electron reservoirs through leads. When the dot-lead coupling is very weak, a series of discrete resonant peaks in electron transmission function cause staircase-like I-V characteristic. On the contrary, in the relatively strong dot-lead coupling regime, stairs in the I-V spectrum due to resonance vanish. However, when there are some dangling quantum dots in the chain outside two leads, the antiresonance which corresponds to the zero points of electron transmission function brings about novel staircase characteristic in the I-V spectrum. Moreover, two features in the I-V spectrum arising from the antiresonance are pointed out, which are significant for possible device applications. One is the multiple negative differential conductance regions, and another is regarding to create a highly spin-polarized current through the quantum dot chain by the interplay of the resonance and antiresonance. Finally, we focus on the role that the many-body effect plays on the antiresonance. Our result is that the antiresonance remains when the electron interaction is considered to the second order approximation
Quantum transport in coupled resonators enclosed synthetic magnetic flux
International Nuclear Information System (INIS)
Jin, L.
2016-01-01
Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.
DEFF Research Database (Denmark)
Nikolic, Branislav K.; Saha, Kamal K.; Markussen, Troels
2012-01-01
to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from the ZGNR electrodes, so that their overlap within the molecular region generates a peak in the electronic transmission around the Fermi energy......We overview the nonequilibrium Green function combined with density functional theory (NEGF-DFT) approach to modeling of independent electronic and phononic quantum transport in nanoscale thermoelectrics with examples focused on a new class of devices where a single organic molecule is attached...
Quantum Spin Transport in Mesoscopic Interferometer
Directory of Open Access Journals (Sweden)
Zein W. A.
2007-10-01
Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Sunandan; Pramanik, Anup; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in
2016-10-20
Highlights: • Quantum transport properties of some Ni-based dinuclear complexes are investigated. • The materials show various spin dependent properties like NDR, spin filtering, etc. • These are occurred by the influence of edge states of zGNR. • Proper tuning of these materials can alter these phenomena. - Abstract: Quantum transport properties of some Ni-based dinuclear complexes with different polydentate organic ligands have been studied by applying abinitio density functional theory along with nonequilibrium Green’s function formulations. It is demonstrated that these materials are capable of showing multifunctional spin dependent properties by the influence of edge states of zigzag edged graphene nanoribbons. The current–voltage characteristics of these materials show spin dependent negative differential resistance behavior, spin filtering effect, and also voltage rectifying property. Proper tuning of these materials can alter these effects which may be utilized in various spintronic devices.
International Nuclear Information System (INIS)
Hermanns, S; Bonitz, M; Balzer, K
2013-01-01
The nonequilibrium description of quantum systems requires, for more than two or three particles, the use of a reduced description to be numerically tractable. Two possible approaches are based on either reduced density matrices or nonequilibrium Green functions (NEGF). Both concepts are formulated in terms of hierarchies of coupled equations—the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the reduced density operators and the Martin-Schwinger-hierarchy (MS) for the Green functions, respectively. In both cases, similar approximations are introduced to decouple the hierarchy, yet still many questions regarding the correspondence of both approaches remain open. Here we analyze this correspondence by studying the generalized Kadanoff–Baym ansatz (GKBA) that reduces the NEGF to a single-time theory. Starting from the BBGKY-hierarchy we present the approximations that are necessary to recover the GKBA result both, with Hartree-Fock propagators (HF-GKBA) and propagators in second Born approximation. To test the quality of the HF-GKBA, we study the dynamics of a 4-electron Hubbard nanocluster starting from a strong nonequilibrium initial state and compare to exact results and the Wang-Cassing approximation to the BBGKY hierarchy presented recently by Akbari et al. [1].
Statistical mechanics of nonequilibrium liquids
Evans, Denis J; Craig, D P; McWeeny, R
1990-01-01
Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,
Quantum transport through 3D Dirac materials
Energy Technology Data Exchange (ETDEWEB)
Salehi, M. [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Jafari, S.A., E-mail: jafari@physics.sharif.edu [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Center of Excellence for Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694 (Iran, Islamic Republic of)
2015-08-15
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.
Quantum transport through 3D Dirac materials
International Nuclear Information System (INIS)
Salehi, M.; Jafari, S.A.
2015-01-01
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect
Skipping Orbits, Traversing Trajectories, and Quantum Ballistic Transport in Microstructures
Beenakker, C.W.J.; Houten, H. van; Wees, B.J. van
1989-01-01
Three topics of current interest in the study of quantum ballistic transport in a two-dimensional electron gas are discussed, with an emphasis on correspondences between classical trajectories and quantum states in the various experimental geometries. We consider the quantized conductance of point
Electron transport and coherence in semiconductor quantum dots and rings
Van der Wiel, W.G.
2002-01-01
A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that
Quantum transport in strongly interacting one-dimensional nanostructures
Agundez, R.R.
2015-01-01
In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.
Nonlinear and Nonequilibrium Spin Injection in Magnetic Tunneling Junctions
Guo, Hong
2007-03-01
Quantitative analysis of charge and spin quantum transport in spintronic devices requires an atomistic first principles approach that can handle nonlinear and nonequilibrium transport conditions. We have developed an approach for this purpose based on real space density functional theory (DFT) carried out within the Keldysh nonequilibrium Green's function formalism (NEGF). We report theoretical analysis of nonlinear and nonequilibrium spin injection and quantum transport in Fe/MgO/Fe trilayer structures as a function of external bias voltage. Devices with well relaxed atomic structures and with FeO oxidization layers are investigated as a function of external bias voltage. We also report calculations of nonequilibrium spin injection into molecular layers and graphene. Comparisons to experimental data will be presented. Work in collaborations with: Derek Waldron, Vladimir Timochevski (McGill University); Ke Xia (Institute of Physics, Chinese Academy of Science, Beijing, China); Eric Zhu, Jian Wang (University of Hong Kong); Paul Haney, and Allan MacDonald (University of Texas at Austin).
Quantum logic gates based on coherent electron transport in quantum wires.
Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S
2000-06-19
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.
DEFF Research Database (Denmark)
Papior, Nick Rübner; Lorente, Nicolás; Frederiksen, Thomas
2017-01-01
“post-processing” code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne≥1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates...
Transport through interacting quantum dots with Majorana fermions or phonons
International Nuclear Information System (INIS)
Huetzen, Roland
2013-01-01
Recent advances in the search for Majorana fermions within condensed matter systems inspired the first part of the thesis. These hypothetical particles which are their own antiparticles are predicted to arise in the form of quasi-particle excitations called Majorana bound states at the surface of engineered condensed matter systems. An experimental detection is challenging since their defining property also implies that they possess no charge, no energy and no spin. This significantly reduces the possibilities to interact with them and get a proof of their existence from a measurement. The most promising experimental results are based on transport measurements where current-voltage-characteristics play the role of a spectroscopy signal. In this thesis, we investigate a single electron transistor setup which hosts a spatially separated pair of Majorana fermions with respect to their influence on its transport characteristics. We focus on a master equation approach including sequential and cotunneling contributions. After deducing all relevant rates we solve the system numerically over a broad parameter regime. For some limits, we also elaborate analytical solutions. In comparison with collaboratively worked out other methods we provide a broad understanding of the setup and make a proposal how our results could be used as a detection scheme for Majorana fermions. The second part of the thesis investigates the spinless Anderson-Holstein model which is the minimal model for molecular transport. It models a molecule with electronic and vibronic degrees of freedom which is placed between metallic leads at different chemical potentials to investigate again its transport properties. Also here we intended to gain access to a broad parameter regime and successfully extended the numerical ''iterative summation of path-integrals'' scheme to this model. It is based on a real-time path-integral approach in combination with the nonequilibrium Keldysh
Transport through interacting quantum dots with Majorana fermions or phonons
Energy Technology Data Exchange (ETDEWEB)
Huetzen, Roland
2013-07-04
Recent advances in the search for Majorana fermions within condensed matter systems inspired the first part of the thesis. These hypothetical particles which are their own antiparticles are predicted to arise in the form of quasi-particle excitations called Majorana bound states at the surface of engineered condensed matter systems. An experimental detection is challenging since their defining property also implies that they possess no charge, no energy and no spin. This significantly reduces the possibilities to interact with them and get a proof of their existence from a measurement. The most promising experimental results are based on transport measurements where current-voltage-characteristics play the role of a spectroscopy signal. In this thesis, we investigate a single electron transistor setup which hosts a spatially separated pair of Majorana fermions with respect to their influence on its transport characteristics. We focus on a master equation approach including sequential and cotunneling contributions. After deducing all relevant rates we solve the system numerically over a broad parameter regime. For some limits, we also elaborate analytical solutions. In comparison with collaboratively worked out other methods we provide a broad understanding of the setup and make a proposal how our results could be used as a detection scheme for Majorana fermions. The second part of the thesis investigates the spinless Anderson-Holstein model which is the minimal model for molecular transport. It models a molecule with electronic and vibronic degrees of freedom which is placed between metallic leads at different chemical potentials to investigate again its transport properties. Also here we intended to gain access to a broad parameter regime and successfully extended the numerical ''iterative summation of path-integrals'' scheme to this model. It is based on a real-time path-integral approach in combination with the nonequilibrium Keldysh
Elements of non-equilibrium (ℎ, k)-dynamics at zero and finite temperatures
International Nuclear Information System (INIS)
Golubeva, O.N.; Sukhanov, A.D.
2011-01-01
We suggest a method which allows developing some elements of non-equilibrium (ℎ, k)-dynamics without use of Schroedinger equation. It is based on the generalization pf Fokker-Planck and Hamilton-Jacobi equations. Sequential considering of stochastic influence of vacuum is realized in the quantum heat bath model. We show that at the presence of quantum-thermal diffusion non-equilibrium wave functions describe the process of nearing to generalized state of thermal equilibrium at zero and finite temperatures. They can be used as a ground for universal description of transport phenomena
Relativistic Quantum Transport in Graphene Systems
2015-07-09
dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied
Ward identity for non-equilibrium Fermi systems
Czech Academy of Sciences Publication Activity Database
Velický, B.; Kalvová, Anděla; Špička, Václav
2008-01-01
Roč. 77, č. 4 (2008), 041201/1-041201/4 ISSN 1098-0121 R&D Projects: GA ČR GC202/07/J051 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : non-equilibrium * Green’s functions * quantum transport equations * Ward identity Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008
Transport through a vibrating quantum dot: Polaronic effects
International Nuclear Information System (INIS)
Koch, T; Alvermann, A; Fehske, H; Loos, J; Bishop, A R
2010-01-01
We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.
Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C
2015-06-23
We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.
Directory of Open Access Journals (Sweden)
V.V.Ignatyuk
2004-01-01
Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.
International Nuclear Information System (INIS)
Yan Junxia; Fu Huahua
2013-01-01
We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.
Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.
1989-01-01
Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.
Theoretical Transport Studies of Non-equilibrium Carriers Driven by High Electric Fields
2012-04-25
impurity scattering has already been worked out in the literature (in partic- ular see [35] or the discussions in [28] or [23]), but we reproduce the result...G. Hasko, D. C. Peacock , D. A. Ritchie, and G. A. C. Jones. “One-dimensional transport and the quantisation of the ballistic resistance.” Journal of
Electron Transport in Coupled Quantum Dots
National Research Council Canada - National Science Library
Antoniadis, D
1998-01-01
In the course of the investigation funded by this proposal we fabricated, modeled, and measured a variety of quantum dot structures in order to better understand how such nanostructures might be used for computation...
Scattering matrix approach to non-stationary quantum transport
Moskalets, Michael V
2012-01-01
The aim of this book is to introduce the basic elements of the scattering matrix approach to transport phenomena in dynamical quantum systems of non-interacting electrons. This approach admits a physically clear and transparent description of transport processes in dynamical mesoscopic systems promising basic elements of solid-state devices for quantum information processing. One of the key effects, the quantum pump effect, is considered in detail. In addition, the theory for a recently implemented new dynamical source - injecting electrons with time delay much larger than the electron coherence time - is offered. This theory provides a simple description of quantum circuits with such a single-particle source and shows in an unambiguous way that the tunability inherent to the dynamical systems leads to a number of unexpected but fundamental effects.
International Nuclear Information System (INIS)
Horing, Norman J Morgenstern; Popov, Vyacheslav V
2006-01-01
Recent experimental observations by X.G. Peralta and S.J. Allen, et al. of dc photoconductivity resonances in steady source-drain current subject to terahertz radiation in a grid-gated double-quantum well FET suggested an association with plasmon resonances. This association was definitively confirmed for some parameter ranges in our detailed electrodynamic absorbance calculations. In this paper we propose that the reason that the dc photoconductance resonances match the plasmon resonances in semiconductors is based on a nonlinear dynamic screening mechanism. In this, we employ a shielded potential approximation that is nonlinear in the terahertz field to determine the nonequilibrium Green's function and associated density perturbation that govern the nonequilibrium dielectric polarization of the medium. This 'conditioning' of the system by the incident THz radiation results in resonant polarization response at the plasmon frequencies which, in turn, causes a sharp drop of the resistive shielded impurity scattering potentials and attendant increase of the dc source-drain current. This amounts to disabling the impurity scattering mechanism by plasmon resonant behavior in nonlinear screening
14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors
Saraniti, M; Nonequilibrium Carrier Dynamics in Semiconductors
2006-01-01
International experts gather every two years at this established conference to discuss recent developments in theory and experiment in non-equilibrium transport phenomena. These developments have been the driving force behind the spectacular advances in semiconductor physics and devices over the last few decades. Originally known as "Hot Carriers in Semiconductors," the 14th conference in the series covered a wide spectrum of traditional topics dealing with non-equilibrium phenomena, ranging from quantum transport to optical phenomena in mesoscopic and nano-scale structures. Particular attention was given this time to emerging areas of this rapidly evolving field, with many sessions covering terahertz devices, high field transport in nitride semiconductors, spintronics, molecular electronics, and bioelectronics applications.
International Nuclear Information System (INIS)
Dakhlaoui, H; Almansour, S
2016-01-01
In this work, the electronic properties of resonant tunneling diodes (RTDs) based on GaN-Al x Ga (1−x) N double barriers are investigated by using the non-equilibrium Green functions formalism (NEG). These materials each present a wide conduction band discontinuity and a strong internal piezoelectric field, which greatly affect the electronic transport properties. The electronic density, the transmission coefficient, and the current–voltage characteristics are computed with considering the spontaneous and piezoelectric polarizations. The influence of the quantum size on the transmission coefficient is analyzed by varying GaN quantum well thickness, Al x Ga (1−x) N width, and the aluminum concentration x Al . The results show that the transmission coefficient more strongly depends on the thickness of the quantum well than the barrier; it exhibits a series of resonant peaks and valleys as the quantum well width increases. In addition, it is found that the negative differential resistance (NDR) in the current–voltage ( I – V) characteristic strongly depends on aluminum concentration x Al . It is shown that the peak-to-valley ratio (PVR) increases with x Al value decreasing. These findings open the door for developing vertical transport nitrides-based ISB devices such as THz lasers and detectors. (paper)
International Nuclear Information System (INIS)
Krönke, Sven; Cao, Lushuai; Schmelcher, Peter; Vendrell, Oriol
2013-01-01
We develop and apply the multi-layer multi-configuration time-dependent Hartree method for bosons, which represents an ab initio method for investigating the non-equilibrium quantum dynamics of multi-species bosonic systems. Its multi-layer feature allows for tailoring the wave function ansatz to describe intra- and inter-species correlations accurately and efficiently. To demonstrate the beneficial scaling and efficiency of the method, we explored the correlated tunneling dynamics of two species with repulsive intra- and inter-species interactions, to which a third species with vanishing intra-species interaction was weakly coupled. The population imbalances of the first two species can feature a temporal equilibration and their time evolution significantly depends on the coupling to the third species. Bosons of the first and second species exhibit a bunching tendency, whose strength can be influenced by their coupling to the third species. (paper)
DEFF Research Database (Denmark)
De Souza, Fabricio; Jauho, Antti-Pekka; Egues, J.C.
2008-01-01
Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnetic...... field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization p. In particular, p can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage....... The coherent spin flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression...
Phonon affected transport through molecular quantum
Czech Academy of Sciences Publication Activity Database
Loos, Jan; Koch, T.; Alvermann, A.; Bishop, A. R.; Fehske, H.
2009-01-01
Roč. 21, č. 39 (2009), 395601/1-395601/18 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * electron - phonon interaction * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009
Quantum Non-Markovian Langevin Equations and Transport Coefficients
International Nuclear Information System (INIS)
Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.
2005-01-01
Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed
Replacing leads by self-energies using non-equilibrium Green's functions
International Nuclear Information System (INIS)
Michael, Fredrick; Johnson, M.D.
2003-01-01
Open quantum systems consist of semi-infinite leads which transport electrons to and from the device of interest. We show here that within the non-equilibrium Green's function technique for continuum systems, the leads can be replaced by simple c-number self-energies. Our starting point is an approach for continuum systems developed by Feuchtwang. The reformulation developed here is simpler to understand and carry out than the somewhat unwieldly manipulations typical in the Feuchtwang method. The self-energies turn out to have a limited variability: the retarded self-energy Σ r depends on the arbitrary choice of internal boundary conditions, but the non-equilibrium self-energy or scattering function Σ which determines transport is invariant for a broad class of boundary conditions. Expressed in terms of these self-energies, continuum non-equilibrium transport calculations take a particularly simple form similar to that developed for discrete systems
Lee, Y.; Bescond, M.; Logoteta, D.; Cavassilas, N.; Lannoo, M.; Luisier, M.
2018-05-01
We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (≫300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N -1 /N results in a significant acceleration of the convergence.
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.; Fratalocchi, Andrea
2013-01-01
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.
2013-08-05
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.
Chaotic Dynamics and Transport in Classical and Quantum Systems
International Nuclear Information System (INIS)
2003-01-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations
Charge injection and transport in quantum confined and disordered systems
Houtepen, A.J.
2007-01-01
Quantum dots and conducting polymers are modern semiconductors with a high potential for applications such as lasers, LEDs, displays, solar cells etc. These applications require the controlled addition of charge carriers into the material and knowledge of the details of charge transport. This thesis
Chaotic Dynamics and Transport in Classical and Quantum Systems
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations.
Mahfouzi, Farzad
Current and future technological needs increasingly motivate the intensive scientific research of the properties of materials at the nano-scale. One of the most important domains in this respect at present concerns nano-electronics and its diverse applications. The great interest in this domain arises from the potential reduction of the size of the circuit components, maintaining their quality and functionality, and aiming at greater efficiency, economy, and storage characteristics for the corresponding physical devices. The aim of this thesis is to present a contribution to the analysis of the electronic charge and spin transport phenomena that occur at the quantum level in nano-structures. This thesis spans the areas of quantum transport theory through time-dependent systems, electron-boson interacting systems and systems of interest to spintronics. A common thread in the thesis is to develop the theoretical foundations and computational algorithms to numerically simulate such systems. In order to optimize the numerical calculations I resort to different techniques (such as graph theory in finding inverse of a sparse matrix, adaptive grids for integrations and programming languages (e.g., MATLAB and C++) and distributed computing tools (MPI, CUDA). Outline of the Thesis: After giving an introduction to the topics covered in this thesis in Chapter 1, I present the theoretical foundations to the field of non-equilibrium quantum statistics in Chapter 2. The applications of this formalism and the results are covered in the subsequent chapters as follows: Spin and charge quantum pumping in time-dependent systems: Covered in Chapters 3, 4 and 5, this topics was initially motivated by experiments on measuring voltage signal from a magnetic tunnel junction (MTJ) exposed to a microwave radiation in ferromagnetic resonance (FMR) condition. In Chapter 3 we found a possible explanation for the finite voltage signal measured from a tunnel junction consisting of only a single
Controlling chaos-assisted directed transport via quantum resonance.
Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua
2016-06-01
We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
Controlling chaos-assisted directed transport via quantum resonance
Energy Technology Data Exchange (ETDEWEB)
Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua, E-mail: whhai2005@aliyun.com [Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 (China)
2016-06-15
We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
Computing and the electrical transport properties of coupled quantum networks
Cain, Casey Andrew
In this dissertation a number of investigations were conducted on ballistic quantum networks in the mesoscopic range. In this regime, the wave nature of electron transport under the influence of transverse magnetic fields leads to interesting applications for digital logic and computing circuits. The work specifically looks at characterizing a few main areas that would be of interest to experimentalists who are working in nanostructure devices, and is organized as a series of papers. The first paper analyzes scaling relations and normal mode charge distributions for such circuits in both isolated and open (terminals attached) form. The second paper compares the flux-qubit nature of quantum networks to the well-established spintronics theory. The results found exactly contradict the conventional school of thought for what is required for quantum computation. The third paper investigates the requirements and limitations of extending the Thevenin theorem in classic electric circuits to ballistic quantum transport. The fourth paper outlines the optimal functionally complete set of quantum circuits that can completely satisfy all sixteen Boolean logic operations for two variables.
Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.
Riascos, A P; Mateos, José L
2015-11-01
In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.
International Nuclear Information System (INIS)
Maes, Christian
2012-01-01
In contrast to the quite unique entropy concept useful for systems in (local) thermodynamic equilibrium, there is a variety of quite distinct nonequilibrium entropies, reflecting different physical points. We disentangle these entropies as they relate to heat, fluctuations, response, time asymmetry, variational principles, monotonicity, volume contraction or statistical forces. However, not all of those extensions yield state quantities as understood thermodynamically. At the end we sketch how aspects of dynamical activity can take over for obtaining an extended Clausius relation.
Transport through semiconductor nanowire quantum dots in the Kondo regime
Energy Technology Data Exchange (ETDEWEB)
Schmaus, Stefan; Koerting, Verena; Woelfle, Peter [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe (Germany)
2008-07-01
Recent experiments on quantum dots made of semiconductor nanowires in the Coulomb blockade regime have shown the influence of several approximately equidistant levels on the conductance. We study a model with three levels occupied by three electrons. At finite bias voltage charge energy conserving excitations into several higher lying states occur leading to features in the differential conductance. We restrict our study to the six lowest lying states by performing a Schrieffer-Wolff type projection onto this subspace. The emerging effective Kondo Hamiltonian is treated in non-equilibrium perturbation theory in the coupling to the leads. For convenience we use a pseudoparticle representation and an exact projection method. The voltage-dependence of the occupation numbers is discussed. The density matrix on the dot turns out to be off-diagonal in the dot eigenstate Hilbert space in certain parameter regimes. The dependence of the differential conductance on magnetic field and temperature is calculated in lowest order in the dot-lead coupling and the results are compared with experiment.
Parallel Transport Quantum Logic Gates with Trapped Ions.
de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P
2016-02-26
We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.
Quantum-mechanical transport equation for atomic systems.
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
Microwave-mediated heat transport in a quantum dot attached to leads
International Nuclear Information System (INIS)
Chi Feng; Dubi, Yonatan
2012-01-01
The thermoelectric effect in a quantum dot (QD) attached to two leads in the presence of microwave fields is studied by using the Keldysh nonequilibrium Green function technique. When the microwave is applied only on the QD and in the linear response regime, the main peaks in the thermoelectric figure of merit and the thermopower are found to decrease, with the emergence of a set of photon-induced peaks. Under this condition the microwave field cannot generate heat current or electrical bias voltage. Surprisingly, when the microwave field is applied only to one (bright) lead and not to the other (dark) lead or the QD, heat flows mostly from the dark to the bright lead, almost irrespective of the direction of the thermal gradient. We attribute this effect to microwave-induced opening of additional transport channels below the Fermi energy. The microwave field can change both the magnitude and the sign of the electrical bias voltage induced by the temperature gradient. (paper)
Quantum transport in semiconductor nanostructures and nanoscale devices
International Nuclear Information System (INIS)
Zhen-Li, Ji.
1991-09-01
Only a decade ago the study and fabrication of electron devices whose smallest features were just under 1 micro represented the forefront of the field. Today that position has advanced an order of magnitude to 100 nanometers. Quantum effects are unavoidable in devices with dimensions smaller than 100 nanometers. A variety of quantum effects have been discovered over the years, such as tunneling, resonant tunneling, weak and strong localization, and the quantum Hall effect. Since 1985, experiments on nanostructures (dimension < 100 nm) have revealed a number of new effects such as the Aharanov-Bohm effect, conductance fluctuations, non-local effects and the quantized resistance of point contacts. For nanostructures at low temperature, these phenomena clearly show that electron transport is influenced by wave interference effects similar to those well-known in microwave and optical networks. New device concepts now being proposed and demonstrated are based on these wave properties. This thesis discusses our study of electron transport in nanostructures. All of the quantum phenomena that we address here are essentially one-electron phenomena, although many-body effects will sometimes play a more significant role in the electronic properties of small structures. Most of the experimental observations to date are particularly well explained, at least qualitatively, in terms of the simple one-particle picture. (au)
Quantum-confined nanowires as vehicles for enhanced electrical transport
International Nuclear Information System (INIS)
Mohammad, S Noor
2012-01-01
Electrical transport in semiconductor nanowires taking quantum confinement and dielectric confinement into account has been studied. A distinctly new route has been employed for the study. The fundamental science underlying the model is based on a relationship between the quantum confinement and the structural disorder of the nanowire surface. The role of surface energy and thermodynamic imbalance in nanowire structural disorder has been described. A model for the diameter dependence of energy bandgap of nanowires has been developed. Ionized impurity scattering, dislocation scattering and acoustic phonon scattering have been taken into account to study carrier mobility. A series of calculations on silicon nanowires show that carrier mobility in nanowires can be greatly enhanced by quantum confinement and dielectric confinement. The electron mobility can, for example, be a factor of 2–10 higher at room temperature than the mobility in a free-standing silicon nanowire. The calculated results agree well with almost all experimental and theoretical results available in the literature. They successfully explain experimental observations not understood before. The model is general and applicable to nanowires from all possible semiconductors. It is perhaps the first physical model highlighting the impact of both quantum confinement and dielectric confinement on carrier transport. It underscores the basic causes of thin, lowly doped nanowires in the temperature range 200 K ≤ T ≤ 500 K yielding very high carrier mobility. It suggests that the scattering by dislocations (stacking faults) can be very detrimental for carrier mobility. (paper)
Distribution of tunnelling times for quantum electron transport
International Nuclear Information System (INIS)
Rudge, Samuel L.; Kosov, Daniel S.
2016-01-01
In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an electron jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.
Dietrich, Scott
Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of electrons in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of electron-electron interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers electron-electron interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of electron
Quantum transport in d -dimensional lattices
International Nuclear Information System (INIS)
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-01-01
We show that both fermionic and bosonic uniform d -dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. We then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations. (paper)
Currents and fluctuations of quantum heat transport in harmonic chains
International Nuclear Information System (INIS)
Motz, T; Ankerhold, J; Stockburger, J T
2017-01-01
Heat transport in open quantum systems is particularly susceptible to the modeling of system–reservoir interactions. It thus requires us to consistently treat the coupling between a quantum system and its environment. While perturbative approaches are successfully used in fields like quantum optics and quantum information, they reveal deficiencies—typically in the context of thermodynamics, when it is essential to respect additional criteria such as fluctuation-dissipation theorems. We use a non-perturbative approach for quantum dissipative dynamics based on a stochastic Liouville–von Neumann equation to provide a very general and extremely efficient formalism for heat currents and their correlations in open harmonic chains. Specific results are derived not only for first- but also for second-order moments, which requires us to account for both real and imaginary parts of bath–bath correlation functions. Spatiotemporal patterns are compared with weak coupling calculations. The regime of stronger system–reservoir couplings gives rise to an intimate interplay between reservoir fluctuations and heat transfer far from equilibrium. (paper)
Observation of quantum interference in molecular charge transport
DEFF Research Database (Denmark)
Guedon, Constant M.; Valkenier, Hennie; Markussen, Troels
2012-01-01
for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid p-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface......, and find that the degree of interference can be controlled by simple chemical modifications of the molecular wire....
The Landauer-Büttiker formula and resonant quantum transport
DEFF Research Database (Denmark)
Cornean, Horia; Jensen, Arne; Moldoveanu, Valeriu
2006-01-01
We give a short presentation of two recent results. The first one is a rigorous proof of the Landauer-Büttiker formula, and the second one concerns resonant quantum transport. The detailed results are in [2]. In the last section we present the results of som numerical computations on a model system....... Concerning the literature, then see the starting point of our work [6]. In [4] a related, but different, problem is studied. See also [5] and the recent work [1]....
The Landauer-Büttiker formula and resonant quantum transport
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Jensen, Arne; Moldoveanu, Valeriu
We give a short presentation of two recent results. The firrst one is a rigorous proof of the Landauer-Büttiker formula, and the second one concerns resonant quantum transport. The detailed results are in [2]. In the last section we present the results of some numerical computations on a model...... system.Concerning the literature, then see the starting point of our work, [6]. In [4] a related, but different, problem is studied. See also [5] and the recentwork [1]....
Two path transport measurements on a triple quantum dot
Energy Technology Data Exchange (ETDEWEB)
Rogge, Maximilian C.; Haug, Rolf J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)
2008-07-01
We present a novel triple quantum dot device made with local anodic oxidation on a GaAs/AlGaAs heterostructure. The geometry provides two path transport via a three lead setup with each lead connected to one of the three quantum dots. In addition charge detection is implemented via a quantum point contact. One lead is used as a common source contact, the other two are used as two separate drain contacts with independent current measurement. Thus two paths are formed with two dots in each path. Along both paths serial transport is observed at the triple points of the two corresponding dots. With four side gates a wide tunability is given. Thus the system can be tuned in and out of triple dot resonances. When all three dots come into resonance, quadruple points are formed with simultaneous transport along both paths. The data are analysed in combined two colour plots and compared to the charge detection showing sets of three different lines, one for each dot. This way the two path setup allows to investigate the transition from double dot physics to triple dot physics.
Electron-phonon interaction in quantum transport through quantum dots and molecular systems
Ojeda, J. H.; Duque, C. A.; Laroze, D.
2016-12-01
The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.
Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui
1990-01-01
Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.
Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi
2017-10-01
Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.
Quantum transport through a deformable molecular transistor
Cornaglia, P. S.; Grempel, D. R.; Ness, H.
2005-02-01
The linear transport properties of a model molecular transistor with electron-electron and electron-phonon interactions were investigated analytically and numerically. The model takes into account phonon modulation of the electronic energy levels and of the tunneling barrier between the molecule and the electrodes. When both effects are present they lead to asymmetries in the dependence of the conductance on gate voltage. The Kondo effect is observed in the presence of electron-phonon interactions. There are important qualitative differences between the cases of weak and strong coupling. In the first case the standard Kondo effect driven by spin fluctuations occurs. In the second case, it is driven by charge fluctuations. The Fermi-liquid relation between the spectral density of the molecule and its charge is altered by electron-phonon interactions. Remarkably, the relation between the zero-temperature conductance and the charge remains unchanged. Therefore, there is perfect transmission in all regimes whenever the average number of electrons in the molecule is an odd integer.
International Nuclear Information System (INIS)
Petrosyan, Lyudvig S
2016-01-01
We study coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires. We show that the resonant-tunneling conductance between the wires exhibits a Rabi splitting of the resonance peak as a function of Fermi energy in the wires. This effect is an electron transport analogue of the Rabi splitting in optical spectra of two interacting systems. The conductance peak splitting originates from the anticrossing of Bloch bands in a periodic system that is caused by a strong coupling between the electron states in the quantum dot chain and quantum wires. (paper)
Non-Markovian dynamics of quantum systems: formalism, transport coefficients
International Nuclear Information System (INIS)
Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.
2004-01-01
Full text: The generalized Linbland equations with non-stationary transport coefficients are derived from the Langevin equations for the case of nonlinear non-Markovian noise [1]. The equations of motion for the collective coordinates are consistent with the generalized quantum fluctuation dissipation relations. The microscopic justification of the Linbland axiomatic approach is performed. Explicit expressions for the time-dependent transport coefficients are presented for the case of FC- and RWA-oscillators and a general linear coupling in coordinate and in momentum between the collective subsystem and heat bath. The explicit equations for the correlation functions show that the Onsanger's regression hypothesis does not hold exactly for the non-Markovian equations of motion. However, under some conditions the regression of fluctuations goes to zero in the same manner as the average values. In the low and high temperature regimes we found that the dissipation leads to long-time tails in correlation functions in the RWA-oscillator. In the case of the FC-oscillator a non-exponential power-like decay of the correlation function in coordinate is only obtained only at the low temperature limit. The calculated results depend rather weakly on the memory time in many applications. The found transient times for diffusion coefficients D pp (t), D qp (t) and D qq (t) are quite short. The value of classical diffusion coefficients in momentum underestimates the asymptotic value of quantum one D pp (t), but the asymptotic values of classical σ qq c and quantum σ qq second moments are close due to the negativity of quantum mixed diffusion coefficient D qp (t)
Spin-dependent quantum transport in nanoscaled geometries
Heremans, Jean J.
2011-10-01
We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).
International Nuclear Information System (INIS)
Schleich, W.; Dobiasch, P.
1986-01-01
A brief review is given of quantum noise in ring laser gyroscopes. Some the basic elements of ring laser theory, such as the Sagnac effect, the locking effect, and the influence of quantumnoise on the mean beat frequency versus rotation rate are discussed. The Langevin equation for the ase difference between the counterpropagating waves in the presence of any periodic and time symmetric dither is cast into a form which alows a qualitative discussion of the resulting lock-in curve as well as an exact expression in terms of infinite matrix continued fractions. The details of the transformation of the stochastic variable and the derivation of the exact expression for f>t may be found in appendices. Exact results are presented for two special cases of the dithering function: the harmonic and the square-wave bias
One-dimensional steady migration of quantum particles
International Nuclear Information System (INIS)
Serikov, A.A.; Kharkyanen, V.N.
1989-01-01
The formalism of nonequilibrium density matrices is used to investigate transmembrane transport of quantum particles along a molecular chain. For a homogeneous chain analytic expressions that describe a steady flux of particles and their distribution are found. The features of the transport are analyzed for the case of a disordered chain
Quantum dot transport in soil, plants, and insects
Energy Technology Data Exchange (ETDEWEB)
Al-Salim, Najeh [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand); Barraclough, Emma; Burgess, Elisabeth [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Clothier, Brent, E-mail: brent.clothier@plantandfood.co.nz [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Deurer, Markus; Green, Steve [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Malone, Louise [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Weir, Graham [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand)
2011-08-01
Environmental risk assessment of nanomaterials requires information not only on their toxicity to non-target organisms, but also on their potential exposure pathways. Here we report on the transport and fate of quantum dots (QDs) in the total environment: from soils, through their uptake into plants, to their passage through insects following ingestion. Our QDs are nanoparticles with an average particle size of 6.5 nm. Breakthrough curves obtained with CdTe/mercaptopropionic acid QDs applied to columns of top soil from a New Zealand organic apple orchard, a Hastings silt loam, showed there to be preferential flow through the soil's macropores. Yet the effluent recovery of QDs was just 60%, even after several pore volumes, indicating that about 40% of the influent QDs were filtered and retained by the soil column via some unknown exchange/adsorption/sequestration mechanism. Glycine-, mercaptosuccinic acid-, cysteine-, and amine-conjugated CdSe/ZnS QDs were visibly transported to a limited extent in the vasculature of ryegrass (Lolium perenne), onion (Allium cepa) and chrysanthemum (Chrysanthemum sp.) plants when cut stems were placed in aqueous QD solutions. However, they were not seen to be taken up at all by rooted whole plants of ryegrass, onion, or Arabidopsis thaliana placed in these solutions. Leafroller (Lepidoptera: Tortricidae) larvae fed with these QDs for two or four days, showed fluorescence along the entire gut, in their frass (larval feces), and, at a lower intensity, in their haemolymph. Fluorescent QDs were also observed and elevated cadmium levels detected inside the bodies of adult moths that had been fed QDs as larvae. These results suggest that exposure scenarios for QDs in the total environment could be quite complex and variable in each environmental domain. - Research highlights: {yields} Quantum dots are transported rapidly through soil but half were retained. {yields} Intact roots of plants did not take up quantum dots. Excised plants
Trautmann, N.; Hauke, P.
2018-02-01
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise can enhance coherent quantum transport, which has been proposed as a mechanism behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called "environment-assisted quantum transport". Here, we propose a quantum simulation of the excitation transport in an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our paper discusses experimental error sources and realistic parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.
Transport Studies of Quantum Magnetism: Physics and Methods
Energy Technology Data Exchange (ETDEWEB)
Lee, Minhyea [Univ. of Colorado, Boulder, CO (United States)
2017-03-30
The main goal of this project was to understand novel ground states of spin systems probed by thermal and electrical transport measurements. They are well-suited to characterize the nature of low-energy excitations as unique property of the ground state. More specifically, it was aimed to study the transverse electrical conductivity in the presence of non-collinear and non-coplanar spin ordering and the effects of gauge field as well as novel spin excitations as a coherent heat transport channel in insulating quantum magnets. Most of works done during the grant period focused on these topics. As a natural extension of the project's initial goals, the scope was broadened to include transport studies on the spin systems with strong spin-orbit coupling. One particular focus was an exploration of systems with strong magnetic anisotropy combined with non-trivial spin configuration. Magnetic anisotropy is directly related to implement the non-collinear spin ordering to the existing common geometry of planar devices and thus poses a significant potential. Work in this direction includes the comparison of the topological Hall signal under hydrostatic pressure and chemical doping, as well as the angular dependence dependence of the non-collinear spin ordered phase and their evolution up on temperature and field strength. Another focus was centered around the experimental identification of spin-originated heat carrying excitation in quasi two dimensional honeycomb lattice, where Kitaev type of quantum spin liquid phase is expected to emerge. In fact, when its long range magnetic order is destroyed by the applied field, we discovered anomalously large enhancement of thermal conductivity, for which proximate Kitaev excitations in field-induced spin liquid state are responsible for. This work, combined with further investigations in materials in the similar class may help establish the experimental characterization of new quantum spin liquid and their unique low energy
Energy Technology Data Exchange (ETDEWEB)
Rogge, Maximilian Christoph
2008-12-03
This thesis describes the fabrication of different lateral single, double and triple quantum dots as well as the investigation of these devices with electronic transport. Based on GaAs/AlGaAs heterostructures, the fabrication was carried out using optical lithography and lithography with a scanning electron microscope and an atomic force microscope. The latter ones were also used in combination. Aside from basic effects like Coulomb blockade the analysis of single quantum dots particularly yielded results by charge detection and magneto transport. With charge detection using quantum point contacts conclusions were attained concerning tunneling rates and the extension of wave functions. In a magnetic field the influence of the electronic spin is important aside from aspects concerning the Fock-Darwin spectrum. Analyses were performed on Zeeman effect, spin pairing, spin blockade and Kondo effect. The combination of spin blockade and Kondo effect allows statements concerning the spin configuration, which depends on the electron number. With double quantum dots of different geometries the two mechanisms of capacitive coupling and tunnel coupling were analyzed. They were found in spectra of ground and excited states. With gate voltage and magnetic field it was possible to freely vary character and strength of coupling. With capacitive coupling, spin blockade was investigated again. The analysis of coupling effects was performed using transport and charge measurements. Aside from results on tunneling rates the latter one allows to detect molecular states. Concerning triple quantum dots the three dimensional stability diagram was analyzed. The free variation of energies of all three dots was achieved. The evolution of resonances was observed with transport and charge detection. With a starlike device geometry it was possible to perform two-path measurements. They provide a new measurand, the distinguishability of double and triple dot physics. (orig.)
Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms
Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor
2017-12-01
Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.
Finger-gate manipulated quantum transport in Dirac materials
International Nuclear Information System (INIS)
Kleftogiannis, Ioannis; Cheng, Shun-Jen; Tang, Chi-Shung
2015-01-01
We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch. (paper)
Quantum transport in topological semimetals under magnetic fields
Lu, Hai-Zhou; Shen, Shun-Qing
2017-06-01
Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.
Opto-electronic and quantum transport properties of semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Sabathil, M.
2005-01-01
In this work a novel and efficient method for the calculation of the ballistic transport properties of open semiconductor nanostructures connected to external reservoirs is presented. It is based on the Green's function formalism and reduces the effort to obtain the transmission and the carrier density to a single solution of a hermitian eigenvalue problem with dimensions proportional to the size of the decoupled device and the multiple inversion of a small matrix with dimensions proportional to the size of the contacts to the leads. Using this method, the 4-band GaAs hole transport through a 2-dimensional three-terminal T-junction device, and the resonant tunneling current through a 3-dimensional InAs quantum dot molecule embedded into an InP heterostructure have been calculated. The further extension of the method into a charge self-consistent scheme enables the efficient prediction of the IV-characteristics of highly doped nanoscale field effect transistors in the ballistic regime, including the influence of quasi bound states and the exchange-correlation interaction. Buettiker probes are used to emulate the effect of inelastic scattering on the current for simple 1D devices, systematically analyzing the dependence of the density of states and the resulting self-consistent potential on the scattering strength. The second major topic of this work is the modeling of the optical response of quantum confined neutral and charged excitons in single and coupled self-assembled InGaAs quantum dots. For this purpose the existing device simulator nextnano{sup 3} has been extended to incorporate particle-particle interactions within the means of density functional theory in local density approximation. In this way the exciton transition energies for neutral and charged excitons as a function of an externally applied electric field have been calculated, revealing a systematic reduction of the intrinsic dipole with the addition of extra holes to the exciton, a finding
Non-equilibrium dynamics of one-dimensional Bose gases
International Nuclear Information System (INIS)
Langen, T.
2013-01-01
Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom
Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard
Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.
Directory of Open Access Journals (Sweden)
Gangfeng Wu
2018-05-01
Full Text Available The use of multiple-level non-uniform rectangular mesh in coupled flow and sediment transport modeling is preferred to achieve high accuracy in important region without increasing computational cost greatly. Here, a robust coupled hydrodynamic and non-equilibrium sediment transport model is developed on non-uniform rectangular mesh to simulate dam break flow over movable beds. The enhanced shallow water and sediment transport equations are adopted to consider the mass and momentum exchange between the flow phase and sediment phase. The flux at the interface is calculated by the positivity preserving central upwind scheme, which belongs to Godunov-type Riemann-problem-solver-free central schemes and is less expensive than other popular Riemann solvers while still capable of tracking wet/dry fronts accurately. The nonnegative water depth reconstruction method is used to achieve second-order accuracy in space. The model was first verified against two laboratory experiments of dam break flow over irregular fixed bed. Then the quantitative performance of the model was further investigated by comparing the computational results with measurement data of dam break flow over movable bed. The good agreements between the measurements and the numerical simulations are found for the flow depth, velocity and bed changes.
Quantum transport through mesoscopic disordered interfaces, junctions, and multilayers
International Nuclear Information System (INIS)
Nikolic, Branislav K.
2002-01-01
This study explores perpendicular transport through macroscopically inhomogeneous three-dimensional disordered conductors using mesoscopic methods (the real-space Green function technique in a two-probe measuring geometry). The nanoscale samples (containing ∼ 1000 atoms) are modelled by a tight-binding Hamiltonian on a simple cubic lattice where disorder is introduced in the on-site potential energy. I compute the transport properties of: disordered metallic junctions formed by concatenating two homogeneous samples with different kinds of microscopic disorder, a single strongly disordered interface, and multilayers composed of such interfaces and homogeneous layers characterized by different strengths of the same type of microscopic disorder. This allows us to: contrast the resistor model (semiclassical) approach with a fully quantum description of dirty mesoscopic multilayers; study the transmission properties of dirty interfaces (where the Schep-Bauer distribution of transmission eigenvalues is confirmed for a single interface, as well as for a stack of such interfaces that is thinner than the localization length); and elucidate the effect of coupling to ideal leads ('measuring apparatus') on the conductance of both bulk conductors and dirty interfaces. When a multilayer contains a ballistic layer in between two interfaces, its disorder-averaged conductance oscillates as a function of the Fermi energy. I also address some fundamental issues in quantum transport theory - the relationship between the Kubo formula in the exact state representation and the 'mesoscopic Kubo formula' (which gives the exact zero-temperature conductance of a finite-size sample attached to two semi-infinite ideal leads) is thoroughly re-examined by comparing their outcomes for both the junctions and homogeneous samples. (author)
Quantum transport in nanowire-based hybrid devices
Energy Technology Data Exchange (ETDEWEB)
Guenel, Haci Yusuf
2013-05-08
We have studied the low-temperature transport properties of nanowires contacted by a normal metal as well as by superconducting electrodes. As a consequence of quantum coherence, we have demonstrated the electron interference effect in different aspects. The mesoscopic phase coherent transport properties were studied by contacting the semiconductor InAs and InSb nanowires with normal metal electrodes. Moreover, we explored the interaction of the microscopic quantum coherence of the nanowires with the macroscopic quantum coherence of the superconductors. In superconducting Nb contacted InAs nanowire junctions, we have investigated the effect of temperature, magnetic field and electric field on the supercurrent. Owing to relatively high critical temperature of superconducting Nb (T{sub c} ∝ 9 K), we have observed the supercurrent up to 4 K for highly doped nanowire-based junctions, while for low doped nanowire-based junctions a full control of the supercurrent was achieved. Due to low transversal dimension of the nanowires, we have found a monotonous decay of the critical current in magnetic field dependent measurements. The experimental results were analyzed within narrow junction model which has been developed recently. At high bias voltages, we have observed subharmonic energy gap structures as a consequence of multiple Andreev reflection. Some of the nanowires were etched, such that the superconducting Nb electrodes are connected to both ends of the nanowire rather than covering the surface of the nanowire. As a result of well defined nanowire-superconductor interfaces, we have examined quasiparticle interference effect in magnetotransport measurements. Furthermore, we have developed a new junction geometry, such that one of the superconducting Nb electrodes is replaced by a superconducting Al. Owing to the smaller critical magnetic field of superconducting Al (B{sub c} ∝ 15-50,mT), compared to superconducting Nb (B{sub c} ∝ 3 T), we were able to studied
Directory of Open Access Journals (Sweden)
Katalin Martinás
2007-02-01
Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.
Lima, L. S.
2017-06-01
We use the SU(3) Schwinger boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T = 0 with single ion anisotropy and third neighbor interactions. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1 , J2 and J3 . We study the spin transport in the Bose-Einstein condensation regime where the bosons tz are condensed. Our results show an influence of the quantum phase transition point on the spin conductivity behavior. We also have made a diagrammatic expansion for the Green-function and did not obtain any significant change of the results.
International Nuclear Information System (INIS)
Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray
2012-01-01
Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.
Yang, W. W.; Zhao, T. S.
A two-phase, mass-transport model for liquid-feed direct methanol fuel cells (DMFCs) is developed by taking into account the effect of non-equilibrium evaporation and condensation of methanol and water. The comparison between the present model and other models indicates that the present model yields more reasonable predictions of cell performance. Particularly, it is shown that the models that invoke a thermodynamic-equilibrium assumption between phases will overestimate mass-transport rates of methanol and water, thereby resulting in an inaccurate prediction of cell performance. The parametric study using the present model reveals that the gas coverage at the flow channel-diffusion-layer interface is directly related to the gas-void fraction inside the anode porous region; increasing the gas-void fraction will increase the mass-transfer resistance of methanol and thus lower cell performance. The effects of the geometric dimensions of the cell structure, such as channel width and rib width, on cell performance are also investigated with the model developed in this work.
DEFF Research Database (Denmark)
Leitherer, Susanne; Jager, C. M.; Krause, A.
2017-01-01
In weakly interacting organic semiconductors, static disorder and dynamic disorder often have an important impact on transport properties. Describing charge transport in these systems requires an approach that correctly takes structural and electronic fluctuations into account. Here, we present...... are used in organic field-effect transistors....
Low, Tony; Ansari, Davood
2008-01-01
Electronic transport through a 2D deca-nanometer length channel with correlated and anti-correlated surfaces morphologies is studied using the Keldysh non-equilibrium Green function technique. Due to the pseudo-periodicity of these structures, the energy-resolved transmission possesses pseudo-bands and pseudo-gaps. Channels with correlated surfaces exhibit wider pseudo-bands than their anti-correlated counterparts. By surveying channels with various combinations of material parameters, we fou...
Theory of activated transport in bilayer quantum Hall systems.
Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H
2008-07-25
We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
Quantum field kinetics of QCD quark-gluon transport theory for light-cone dominated processes
Kinder-Geiger, Klaus
1996-01-01
A quantum kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the `closed-time-path' Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the 2-point functions of the gluon and quark fields. By exploiting the `two-scale nature' of light-cone dominated QCD processes, i.e. the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary inter- actions, the quantum-field equations of ...
Nonequilibrium statistical mechanics ensemble method
Eu, Byung Chan
1998-01-01
In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium Audience This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena
Nonlinear dynamics of non-equilibrium holes in p-type modulation-doped GaInNAs/GaAs quantum wells
Directory of Open Access Journals (Sweden)
Amann Andreas
2011-01-01
Full Text Available Abstract Nonlinear charge transport parallel to the layers of p-modulation-doped GaInNAs/GaAs quantum wells (QWs is studied both theoretically and experimentally. Experimental results show that at low temperature, T = 13 K, the presence of an applied electric field of about 6 kV/cm leads to the heating of the high mobility holes in the GaInNAs QWs, and their real-space transfer (RST into the low-mobility GaAs barriers. This results in a negative differential mobility and self-generated oscillatory instabilities in the RST regime. We developed an analytical model based upon the coupled nonlinear dynamics of the real-space hole transfer and of the interface potential barrier controlled by space-charge in the doped GaAs layer. Our simulation results predict dc bias-dependent self-generated current oscillations with frequencies in the high microwave range.
Coherence properties and quantum state transportation in an optical conveyor belt.
Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D
2003-11-21
We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.
Rothman, Adam E.; Mazziotti, David A.
2010-03-01
We study molecular conductivity for a one-electron, bath-molecule-bath model Hamiltonian. The primary quantum-mechanical variable is the one-electron reduced density matrix (1-RDM). By identifying similarities between the steady-state Liouville equation and the anti-Hermitian contracted Schrödinger equation (ACSE) [D. A. Mazziotti, Phys. Rev. A 75, 022505 (2007)], we develop a way of enforcing nonequilibrium, steady-state behavior in a time-independent theory. Our results illustrate the relationship between current and voltage in molecular junctions assuming that the total number of electrons under consideration can be fixed across all driving potentials. The impetus for this work is a recent study by Subotnik et al. that also uses the 1-RDM to study molecular conductivity under different assumptions regarding the total number of electrons [J. E. Subotnik et al., J. Chem. Phys. 130, 144105 (2009)]. Unlike calculations in the previous study, our calculations result in 1-RDMs that are fully N-representable. The present work maintains N-representability through a bath-bath mixing that is related to a time-independent relaxation of the baths in the absence of the molecule, as governed by the ACSE. A lack of N-representability can be important since it corresponds to occupying energy states in the molecule or baths with more than one electron or hole (the absence of an electron) in violation of the Pauli principle. For this reason the present work may serve as an important, albeit preliminary, step in designing a 2-RDM/ACSE method for studying steady-state molecular conductivity with an explicit treatment of electron correlation.
International Nuclear Information System (INIS)
Afsaneh, E.; Yavari, H.
2014-01-01
The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)
Computation of quantum electron transport with local current conservation using quantum trajectories
International Nuclear Information System (INIS)
Alarcón, A; Oriols, X
2009-01-01
A recent proposal for modeling time-dependent quantum electron transport with Coulomb and exchange correlations using quantum (Bohm) trajectories (Oriols 2007 Phys. Rev. Lett. 98 066803) is extended towards the computation of the total (particle plus displacement) current in mesoscopic devices. In particular, two different methods for the practical computation of the total current are compared. The first method computes the particle and the displacement currents from the rate of Bohm particles crossing a particular surface and the time-dependent variations of the electric field there. The second method uses the Ramo–Shockley theorem to compute the total current on that surface from the knowledge of the Bohm particle dynamics in a 3D volume and the time-dependent variations of the electric field on the boundaries of that volume. From a computational point of view, it is shown that both methods achieve local current conservation, but the second is preferred because it is free from 'spurious' peaks. A numerical example, a Bohm trajectory crossing a double-barrier tunneling structure, is presented, supporting the conclusions
Quantum Transport Simulation of High-Power 4.6-μm Quantum Cascade Lasers
Directory of Open Access Journals (Sweden)
Olafur Jonasson
2016-06-01
Full Text Available We present a quantum transport simulation of a 4.6- μ m quantum cascade laser (QCL operating at high power near room temperature. The simulation is based on a rigorous density-matrix-based formalism, in which the evolution of the single-electron density matrix follows a Markovian master equation in the presence of applied electric field and relevant scattering mechanisms. We show that it is important to allow for both position-dependent effective mass and for effective lowering of very thin barriers in order to obtain the band structure and the current-field characteristics comparable to experiment. Our calculations agree well with experiments over a wide range of temperatures. We predict a room-temperature threshold field of 62 . 5 kV/cm and a characteristic temperature for threshold-current-density variation of T 0 = 199 K . We also calculate electronic in-plane distributions, which are far from thermal, and show that subband electron temperatures can be hundreds to thousands of degrees higher than the heat sink. Finally, we emphasize the role of coherent tunneling current by looking at the size of coherences, the off-diagonal elements of the density matrix. At the design lasing field, efficient injection manifests itself in a large injector/upper lasing level coherence, which underscores the insufficiency of semiclassical techniques to address injection in QCLs.
Directory of Open Access Journals (Sweden)
Pengqin Shi
2016-09-01
Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
Rheology via nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Hoover, W.G.
1982-10-01
The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference
Energy Technology Data Exchange (ETDEWEB)
Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Casteleiro, C.; Leadley, D. R.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2016-09-05
The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm{sup 2}/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m{sub 0}. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.
Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.
2016-09-01
The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.
Magneto-transport study of quantum phases in wide GaAs quantum wells
Liu, Yang
In this thesis we study several quantum phases in very high quality two-dimensional electron systems (2DESs) confined to GaAs single wide quantum wells (QWs). In these systems typically two electric subbands are occupied. By controlling the electron density as well as the QW symmetry, we can fine tune the cyclotron and subband separation energies, so that Landau levels (LLs) belonging to different subbands cross at the Fermi energy EF. The additional subband degree of freedom enables us to study different quantum phases. Magneto-transport measurements at fixed electron density n and various QW symmetries reveal a remarkable pattern for the appearance and disappearance of fractional quantum Hall (FQH) states at LL filling factors nu = 10/3, 11/3, 13/3, 14/3, 16/3, and 17/3. These q/3 states are stable and strong as long as EF lies in a ground-state (N = 0) LL, regardless of whether that level belongs to the symmetric or the anti-symmetric subband. We also observe subtle and distinct evolutions near filling factors nu = 5/2 and 7/2, as we change the density n, or the symmetry of the charge distribution. The even-denominator FQH states are observed at nu = 5/2, 7/2, 9/2 and 11/2 when EF lies in the N= 1 LLs of the symmetric subband (the S1 levels). As we increase n, the nu = 5/2 FQH state suddenly disappears and turns into a compressible state once EF moves to the spin-up, N = 0, anti-symmetric LL (the A0 ↑ level). The sharpness of this disappearance suggests a first-order transition from a FQH to a compressible state. Moreover, thanks to the renormalization of the susbband energy separation in a well with asymmetric change distribution, two LLs can get pinned to each other when they are crossing at E F. We observe a remarkable consequence of such pinning: There is a developing FQH state when the LL filling factor of the symmetric subband nuS equals 5/2 while the antisymmetric subband has filling 1 < nuA <2. Next, we study the evolution of the nu=5/2 and 7/2 FQH
Electrical transport in strained silicon quantum wells on vicinal substrates
International Nuclear Information System (INIS)
Kaya, S.
1999-01-01
This thesis deals with the electrical transport studies of strained Si quantum wells grown on tilted Si substrates. Magnetotransport measurements at very low temperatures are used to investigate the high electron mobility, scattering processes and modified band structure for four different substrate orientations (2, 4, 6 and 10 deg.) and in two different directions of transport. We first discuss the morphology of the tilted system with the aid of, atomic force and optical microscopy. A clear change of surface morphology of tilted layers in comparison with the (001) type surfaces is explained by the degree of tilt in the system. The electron mobility and in-plane effective mass becomes anisotropic, which scale roughly with the tilt angle. The mobility anisotropy is shown to be the result of extra scattering when electrons travel across the steps common to vicinal surfaces. The extra scattering has characteristics similar to interface roughness scattering, as inferred from the trend that the transport (τ t ) and quantum scattering (τ q ) times follow. As the tilt angle grows, it is found that τ t /τ q →1 in the direction perpendicular to the steps. Electrons in tilted channels of multivalley semiconductors can involve a new interband scattering mechanism due to a one dimensional minigap opening in the conduction band. This effect, known from bulk Si MOSFETs, is investigated in strained Si for the first time in this thesis. First, the effect of applied electric fields on electron conduction is considered. Shubnikov-de Haas oscillations in the magnetoresistance data indicate a remarkably different electron scattering behaviour in tilted samples with increasing fields in directions parallel and perpendicular to the tilt direction. An FFT analysis of the data produces extra peaks in the electron density spectra. By clear contrast, flat samples grown under similar conditions do not show any unusual features. The difference is attributed to the existence of a minigap
Verma, Upendra Kumar; Kumar, Brijesh
2017-10-01
We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).
International Nuclear Information System (INIS)
Cheng Shuguang
2010-01-01
Recent experiments have confirmed that the electron-hole inhomogeneity in graphene is a new type of charge disorder. Motivated by such confirmation, we theoretically study the transport properties of a monolayer graphene (MLG) based p-n junction and a bilayer graphene (BLG) p-n junction in the quantum Hall regime where electron-hole puddles are considered. By using the non-equilibrium Green function method, both the current and conductance are obtained. We find that, in the presence of the electron-hole inhomogeneity, the lowest quantized conductance plateau at e 2 /h emerges in the MLG p-n junction under very small charge puddle disorder strength. For a BLG p-n junction, however, the conductance in the p-n region is enhanced with charge puddles, and the lowest quantized conductance plateau emerges at 2e 2 /h. Besides, when an ideal quantized conductance plateau is formed for a MLG p-n junction, the universal conductance fluctuation is found to be 2e 2 /3h. Furthermore, we also investigate the influence of Anderson disorder on such p-n junctions and the comparison and discussion are given accordingly. To compare the two models with different types of disorder, we investigate the conductance distribution specially. Finally the influence of disorder strength on the conductance of a MLG p-n junction is investigated.
Coupled electron-phonon transport from molecular dynamics with quantum baths
DEFF Research Database (Denmark)
Lu, Jing Tao; Wang, J. S.
2009-01-01
Based on generalized quantum Langevin equations for the tight-binding wavefunction amplitudes and lattice displacements, electron and phonon quantum transport are obtained exactly using molecular dynamics (MD) in the ballistic regime. The electron-phonon interactions can be handled with a quasi...
Giant electron-hole transport asymmetry in ultra-short quantum transistors
McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.
2017-01-01
Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024
Quantum Transport in Solids: Bloch Dynamics and Role of Oscillating Fields
National Research Council Canada - National Science Library
Kim, Ki
1997-01-01
.... The specific areas of research are those of Bloch electron dynamics, quantum transport in oscillating electric fields or in periodic potentials, and the capacitive nature of atomic size structures...
Anisotropic behavior of quantum transport in graphene superlattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan
2014-01-01
We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...
Transport studies in p-type double quantum well samples
International Nuclear Information System (INIS)
Hyndman, R.J.
2000-01-01
The motivation for the study of double quantum well samples is that the extra spatial degree of freedom can modify the ground state energies of the system, leading to new and interesting many body effects. Electron bi-layers have been widely studied but the work presented here is the first systematic study of transport properties of a p-type, double quantum well system. The samples, grown on the 311 plane, consisted of two 100A GaAs wells separated by a 30A AlAs barrier. The thin barrier in our structures, gives rise to very strong inter-layer Coulombic interactions but in contrast to electron double quantum well samples, tunnelling between the two wells is very weak. This is due to the large effective mass of holes compared with electrons. It is possible to accurately control the total density of a sample and the relative occupancy of each well using front and back gates. A systematic study of the magnetoresistance properties of the p-type bi-layers, was carried out at low temperatures and in high magnetic fields, for samples covering a range of densities. Considerable care was required to obtain reliable results as the samples were extremely susceptible to electrical shock and were prone to drift in density slowly over time. With balanced wells, the very low tunnelling in the p-type bi-layer leads to a complete absence of all odd integers in both resistance and thermopower except for the v=1 state, ( v 1/2 in each layer) where v is the total Landau level filling factor. Unlike other FQHE features the v=1 state strengthens with increased density as inter-layer interactions increase in strength over intra-layer interactions. The state is also destroyed at a critical temperature, which is much lower than the measured activation temperature. This is taken as evidence for a finite temperature phase transition predicted for the bi-layer v=1. From the experimental observations, we construct a phase diagram for the state, which agree closely with theoretical predictions
Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.
2018-04-01
The way to determine the renormalized energy of inhomogeneous systems of a quantum field under an external potential is established for both equilibrium and nonequilibrium scenarios based on thermo field dynamics. The key step is to find an extension of the on-shell concept valid in homogeneous case. In the nonequilibrium case, we expand the field operator by time-dependent wavefunctions that are solutions of the appropriately chosen differential equation, synchronizing with temporal change of thermal situation, and the quantum transport equation is derived from the renormalization procedure. Through numerical calculations of a triple-well model with a reservoir, we show that the number distribution and the time-dependent wavefunctions are relaxed consistently to the correct equilibrium forms at the long-term limit.
International Nuclear Information System (INIS)
Yeh, L.
1992-01-01
The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite- mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena
Cavity-photon-switched coherent transient transport in a double quantum waveguide
Energy Technology Data Exchange (ETDEWEB)
Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)
2014-12-21
We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.
Exciton shelves for charge and energy transport in third-generation quantum-dot devices
Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant
2014-03-01
Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.
Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann
2013-06-01
In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.
Quantum logic gates based on ballistic transport in graphene
Energy Technology Data Exchange (ETDEWEB)
Dragoman, Daniela [Faculty of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania); Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest (Romania); Dragoman, Mircea, E-mail: mircea.dragoman@imt.ro [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania)
2016-03-07
The paper presents various configurations for the implementation of graphene-based Hadamard, C-phase, controlled-NOT, and Toffoli gates working at room temperature. These logic gates, essential for any quantum computing algorithm, involve ballistic graphene devices for qubit generation and processing and can be fabricated using existing nanolithographical techniques. All quantum gate configurations are based on the very large mean-free-paths of carriers in graphene at room temperature.
Directory of Open Access Journals (Sweden)
M. W. Doherty
2016-11-01
Full Text Available Diamond is a proven solid-state platform for spin-based quantum technology. The nitrogen-vacancy center in diamond has been used to realize small-scale quantum information processing and quantum sensing under ambient conditions. A major barrier in the development of large-scale quantum information processing in diamond is the connection of nitrogen-vacancy spin registers by a quantum bus at room temperature. Given that diamond is expected to be an ideal spin transport material, the coherent transport of spin directly between the spin registers offers a potential solution. Yet, there has been no demonstration of spin transport in diamond due to difficulties in achieving spin injection and detection via conventional methods. Here, we exploit detailed knowledge of the paramagnetic defects in diamond to identify novel mechanisms to photoionize, transport, and capture spin-polarized electrons in diamond at room temperature. Having identified these mechanisms, we explore how they may be combined to realize an on-chip spin quantum bus.
Inter-dot coupling effects on transport through correlated parallel
Indian Academy of Sciences (India)
Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...
William Massman
2015-01-01
Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...
Introduction to the nonequilibrium functional renormalization group
International Nuclear Information System (INIS)
Berges, J.; Mesterházy, D.
2012-01-01
In these lectures we introduce the functional renormalization group out of equilibrium. While in thermal equilibrium typically a Euclidean formulation is adequate, nonequilibrium properties require real-time descriptions. For quantum systems specified by a given density matrix at initial time, a generating functional for real-time correlation functions can be written down using the Schwinger-Keldysh closed time path. This can be used to construct a nonequilibrium functional renormalization group along similar lines as for Euclidean field theories in thermal equilibrium. Important differences include the absence of a fluctuation-dissipation relation for general out-of-equilibrium situations. The nonequilibrium renormalization group takes on a particularly simple form at a fixed point, where the corresponding scale-invariant system becomes independent of the details of the initial density matrix. We discuss some basic examples, for which we derive a hierarchy of fixed point solutions with increasing complexity from vacuum and thermal equilibrium to nonequilibrium. The latter solutions are then associated to the phenomenon of turbulence in quantum field theory.
International Nuclear Information System (INIS)
Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien
2014-01-01
We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern
Nonequilibrium Phenomena in Plasmas
Sharma, A Surjalal
2005-01-01
The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.
Electronic structure and quantum transport properties of metallic and semiconducting nanowires
Simbeck, Adam J.
The future of the semiconductor industry hinges upon new developments to combat the scaling issues that currently afflict two main chip components: transistors and interconnects. For transistors this means investigating suitable materials to replace silicon for both the insulating gate and the semiconducting channel in order to maintain device performance with decreasing size. For interconnects this equates to overcoming the challenges associated with copper when the wire dimensions approach the confinement limit, as well as continuing to develop low-k dielectric materials that can assure minimal cross-talk between lines. In addition, such challenges make it increasingly clear that device design must move from a top-down to a bottom-up approach in which the desired electronic characteristics are tailored from first-principles. It is with such fundamental hurdles in mind that ab initio calculations on the electronic and quantum transport properties of nanoscale metallic and semiconducting wires have been performed. More specifically, this study seeks to elaborate on the role played by confinement, contacts, dielectric environment, edge decoration, and defects in altering the electronic and transport characteristics of such systems. As experiments continue to achieve better control over the synthesis and design of nanowires, these results are expected to become increasingly more important for not only the interpretation of electronic and transport trends, but also in engineering the electronic structure of nanowires for the needs of the devices of the future. For the metallic atomic wires, the quantum transport properties are first investigated by considering finite, single-atom chains of aluminum, copper, gold, and silver sandwiched between gold contacts. Non-equilibrium Green's function based transport calculations reveal that even in the presence of the contact the conductivity of atomic-scale aluminum is greater than that of the other metals considered. This is
Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot
International Nuclear Information System (INIS)
Liu, Y S; Fan, X H; Xia, Y J; Yang, X F
2008-01-01
We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased
Coons, Marc P.; Herbert, John M.
2018-06-01
Widely used continuum solvation models for electronic structure calculations, including popular polarizable continuum models (PCMs), usually assume that the continuum environment is isotropic and characterized by a scalar dielectric constant, ɛ. This assumption is invalid at a liquid/vapor interface or any other anisotropic solvation environment. To address such scenarios, we introduce a more general formalism based on solution of Poisson's equation for a spatially varying dielectric function, ɛ(r). Inspired by nonequilibrium versions of PCMs, we develop a similar formalism within the context of Poisson's equation that includes the out-of-equilibrium dielectric response that accompanies a sudden change in the electron density of the solute, such as that which occurs in a vertical ionization process. A multigrid solver for Poisson's equation is developed to accommodate the large spatial grids necessary to discretize the three-dimensional electron density. We apply this methodology to compute vertical ionization energies (VIEs) of various solutes at the air/water interface and compare them to VIEs computed in bulk water, finding only very small differences between the two environments. VIEs computed using approximately two solvation shells of explicit water molecules are in excellent agreement with experiment for F-(aq), Cl-(aq), neat liquid water, and the hydrated electron, although errors for Li+(aq) and Na+(aq) are somewhat larger. Nonequilibrium corrections modify VIEs by up to 1.2 eV, relative to models based only on the static dielectric constant, and are therefore essential to obtain agreement with experiment. Given that the experiments (liquid microjet photoelectron spectroscopy) may be more sensitive to solutes situated at the air/water interface as compared to those in bulk water, our calculations provide some confidence that these experiments can indeed be interpreted as measurements of VIEs in bulk water.
Spin-related transport phenomena in HgTe-based quantum well structures
International Nuclear Information System (INIS)
Koenig, Markus
2007-12-01
Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg 0.3 Cd 0.7 Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)
Spin-related transport phenomena in HgTe-based quantum well structures
Energy Technology Data Exchange (ETDEWEB)
Koenig, Markus
2007-12-15
Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg{sub 0.3}Cd{sub 0.7}Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)
Parity effect of bipolar quantum Hall edge transport around graphene antidots.
Matsuo, Sadashige; Nakaharai, Shu; Komatsu, Katsuyoshi; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke
2015-06-30
Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene.
Transient charging and discharging of spin-polarized electrons in a quantum dot
DEFF Research Database (Denmark)
De Souza, Fabricio; Leao, S.A.; Gester, R. M.
2007-01-01
We study spin-polarized transient transport in a quantum dot coupled to two ferromagnetic leads subjected to a rectangular bias voltage pulse. Time-dependent spin-resolved currents, occupations, spin accumulation, and tunneling magnetoresistance TMR are calculated using both nonequilibrium Green ...
Statistical thermodynamics of nonequilibrium processes
Keizer, Joel
1987-01-01
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...
Nonequilibrium statistical averages and thermo field dynamics
International Nuclear Information System (INIS)
Marinaro, A.; Scarpetta, Q.
1984-01-01
An extension of thermo field dynamics is proposed, which permits the computation of nonequilibrium statistical averages. The Brownian motion of a quantum oscillator is treated as an example. In conclusion it is pointed out that the procedure proposed to computation of time-dependent statistical average gives the correct two-point Green function for the damped oscillator. A simple extension can be used to compute two-point Green functions of free particles
Equilibrium and non-equilibrium phenomena in arcs and torches
Mullen, van der J.J.A.M.
2000-01-01
A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.
Envisaging quantum transport phenomenon in a muddled base pair ...
Indian Academy of Sciences (India)
RAJAN VOHRA
2018-03-27
Mar 27, 2018 ... effect of mispairs G(anti)·A(syn) and G(anti)·A(anti) on electron transport by replacing ... used by us with two-probe system consisting of three parts: right, left ... The ballistic transport results if probability of transmitting electrons ...
Functional characterization and axonal transport of quantum dot labeled BDNF
Xie, Wenjun; Zhang, Kai; Cui, Bianxiao
2012-01-01
Brain derived neurotrophic factor (BDNF) plays a key role in the growth, development and maintenance of the central and peripheral nervous systems. Exogenous BDNF activates its membrane receptors at the axon terminal, and subsequently sends regulation signals to the cell body. To understand how BDNF signal propagates in neurons, it is important to follow the trafficking of BDNF after it is internalized at the axon terminal. Here we labeled BDNF with bright, photostable quantum dot (QD-BDNF) a...
Energy Technology Data Exchange (ETDEWEB)
Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom); Li, Shengtao, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)
2016-08-08
Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.
Non-Equilibrium Thermodynamics in Multiphase Flows
Mauri, Roberto
2013-01-01
Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...
Nonequilibrium molecular dynamics theory, algorithms and applications
Todd, Billy D
2017-01-01
Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...
Directory of Open Access Journals (Sweden)
Yuqiu Qu
2015-12-01
Full Text Available The effect of different organic charge transporting materials on the photoluminescence of CdSe/ZnS core/shell quantum dots has been studied by means of steady-state and time-resolved photoluminescence spectroscopy. With an increase in concentration of the organic charge transporting material in the quantum dots solutions, the photoluminescence intensity of CdSe/ZnS quantum dots was quenched greatly and the fluorescence lifetime was shortened gradually. The quenching efficiency of CdSe/ZnS core/shell quantum dots decreased with increasing the oxidation potential of organic charge transporting materials. Based on the analysis, two pathways in the photoluminescence quenching process have been defined: static quenching and dynamic quenching. The dynamic quenching is correlated with hole transporting from quantum dots to the charge transporting materials.
Valley-polarized quantum transport generated by gauge fields in graphene
DEFF Research Database (Denmark)
Settnes, Mikkel; Garcia, Jose H; Roche, Stephan
2017-01-01
We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....
Exciton correlations and input–output relations in non-equilibrium exciton superfluids
International Nuclear Information System (INIS)
Ye, Jinwu; Sun, Fadi; Yu, Yi-Xiang; Liu, Wuming
2013-01-01
The photoluminescence (PL) measurements on photons and the transport measurements on excitons are the two types of independent and complementary detection tools to search for possible exciton superfluids in electron–hole semi-conductor bilayer systems. In fact, it was believed that the transport measurements can provide more direct evidences on superfluids than the spectroscopic measurements. It is important to establish the relations between the two kinds of measurements. In this paper, using quantum Heisenberg–Langevin equations, we establish such a connection by calculating various exciton correlation functions in the putative exciton superfluids. These correlation functions include both normal and anomalous greater, lesser, advanced, retarded, and time-ordered exciton Green functions and also various two exciton correlation functions. We also evaluate the corresponding normal and anomalous spectral weights and the Keldysh distribution functions. We stress the violations of the fluctuation and dissipation theorem among these various exciton correlation functions in the non-equilibrium exciton superfluids. We also explore the input–output relations between various exciton correlation functions and those of emitted photons such as the angle resolved photon power spectrum, phase sensitive two mode squeezing spectrum and two photon correlations. Applications to possible superfluids in the exciton–polariton systems are also mentioned. For a comparison, using conventional imaginary time formalism, we also calculate all the exciton correlation functions in an equilibrium dissipative exciton superfluid in the electron–electron coupled semi-conductor bilayers at the quantum Hall regime at the total filling factor ν T =1. We stress the analogies and also important differences between the correlations functions in the two exciton superfluid systems. - Highlights: ► Establish the relations between photoluminescence and transport measurements. ► Stress the
Solvable model of spin-dependent transport through a finite array of quantum dots
International Nuclear Information System (INIS)
Avdonin, S A; Dmitrieva, L A; Kuperin, Yu A; Sartan, V V
2005-01-01
The problem of spin-dependent transport of electrons through a finite array of quantum dots attached to a 1D quantum wire (spin gun) for various semiconductor materials is studied. The Breit-Fermi term for spin-spin interaction in the effective Hamiltonian of the device is shown to result in a dependence of transmission coefficient on the spin orientation. The difference of transmission probabilities for singlet and triplet channels can reach a few per cent for a single quantum dot. For several quantum dots in the array due to interference effects it can reach approximately 100% for some energy intervals. For the same energy intervals the conductance of the device reaches the value ∼1 in [e 2 /πℎ] units. As a result a model of the spin gun which transforms the spin-unpolarized electron beam into a completely polarized one is suggested
International Nuclear Information System (INIS)
Hales, R.; Waalkens, H.
2009-01-01
We study the quantum transport through entropic barriers induced by hardwall constrictions of hyperboloidal shape in two and three spatial dimensions. Using the separability of the Schroedinger equation and the classical equations of motion for these geometries, we study in detail the quantum transmission probabilities and the associated quantum resonances, and relate them to the classical phase structures which govern the transport through the constrictions. These classical phase structures are compared to the analogous structures which, as has been shown only recently, govern reaction type dynamics in smooth systems. Although the systems studied in this paper are special due their separability they can be taken as a guide to study entropic barriers resulting from constriction geometries that lead to non-separable dynamics.
Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka; Rott, Stephan
1999-01-01
the whole held range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport...
Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands
Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.
2018-01-01
The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.
Introduction to quantum chromo transport theory for quark-gluon plasmas
International Nuclear Information System (INIS)
Gyulassy, M.; Elze, H.Th.; Iwazaki, A.; Vasak, D.
1986-08-01
Upcoming heavy ion experiments at the AGS and SPS are aimed at producing and diagnosing a primordial form of matter, the quark-gluon plasma. In these lectures some recent developments on formulating a quantum transport theory for quark-gluon plasmas are introduced. 46 refs
A consistent description of kinetics and hydrodynamics of quantum Bose-systems
Directory of Open Access Journals (Sweden)
P.A.Hlushak
2004-01-01
Full Text Available A consistent approach to the description of kinetics and hydrodynamics of many-Boson systems is proposed. The generalized transport equations for strongly and weakly nonequilibrium Bose systems are obtained. Here we use the method of nonequilibrium statistical operator by D.N. Zubarev. New equations for the time distribution function of the quantum Bose system with a separate contribution from both the kinetic and potential energies of particle interactions are obtained. The generalized transport coefficients are determined accounting for the consistent description of kinetic and hydrodynamic processes.
Electron transport in quantum wires: possible current instability mechanism
International Nuclear Information System (INIS)
Sablikov, V.A.
2001-01-01
The electrons nonlinear and dynamic transition in quantum wires connecting the electron reservoirs, are studies with an account of the Coulomb interaction distribution of electron density between the reservoirs and the wire. It is established that there exist two processes, leading to electrical instability in such structure. One of them is expressed in form of multistability of the charge accumulated in the wire, and negative differential conductivity. The other one is connected with origination of negative dynamic conductivity in the narrow frequency range near the resonance frequency of the charge waves on the wire length [ru
Reggiani, L.; Bordone, P.; Brunetti, R.
2004-02-01
The International Conference on Nonequilibrium Carrier Dynamics in Semiconductors (HCIS-13) celebrates 30 years since it first took place in Modena. Nonequilibrium dynamics of charge carriers, pioneered by the hot-electron concept, is an important issue for understanding electro-optic transport properties in semiconductor materials and structures. In these 30 years several topics have matured, and new ones have emerged thus fertilizing the field with a variety of physical problems and new ideas. The history of the conference is summarized in the opening paper `30 years of HCIS'. The future of the conference seems secure considering the continued lively interest of the participants. The conference addressed eleven major topics which constitute the backbone of the proceedings and are summarized as follows: carrier transport in low dimensional and nanostructure systems, nonequilibrium carriers in superlattices and devices, small devices and related phenomena, carrier dynamics and fluctuations, carrier quantum dynamics, coherent/incoherent carrier dynamics of optical excitations and ultra-fast optical phenomena, nonlinear optical effects, transport in organic matter, semiconductor-based spintronics, coherent dynamics in solid state systems for quantum processing and communication, novel materials and devices. Nanometric space scale and femtosecond time scale represent the ultimate domains of theoretical, experimental and practical interest. Traditional fields such as bulk properties, quantum transport, fluctuations and chaotic phenomena, etc, have received thorough and continuous attention. Emerging fields from previous conferences, such as quantum processing and communication, have been better assessed. New fields, such as spintronics and electron transport in organic matter, have appeared for the first time. One plenary talk, 11 invited talks, 230 submitted abstracts covering all these topics constituted a single-session conference. Following scientific selection
Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas
International Nuclear Information System (INIS)
Dufty, James W.
2007-01-01
This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.
Hybrid quantum-classical modeling of quantum dot devices
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R.; Kangawa, Yoshihiro; Kakimoto, Koichi
2017-01-01
Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and Nad-H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict...
Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials
Barletti, Luigi; Negulescu, Claudia
2018-05-01
We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.
Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells
Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong
2017-10-01
In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.
Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime
International Nuclear Information System (INIS)
Wi, H.P.
1986-01-01
This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials
Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.
Li, M Z; Wang, Z H; Yang, L; Pan, D S; Li, Da; Gao, Xuan; Zhang, Zhi-Dong
2018-05-14
Controlling the growth direction (planar vs. vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional (2D) layered materials. We report a simple method to fabricate continuous films of vertical Bi2Se3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi2Se3 nanoplate film, vertical Bi2Se3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi2Se3 nanoplates, we realized an effective tuning of the weak antilocalization (WAL) effect from topological surface states in Bi2Se3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film. © 2018 IOP Publishing Ltd.
Nonequilibrium statistical physics
Röpke, Gerd
2013-01-01
Authored by one of the top theoretical physicists in Germany, and a well-known authority in the field, this is the only coherent presentation of the subject suitable for masters and PhD students, as well as postdocs in physics and related disciplines.Starting from a general discussion of the nonequilibrium state, different standard approaches such as master equations, and kinetic and linear response theory, are derived after special assumptions. This allows for an insight into the problems of nonequilibrium physics, a discussion of the limits, and suggestions for improvements. Applications
GQ corrections in the circuit theory of quantum transport
Campagnano, G.; Nazarov, Y.V.
2006-01-01
We develop a finite-element technique that allows one to evaluate correction of the order of GQ to various transport characteristics of arbitrary nanostructures. Common examples of such corrections are the weak-localization effect on conductance and universal conductance fluctuations. Our approach,
Energy Technology Data Exchange (ETDEWEB)
Goettel, Stefan
2015-05-22
In this thesis, we study two recently developed methods to tackle low-dimensional correlated quantum systems. In the first part, we benchmark the extension of the functional renormalization group to spin-systems. We apply it to the two-dimensional XXZ model and reproduce the prediction for the phase transition from planar to axial ordering at the isotropic point. The interpretation of the critical scale (where the flow of the susceptibility diverges) as the critical temperature of the system can be questioned, since it yields only good results in the Ising limit. Especially near the isotropic point, this interpretation becomes unsatisfactory as the Mermin-Wagner theorem is violated. We discuss several problems of the method and conclude that it should only be used to explore phase diagrams. In the second part, we extend previous works to two-level quantum dots in the Coulomb blockade regime with special hopping matrices in nonequilibrium, e.g., the Kondo model, to the generic form, including ferromagnetic leads, spin-orbit interactions etc. The dot and the transport observables are determined completely by the hybridization matrix, leading to one of our major results that all these models can be mapped to the Anderson impurity model with ferromagnetic leads. We investigate this model with a well-controlled real-time renormalization group approach and justify the results of a poor man's scaling analysis. By using a singular value decomposition of the tunneling matrix we can rotate the model to the anisotropic Kondo model in the high-energy regime to solve the flow equations analytically. With this, we calculate the stationary dot magnetization and the current. The minimum of the magnetization is found to be an ellipsoid as function of the magnetic field, where the stretching factor determines the distance to the scaling limit. Afterwards, we consider the special case of two external reservoirs and the system being in the scaling limit and discuss the golden
Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs
International Nuclear Information System (INIS)
Ghorui, S; Das, A K
2012-01-01
Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.
Coherent exciton transport in dendrimers and continuous-time quantum walks
Mülken, Oliver; Bierbaum, Veronika; Blumen, Alexander
2006-03-01
We model coherent exciton transport in dendrimers by continuous-time quantum walks. For dendrimers up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For larger dendrimers, the recurrence ceases to be perfect, a fact which resembles results for discrete quantum carpets. Moreover, depending on the initial excitation site, we find that the coherent transport to certain nodes of the dendrimer has a very low probability. When the initial excitation starts from the central node, the problem can be mapped onto a line which simplifies the computational effort. Furthermore, the long time average of the quantum mechanical transition probabilities between pairs of nodes shows characteristic patterns and allows us to classify the nodes into clusters with identical limiting probabilities. For the (space) average of the quantum mechanical probability to be still or to be again at the initial site, we obtain, based on the Cauchy-Schwarz inequality, a simple lower bound which depends only on the eigenvalue spectrum of the Hamiltonian.
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
International Nuclear Information System (INIS)
Huang, S.H.; Chen Zhanghai; Wang, F.Z.; Shen, S.C.; Tan, H.H.; Fu, L.; Fraser, M.; Jagadish, C.
2006-01-01
A single Al 0.5 Ga 0.5 As/GaAs V-grooved quantum wire modified by selective ion implantation and rapid thermal annealing was investigated by using spatially resolved micro-photoluminescence spectroscopy and magneto-resistance measurements. The results of spatially resolved photoluminescence indicate that the ion-implantation-induced quantum well intermixing significantly raises the electronic sub-band energies in the side quantum wells (SQWs) and vertical quantum wells, and a more efficient accumulation of electrons in the quantum wires is achieved. Processes of real space carrier transfer from the SQW to the quantum wire was experimentally observed, and showed the blocking effect of carrier transfer due to the existence of the necking quantum well region. Furthermore, magneto-transport investigation on the ion-implanted quantum wire samples shows the quasi-one-dimensional intrinsic motion of electrons, which is important for the design and the optimization of one-dimensional electronic devices
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
Rate of tunneling nonequilibrium quasiparticles in superconducting qubits
International Nuclear Information System (INIS)
Ansari, Mohammad H
2015-01-01
In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations. (paper)
The non-equilibrium Green's function method for nanoscale device simulation
Pourfath, Mahdi
2014-01-01
For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies, and scattering self-energie...
Finite speed heat transport in a quantum spin chain after quenched local cooling
Fries, Pascal; Hinrichsen, Haye
2017-04-01
We study the dynamics of an initially thermalized spin chain in the quantum XY-model, after sudden coupling to a heat bath of lower temperature at one end of the chain. In the semi-classical limit we see an exponential decay of the system-bath heatflux by exact solution of the reduced dynamics. In the full quantum description however, we numerically find the heatflux to reach intermediate plateaus where it is approximately constant—a phenomenon that we attribute to the finite speed of heat transport via spin waves.
Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2018-06-01
We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.
Giant magnetoresistance and quantum transport in magnetic hybrid nanostructures
International Nuclear Information System (INIS)
Sanvito, S.
2000-01-01
Technological advances in device micro- and nano-fabrication over the past decade has enabled a variety of novel heterojunction device structures to be made. Among these, magnetic multilayers, superconductor/normal metal junctions and carbon nanotubes exhibit a rich variety of features, with the potential for future generations of electronic devices with improved sensitivity and higher packing density. The modeling of such structures in a flexible and accurate way, with a predictive capability is a formidable theoretical challenge. In this thesis I will present a very general numerical technique to compute transport properties of heterogeneous systems, which can be used together with accurate spd tight-binding Hamiltonians or simpler models. I will then apply this technique to several transport problems in the mesoscopic regime. Firstly I will review the material dependence of CPP GMR in perfect crystalline magnetic multilayers, analyze their conductance oscillations and discuss some preliminary results of magnetic tunneling junctions. In the contest of the conductance oscillations I will introduce a simple Kroenig-Penney model which gives a full understanding of the relevant periods involved in the oscillations. I will then present a simple model, which can be used to study disordered magnetic systems and the cross-over from ballistic to diffusive transport. This model explains recent experiments on CPP GMR, which cannot be understood within the usual Boltzmann transport framework. Then I will present results for superconducting/ normal metal and for superconducting/multilayer junctions. In the case of multilayers I will show that in both the ballistic and diffusive regimes the GMR is expected to vanish if a superconducting contact is added and go on to show why this is not the case in practice. Finally I will present features of ballistic transport in multiwall carbon nanotubes and show how the inter-tube interaction can, not only block some of the scattering
Quantum transport in boron-doped nanocrystalline diamond
Czech Academy of Sciences Publication Activity Database
Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Kindl, Dobroslav; Nesládek, Miloš
2008-01-01
Roč. 14, č. 7-8 (2008), s. 161-172 ISSN 0948-1907 R&D Projects: GA ČR GA202/07/0525; GA AV ČR IAA1010404; GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond film * ballistic transport * superconductivity * Josephson’s effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2008
Quantum transport in defective phosphorene nanoribbons: Effects of atomic vacancies
Li, L. L.; Peeters, F. M.
2018-02-01
Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.
Nonequilibrium thermodynamics of nucleation
Schweizer, M.; Sagis, L.M.C.
2014-01-01
We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a
Transport efficiency in open quantum systems with static and dynamical disorder
Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev
2017-12-01
We study, under very general conditions and in a variety of geometries, quantum enhancement of transport in open systems. Both static disorder and dephasing associated with dynamical disorder (or finite temperature) are fully included in the analysis. We show that quantum coherence effects may significantly enhance transport in open quantum systems even in the semiclassical regime (where the decoherence rate is greater than the inter-site hopping amplitude), as long as the static disorder is sufficiently strong. When the strengths of static and dynamical disorder are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected, for example, in the FMO photosynthetic complex, which may be viewed as being intermediate between these paradigmatic models. We furthermore show that a nonzero dephasing rate assists transport in an open linear chain when the disorder strength exceeds a critical value, and obtain this critical disorder strength as a function of the degree of opening.
Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger
2018-06-01
Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.
Coulomb effects on the transport properties of quantum dots in strong magnetic field
International Nuclear Information System (INIS)
Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.
2000-08-01
We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)
Optical control of spin-dependent thermal transport in a quantum ring
Abdullah, Nzar Rauf
2018-05-01
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.
Quantum oscillations and the electronic transport properties in multichain nanorings
International Nuclear Information System (INIS)
Racolta, D.
2009-01-01
We consider a system of multichain nanorings in static electric and magnetic field. The magnetic field induces characteristic phase changes. These phase shifts produce interference phenomena in the case of nanosystems for which the coherence length is larger than the sample dimension. We obtain energy solutions that are dependent on the number of sites N α characterizing a chain, of phase on the phase φ α and on the applied voltage. We found rich oscillations structures exhibited by the magnetic flux and we established the transmission probability. This proceeds by applying Landauer conductance formulae which opens the way to study electronic transport properties. (authors)
Quantum thermodynamics of nanoscale steady states far from equilibrium
Taniguchi, Nobuhiko
2018-04-01
We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
Istomin, V. A.
2018-05-01
The software package Planet Atmosphere Investigator of Non-equilibrium Thermodynamics (PAINeT) has been devel-oped for studying the non-equilibrium effects associated with electronic excitation, chemical reactions and ionization. These studies are necessary for modeling process in shock tubes, in high enthalpy flows, in nozzles or jet engines, in combustion and explosion processes, in modern plasma-chemical and laser technologies. The advantages and possibilities of the package implementation are stated. Within the framework of the package implementation, based on kinetic theory approximations (one-temperature and state-to-state approaches), calculations are carried out, and the limits of applicability of a simplified description of shock-heated air flows and any other mixtures chosen by the user are given. Using kinetic theory algorithms, a numerical calculation of the heat fluxes and relaxation terms can be performed, which is necessary for further comparison of engineering simulation with experi-mental data. The influence of state-to-state distributions over electronic energy levels on the coefficients of thermal conductivity, diffusion, heat fluxes and diffusion velocities of the components of various gas mixtures behind shock waves is studied. Using the software package the accuracy of different approximations of the kinetic theory of gases is estimated. As an example state-resolved atomic ionized mixture of N/N+/O/O+/e- is considered. It is shown that state-resolved diffusion coefficients of neutral and ionized species vary from level to level. Comparing results of engineering applications with those given by PAINeT, recommendations for adequate models selection are proposed.
On nonequilibrium many-body systems. 1: The nonequilibrium statistical operator method
International Nuclear Information System (INIS)
Algarte, A.C.S.; Vasconcellos, A.R.; Luzzi, R.; Sampaio, A.J.C.
1985-01-01
The theoretical aspects involved in the treatment of many-body systems strongly departed from equilibrium are discussed. The nonequilibrium statistical operator (NSO) method is considered in detail. Using Jaynes' maximum entropy formalism complemented with an ad hoc hypothesis a nonequilibrium statistical operator is obtained. This approach introduces irreversibility from the outset and we recover statistical operators like those of Green-Mori and Zubarev as particular cases. The connection with Generalized Thermodynamics and the construction of nonlinear transport equations are briefly described. (Author) [pt
International Nuclear Information System (INIS)
Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T
2007-01-01
Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data
Full counting statistics of level renormalization in electron transport through double quantum dots
International Nuclear Information System (INIS)
Luo Junyan; Shen Yu; Cen Gang; He Xiaoling; Wang Changrong; Jiao Hujun
2011-01-01
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
Circuit simulation model multi-quantum well laser diodes inducing transport and capture/escape
International Nuclear Information System (INIS)
Zhuber-Okrog, K.
1996-04-01
This work describes the development of world's first circuit simulation model for multi-quantum well (MQW) semiconductor lasers comprising caier transport and capture/escape effects. This model can be seen as the application of a new semiconductor device simulator for quasineutral structures including MQW layers with an extension for simple single mode modeling of optical behavior. It is implemented in a circuit simulation program. The model is applied to Fabry-Perot laser diodes and compared to measured data. (author)
Long and short time quantum dynamics III. Transients,
Czech Academy of Sciences Publication Activity Database
Špička, Václav; Velický, Bedřich; Kalvová, Anděla
2005-01-01
Roč. 29, - (2005), s. 196-212 ISSN 1386-9477 R&D Projects: GA ČR(CZ) GA202/04/0585; GA AV ČR(CZ) IAA1010404 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : non-equilibrium * Green functions * quantum transport equations * initial conditions Subject RIV: BE - Theoretical Physics Impact factor: 0.946, year: 2005
International Nuclear Information System (INIS)
Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin; Li, Hao; Shen, Liang; Chen, Weiyou; Yan, Dawei
2014-01-01
Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.
Modeling A.C. Electronic Transport through a Two-Dimensional Quantum Point Contact
International Nuclear Information System (INIS)
Aronov, I.E.; Beletskii, N.N.; Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Dudiy, S.V.
1998-01-01
We present the results on the a.c. transport of electrons moving through a two-dimensional (2D) semiconductor quantum point contact (QPC). We concentrate our attention on the characteristic properties of the high frequency admittance (ωapproximately0 - 50 GHz), and on the oscillations of the admittance in the vicinity of the separatrix (when a channel opens or closes), in presence of the relaxation effects. The experimental verification of such oscillations in the admittance would be a strong confirmation of the semi-classical approach to the a.c. transport in a QPC, in the separatrix region
Ballistic transport and quantum interference in InSb nanowire devices
International Nuclear Information System (INIS)
Li Sen; Huang Guang-Yao; Guo Jing-Kun; Kang Ning; Xu Hong-Qi; Caroff, Philippe
2017-01-01
An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron’s wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations. (paper)
Transport anomalies and quantum criticality in electron-doped cuprate superconductors
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xu; Yu, Heshan; He, Ge; Hu, Wei; Yuan, Jie; Zhu, Beiyi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jin, Kui, E-mail: kuijin@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)
2016-06-15
Highlights: • Electrical transport and its complementary thermal transport on electron-doped cuprates are reviewed. • The common features of electron-doped cuprates are sorted out and shown in the last figure. • The complex superconducting fluctuations and quantum fluctuations are distinguished. - Abstract: Superconductivity research is like running a marathon. Three decades after the discovery of high-T{sub c} cuprates, there have been mass data generated from transport measurements, which bring fruitful information. In this review, we give a brief summary of the intriguing phenomena reported in electron-doped cuprates from the aspect of electrical transport as well as the complementary thermal transport. We attempt to sort out common features of the electron-doped family, e.g. the strange metal, negative magnetoresistance, multiple sign reversals of Hall in mixed state, abnormal Nernst signal, complex quantum criticality. Most of them have been challenging the existing theories, nevertheless, a unified diagram certainly helps to approach the nature of electron-doped cuprates.
Relativistic quantum transport theory approach to multiparticle production
International Nuclear Information System (INIS)
Carruthers, P.; Zachariasen, F.
1976-01-01
The field-theoretic description of multiparticle production processes is cast in a form analogous to ordinary transport theory. Inclusive differential cross sections are shown to be given by integrals of covariant phase-space distributions. The single-particle distribution function F (p, R) is defined as the Fourier transform of a suitable correlation function in analogy with the nonrelativistic (Wigner) phase-space distribution function. Its transform F (p, q) is observed to be essentially the discontinuity of a multiparticle scattering amplitude. External-field problems are studied to exhibit the physical content of the formalism. When q = 0 one recovers the single-particle distribution exactly. The equation of motion for F (p, R) generates an infinite hierarchy of coupled equations for various distribution functions. In the Hartree approximation one obtains nonlinear integral equations analogous to the Vlasov equation in plasma physics. Such equations are convenient for exhibiting collective motions; in particular it appears that a collective mode exists in a phi 4 theory for a uniform infinite medium. It is speculated that such collective modes could provide a theoretical basis for clustering effects in multiparticle production
Spin-polarized quantum transport properties through flexible phosphorene
Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin
2016-10-01
We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.
Directory of Open Access Journals (Sweden)
P.Kostrobii
2006-01-01
Full Text Available Nonequilibrium properties of an inhomogeneous electron gas are studied using the method of the nonequilibrium statistical operator by D.N. Zubarev. Generalized transport equations for the mean values of inhomogeneous operators of the electron number density, momentum density, and total energy density for weakly and strongly nonequilibrium states are obtained. We derive a chain of equations for the Green's functions, which connects commutative time-dependent Green's functions "density-density", "momentum-momentum", "enthalpy-enthalpy" with reduced Green's functions of the generalized transport coefficients and with Green's functions for higher order memory kernels in the case of a weakly nonequilibrium spatially inhomogeneous electron gas.
All-solution processed composite hole transport layer for quantum dot light emitting diode
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)
2016-03-31
In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.
INTRODUCTION: Nonequilibrium Processes in Plasmas
Petrović, Zoran; Marić, Dragana; Malović, Gordana
2009-07-01
cosmos collapsed from the uniform plasma stage into stars and empty space, practically nothing is in real equilibrium only in local equilibrium. How wrong we were. As our focus turned to anti particles, positrons and positronium, we realized that even in those early stages there was major non-equilibrium between matter and anti matter originating from the earliest stages of the Big Bang. Thus it is safe to correct the famous quote by the renowned natural philosopher Sheldon Cooper into: 'If you know the laws of [non-equilibrium] physics anything is possible'. From the matter-anti-matter ratio in the universe to life itself. But do we really need such farfetched introductory remarks to justify our scientific choices? It suffices to focus on non-equilibrium plasmas and transport of pollutants in the air and see how many new methods for diagnostics and treatment have been proposed for medicine in the past 10 years. So in addition to the past major achievements such as plasma etching for integrated circuit production, the field is full of possibilities and truly, almost anything is possible. We hope that some of the papers presented here summarize well how we learn about the laws of non-equilibrium physics in the given context of plasmas and air pollution and how we open new possibilities for further understanding and further applications. A wide range of topics is covered in this volume. This time we start with elementary collisional processes and a review of the data for excitation of polyatomic molecules obtained by the binary collision experiments carried out at the Institute of Physics in Belgrade by the group of Bratislav Marinković. A wide range of activities on the foundation of gaseous positronics ranging from new measurements in the binary regime to the simulation of collective transport in dense gases is presented by James Sullivan and coworkers. This work encompasses three continents, half a dozen groups and several lectures at the workshops while also covering
Non-equilibrium synergistic effects in atmospheric pressure plasmas.
Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken
2018-03-19
Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.
Quantum statistical effects in the mass transport of interstitial solutes in a crystalline solid
Woo, C. H.; Wen, Haohua
2017-09-01
The impact of quantum statistics on the many-body dynamics of a crystalline solid at finite temperatures containing an interstitial solute atom (ISA) is investigated. The Mori-Zwanzig theory allows the many-body dynamics of the crystal to be formulated and solved analytically within a pseudo-one-particle approach using the Langevin equation with a quantum fluctuation-dissipation relation (FDR) based on the Debye model. At the same time, the many-body dynamics is also directly solved numerically via the molecular dynamics approach with a Langevin heat bath based on the quantum FDR. Both the analytical and numerical results consistently show that below the Debye temperature of the host lattice, quantum statistics significantly impacts the ISA transport properties, resulting in major departures from both the Arrhenius law of diffusion and the Einstein-Smoluchowski relation between the mobility and diffusivity. Indeed, we found that below one-third of the Debye temperature, effects of vibrations on the quantum mobility and diffusivity are both orders-of-magnitude larger and practically temperature independent. We have shown that both effects have their physical origin in the athermal lattice vibrations derived from the phonon ground state. The foregoing theory is tested in quantum molecular dynamics calculation of mobility and diffusivity of interstitial helium in bcc W. In this case, the Arrhenius law is only valid in a narrow range between ˜300 and ˜700 K. The diffusivity becomes temperature independent on the low-temperature side while increasing linearly with temperature on the high-temperature side.
Tripathy, Srijeet; Bhattacharyya, Tarun Kanti
2016-09-01
Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.
Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons
International Nuclear Information System (INIS)
Gopar, Víctor A.
2014-01-01
Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studied phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution
Non-equilibrium dynamics from RPMD and CMD.
Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F
2016-11-28
We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.
Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S
2013-08-21
In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.
Transport and collective radiance in a basic quantum chiral optical model
Kornovan, D. F.; Petrov, M. I.; Iorsh, I. V.
2017-09-01
In our work, we theoretically study the dynamics of a single excitation in a one-dimensional array of two-level systems, which are chirally coupled through a single mode waveguide. The chirality is achieved owing to a strong optical spin-locking effect, which in an ideal case gives perfect unidirectional excitation transport. We obtain a simple analytical solution for a single excitation dynamics in the Markovian limit, which directly shows the tolerance of the system with respect to the fluctuations of emitters position. We also show that the Dicke state, which is well known to be superradiant, has twice lower emission rate in the case of unidirectional quantum interaction. Our model is supported and verified with the numerical computations of quantum emitters coupled via surface plasmon modes in a metallic nanowire. The obtained results are based on a very general model and can be applied to any chirally coupled system that gives a new outlook on quantum transport in chiral nanophotonics.
Transport in constricted quantum Hall systems: beyond the Kane-Fisher paradigm
International Nuclear Information System (INIS)
Lal, Siddhartha
2007-08-01
A simple model of edge transport in a constricted quantum Hall system with a lowered local fi lling factor is studied. The current backscattered from the constriction is explained from a matching of the properties of the edge-current excitations in the constriction (ν 2 ) and bulk (ν 1 ) regions. We develop a hydrodynamic theory for bosonic edge modes inspired by this model, stressing the importance of boundary conditions in elucidating the nature of current transport. By invoking a generalised quasiparticle-quasihole symmetry of the quantum Hall circuit system, we fi nd that a competition between two tunneling process determines the fate of the low-bias transmission conductance. A novel generalisation of the Kane-Fisher quantum impurity model is found, describing transitions from a weak-coupling theory at partial transmission to strong- coupling theories for perfect transmission and reflection as well as a new symmetry dictated fixed point. These results provide satisfactory explanations for recent experimental results at fi lling-factors of 1/3 and 1. (author)
Quantum oscillation and nontrivial transport in the Dirac semimetal Cd_3As_2 nanodevice
International Nuclear Information System (INIS)
Pan, Haiyang; Wei, Zhongxia; Zhao, Bo; Song, Fengqi; Wang, Baigeng; Zhang, Kang; Gao, Ming; Wang, Xuefeng; Zhang, Rong; Wang, Jue; Han, Min; Pi, Li
2016-01-01
Here, we report on the Shubnikov-de Haas oscillation in high-quality Cd_3As_2 nanowires grown by a chemical vapor deposition approach. The dominant transport of topological Dirac fermions is evident by the nontrivial Berry phase in the Landau Fan diagram. The quantum oscillations rise at a small field of 2 T and preserves up to 100 K, revealing a sizeable Landau level gap and a device mobility of 2138 cm"2" V"−"1" s"−"1. The angle-variable oscillations indicate the isotropy of the bulk Dirac transport. The large estimated mean free path makes the Cd_3As_2 nanowire a promising platform for the one-dimensional transport of Dirac semimetals.
Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics
Nandi, Rana; Schramm, Stefan
2018-01-01
We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.
Dark states in spin-polarized transport through triple quantum dot molecules
Wrześniewski, K.; Weymann, I.
2018-02-01
We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.
Efficiency bounds for nonequilibrium heat engines
International Nuclear Information System (INIS)
Mehta, Pankaj; Polkovnikov, Anatoli
2013-01-01
We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodic engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ► Derived efficiency bounds for heat engines working with a single reservoir. ► Analyzed both ergodic and non-ergodic engines. ► Showed that non-ergodic engines can be more efficient. ► Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes
Institute of Scientific and Technical Information of China (English)
孙素蓉; 王海兴
2013-01-01
pressure and non-equilibrium parameter (θ =Te/Th) significantly affect the values of viscosity,thermal conductivity,and electrical conductivity.With the reduction of pressure and increased degree of thermodynamic nonequilibrium,the viscosity of krypton plasmas decreases.The degree of thermodynamic nonequilibrium significantly affects the peak value of thermal conductivity.In a high-temperature region,the electron translation thermal conductivity is dominant and increases with the increase of pressure,meanwhile,the electrical conductivity also increases with the increase of pressure.The variation of electrical conductivity with pressure is opposite in lowtemperature region.Under the condition of local thermodynamic equilibrium,the calculated transport properties of krypton plasma agree well with previously reported data.
Oscillations of quantum transport through double-AB rings with magnetic impurity
International Nuclear Information System (INIS)
Gao Yingfang; Liang, J-Q
2006-01-01
We have studied the effect of impurity scattering on the quantum transport through double AB rings in the presence of spin-flipper in the middle lead in terms of one-dimensional quantum waveguide theory. The electron interacts with the impurity through the exchange interaction leading to spin-flip scattering. Transmissions in the spin-flipped and non-spin-flipped channels are calculated explicitly. It is found that the overall transmission and the conductance are distorted due to the impurity scattering. The extent of distortion not only depends on the strength of the impurity potential but also on the impurity position. Moreover, the transmission probability and the conductance are modulated by the magnetic flux, the size of the ring and the impurity potential strength as well
Gudmundsson, Vidar; Abdulla, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2018-02-01
We show that a Rabi-splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para- or the dia-magnetic electron-photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one- and two-electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high-order electron-photon processes are necessary to adequately construct the cavity-photon dressed electron states needed to describe both types of electroluminescence.
Theoretical modelling of electron transport in InAs/GaAs quantum dot superlattices
International Nuclear Information System (INIS)
Vukmirovic, Nenad; Ikonic, Zoran; Savic, Ivana; Indjin, Dragan; Harrison, Paul
2006-01-01
A theoretical model describing the electron transport in InAs/GaAs quantum dot infrared photodetectors, modelled as ideal quantum dot superlattices, is presented. The carrier wave functions and energy levels were evaluated using the strain dependent 8-band k.p Hamiltonian and used to calculate all intra- and inter-period transition rates due to interaction with phonons and electromagnetic radiation. The interaction with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within the framework of Fermi's golden rule, while the interaction with longitudinal optical phonons was considered taking into account their strong coupling to electrons. The populations of energy levels were then found from a system of rate equations, and the electron current in the superlattice was subsequently extracted. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
A constricted quantum Hall system as a beam-splitter: understanding ballistic transport on the edge
International Nuclear Information System (INIS)
Lal, Siddhartha
2007-09-01
We study transport in a model of a quantum Hall edge system with a gate-voltage controlled constriction. A finite backscattered current at finite edge-bias is explained from a Landauer- Buttiker analysis as arising from the splitting of edge current caused by the difference in the filling fractions of the bulk (ν 1 ) and constriction(ν 2 ) quantum Hall fluid regions. We develop a hydrodynamic theory for bosonic edge modes inspired by this model. The constriction region splits the incident long-wavelength chiral edge density-wave excitations among the transmitting and reflecting edge states encircling it. These findings provide satisfactory explanations for several puzzling recent experimental results. These results are confirmed by computing various correlators and chiral linear conductances of the system. In this way, our results find excellent agreement with some of the recent puzzling experimental results for the cases of ν 1 = 1/3, 1. (author)
Theoretical modelling of electron transport in InAs/GaAs quantum dot superlattices
Energy Technology Data Exchange (ETDEWEB)
Vukmirovic, Nenad; Ikonic, Zoran; Savic, Ivana; Indjin, Dragan; Harrison, Paul [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)
2006-07-01
A theoretical model describing the electron transport in InAs/GaAs quantum dot infrared photodetectors, modelled as ideal quantum dot superlattices, is presented. The carrier wave functions and energy levels were evaluated using the strain dependent 8-band k.p Hamiltonian and used to calculate all intra- and inter-period transition rates due to interaction with phonons and electromagnetic radiation. The interaction with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within the framework of Fermi's golden rule, while the interaction with longitudinal optical phonons was considered taking into account their strong coupling to electrons. The populations of energy levels were then found from a system of rate equations, and the electron current in the superlattice was subsequently extracted. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Nonequilibrium effects in Isoscaling
International Nuclear Information System (INIS)
Dorso, C. O.; Lopez, J. A.
2007-01-01
In this work we study within a simple model different properties of the system that allow us to understand the properties of the isoscaling observable. We first show that isoscaling is a general property of fragmenting systems. We show this by using a simple generalized percolation model. We show that the usual isoscaling property can be obtained in the case of bond percolation in bichromatic lattices with any regular topology. In this case the probabilities of each color (isospin) are independent. We then explore the effect of introducing 'non-equilibrium' effects
Non-equilibrium thermodynamics
De Groot, Sybren Ruurds
1984-01-01
The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn
The nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Hoover, W.G.
1992-03-01
MOLECULAR DYNAMICS has been generalized in order to simulate a variety of NONEQUILIBRIUM systems. This generalization has been achieved by adopting microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress. Some of the problems already treated include rapid plastic deformation, intense heat conduction, strong shockwaves simulation, and far-from-equilibrium phase transformations. Continuing advances in technique and in the modeling of interatomic forces, coupled with qualitative improvements in computer hardware, are enabling such simulations to approximate real-world microscale and nanoscale experiments
Instabilities and nonequilibrium structures
International Nuclear Information System (INIS)
Tirapegui, E.; Villarroel, D.
1987-01-01
Physical systems can be studied both near to and far from equilibrium where instabilities appear. The behaviour in these two regions is reviewed in this book, from both the theoretical and application points of view. The influence of noise in these situations is an essential feature which cannot be ignored. It is therefore discussed using phenomenological and theoretical approaches for the numerous problems which still remain in the field. This volume should appeal to mathematicians and physicists interested in the areas of instability, bifurcation theory, dynamical systems, pattern formation, nonequilibrium structures and statistical mechanics. (Auth.)
Quantum transport with long-range steps on Watts-Strogatz networks
Wang, Yan; Xu, Xin-Jian
2016-07-01
We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.
Controlling the transport of an ion: classical and quantum mechanical solutions
International Nuclear Information System (INIS)
Fürst, H A; Poschinger, U G; Schmidt-Kaler, F; Singer, K; Goerz, M H; Koch, C P; Murphy, M; Montangero, S; Calarco, T
2014-01-01
The accurate transport of an ion over macroscopic distances represents a challenging control problem due to the different length and time scales that enter and the experimental limitations on the controls that need to be accounted for. Here, we investigate the performance of different control techniques for ion transport in state-of-the-art segmented miniaturized ion traps. We employ numerical optimization of classical trajectories and quantum wavepacket propagation as well as analytical solutions derived from invariant based inverse engineering and geometric optimal control. The applicability of each of the control methods depends on the length and time scales of the transport. Our comprehensive set of tools allows us make a number of observations. We find that accurate shuttling can be performed with operation times below the trap oscillation period. The maximum speed is limited by the maximum acceleration that can be exerted on the ion. When using controls obtained from classical dynamics for wavepacket propagation, wavepacket squeezing is the only quantum effect that comes into play for a large range of trapping parameters. We show that this can be corrected by a compensating force derived from invariant based inverse engineering, without a significant increase in the operation time. (paper)
In-Plane Magnetic Field Effect on the Transport Properties in a Quasi-3D Quantum Well Structure
International Nuclear Information System (INIS)
Brooks, J.; Clark, R.; Lumpkin, N.; O'Brien, J.; Reno, J.; Simmons, J.; Wang, Z.; Zhang, B.
1999-01-01
The transport properties of a quasi-three-dimensional, 200 layer quantum well structure are investigated at integer filling in the quantum Hall state. We find that the transverse magnetoresistance R xx , the Hall resistance R xy , and the vertical resistance R zz all follow a similar behavior with both temperature and in-plane magnetic field. A general feature of the influence of increasing in-plane field B in is that the Hall conductance quantization first improves, but above a characteristic value B C in , the quantization is systematically removed. We consider the interplay of the chid edge state transport and the bulk (quantum Hall) transport properties. This mechanism may arise from the competition of the cyclotron energy with the superlattice band structure energies. A comparison of the resuIts with existing theories of the chiral edge state transport with in-plane field is also discussed
Energy flow in non-equilibrium conformal field theory
Bernard, Denis; Doyon, Benjamin
2012-09-01
We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.
Becker, M. D.; Wang, Y.; Englehart, J.; Pennell, K. D.; Abriola, L. M.
2010-12-01
As manufactured nanomaterials become more prevalent in commercial and industrial applications, the development of mathematical models capable of predicting nanomaterial transport and retention in subsurface systems is crucial to assessing their fate and distribution in the environment. A systematic modeling approach based on a modification of clean-bed filtration theory was undertaken to elucidate mechanisms governing the transport and deposition behavior of quantum dots in saturated quartz sand as a function of grain size and flow velocity. The traditional deposition governing equation, which assumes irreversible attachment by a first-order rate (katt), was modified to include a maximum or limiting retention capacity (Smax) and first-order detachment of particles from the solid phase (kdet). Quantum dot mobility experiments were performed in columns packed with three size fractions of Ottawa sand (d50 = 125, 165, and 335 μm) at two different pore-water velocities (0.8 m/d and 7.6 m/d). The CdSe quantum dots in a CdZnS shell and polyacrylic acid coating were negatively charged (zeta potential measured ca. -35 mV) with a hydrodynamic diameter of approximately 30 nm. Fitted values of katt, Smax, and kdet were obtained for each transport and deposition experiment through the implementation of a nonlinear least-squares routine developed to fit the model to experimental breakthrough and retention data via multivariate optimization. Fitted attachment rates and retention capacities increased exponentially with decreasing grain size at both flow rates, while no discernable trend was apparent for the fitted detachment rates. Maximum retention capacity values were plotted against a normalized mass flux expression, which accounts for flow conditions and grain size. A power function fit to the data yielded a dependence that was consistent with a previous study undertaken with fullerene nanoparticles.
Quantum transport through complex networks - from light-harvesting proteins to semiconductor devices
Energy Technology Data Exchange (ETDEWEB)
Kreisbeck, Christoph
2012-06-18
Electron transport through small systems in semiconductor devices plays an essential role for many applications in micro-electronics. One focus of current research lies on establishing conceptually new devices based on ballistic transport in high mobility AlGaAs/AlGa samples. In the ballistic regime, the transport characteristics are determined by coherent interference effects. In order to guide experimentalists to an improved device design, the characterization and understanding of intrinsic device properties is crucial. We develop a time-dependent approach that allows us to simulate experimentally fabricated, complex devicegeometries with an extension of up to a few micrometers. Particularly, we explore the physical origin of unexpected effects that have been detected in recent experiments on transport through Aharonov-Bohm waveguide-interferometers. Such interferometers can be configured as detectors for transfer properties of embedded quantum systems. We demonstrate that a four-terminal waveguide-ring is a suitable setup for measuring the transmission phase of a harmonic quantum dot. Quantum effects are not restricted exclusively to artificial devices but have been found in biological systems as well. Pioneering experiments reveal quantum effects in light-harvesting complexes, the building blocks of photosynthesis. We discuss the Fenna-Matthews-Olson complex, which is a network of coupled bacteriochlorophylls. It acts as an energy wire in the photosynthetic apparatus of green sulfur bacteria. Recent experimental findings suggest that energy transfer takes place in the form of coherent wave-like motion, rather than through classical hopping from one bacteriochlorophyll to the next. However, the question of why and how coherent transfer emerges in light-harvesting complexes is still open. The challenge is to merge seemingly contradictory features that are observed in experiments on two-dimensional spectroscopy into a consistent theory. Here, we provide such a
Novel phenomena in one-dimensional non-linear transport in long quantum wires
International Nuclear Information System (INIS)
Morimoto, T; Hemmi, M; Naito, R; Tsubaki, K; Park, J-S; Aoki, N; Bird, J P; Ochiai, Y
2006-01-01
We have investigated the non-linear transport properties of split-gate quantum wires of various channel lengths. In this report, we present results on a resonant enhancement of the non-linear conductance that is observed near pinch-off under a finite source-drain bias voltage. The resonant phenomenon exhibits a strong dependence on temperature and in-plane magnetic field. We discuss the possible relationship of this phenomenon to the spin-polarized manybody state that has recently been suggested to occur in quasi-one dimensional systems
Enhanced quantum interference transport in gold films with random antidot arrays
Directory of Open Access Journals (Sweden)
Zhaoguo Li
2016-09-01
Full Text Available We report on the quantum interference transport of randomly distributed antidot arrays, which were prepared on gold films via the focused ion beam direct writing method. The temperature dependence of the gold films’ resistances with and without random antidot arrays were described via electron–phonon interaction theory. Compared with the pristine gold films, we observed an unexpected enhancement of the weak localization signature in the random antidot array films. The physical mechanism behind this enhancement may originate from the enhancement of electron–electron interactions or the suppression of electron–phonon interactions; further evidence is required to determine the exact mechanism.
Bose, Deepak
2012-01-01
The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above
Quantum conductance in silicon quantum wires
Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A
2002-01-01
The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)
International Nuclear Information System (INIS)
Jepps, Owen G; Rondoni, Lamberto
2010-01-01
Deterministic 'thermostats' are mathematical tools used to model nonequilibrium steady states of fluids. The resulting dynamical systems correctly represent the transport properties of these fluids and are easily simulated on modern computers. More recently, the connection between such thermostats and entropy production has been exploited in the development of nonequilibrium fluid theories. The purpose and limitations of deterministic thermostats are discussed in the context of irreversible thermodynamics and the development of theories of nonequilibrium phenomena. We draw parallels between the development of such nonequilibrium theories and the development of notions of ergodicity in equilibrium theories. (topical review)
Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois
2017-08-09
Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.
Quantum transport through MoS2 constrictions defined by photodoping
Epping, Alexander; Banszerus, Luca; Güttinger, Johannes; Krückeberg, Luisa; Watanabe, Kenji; Taniguchi, Takashi; Hassler, Fabian; Beschoten, Bernd; Stampfer, Christoph
2018-05-01
We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS2) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS2/hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.
Wigner Transport Simulation of Resonant Tunneling Diodes with Auxiliary Quantum Wells
Lee, Joon-Ho; Shin, Mincheol; Byun, Seok-Joo; Kim, Wangki
2018-03-01
Resonant-tunneling diodes (RTDs) with auxiliary quantum wells ( e.g., emitter prewell, subwell, and collector postwell) are studied using a Wigner transport equation (WTE) discretized by a thirdorder upwind differential scheme. A flat-band potential profile is used for the WTE simulation. Our calculations revealed functions of the auxiliary wells as follows: The prewell increases the current density ( J) and the peak voltage ( V p ) while decreasing the peak-to-valley current ratio (PVCR), and the postwell decreases J while increasing the PVCR. The subwell affects J and PVCR, but its main effect is to decrease V p . When multiple auxiliary wells are used, each auxiliary well contributes independently to the transport without producing side effects.
Particle production and Boltzmann integral form of relativistic quantum transport theory
International Nuclear Information System (INIS)
Rafelski, J.; Davis, E.D.; Bialynicki-Birula, I.
1993-01-01
The 3+3+1 dimensional relativistic quantum transport equation for the fermion matter field, combines the particle pair production with flow phenomena, which occur at very different time scale. A direct numerical treatment of dynamical situations is therefore practically impossible. The authors attempt a seperation of these two sectors by the method of prediagonalization of the integral equations. They exploit the structure of the resolvent of the transport equations: it contains two poles corresponding to the flow sector and two to the pair production sector. Their hope for practical applications is to treat matter flow as a classical phenomenon and to be able to obtain an integral term describing the pair production accurately
Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices
Energy Technology Data Exchange (ETDEWEB)
Gramich, J., E-mail: joerg.gramich@unibas.ch; Baumgartner, A.; Schönenberger, C. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)
2016-04-25
We report thermally activated transport resonances for biases below the superconducting energy gap in a carbon nanotube quantum dot (QD) device with a superconducting Pb and a normal metal contact. These resonances are due to the superconductor's finite quasi-particle population at elevated temperatures and can only be observed when the QD life-time broadening is considerably smaller than the gap. This condition is fulfilled in our QD devices with optimized Pd/Pb/In multi-layer contacts, which result in reproducibly large and “clean” superconducting transport gaps with a strong conductance suppression for subgap biases. We show that these gaps close monotonically with increasing magnetic field and temperature. The accurate description of the subgap resonances by a simple resonant tunneling model illustrates the ideal characteristics of the reported Pb contacts and gives an alternative access to the tunnel coupling strengths in a QD.
Valley-polarized quantum transport generated by gauge fields in graphene
Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan
2017-09-01
We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.
Enhancing light absorption within the carrier transport length in quantum junction solar cells.
Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene
2015-09-10
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31 mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.
International Nuclear Information System (INIS)
Wilson, John A
2009-01-01
A detailed exposition is given of recent transport and 'quantum oscillation' results from high temperature superconducting (HTSC) systems covering the full carrier range from overdoped to underdoped material. This now very extensive and high quality data set is here interpreted within the framework developed by the author of local pairs and boson-fermion resonance, arising in the context of negative- U behaviour within an inhomogeneous electronic environment. The strong inhomogeneity comes with the mixed-valence condition of these materials, which when underdoped lie in close proximity to the Mott-Anderson transition. The observed intense scattering is presented as resulting from pair formation and from electron-boson collisions in the resonant crossover circumstance. The high level of scattering carries the systems to incoherence in the pseudogapped state, p c (= 0.183). In a high magnetic field the striped partition of the inhomogeneous charge distribution becomes much strengthened and regularized. Magnetization and resistance oscillations, of period dictated by the favoured positioning of the fluxon array within the real space environment of the diagonal 2D charge striping array, are demonstrated to be responsible for the recently reported behaviour hitherto widely attributed to the quantum oscillation response of a much more standard Fermi liquid condition. A detailed analysis embracing all the experimental data serves to reveal that in the given conditions of very high field, low temperature, 2D-striped, underdoped, d-wave superconducting, HTSC material the flux quantum becomes doubled to h/e.
Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.
2017-12-01
In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.
Acoustically induced spin transport in (110)GaAs quantum wells
Energy Technology Data Exchange (ETDEWEB)
Couto, Odilon D.D. Jr.
2008-09-29
In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 m is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D'yakonov-Perel' spin relaxation mechanism for z-oriented spins in (110) IIIV QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (B{sub ext}) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1 anti 10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (B{sub int}), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around B{sub ext}. In contrast, for transport along the [1 anti 10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of B{sub int}. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D'yakonov-Perel' mechanism for the (110) system. (orig.)
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Transport in a three-terminal graphene quantum dot in the multi-level regime
International Nuclear Information System (INIS)
Jacobsen, Arnhild; Simonet, Pauline; Ensslin, Klaus; Ihn, Thomas
2012-01-01
We investigate transport in a three-terminal graphene quantum dot. All nine elements of the conductance matrix have been independently measured. In the Coulomb blockade regime, accurate measurements of individual conductance resonances reveal slightly different resonance energies depending on which pair of leads is used for probing. Rapid changes in the tunneling coupling between the leads and the dot due to localized states in the constrictions have been excluded by tuning the difference in resonance energies using in-plane gates which couple preferentially to individual constrictions. The interpretation of the different resonance energies is then based on the presence of a number of levels in the dot with an energy spacing of the order of the measurement temperature. In this multi-level transport regime, the three-terminal device offers the opportunity to sense if the individual levels couple with different strengths to the different leads. This in turn gives qualitative insight into the spatial profile of the corresponding quantum dot wave functions. (paper)
Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport
Seward, Kenton; Lin, Zhibin; Lusk, Mark
2012-02-01
The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.
Quantum Hall effect and anomalous transport in (TMTSF)2PF6
International Nuclear Information System (INIS)
Eom, J.; Cho, H.; Kang, W.; Chicago Univ., IL
1999-01-01
Under low temperatures and high magnetic fields, quasi-one dimensional organic conductor (TMTSFP) 2 PF 6 exhibits a series of transitions to field-induced spin density wave (FISDW). Slightly above the onset of superconductivity in (TMTSF) 2 PF 6 , we observe a series of intervening phases that interrupt the sequence of FISDW that gives rise to the quantum Hall effect. These phases can be identified either as negative quantum numbered FISDW states or a puzzling arboresecent phase. Detailed study of the QHE in (TMTSF) 2 PF 6 reveals that the transport in the FISDW phases is dominated by anomalous longitudinal resistivities ρ xx and ρ yy that remain finite at low temperatures. While the quantization of σ xy is not adversely affected at high magnetic fields, the transport in the intermediate magnetic field remains complicated. In addition, the conductivity along applied magnetic field, σ zz , cannot be easily understood in terms of three-dimensional QHE and is suggestive of the importance of inter-layer coupling. (orig.)
Many-body effects in transport through a quantum-dot cavity system
Dinu, I. V.; Moldoveanu, V.; Gartner, P.
2018-05-01
We theoretically describe electric transport through an optically active quantum dot embedded in a single-mode cavity, and coupled to source-drain particle reservoirs. The populations of various many-body configurations (e.g., excitons, trions, biexciton) and the photon-number occupancies are calculated from a master equation which is derived in the basis of dressed states. These take into account both the Coulomb and the light-matter interaction. The former is essential in the description of the transport, while for the latter we identify situations in which it can be neglected in the expression of tunneling rates. The fermionic nature of the particle reservoirs plays an important role in the argument. The master equation is numerically solved for the s -shell many-body configurations of disk-shaped quantum dots. If the cavity is tuned to the biexciton-exciton transition, the most efficient optical processes take place in a three-level Λ system. The alternative exciton-ground-state route is inhibited as nonresonant due to the biexciton binding energy. The steady-state current is analyzed as a function of the photon frequency and the coupling to the leads. An unexpected feature appears in its dependence on the cavity loss rate, which turns out to be nonmonotonic.
Progress in Non-equilibrium Green's Functions (PNGF VI)
International Nuclear Information System (INIS)
2016-01-01
The sixth interdisciplinary conference 'Progress in Non-equilibrium Green's Functions' (PNGF6) took place at Lund University, Sweden, on 17-21 August 2015. The conference was attended by 60 scientists, from Europe and overseas, sharing an interest in Green's function methods and/or non-equilibrium phenomena. At the conference, 34 invited and contributed talks were given, together with a poster session with 17 contributions. As its predecessors (Rostock 1999, Dresden 2002, Kiel 2005, Glasgow 2009, Jyväskylä 2012) did, the conference succeeded in gathering different communities for the exchange of recent developments and results. Among the topics of the conference, we mention approaches for strongly correlated systems, improvements of existing perturbative many-body schemes, electron-phonon/-photon interactions in time-dependent treatments, numerical scalability of NEGF approaches, connections with other non-equilibrium methods and concrete physical applications. For the latter, we mention quantum transport, semiconductor kinetics, multiply excited states in atoms and ions, nuclear reactions, high energy physics, quantum cascade lasers, strongly correlated model systems, graphene-nanostructures, optoelectronics, superconductors, spin-dynamics, photovoltaics, excitations in atoms and ions and time-resolved spectroscopy. The present volume contains 20 articles from participants of PNGF6, devoted to these topics. Compared to previous conferences, a completely novel and successful aspect of PNGF6 was the participation of experimentalists among the invited speakers, to establish a connection between emerging experimental techniques (for example, time-dependent spectroscopies) and the theoretical NEGF community. As at the previous PNGF conferences, the atmosphere was friendly and exciting at the same time, favoring vivid and stimulating discussions among experienced scientists, young researchers and students. The conference would not have been
International Nuclear Information System (INIS)
Kurniawan, O; Bai, P; Li, E
2009-01-01
A ballistic calculation of a full quantum mechanical system is presented to study 2D nanoscale devices. The simulation uses the nonequilibrium Green's function (NEGF) approach to calculate the transport properties of the devices. While most available software uses the finite difference discretization technique, our work opts to formulate the NEGF calculation using the finite element method (FEM). In calculating a ballistic device, the FEM gives some advantages. In the FEM, the floating boundary condition for ballistic devices is satisfied naturally. This paper gives a detailed finite element formulation of the NEGF calculation applied to a double-gate MOSFET device with a channel length of 10 nm and a body thickness of 3 nm. The potential, electron density, Fermi functions integrated over the transverse energy, local density of states and the transmission coefficient of the device have been studied. We found that the transmission coefficient is significantly affected by the top of the barrier between the source and the channel, which in turn depends on the gate control. This supports the claim that ballistic devices can be modelled by the transport properties at the top of the barrier. Hence, the full quantum mechanical calculation presented here confirms the theory of ballistic transport in nanoscale devices.
Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.
Bose, Amartya; Makri, Nancy
2017-10-21
The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.
Resonance transport and kinetic entropy
International Nuclear Information System (INIS)
Ivanov, Yu.B.; Knoll, J.; Voskresensky, D.N.
2000-01-01
We continue the description of the dynamics of unstable particles within the real-time formulation of nonequilibrium field theory initiated in a previous paper . There we suggest to use Baym's PHI-functional method in order to achieve approximation schemes with 'built in' consistency with respect to conservation laws and thermodynamics even in the case of particles with finite damping width. Starting from Kadanoff-Baym equations we discuss a consistent first order gradient approach to transport which preserves the PHI-derivable properties. The validity conditions for the resulting quantum four-phase-space kinetic theory are discussed under the perspective to treat particles with broad damping widths. This non-equilibrium dynamics naturally includes all those quantum features already inherent in the corresponding equilibrium limit (e.g. Matsubara formalism) at the same level of PHI-derivable approximation. Various collision-term diagrams are discussed including those of higher order which lead to memory effects. As an important novel part we derive a generalized nonequilibrium expression for the kinetic entropy flow, which includes contributions from fluctuations and mass-width effects. In special cases an H-theorem is derived implying that the entropy can only increase with time. Memory effects in the kinetic terms provide contributions to the kinetic entropy flow that in the equilibrium limit recover the famous bosonic type T 3 lnT correction to the specific heat in the case of Fermi liquids like Helium-3
Definition of Nonequilibrium Entropy of General Systems
Mei, Xiaochun
1999-01-01
The definition of nonequilibrium entropy is provided for the general nonequilibrium processes by connecting thermodynamics with statistical physics, and the principle of entropy increment in the nonequilibrium processes is also proved in the paper. The result shows that the definition of nonequilibrium entropy is not unique.
Bonitz, Michael
2016-01-01
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
SRB states and nonequilibrium statistical mechanics close to equilibrium
Gallavotti, Giovannni; Ruelle, David
1996-01-01
Nonequilibrium statistical mechanics close to equilibrium is studied using SRB states and a formula for their derivatives with respect to parameters. We write general expressions for the thermodynamic fluxes (or currents) and the transport coefficients, generalizing previous results. In this framework we give a general proof of the Onsager reciprocity relations.
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
Energy Technology Data Exchange (ETDEWEB)
Mohseni, M. [Google Research, Venice, California 90291 (United States); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shabani, A. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States); Lloyd, S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rabitz, H. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)
2014-01-21
Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k{sub B}λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
International Nuclear Information System (INIS)
Mohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H.
2014-01-01
Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k B λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap
Nonequilibrium dynamical mean-field theory
Energy Technology Data Exchange (ETDEWEB)
Eckstein, Martin
2009-12-21
The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)
Nonequilibrium dynamical mean-field theory
International Nuclear Information System (INIS)
Eckstein, Martin
2009-01-01
The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)
Directory of Open Access Journals (Sweden)
Francis S. Maloney
2016-10-01
Full Text Available Zinc oxide nanowire and titanium dioxide nanoparticle (ZnO:TiO2 NW/NP hybrid films were utilized as the photoanode layer in quantum dot-sensitized solar cells (QDSSCs. CdSe quantum dots (QDs with a ZnS passivation layer were deposited on the ZnO:TiO2 NW/NP layer as a photosensitizer by successive ion layer adsorption and reaction (SILAR. Cells were fabricated using a solid-state polymer electrolyte and intensity-modulated photovoltage and photocurrent spectroscopy (IMVS/PS was carried out to study the electron transport properties of the cell. Increasing the SILAR coating number enhanced the total charge collection efficiency of the cell. The electron transport time constant and diffusion length were found to decrease as more QD layers were added.
Spin transport dynamics of excitons in CdTe/Cd1-xMnxTe quantum wells
International Nuclear Information System (INIS)
Kayanuma, Kentaro; Shirado, Eiji; Debnath, Mukul C.; Souma, Izuru; Chen, Zhanghai; Oka, Yasuo
2001-01-01
Transport properties of spin-polarized excitons were studied in the double quantum well system composed of Cd 0.95 Mn 0.05 Te and CdTe wells. Circular polarization degrees of the time resolved exciton photoluminescence in magnetic field showed that the spin-polarized excitons diffused from the magnetic quantum well and injected to the non-magnetic quantum well by conserving their spins. The spin-polarized excitons injected into the nonmagnetic well reaches 18% of the nonmagnetic well excitons. From the circular polarization degree and the lifetime of the magnetic quantum well excitons, the spin relaxation time of the excitons in the Cd 0.95 Mn 0.05 Te well was determined as 275 - 10 ps depending on the magnetic field strength. [copyright] 2001 American Institute of Physics
Modeling techniques for quantum cascade lasers
Energy Technology Data Exchange (ETDEWEB)
Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, 207 S Martin Jischke Drive, West Lafayette, Indiana 47907 (United States)
2014-03-15
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Modeling techniques for quantum cascade lasers
Jirauschek, Christian; Kubis, Tillmann
2014-03-01
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Directory of Open Access Journals (Sweden)
Nicolas G. N. Constantino
2018-06-01
Full Text Available Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20–250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.
Multi-valued logic gates based on ballistic transport in quantum point contacts.
Seo, M; Hong, C; Lee, S-Y; Choi, H K; Kim, N; Chung, Y; Umansky, V; Mahalu, D
2014-01-22
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs.
Two-Dimensional Dirac Fermions in a Topological Insulator: Transport in the Quantum Limit
Energy Technology Data Exchange (ETDEWEB)
Analytis, J.G.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; McDonald, R.D.; /Los Alamos; Riggs, S.C.; /Natl. High Mag. Field Lab.; Chu, J.-H.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; Boebinger, G.S.; /Natl. High Mag. Field Lab.; Fisher, I.R.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.
2011-08-12
Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi{sub 2}Se{sub 3} in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9 x 10{sup 16} cm{sup -3}, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the {nu} = 1 Landau level attained by a field of {approx} 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.
Energy Technology Data Exchange (ETDEWEB)
Wensorra, Jakob
2009-03-20
The goal of this work has been to investigate und understand the electronic transport properties of vertical GaAs/AlAs nanocolumn resonant tunneling diodes (RTDs) and field effect transistors (RTTs) as well as of vertical InAs nanocolumn phase interference diodes. Besides the fabrication and electrical characterization of the devices, numerical calculations, simulations and quantum transport models represent the second important part of the work. GaAs/AlAs and InAs nanocolumns with lateral dimensions down to 30 nm have been processed by top-down approach. Room temperature DC electrical measurements on the nano-RTDs show a distinct negative differential resistance in the I-V characteristics for devices down to 30 nm lateral dimension. The miniaturization of the RTDs leads to the degradation of the transport properties, especially of the peak to valley current ratio (PVR), due to the increased surface scattering. Apart from the main current peak, new substructures can be observed in the I-V characteristics. These are shoulder like features for columns with diameters between 80 nm and 100 nm but become clear peaks when the column diameters are in the 55-75 nm range. For sub-65 nm column lateral dimensions, a strong increase of the PVR and a sharp single peak is observed. A local maximum of the PVR of 3 is reached for columns with 50 nm diameter. The sub-40 nm devices show only space charge limited currents in the I-V characteristics. This behavior can be shifted to smaller or larger diameters by increasing or reduction of the channel doping. For the smallest nanocolumns the lateral quantum confinement, caused by the low dimensionality of the system, leads to the formation of a 3D quantum-point-contact (QPC) in front of the DBQW structure. The quantization in this QPC depends on the column diameter and for a 50 nm column it exceeds the room temperature thermal broadening of the Fermi distribution function of about 25 meV. The measurements of the nano-RTTs indicate a
Transport through overlapping states in quantum dots and double dot molecules
International Nuclear Information System (INIS)
Berkovits, R.
2006-01-01
Full Text: We shall review the transport properties of interacting quantum dots with overlapping orbitals for which the orthodox Coulomb blockade picture no longer holds. We shall concentrate on he conductance through a serial double dot structure for which the inter-dot tunneling is stronger than the tunneling to the leads. When the dots are occupied by 1 or 3 electrons the usual Kondo peak is observed. For the case in which 2 electrons occupy the molecule a singlet is formed. Nevertheless, the conductance in that case has a constant non-zero value, and might even be equal to the maximum conductance of 2e 2 /h for certain values of the molecule parameters. We show that this is the result of the subtle interplay between the symmetric and anti-symmetric orbitals of the molecule caused by interactions and interference
Multi-Valued Logic Gates based on Ballistic Transport in Quantum Point Contacts
Seo, M.; Hong, C.; Lee, S.-Y.; Choi, H. K.; Kim, N.; Chung, Y.; Umansky, V.; Mahalu, D.
2014-01-01
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs.
Directory of Open Access Journals (Sweden)
A A Shokri
2013-10-01
Full Text Available In this paper, we have investigated the spin-dependent transport properties and electron entanglement in a mesoscopic system, which consists of two semi-infinite leads (as source and drain separated by a typical quantum wire with a given potential. The properties studied include current-voltage characteristic, electrical conductivity, Fano factor and shot noise, and concurrence. The calculations are based on the transfer matrix method within the effective mass approximation. Using the Landauer formalism and transmission coefficient, the dependence of the considered quantities on type of potential well, length and width of potential well, energy of transmitted electron, temperature and the voltage have been theoretically studied. Also, the effect of the above-mentioned factors has been investigated in the nanostructure. The application of the present results may be useful in designing spintronice devices.
Limiting processes in non-equilibrium classical statistical mechanics
International Nuclear Information System (INIS)
Jancel, R.
1983-01-01
After a recall of the basic principles of the statistical mechanics, the results of ergodic theory, the transient at the thermodynamic limit and his link with the transport theory near the equilibrium are analyzed. The fundamental problems put by the description of non-equilibrium macroscopic systems are investigated and the kinetic methods are stated. The problems of the non-equilibrium statistical mechanics are analyzed: irreversibility and coarse-graining, macroscopic variables and kinetic description, autonomous reduced descriptions, limit processes, BBGKY hierarchy, limit theorems [fr
Anisotropic nonequilibrium hydrodynamic attractor
Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.
2018-02-01
We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.
To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
DEFF Research Database (Denmark)
Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov
2017-01-01
QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron–electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven...
Energy Technology Data Exchange (ETDEWEB)
Mandal, Aparajita [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Kole, Arindam, E-mail: erak@iacs.res.in [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Dasgupta, Arup [Microscopy and Thermophysical Property Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chaudhuri, Partha [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2016-11-30
Highlights: • Low temperature columnar growth of regular sized Si-quantum dots (Si-QDs) within a-SiC:H/μc-SiC:H multilayer structure by tuning the a-SiC:H layer thickness. • Thickness optimization of the a-SiC:H layers resulted in a sharp increase of the transverse current and a decrease of the trap concentrations. • The arrangements of the Si-QDs favor percolation paths for the transverse current. - Abstract: Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel–Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.
Landau superfluids as nonequilibrium stationary states
International Nuclear Information System (INIS)
Wreszinski, Walter F.
2015-01-01
We define a superfluid state to be a nonequilibrium stationary state (NESS), which, at zero temperature, satisfies certain metastability conditions, which physically express that there should be a sufficiently small energy-momentum transfer between the particles of the fluid and the surroundings (e.g., pipe). It is shown that two models, the Girardeau model and the Huang-Yang-Luttinger (HYL) model, describe superfluids in this sense and, moreover, that, in the case of the HYL model, the metastability condition is directly related to Nozières’ conjecture that, due to the repulsive interaction, the condensate does not suffer fragmentation into two (or more) parts, thereby assuring its quantum coherence. The models are rigorous examples of NESS in which the system is not finite, but rather a many-body system
Quantum Markov processes and applications in many-body systems
International Nuclear Information System (INIS)
Temme, P. K.
2010-01-01
also gives access to the computation of their static properties. After this, we turn to an investigation of classical non-equilibrium steady states with methods derived from quantum information theory. We construct a special class of matrix product states that exhibit correlations which can best be understood in terms of classical Markov processes. Finally, we investigate the transport properties of non-equilibrium steady states. The dynamical equations are constructed in such a manner that they allow for both stochastic as well as coherent transport in the same formal framework. It is therefore possible to compare different forms of transport within the same model. (author) [de
Fluorinated graphene films with graphene quantum dots for electronic applications
Energy Technology Data Exchange (ETDEWEB)
Antonova, I. V., E-mail: antonova@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nebogatikova, N. A.; Prinz, V. Ya. [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090 (Russian Federation)
2016-06-14
This work analyzes carrier transport, the relaxation of non-equilibrium charge, and the electronic structure of fluorinated graphene (FG) films with graphene quantum dots (GQDs). The FG films with GQDs were fabricated by means of chemical functionalization in an aqueous solution of hydrofluoric acid. High fluctuations of potential relief inside the FG barriers have been detected in the range of up to 200 mV. A phenomenological expression that describes the dependence of the time of non-equilibrium charge emission from GQDs on quantum confinement levels and film thickness (potential barrier parameters between GQDs) is suggested. An increase in the degree of functionalization leads to a decrease in GQD size, the removal of the GQD effect on carrier transport, and the relaxation of non-equilibrium charge. The study of the electronic properties of FG films with GQDs has revealed a unipolar resistive switching effect in the films with a relatively high degree of fluorination and a high current modulation (up to ON/OFF ∼ 10{sup 4}–10{sup 5}) in transistor-like structures with a lower degree of fluorination. 2D films with GQDs are believed to have considerable potential for various electronic applications (nonvolatile memory, 2D connections with optical control and logic elements).
Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Hoover, W.G.
1980-01-01
Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility
ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells
Energy Technology Data Exchange (ETDEWEB)
Chen, Mingli; Yin, Huancai; Bai, Pengli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Miao, Peng [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Xudong [Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7 (Canada); Xu, Yingxue [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jun [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Jian, E-mail: yinj@sibet.ac.cn [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China)
2016-07-15
This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity of QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.
2013-01-01
This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores. The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical s
Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng
2017-08-25
The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.
Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene
Lima, Leandro; Lewenkopf, Caio
Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.
Current distribution and conductance quantization in the integer quantum Hall regime
International Nuclear Information System (INIS)
Cresti, Alessandro; Farchioni, Riccardo; Grosso, Giuseppe; Parravicini, Giuseppe Pastori
2003-01-01
Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)
Current distribution and conductance quantization in the integer quantum Hall regime
Energy Technology Data Exchange (ETDEWEB)
Cresti, Alessandro [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Farchioni, Riccardo [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Grosso, Giuseppe [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Parravicini, Giuseppe Pastori [NEST-INFM and Dipartimento di Fisica ' A Volta' , Universita di Pavia, via A Bassi 6, I-27100 Pavia (Italy)
2003-06-25
Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)
Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates
Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar
2017-05-01
We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.
Non-equilibrium phase transitions
Henkel, Malte; Lübeck, Sven
2009-01-01
This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.
International Nuclear Information System (INIS)
Cox, H.M.; Morais, P.C.; Hwang, D.M.; Bastos, P.; Gmitter, T.J.; Nazar, L.; Worlock, J.M.; Yablonovitch, E.; Hummel, S.G.
1988-09-01
A variety of InGaAs/InP quantum structures have been grown by vapor levitation epitaxy (VLE) and investigated by low temperature photoluminescence (PL). Excellent long-range uniformity of QW peak positions across a two-inch diameter wafer is achieved. Monolayer thickness variations in single QW's are used to establish an essentially unambiguous correlation of QW thickness with energy upshift for ultra-thin quantum wells. PL evidence is presented of the growth, for the first time by any technique, of an InGaAs/InP QW of single monolayer thickness (2.93 (angstrom)). Quantum wires were fabricated entirely by VLE as thin as one monolayer and estimated to be three unit cells wide. (author) [pt
Shot Noise Suppression in a Quantum Point Contact with Short Channel Length
International Nuclear Information System (INIS)
Jeong, Heejun
2015-01-01
An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5 meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensional non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact. (paper)
Collet, P; Métens, S; Neishtadt, A; Zaslavsky, G; Chaotic Dynamics and Transport in Classical and Quantum Systems
2005-01-01
This book offers a modern updated review on the most important activities in today dynamical systems and statistical mechanics by some of the best experts in the domain. It gives a contemporary and pedagogical view on theories of classical and quantum chaos and complexity in hamiltonian and ergodic systems and their applications to anomalous transport in fluids, plasmas, oceans and atom-optic devices and to control of chaotic transport. The book is issued from lecture notes of the International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems" held in Cargèse (Corsica) 18th to the 30th August 2003. It reflects the spirit of the School to provide lectures at the post-doctoral level on basic concepts and tools. The first part concerns ergodicity and mixing, complexity and entropy functions, SRB measures, fractal dimensions and bifurcations in hamiltonian systems. Then, models of dynamical evolutions of transport processes in classical and quantum systems have been largely expla...
Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2.
Liu, J Y; Hu, J; Graf, D; Zou, T; Zhu, M; Shi, Y; Che, S; Radmanesh, S M A; Lau, C N; Spinu, L; Cao, H B; Ke, X; Mao, Z Q
2017-09-21
Relativistic fermions in topological quantum materials are characterized by linear energy-momentum dispersion near band crossing points. Under magnetic fields, relativistic fermions acquire Berry phase of π in cyclotron motion, leading to a zeroth Landau level (LL) at the crossing point, a signature unique to relativistic fermions. Here we report the unusual interlayer quantum transport behavior resulting from the zeroth LL mode observed in the time reversal symmetry breaking type II Weyl semimetal YbMnBi 2 . The interlayer magnetoresistivity and Hall conductivity of this material are found to exhibit surprising angular dependences under high fields, which can be well fitted by a model, which considers the interlayer quantum tunneling transport of the zeroth LL's Weyl fermions. Our results shed light on the unusual role of zeroth LLl mode in transport.The transport behavior of the carriers residing in the lowest Landau level is hard to observe in most topological materials. Here, Liu et al. report a surprising angular dependence of the interlayer magnetoresistivity and Hall conductivity arising from the lowest Landau level under high magnetic field in type II Weyl semimetal YbMnBi 2 .
Quantum statistical description of transport of the quasi-particles in optic fibers
International Nuclear Information System (INIS)
Rasulova, M.Yu.; Hassan, T.; Mohamed Ridza bin Wahiddin; Umarov, B.
2006-12-01
On the basis of BBGKY hierarchy of quantum kinetic equations the quasi-quantum analogue of the linearized wave equation for one, two quasi-particles in optic fiber is obtained. The method which enables to obtain the quasi-quantum analogue of wave equations for any number of quasi- particles in fiber is suggested. (author)
International Nuclear Information System (INIS)
Appel, H.
2007-05-01
In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f xc from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the propagation
Energy Technology Data Exchange (ETDEWEB)
Appel, H.
2007-05-15
In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the
International Nuclear Information System (INIS)
Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng
2014-01-01
We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process
Black hole evaporation in a heat bath as a nonequilibrium process and its final fate
International Nuclear Information System (INIS)
Saida, Hiromi
2007-01-01
We consider a black hole in a heat bath, and the whole system which consists of the black hole and the heat bath is isolated from outside environments. When the black hole evaporates, the Hawking radiation causes an energy flow from the black hole to the heat bath. Therefore, since no energy flow arises in an equilibrium state, the thermodynamic state of the whole system is not in equilibrium. That is, in a region around the black hole, the matter field of Hawking radiation and that of heat bath should be in a nonequilibrium state due to the energy flow. Using a simple model which reflects the nonequilibrium nature of energy flow, we find the nonequilibrium effect on a black hole evaporation as follows: if the nonequilibrium region around a black hole is not so large, the evaporation time scale of a black hole in a heat bath becomes longer than that in an empty space (a situation without heat bath), because of the incoming energy flow from the heat bath to the black hole. However, if the nonequilibrium region around a black hole is sufficiently large, the evaporation time scale in a heat bath becomes shorter than that in an empty space, because a nonequilibrium effect of the temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. Further, a specific nonequilibrium phenomenon is found: a quasi-equilibrium evaporation stage under the nonequilibrium effect proceeds abruptly to a quantum evaporation stage at a semi-classical level (at black hole radius R g > Planck length) within a very short time scale with a strong burst of energy. (Contrarily, when the nonequilibrium effect is not taken into account, a quasi-equilibrium stage proceeds smoothly to a quantum stage at R g < Planck length without so strong an energy burst.) That is, the nonequilibrium effect of energy flow tends to make a black hole evaporation process more dynamical and to accelerate that process. Finally, on the final fate
Non-equilibrium many body dynamics
International Nuclear Information System (INIS)
Creutz, M.; Gyulassy, M.
1997-01-01
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop
Non-equilibrium many body dynamics
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.; Gyulassy, M.
1997-09-22
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.
Kinetic theory and transport phenomena
Soto, Rodrigo
2016-01-01
This textbook presents kinetic theory, which is a systematic approach to describing nonequilibrium systems. The text is balanced between the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed. The book is organised in thematic chapters where different paradigmatic systems are studied. The specific features of these systems are described, building and analysing the appropriate kinetic equations. Specifically, the book considers the classical transport of charges, the dynamics of classical gases, Brownian motion, plasmas, and self-gravitating systems, quantum gases, the electronic transport in solids and, finally, semiconductors. Besides these systems that are studied in detail, concepts are applied to some modern examples including the quark–gluon plasma, the motion of bacterial suspen...
Strain induced effects on the transport properties of metamorphic InAlAs/InGaAs quantum wells
International Nuclear Information System (INIS)
Capotondi, F.; Biasiol, G.; Ercolani, D.; Grillo, V.; Carlino, E.; Romanato, F.; Sorba, L.
2005-01-01
The relationship between structural and low-temperature transport properties is explored for In x Al 1 - x As/In x Ga 1 - x As metamorphic quantum wells with x > 0.7 grown on GaAs by molecular beam epitaxy. Different step-graded buffer layers are used to gradually adapt the in-plane lattice parameter from the GaAs towards the InGaAs value. We show that using buffer layers with a suitable maximum In content the residual compressive strain in the quantum well region can be strongly reduced. Samples with virtually no residual strain in the quantum well region show a low-temperature electron mobility up to 29 m 2 /V s while for samples with higher residual compressive strain the low-temperature mobility is reduced. Furthermore, for samples with buffers inducing a tensile strain in the quantum well region, deep grooves are observed on the surface, and in correspondence we notice a strong deterioration of the low-temperature transport properties
Non-equilibrium Dynamics, Thermalization and Entropy Production
International Nuclear Information System (INIS)
Hinrichsen, Haye; Janotta, Peter; Gogolin, Christian
2011-01-01
This paper addresses fundamental aspects of statistical mechanics such as the motivation of a classical state space with spontaneous transitions, the meaning of non-equilibrium in the context of thermalization, and the justification of these concepts from the quantum-mechanical point of view. After an introductory part we focus on the problem of entropy production in non-equilibrium systems. In particular, the generally accepted formula for entropy production in the environment is analyzed from a critical perspective. It is shown that this formula is only valid in the limit of separated time scales of the system's and the environmental degrees of freedom. Finally, we present an alternative simple proof of the fluctuation theorem.
International Nuclear Information System (INIS)
Di Ventra, Massimiliano; Pantelides, Sokrates T.
2000-01-01
The conventional Hellmann-Feynman theorem for the definition of forces on nuclei is not directly applicable to quantum time-dependent and transport problems. We present a rigorous derivation of a general Hellmann-Feynman-like theorem that applies to all quantum mechanical systems and reduces to well-known results for ground-state problems. It provides a rigorous definition of forces in time-dependent and transport problems. Explicit forms of Pulay-like forces are derived and the conditions for them to be zero are identified. A practical scheme for ab initio calculations of current-induced forces is described and the study of the transfer of a Si atom between two electrodes is presented as an example. (c) 2000 The American Physical Society
International Nuclear Information System (INIS)
Jalilian-Marian, Jamal; Jeon, Sangyong; Venugopalan, Raju; Wirstam, Jens
2000-01-01
The one loop effective action in quantum field theory can be expressed as a quantum mechanical path integral over world lines, with internal symmetries represented by Grassmanian variables. In this paper, we develop a real time, many body, world line formalism for the one loop effective action. In particular, we study hot QCD and obtain the classical transport equations which, as Litim and Manuel have shown, reduce in the appropriate limit to the non-Abelian Boltzmann-Langevin equation first obtained by Boedeker. In the Vlasov limit, the classical kinetic equations are those that correspond to the hard thermal loop effective action. We also discuss the imaginary time world line formalism for a hot φ 4 theory, and elucidate its relation to classical transport theory. (c) 2000 The American Physical Society
Non-equilibrium supramolecular polymerization.
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M
2017-09-18
Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.
Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels
Energy Technology Data Exchange (ETDEWEB)
Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Abranyos, Yonatan [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Pepper, Michael; Kumar, Sanjeev [Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom)
2015-11-15
For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.
Influence of spin correlations in the transport properties of a double quantum dot system
Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique
2013-03-01
In this work we study the influence of spin correlations in the transport properties of a system consisting of two quantum dots (QDs) with high Coulomb interaction U which are interconnected through a chain of N non-interacting sites and individually coupled to two metallic leads. Using both the finite U slave boson mean field approach (FUSBMFA) and the Logarithmic-discretization-embedded-cluster approximation (LDECA) we studied the system in different regions of the parameter space for which we calculate many physical quantities, namely local density of states, conductance, total spin, spin correlations, in addition to the renormalization parameters associated with the FUSBMFA. The results reveled a very rich physical scenario which is manifested by at least two different Kondo regimes, the well-known spin s = 1/2 and some other type of Kondo effect which appears as a result of the coupling between the QDs and the non-interacting central sites. We also consider the possibility of accessing some kind of Kondo box effect due to the discrete nature of the central chain and study how this regime is affected by the magnetic interaction between the local spins of the QD's and by the interaction between these spins and the spins of the conduction electros in the leads.
Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems
International Nuclear Information System (INIS)
Smith, Peter M; Kennett, Malcolm P
2012-01-01
Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role. (paper)
Gudjonsdottir, Solrun; van der Stam, Ward; Kirkwood, Nicholas; Evers, Wiel H; Houtepen, Arjan J
2018-05-16
Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li + and Na + the onset is at significantly less negative potentials. For larger ions (K + , quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li + and Na + . Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.
Browne, David A.; Mazumder, Baishakhi; Wu, Yuh-Renn; Speck, James S.
2015-01-01
on electron transport through quantum well active regions. These unipolar structures served as a test vehicle to test our 2D model of the effect of compositional fluctuations on polarization-induced barriers. Variables that were systematically studied included
International Nuclear Information System (INIS)
Selli, Daniele; Baburin, Igor; Leoni, Stefano; Seifert, Gotthard; Zhu, Zhen; Tománek, David
2013-01-01
We investigate the interaction of a graphene monolayer with the C(111) diamond surface using ab initio density functional theory. To accommodate the lattice mismatch between graphene and diamond, the overlayer deforms into a wavy structure that binds strongly to the diamond substrate. The detached ridges of the wavy graphene overlayer behave electronically as free-standing polyacetylene chains with delocalized π electrons, separated by regions containing only sp 3 carbon atoms covalently bonded to the (111) diamond surface. We performed quantum transport calculations for different geometries of the system to study how the buckling of the graphene layer and the associated bonding to the diamond substrate affect the transport properties. The system displays high carrier mobility along the ridges and a wide transport gap in the direction normal to the ridges. These intriguing, strongly anisotropic transport properties qualify the hybrid graphene–diamond system as a viable candidate for electronic nanodevices. (paper)
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas
2017-12-01
QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.
Energy Technology Data Exchange (ETDEWEB)
Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath, E-mail: Somnath.Bhattacharyya@wits.ac.za [Nano-Scale Transport Physics Laboratory, School of Physics and DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg (South Africa)
2014-07-14
The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2–300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80–300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.
Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath
2014-07-01
The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.
Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes
Taranto, Philip; Modi, Kavan; Pollock, Felix A.
2018-05-01
In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
International Nuclear Information System (INIS)
Mottola, E.; Bhattacharya, T.; Cooper, F.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
Energy Technology Data Exchange (ETDEWEB)
Mottola, E.; Bhattacharya, T.; Cooper, F. [and others
1998-12-31
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.
Energy Technology Data Exchange (ETDEWEB)
Pastawaski, Horacio M. [Universidad Nacional de Cordoba, Cordoba (Argentina); Medina, Ernesto [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)
2001-03-01
We discuss the steady-state electronic transport in solid-state and molecular devices in the quantum regime. The decimation technique allows a comprehensive description of the electronic structure. Such a method is used, in conjunction with the generalizations of Landauer's tunneling formalism, to describe a wide range of transport regimes. We analyze mesoscopic and semiclassical metallic transport, the metal-insulator transition, and the resonant tunneling regime. The effects of decoherence on transport is discussed in terms of the D' Amato-Pastawski model. A brief presentation of the time dependent phenomena is also included. [Spanish] Se discuten el transporte, en el estado estacionario, en dispositivos moleculares y de estado solido en el regimen cuantico. La tecnica de decimacion permite una descripcion completa de la estructura electronica. Tal metodo, en conjunto con la generalizacion del formalismo de Landauer, puede ser usado para describir un rango amplio de regimenes de transporte. Se analizan el transporte mesoscopico y semiclasico en el regimen metalico, la transicion metal-aislante, y el regimen de tunel resonante. Los efectos de decoherencia en el transporte son tratados en terminos de modelos de D'amato-Pastawski. Finalmente se incluye una breve presentacion de fenomenos dependientes del tiempo.
Hot-phonon generation in THz quantum cascade lasers
Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
2007-12-01
Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.